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Abstract

The network scale-up method enables researchers to estimate the sizes of
hidden populations, such as drug injectors and sex workers, using sampled
social network data. The basic scale-up estimator offers advantages over
other size estimation techniques, but it depends on problematic modeling
assumptions. The authors propose a new generalized scale-up estimator that
can be used in settings with nonrandom social mixing and imperfect aware-
ness about membership in the hidden population. In addition, the new esti-
mator can be used when data are collected via complex sample designs and
from incomplete sampling frames. However, the generalized scale-up estima-
tor also requires data from two samples: one from the frame population and
one from the hidden population. In some situations these data from the hid-
den population can be collected by adding a small number of questions to
already planned studies. For other situations, the authors develop interpreta-
ble adjustment factors that can be applied to the basic scale-up estimator.
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The authors conclude with practical recommendations for the design and
analysis of future studies.

Keywords

hidden populations, social networks, sampling, network scale-up method

1. INTRODUCTION

Many important problems in social science, public health, and public
policy require estimates of the sizes of hidden populations. For exam-
ple, in HIV/AIDS research, estimates of the size of the most at-risk
populations—drug injectors, female sex workers, and men who have
sex with men—are critical for understanding and controlling the spread
of the epidemic. However, researchers and policymakers are unsatisfied
with the ability of current statistical methods to provide these estimates
(Joint United Nations Programme on HIV/AIDS 2010). We address this
problem by improving the network scale-up method, a promising
approach to size estimation. Our results are immediately applicable in
many substantive domains in which size estimation is challenging, and
the framework we develop advances the understanding of sampling in
networks more generally.

The core insight behind the network scale-up method is that ordinary
people have embedded within their personal networks information that
can be used to estimate the sizes of hidden populations, if that informa-
tion can be properly collected, aggregated, and adjusted (Bernard et al.
1989, 2010). In a typical scale-up survey, randomly sampled adults are
asked about the number of connections they have to people in a hidden
population (e.g., “How many people do you know who inject drugs?”’)
and a series of similar questions about groups of known size (e.g.,
“How many widowers do you know?” “How many doctors do you
know?”). Responses to these questions are called aggregate relational
data (McCormick et al. 2012).

To produce size estimates from aggregate relational data, previous
researchers have begun with the basic scale-up model, which makes
three important assumptions: (1) Social ties are formed completely at
random (i.e., random mixing), (2) respondents are perfectly aware of
the characteristics of their alters, and (3) respondents are able to provide
accurate answers to survey questions about their personal networks.
From the basic scale-up model, Killworth, McCarty, et al. (1998)
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derived the basic scale-up estimator. This estimator, which is widely
used in practice, has two main components. For the first component, the
aggregate relational data about the hidden population are used to esti-
mate the number of connections that respondents have to the hidden
population. For the second component, the aggregate relational data
about the groups of known size are used to estimate the number of con-
nections that respondents have in total. For example, a researcher might
estimate that members of her sample have 5,000 connections to people
who inject drugs and 100,000 connections in total. The basic scale-up
estimator combines these pieces of information to estimate that 5 per-
cent (5,000/100, 000) of the population injects drugs. This estimate is a
sample proportion, but rather than being taken over the respondents, as
would be typical in survey research, the proportion is taken over the
respondents’ alters. Researchers who desire absolute size estimates mul-
tiply the alter sample proportion by the size of the entire population,
which is assumed to be known (or estimated using some other method).

Unfortunately, the three assumptions underlying the basic scale-up
model have all been shown to be problematic. Scale-up researchers call
violations of the random mixing assumption barrier effects (Killworth
et al. 2006; Maltiel et al. 2015; Zheng, Salganik, and Gelman 2006),
they call violations of the perfect awareness assumption transmission
error (Killworth et al. 2006; Maltiel et al. 2015; Salganik, Mello, et al.
2011; Shelley et al. 1995, 2006), and they call violations of the respon-
dent accuracy assumption recall error (Killworth et al. 2003, 2006;
Maltiel et al. 2015; McCormick and Zheng 2007).

In this paper, we develop a new approach to producing size estimates
from aggregate relational data. Rather than depending on the basic
scale-up model or its variants (e.g., Maltiel et al. 2015), we use a simple
identity to derive a series of new estimators. Our new approach reveals
that one of the two main components of the basic scale-up estimator is
problematic. Therefore, we propose a new estimator—the generalized
scale-up estimator—that combines the aggregate relational data tradi-
tionally used in scale-up studies with similar data collected from the
hidden population. Collecting data from the hidden population is a
major departure from current scale-up practice, but we believe that it
enables a more principled approach to estimation. For researchers who
are not able to collect data from the hidden population, we propose a
series of adjustment factors that highlight the possible biases of the
basic scale-up estimator. Ultimately, researchers must balance the
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trade-offs between the basic scale-up estimator, generalized scale-up
estimator, and other size estimation techniques on the basis of the spe-
cific features of their research setting.

In Section 2, we derive the generalized scale-up estimator, and we
describe the data collection procedures needed to use it. In Section 3, we
compare the generalized and basic scale-up approaches analytically and
with simulations; our comparison leads us to propose a decomposition
that separates the difference between the two approaches into three mea-
surable and substantively meaningful factors (equation 15). In Section 4,
we make practical recommendations for the design and analysis of
future scale-up studies, and in Section 5, we conclude with a discussion
of the steps that follow. Appendices A to G in the online journal provide
technical details and supporting arguments.

2. THE GENERALIZED SCALE-UP ESTIMATOR

The generalized scale-up estimator can be derived from a simple
accounting identity that requires no assumptions about the underlying
social network structure in the population. Figure 1 helps illustrate the
derivation, which was inspired by earlier research on multiplicity esti-
mation (Sirken 1970) and indirect sampling (Lavallée 2007). Consider a
population of seven people, two of whom are drug injectors (Figure 1a).
In this population, two people are connected by a directed edge i — j if
person i would count person j as a drug injector when answering the
question “How many drug injectors do you know?” Whenever i — j,
we say that i makes an out-report about j and that j receives an in-
report from i."

Each person can be viewed as both a source of out-reports and a reci-
pient of in-reports, and in order to emphasize this point, Figure 1b shows
the population with each person represented twice: on the left as a sen-
der of out-reports and on the right as a receiver of in-reports. This visual
representation highlights the following identity:

total out-reports =total in-reports. (1)

Despite its simplicity, the identity in equation (1) turns out to be very
useful because it leads directly to the new estimator that we propose.

In order to derive an estimator from equation (1), we must define
some notation. Let U be the entire population, and let H C U be
the hidden population. Furthermore, let y; 5 be the total number of
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out-reports from person i (i.e., person i’s answer to the question “How
many drug injectors do you know?”). For example, Figure 1b shows
that person 5 would report knowing one drug injector, so ys z=1. Let
v; v be the total number of in-reports to i if everyone in U is inter-
viewed; that is, v; 7 is the visibility of person i to people in U. For
example, Figure 1b shows that person 5 would be reported as a drug
injector by three people so vs y=3. Because total out-reports must
equal total in-reports, it must be the case that

Yu,H=VU,U,» (2)

where yy g = ,cp Vi and vy uy =) _,. vi,u. Multiplying both sides
of equation (2) by Ny, the number of people in the hidden population,
and then rearranging terms, we get

Yu,H
Ny=—7"—. 3
f vu,u/Nu ®)

Equation (3) is an expression for the size of the hidden population
that does not depend on any assumptions about network structure or
reporting accuracy; it is just a different way of expressing the identity
that the total number of out-reports must equal the total number of in-
reports. If we could estimate the two terms on the right side of equation
(3)—one term related to out-reports (yy,x) and one term related to in-
reports (vy, y/Nu )—then we could estimate Ny .

However, in order to make the identity in equation (3) useful in prac-
tice we need to modify it to account for an important logistical require-
ment of survey research. In real scale-up studies, researchers do not
sample from the entire population U, but instead they sample from a
subset of U called the frame population, F. For example, in almost all
scale-up studies the frame population has been adults (but note that our
mathematical results hold for any frame population). In standard survey
research, restricting interviews to a frame population does not cause
problems because inference is being made about the frame population.
In other words, when respondents report about themselves, it is clear to
which group inferences apply. However, with the scale-up method,
respondents report about others, so the group that inferences are being
made about is not necessarily the same as the group that is being inter-
viewed. As we show in Section 4.2, failure to consider this fact requires
the introduction of an awkward adjustment factor that had previously
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gone unnoticed. Here, we avoid this awkward adjustment factor by
deriving an identity explicitly in terms of the frame population.
Restricting our attention to out-reports coming from people in the frame
population, it must be the case that

_ _JrH

N vu,r/Nu’ )
where ypp= Y ,cpyin and vy rp=> ;. vir. The only difference
between equation (3) and equation (4) is that equation (4) restricts out-
reports and in-reports to come from people in the frame population
(Figure 1c). The identity in equation (4) is extremely general: it does
not depend on any assumptions about the relationship between the
entire population U, the frame population F, and the hidden population
H. For example, it holds if no members of the hidden population are in
the frame population, if there are barrier effects, and if there are trans-
mission errors. Thus, if we could estimate the two terms on the right
side of equation (4)—one term related to out-reports (yr ) and one
term related to in-reports (vy, r/Ny)—then we could estimate Ny under
very general conditions.

