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Abstract

This paper addresses category typicality in the context of a
calegory naming task. In contrast to the predominant effort
with gradient models, a symbolic search framework is taken.
Within this framework, the SCA (Symbolic Concept Acquisi-
tion) model demonstrates varying response times as a function
of an instance’s intra-category typicality. Here its coverage is
expanded o inter-category typicality. A functionally motivated
extension for SCA is advanced that pursues search backtrack-
ing under ambiguous cases. [ explain how the backtracking
extension accounts for inter-category typicality effects, and
support it with some empirical evidence. I discuss how the
effect generalizes to a larger class of symbolic search models.

Introduction

Within the last several decades, human categories have come
to be characterized as flexible structures that generally lack
rigid boundaries. This flexibility was revealed by experiments
showing increased processing efficiency for certain category
members. Forexample, humans can categorize “typical” cate-
gory members faster and more accurately than less typical cat-
egory members (Rosch & Mervis, 1975; Rosch et al., 1976).
To account for these results, researchers have advanced many
“gradient” models, employing conceptual structures that ex-
plicitly encode probabilities (e.g. Fisher (1987) and Anderson
(1991)) or activation levels (e.g. Kruschke (1990) and Gluck
and Bower (1988)).

This paper offers a contrasting perspective. In place of ex-
plicit membership gradients, conceptual membership is rep-
resented as a process where some category members require
more computational resources than others. Using the frame-
work of the Problem Space Computational Model (PSCM)
(Newell et al., 1991), the work casts the processing of con-
cept membership in terms of search through a problem space.
The ongoing challenge is thus a characterization of a model
that appropriately recauires more search for some category
members than others.

Previous work has advanced one candidate PSCM model,
called SCA (Symbolic Concept Acquisition) (Miller & Laird,
1991), motivated by the Soar architecture (Newell, 1990), a
computational implementation of the PSCM. Analysis and

!The reader should not confuse this notion of search with the con-
ceptof “inductive search” prevalent in machine leaming (Michalski,
1983; Mitchell, 1982). In this paper, the search process reftrieves a
category name for each individual instance whereas inductive search
seeks a consistent logical concepidefinition for a set of preclassified
instances.
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empirical results reveal that SCA already exhibits a range of
typicality effects measured in terms of processing time and
accuracy (Miller, 1993). In this paper, I go beyond this work
by describing a functionally and architecturally motivated ex-
tension to SCA that expands its coverage of typicality effects
to inter-category typicality.

SCA and Typicality Effects

The Problem Space Computational Model (PSCM) treats
problem solving as search through a space of states. An
operator effects the transition from one state to another by
modifying the existing state. In previous work, Miller and
Laird (1991) cast the task of category prediction in terms of
the PSCM framework. Each state corresponds to an object
description and the problem space to the set of all possible
object descriptions. Operators incrementally modify the ob-
ject description until a recognizable state is produced. At this
point, an operator, acquired from prior experience, names a
category.

SCA (Symbolic Concept Acquisition) uses abstraction op-
erators to effect the transition between states. These opera-
tors incrementally remove features from the object description
until a naming operator can apply. In short, the abstraction
operators serve as a controlled means of generalizing a large
space of specific object descriptions to a smaller set of general
naming rules.

Consider the example in Figure 1. The task is to name the
category of the object described as oblong, red, smooth, and
small, For this example, we will assume that the system has
already acquired some naming knowledge for a small subset
of the object description space. A extensive treatment of how
SCA acquires rules and search control knowledgze is provided
elsewhere (Miller & Laird, 1991; Miller, 1993).

The presented object description serves as the first state in
a search for a recognizable object description. There is no
category naming rule that matches the feature description ).
Thus, the search proceeds by applying an operator. In this
example, an abstraction operator applies, producing a new
state (57) by removing the feature small. Again no cate-
gory naming rule recognizes the state. Search continues with
the application of a second abstraction operator. This time
the feature smooth is removed from the object description.

2While some issues such as optimizing abstraction operator selec-
tion are of immense practical importance, I will omit much of their
coverage since it is not needed in analyzing the results presented
here.
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Figure 1: Category prediction cast within the PSCM

With the creation of (S3), previously acquired knowledge rec-
ognizes the state and applies a naming operator that augments
the state with the category ball.

SCA learns new, more specific rules through the application
of general rules to training examples. Thus, SCA starts off
with very general rules, but with experience slowly acquires
more specific ones. Because SCA attempts to match the most
specific rules first, a practice effect ensues with experience.

SCA’s practice effect is most evident for frequent combina-
tions of features that name a common category. Since typical
members generally share features among their class, SCA
realizes an intra-category typicality effect (Miller & Laird,
1991; Miller, 1993). Namely, it produces fewer errors and
faster response times for the category’s more typical mem-
bers, a robust effect exhibited by humans (Rosch et al., 1976).

