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ABSTRACT OF THE DISSERTATION

Atomistic Studies of Structure-Property Relationships of Defects in Amorphous and
Crystalline Solids

by

Tina Mirzaei

Doctor of Philosophy, Graduate Program in Materials Science and Engineering
University of California, Riverside, Spring 2022
Dr. Peter Alexander Greaney, Chairperson

Amorphous materials have a wide variety of applications and their mechanical,

optical, electronic and magnetic properties hold great promise towards current technolo-

gies. Just like in crystalline materials, the bulk properties of amorphous materials are

often dictated by defects and other structural anomalies or outliers. However, unlike crys-

talline structures, amorphous materials lack long range order and the disordered nature of

their atomic arrangements poses major challenges toward building a quantitative correla-

tion between their local atomic environments, leading to complications in characterizing

the structure and relaxation in these materials. This dissertation is composed of three sep-

arate studies that together build a methodology for describing and understanding the role

of defects in amorphous materials. In one of the projects, the structures of the defects are

all well-defined but their mechanical response is unknown and is the focus of our study. On

the other hand, the other two studies involve understanding the structure of non-crystalline

materials. In one of the studies, the challenge is in characterizing the average structure,

its relationship to viscosity, characterizing thermodynamically-driven changes in structures,
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and quantifying the degree of amorphousness. In a final study, we identify the outliers

in amorphous materials, we use metrics of structure and then we find the corresponding

mechanical behaviour and response of these outliers. These three combined can establish

relationship between defects, defects’ structure and their properties in materials. In this

thesis, firstly, we investigate the phenomenon of fragility in amorphous liquids, which char-

acterizes the dynamics of amorphous glass-liquid and refers to the sensitivity of liquid’s

bonding network and is associated with non-Arrhenius dependence of the liquid’s viscosity.

We demonstrate how fragility in amorphous liquids correlates with atomic size-mismatch

which is an important consideration in the design and structural performance of glass form-

ing alloys. Secondly, new computational methods are put forward to explain the numerical

values of some useful amorphous configurations to achieve a greater understanding of the

relationship between their processing, structure, and properties. Understanding the struc-

ture and the weaknesses of amorphous materials is of great importance to determine their

physical and mechanical properties and to improve the materials’ design. For this purpose,

predictive models were developed to accurately classify and identify the defects in amor-

phous materials and characterize their structural features. We also illustrate the e↵ect of

di↵erent cooling rates on these local weaknesses. Lastly, we studied the evolution of the

thermal conductivity in pristine LiAlO2 and we elucidated the e↵ects of defects on its ther-

mal properties at di↵erent scales which is important to assure its long-term performance

and to address these defects appropriately. These contributions are anticipated to enhance

our understanding of structure-property relationships of defects in materials, leading to

establish useful approaches in searching for materials with desirable performance.
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Chapter 1

Introduction

The goal of this thesis is to understand and explore the defects’ structure of amor-

phous and crystalline materials and to establish structure-property relationships in these

systems. Despite the abundance of amorphous materials and their usage, it may come as

a surprise that there is a little known about the defects in their structures. Understanding

the structure of amorphous materials plays a key role in improving the performance in their

future applications. Amorphous structures’ crucial distinction from a crystal involves their

lack of long-range order. Amorphous structures have disordered nature of atomic arrange-

ments and the atoms in these materials adopt varying local atomic packing configurations

and may have potential defects to various degrees [1, 2]. We have shown the amorphous

and crystalline structure of Cu in figure 1.1 for comparison.
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(a) (b)

Figure 1.1: Systems of (a) crystalline and (b) amorphous Cu.

In general, various classifications of solids fall into the amorphous category, ranging

from amorphous polymers and ceramics to random alloys and metallic glasses; and the local

outliers may act as the material’s weakness in any of these categories and they may limit

their applications. In this study, we characterize the defects in materials by identifying

variations in packing behaviour of materials, providing structural characterization, and

involving the use of novel computational methods and structural metrics to evaluate and

compare their properties.

As a starting point for this thesis, we present how the defects in crystalline struc-

tures are di↵erent from the ones in amorphous structures and we also present a high level

picture of some of the universal features of amorphous solids along with a brief description of

the amorphous materials that we are specifically focusing on (this is covered in the remain-

der of the first chapter). In chapter 2, we elaborate on the novel computational methods

that we employed followed by the details of the characterization metrics in chapter 3. Chap-

ter 4 enhances our understanding of the nature of the thermodynamically-driven changes
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in amorphous structures and characterizing the dynamics of glass-liquids. In chapter 5, we

present our results on identifying the outliers in amorphous materials and quantifying the

mechanical behaviour and the response of these local outliers. Chapter 6 mainly focuses on

the defects in crystalline structures which are all well-defined and we present our findings

on the evolution of the thermal conductivity in pristine crystalline LiAlO2 as well as the

defective LiAlO2. In the last chapter of this thesis, we conclude the study by summarising

the key research findings in relation to the structure-properties relationships of materials

and discussing the value and contribution thereof. We will also review the limitations of

this study and propose avenues for future research in amorphous materials.

1.1 Defects in Crystalline vs. Amorphous Materials

In crystalline solids, defects are defined as any imperfection and deviation from

the perfect arrangement of atoms [3]. Figure 1.2 shows some of these defects in crystalline

structures. Di↵erent types of defects [4, 5] in crystalline structures include:

• Intrinsic point defects [6] such as vacancies and interstitials;

• Chemical impurities such as substitutional or interstitial atoms;

• Extended defects such as dislocations, stacking faults, grain boundaries [7, 8].
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(a) (b) (c)

(d)

Figure 1.2: Example of defects in crystalline structures, (a) vacancy: when an atom is
missing from one of the lattice sites (b) interstitial: when an atom occupies a normally
unoccupied site in the crystal structure (c) dislocation: line along which the whole rows
of atoms in a crystal are arranged anomalously (d) grain boundary: a planar defect that
occurs where two crystallites meet.

However, amorphous materials lack long-range order of atoms, leading to compli-

cations in defining the defects. The main challenges in identifying the outliers in amorphous

systems are: i) is there any ideal reference structure to be compared with the amorphous

structure for defining the defects? ii) can defects be described as counterparts to the well-

defined defects in crystals? iii) how big should the size of the region of the identified defects

in the amorphous materials be? We try to answer these questions and outline the results

in the next chapters.
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1.2 Bulk Metallic Glasses

Among the amorphous materials, bulk metallic glasses (BMGs) [9] have a wide

range of use and they have stimulated widespread research enthusiasm due to the fact

that amorphous BMGs possess unique properties including high strength, high corrosion

resistance [10] and high fracture toughness [11]. These promising properties have allowed

them to be utilized in several technological applications such as in biomedical science [12],

aerospace, as plastic-replacement components in cosmetic applications (e.g., watches, cell

phones) and in structural applications (e.g., golf clubs, hardware for defense) due to their

energy absorbing structures. These materials have the ability to precisely net-shape into

the complex geometries and they have stable chemistry [13] which enables them to have

potential applications in fabrication of complex implants and devices. The most important

feature of BMGs that, along with other glasses, distinguishes them from general amorphous

materials is the glass transition, where the super-cooled liquid turns into a glassy state when

cooled rapidly from high to low temperature [14]. The cooling rate is a critical parameter

that determines if the alloy can transform into a glassy state, such that the liquid can

be quenched at a su�ciently high cooling rate to suppress the formation of equilibrium

crystalline phases [15]. Fast cooling prevents regular crystallization, and thus the material

keeps the structure of the precursor liquid. The cooling rate is typically found to be in the

order of 105–106Ks
–1 for glass formation [16].
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While a vast number of traditional and non-traditional methods have been used

to analyze these amorphous materials, there is still little known about their structures.

Current knowledge of short-range order is insu�cient to determine the overall structure of

a disordered glass and the e↵ect of defects on their properties.

Our research on metallic glasses is closely related to that on metallic liquids in

supercooled area. We specifically study the structure of the common bulk metallic glasses:

Zr-based family metallic glass (such as AMZ4) [17] and Pt-based family metallic glass (such

as Pt42, Pt60). We cover more details of their structures and properties in chapter 4 and

5.
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Chapter 2

Computational Methodology

Traditionally, experiments used to play the key role in finding and characterizing

new materials. However, experimental research must be conducted over a long time period

for an extremely limited number of materials and it imposes high requirements in terms

of resources and equipment. Alternatively, computational studies enabled researchers to

explore the materials and characterize them more e�ciently.

In this thesis, we implement di↵erent computational simulations to understand the

fundamental thermodynamic forces and mechanisms leading to the observed structures, and

to process and study the optimum structures possessing the most desirable properties of in-

terest. These methods provide us e�cient modeling of materials which gives deeper insights

into the structural characterization. In the following sections, we describe an overview of

these methods.
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2.1 Molecular Dynamics

Molecular Dynamic (MD) simulations [18] are used widely as a method for analyz-

ing the movement of atoms, in which the simulation numerically solves Newton’s equations

of motion [19], thus allowing structural fluctuations to be observed with respect to time. MD

simulation a↵ords thermal averages of molecular properties and according to the ergodic

hypothesis [20], we can simulate a single molecule with its surroundings for a period of time

and get time-averaged molecular properties that approach the experimentally measurable

ensemble averages. In order to calculate the microscopic behavior of a system from the

laws of classical mechanics, MD requires a description of the interaction potential (or force

field) as an input. The forces between atoms can be either computed from first principles

by solving Schrödinger’s equation, or approximated using a system of non-linear responses

to fit the empirical data. The use of empirical potentials allows for faster calculations fol-

lowing only specific atomic degrees of freedom, hence larger and more complex systems can

be treated by allowing some reduction in accuracy. In general, the quality of the results of a

MD simulation depends on the accuracy of the description of these inter-particle interaction

potentials.

In our research, MD simulations are employed to study the e↵ect of temperature on the

properties of our crystalline and amorphous structures. The computed results can therefore

be optimized to estimate macro-scale properties based on the appropriate periodic bound-

ary conditions. In amorphous structures, nearly half the atoms are on the outer faces, and

these will have a large e↵ect on the measured properties. Surrounding the box of atoms

with replicas of itself takes care of this problem which can be applied by using the periodic
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boundary conditions in MD simulations. All MD simulations in our study are carried out

using the Large-scale Atomic/Molecular Massively Parallel Simulator package (LAMMPS)

[21].

2.1.1 Inter-atomic Potentials

In Molecular Dynamics, inter-atomic interaction rules must be defined and the

quality of the results of a MD simulation depends on the accuracy of the description of these

inter-particle interaction potentials. In general, the potentials should accurately describe

the interactions between atoms and transferability and computational e�ciency should be

considered as well. For example, when dealing with large systems, computational speed is

important and simple potentials can be used; and when finer levels of detail are needed,

potentials based on quantum mechanics are used. The potential energy between N particles

can be developed into terms that depend on individual atoms, pairs, triplets and so on:

~U(rN ) =
X

U1(~ri) +
XX

U2(~ri,~rj) +
XXX

U3(~ri,~rj ,~rk) + ... (2.1)

where rN = (~r1,~r2, ...,~rN ) stands for the complete set on 3N particle coordinates and U1

is associated with a one-body term due to an external field or boundary condition, U2

corresponds to a two-body term or pair-potential and it depends on the distance between

the atoms without taking into account other atoms. U3 is related to a three-body term,

where the interaction of a pair of atoms is modified by the presence of a third atom.
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Morse Potential:

To obtain the potential functions for a particular system, a functional form for the

potential function can be assumed and the parameters to reproduce a set of experimental

data can be adjusted. The potential functions representing the non-bonded energy are

formulated as a sum over interactions between the particles of the system. The simplest

choice, employed in many popular force fields, is the pair potential, in which the total

potential energy can be calculated from the sum of energy contributions between pairs of

atoms. In Morse potential [22], mainly pair-wise interactions are considered because this

contribution is the most significant. Therefore, based on equation 2.1, the total potential

energy of the system of N atoms interacting via pair potential can be defined as:

~U(~r1, ~r2, ..., ~rN ) =
XX

U2(rij) (2.2)

where rij is equal to |~ri � ~rj |.

In Morse potential specifically, the pair potential energy of two atoms i and j separated by

a distance rij is defined as:

�(rij) = D[exp(�2↵(rij � re))� 2exp(�↵(rij � re))] (2.3)

where D and ↵ are constants and have dimensions of reciprocal energy and distance, re-

spectively and both of these parameters are determined empirically for every element. The

parameter re is the equilibrium distance between the two atoms i and j.
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Embedded-Atom Method Potential:

Daw and Baskes [23] developed the embedded-atom method (EAM) to describe

the atomic bonding based on density functional theory. EAM is a semi-empirical method

which is an intermediate trade between simple Morse potential and realistic ab-initio sim-

ulations. In the EAM, each atom is viewed as being embedded in the background electron

density provided by neighboring atoms. Thus, the potential energy of a set of atoms is the

summation of the pair interaction energy between nuclei of atoms i and j and the embed-

ding energy as a function of the local background electron density around the ith atom.

The total energy based on density functional theory can be defined as:

ETOT =
X

Fi(ni) +
1

2

X
�ij(rij) (2.4)

where ni =
P

⇢j(rij) and �ij(rij) is the pair potential term with the electrostatic core-core

repulsion. Fi(ni) is also representing the energy won by the ion when it is embedded in the

local electron density.

EAMs are widely used in molecular dynamics simulations and they are particularly appro-

priate for metallic systems.

2.1.2 Thermodynamic Ensembles

A thermodynamic ensemble is a statistical ensemble that is in statistical equilib-

rium which enables deriving the properties of a real thermodynamic systems from the laws

of classical and quantum mechanics. We can consider di↵erent systems with di↵erent de-
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grees of separation from their surroundings by imposing the thermodynamics constraints.

For molecular dynamic simulations, three main ensembles will be considered.

NVE ensemble (Microcanonical): If a system is ergodic, average quantities

computed along the trajectory generated by a MD simulation at constant number N of

particles, volume V and total energy E, are equivalent to ensemble averages in the mi-

crocanonical ensemble. Usually numerical integration of equation of motions in MD is

accomplished using Verlet algorithm [24]. In other words, if all the forces in the Newton

equation of motions are related to the potential energy of the system, then the total energy

of the system is conserved [25]. If the total number of atoms N and the volume V of the unit

cell are also kept constant, then the MD simulations are performed in the microcanonical

(NVE) ensemble; thereafter the NVE ensemble can be used to analyze an isolated system

in equilibrium.