Unfortunately, despite repeated attempts, we were unable to develop
a practical method for estimating the term related to in-reports
(vu.r/Nu). However, if we make an assumption about respondents’
reporting behavior, then we can re-express equation (4) as an identity
made up of quantities that we can actually estimate. Specifically, if we
assume that the out-reports from people in the frame population only
include people in the hidden population, then it must be the case that
the visibility of everyone not in the hidden population is O0:
v; p=0 for all i ¢ H. In this case, we can rewrite equation (4) as

Ny=%=% if v p=0 forall i ¢ H, (5)
where vH,F = VH,F/NH-

To understand the reporting assumption substantively, consider the
two possible types of reporting errors: false positives and false nega-
tives. Previous scale-up research on transmission error focused on the
problem of false negatives, where a respondent is connected to a mem-
ber of the hidden population but does not report this, possibly because
she is not aware that the person she is connected to is in the hidden pop-
ulation (Bernard et al. 2010). Because hidden populations such as drug
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injectors are often stigmatized, it is reasonable to suspect that false nega-
tives will be a serious problem for the scale-up method. Fortunately,
equation (5) holds even if there are false negative reporting errors.
However, false positives—which do not seem to have been considered
previously in the scale-up literature—are also possible. For example, a
respondent who is not connected to any drug injectors might report that
one of her acquaintances is a drug injector. These false positive reports
are not accounted for in the identity in equation (5) and the estimators
that we derive subsequently. If false positive reports exist, they will intro-
duce a positive bias into estimates from the generalized scale-up estima-
tor. Therefore, in Appendix A in the online journal we (1) formally
define an interpretable measure of false positive reports, the precision of
out-reports; (2) analytically show the bias in size estimates as a function
of the precisions of out-reports; and (3) discuss two research designs that
could enable researchers to estimate the precision of out-reports.

2.1. Estimating Ny from Sampled Data

Equation (5) relates our quantity of interest, the size of the hidden popu-
lation (Ny), to two other quantities: the total number of out-reports from
the frame population (yr ) and the average number of in-reports in the
hidden population (Vg ). We now show how to estimate yr y with a
probability sample from the frame population and vy g with a relative
probability sample from the hidden population.

The total number of out-reports (yr, ;) can be estimated from respon-
dents’ reported number of connections to the hidden population,

~ Yi,H
YrHT ZT’ (6)

i€sp

where sy denotes the sample, y; z denotes the reported number of con-
nections between i and H, and 1r; is i’s probability of inclusion from a
conventional probability sampling design from the frame population.
Because Yy is a standard Horvitz-Thompson estimator, it is consistent
and unbiased as long as all members of F' have a positive probability of
inclusion under the sampling design (Sarndal, Swensson, and Wretman
1992); for a more formal statement, see Result B.1. This estimator
depends only on an assumption about the sampling design for the frame
population, and in Table D.2, we show the sensitivity of our estimator
to violations of this assumption.
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Estimating the average number of in-reports for the hidden population
(vu,r) 1s more complicated. First, it will usually be impossible to obtain
a conventional probability sample from the hidden population. As we
show below, however, estimating vy  requires only a relative probabil-
ity sampling design in which hidden population members have a nonzero
probability of inclusion and respondents’ probabilities of inclusion are
known up to a constant of proportionality, cr; (see Appendix C.1 in the
online journal for a more precise definition). Of course, even selecting a
relative probability sample from a hidden population can be difficult.

A second problem arises because we do not expect respondents to be
able to easily and accurately answer direct questions about their visibi-
lity (v; r). That is, we do not expect respondents to be able to answer
questions such as “How many people on the sampling frame would
include you when reporting a count of the number of drug injectors that
they know?” Instead, we propose asking hidden population members a
series of questions about their connections to certain groups and their
visibility to those groups. For example, each sampled hidden population
respondent could be asked “How many widowers do you know?” and
then “How many of these widowers are aware that you inject drugs?”
This question pattern can be repeated for many groups (e.g., widowers,
doctors, bus drivers). We call data with this structure enriched aggregate
relational data to emphasize its similarity to the aggregate relational
data that is familiar to scale-up researchers. An interviewing procedure
called the game of contacts enables researchers to collect enriched
aggregated relational data, even in realistic field settings (Salganik,
Mello, et al. 2011; Maghsoudi et al. 2014).

Given a relative probability sampling design and enriched aggregate
relational data, we can now formalize our proposed estimator for vy r.
Let A1,A4,, ..., Ay, be the set of groups about which we collect enriched
aggregate relational data (e.g., widowers, doctors). Here, to keep the
notation simple, we assume that these groups are all contained in the
frame population, so that 4; C F for all j; in Appendix C.4 in the online
journal, we extend the results to groups that do not meet this criterion.
Let A be the concatenation of these groups, which we call the probe
alters. For example, if 4; is widowers and 4, is doctors, then the probe
alters A is the collection of all widowers and all doctors, with doctors
who are widowers included twice. Also, let v;, 4 be respondent i’s report
about her visibility to people in 4; and let v; 4, be respondents i’s actual
visibility to people in 4; (i.e., the number of times that this respondent
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would be reported about if everyone in 4; was asked about their connec-
tions to the hidden population).
The estimator for vy r is

Dy = Nr Ziesy 25 vis 4/ (em) (7)
r Na ZiESH 1/(077[) ’

where N 4 is the number of probe alters, c is the constant of proportion-
ality from the relative probability sample, and sy is a relative probability
sample of the hidden population. Equation (7) is a standard weighted
sample mean (Sarndal et al. 1992, Section 5.7) multiplied by a constant,
Np /N 4. Result C.2 shows that this estimator is consistent and essentially
unbiased,” when three conditions are satisfied: one about the design of
the survey, one about reporting behavior, and one about sampling from
the hidden population.

The first condition underlying the estimator in equation (7) is related
to the design of the survey, and we call it the probe alter condition. This
condition describes the required relationship between the visibility of
the hidden population to the probe alters and the visibility of the hidden
population to the frame population:

VH, A _ VH.F (8)
N4 Np’

where vy, 4 is the total visibility of the hidden population to the probe
alters, vy r is the total visibility of the hidden population to the frame
population, N 4 is the number of probe alters, and Ng is the number of
people in the frame population. In words, equation (8) says that the rate
at which the hidden population is visible to the probe alters must be the
same as the rate at which the hidden population is visible to the frame
population. For example, in a study to estimate the number of drug
injectors in a city, drug treatment counselors would be a poor choice for
membership in the probe alters because drug injectors are probably
more visible to drug treatment counselors than to typical members of
the frame population. On the other hand, postal workers would probably
be a reasonable choice for membership in the probe alters because drug
injectors are probably about as visible to postal workers as they are to
typical members of the frame population. Additional results about the
probe alter condition are presented in the online appendices: (1) Result
C.3 presents three other algebraically equivalent formulations of probe
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alter condition, some of which offer additional intuition; (2) Result C.4
provides a method to empirically test the probe alter condition; and (3)
Table D.1 quantifies the bias introduced when the probe alter condition
is not satisfied.

The second condition underlying the estimator ﬁH’ r (equation 7) is
related to reporting behavior, and we call it accurate aggregate reports
about visibility:

T}H,A:VH,A’ (9)

where vy 4 is the total reported visibility of members of the hidden
population to the probe alters (3., > ae A Vi) and vy 4 is the total
actual visibility of members of the hidden population to the probe alters
DY e A Vi4;)- In words, equation (9) says that hidden population
members must be correct in their reports about their visibility to probe
alters in aggregate, but equation (9) does not require the stronger condi-
tion that each individual report be accurate. In practice, we expect that
there are two main ways that there might not be accurate aggregate
reports about visibility. First, hidden population members might not be
accurate in their assessments of what others know about them. For
example, research on the “illusion of transparency” suggests that people
tend to overestimate how much others know about them (Gilovich,
Savitsky, and Medvec 1998). Second, although we propose asking hid-
den population members what other people know about them (e.g.,
“How many of these widowers know that you are a drug injector?”)
what actually matters for the estimator is what other people would
report about them (e.g., “How many of these widowers would include
you when reporting a count of the number of drug injectors that they
know?”). In cases in which the hidden population is extremely stigma-
tized, some respondents to the scale-up survey might conceal the fact
that they are connected to people whom they know to be in the hidden
population, and if this were to occur, it would lead to a difference
between the information that we collect (v;, 4) and the information that
we want (v;, 4). Unfortunately, there is currently no empirical evidence
about the possible magnitude of these two problems in the context of
scale-up studies. However, Table D.1 quantifies the bias introduced into
estimates if the accurate aggregate reports about visibility condition is
not satisfied.
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Finally, the third condition underlying the estimator %/\H, F (equation
7) is that researchers have a relative probability sample from the hidden
population. Currently the most widely used method for drawing relative
probability samples from hidden populations is respondent-driven sam-
pling (Heckathorn 1997); see Volz and Heckathorn (2008) for a set of
conditions under which respondent-driven sampling leads to a relative
probability sample. Although respondent-driven sampling has been used
in hundreds of studies around the world (White et al. 2015), there is
active debate about the characteristics of samples that it yields
(Bengtsson and Thorson 2010; Gile and Handcock 2010, 2015; Gile,
Johnston, and Salganik 2015; Goel and Salganik 2010; Heimer 2005; Li
and Rohe 2015; McCreesh et al. 2012; Mills et al. 2012; Rohe 2015;
Rudolph et al. 2013; Salganik 2012; Scott 2008; Yamanis et al. 2013).
If other methods for sampling from hidden populations are demon-
strated to be better than respondent-driven sampling (e.g., see Karon
and Wejnert 2012; Kurant, Markopoulou, and Thiran 2011; Mouw and
Verdery 2012), then researchers should consider these methods when
using the generalized scale-up estimator. Furthermore, researchers can
use Table D.2 to quantify the bias that results if the condition requiring
a relative probability sample is not satisfied.