However, humans also exhibit an inter-category typical-
ity effect. In contrast to intra-category typicality, defined by
how similar an instance is to other members of the same cat-
egory, inter-category typicality is defined by how dissimilar
the instance is to instances of contrasting categories. People
make fewer errors and faster response times for instances with
higher inter-category typicality (Rosch & Mervis, 1975).

That SCA, or any other concept leamning system, exhibits
fewer errors with high inter-category typicality examples is
no surprise, as these examples are less easily confused with
examples from contrasung categories. This is especially the
case for SCA, which requires sufficient experience with train-
ing examples before acquiring rules whose conditions include
the necessary discriminating features.

In terms of response time, however, SCA’s practice effect
does not account for inter-category typicality. In explaining
why, let us consider the category members, represented as
small-case letters, shown in Figure 2. This figure depicts
similarity as the euclidean distance between examples. For

example, the close spatial proximity of examples a and e
denote that they have more features in common than examples
b and c.

Figure 2: Spatial representation of instance similarity

In looking at b and ¢, we see that their intra-category typ-
icality is the same since they are equally distant from other
members of category A. However, of the two, ¢ has a higher
inter-category typicality because it is more dissimilar to the
contrasting category members. During training, SCA receives
as much practice naming category A with b’s features as it
does with ¢’s features. With equal practice, rules with equal
specificity are produced, and the time required to access them
is the same. Instance b will more frequently access conflicting
rules, in which case SCA makes a random guess, or will more
frequently access rules naming category B, but in neither case
does this require more time.
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Figure 3: PSCM casting of backtracking

Extension description

Conflicts arise in SCA when search leads to a state description
previously associated with two or more categories. The stan-
dard SCA implementation resolves the conflict by randomly
selecting one of the categones. Backtracking, a recurrent
technique in the PSCM and other search architectures, pro-
vides the means of making a more informed choice. Rather
than randomly choosing, the ambiguity can be resolved by
backtracking to a previous state, and then pursuing an alter-
nate path in search of an unambiguous name. In the context
of SCA, backtracking reverses a previous abstraction, that is,
it returns to a more specific state description, before removing
alternate features.

Figure 3 presents an example. As before, the model is at-
tempting to classify the object described as oblong, red,
smooth, small. Once again it applies an abstraction op-
crator that removes small from the state description, thus
producing state S,. At S,, it applies an operator that removes
red from the description. Now, state S; is recognized, and
with the application of operator O,, two conflicting nam-
ing rules apply. Rather than guessing between the two cate-
gory names, the backtracking implementation reverts back to
S,. From there, scarch follows an alternate route, removing
smoot h from the state description, which ultimately leads to
one unique name.

With backtracking, the computational demands of search
are sensitive to the degree of feature overlap between in-
stances of contrasting categories. This provides a natural
account of how response umes vary inversely as a function
of inter-category typicality. Recall that instances with low
inter-category typicality share more features with instances

637

of contrasting categories. With these overlapping features,
they are more likely to access conflicting naming rules, and
consequently incur a larger expense in processing time as the
search backtracks through previous states.

Empirical results

Two implementations of SCA were used to obtain an em-
pirical assessment of the impact backtracking has on inter-
category typicality. The first is the standard implementa-
tion described in Miller (1993), which resolves conflicts by
randomly selecting a category. The second implementation,
SCA-BX, is identical to SCA, except it attempts to resolve
ambiguities by pursuing one alternate path. If this likewise
produces a conflict, it makes a random selection.

Both implementations use the “default” feature selection
strategy described in Miller (1993). In general terms, this
strategy orders feature removal based upon the selection’s
success in predicting one unique category name while pro-
cessing training examples. During performance runs, the
backtracking implementation follows this selection order for
its initial search path. If this leads to an ambiguous predic-
tion, it follows the strategy’s second most prefered path. The
use of backtracking potentially offers an additional knowl-
edge source for ordering feature selection since it compares
alternate selection paths for a particular instance. However, in
order to avoid an additional confounding factor in comparing
both implementations, this knowledge is not used here.

The two implementations were trained and tested on the
data-set in Table 1. This data-set was constructed so that all
compared instances have the same degree of intra-category
typicality, but varied in inter-category typicality. Category A
consists of the examples of different levels of inter-category



Table 1: Training and testing data for inter-category typicality.