NPT ensemble (Isothermal-isobaric): In this ensemble, although the energy

can transfer across the boundary, the matter cannot transfer. As opposed to the NVE

ensemble, the volume of the system can change such that the internal pressure of the system

matches the external pressure so that the pressure (P ) remains constant. The system also

should be in contact with a heat source that maintains a controlled and fixed temperature

of T , and at the same time, the number of particles (N) remains constant as well [26].

The isothermal-isobaric ensemble is important when attempting to describe the Gibbs free

energy of a system, which is the maximum amount of work a system can do at constant

pressure (P ) and temperature (T ).
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NVT ensemble (Canonical): In the canonical ensemble, similar to the NPT

ensemble, energy can transfer across the boundary between the system and surroundings,

but matter cannot. Also the system and the surroundings should be in contact with the

heat source, so that the system will transfer heat (q) to and from the surroundings until

the system and the heat source are in thermal equilibrium. In this ensemble, the number

of particles (N) and the total volume of the system (V ) remain constant. As described

in the microcanonical ensemble, the total energy is fixed, but in the canonical ensemble

the energy is no longer constant and it can take on a range of values depending on the

temperature. The canonical ensemble is specifically important when attempting to describe

the Helmholtz free energy of a system [27], which is the maximum amount of work a system

can do at a constant volume (V ) and temperature (T ) [28].

2.2 Density Functional Theories

In density functional theory (DFT) [29], the goal is calculating the electronic

structure of atoms, and the materials’ properties are coming from the fundamental laws of

quantum mechanics. Using this theory, the properties of a many-electron system can be

determined by using functionals, which can be further used for interpretation and prediction

of complex system’s behavior at an atomic scale. In this method, the atoms are moved

according to the forces generated by the converged electronic density at each timestep

and the functional is the electron density which is a function of space and time. The

density functional theory calculations in this thesis are performed by the Vienna Ab-initio

Simulation Package (VASP) [30].

13



2.3 Machine Learning Techniques

The establishment of a relationship between the properties and the structure of

amorphous materials is of great importance. The advent of machine learning brings a new

area for establishing relations where simple theory has previously been intractable. In recent

years, the availability of large data sets combined with the improvement in algorithms and

the exponential growth in computing power has led to the vast uses of machine learning

techniques. The large-scale simulations and calculations together with experimental high-

throughput studies are producing an enormous amount of data that can be analyzed by

using machine learning methods. The representation of a material is a set of quantitative

attributes that describe the material and is what serves as input to a machine learning

model. The goal in selecting a representation for materials is to construct a set of attributes

that both di↵erentiates distinct materials and captures many physical factors that could

correlate with the properties of interest. By including attributes that are known to be

correlated with the property of interest as input into the model, it becomes easier for

a machine learning algorithm to automatically recognize these correlations and, thereby,

create a more powerful and predictive model. The benefit of machine learning is that the

functional form which links these attributes to any material property does not need to be

known beforehand and is recognized automatically. In this thesis, we focus on two di↵erent

techniques: unsupervised and weak supervised learning. In what follows, we elaborate more

on each technique.
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2.3.1 Unsupervised Learning

In unsupervised learning, the algorithm infers patterns from a data set without

reference to known, or labeled outcomes and builds a model that detects the underlying

structure or distribution in the data in order to learn more about the data [31]. Among

the unsupervised learning techniques, clustering allows us to automatically split the data

set into groups according to similarity and in each group there is a set of objects in such a

way that objects in the same group (called a cluster) are more similar to each other than

to those in other groups [32]. We specifically leverage this technique when we do not have

labels for data which is the case in identifying the defects in amorphous structures.

2.3.2 Weak Supervised Learning

Machine Learning techniques are used vastly; however, the real-world usefulness

of these models are all depending on access to high-quality labeled training data. This need

for labeled training data is a significant obstacle to the application of machine learning

models. Also labeling the data is not always practical and cheap. Some data may also need

relevant expertise or specific training and a huge amount of time in order to label the data

appropriately. For this purpose, weak supervision learning can be used to eliminate the

need of collecting ground-truth labels. Weak supervision learning is capable of providing

supervision signals for labeling large amounts of training data These labels are imperfect,

but can nonetheless be used to create a strong predictive model [33].

Using weak supervision, users can write noisy labeling functions to generate labels

for their data [34]. These labeling functions are historically high in accuracy but may be low

in coverage. In this thesis, a library called Snorkel [35] is implemented for the purpose of
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weak supervision learning. In Snorkel, the heuristics are called labeling functions and each

labeling function labels a subset of data. These labeling functions are defined by the user

and then fed into the model. Weak supervised learning uses a combination of two models:

generative [36] and discriminative models [37]. The generative model assigns probabilistic

labels to millions of data points using the labeling functions. Then these outputs from the

generative model would be fed into a classifier, which can generalize beyond the reasons

directly addressed by the labeling functions. In other words, by getting large volumes of

lower quality supervision and using statistical techniques to deal with noisier labels, we can

train a higher-quality and a more powerful model.

Figure 2.1: Weak supervised learning model: a combination of a generative and a discrim-
inative model

The generative model in weak supervised learning provides us the opportunity

for injecting our domain knowledge and heuristics which may guide our algorithm even if

they might not be perfectly accurate. These heuristics (labeling functions) will produce

noisy outputs which may overlap and conflict, producing proper training labels. However,

in Snorkel, we have the opportunity to denoise the labels using the data programming

approach, which comprises three steps:
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The first step is applying the labeling functions that we defined to unlabeled data.

These labeling functions labels a subset of our training data. For the next step we use a

generative model to learn the accuracies of the labeling functions without any labeled data,

and weight the outputs accordingly. We can even learn the structure of their correlations and

dependencies automatically. This generative model outputs a set of probabilistic training

labels, which we can use for the last step to train a powerful, flexible discriminative model

(such as a neural network) that will generalize beyond the signal expressed in our labeling

functions. Then for any other data set, we can employ this discrimitive model to obtain

the outputs for the target labels. This whole pipeline provides a simple, robust, and model-

agnostic approach to finding the patterns and label the training data.
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Chapter 3

Analysis

In this chapter, we cover all the metrics and methods that have been used to

measure and describe the properties in amorphous and crystalline materials in this thesis.

These quantitative properties provide us insights into the materials’ properties, characteris-

tics, packing configurations and distribution of atoms and e↵ectively describe how an atomic

structure is transformed into a numerical representation.

3.1 Voronoi Volume

The voronoi method is a widely used method to determine the coordination num-

ber, in which, three dimensional space is divided into cells centered by atoms. A plane is

drawn to bisect each line connecting the central atom and one of the neighboring atoms,

and the cell surrounded by all such planes is called a voronoi cell [38]. This method is

used for analysis of particle systems, for tracking changes in density, and for examining
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Figure 3.1: Voronoi cell

local neighbor relationship. Based on voronoi calculations, we can also determine the free

volume of each cell which is basically obtained by subtracting the atom volume from the

voronoi volume. Calculations for the voronoi cells are performed by the program called

Voro++ [39].

3.2 Packing Correlation

For analyzing the internal structure of the amorphous structures and gaining infor-

mation about the local packing behaviour in these materials, packing correlation metrics are

helpful. Packing correlations provides us useful information about how the atomic spheres

are distributed within a unit cell. Some of these packing correlation metrics are described

below.
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3.2.1 Cluster Packing E�ciency Attributes

Cluster packing e�ciency attributes are based on the hypothesis that the system is

composed of special arrangements of atoms that are both energetically stable and symmet-

rically incommensurate with long-range order [40]. We use these special clusters to calculate

where the ratio between the radius of the central atom and the average radius of the first

neighbor shell (rmean) is close to the ideal ratio for a cluster of size (r⇤). The ideal ratio is

determined by the number of atoms in the cluster, similar to Pauling’s rules for ionic crys-

tals [41]. This packing e�ciency of a cluster can be characterized by the Atomic Packing

E�ciency (APE) measure, ( rmean
r⇤ ), which is equal to 1 if the cluster is ideally packed.

3.2.2 Nearest Special Clusters

In nearest special clusters, the first step of the calculation is to determine the com-

positions of the clusters by finding all the possible clusters whose Atomic Packing E�ciency

(APE) is between 0.99 and 1.01. Specifically, we search through all clusters in a range of

numbers of atoms composed of any number of each element in the system. To generate at-

tributes, we compute the mean Euclidean distance between the composition of each system

and a few of these special clusters which are closest in composition to the alloy. The idea

behind this method is closed to K-mean clustering machine learning technique [42].
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3.2.3 Mean Packing E�ciency

Mean Packing E�ciency is a measure of the expected packing e�ciency around

all atoms in a structure. It basically provides information about the average of total space

in a unit cell that is filled by the constituent particle. We can compute the optimal APE

of a cluster where the central atom is one of the elements presented in the system and

the composition of the neighboring atoms is equal to composition in the system, and then

we select the number of atoms in the neighbor shell which produces an APE closest to 1.

The composition constraint ensures all atoms in the material can form an interpenetrating

network. We then select the number of neighboring atoms in the cluster that yields an APE

closest to 1. We repeat this process for each type of atom in the system (e.g., for the bulk

metallic glass of AMZ4, we determine the optimal Cu-centered, Zr-centered, Al-centered

and Nb-centered clusters). Then, we compute the composition-weighted mean of the APEs

and the mean absolute deviation of the APEs from 1.

3.3 Centro-Symmetry

The centro-symmetry parameter is used to characterize the degree of inversion

symmetry in each atom’s local environment [43, 44]. The centro-symmetry parameter is

able to measure the local lattice disorder around an atom and can be used to characterize

if an atom is part of a perfect lattice, a local defect or at a surface. Centro-symmetry

parameter can be computed with the following formula:
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Figure 3.2: Centro-symmetry, a measure of inversion.

CS =

N
2X

i=1

|~Ri + ~R
i+N

2
|2 (3.1)

where N is the number of atoms in the nearest neighbors for each central atom and

Ri and R
i+N

2
are vectors from the central atom to a particular pair of nearest neighbors.

This parameter can give us useful information about the arrangement of atoms and it is

a measure of inversion symmetry (how there is an indistinguishable point for every point

in the unit cell). This metric can be used to shed light on local inversion-symmetry in the

random structure of amorphous systems.

22



3.4 Pair Distribution Function

Pair distribution functions (PDFs) possess useful local atomic pair and structure

information, such as the distances between central and neighboring atoms and the nature

of neighboring atom.The PDF can be used as a method to analyze the data and investigate

the change in local atomic packing configurations [45, 46]. In general, PDF describes how,

on average, atoms in a system are radially packed around each other. The pair distribution

function is defined as:

g(r) =
⇢(r)

⇢0
(3.2)

and as a simpler form, it is calculated based on the number of atoms per unit of the shell

volume:

g(r) =
N
�
r ± �r

2

�

V
�
r ± �r

2

� (3.3)

And the companion function to g(r), total reduced pair distribution function G(r),

which is related to the total PDF and the total pair density function ⇢(r) is defined by:

G(r) = 4⇡r(⇢(r)� ⇢0) (3.4)
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in which, ⇢(r) represents the atomic pair-density, ⇢0 is the average atomic number density

and r is the radial distance, N
�
r±�r

2

�
is the number of atoms within the shell and V

�
r±�r

2

�

is the volume of the shell. The major contribution to G(r) is the atomic spatial correlation

of the majority atomic species which have large scattering lengths.

Experimentally, the pair distribution function can be obtained by X-ray di↵raction

experiment after Fourier transformation [47] (also known as total scattering analysis). The

degree of order is given by the sharpness of the peaks meaning that in crystals, the higher

order of atoms leads to sharper peaks comparing to amorphous structures, where peaks

occurring at distances of one to two bond lengths represent short-range order (around 4 Å-

6 Å) and distances of three to four bond lengths represent medium-range order (around 8

Å- 10 Å) [48]. On the other hand, the intensity of peaks in G(r) represent the probability

of finding a pair of atoms with a separation of r, compared to the average atomic number

density in the sample. This method can e↵ectively characterizes the distribution of distances

between pairs of atoms in our amorphous structures.

3.5 Smooth Overlap of Atomic Potentials

The local environment of each atomic species in the system can be described by

using the smooth overlap of atomic potentials (SOAP) structural descriptor. SOAP relies on

a Gaussian smeared atomic density based on spherical harmonics and radial basis function.

Integrating the atomic positions would need a lot of basis functions as they are point objects
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Figure 3.3: Mapping the environment of spheres to the pair distribution function

in space [49, 50]. Thus, in SOAP, the atoms’ positions are smeared as gaussian functions in

a way that SOAP for individual elements in the system is calculated and then, the values

are concatenated at the end. Gaussian calculation on each local neighbor of a specified

atom i is defined by:

⇢i(~r) =
X

j

e
�(~rij�~r)2/2�2

atomfcut(|~rij |) (3.5)

where ~rij is the vector from atom ri to rj and fcut represents a smooth cuto↵ function that

ensures compact support at a cuto↵ distance. The Gaussians are defined as the species

independent neighbor density of i. The Gaussian smoothed atomic density in the radial

basis function form is defined by:

⇢i(~r) =
X

nlm

ci,nlmgn(r)Ylm(r) (3.6)

25



Figure 3.4: SOAP, the density around each atom is expanded into radial and spherical
harmonics basis functions.

where Ylm is spherical harmonics, ci,nlm is the expansion coe�cient and gn is an orthonormal

radial basis. The SOAP kernel between two atomic environments can be retrieved as a

normalized polynomial kernel of the partial powers spectrums which is:

K
SOAP (⇢i, ⇢k) =

✓
⇢i.⇢kp

⇢i.⇢i⇢k.⇢k

◆✏

(3.7)

We raise the function to a power ✏ > 1, in order to sharpen the di↵erence between

atomic environments. The SOAP calculations in this thesis are all carried out by a python

library called DScribe [51].
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3.6 Local Many-body Tensor Representation

Local Many-body Tensor Representation (LMBTR) encodes a structure by using a

distribution of di↵erent structural motifs for each local environment and the distribution of

atoms is constructed based on the kernel density estimation. The kernel density estimation

enables representing the structure by distribution of scalar values which are the result of

applying transformation on a chain of atoms. For describing the geometric features of

atomic system, we define:

fk(x, z1, .., zk) =
X

i1,...,ik

wkN (x|gk)
kY

j=1

�zj , zij (3.8)

where in (3.8), gk is a k-body function, N (x|µ) denotes a normal distribution with mean

µ evaluated at x and wk is a weighting function that reduces the influence of atoms far

from each other. Also the product of Kronecker �-functions restricts to the given element

combination z1, ..., zk. The LMBTR calculations in this thesis are also performed by DScribe

package [51].