To recap, using two different data collection procedures—one with
the frame population and one with the hidden population—we can esti-
mate the two components of the expression for Ny given in equation
(5). The estimator for the numerator (3 ;) depends on an assumption
about the ability to select a probability sample from the frame popula-
tion (see Result B.1), and the estimator for the denominator (vy r)
depends on assumptions about survey construction, reporting behavior,
and the ability to select a relative probability sample from the hidden
population (see Result C.2).

We can combine these component estimators to form the generalized
scale-up estimator:

Ny=204 (10)

Result C.8 proves that the generalized scale-up estimator will be con-
sistent and essentially unbiased if (1) the estimator for the numerator
(Vr.) is consistent and essentially unbiased, (2) the estimator for the
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denominator (v ) is consistent and essentially unbiased, and (3) there
are no false positive reports.

One attractive feature of the generalized scale-up estimator (equation
10) is that it is a combination of standard survey estimators. This struc-
ture enabled us to derive very general sensitivity results about the impact
of violations of assumptions, either individually or jointly. We return to
the issue of assumptions and sensitivity analysis when discussing recom-
mendations for practice (Section 4).

3. COMPARISON BETWEEN THE GENERALIZED AND
BASIC SCALE-UP APPROACHES

In Section 2, we derived the generalized network scale-up estimator by
using an identity relating in-reports and out-reports as the basis for a
design-based estimator. The approach we followed differs from previ-
ous scale-up studies, which have posited the basic scale-up model and
derived estimators conditional on that model. In this section, we com-
pare these two different approaches from a design-based perspective.

We begin our comparison by reviewing the basic scale-up model,
which was used in most of the studies listed in Table 1. To review this
model, we need to define another quantity: we call d; 7 person i’s degree,
the number of undirected network connections she has to everyone in U.

The basic scale-up model assumes that each person’s connections are
formed independently, that reporting is perfect, and that visibility is per-
fect (Killworth, McCarty, et al. 1998). Together, these three assumptions
lead to the probabilistic model:

Ny;
yiaA_/ = d,»,A/.vainomial (di’ Us %) , (1 1)
for all i in U and for any group 4;. In words, this model suggests that
the number of connections from a person i to members of a group 4; is
the result of a series of d; ¢ independent random draws, where the prob-

ability of each edge being connected to 4; is %
The basic scale-up model leads to what we call the basic scale-up
estimator:

=3 — Z[GSFyi:H

Ny T N, (12)
Dies diu
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where 2,-, v is the estimated degree of respondent i from the known pop-
ulation method (Killworth, Johnsen, et al. 1998). Killworth, McCarty, et
al. (1998) showed that equation (12) is the maximum likelihood estima-
tor for Ny under the basic scale-up model, conditional on the additional
assumption that d; ¢y is known for each i € sp.

Given this background, we can now compare the basic and general-
ized scale-up approaches by comparing their estimands; that is, we
compare the quantities that they produce in the case of a census with
perfectly observed degrees. The basic scale-up estimand can be written

Ny=2 xn=228 (13)

where dF, U= ZieF d," U and C_ZU,F = dU,F/N = dF, U/N FuIThermore, as
shown in Section 2, the generalized scale-up estimand is

Ny =201 (14)

VH,F

Comparing equations (13) and (14) reveals that both estimands have
the same numerator, but they have different denominators. The network
reporting identity from Section 2 (total out-reports = total in-reports)
shows that the appropriate way to adjust the out-reports is based on in-
reports, as in the generalized scale-up approach. However, the basic
scale-up approach instead adjusts out-reports with the degree of respon-
dents. Although using the degree of respondents cleverly avoids any
data collection from the hidden population, our results reveal that it will
be correct only under a very specific special case (dy, r = Vi, F).

To further clarify the relationship between the basic and generalized
scale-up approaches, we propose a decomposition that separates the dif-
ference between the two estimands into three measurable and substan-
tively meaningful adjustment factors:

FoH 1 1 1 FoH
NH=<}_/’>><_ X x——— = () (15)
dy,r drr/dur  dur/drr  Vur/dur VH,F
—_——— — ) — — N N——
basic frame ratio degree ratio true positive rate generalized
scale-up br 5 T scale-up

adjustment factors

The decomposition shows that when the product of the adjustment
factors is 1, the two estimands are both correct. However, when the
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product of the adjustment factors is not 1, then the generalized scale-up
estimand is correct but the basic scale-up estimand is incorrect. We
now describe each of the three adjustment factors in turn.

First, we define the frame ratio, ¢, to be

_ avg # connections from a member of F to the rest of F' _ Elp, F

b =T (16)

avg # connections from a member of U to F - du.r

¢ can range from 0 to infinity, and in most practical situations we
expect that ¢ will be greater than 1. Result B.6 shows that we can
make consistent and essentially unbiased estimates of ¢, from a sample
of F.?

Next, we define the degree ratio 67 to be

5= avg # connections from a member of H to F' _dyr
r avg # connections from a member of F to the rest of F dp p

(17)

O ranges from 0 to infinity, and it is less than 1 when the hidden popu-
lation members have, on average, fewer connections to the frame popu-
lation than frame population members. Result C.6 shows that we can
make consistent and essentially unbiased estimates of 6 from samples
of Fand H.

Finally, we define the true positive rate, 7z, to be

# in-reports to H from F V. F _ VHF
T — - — = — .
Ty edges connecting H and ' dy r dyr

(18)

r relates network degree to network reports.* 7 ranges from 0, if none
of the edges are correctly reported, to 1 if all of the edges are reported.
Substantively, the more stigmatized the hidden population, the closer we
would expect 7 to be to 0. Result C.7 shows that we can make consis-
tent and essentially unbiased estimates of 7 from a sample of H.

Furthermore, the decomposition in equation (15) can be used to
derive an expression for the bias in the basic scale-up estimator when
we have a census and degrees are known:

bias (ﬁ;’,m) =N — Ny (19)
= Npsie [1 S } : (20)
brOFTF
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The comparison between the basic and generalized scale-up
approaches leads to two main conclusions. First, the estimand of the
basic scale-up approach is correct only in one particular situation: when
the product of the three adjustment factors is 1. The estimand of gener-
alized scale-up approach, in contrast, is correct more generally. Second,
as equation 15 shows, if the adjustment factors are known (or have been
estimated), then they can be used to improve basic scale-up estimates.

3.1. llustrative Simulation

To illustrate our comparison between the basic and generalized scale-up
approaches, we conducted a series of simulation studies. The simula-
tions were not meant to be a realistic model of a scale-up study, but
rather, they were designed to clearly illustrate our analytic results. More
specifically, the simulation investigated the performance of the estima-
tors as three important quantities vary: (1) the size of the frame popula-
tion F, relative to the size of the entire population U; (2) the extent to
which people’s network connections are not formed completely at ran-
dom; and (3) the accuracy of reporting, as captured by the true positive
rate 7 (see equation 18).

As described in detail in Appendix G in the online journal, we cre-
ated populations of 5, 000 people with different proportions of the popu-
lation on the sampling frame (pr). Next, we connected the people with
a social network created by a stochastic block model (Wasserman and
Faust 1994; White, Boorman, and Breiger 1976) in which the random-
ness of the mixing was controlled by a parameter p such that p=1 is
equivalent to random mixing (i.e., an Erdos-Reyni random graph) and
the mixing becomes more nonrandom as p — 0. Then, for each combi-
nation of parameters, we drew 10 populations, and within each of these
populations, we simulated 500 surveys. For each survey, we drew a
probability sample of 500 people from the frame population, a relative
probability sample of 30 people from the hidden population, and simu-
lated responses with a specific level of reporting accuracy (7). Finally,
we used these reports and the appropriate sampling weights to calculate
the basic and generalized scale-up estimates.