Altributes Overlap | Typicality
Category | DI D2 D3 D4 DS | Score Group
A c b a b b 15 Low
A c b a b c 15 Low
A b a c b b 9 Mid
A b a ¢ b c 9 Mid
A a a a a b 3 High
A a a a a ¢ 3 High
B c b b b b - -
B c b b b ¢ - -
B c c ¢ c b - -
B c c ¢ c c - -
B c b c c b - -
B c b C ¢ c - -
Table 2: Inter-category typicality effects.
Accuracy Steps until match Backtracking Total steps
Model | Low Mid High | Low Mid High | Low Mid High | Low Mid High |
[ SCA [72% 85% 92% | 260 264 258 | - - - [260 264 258 |
[SCA-BX [73% 87% 95% | 263 263 256 | 21% 18% 13% | 347 335 3.08

typicality. The overlap score is the number of features the
instance shares with all of the instances in the contrast cate-
gory. Thisscore is thus the inverse of inter-category typicality.
Category B serves as the contrast category.

The data in Table 1 is analogous to the data that Rosch and
Mervis (1975) used for testing inter-category typicality (Ex-
periment 6). Like thedata in Table 1, their experimental exam-
ples have the same family resemblance score (intra-category
similarity), that is, they equally share features belonging to
other examples in the same category. Also as in Table 1,
the examples were divided into three inter-category typical-
ity groups according to the degree in which the example’s
features overlapped with the features of the examples in the
contrasung category.

In testing each implementation, the data-set, with randomly
ordered instances, was presented for five training cycles while
interleaving performance trials (naming the category) after
each training cycle. This process was done S000 times.>

Table 2 presents the averaged performance results of SCA
and SCA-BX for instances belonging to Category A. Both
models are compatible with human behavior for accuracy,
where accuracy is better for higher typicality. In addition, we
see that SCA-BX produces a slightly higher accuracy rate for
all three levels of typicality.

For SCA, response time is presented in terms of the average
number of abstraction steps taken before a match occurred.
These figures only differ insignificantly among the levels. The
figures are essentially the same for SCA-BX. This comes as no
surprise since the two implementations are identical processes
through the first match.

Unless otherwise noted, averaging the results over 5000 trials
was more than sufficient for achieving the significance necessary for
the qualitative comparisons described here.
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In the next set of columns, the percentage of times back-
tracking occurred is presented for SCA-BX. Since backtrack-
ing only occurs for conflict resolution, instances with lower
inter-category typicality were more likely to cause backtrack-
ing. The final set of columns averages in the expense of back-
tracking (calculated as four additional steps). Since SCA did
not use backtracking, its total number of processing steps are
the same as the number of steps to the first match. For SCA-
BX, the additional time expense of backtracking produced
faster response times for instances with high inter-category
typicality as compared to those with lower typicality.

Discussion

The results of the SCA simulation with backtracking were
consistent with inter-typicality effects observed in human data
for the Rosch and Mervis study. Namely, instances whose fea-
tures rarely overlap with instances from contrasting categories
are processed faster and more accurately than instances whose
features often overlap. Insight into why SCA-BX produced
these results leads us to generalize the class of search models
that produce these inter-typicality effects.

Since inter-category typicality is a measure of how dissim-
ilar a category member is to those of a contrasting category,
instances with a low level of inter-category typicality are sim-
ilar to members of contrasting categories and thus possess a
larger degree of ambiguity as to their proper classification. In
general, any search model will require more processing time
for these ambiguous members if the following principles hold
for the model:

1. Model has difficulty with category ambiguity. This con-
dition functionally necessitates further search. In the case
of SCA, the model may access rules shared by instances of
several categories.



2. Model can detect ambiguity. Before calling for further
search, the ambiguity must be detected. For SCA-BX, am-
biguity is detected with the retrieval of conflicting names.

3. Model continues search in order to resolve ambiguity.
Additional time must be required in order to resolve the
ambiguity. SCA-BX backtracks to a previous state, and
then tries other feature combinations for retrieving a name.,

Implicit with these conditions is the model’s seriality. In
general, it is the varying length of a sequential, deliberate
search process that accounts for varying response times.

Gradient models may offer a natural approach for represent-
ing flexible category structures, as they provide an immediate
account for typicality data. However, we have seen how the
application of a symbolic search model provides an interest-
ing contrast, as its account of human data emerges from a
natural extension within its symbolic framework and from its
functional motivation. From the perspective of a symbolic
framework, the addition of backtracking to SCA is a natural
and recurrent technique for search architectures. Functionally,
its application improves performance. In this paper, I have
empirically demonstrated how backtracking seeks out addi-
tional prediction knowledge in resolving ambiguities. Future
work may also show how backtracking provides the additional
functionality of learning which features to abstract first from
the object description.

For this paper in particular, I have explained how the prin-
cipled application of backtracking to SCA delivers response
times as a function of inter-category typicality that is consis-
tent with human behavior. In applying these data-independent
principles, we thus converge on an architecturally and func-
tionally motivated explanation of typicality.
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