3.7 Bond-Orientational Order

This approach is commonly used to identify icosahedral ordering in an ensemble

generated by molecular dynamics simulations and it focuses on the orientation of bonds from

a central atom to the surrounding nearest neighbor atoms [52]. The bond orientations are

expressed in terms of spherical harmonics, Ylm(✓,�), where ✓ is the polar angle and � denotes
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the azimuth angle in the reference system. The specific bond-orientational parameter is

calculated from the sum over all the nearest-neighbor bonds, Nb, and is defined by:

qlm =
1

Nb

NbX

j=1

Ylm(rij) (3.9)

Since some equivalent structures may be oriented di↵erently and thus counted as

di↵erent, the rotational invariant combination is used to compute the correct bond orien-

tational parameter

Ql =

r
4⇡

2l + 1

lX

m=�1

|qlm|2 (3.10)

3.8 Thermal Properties Calculation Methods

As a part of this thesis, we study the heat transport of a crystalline structure

(LiAlO2) and the e↵ect of di↵erent types of defects on this physical property. For this

purpose, the thermal conductivity of the system is calculated via two di↵erent methods:

Green-Kubo (Equilibrium method) and Muller-Plathe (non-equilibrium method). The de-

tails of each of these methods are represented in the remaining part of this chapter.
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3.8.1 Green-Kubo

Green and Kubo proved that the coe�cients describing the transport properties

of the system can be represented as integrals of auto-correlation functions. Green-Kubo

analysis is a method to decompose the heat flux into the time derivative of normal mode

coordinates in order to calculate the thermal conductivity. By using the fluctuation dissi-

pation theorem, the Green-Kubo method correlates the thermal conductivity tensor to the

heat current tensor for equilibrium fluctuations. This method is based on the analysis of the

auto-correlation function of the microscopic heat current derived by Kirkwood. Usually in

calculations by the Green-Kubo formula, only nearest neighbors interactions are considered

directly because accounting for the long-range interactions in simulations is computation-

ally expensive. According to the Green-Kubo formalism, the thermal conductivity tensor

is given by:

k↵� =
V

kBT
2

Z
< J↵(t+ t

0
)J�(t) > dt

0
(3.11)

where ↵ and � represent cartesian directions, V is the volume of the system and kB is

the Boltzmann constant. Also T is the temperature of the thermal equilibrium and angled

bracket notation denotes the ensemble average. J is the heat flux and defined by:

J(t) =
X

i

vi✏i +
1

2

X

i

X

j,i 6=j

rij(vi.Fij) (3.12)

where vi is the velocity of a particle i, Fij is the force acting on atom i due to existence of

atom j, and ✏i is the microscopic site energy of atom i.

GK calculations have the advantages of weak system-size dependence and full anharmonic-
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ity, and can be applied to both crystal and disordered systems with arbitrary temperatures,

which is the case in this thesis [53, 54, 55].

3.8.2 Muller-Plathe

A non-equilibrium molecular dynamics method to implement for calculating the

thermal conductivity in materials is Muller-Plathe (MP) method. In contrast to other non-

equilibrium schemes, this method is not time-reversal invariant. The basic idea behind MP

method is that first we induce a temperature gradient or heat flux and then we monitor the

quantity of temperature gradient. Before we start, we divide the simulation system into N

layers, and then the heat flux is imposed along one direction (here assuming z direction),

causing the system to have temperature gradient as a response to this heat flux. In this

situation, the hottest atoms and the coldest atoms exchange their velocity which induces a

temperature ingredient in the system [56, 57]. Base on this, the thermal conductivity then

can be calculated by:

� = d
jz

�T
(3.13)

where�T is the temperature di↵erence and the heat flux j is defined by the sum of exchange

energy per unit area and time as followed:

jz =
1

2tA

X m

2
(v2hot � v

2
cold) (3.14)

where m is the atomic mass, vhot and vcold represent the velocities of the hottest and coldest

atoms to be exchanged at each step, t is the simulation time and A is the cross-sectional
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area of the simulation system perpendicular to the heat flux direction z, the mechanism of

heat flux and thermal conductivity calculation is shown in the figure 3.5.

Figure 3.5: MP method of thermal conductivity calculation.

In MP method, since there are no sources of energy in the intervening slabs, the

steady-state heat flux is the same for all of the layers. This implies that thermal conductiv-

ities for several intermediate temperatures and densities can be e�ciently calculated from

the local temperature gradients.
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Chapter 4

Fragility in Glass-Forming Liquids

In this chapter, we are characterizing thermodynamically-driven changes in liquid

structures, and quantifying the degree of amorphousness in metallic forming liquids. We also

discover the dynamics of the liquids by seeking the viscosity-temperature relationships while

approaching the glass transition. This relationship hints at the phenomenon of fragility. In

this study, we quantitatively link atomic scale structure to fragility in the super-cooled

liquid state (above the glass transition zone).

Fragility in a liquid refers to the sensitivity of its bonding network and is associated

with non-Arrhenius dependence of the liquid’s viscosity as it approaches the glass transition

temperature. In bulk metallic glasses (BMGs), ductility in the glassy state correlates with

fragility of glass forming alloys in their molten state, so understanding the origins of fragility

could provide insights into plasticity mechanisms in BMGs. The phenomenon of fragility in

a liquid is the non-Arrhenius change of kinetic properties such as viscosity with temperature

and basically is defined based on the deviation of the temperature dependence of a liquid’s
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viscosity from Arrhenius behavior. It means that the structure of the liquid—the bonding

and packing environment experienced by its atoms— changes with temperature, and thus

the activation energy for the atoms to move past one another also changes with temperature.

In other words, the adjective fragile here is referring to the sensitivity of the liquid’s bonding

network to temperature.

4.1 Background

As discussed, kinetics of the liquid can be described by the concept of fragility

and fragility of a liquid reflects the sensitivity of the viscosity of the liquid to temperature

changes and it is found to be an important consideration in the design and structural perfor-

mance of bulk metallic glass forming alloys. Moreover, the properties like fracture energy,

ductility and plasticity of the glass is related to the kinetics defined by fragility of its glass-

forming liquid. Understanding the underpinning causes of fragility can provide strategies for

designing new BMGs with improved ductility. Additionally, the geometric e↵ect or, more

specially, atomic size e↵ect contributes to the easy formation of BMGs. Numerous relations

and theoretical fragility calculations have been suggested for the possible parameterizations

and calculations of the temperature dependence of viscosity and understanding the origin

of fragility. For example, S Sastry [58], Aleksandra Drozd-Rzoska et al. [59], and Isabella

Gallino [60] started from thermodynamic considerations using the Adam–Gibbs equation

for entropy to formulate an analytical model of viscosity-temperature relationship, which

seems to fit many glass-forming liquids quite well. They analyzed the relationship between

fragility and quantitative measures of the energy landscape and proved that fragility de-
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pends on changes in the vibrational properties of individual energy minima in addition

to their total number and spread in energy. This thermodynamic expression for fragility

provides physically reasonable and realistic values at low- and high-temperature scaling

of viscosity. It is also in quantitative agreement with kinetic fragilities obtained from the

liquid’s di↵usivity.

Also David L. Sidebottom [61], C. Yildirim et al [62] , Mark Wilson and Philip S.

Salmon [63], by using molecular dynamic simulations, have found that the relaxation be-

havior of the super-cooled liquid is strongly correlated to the variation of network rigidity

with temperature and the spatial distribution of the corresponding topological constraints.

They consider the role of network topology in determining the fragility in network-forming

oxide glasses. Fragility follows a very common dependence on the topological connectivity

of the network provided this connectivity is adjusted to reflect the presence of larger-scaled

rigid structural units that form in some systems. Then based on the thermodynamic expres-

sion of fragility, they explain how fragility is a reflection of the sensitivity of the network’s

configurational entropy to small changes in network connectivity of weakest links.

One simple necessary but not exclusive condition noted by Shuai Wei et al [64] is

that the curvature of the enthalpy curves on a reduced temperature scale near Tg correlates

with fragility in bulk metallic glass-forming liquids, and basically a more fragile system has

a larger curvature which is caused by a slower non-equilibrium relaxation shortly before

returning to equilibrium. This study was performed using the heat flow of di↵erential scan-

ning calorimetry during the glass transition. This observation also supports the behavior

of theoretically calculated enthalpy curves during quenching, via the enthalpy landscape
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approach. Supporting this idea, Jing Guo et al [65] proposed that by the combination of

mismatch entropy and enthalpy of mixing we can evaluate the liquid dynamic fragility as

these two factors determine the stability of the super-cooled liquid, as well as the di�culty

of atomic rearrangements.

Additionally, it is widely believed that there is a connection between the glass

forming ability and the liquid fragility. For example, K F Kelton [66] and Hajime Tanaka

[67] proposed that short-range bond ordering in a liquid is one of the key physical factors

controlling liquid–glass transition, glass-forming ability and fragility. Generally, the higher

degree of short-range bond ordering leads to the increase in the interface tension between the

crystal and the liquid, and the decrease in the thermodynamic driving force of crystalliza-

tion. Based on this, they suggest that the icosahedral order increases gradually for strong

metallic liquids, however, this order rises rapidly near the glass transition temperature in

more fragile liquids. Therefore, the stronger tendency of short-range bond ordering makes

a liquid stronger and leads to the better glass-forming ability. The better glass-forming

ability comes from the large free-energy barrier for nucleation and slow translational dif-

fusion in the super-cooled region which is directly connected to the viscosity-temperature

relationship (fragility).
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4.2 Introduction

Despite the vast number of literature on bulk metallic glasses, little is known about

the structural characterization and varieties in liquids above glass transition temperature,

specifically in super-cooled region. Super-cooled region is of great importance and utility

to improve the performance of its glass, leading to the fact that the formation of glass has

become a challenge in a variety of fields like optical sciences, biomedical and aerospace.

Fragility defined by Angell [68] can be measured by the fragility index which characterizes

the slope of the viscosity of a material with temperature as it approaches the glass transition

temperature from above. Fragility is observed in di↵erent liquids such as metal-organic

framework, polymeric, and inorganic glass-forming liquids [69]. In all of these liquids, it is

important to quantify the degree of their fragility. For measuring the fragility, two di↵erent

parameters can be defined and used:

• Kinetic fragility index: This parameter is more related to the dynamical behavior of

the liquid and how fast the atoms are moving around each other [70, 71]. This fragility

index is defined by the slope of the viscosity (⌘) in an Angell plot and calculated by:

mk =
d log ⌘

d(Tg

T
)

���
T=Tg

(4.1)

• Structural fragility index: The structural signature of fragility is identified as the

temperature dependence of local dilatation on distinct key atomic length scales. By
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using this atomic scale structure, we can relate the fragility to a liquid’s structure

without referring to dynamics of the liquid. This is calculated by the peak positions

coming from radial distribution function of the liquid [66].

Wei and collaborators [72] indicated that the structural evolution of various bulk metallic

glass forming liquids can be quantitatively connected to their viscosity behavior in the super-

cooled liquid near Tg. They determined the peak positions of the pair distribution function

(PDF) for seven di↵erent BMG liquids resulting by In-situ synchrotron x-ray scattering

measurements. It was shown that there is a significant structural change in the packing

behavior of strong and fragile liquids in the length scale of their neighboring coordination

shells. These changes in intermediate order are seen at a distance far beyond the range of a

typical inter-atomic or next-nearest-neighbor bond lead us to wonder if this e↵ect originates

from the steric packing e↵ects arising from atomic size-mismatch. In the next section, we

attempted to address this question by performing MD simulations and then quantifying the

super-cooled region of the glass-forming liquids.

4.3 Method

In order to understand the mechanism behind the fragility phenomenon, a series

of MD simulations using LAMMPS package [73] were performed. In these simulations,

known strong and fragile BMGs are utilized with their atomic sizes. However, the atom

interactions have remained the same in the system and they are based on Cu-Cu interaction

but with di↵erent sizes. These strong and fragile BMGs are represented by hypothetical
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alloys with the same mixture of atomic radii, but with all atoms interacting via the same

bonding. Then, we study the kinetics and packing behaviour of these glass-forming liquids.

Remarkably, these radii alloys display many of the signatures of fragility as their real-life

counterparts.

To begin with, three hypothetical alloys were chosen to mimic the atomic size

ratios and proportions of the well-known bulk metallic glass forming alloys AMZ4, Pt42,

and Pt60. By Angell’s definition, AMZ4 (Zr-based family of metallic glass) is a strong

liquid, whereas Pt42 and Pt60 (Pt-based family of metallic glass) are fragile liquids. The

composition of these alloys are di↵erent. AMZ4 is composed of 59.3% Zr, 28.8% Cu, 10.4%

Al and 1.5% Nb. On the other hand, Pt42 comprises 42.5% Pt, 27% Cu, 21% P and

9.5% Ni; and Pt60 has 60% Pt, 16% Cu, 2%Co and 22% P. The kinetic fragility parameter

(logarithms slope of viscosity) for Pt42 and Pt60 is 56.9 and 73.7, respectively; this is

substantially di↵erent from AMZ4’s fragility parameter which is 41.4 [72]. As it is shown

in table 4.3, in particular, Pt42 and Pt60 systems have more atomic size-mismatches and

higher atomic ratio comparing to AMZ4. Each of these alloy systems consist of 7528 atoms

and the amorphous structure of these alloys is also shown in figure 4.1.