Figure 2 shows that the simulations support our analytic results. First,
the simulations show that the generalized scale-up estimator is unbiased
even in the presence of incomplete sampling frames, nonrandom mix-
ing, and imperfect reporting. Second, they show that the basic scale-up
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Figure 2. Estimated size of the hidden population for the generalized and
basic scale-up estimators. Each panel shows how the two estimators change as
the amount of random mixing is varied from low (p=0.1; members of the
hidden population are relatively unlikely to form contacts with nonmembers) to
high (p=1; members of the hidden population form contacts independent of
other people’s hidden population membership). The columns show results for
different sizes of the frame population, from small (left column, pr=0.1), to
large (right column, pr=1). The rows show results for different levels of
reporting accuracy, from a small amount of true positives (top row, 7= =0.1), to
perfect reporting (bottom row, 7= 1). For example, looking at the middle of
the center panel, when pr=0.5, 1=0.5, and p=0.5, we see that the average
basic scale-up estimate is about 50, while the average generalized scale-up
estimate is 150 (the true value). The generalized scale-up estimator is unbiased
for all parameter combinations, while the basic scale-up estimator is only
unbiased for certain special cases (e.g., when p=1, 77=1, and pr=1). Full
details of the simulation are presented in Appendix G in the online journal.
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Figure 3. Bias (open circles and diamonds) and predicted bias (solid lines) in
the basic scale-up estimates and generalized scale-up estimates for the same
parameter configurations depicted in Figure 2. Our analytical results (equation
20) accurately predict the bias observed in our simulation study.

estimator is unbiased in a much smaller set of situations. More concre-
tely, the basic scale-up estimator is unbiased in situations in which the
basic scale-up model holds—when everyone is in the frame population
(pr=1), there is random mixing (p=1), and respondents’ reports are
perfect (r7=1).° Furthermore, Figure 3 illustrates that our analytic
approach (equation 3) can correctly predict the bias of the basic scale-
up estimator.
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4. RECOMMENDATIONS FOR PRACTICE

The results in Sections 2 and 3 lead us to recommend a major departure
from current scale-up practice. In addition to collecting a sample from
the frame population, we recommend that researchers consider collecting
a sample from the hidden population so that they can use the generalized
scale-up estimator. As our results clarify, researchers using the scale-up
method face a decision: they can collect data from the hidden population
or they can make assumptions about the adjustment factors described in
Section 3. The appropriate decision depends on a number of factors, but
we think that two are most important: (1) the difficulty of sampling from
the hidden population and (2) the availability of high-quality estimates of
the adjustment factors in Section 3. For example, if it is particularly diffi-
cult to sample from a specific hidden population and high-quality esti-
mates of the adjustment factors are already available, then a basic scale-
up estimator may be appropriate. If, however, it is possible to sample from
the hidden population and there are no high-quality estimates of adjust-
ment factors, then the generalized scale-up estimator may be appropriate.
Many realistic situations will be somewhere between these two extremes,
and the trade-offs must be weighed on a case-by-case basis.

To aid researchers deciding between basic and generalized scale-up
approaches, we collected the conditions needed for consistent and essen-
tially unbiased estimates into Table 2; formal proofs of these results are
presented in Online Appendices B and C. We find it helpful to group
these conditions into four broad categories: sampling, survey construc-
tion, network structure, and reporting behavior.

A review of the conditions in Table 2 necessarily raises practical
concerns. In situations in which researchers are trying to make estimates
about real hidden populations, they probably will not know how close
they are to meeting these conditions. Therefore, researchers may won-
der how their estimates will be affected by violations of these assump-
tions, both individually (e.g., “How would my estimates be affected if
there was a problem with the survey construction?”’) and jointly (e.g.,
“How would my estimate be affected if there was a problem with my
survey construction and reporting behavior?””). To address this concern,
in Appendix D in the online journal, we develop a framework for sensi-
tivity analysis that shows researchers exactly how estimates will be
affected by violations of all assumptions, either individually or jointly.
Table 3 summarizes the results of our sensitivity framework.
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Another problem researchers face in practice is putting appropriate
confidence intervals around estimates. The procedure currently used in
scale-up studies was proposed by Killworth, McCarty, et al. (1998), but
it has a number of conceptual problems, and in practice, it produces
intervals that are anticonservative (i.e., the actual coverage rate is lower
than the desired coverage rate). Both of these problems—theoretical
and empirical—do not seem to be widely appreciated in the scale-up lit-
erature. Therefore, instead of the current procedure, we recommend that
researchers use the rescaled bootstrap procedure (Rao, Wu, and Yue
1992; Rao and Wu 1988; Rust and Rao 1996), which has strong theore-
tical foundations, does not depend on the basic scale-up model, can han-
dle both simple and complex sample designs, and can be used for both
the basic scale-up estimator and the generalized scale-up estimator. In
Appendix F in the online journal, we review the current scale-up confi-
dence interval procedure and the rescaled bootstrap, highlighting the
conceptual advantages of the rescaled bootstrap. Furthermore, we show
that the rescaled bootstrap produces slightly better confidence intervals
in three real scale-up data sets: one collected via simple random sam-
pling (McCarty et al. 2001) and two collected via complex sample
designs (Salganik, Fazito, et al. 2011; Rwanda Biomedical Center
2012). Finally, and somewhat disappointingly, our results show that
none of the confidence interval procedures work very well in an abso-
lute sense, a finding that highlights an important problem for future
research.

We now provide more specific guidance for researchers based on the
data they decide to collect. In Section 4.1 we present recommendations
for researchers who collect a sample from both the frame population, F,
and the hidden population, H; in Section 4.2, we present recommenda-
tions for researchers who only select a sample from the frame
population.

4.1. Estimation with Samples from F and H

We recommend that researchers who have samples from F and H use
a generalized scale-up estimator to produce estimates of Ny (see
Section 2):

Ny=208 (21)
VH, F
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For researchers using the generalized scale-up estimator, we have
three specific recommendations. Of all the conditions needed for consis-
tent and essentially unbiased estimation, the ones most under the control
of the researcher are those related to survey construction, so we recom-
mend that researchers focus on these during the study design phase. In
particular, we recommend that the probe alters be designed so that the
rate at which the hidden population is visible to the probe alters is the
same as the rate at which the hidden population is visible to the frame
population (see Result C.2 for a more formal statement, and see Section
CS5 for more advice about choosing probe alters). Second, when present-
ing estimates, we recommend that researchers use the results in Table 3
to also present sensitivity analyses highlighting how the estimates may
be affefcted by assumptions that are particularly problematic in their
setting. Finally, we recommend that researchers produce confidence
intervals around their estimate using the rescaled bootstrap procedure,
keeping in mind that this will likely produce intervals that are
anticonservative.

We also have three additional recommendations that will facilitate
the cumulation of knowledge about the scale-up method. First, although
the generalized scale-up estimator does not require aggregate relational
data from the frame population about groups of known size, we recom-
mend that researchers collect these data so that the basic and generalized
estimators can be compared. Second, we recommend that researchers
publish estimates of 6 and 7, although these quantities play no role in
the generalized scale-up estimator (Figure 4). As a body of evidence
about these adjustment factors accumulates (e.g., Salganik, Fazito, et al.
2011; Maghsoudi et al. 2014), studies that are not able to collect a sam-
ple from the hidden population will have an empirical foundation for
adjusting basic scale-up estimates, either by borrowing values directly
from the literature or by using published values as the basis for priors in
a Bayesian model. Finally, we recommend that researchers design their
data collections—both from the frame population and the hidden
population—so that size estimates from the generalized scale-up method
can be compared with estimates from other methods (e.g., see Salganik,
Fazito, et al. 2011a). For example, if respondent-driven sampling is used
to sample from the hidden population, then researchers could use meth-
ods that estimate the size of a hidden population from recruitment pat-
terns in the respondent-driven sampling data (Berchenko, Rosenblatt,
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Figure 4. Recommended schematic of inputs and outputs for a study using
the generalized scale-up estimator. We recommend that researchers produce
size estimates using the generalized scale-up estimator and that researchers
produce estimates of the adjustment factors 6 and 75 to aid other researchers.

and Frost 2013; Crawford, Wu, and Heimer 2015; Handcock, Gile, and
Mar 2014, 2015; Johnston et al. 2015; Wesson et al. 2015).

4.2. Estimation with Only a Sample from F

If researchers cannot collect a sample from the hidden population, we
have three recommendations. First, we recommend two simple changes
to the basic scale-up estimator that remove the need to adjust for the
frame ratio, ¢,. Recall, that the basic scale-up estimator that has been
used in previous studies (see Section 3) is

Ny= 208 sy= Y8 (22)
dF,U dF,U/N

Instead of equation 22, we suggest a new estimator, called the modi-
fied basic scale-up estimator, that more directly deals with the fact that
researchers sample from the frame population F (typically adults), and
not from the entire population U (adults and children):
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Npy= 2Bt = TEH (23)
dF,F dF,F/NF

There are two differences between the modified basic scale-up esti-
mator (equation 23) and the basic scale-up estimator (equation 22).
First, we recommend that researchers estimate dr r (i.e., tlle total num-
ber of connections between adults and adults) rather than dr ¢ (i.e., the
total number of connections between adults and everyone). To do so,
researchers should design the probe alters for the frame population so
that they have similar personal networks to the frame population; in
Appendix B.4 in the online journal, we define this requirement for-
mally, and in Section B.4.1 we provide guidance for choosing the probe
alters. Second, we recommend that researchers use Ny rather than N.’
These two simple changes remove the need to adjust for the frame ratio
¢r, and thereby eliminate an assumption about an unmeasured quantity.
An improved version of the basic scale-up estimator would then be

~ y 1 1
= Ve X —X— . (24)

Ny = T/~ /7 N = =
d / N, ) op TF
( F,F F
S—————" adjustment factors
modified basic scale-up

Our second recommendation is that researchers using the modified
basic scale-up estimator (equation 23) perform a sensitivity analysis
using the results in Table 3. In particular, we think that researchers
should be explicit about the values that they assume for the adjustment
factors 87 and 7. Our third recommendation is that researchers con-
struct confidence intervals using the rescaled bootstrap procedure, while
explicitly accounting for the fact that there is uncertainty around the
assumed adjustment factors and bearing in mind that this procedure will
likely produce intervals that are anticonservative.

S. CONCLUSION AND NEXT STEPS

In this paper, we developed the generalized network scale-up estimator.
This new estimator improves upon earlier scale-up estimators in several
ways: it enables researchers to use the scale-up method in populations
with nonrandom social mixing and imperfect awareness about member-
ship in the hidden population, and it accommodates data collection with
complex sample designs and incomplete sampling frames. We also
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compared the generalized and basic scale-up estimators, leading us to
introduce a framework that makes the design-based assumptions of the
basic scale-up estimator precise. Finally, researchers who use either the
basic or generalized scale-up estimator can use our results to assess the
sensitivity of their size estimates to assumptions.