AMZ4 % Atomic radius Pt42 % Atomic radius Pt60 % Atomic radius
Zr 59.3 1.55 Pt 42.5 1.47 Pt 60 1.47
Nb 1.5 1.45 Cu 27 1.35 Cu 16 1.35
Cu 28.8 1.35 Ni 9.5 1.316 Co 2 1.25
Al 10.4 1.25 P 21 1 P 22 1

Table 4.1: The components and the radius of the particles for AMZ4, Pt42 and Pt60
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(a) (b)

Figure 4.1: The systems of amorphous BMGs (a) Zr-based metallic glass and (b) Pt-based
metallic glass

4.3.1 Potential Energy

The choice of potential energy is important in this study as they directly a↵ect

the final calculations. For describing the interactions and bonding networks between the

atoms, Morse potential was used. Morse potential is a proper inter-atomic interaction

model for a potential energy of metals. It gives a more accurate and closer description

of the dynamic behavior of glasses with spherical symmetry and simple mathematics, and

it is adequate to analyze the behavior of atoms in the metallic state, where the bond is

non-directional. Morse potential is popular for simulations of metals in our system as it

allows us to use an analytical, computationally fast potential with realistic parameters and

known anharmonicity (more details about this potential was discussed in section 2.1.1).

Specifically, the anharmonic component of the Morse potential is di↵erent from that of
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other potentials, enabling us to check the influence of anharmonicity on the properties of

the material and, in particular on its fragility.

In this study, we first tried EAM potential which is a more realistic potential

energy for describing the interactions between the spheres. However, to extend the Cu-

Cu interaction and make it applicable for the other pairs in the system, as we tuned the

bonding parameters, the interactions were complex non-linear interactions. This resulted

in challenges in tuning the atom sizes solely. Thus we continued with Morse potential.

Each parameter for Morse potential was chosen based on the atomic interaction and the

equilibrium distance was considered equal to the sum of two neighbor atoms’ radius. By

having di↵erent sizes of atoms packing together, the equilibrium distance between each pair

of atoms was di↵erent.

As mentioned before, we are focusing on the e↵ect of atomic-size mismatch on the

fragility behaviour; therefore, to neglect the e↵ect of potential interactions, we considered

all the atoms are interacting with each other based on Cu-Cu interaction. In order to make

the Morse potential between Cu atoms be applicable for the other species of atoms, we study

two mechanisms for the potentials: (i) we set either the dissociation energy (which indicates

depth) constant, or (ii) we set the force constant (which indicates curvature) for each pair of

atoms, as shown in figure 4.2. Therefore, in our simulations, based on equation 2.3, we first

considered D as constant, so the depth of the potential does not change. Secondly, ↵ was

considered to be constant, which means the curvature of the potential (the sti↵ness of the

bonds) remains the same. The potential wells are di↵erent between two species; therefore,

when Morse potential combines with a di↵erent potential well that has a di↵erent atomic
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radius, it creates better atomic packing and prevent the atoms from shrinkage. Thus, we

stick to the potentials with the same curvature for the further simulations.

Figure 4.2: Morse potential with the same depth as Cu-Cu pair, for every pair of atomic
interactions in (a) Pt42 and (b) AMZ4 metallic alloys, and also potentials with the same
curvature as Cu-Cu interaction (same bond sti↵ness) in (c) Pt42 and (d) AMZ4.

4.3.2 Tg Calculation

After setting up the potential energy, as a starting point, it is important to calcu-

late the glass transition temperature (Tg) for each BMG when focusing on the fragility of a
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super-cooled liquid region. Around Tg, as the liquid turns into the glass while cooling down

the liquid, the changes in thermal properties such as density, viscosity and potential energy

of the system are significant. The rate of 500Ks
1 is the critical cooling rate meaning that

it is the minimum cooling rate at which the liquid can form a glass without crystallization.

The solidification starts at the glass transition temperature which causes a change in the

behaviour of the thermal properties of the system. For example, the viscosity of the system

rises enormously. Eventually, the super-cooled liquid will become so viscous that its volume

will shrink at a slower rate, and finally it will become a seemingly rigid solid of glass [74, 75].

For determining the glass transition temperature, each alloy was heated up to reach

a target temperature (1600 K), above the melting point. They were held at this temperature

for 3 ns using nve ensemble to assure that the old configuration had disappeared. Then

at di↵erent cooling rates of 1.2, 0.6, 0.4 and 0.24 Kps
�1, they were cooled down to the

temperature much below the glass transition temperature (600 K) within npt ensemble.

Fast cooling conditions are required to avoid crystallization during processing and basically

if a liquid is cooled rapidly enough, so that the crystallization at or slightly below the

melting point is avoided, the final state of the material will be an amorphous solid.

During this process of quenching, thermal properties like total energy, potential

energy, and density were recorded. As discussed, around Tg, there is an abrupt change in

thermal properties of metallic glasses which can determine the glass transition temperature.

By plotting the thermal data and fitting curves on the cooling process plot, the average glass

transition temperature for each alloy over all the di↵erent cooling rates was calculated. Cal-

culated Tg for AMZ4, Pt42 and Pt60 is around 1150 K, 1200 K, 1210 K respectively. Figure
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4.3.2 represents the thermal records of this process for Zr- and Pt-based alloys. The lower

slope below the Tg is due to the lower heat capacity for the amorphous glass.

Figure 4.3: Thermal records of AMZ4 and Pt42 during quenching for the purpose of glass
transition temperature calculation.

4.4 Characterization

For analysis of the internal structure of each glass as a function of temperature,

alloys were held at 1600k for 5 ns where molten transition appeared and then they were

cooled down to di↵erent temperatures above the Tg with the same previously mentioned

cooling rates in npt ensemble. Then they were held at above Tg for a long time (around 15

ns). The average change of the potential energy for both alloys in this process of quenching

is represented in figure 4.4. This figure shows how kinetics change as we approach the glass

transition temperature in both glass-forming liquids. After holding the liquid systems for

15 ns in nve ensemble at di↵erent temperatures above the glass transition temperature, we
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reached the equilibrium state of the system. These final relaxed structures were then used

for further analysis. As it is shown in figure 4.4, the relaxation of the potential energy is

not the same in strong and fragile liquid. In Pt42 (fragile liquid), it takes longer for the

atoms to rearrange and relax when compared to AMZ4 (strong liquid).

Figure 4.4: Energy relaxation of AMZ4 (on the left) and Pt42 (on the right) while quenching
from the molten state of 1600 K to di↵erent temperatures above their Tg.

As there is not much information about the random structure of amorphous mate-

rials, a proper way to analyze their local packing behavior is by structural characterization,

which is based on the simulations previously described.

In our simulations, PDFs can indicate if there is a connection between order of

atomic changes in the structure and the kinetic viscosity in BMG liquids. The G(r) of both

glass-forming liquids based on the equation 3.4 was calculated at di↵erent temperatures.
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Calculating the peak position changes in PDFs is considered a new way for figuring

out the kinetics and packing configurations around the glass transition temperature. This

method can represent the dynamic behavior of atoms around each other in super-cooled

liquid region in short- and long-range orders. The position of the peaks for each PDF was

carefully calculated by PDFs’ derivative where the derivative is decreasing and crosses the

value of zero (these calculations were coded in Python). The example of these calculations

for PDF and its derivative for Pt42 at Tg+50 K is represented in figure 4.5. In the tail of

the derivative figure, we can observe that a more dense number of peaks are recognized by

our method and this is because the peaks are getting wider in further distances and thus,

finding the exact position of the peaks is more challenging. However, since our focus in this

study is on the short- and intermediate-range order (1st, 2nd, .., 5th peak), this method of

finding peaks is successful in achieving our goal.

Now that we have calculated the peak positions, we can relate the structural

changes to its kinetics and examine the peaks changes in each liquid based on the equation

below:

�ri(T ) = ri(Tg)� ri(T ) (4.2)

where ri(Tg) denotes the position of the ith peak at glass transition temperature, and ri(T )

is the position of ith peak at a specific temperature. We calculated the average peak changes

over the previous di↵erent cooling rates for all the 5 first peaks of the PDFs.
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Figure 4.5: The G(r) of Pt42 at 50K above its Tg and the corresponding derivative of G(r)
for determining the position of the peaks.

The results from calculating the first peak of the PDFs suggested that by increas-

ing the temperature above Tg, the first peak shifts to left meaning that atomic clusters

are packed more densely at higher temperatures. Ding et al [76] explained this shift by

thermally redistribution of atoms based on the asymmetric property of inter-atomic po-

tential. Furthermore, this may mistakenly be assumed that this shift to left means that

the coordination number for the atoms is decreasing when we increase the temperature.

However, we don’t think this is the case. Because when increasing the temperature, the

number of the neighbors are still the same. We believe this shift to the left is due to the

artifact of G(r) function. In G(r), the atoms are rated by their distance from the central

atom, this means that the neighbor atoms that are closer, have more contribution to G(r)

and the weight of this e↵ect is 1/r2. At higher temperature atoms are vibrating more, so

the atom in the neighbor is still in the same coordination shell but because the guassians

are weighted by r2, the center of the sum of the guassians of these vibrations falls toward
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the centeral atom. So this is coming from the G(r) equation even though the others have

tried to explain this by physical properties which we think is wrong. We extended our

calculations to the other peaks (2nd, 3rd, 4th and 5th) and we noticed that the ratio of the

changes of the peak position for the first 3 peaks is more significant for the strong liquid;

however, this trend changes for the fourth peak. Firstly, the fourth peak of the PDfs for our

metallic liquids shifts to right, since the atoms have more degree of freedom to get further

when increasing the temperature. Remarkably, the rate of the changes in the fourth peak of

the fragile liquids was more distinguishable, suggesting that the thermally-induced spaces

between the 3rd and 4th shells increased more significantly, causing the less denser packing

of atoms and this is directly in connection with the greater changes of viscosity in fragile

liquid, supported by Angell definition of fragility.

These findings are indicated in figure 4.6. The continuous lines are the results

from our calculations, and the scatter plots are coming from the experimental data of the

study by Wei and collaborators [72]. Although the trends of peak changes in fragile and

strong liquids in this study is consistent with ours, the scale of the changes is di↵erent

for two reasons: (i) the Morse potential energy that we defined brings di↵erent spacing

within the atomic spheres and the thermal expansion of our systems is bigger (by a factor

of 10) than the real alloys so we would underestimate the first peak. (ii) As we discussed,

how the G(r) is placing weights on distances of atoms can overestimate the peak positions.

These two e↵ects are in di↵erent directions, and as the second e↵ect is greater in the near

neighbor shells, leading to overestimating the first peak, and at further distances, since the

e↵ect of the thermal expansion dominates the e↵ect of vibrations, we would underestimate
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the fourth peak change toward the central atom. If we cancel these e↵ects, all the other

contributions are coming from the structural changes.

Figure 4.6: The first peak and fourth peak position changes in PDFs of fragile vs. strong
liquids. The first peak changes for the strong liquid (AMZ4) is more pronounced when
comparing to the fragile liquids (short-range order). However, this behaviour changes for
the fourth peak positions(intermediate-range order.
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In the random atomic order of a glassy solid, the atoms are packed less densely

than in a corresponding crystal, leaving larger interstitial spaces, or holes between atoms.

These interstitial spaces collectively make up what is known as voronoi volume, and they

are responsible for the lower density of a glass as opposed to a crystal.

Resulting from the calculations, the voronoi distribution of metallic-forming liquids

at di↵erent temperatures above the glass transition temperature is shown in figure 4.7. The

voronoi distribution of the liquids exhibited a binomial distribution of volumes for Pt42 at

the temperature around the glass transition temperature, whereas this behavior changes at

higher temperature. This binomial distribution of voronoi in the fragile liquid is suggesting

that most of the atoms are trapped at big cells, and at the same time, at smaller cells

around Tg. At higher temperature the atoms rearranged and redistributed by the thermally

induced energy, causing a more uniform distribution of their packing. They redistributed in

a way to maximize their entropy, however, at lower temperature, the atoms pack together

more e�ciently leading to more bonds. And this is related to larger atoms being in neighbor

of smaller atoms and vice versa, to maximize the packing e�ciency. Since the interactions

between atoms were the same in both alloys, this behaviour implies that the binomial

distribution is coming from the atomic size mismatches existing in the systems.

As discussed in details in chapter 3, the centro-symmetry parameter is used to

characterize the degree of inversion symmetry around each atom’s local environment. The

distribution of calculated centro-symmetry for both Pt- and Zr-based glass-forming liquids

at di↵erent temperatures above Tg is represented in figure 4.8. Though the liquid alloys have

di↵erent packing sizes, there is no obvious split in the behavior of centro-symmetry for each
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system, as observed in voronoi volume. However, the fragile liquid (Pt42) shows a narrower

distribution of centro-symmetry, leading to a higher peak when compared to the strong

liquid (AMZ4). The larger centro-symmetry means larger deviation from perfect symmetry

arrangement of atoms, and the calculated centro-symmetry for these two liquids indicates

that surprisingly, the symmetry is more broken around the atoms of AMZ4 comparing to

Pt42, although this di↵erence is not significant.

Figure 4.7: Voronoi distribution of Pt42 and AMZ4 at di↵erent temperatures.
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Figure 4.8: Centro-symmetry distribution of Pt42 and AMZ4 at di↵erent temperatures.

In the next step, we calculated the packing correlations for each species of atom

in the system which gives us insights on the type of neighbor atoms around each central

atom. This correlation for atom type B in neighbors of the atom type A in center can be

calculated by:

PCAB =
AB pairs#

AX pairs#
� f(A) (4.3)

where AX denotes all pairs of atoms with species A in the center within the cuto↵ . Here

f(A) is the fraction of atom type A in the system. This metric basically provides insight

into the correlation of a specific type of atom, be in the neighbor of another type of atom.
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(a) (b)

Figure 4.9: Packing correlation between each pair of atom species in (a) Pt42 and (b)
AMZ4. The horizental axis belongs to the atom types in the center and the vertical axis
belongs to the neighboring atom types.

The calculated packing correlation number around each atom specie of our fragile

and strong liquids within a cuto↵ of 6 Å has been calculated and shown in figure 4.9. For

example, in Pt42, there are more phosphorous atoms grouped around phosphorus than

what expected. The range of deviations from the fraction ratio of atom species in Pt42

is larger than the one in AMZ4. Since we used the same number of the atoms in each

system, meaning that the number of the bonds were the same; therefore, we expected that

the packing correlations for each pair to be the same. However, calculated correlations have

characterized di↵erent packing and structural behaviour in the liquids, which is coming

from the packing e↵ects of di↵erent sizes of atoms and extra degrees of freedom of spheres

in the systems.
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4.5 Configurational Entropy

In calculating the viscosity through kinetics, as mentioned before, we need a really

long relaxation time which is not e�cient computationally. Another way to look into kinetics

by just looking at structures without recording the dynamics is through structural changes.

These structural changes can be calculated through configurational entropy.

In a packing of poly-dispersed spheres, correlations between the arrangement of

large and small spheres can lead to an increase in packing e�ciency at the expense of con-

figurational entropy. This would provide an entropic driving force for a change in structural

configuration in a liquid with higher temperature caused by the atomic size mismatches. To

analyze this e↵ect, we calculated the configurational entropy of each glass-forming liquid at

di↵erent temperatures.

The entropy can be calculated as a statistical quantity without reference to the un-

derlying energetics that created the probability distribution [77]. The distribution function

expansion first proposed by Nettleton and Green [78] can be expressed by:

⇢
2
Z

V

g
(2)
N

(r1, r2)dr1dr2 = N(N � 1) (4.4)

The equation 4.4 is the expansion in grand-canonical ensemble with the double integral over

positions r1 and r2 for N atoms in the volume V and density ⇢ where g is the positional

correlation function. This equation can be expressed with two-body terms:

s2 = S
(2)
F luct

+ S
(2)
Info

(4.5)
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In the above equation s2 falls o↵ rapidly in a way that the integrals sum converges faster

when the range of integration extends to the large values of r. By separating each term, we

define:

S
(2)
F luct

=
1

2
+

1

2
⇢

Z
(g(r)2 � 1)dr (4.6)

S
(2)
Info

= �1

2
⇢

Z
g
(2)(r) ln g(2)(r)dr (4.7)

where the first term, S(2)
F luct

, is coming from the fluctuations of N number of atoms and

the other term, S(2)
Info

, is for making up the entropy reduction due to two-body correlation

[79]. The calculation of these two terms, as well as the sum of them and also G(r) for

Pt42 at Tg + 50 K is demonstrated in figure 4.10. The calculated excess configurational

entropy for each glass-forming liquid at temperatures above Tg is shown in figure 4.11. The

di↵erent sizes of the atoms lead to di↵erent peak positions which results in the gap in en-

tropy between the two alloys. To investigate more, we have broken down the total entropy

into the contribution of each peak to this term. The configurational entropy in figure 4.12

(green line) has been scaled so that it converges to 1. This figure indicates that the major

contribution to the excess entropy is coming from the first peak. Thus, the first neighbor

shell of spheres is playing the key role in determining the entropy and di↵erentiating the

fragile and strong liquid.
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Figure 4.10: Two-body terms SF luct and SInfo and their sum from simulated pair correlation
function for Pt42 at Tg+50 K.

Figure 4.11: Excess configurational entropy for AMZ4 and Pt42.
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Figure 4.12: Contribution of each peak of G(r) (blue line) to the configurational entropy of
the system (green line).

4.6 Viscosity-Temperature Relationship

The transition of a liquid into a glass is controlled by the behavior of the viscosity

as temperature decreases. Viscosity is the key parameter to describe the sluggish kinetics

and dynamic behaviour in the molten super-cooled state. Measuring fragility is not an easy

way, since we should calculate the viscosity. In Angell plot, we observed that the viscosity

of the liquid changes by 5 orders of magnitude when approaching the glass transition tem-

perature, and this means the relaxation time should be really long for our simulations which

is not possible. This makes calculating the viscosity at that region really challenging. One

way for calculating the viscosity behavior is through displacements. For the glass-forming

liquids, the relative displacements become more significant at temperatures greater than

Tg , indicating the high deformability of the glassy alloy in the super-cooled liquid region.

The self-di↵usion coe�cient, D, can be calculated by the integration of the velocity auto-

correlation function. In this study, we determine D using the linear slope at long times of
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the mean-square displacement [46, 80]. For this purpose, we used the same simulations that

represented in figure 4.4 and we calculated the mean displacement of each type of atom

separately during this process. These calculations for AMZ4 while quenching and holding

at Tg +50 is represented in figure 4.6. The figures indicated that we need a long o↵set time

to assure the structure is relaxed.

The displacement calculations enabled us to determine the viscosity-temperature

relationship. As previously discussed, the slope of the logarithm of the viscosity with respect

to the inverse temperature is defined as the fragility parameter; and a strong liquid exhibits

an Arrhenius type temperature dependency of the viscosity, whereas the temperature de-

pendence of the viscosity for a fragile liquid deviates from the Arrhenius behavior with a

sudden change in the viscosity value around the glass transition temperature. According to

Stokes-Einstein equation:

D =
kBT

6⇡r⌘
(4.8)

According to the equation 4.8, the temperature dependencies of log ⌘ and log T

D

should be identical. Based on this, we determined the viscosity-temperature relationships

of liquids around glass transition. In figure 4.14, the temperature dependency of average

viscosity over the cooling rates of the liquid alloys is represented against the reciprocal tem-

perature. The comparison of this relationship to Angell’s definition of fragility is revealing

the fragile behaviour of Pt-based alloys. Although the range of changes is not consistent with

Angell’s plot (this is because we indicated the viscosity-temperature relationship through

the di↵usion coe�cient rather than measuring the viscosity itself), the curvature of the
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plots of Pt42 and Pt60 is exhibiting more changes of viscosity while approaching the glass

transition temperature, whereas this behaviour in AMZ4 is following a more linear trend.

This is closely related to the dynamic behaviour and kinetics of the spheres in packing

configurations, supporting the concept of fragility.
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Figure 4.13: Mean Displacement of each atom specie (for the last 7 ns) and corresponding
di↵usion coe�cient calculated for AMZ4 while relaxing at Tg+50 K (here o↵set means
the displacement for that last configuration was calculated for how much time from the
beginning of the relaxation.

In the next step, for quantitative comparison of fragility in our metallic liquids,

first we calculated the kinetic fragility (mk), based on the slope of viscosity-temperature

curvature around Tg, (the details of these calculations were discussed in the beginning of
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this chapter) and in another attempt, we determined this parameter by structural definition

of fragility. In this study, the structural fragility is determined by a linear fit of the peak

position changes data in range Tg

T
= 0.85 to 1, which is defined by:

m
r1
str =

d(�r1(T )
r1(Tg)

)

d(Tg

T
)

���
T=Tg

(4.9)

(a) (b)

(c)

Figure 4.14: Viscosity-temperature relationship of (a) Pt42 (fragile liquid), (b) Pt60 (fragile
liquid) and (c) AMZ4 (strong liquid).
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The structural definition of fragility can also be determined by the spherical volume

shells (rather than changes in the peak positions). First we define the volume changed,

followed by volume dilatation as:

Vi�j = Vi � Vj =
4

3
⇡(r3i � r

3
j ) (4.10)

✏i�j = ��Vi�j(T )/Vi�j(Tg) (4.11)

where j = 0, 1, 2, 3 (r0 = 0) and i = j + 1. This volume dilatation can provide insight on

the thermally-induced spacing of spheres. Additionally, structural fragility based on the

volume dilatation is defined as:

m
Vi�j
str

=
d(✏i�j)

d(Tg

T
)

���
T=Tg

(4.12)

We determined this parameter for the changes from 3rd to 4th volume shell to investigate

the correlations with the kinetic fragility. The results of calculated fragility parameters are

reported in table 4.6.

Firstly, the kinetic and structural fragility for both of the fragile Pt-based liquids

is substantially higher than the ones in strong liquid of AMZ4. Secondly, the relationship

60



AMZ4 Pt42 Pt60
mk 35.61±1.07 44.79±1.21 46.91±1.26

1/mr1
str 372.67±41.3 1489.1±43.52 1565.35±48.21

mV
4�3

str 0.041±0.05 0.49±0.06 0.46±0.07

Table 4.2: The structural and kinetic fragility of AMZ4, Pt42 and Pt60.

between the kinetic and structural fragility of each glass-forming liquid is demonstrated

in figure 4.15. This suggests that there is a linear correlation between these two metrics

of fragility, as the greater value of these parameters denotes to the more fragile liquids.

This trend is perfect in the structural fragility of the first peak. Structural fragility coming

from the 4th volume dilatation still shows the same trend, although it is not capable of

distinguishing the fragility quantity of Pt42 and Pt60 properly.

(a) (b)

Figure 4.15: The relationship between the kinetic fragility mk and structural fragility mstr

from the (a) first peak changes and (b) fourth shell volume changes of the PDFs.
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We revisit the main question we tried to answer in this chapter: is atomic-size mis-

match su�cient condition to yield fragility in bulk metallic glass forming liquid? Possibly!

We found that there is a lot of uncertainty in which the peak positions are changing. The

peak positions depend on thermal expansion, and also atomic distances. A lot of changes

are not coming from the structural change in PDF peak positions, it might just be the ways

that we are averaging over the distances.

Moreover, measuring viscosity for these systems over a wide range of viscosities

around the glass transition temperature is challenging, and we looked at the entropy ap-

proach, but entropy also scales more with the packing density than anything else.

The other insight is that, when liquid is fragile, the structure of the liquid is going

to change a lot by changing the temperature, and if we have di↵erent sizes of atoms, we

have di↵erent ways of arranging the atoms packed together. Thus, these degrees of freedom

allow to have di↵erent structures. The binomial distribution of voronoi volume has also

confirmed that they have di↵erent structures.
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Chapter 5

Identifying Defects in Amorphous

Structures

The main objective of this study is identifying the “defects” in amorphous materi-

als — structures with local properties that are outliers in the property distribution and so

represent sites of weakness. In this chapter, several approaches are presented for quantifying

local structure, and new computational methods are put forward to explain the numerical

values of some common amorphous configurations and their characteristics. These mod-

els help us to achieve a deeper understanding of the relationship between their structure

and properties, and pave the way for the development of a theory of defects in amorphous

structures.
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5.1 Introduction

Amorphous materials have disordered atomic nature and due to lack of periodicity

and any reference structures or equivalent intrinsic entities to compare the amorphous

structures with, identifying the defects is more challenging in these structures. Moreover,

the positions of atoms in these materials cannot be predicted by any form of equations.

However, this does not necessarily mean that amorphous structures are defect-free. As

opposed to crystalline structures, where various kinds of defects can be identified, the defects

in amorphous structures are still under studied. In crystalline solids, defects are identified as

local deviations from the crystal order, whereas it is not clear how defects can be defined in

amorphous solids. There is no ideal reference structure and even there is no determination

about the size of the region of defect.

Several studies have attempted to identify the defects in the amorphous state and

their corresponding e↵ects on mechanical properties of amorphous materials. For example,

Christopher A. Schuh et al. [81] have explained the basis of physically sound deformation

mechanisms and their contribution to mechanical properties of metallic glasses by focus-

ing on structural evolution in shear bands and strain localization. Egami et al [82, 83]

have defined the structural defects in metallic amorphous materials based on the density of

atoms and the distribution of the internal stresses on the atomic level in local environments

and they explained how amorphous alloys exhibit a scale-dependent distribution of elastic

constants. In another study by Keisuke Ide [84], the focus of defects identification in amor-
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phous structure is on electronic defects rather than the structural defects, which may cause

instability issues in semi-conductors as they might carry traps in gate insulators, interfaces,

and channel materials. In another attempt, Moshe et al [85] have characterized defects

in amorphous materials by deviations of the material’s intrinsic metric from a Euclidean

metric in 2D dimension.

Some of these methods purely depend on geometrical concepts which may vary

significantly from one atom to the other and in some other studies, the e↵ect of di↵erent

types of atoms and other features have not been taken into consideration. In most of these

studies, researchers tried to think ahead of time what the defect is and this may put bias

in the way they are defining these defects. In an attempt for expanding these theories

and automate them, we have developed two predictive models by using machine learning

techniques to characterize the outliers in amorphous materials. Over the past few years,

machine learning techniques have been used to address the structure-property relations

in glasses. Among these studies, Tian et al [86], Cubuk et al [87] and Deringe [88] have

achieved broader impact of machine learning in the field of amorphous materials. However,

these successes achieved by using machine learning methods are still modest, and do not

show su�ciently high accuracy in predicting the site of weaknesses and outliers in amorphous

materials. In our study, we implement machine learning methods that are particularly suited

for establishing relations where simple theory has previously been intractable. Our models

leverage the quantitative attributes for capturing the distinct di↵erences in materials and

correlating them with the material’s physical and mechanical properties. For this purpose,

we use two di↵erent models which are discussed in details in the next sections.
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5.2 Method 1 - Unsupervised Learning

In the first method, we attempted to use cluster analysis (unsupervised learning)

for the purpose of finding similarities between the localized environments in amorphous

materials. To begin with, we need a description of the local sites that allows the local

outliers’ characteristics to be learned. Therefore, we leverage the features that highlight

the spatial arrangements and orientation of atoms and their distribution around each other.

Here we explain the essential properties that an ideal descriptor may have for encoding the

materials. These properties are including:

• Global uniqueness: the mapping of the descriptor should be unique for a given input

atomic environment.

• Invariant: meaning that the descriptors should be invariant under symmetry opera-

tions—permutation of atoms, rotation and translation of structure.

• Sensitivity (local stability): small changes in the atomic positions should result in

proportional changes in the descriptor, and vice versa.

• Dimensionality: the dimension of the spanned hyper-dimensional space of the descrip-

tor should be su�cient to ensure uniqueness, but not larger.

• Interpretability: features of the encoding can be mapped directly to structural or

material properties for easy interpretation of the results.
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• Scalability: descriptors should be easily generalized to any system or structure with

a preference to have no limitations on number of elements, atoms, or properties.

• Complexity: to have a low computational cost, the descriptor should be fast enough

to scale to the required size of the simulations and also to be used in high-throughput

screening of bigger systems.

• Discrete mapping: the descriptors should always map to the same hyper-dimensional

space with constant size feature sets, regardless of the input.