The approach we followed to derive the generalized scale-up estima-
tor has three elements, and these elements may prove useful in other
problems related to sampling in networks. First, we distinguished
between the network of reports and the network of relationships.
Second, using the network of reports, we derived a simple identity that
permitted us to develop a design-based estimator free of any assump-
tions about the structure of the network of relationships. Third, we com-
bined data from different types of samples. Together, these three
elements may help other researchers in other situations derive relatively
simple, design-based estimators that are an important complement to
complex, model-based techniques.

Although the generalized scale-up estimator has many attractive fea-
tures, it also requires that researchers obtain two different samples, one
from the frame population and one from the hidden population. In cases
in which studies of the hidden population are already planned (e.g., the
behavioral surveillance studies of the groups most at risk for HIV/
AIDS), the necessary information for the generalized scale-up estimator
could be collected at little additional cost by appending a modest num-
ber of questions to existing questionnaires. In cases in which these stud-
ies are not already planned, researchers can either collect their own data
from the hidden population, or they can use the modified basic scale-up
estimator and borrow estimated adjustment factors from other published
studies.

The generalized scale-up estimator, like all estimators, depends on a
number of assumptions, and we think three of them will be most proble-
matic in practice. First, the estimator depends on the assumption that
there are no false positive reports, which is unlikely to be true in all
situations. Although we have derived an estimator that works even in
the presence of false positive reports (Appendix A in the online jour-
nal), we were not able to design a practical data collection procedure
that would allow us to estimate one of the terms it requires. Second, the
generalized scale-up estimator depends on the assumption that hidden
population members have accurate aggregate awareness about visibility
(equation 9). That is, researchers have to assume that hidden population
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respondents can accurately report whether or not their alters would
report them, and we expect this assumption will be difficult to check in
most situations. Third, the generalized scale-up estimator depends on
having a relative probability sample from the hidden population.
Unfortunately, we cannot eliminate any of these assumptions, but we
have stated them clearly and we have derived the sensitivity of the esti-
mates to violations of these assumptions, individually and jointly.

Our results and their limitations highlight several directions for fur-
ther work, in terms of both of improved modeling and improved data
collection. We think the most important direction for future modeling is
developing estimators in a Bayesian framework, and a recent paper by
Maltiel et al. (2015) offers some promising steps in this direction. We
see two main advantages of the Bayesian approach in this setting. First, a
Bayesian approach would allow researchers to propagate the uncertainty
they have about the many assumptions involved in scale-up estimates,
whereas our current approach captures only uncertainty introduced by
sampling. Furthermore, as more empirical studies produce estimates of
the adjustment factors (77 and 6¢), a Bayesian framework would permit
researchers to borrow values from other studies in a principled way. In
terms of future directions for data collection, researchers need practical
techniques for estimating the rate of false positive reporting. These esti-
mates, combined with the estimator in Appendix A in the online journal,
would permit the relaxation of one of the most important remaining
assumptions made by all scale-up studies to date. We hope that the
framework introduced in this paper will provide a basis for these and
other developments.
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Notes
1. Throughout the paper, we consider only the case ion which i never reports j more
than once.

2. We use the term essentially unbiased because equation (7) is not, strictly speaking,
unbiased; the ratio of two unbiased estimators is not itself unbiased. However, a
large literature confirms that the biases caused by the nonlinear form of ratio esti-
mators are typically insignificant relative to other sources of error in estimate (e.g.,
Sarndal et al. 1992, chap. 5). Unfortunately, many of the estimators we propose are
actually ratios of ratios, sometimes called “compound ratio estimators” or “double
ratio estimators.” In Appendix E in the online journal, we demonstrate that the bias
caused the nonlinear form of our estimators is not a practical cause for concern.

3. Note that because c_ZU, r=(Nr/N )ap, U, an equivalent expression for the frame ratio

4. Note that the fact that in-reports must equal out-reports means that 7 can also be

defined as 7~ = # reported edges from F actually connected to / _ y;{,_, Here we have written
F # edges connecting F and H drp*

y;’  to mean the true positive reports among theyr, y; see Appendix A in the online

journal for a detailed explanation.

5. Computer code to perform the simulations was written in R (R Core Team 2014)
and used the following packages: devtools (Wickham and Chang 2013), functional
(Danenberg 2013), ggplot2 (Wickham 2009), igraph (Csardi and Nepusz 2006), net-
workreporting (Feehan and Salganik 2014), plyr (Wickham 2011), sampling (Tillé
and Matei 2015), and stringr (Wickham 2012).

6. In addition to the settings in which the basic scale-up model holds, the basic scale-
up estimator can also be unbiased when its different biases cancel (e.g., when the
product of the adjustment factors is 1).

7. In some cases this difference between Ny and N can be substantial. For example, if
F'is adults, then in many developing countries, N~2Np.
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A Estimation in the presence of false positive re-
ports

In the main text, we follow all previous scale-up studies to date in assuming that there
are never any false positive reports. In this appendix, we generalize our analysis to
the situation where false positive reports are possible.

In Section 2, Equation 5, we discussed false positive reports in terms of in-reports:
we explained that if there are no false positive reports, then v; p = 0 for all ¢ ¢ H.
In this appendix, we will re-orient the analysis and focus on how false positives affect
out-reports. Each individual i’s out-reports can be divided into two groups: true
positives, which actually connect to the hidden population (y;r 7); and false positives,

which do not connect to the hidden population (yl_ 7). Therefore,

YiH = ?JIH + Y m- (A1)

We can also define the aggregate quantities ., = D icF vy and yp = D icr Vi

so that

YrH = Ypu T Yrn- (A.2)

Because the total number of true-positive out-reports must equal the total number

of true-positive in-reports, it is the case that

Ypu = VIF (A.3)

where y;H is the total number of true-positive out-reports and vy p is the total

number of true positive in-reports. Dividing both sides by vy ¢, and then multiplying

Al



both sides by Ny produces
+
Ny = 258, (A.4)

In the main text, we introduce a strategy for estimating vy . If there was also a
strategy for estimating y} ;> then we could use Equation A.4 to estimate Ny, even
if some reports are false positives. Unfortunately, we cannot typically estimate y}’ I
directly from F, since any attempt to do so would learn about yr x instead. Therefore,
we propose that researchers collect information about yrpy and then estimate an
adjustment factor that relates yr g to y;C, r- This approach leads us to introduce a

new quantity called the precision of out-reports, ng:

Yru
Yr H

The precision is useful because it relates the observed out-reports, yr gy to the true
positive out-reports, y;{ - It varies from 0, when none of the out-reports are true
positives, to 1, when the out-reports are perfect. The precision allows us to derive an

identity that relates out-reports to Ny:

Ny = EYH (A.6)

VH,F

Equation A.6 then suggests the estimator:

Ry = T 0 (A7)

Uy F

If we could find a consistent and essentially unbiased estimator for 1z, then we could

use Equation A.7 to form a consistent and essentially unbiased estimator for Ng,
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even in the presence of false positive reports.

Unfortunately, we are not aware of a practical strategy for estimating the preci-
sion of out-reports. The most direct approach would be to interview each alter that
a respondent reports as being in the hidden population. In other words, if a respon-
dent reports knowing 3 drug injectors, researchers could try to interview these three
people and see if they are actually drug injectors. Killworth et al. (2006) attempted
a version of this procedure, which they called an “alter-chasing” study, but they later
abandoned it because of the numerous logistical challenges that arose; see also Lau-
mann (1969) for a related attempt. A second possible approach would be to conduct
a census of a networked population where respondents are asked about themselves
and specific people to whom they are connected. For example, Goel et al. (2010) col-
lected responses about the political attitudes of thousands of interconnected people
on Facebook, including respondents’ attitudes as well as their beliefs about specific
alters’ attitudes. For a subset of respondents, they could compare i’s belief about
j’s attitude with j’s report of her own attitude in order to measure the precision.
Unfortunately, we think it would be difficult to include a sufficiently large number of
members of a stigmatized hidden population in this type of study.

We expect that the measurement of the precision of out-reports will pose a major
challenge for future scale-up research, and we hope that practical solutions to this
problem can be found. For the time being, we recommend that researchers show
the impact that different values of the precision of out-reports would have on size

estimates (Equation A.7).
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B Estimates with a sample from F

In this appendix, we present the full results for all of the estimators that require
a sample from the frame population. First, we describe the general requirements
that our sampling design for F' must satisfy (Section B.1). Then we describe how to
estimate the total number of out-reports, yry (Section B.2). Next we turn to some
background material on multisets (Section B.3), which is needed for the following
section on the known population method for estimating network degree (Section B.4).
Finally, we present an estimator for the frame ratio, ¢, which makes use of the known

population method results (Section B.5).

B.1 Requirements for sampling designs from F

We follow Sarndal et al. (1992)’s definition of a probability sampling design, which
we repeat here for convenience. Suppose that we have a set of possible samples
{s1,...,8j,.. ., Smax}, With each s; C F'. Furthermore, suppose p(s;) gives the prob-
ability of selection for each possible sample s;. If we select a sample sy at random
using a process that will produce each possible sample s; with probability p(s;), and
if every element i € F' has a nonzero probability of inclusion 7; > 0, then we will say

that we have selected a probability sample and we call p(-) the sampling design.