Atomic Environmental Vector:

Based on the ideal properties of a descriptor, local representations of the atomic

environment can be highlighted by a metric called Atomic Environmental Vector (AEV)

[89, 90]. Basically, AEV is a vector that can represent the local environment of each atom

properly by combining a radial and angular term in a one dimensional vector. The radial

symmetric functions of AEV is defined as:

G
R

i;↵,m =
X

j 6=i,j2↵
e
�⌘R(Rij�Rs)2fc(Rij) (5.1)

where ↵ and � in radial and angular terms are the elements of the neighbours within a

cuto↵ radius Rc and index m here runs over the set of parameters {{Rs}, {⌘R}} and the

summation j runs over all the atoms of element ↵; here ⌘R controls the width of the radial

Gaussian distributions, and Rs controls their radial shift. Also fc(Rij) is the cuto↵ function

which ensures the locality and is defined by:
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fc(Rij) =

8
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>>>>:
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0 Rc < Rij

(5.2)

And the angular symmetric function is defined by:

G
A

i;↵,�,n = 21�⇣
X

j,k 6=i

(1 + cos(✓ijk � ✓s))
⇣
e
⌘A(

Rij+Rik
2 �Rs)2fc(Rij)fc(Rik) (5.3)

where the index n runs over the set of parameters {{Rs}{✓s}{⌘A}{⇣}} and the

summation runs over pairs of atoms of elements ↵ and �. Here again ⌘A and Rs have the

same role as in the radial symmetry function described above, with ✓s capturing di↵erent

regions of the angular environment and ⇣ controls the width of the peaks in the angular

environment. For the angular function, the spatial weight is implemented which compen-

sates for the more atoms which are falling into the central circle as it is bigger than the

other circles further away (shown in figure 5.1). Additionally for the radial function, the

radial weight is used to highlight the importance of the bonds with neighbours closer to the

central atom (first shell) comparing to the atoms which are further away (second, third,..

shell). This is exhibited in figure 5.1:
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Figure 5.1: AEV radial (left) and spatial (right) scales.

In this method of defect identification, several snapshots of amorphous metallic

glass of AMZ4 were used for AEV analysis. We started the simulation by holding AMZ4

for 3 ns at 1600K and then cooled the structure down to 50K, 150K and 450K above the

glass transition temperature of AMZ4 (the glass transition temperature calculation was

previously discussed in section 4.3.2.). Then the system was held for another 7 ns at these

temperatures to ensure the equilibrium. In the next step, we calculated the AEV vector

for the di↵erent snapshots of this metallic amorphous liquid. We use AEV for each atom

type (Cu, Zr, Al and Nb) to identify classes of environment experienced by each element.

In figure 5.2, the radial and spatial term of AMZ4 has been represented. We have put some

constraints on ✓s and Rs to make sure the computations are e�cient and AEV vectors are

not too large.
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Figure 5.2: Radial and spatial terms of AEV in AMZ4.

These local representations of the atomic environment have high dimensions which

adds complexity and noises to our model. For this reason, we have implemented Principal

Component Analysis (PCA) [91] to simplify the complexity of our high-dimensional data

while retaining the trends and patterns. PCA is an established method of reducing dimen-

sionality to a subset of important features, which holds the same descriptive information of

the local structures. The benefit of using PCA is that we do not lose information and at

the same time, PCA removes any high correlation between the local representations which

may induce bias while learning the data.

We chose the few first significant components and these components were su�cient

to extract the dominant patterns within the AEV ( The first three components are shown

in figure 5.3).
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Figure 5.3: Three principle components from AEV.

After normalizing the AEV and performing PCA, the next step is feeding the

components of each species as an input to our unsupervised model. For cluster analysis,

we implemented Gaussian mixture model [92] which is a probabilistic model that assumes

all the data points are generated from a mixture of finite number of Gaussian distributions

and each of these distributions represent a cluster. For these models, we specifically used

scikit-learn library in Python [93]. The main reason for choosing this algorithm among the

other clustering methods is that, when observing the PCA, the data sets represent normally

distributed sub-populations and suggest that the local identifiers in our data set comes from

a Gaussian distribution with a di↵erent mean and variance.
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5.2.1 Results

Figure 5.4: Average AEV of di↵erent clusters for Cu in AMZ4

In figure 5.4, the average AEV of each cluster (in total of 9 clusters) after cluster

analysis is represented. Each color in the figure denotes to one cluster and the band with

3 lines of plots for each cluster represent the mean AEV (the middle one) and one stan-

dard deviation below and above the mean AEV. For each cluster, the intensity of radial

distribution of the average AEV remains almost the same (in the AEV range of 0 to 20

in figure 5.4). However, the elements that di↵erentiate these average AEVs (clusters) from
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each other is mostly the angular term of AEVs. For example, in the first two AEVs (purple

and yellow ones), there is a wide range of intensities, which are causing the sharp peaks

at the tails of the plots. When we have intensity of zero, means that there is no triples of

three types packed together, and when there is a peak at the tail, this means that there are

a lot of triples that made the angles all over the system. Therefore, rather than focusing on

the angles and how they are di↵erent between triples of atoms, this method focuses on the

existence of these angles. This means that PCAs were grouped by the chemical environ-

ments rather than the structural environment, which makes this model not e↵ective enough

to distinguish the structural environment experienced by each atom. To investigate more,

cluster analysis for each type of atom in AMZ4 was performed.

The result of this analysis for three di↵erent temperatures that previously men-

tioned has been shown in figure 5.5. Base on this figure, we can identify outliers in 3 possible

ways: (i) structures with AEV distant from the exemplars of all the other clusters (ii) AEV

clusters with only a small number of members (iii) AEV structures common at high T but

rare at low T . The local structures which are far from the other clusters are AEV cluster

of 2 in Cu, 5 in Zr and 2 in Al which has much higher frequencies than the others and

the AEV clusters with smaller number of members are 6,7,8 in Cu 6,8 in Zr and 5 in Al.

Geometrically, the smaller member AEV clusters corresponds to rare spatial orientations

of atoms that have the properties of outliers after PCA projection. On the other hand,

the third way which takes the thermal excitements into account, attempts to identify the

defects based on the magnitude of frequency fluctuations in each of the clusters. By this

definition, we can observe that in the Cu case, the di↵erence of cluster 2 and 4 for each
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temperature is more significant than any other AEV cluster, thus AEV cluster of 2 belongs

to outliers induced by thermal excitements.

(a) (b)

(c) (d)

Figure 5.5: Classes of defects detected by AEV: (a) classes of Cu (b) classes of Zr (c) classes
of Al (d) classes of Nb
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As previously discussed, cluster analysis can provide a guidance on possible defects

identification in amorphous structures; however, it still su↵ers from the clear and powerful

description of defects as there are multiple possible ways to categorize the outliers and

linking these clusters to the properties of the material is still challenging. Additionally,

cluster analysis methods may overestimate the similarity between environmental groups

and do not treat local structures as individuals. For this reason, we propose an alternative

powerful method to identify the local outliers that address the challenges of the previous

model. This will be discussed in details in the next section.

5.3 Method 2 - Weak Supervised Learning

In our second model, a new machine learning technique is put forward to describe

and define the localized defects in amorphous materials, in particular, metallic glasses,

which also contributes to a better understanding of atomic arrangements in these amorphous

solids. In order to build this predictive model for identifying defects, we leverage the features

which highlight the spatial arrangements and orientation of atoms, their distribution and

local characteristics. These parameters explore the symmetric and atomic environment

as well as relevant descriptors quantifying the structure surrounding each particle. The

performance of this algorithm is then characterized on other glasses.

This method, particularly involves statistical analysis of a novel model to investi-

gate the probability of defects in glasses and to obtain their contributions to the properties

of the material. The most challenging part is how to label the defects in these materials
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as there is no predefined defects, like the ones in crystalline structures, to train and build

our predictive model based on those. At the same time, there are some heuristics that

can guide this identification. These heuristics are based on the other experimental and

theoretical studies on the amorphous structures, and they enhance the logic behind our

model.For this purpose, both generative and discriminative models were performed using

Snorkel library in Python, developed by Stanford researchers [35]. Weak supervision learn-

ing provides us signals for labeling the large amount of data in order to create a powerful

predictive model. This algorithm generates higher-level supervision in the form of labeling

functions (heuristics) that capture our domain knowledge and resources, without having to

carefully manage the noise and conflicts inherent in combining labeling functions. Since

labeling functions are self-contained and operate on discrete local environment, their exe-

cution is parallel and we can observe the coverage, correlations and overlaps between labels

provided by these labeling functions. Weak supervised learning maps the attributes in the

representation of the physical properties to more accurate definition of defects.

5.3.1 Features

To begin with, we used the same amorphous metallic glass (as previous chapter)

of Pt42 with 7528 atoms. After holding this system at 1200 K (which is above its glass

transition temperature) for 7 ns, we cooled the system down to 0 K with di↵erent cooling

rates of 1.2, 0.6, 0.4 and 0.24 Kps
�1. For each system, we have built the labeling functions

based on the local environment of each atomic species in our glass models. One of the

features, SOAP, relies on a Gaussian smeared atomic density based on spherical harmonics

and radial basis function. The other feature that has been used is Atom-Centered Symmetry
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Functions (ACSFs) which represents the configuration of atoms around a single central atom

using symmetric functions. LMBTR was also calculated for encoding the local structures

by using a distribution of di↵erent structural motifs and kernel density estimation which is

constructed based on the distribution of atoms. These features were all created by DScribe

library [51] in Python, which transform atomic environment into numerical features. More

details on each of these descriptors were discussed in chapter 3.

The descriptor of SOAP within the cuto↵ of 6 Å around each atom of Pt42 with

cooling rate of 1.2 Kps
�1 has been shown in figure 5.6. The SOAP figure indicates that

there are some signals at certain distance far from each atom, and at the same time not

all the elements of SOAP can provide us useful information (where SOAP intensity is 0).

Therefore, our focus is only on the main signals of SOAP.

Figure 5.6: SOAP vectors for all 7528 atoms in Pt42.

Apart from SOAP, LMBTR is another feature that we implemented in our labeling

functions. LMBTR for the same system of Pt42 is also represented in figure 5.7. For this
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calculation, exponential weighting function was used which controls the atomic density;

basically, atomic density function decays to the threshold of 1e�3. The di↵erences in the

local environments also hints at the intense signals of LMBTR.

The last feature that we implemented for our generative model is ACSF with

the same cuto↵ of 6 Å which is shown in figure 5.7. We specifically used heat-map for

visualizing and getting a better idea of the ACSF ranges across local environments. In ACSF

calculations, the central element is not taken into consideration, and it solely highlights the

arrangement of neighbours. We observed that in the first shells and nearest neighbours,

ACSF is relatively small. This was also seen in distances further away from the local

environments. However, in intermediate-range order, the ACSF exceeds the value of 10,

where the symmetry of the neighbouring atoms is more pronounced.

5.3.2 Labeling Functions

The next step after creating the features is building the labeling functions. For this

purpose, we used inter-quartile ranges [94] for the descriptors which is a common method

to detect the outliers in the data sets. The thresholds based on inter-quartile method are

defined as:

IQR = Q3�Q1

8
>>>><

>>>>:

LowerBound : (Q1 � 1.5 ⇤ IQR)

UpperBound : (Q3 + 1.5 ⇤ IQR)

(5.4)

where IQR denotes the inter-quartile, Q1 is the first quartile of the data, meaning that

25% of the data lies between the minimum and Q1, and Q3 is the third quartile of the
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data, meaning that 75% of the data lies between the minimum and Q3. Lower bound and

upper bound have been defined as our measure of outlier detection, meaning that if the

local environment of any descriptor, falls above the upper bound or below the lower bound,

we identify that structure as an outlier and we label it defective in our labeling function.

Also we use the same idea to label the data non-defective if the local environment’s feature

is falling on the average of each of these descriptors.

Figure 5.7: LMBTR vectors for all 7528 atoms in Pt42.

79



Figure 5.8: ACSF heat-map across all the local environments of Pt42.

After creating the labels, the generative model was trained via the labeling func-

tions, and the output was the probability of each local environment being defective. These

probabilities were further used as the input of the discriminitive model, for which the arti-

ficial Neural Network [95, 96] was implemented.

Neural Networks (NNs) are inspired by sophisticated functionality of human brains

where hundreds of billions of interconnected neurons process information in parallel. The

NN that we implemented is comprised of an input layer, one hidden layer and the output

layer. The input to a given node of the hidden layer is a weighted sum of all the descriptors

in the input layer (the logic behind our NN is shown in figure 5.9). By this NN, we trained

a powerful predictive classification model using the labels we created by generative model;

the model basically outputs the probability of a local environment being defective by using
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descriptors of each local environments. These probabilities were then converted to binary

classes, by using the threshold of 0.5, meaning that any local structure with the probability

of higher than 0.5 would fall into the defective environment.

Hidden	layerInput	layer Output	layer

X1

X2

Xn

P1

Pn

X1,h1

Xm,h1

Figure 5.9: Neural Network model used as our discriminative model, which is comprised of
an input layer, one hidden layer and an output layer.

5.3.3 Results

The trained discriminative model was implemented to identify and investigate the

defective environment. Identifying the defects was followed by structural characterization

to shed light on the correlations between various packing configurations and the identified

outliers. For this purpose, first we visualized the distribution of the identified outliers in
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the system. The defective environments were distributed all over the system and we did

not observe any sign of segregation.

In the next step, the relative centroids of voronoi volume and the local structures

were determined. The relative centroid is the distance between the center of the atom

and the center of the polyhedral cell that the atom is trapped in. These centroids were

then normalized by the radius of each species to disregard the di↵erent spacing caused by

the sphere size. The radius for each atom type in our model was calculated by the pair

distribution function between each pair of the same atomic species. The first peak of the

pair distribution function for Cu-Cu, Pt-Pt, P-P and Ni-Ni pair atoms were separately

calculated and as the first peak exhibits the distance between the centroid of each atom to

its nearest neighbor atom, we can achieve the radius of these four element types.

In figure 5.10, the distribution of these normalized centroids for di↵erent species

of atoms as well as the identified defects (red bars) is shown. Surprisingly, the red bars be-

longing to defects indicates the larger distance between the center of the local defects and

their corresponding polyhedrons, meaning that the distribution of the relative centroids

for identified defects does not follow the distribution of all the local environments. Larger

relative distance of centroids also occurs in vacancy defects in crystalline structures, where

an atom is missing in the neighbour of a sphere and causing the centroid of the surrounded

polyhedron fall further away from the centroid of the atom.
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Figure 5.10: The distribution of the centroid distances normalized by sphere sizes.

Supporting this idea, we looked into the random sample of defective and non-defect

environment’s polyhedrons (this is represented in figure 5.11). These polyhedrons suggest

that regardless of the atomic type, the more distorted polyhedrons belong to the defects.

The defective polyhedrons mostly have several planes which are significantly larger that the

other planes of the polyhedral cell. As discussed, this confirms the similar concept of having

vacancies like the ones in crystalline structures. It also has connection with the larger free

volumes that previously observed in voronoi volume distribution.

To investigate the connection between the identified defects and the amorphous

material’s properties, we set up a simulation. We performed this simulation on our system

of Pt42 to gain more information about how the defects were identified by weak supervision

model. For this simulation, we deformed the system with engineering strain rate of 3% in

xy direction using the nve ensemble, and then we observed any events caused by the applied
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strain. At the same time, we recorded the voronoi volume, potential energy and the stress

on each of the local environments while the deformation was being applied.

(a)Perfect Cu (b)Defective Cu

(c)Perfect Pt (d)Defective Pt

(e)Perfect Ni (f)Defective Ni

(g)Perfect P (h)Defective P

Figure 5.11: Sample of perfect polyhedrons and defective polyhedrons of each species.
Regardless of atomic species, the defective polyhedrons are more distorted comparing to
non-defective polyhedrons.
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Figure 5.12: Shear strain deformation in xy direction of a block of Pt42 to investigate the
events related to the defective environments.

In figure 5.13, the left figure represents the average potential energy change for all

the atoms (blue line), where plasticity occurs after 1.5 % strain. The red line belongs to

the average potential energy change of defective environments. The green line is the aver-

age potential energy change for a random sample of non-defective environments with the

same number of samplers as the defective environments. Although the average potential is

going up, average potential of the defects is decreasing around where the sign of plasticity

appeared. The defective structures have significantly deviated from the average potential

energy. This suggests that during plasticity, these defective environments first have mini-

mized their potential as opposed to behaviour of the non-defective environments, as they

overcome the saddle points during this process. The random sample is also around the

average potential of all the defects and indicated the variation of potential energies that we

may expect around the average energy change.

Figure 5.13.b represents the minimum potential energy change for the same en-

vironments. The lowest potential energy within all the defective structures (red line) has
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the largest negative potential change in the entire group (in around 0.7% strain), meaning

that largest jump of energy in the whole system belongs to the defective structures. This

relatively large change is overlapping with the minimum potential of the entire system,

meaning that when the deformation happens, the defective environments are contributing

to the plasticity of the system.

(a) (b)

Figure 5.13: Average potential changes and minimum potential changes while deforming
the system.

Figures 5.14 represent the voronoi change for all the local environments recorded

for the time steps of applying the shear strain rate. The defects structures are shown by

the black lines. The identified defects by our model have mostly increasing trend in their

voronoi volume, and because the atomic volume remains the same, this means that the free

volume of the defects have an increasing trend under deformation process. However, this
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Figure 5.14: Voronoi volume change in each time step of the strain process, the black lines
denote to identified defects.

trend is not significant and is not representing the whole structures of the defects and it is

still under investigation.

In the final step, we looked into the distribution of the potential energy for all the

structures (including defective and non-defective structures) and we compared that to the

potential energy distribution of the defects (this has been represented in figure 5.15). There

is no obvious trend, and the distribution of defects follows the distribution of the whole

system.Additionally, we utilized the same trained model (NN) on di↵erent cooling rates

of Pt42 to look into the defective probabilities (in figure 5.16). We have only represented

the local environments that predicted as defective (having the probability greater than the

threshold of 0.5). Even though the rate of the cooling was di↵erent for Pt42 systems, the

number of defective environments was almost the same (all the structures with defective

probability more than 0.5). However, the distribution of these probabilities is di↵erent.
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Figure 5.15: Potential energy distribution for all the environments (blue) and for the defec-
tive environments (red) in Pt42.

Figure 5.16: Probabilities of being defective for Pt42 local environments obtained by quench-
ing with di↵erent cooling rates.
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This combined with the previous representation of potential energy distribution

indicates that the identified defects by our model are not necessarily frozen in and they are

not correlated with energy (as the energy of the defects is distributed everywhere within

the all environments’ energies and the distribution of the defects is not di↵erent from the

distribution of all the other atoms). Therefore, these defects are not energetic outliers, as

when we changed the cooling rates, we expected to have more high energy defects frozen in,

but this was not the case. Therefore, they are rare structures but there is no energy reason

why they are rare. These identified defects are associated with the sites of weakness which

causes their initial significant jumps when deforming the system.
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Chapter 6

Thermal Conductivity in Pristine

and Defective LiAlO2

Lithium aluminate (LiAlO2) is an important material as a lattice matching layer

for GaAs growth, as a electrode coating and a membrane for molten-carbonate fuel cells, and

as an additive in composite electrolytes and in Li-ion batteries. In all of these applications,

thermal properties of LiAlO2 plays a key role in their performance.

Lithium aluminate is existing in three allotropic forms of alpha, beta and gamma

with hexagonal, monoclinic and tetragonal crystal structures, respectively. In this work, we

focus on the tetragonal allotrope of LiAlO2 (gamma-LiAlO2) which has the lattice parame-

ters of a = 5.1687 ⌥ 0.0005, c = 6.2679 ⌥ 0.0006 Å. The structure of � �LiAlO2 is shown

in figure 6.1.

The metastable �-modification, with a monoclinic structure, transform to the �-

modification at about 900 C. �-LiAlO2 is an isolator with direct band gap. In this material,
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Figure 6.1: Structure of �-LiAlO2. Red, green and blue atoms belong to Oxygen, Lithium
and Aluminum respectively.

the Al-O bonding has covalent characteristic, whereas the Li–O bonding is predominant

ionic [97, 98].

In this chapter, we aim to understand the evolution of the thermal conductivity of

LiAlO2 and we elucidate the e↵ects of defects on its thermal properties which is important

to assure the material’s long-term performance and address these e↵ects properly. The

defect in LiAlO2 is defined as the localized disruption to the perfect crystalline order. The

defects can be in atomistic scale such as vacancies, impurities or displacement and also they

can be in sub-grain scale like the dislocation, inclusion and voids. Another scale of defects is

grain-scale when the defects is bonded with the grain boundaries and grain misorientation.

In this chapter, classical MD simulations and their results for the purpose of ther-

mal conductivity calculations using the equilibrium Green-Kubo and non-equilibriumMuller

Plathe methods are discussed in details (these methods were previously elaborated in chap-

ter 3). Furthermore, the MD simulations were extended to defective structures and we
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discuss the results from the additional scattering rate due to the presence of these defects

in details.

6.1 Thermodynamic Properties Calculation

Thermal conduction is defined as the transport of energy due to random molecular

motion across a temperature gradient. Generally, a material’s thermal conductivity is the

number of Watts conducted per meter thickness of the material, per degree of temperature

di↵erence between one side and the other. Thermal conductivity determines the intrinsic

ability of a material to transfer or conduct heat and for a specific material, it is highly

dependent on a number of factors. This includes the temperature gradient, the properties

of the material, and the path length that the heat flows. Also the temperature of a material

has a large influence on the thermal conductivity since molecular movement is the basis

of thermal conductance. Atoms move more quickly at higher temperatures, and therefore

heat will be transferred through the material at a higher rate, meaning that the thermal

conductivity of the same material has the potential to change drastically as the temperature

increases or decreases [99].

Heat transfer processes can be quantified in terms of appropriate rate equations.

The rate equation in heat transfer mode is based on Fourier’s law of heat conduction.

Fourier’s law states that the rate of heat transfer through a material is proportional to the

negative gradient in the temperature and to the area, through which the heat flows. The
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Figure 6.2: Fourier’s law of heat transfer

equation for Fourier’s law of heat transfer is:

~q = �rT (6.1)

where ~q denotes the local heat flux density,  is the material’s conductivity and rT is the

temperature gradient. Despite the fact that it is easy to solve this equation for T(x) to

find the heat flux, this equation has no connection to the underlying mechanism of heat

transport [100].

6.1.1 Pristine LiAlO2

We have tried to compute the thermal conductivity tensor of pristine LiAlO2 us-

ing a variety of di↵erent methods in order to compare sources of error and to benchmark

thermal conductivity calculation methods that use empirical potentials. First, we imple-

mented Green-Kubo (equilibrium method) using LAMMPS package to compute the thermal

conductivity from the lifetime or dissipation of fluctuations in the instantaneous heat flux

auto-correlation (equation 3.11).
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To begin with, we first computed the thermal expansion coe�cient and the aver-

age lattice parameter of the crystal at the simulation temperature. This was achieved by

a MD simulation in the npt ensemble in which the temperature was ramped from 100-750

K. For this simulation, we held the pressure at 0 bar, and while the system was permit-

ted to fluctuate, the system was restricted to remain tetragonal. To obtain the average

lattice parameter as a function of temperature, we performed a polynomial fit. Figure 6.3

represented the thermal strain of the discussed ramp.

Figure 6.3: Thermal expansion of LiAlO2 in a-axis (blue line) and c-axis (red line).

For calculating the thermal conductivity, the size of the system dictates the number

and wavelength of modes available to contribute to the heat current, J , and its dissipation.

Therefore, we tested the system size convergence by computing thermal conductivity for sys-

tems of increasing size. To keep the simulation box as close to cubic as possible, we selected

super-cells with dimensions of 6x6x5, 7x7x6, 8x8x7, 10x10x8, 11x11x9 and 12x12x10.
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Figure 6.4: Cumulative thermal conductivity vs heat flux correlation time computed using
the Green Kubo for a-axis (blue line) and c-axis(gold line).

The correlation function in the equation 3.11 is very slow to converge, and thus to

gain a good ergodic sampling, it is necessary to average the correlation functions computed

from at least 10 simulations with uncorrelated starting configurations (with each simulation

performed over several ns). We have thus performed nve simulations of the correctly scaled

systems to generate 10 snapshots of each system with uncorrelated configurations. The

final step was to perform the GK simulations [55]. For each snapshot, a simulation was

carried out with holding the system for 50 ps in nve ensemble to assure the system lost

the memory of the prior nvt simulation, and then the simulation was continued for another

2 ns during which the correlation function was computed. For calculating and integrating

the heat current auto-correlation, we first tested the simulation duration and the number of

simulations require to average over in, to obtain suitable uncertainty. As mentioned before,

we built up 10 di↵erent initial configuration and the simulations were carried out for each of

them. As it is represented in figure 6.4, the heat flux auto-correlation is highly oscillatory

due to the multiple flat optical branches.
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Enthalpy correction:

For the better convergence, we attempted to include a multi-component enthalpy

correction. For setting up the simulations, the species averaged enthalpy correction to

the instantaneous heat flux was computed. As mentioned before, the Green-Kubo method

computes the thermal conductivity from the lifetime or dissipation of fluctuations in the

instantaneous heat flux. Here we represent the heat flux equation:

J =
1

V

NatX

i=1

((PEi +KEi)vi + �i.vi) (6.2)

where V is the volume, PEi is the potential energy per atom and KEi is the kinetic energy

per atom. vi and �i denote the velocity and stress per atom, respectively [101, 102].

As LiAlO2 is a multi-component system, the center of mass of each species is not

conserved, and as the potential energy term (PE) in the flux can have any arbitrary o↵set

for di↵erent elements, this can introduce a spurious non-thermal contribution to the energy

flux. Based on the equation below for heat flux calculation:

Jcor =
NsX

↵=1

h↵

N↵X

i=1

vi (6.3)

where Ns is the number of atom types in the system, h represents the averaged enthalpy per

atom of species ↵ and vi is the velocity per atom i, for enthalpy correction, we subtract the

non-thermal contribution to the energy flux o↵ with the correction term given by equation

6.3 based on h, the time and ensemble averaged enthalpy per atom of species alpha. The
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enthalpy term includes virial and kinetic contributions to the PV term. After implementing

the enthalpy correction mentioned above, the MD simulations for Green-Kubo calculations

were performed again. The oscillatory auto-correlation is indicated in figure 6.5 .

Figure 6.5: Heat flux auto-correlation from MD simulation.

In thermal conductivity calculations for LiAlO2, the simulation is performed with

considering the periodic boundary conditions. Periodic boundary condition causes no im-

pediment to phonon movement, meaning that phonons can cross the periodic boundaries;

therefore, we can simulate systems that are much smaller than the phonon mean free paths.

In these simulations, the system size e↵ect arises as the periodic boundaries limit the largest

wavelength of phonons that fit into the simulation box. Additionally, the long wavelength

acoustic modes have the longest mean free path, which can lead to an underestimation in

thermal conductivity. System size also limits the phonon modes available for anharmonic

scattering processes which can lead to an overestimation of thermal conductivity.
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After integrating the tail of the auto-correlation function, based on equation 3.11,

the thermal conductivity in each direction was calculated and the result for each system

size is shown in figure 6.6.

Figure 6.6: Thermal conductivity of LiAlO2 in di↵erent axes for di↵erent system sizes from
MD simulations.

Thermal conductivity with the range of ⇠3 to ⇠7 W.m
�1

K
�1 (at 300 K) for

di↵erent system size of LiAlO2 obtained using the Green-Kubo method by measuring the

thermal fluctuations in equilibrium molecular dynamics simulations where the interatomic

forces are modeled using the empirical potentials of Tsuchihira, Oda, and Tanaka (TOT)

[103]. The TOT potentials were implemented in LAMMPS using a tabulated form. In these

simulations, it takes a long time to average away the long fluctuations in the auto-correlation

function and also there is still a large band of uncertainty.
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The Green–Kubo method su↵ers from the di�culty of converging the heat flux

vector J(t) and its auto-correlation function. This equilibrium MD approach will always

be limited by large uncertainty, even with very long averaging times (for the purpose of

narrowing the error bar) — unless we are considering systems in which the phonon lifetimes

are short at higher temperatures, or defective crystal. This method also requires bigger

computing resources for these calculations.