B.2 Estimating the total number of out-reports, yr g

If we have a probability sample from the frame then estimating the total number of

out-reports is a straightforward application of a standard survey estimator.

Result B.1 Suppose we have a sample sp taken from the frame population using a

probability sampling design with probabilities of inclusion given by 7; (Sec. B.1). Then
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the estimator given by

Yra = Z Yim /T (B.1)

1ESE
is consistent and unbiased for yp g .

Proof: This follows from the fact that Equation B.1 is a Horvitz-Thompson estimator

(Sarndal et al., 1992, Section 2.8). [ |

B.3 Reporting about multisets

Appendix B.4 and Appendix C both describe strategies that involve asking respon-
dents to answer questions about their network alters in specific groups. In this section,
we develop the notation and some basic properties of responses generated this way;
these properties will be then be used in the subsequent sections.

Suppose we have several groups Ai,..., Ay with A; C U for all j, and also a
frame population F' of potential interviewees. (Note that we do not require A; C F.)
Imagine concatenating all of the people in populations Ay, ..., A; together, repeating
each individual once for each population she is in. The result, which we call the probe
alters, A, is a multiset. The size of Ais Ny = Zj Ny,.

Let y; 4, be the number of members of group A; that respondent i reports having
among the members of her personal network. We also write y; 4 = ) ; Ui,a, for the sum
of the responses for individual i across all of Ay,..., Ay, and ypa = . p Zj YiA; tO
denote the total number of reports from F' to A. Similarly, we write d; 4 = Zj di A,
for the sum of the network connections from individual i to each Aq,..., A, and
dpA = ier 2 i dia; for the total of the individual d; 4 taken over all i. As always,

we will write averages with respect to the first subscript so that, for example, d. AF =
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dar/Na.

We now derive a property of estimation under multisets that will be useful later
on. Roughly, this property says that we can estimate the total number of reports
from the entire frame population to the entire multiset of probe alters using only a
sample from the frame population with known probabilities of inclusion (Section B.1).
While this property might seem intuitive, we state it formally for two reasons. First,
by stating it explicitly, we show that this property is very general: it does not require
any assumptions about the contact pattern between the frame population and probe
alters, nor does it require any assumptions about the probe alters. Second, it will

turn out to be useful in several later proofs, and so we state it for compactness.

Property B.2 Suppose we have a sample sp from F taken using a probability sam-

pling design with probabilities of inclusion m; (Section B.1). Then

Jra= > yia/m (B.2)

1ESF
is a consistent and unbiased estimator for yp 4.

Proof: If we define a; =) i YiAy, the sum of the responses to each A; for individual

1, then we can write our estimator as

Ura =Y ai/m;. (B.3)

1ESE

This is a Horvitz-Thompson esimator (see, e.g., Sarndal et al., 1992, chap. 2); it is

unbiased and consistent for the total Zie 7 = Yp.A. |
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B.4 Network degree and the known population method for
estimating C{F,F, CZF,U, and CZU7F

In order to conduct a scale-up study, we need a definition of the network that we
will ask respondents to tell us about; that is, we need to define what it will mean for
two members of the population to be connected by an edge. To date, most scale-up
studies have used slight variations of the same definition: the respondent is told that
she should consider someone a member of her network if she “knows” the person,
where to know someone means (i) you know her and she knows you; (ii) you have
been in contact in the past 2 years; and, (iii), if needed, you could get in touch with
her (Bernard et al., 2010). Of course, many other definitions are possible, and an
investigation of this issue is a matter for future study. The only restriction on the tie
definition we impose here is that it be reciprocal; that is, the definition must imply
that if the respondent is connected to someone, then that person is also connected to
the respondent.

For a particular definition of a network tie an individual 7’s degree, d; y may not
be very easy to directly observe, even if the network is conceptually well-defined.
For the basic scale-up estimator, the most commonly used technique for estimating
respondents’ network sizes is called the known population method (Killworth et al.,
1998a; Bernard et al., 2010).®> The known population method is based on the idea
that we can estimate a respondent’s network size by asking how many connections she
has to a number of different groups whose sizes are known. The more connections a

respondent reports to these groups, the larger we estimate her network to be. Current

8There are other techniques for estimating personal network size, including the summation
method (McCarty et al., 2001; Bernard et al., 2010), which could be used in conjunction with
many of our results. We focus on the known population method here because it is relatively easy
to work with from a statistical perspective, and also because there is some evidence that it works
better in practice (Salganik et al., 2011a; Rwanda Biomedical Center, 2012)
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standard practice is to ask a respondent about her connections to approximately 20
groups of known size in order to estimate her degree (Bernard et al., 2010), although
the exact number of groups used has no impact on the bias of the estimates as we
show in Results B.3 and B.4.

The known population estimator was originally introduced to estimate the per-
sonal network size of each respondent individually (Killworth et al., 1998a), but in
Sections 3 and 4.2 we showed that for the scale-up method the quantity of interest is
actually the average number of connections from a member of the frame population
F to the rest of the frame population F (d, Fr), or the average number of connections
from a member of the entire population U to the frame population F (dy r).° This
is fortunate, because it is easier to estimate an average degree over all respondents

than it is to estimate the individual degree for each respondent.

B.4.1 Guidance for choosing the probe alters, A

Result B.3, below, shows that the known population estimator will produce consistent
and unbiased estimates of average network degree if (i) yp.a = dp 4 (reporting condi-
tion); and (ii) dar = dpp (probe alter condition). Stating these conditions precisely
enables us to provide guidance about how the groups of known size (A, As, ... Ay)
should be selected such that the probe alters A will enable consistent and unbiased
estimates.

First, the reporting condition (yp4 = dp.4) in Result B.3 shows that researchers
should select probe alters such that reporting will be accurate in aggregate. One
way to make the reporting condition more likely to hold is to select groups that

are unlikely to suffer from transmission error (Shelley et al., 1995, 2006; Killworth

9Although we have framed our discussion here in terms of CiF’ r, the same ideas apply to (ZU, F
and JF,U-
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et al., 2006; Salganik et al., 2011b; Maltiel et al., 2015). Another way to make the
reporting condition more likely to hold is to avoid selecting groups that may lead
to recall error (Killworth et al., 2003; Zheng et al., 2006; McCormick and Zheng,
2007; McCormick et al., 2010; Maltiel et al., 2015). That is, previous work suggests
that respondents seem to under-report the number of connections they have to large
groups, although the precise mechanism behind this pattern is unclear (Killworth
et al., 2003). Researchers who have data that may include recall error can consider
some of the empirically-calibrated adjustments that have been used in earlier stud-
ies (Zheng et al., 2006; McCormick and Zheng, 2007; McCormick et al., 2010; Maltiel
et al., 2015).

Second, the probe alter condition (J AF = JF,F) in Result B.3 shows that re-
searchers should select groups to be typical of F' in terms of their connections to F'.
In most applied situations, we expect that F will consist of adults, so that researchers
should choose groups of known size that are composed of adults, or that are typical of
adults in terms of their connections to adults. Further, when trying to choose groups
that satisfy the probe alter condition, it is useful to understand how connections from
the individual known populations to the frame (da, r,...,da, r) aggregate up into
connections from the probe alters to the frame (d4 r). Basic algebraic manipulation
shows that the probe alter condition can be written as:

> da;p Na -

=dpp. B.4
Zj NAj o (B4)

Equation B.4 reveals that the probe alter condition requires that dpr is equal to
a weighted average of the average number of connections between each individual
known population A; and the frame population F’ (d ;7). The weights are given by

the size of each known population, Ny4,. The simplest way that this could be satisfied
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is if d. A F = JE r for every known population A;. If this is not true, then the probe
alter condition can still hold as long as groups for which d. A;,F is too high are offset
by other groups for which d A,,F 18 t00 low.

In practice it may be difficult to determine if the reporting condition and probe
alter condition will be satisfied. Therefore, we recommend that researchers assess
the sensitivity of their size estimates using the procedures described in Online Ap-
pendix D. Further, we note that in many realistic situations, N, might not be known
exactly. Fortunately, researchers only need to know ) ; Na,, and they can assess the
sensitivity of their estimates to errors in the size of known populations using the

procedures described in Online Appendix D.

B.4.2 The known population estimators

Given that background about selecting the probe alters, we present the formal results

for the known population estimators for d, FF, CZU7 r, and d FU-

Result B.3 Suppose we have a sample sg taken from the frame population using a
probability sampling design with probabilities of inclusion given by m; (see Section B.1).
Suppose also that we have a multiset of known populations, A. Then the known

population estimator given by

5 D iess Zj YiA [T

depr = B.5
o - (B.5)

is consistent and unbiased for dp p if
Yra = dp4, (reporting condition,) (B.6)
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and if
dar = dpp. (probe alter condition) (B.7)

Proof: By Property B.2, we know that our estimator is unbiased and consistent for
yr.a/N . By the reporting condition in Equation B.6, this means it is unbiased and
consistent for dp 4/N 4. Then, by the probe alter condition in Equation B.7, it is also

unbiased and consistent for dp p. [ |

Result B.4 Suppose we have a sample sg taken from the frame population using a
probability sampling design with probabilities of inclusion given by m; (see Section B.1).
Suppose also that we have a multiset of known populations, A. Then the known

population estimator given by

5 ZiESF Zj Yi,A; /i

du.r N (B.8)
is consistent and unbiased for dy p if
YrA = dp 4, (reporting condition) (B.9)
and if
dar=dyp. (probe alter condition) (B.10)

Proof: By Property B.2, we know that our estimator is unbiased and consistent
for yp4/Na. By the reporting condition in Equation B.9, this means it is unbiased
and consistent for dp 4/N 4. Then, by the probe alter condition in Equation B.10, it

is also unbiased and consistent for dy . |
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Since dpy = NiFJu r, as a direct consequence of Result B.4 we have the following

corollary.

Corollary B.5 If the conditions described in Result B.4 hold,

(B.11)

~ ~ N
Aoy = dyp —
FU U,F N,

is consistent and unbiased for dpy .

B.5 Estimating the frame ratio, ¢p

Given our estimator of dpr (Result B.3) and our estimator of dy r (Result B.4), we

can estimate the frame ratio, ¢p.

Result B.6 The estimator

" EFF
OF == (B.12)
dy,r
15 consistent and essentially unbiased for ¢p if JEF s consistent and essentially un-

biased for JEF and JUJ: is consistent and essentially unbiased for JU,F.

Proof: This follows from the properties of a ratio estimator (Sarndal et al., 1992,
chap. 5). [

More concretely, combining the estimator for dr; (Result B.3) and the estimator
for CZU7 r (Result B.4), and assuming that we have known populations Ag, for JF, F,

and Ap, for JU,F; we obtain

~ Nag, ZiESF ZAjeAFl Yi, A, | T
F= )
N‘AFl ZiESF ZAkeAF2 Yi, Ay, /7Ti

(B.13)
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In our discussion of ?dlp r (Result B.3) and ng r (Result B.4), we concluded that we
want the known populations Ap, used for EF, r to be typical of members of F' in their
connections to F'. An analogous argument shows that we want the known populations
Ap, used for 3(]7 r to be typical of members of U in their connections to £'. In general,
we expect that it will not be appealing to assume that F' and U are similar to each
other in terms of their connections to F' meaning that, unfortunately, it will not make
sense to use the same set of known populations for E_F, r and EU, . If researchers wish
to estimate ¢ directly, one approach would be to choose Ap, to be typical of U in
such a way that some of the individual known populations are more typical of F',
while others more typical of U — F'. The multiset formed from only the ones that are
more typical of F' could then be our choice for Ap,. In this case, researchers would

Na . . . .
also want NAF L = % This complication is one of the reasons we recommend in
F

Section 4 that future scale-up studies estimate JE r directly, thus avoiding the need

to estimate ¢p entirely.

C Estimates with samples from /' and H

In this appendix, we present the full results for all of the estimators that require a
sample from the hidden population. Section C.1 defines the general requirements that
our sampling design for H must satisfy. Section C.2 describes a flexible data collection
procedure called the game of contacts. Section C.3 introduces some background
material on estimation using questions about multisets and presents an estimator for
U, r, the average number of in-reports among the members of the hidden population.
Section C.5 gives some guidance about how to choose the probe alters for the known
population method. Section C.6 presents estimators for the two adjustment factors

introduced in Section 3: the degree ratio, dr, and the true positive rate, 7. Finally,
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Section C.7 presents formal results for four different estimators for Ng.

C.1 Requirements for sampling designs from H

For the results that involve a sample from the hidden population sy, we do not need
a probability sample (Appendix B); instead, we need a weaker type of design. We
require that every element ¢ € H have a nonzero probability of selection m; > 0, and
that we can determine the probability of selection up to a constant factor ¢; that is,
we only need to know cm;. We are not aware of any existing name for this situation,
so we will call it a relative probability sample. Because of the challenges involved in
sampling hard-to-reach populations, the two most likely sampling designs for sy will
probably be time-location sampling (Karon and Wejnert, 2012) and respondent-driven
sampling (Heckathorn, 1997). A relative probability sample allows us to use weighted
sample means to estimate averages, but not totals. See Sarndal et al. (1992, Section
5.7) for more details on weighted sample means, also sometimes called Héjek estima-
tors, which is what we use to estimate averages from a sample of hidden population

members.

C.2 Data collection

In order to make estimates about the hidden population’s visibility to the frame
population, researchers will need to collect what we call enriched aggregate relational
data from each respondent, and a procedure called the game of contacts has produced
promising results from a study of heavy drug users in Brazil (Salganik et al., 2011b).
In the main text, we assumed that the groups in the probe alters Ay, ..., A; were all
contained in the frame population (A; C F for all j). However, the estimators in this

Online Appendix are more general because they allow for the possibility that some of
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the groups Aj,... A; may not be contained entirely in F. For example, if the frame
population is adults, then this flexibility enables researchers to use groups based on
names, such as Michael, even though not all people named Michael are adults.

In order to allow for this flexibility, we need to introduce some new notation: let
AINF, AsNF, ..., A;NF be the intersection of these groups and the frame population,
and let AN F be the concatenation of these intersected groups. For example, if the
frame population is adults, A; is people named Michael, and A, is doctors, then
Ay N F is adults named Michael, Ay N F is adult doctors, and AN F' is the collection
of all adult Michaels and all adult doctors, with adult doctors named Michael included
twice. (In the special case discussed in the main text, A;NF,... A;NF = Ay, ..., A;.)

The data collection begins with a relative probability sample (Section C.1) from
the hidden population. For a set of groups, A, As,... A, each respondent in the
hidden population is asked, “How many people do you know in group A;?” We
call the response y; 4,. Next for each of the y; 4, alters, the respondent picks up a
token and places it on a game board like the one in Figure C.1. From the location
of the tokens on the board, the researcher can record whether each alter is in the
frame population (or not) and whether the alter is aware that the respondent is in
the hidden population (or not) (Table C.2). This process is then repeated until the
respondent has been asked about all groups.

If all of the probe alters are in the frame population, then the process is much
easier for respondents and the game board can be modified to collect alternative
information. If all of the probe alters are not in the frame population, then it is
important for the researcher to define the frame population as clearly as possible.
If the respondents are not able to correctly indicate whether the alters are in the
frame population or not, it could lead to biased estimates of vy p. For more on the

operational implementation of this procedure, see Salganik et al. (2011b).
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Adult & Adult &

Knows that | inject drugs Does not know that | inject drugs
Child & Child &
Knows that | inject drugs Does not know that | inject drugs

Figure C.1: Example of a game board that could be used in the game of contacts
interviewing procedure if the hidden population was people who inject drugs and the
frame was made up of adults. This board is a variation of the board used in Salganik
et al. (2011b).

aware not aware total
frame population Via,np hianr Yi, A;nF
not frame population  v; o,nw-r) hianw-rF) YiAnw-F)
total Vi A, hi,a; Yi A,

Table C.1: Responses collected during the game of contacts for each respondent ¢
and each group A;. We use ~ to indicate reported values. For example, v; 4; is
the respondent’s reported visibility to people in A; and v; 4, is respondent’s actual
visiblility to people in A;. Also, using this notational convention, it is the case that
YiA; = CAl;-,Aj, but we have written y; 4, in order to be consistent with the rest of the

paper.
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C.3 Estimation using aggregated relational data from the

hidden population

In this section, we follow Section B.3 and present another useful property about
estimates made using aggregate relational data from the hidden population. Roughly,
this property says that we can estimate the average number of reports from the entire
hidden population to the probe alters using only a relative probability sample from
the hidden population (Section C.1). Similar to Property B.2, the result we present
below does not require any assumptions about the contact pattern between the hidden

population and the probe alters, nor about the probe alters themselves.

Property C.1 Suppose we have a sample sy from H taken using a relative proba-
bility design, allowing us to compute the relative probabilities of inclusion cm; for all
sampled elements (Sec. C.1). Then

~ ZiESH yi,A/(c,/Ti)

IiaA = 5 (o) (€1

is a consistent and essentially unbiased estimator for Yy i = yua/Nu.

Proof: Note that the ¢ in the relative probabilities of inclusion cm; cancel, so that

~ _ ZiESH yi,A/('ﬁi)
A= S ()

(C.2)

If we define a; = > i YiAy, the sum of the responses to each A; for individual ¢, then

we can write our estimator as

o~ ZiESH a/i/ﬂ—i
Gy = e T (C.3)
H.A ZiesH 1/7Ti
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Now we have a standard weighted mean estimator (e.g. Sarndal et al., 1992, chap. 5);

it is consistent and essentially unbiased for the average NLH Y ien @i = Yga/Ng. 1

C.4 Estimating the average visibility, vy r

Given the data collection procedure described in Sec. C.2, we can estimate the average
visibility (vy ) as long as three conditions are satisfied: one about reporting, one
about the visibility of the hidden population to the probe alters, and one about

sampling.

Result C.2 Assume that we have a sample sy taken from the hidden population
using a relative probability design with relative probabilities of inclusion cm; for all

sampled elements (Sec. C.1). Then

s Np ZiESH Zj Vi a,nF/ (€7;) (C.4)
HF = .
Nanr Yicsy 1/ (em)
is consistent and essentially unbiased for vy if
VH ANF = UH,ANF (reporting condition) (C.5)
and
VH,ANF VH,F "
= (probe alter condition) (C.6)

Nuir  Np'

Proof: Property C.1 holds for estimating EF, AnF from v; anp, just as it holds

for estimating ¢y anp from y; 4np. Applying Property C.1 here, we conclude that the
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estimator is consistent and essentially unbiased for

Np = Np Uganr
HANF = — .
Nanr Nu

C7
Nanr (€1

Next, by applying the reporting condition in Equation C.5 we can conclude that

Np 5H,AmF N Np UVH, ANF
Nanr Ny Nanr Np

(C.8)

Finally, by applying the probe alter condition in Equation C.6 and rearranging terms,

we conclude that

Np VHANF Np VH,F

e P it L C.9
Nanr Nu Ny Np (C9)
= Uy (C.10)

[ ]

Note that Result C.2 requires us to know the size of the probe alters in the frame
population, N4nr. In some cases, this may not be readily available, but it may be

reasonable to assume that

N
Nanp = WF N4 (C.11)

Furthermore, if A is chosen so that all of its members are in F', then Nynr = Ny
and v; 4,nF = v; 4;. In this situation, we do not need to specifically ask respondents
about connections to AN F'; we can just ask about connections to A.