Due to these limitations, for the next step we considered computing thermal con-

ductivity from non-equilibrium MD simulations. The non-equilibrium method we are using

for calculating the thermal conductivity is Muller Plathe method (section 3.7.2), in which

one imposes a temperature flux and measures the resulting temperature gradient. MP algo-

rithm exchanges kinetic energy between two particles in di↵erent regions of the simulation

box which induces a temperature gradient in the system and then base on this gradient

the thermal conductivity is calculated. To begin with, we built a long system of LiAlO2

(50x3x3) for Muller Plathe calculations (shown in figure 6.7).

Figure 6.7: Block of LiAlO2 with the size of 50x3x3 for MP calculation of thermal conduc-
tivity.
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After running MP simulation in ensemble of nve for around 15 ns, the distribution

of temperature over the slabs of the system along the long axis (the direction of heat flux,

[100]) is represented in the symmetric temperature profile (shown in figures 6.8 and 6.9).

Figure 6.8: Temperature profile of LiAlO2 in MP method.

Figure 6.9: Temperature vs position of LiAlO2 block in MP method.
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These figures represent the corresponding converged temperature profile through

the box along [100] direction. Since the hot and cold layers are separated by the same

distance in both directions in a periodic sense, this leads to the symmetric temperature

profile. After computing the total kinetic energy transferred by these swaps due to cold-hot

slabs, we calculated the thermal conductivity by the ratio of heat flux to the slope of the

temperature profile in the cross-sectional area of the simulation box. These calculations

predict the [100] thermal conductivity of LiAlO2 at 300 K to be ⇠7.9 W.m
�1

K
�1. Since

the temperature gradient is extreme in MP simulations, this explains the deviation of the

results from the equilibrium MD simulations.

While these non-equilibrium simulations do not have the statistical sampling prob-

lems like the ones in equilibrium simulations, they have a di↵erent set of problems including

the convergence of systems size (they require orders of magnitude larger systems), ballistic

transport, temperature gradient, and the long time taken for the system to reach the steady

state.

6.1.2 LiAlO2 with Li Vacancy

In this section, we estimate the e↵ects of Li vacancy on the thermal conductivity

of LiAlO2 using MD simulations. The reason for the selection of Li vacancy is that the Li

vacancies are expected to be numerous in the system of LiAlO2 as they can be formed by

both Li burnup and also by the displacement cascade.
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For this purpose, we performed MD simulations using GK method to compute the

thermal conductivity of LiAlO2 containing di↵erent concentrations of randomly arranged

Li vacancies. For defective LiAlO2 with Li vacancies, we should consider: (i) ensuring the

balance of charge, (ii) correcting for lattice expansion/contraction, and (iii) correcting the

bond sti↵ness in the vicinity of each vacancy.

For addressing the charge issue in MD simulations using TOT potentials for the

LiAlO2 that includes Li vacancies, we compensated for the absent charge of Li+ by removing

the excess electrons uniformly from the charge of the O atoms.

From the point of view of phonons, vacancies may disrupt the crystal in several

ways: firstly, they represent a mass defect; secondly, they soften the crystal by removing the

bonds of the missing atom, and they also change the strength of the bonding between the

remaining atoms which are the neighbours of the vacancy. To understand the underlying

sti↵ness correction, we computed the sti↵ness matrix for a block of LiAlO2 containing a

random Li+ vacancy, and compared it with the same system without a missing atom.

We performed DFT calculations with empirical potentials, to examine the fidelity

of the vacancies in MD model using the sti↵ness matrix of the atoms surrounding a vacancy.

In this approach, we used a 2x2x1 super-cell of perfect LiAlO2 and we calculated the

hessian and then in the next step, we removed one Li atom randomly, and again with

DFT calculations and the empirical potentials, we computed the hessian after relaxing the

structure. For the empirical potentials case, we also compensated the charge of the missing

Li. In the next step, we subtracted the equivalent elements of the perfect crystal’s sti↵ness

matrix from the sti↵ness matrix of the defective crystal, to obtain the sti↵ness change in
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the vicinity of the vacancy. The sti↵ness change matrix coming from each calculation is

shown in figure 6.10.

Figure 6.10: Sti↵ness matrix in the vicinity of the Li vacancy by DFT and MD calculations.

In the next step, we investigated how the extra thermal resistance due to vacancies

depends on the vacancy concentration by computing the thermal conductivity of LiAlO2

containing di↵erent concentrations of Li vacancies (0.4% and 0.5% Li vacancies). For the

comparison, we calculated the thermal resistivity using the GK method for the perfect

LiAlO2 as well as the defective LiAlO2 with 0.4 % and 0.5 % vacancy at two di↵erent tem-

peratures of 300 K and 1200 K. The thermal resistivity was calculated in 2 directions (x,

z) and the result is shown in figure 6.11.
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Figure 6.11: Thermal resistivity of pristine and defective LiAlO2 with di↵erent concentra-
tions of Li vacancy at 300K (left) and 1200K (right).

The extra thermal resistivity (the reciprocal of the thermal conductivity) has a

colligative dependence on the vacancies. Based on the calculations, increasing the concen-

tration of Li causes in a little increase in the resistance in each direction. This is closely

related to the phonon scattering in the vacancy of the system.

Surprisingly, the marked increase in resistivity from 0.4% to 0.5% Li vacancies

breaks the expected linear trend, both at 300 K and 1200 K, even with the relatively large

error bars. The reason could be because the Li vacancies impact the lattice in two ways: (i)

they provide centers for phonon scattering due to the local mass/sti↵ness defect that they

cause, and (ii) they can reduce the overall sti↵ness of the crystal and hence group velocity

of the system because of the changes in the charge of the atoms. These results hit at an

interesting non-linearity in the thermal resistance with the accumulation of Li vacancies.
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6.1.3 LiAlO2 with Interfaces

Grain boundary is another defect which could a↵ect the thermal conductivity of

LiAlO2. To investigate this e↵ect, we performed non-equilibrium simulations of systems

containing grain boundaries to compute the interfacial thermal conductance. We mainly

focused on developing a new general theory to describe the interfacial thermal conductance

(ITC) of an interface. ITC is a measure of how e�ciently heat carriers flow from one ma-

terial to another [104, 105]. Typical existing models of phonon scattering at interfaces are

the di↵use mismatch model (DMM) [106, 107] and acoustic mismatch model (AMM) [108]

that describe the probability that phonons incident at an interface is transmitted through

the interface based on the properties of the materials on either side of the interface. These

transmission probabilities can then be used in integrals over all the phonon modes to com-

pute the net thermal conductance at an interface. The DMM and AMM assign transmission

coe�cient regardless of the structure of the interface, and only the bulk property of the two

materials on either side of it matters. Generally, DMM model assumes that phonons lose

memory of their origin after being scattered by the interface. DMM is only correct at very

high temperature where short wavelength phonons are populated and their wavelength is

comparable to the surface roughness; on the contrary, AMM assumes phonons as plane

wave experiencing specular scatter at the interface (valid at low temperature where only

high wavelength phonons are excited).

In our approach, we developed a modified DMM model that also depends on the

density of vibrational states at the interface. This acknowledges that the structure and
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vibrational behavior of the material in the vicinity of an interface is very di↵erent from

the bulk. This approach accounts for interface localized vibrational modes and the modes

which are evanescent across the interface.

Typically, the ITC cannot be measured in equilibrium simulations as at interfaces

between dissimilar materials the phonon radiance in each material can be very di↵erent,

and thus the way that the materials deviate from equilibrium for a given heat flux can

be di↵erent. Therefore, we computed the ITC via non-equilibrium MP simulations of tilt

boundaries in LiAlO2. The system with a pair of tilt boundaries of LiAlO2 is represented

in figure 6.12. This system is symmetric around the interface.

Figure 6.12: 45 degree tilt boundary in LiAlO2.

At the same time, we have performed equilibrium MD simulations on the same

block of LiAlO2 containing a pair of tilt interfaces in order to determine the ITC. Like

the other equilibrium MD simulations, we used the GK method to compute the thermal

conductivity, , of the full system including the grain boundaries [109]. Then, by knowing
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the length L of the compute cell along with the thermal conductivity of the perfect crystal,

B, we can infer the thermal conductance, CI of the interfaces which is defined by:

CI =
2B

L(B � )
(6.4)

or by using Kapitza length (L) [110], we can obtain the estimate for �:

� =
L

2
(
B


� 1) (6.5)

By measuring this temperature step at the interface, the Kapitza length of 6.2 nm was

obtained. This length indicates the thickness of thermal resistance that the material at the

interface is equivalent to.

Figure 6.13: Kapitza length at the interface of LiAlO2.
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6.1.4 LiAl5O8

In this section, we focus on calculating the thermal conductivity for LiAl5O8.

LiAl5O8 is also used as a potential coating material in Li-ion batteries. This system can

represent the extreme form of Li vacancies in LiAlO2. The structure of LiAl5O8 is shown

in figure 6.14

Figure 6.14: LiAl5O8 structure. Red, green and blue atoms belong to Oxygen, Lithium
and Aluminum respectively.

For this system, calculating the MD equilibrium thermal conductivity poses some

limitations for using the LiAlO2 TOT empirical potentials, since these potentials are not

directly transferable to LiAl5O8. The coulombic interactions between ions in the TOT

potentials were modeled using e↵ective charges of +0.7, +1.5, and -1.1 on the Li, Al and
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O ions, respectively. The problem is that this ratio of e↵ective charges is not compatible

(charge neutral) with the 1:5:8 stoichiometry of LiAl5O8. The simplest change is to reduce

the e↵ective charge of the O to -1.025. However, since we have no physical justification for

this, a better and more rigorous approach is to sweep through a range of e↵ective charges

that meet the constraint of charge neutrality and search for parameters that best make the

system match the experimental lattice constant, and the DFT computed phonon dispersion

relation.

To be more systematic, in an attempt we have computed the phonon dispersion for

a series of e↵ective charges, changing from -0.9 to -1.5 during which the Li/Al charge ratio

was fixed at 1/3 (note that in the LiAlO2 potential, this ratio is 7/15). Since the results

had lots of instability generating imaginary vibrational frequencies, and even the crystal

was adopting a di↵erent crystal symmetry, we concluded that we do not need to modify

the LiAlO2 potential for LiAl5O8 much, and we should focus our search on just tuning

the charge initially. Then we ran MD simulations of equilibrium GK for 10 snapshots of

LiAl5O8. We started the simulation on each of these snapshots by 50 ps of nve to lose

memory of the prior simulations, and then the simulation was continued for a further 2

ns during which the correlation function was computed. We ran these simulations at 4

di↵erent temperatures of 300K, 500K, 800K and 1200K. By increasing the temperature,

the average thermal conductivity of LiAl5O8 over the di↵erent axes is decreasing, which is

coming from the anharmonic scattering that is inversely proportional to the temperature

changes. In other words, as the temperature increases from 300K to 1200K, the ions’

vibrations increase (in turn decreasing the mean free path of molecules). So, they obstruct
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the flow of free electrons, thus reducing the heat conductivity. Figure 6.15 represents the

calculated thermal conductivity of LiAl5O8 in 3 di↵erent axes ([100], [010] and [001]) at

di↵erent temperatures of 300, 500, 800 and 1200 K.

Figure 6.15: Thermal conductivity of LiAl5O8 at di↵erent temperatures.

The calculated thermal conductivities for LiAl5O8 are much lower than the previ-

ously calculated thermal conductivities for LiAlO2. The problem should be related to the

transferred TOT potentials due to imbalance of e↵ective charges.

To address this, in another attempt, we used simple Buckingham potential in a

core shell model [111] where charges of LiAl5O8 could be simply modeled. With the new

potentials, larger thermal conductivity (10.9 Wm
�1

K
�1) was predicted for LiAl5O8 at 300

K which is more comparable to the LiAlO2 results. These thermal conductivity results are

reported in table 6.1.
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[100] [001]
TOT 1.2 Wm

�1
K

�1 1.1 Wm
�1

K
�1

Buckingham 10.6 Wm
�1

K
�1 25.7 Wm

�1
K

�1

Table 6.1: Calculated thermal conductivity for LiAl5O8 with TOT and Buckingham poten-
tial energy.

In summary, this study established atomistic simulation models to highlight the

contribution of di↵erent scales of defects to thermal properties of a crystalline LiAlO2. We

also investigated the uncertainties in these predictions and sources of the error as well as

the necessities to modify the empirical potentials when studying the e↵ect of well-defined

defects.
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Chapter 7

Conclusions

We have been able to draw some important conclusions regarding the structures

of defects in materials and link the properties of a material to its local defective structures

intimately. In particular, through characterizing the packing behaviours of glass-forming

liquids, we elucidated that there is a quantitative correlation between atomic size mis-

matches and kinetic viscosity behaviour of fragility in super-cooled region. We indicated

that size-mismatch can bring more degrees of freedom in the ways that the atoms can pack

together so this would a↵ect the fragility behaviour in amorphous liquids. But there is a

lot of uncertainty in which the peak positions are changing in PDFs. These peak positions

depend on thermal expansion, and atomic distances and they might not be e�cient enough

to indicate how the structural behaviour of the liquid is changing.
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We have furthermore determined the e↵ect of well-defined defects on thermal prop-

erties of crystalline structures. Understanding the various types of defects and their con-

tribution to evolution of thermal conductivity under embedded uncertainty estimates. Our

results suggested that point defects and grain boundaries can reduce the thermal conduc-

tivity of the materials.

Additionally, we developed a simple and e�cient model to establish the concepts

for identifying outliers in amorphous structures. The model was capable of revealing the

local configurations which possess rare structural behaviour. These identified configurations

mimic the behaviour of vacancies in crystalline structures and they are in charge of the

mechanical response and events that occur while deforming the material. The development

of the proposed model will advance the application of amorphous structures in two-fold

objective: (i) it provides a better understanding of the variations in packing behaviour (ii)

it allows us to connect the types of defects that can be formed with the elemental makeup

of the alloy. This combination can provide theoretical guidance for the development of new

amorphous structures with predictable mechanical properties.
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