The reporting condition required for Result C.5 states that the hidden population’s
total reported visibility from the probe alters on the frame must be correct. This

might not be the case, if for example, respondents systematically over-estimate how
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much others know about them (see e.g., Gilovich et al. (1998)).

The required condition for the probe alters is slightly more complex. It needs
to be the case that the rate at which the hidden population is visible to the probe
alters is the same as the rate at which the hidden population is visible to the frame
population. There are several equivalent ways of stating this condition, as we show
in a moment. First, we need to define two new quantities: the individual-level true

positive rate and the average of the individual-level true positive rates.

Definition 1 We define the individual-level true positive rate for respondent i € F

to be
7=t (C.12)

where vy ,; = ZjeH Vi

Definition 2 We define the average of the individual true positive rates over a set

F' of respondents as

In general, T # 7. To see this, note that while 7 is the average of the individual-
level true positive rates with each individual weighted equally, 7 can be written as
the weighted average of the individual true positive rates, with the weights given
by each individual’s degree. We can see the exact relationship between the two by

expressing 7 in terms of the 7;:

Y ier Ti din

e, (C.14)
i€EF

TR =
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since multiplying each 7; by d; g and summing is the same as summing the vg ;.

Result C.3 The following conditions are all equivalent.

(i) YH,ANF __ VHF

Nanr Np
(i) Tanr danrn = Tr dpg

(iti) Tanr danru + covanp(Tisdig) = Tr dpg + covp(Ti, dip)

. _ ngX-QFH NA-QF
(i) Ty = = w5,
Yru = 7S Naor

where covp is the finite-population covariance taken over the set F.1°

Proof: First, we show that

VH,ANF _ VHF
Nanr Np

TANF JAOF,H =1F dpy = (C.15)

By definition, 75 CZF,H = (vgrp/drn) X (dpu/Nr) = vy r/Np. The same argument
demonstrates that T4nr danra = Viranr/Na. We conclude that (i) <= (ii).
Next, we show that (ii) is equivalent to (ii7). We can use the relationship between

7r and the 7;, Equation C.14, to deduce that

TF dF,H = ZTz’ di,H = Np [?F JF,H + COVF(Ti,dZ‘,H)]. (016)
iEF

Dividing the left-most and right-most sides by Ng, we conclude that

TF CZF,H =7TF CZF’H + COVF<7'¢, dz,H) (Cl?)

10We define the finite-population covariance to have a denominator of Nz; this differs from some
other authors, who define the finite-population covariance to have Ng — 1 in the denominator.
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The same argument shows that

CZAOF,H TANF = T ANF CZADF,H + covanp(Ti, di i ). (C.18)

So we conclude that (i1) <= (ii).

Finally, we show that (iv) is equivalent to (). In Appendix A, showed that
ypn = vmr (Equation A.3). Dividing both sides by Np, we have 73y = vir/Nu,
which is the right-hand side of the identity in (7). Similarly, starting with the left-hand

side of the identity in (7), we have

+ ot
YH,ANF Zj UHA;NF Zj Yanre Zj Ya,nrH Na;nr
Nanr > ;Najar D2 Najor > Nanr

(C.19)

So we conclude that (i) < (iv).

Since (i) <= (i1) and (i) <= (ii1), it follows that (i) <= (¢ii). Furthermore,
since (i) <= (iv), it follows that (iv) is equivalent to (i7) and (7ii). |

Result C.3 shows that the probe alter condition can be expressed in many equiv-
alent ways. One of these alternate expressions is especially useful because it leads to
an empirical check of the probe alter condition that future scale-up studies can imple-
ment. This empirical check is a direct consequence of Result C.4, below. Intuitively,
Result C.4 and the empirical check are a consequence of the identity in Equation 1,
which says that in-reports from the perspective of H are also out-reports from the

perspective of F.

Result C.4 Suppose that the precision of out-reports from the frame population is

the same as the precision of the out-reports from AN F:

+ -
Yru _ YanrH

(C.20)
YF.H YANF,H
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Then the probe alter condition (C.6) is satisfied if and only if

YrH = YAnF.H- (C.21)

Proof: First, note that, by Result C.3, the probe alter condition is equivalent to

—+
gt — > Ya,nrm Na;or
FH —
Z] NAjﬂF

(C.22)

Since gjjm FH = y;;jm pir/Na,nr for all j, the right-hand side of Equation C.22 is equal

to gj;m F 17> eaning that the probe alter condition is also equivalent to

?7;1{ = g:ZOF,H' (0-23)
Second, note that the assumption in Equation C.20 can be re-written as

=+ =+
Yra  YaAnFrH

R (C.24)
YrH YANF,H

by multiplying the left-hand side by %—i and the right-hand side by %ﬁ. So we are left
with the task of showing that if Equation C.24 is true, then Equation C.23 is satisfied
if and only if Equation C.21 is satisfied. But this is the case, since Equation C.23
equates the numerators of the two fractions in Equation C.24 and Equation C.21
equates the denominators of the two fractions in Equation C.24. Two fractions that
are equal will have equal numerators if and only if they have equal denominators.
(Formally, if a/b = ¢/d then a = ¢ if and only if b = d.) |

The implication of Result C.4 is that if (i) researchers design the probe alters
so that the frame population sample sp can be used to estimate yanppm; and (ii)

researchers assume that the precision of out-reports from the frame population is the
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same as the precision of out-reports from AN F, then they can evaluate how well the
probe alter condition is satisfied empirically by comparing @F 5 and ¥ ANF.H -

Finally, we can foresee four practical problems that might arise when researchers
try to estimate vy p. First, researchers might not be able to choose the probe alters
to satisfy the probe alter condition (Equation C.6) because of limited information
about the true visibility of the hidden population with respect to different social
groups. A second problem might arise if researchers are not able to choose the probe
alters to satisfy the reporting condition (Equation C.5) because of limited information
about the hidden population’s awareness about visibility. A third problem might
arise due to errors in administrative records that would cause researchers to have
incorrect information about the size of the multiset of probe alters on the frame
(Nanr). Finally, a fourth problem might arise due to errors in the sampling method
researchers use. Fortunately, as we show in Online Appendix D (Result D.6), it is
possible to quantify the effect of these problems on the resulting estimates. In some

cases they can cancel out, but in other cases they magnify each other.

C.5 Guidance for choosing the probe alters for the game of

contacts, A

Turning the results in Online Appendix C into easy to follow steps for selecting the
probe alters for the game of contacts is an open and important research problem.
Here, we briefly offer three recommendations for selecting the probe alters for the
game of contacts. We realize that these recommendations may be difficult to follow
exactly in practice. Therefore, we also discuss the sensitivity of the estimators to
errors in the construction of the probe alters. Finally, we discuss one type of data

that should be collected from the frame population in order to help the researchers
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evaluate their choice of probe alters for the game of contacts.

First, we recommend that probe alters for the game of contacts be in the frame
population. For example, if the frame population is adults, we recommend that all
members of the probe alters be adults. This choice will simplify the data collection
task in the game of contacts, and for all the advice listed below, we assume that it
has been followed. If it is not possible, researchers can still use the more general
procedures developed in this Online Appendix.

Second, we recommend that the probe alters be selected such that the probe alter
condition in Result C.2 is satisfied. That is, the probe alters as a whole should be
typical of the frame population in the following way: it should be the case that the
rate at which the hidden population is visible to the probe alters is the same as the

VH,A VH,F

rate at which the hidden population is visible to the frame population (N_A = ).

For example, in a study to estimate the number of drug injectors in a city, drug
treatment counselors would be a poor choice for membership in the probe alters
because drug injectors are probably more visible to drug treatment counselors than
to typical members of the frame population. On the other hand, postal workers
would probably be a reasonable choice for membership in the probe alters because
drug injectors are probably about as visible to postal workers as they are to typical
members of the frame population.

Third, we recommend that the probe alters be selected so that the reporting
condition in Result C.2 is satisfied (Vg4 = vg 4). One way to help ensure that this
condition holds is to avoid selecting large groups that may cause recall error (Killworth
et al., 2003; Zheng et al., 2006; McCormick and Zheng, 2007; McCormick et al., 2010;
Maltiel et al., 2015). In practice it might be difficult to meet each of these three
conditions exactly, therefore we recommend a sensitivity analysis using the results in

Online Appendix D.
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Finally, the choice of probe alters for the game of contacts also has two implications
for the design of the survey of the frame population. First, if researchers wish to
estimate the degree ratio, dr, then they should design the probe alters A so that they
can be asked of both members of the hidden population sample and members of the
frame population sample (see Result C.6). Second, if researchers wish to test the probe
alter condition using the approach in Result C.4, then additional information needs to
be collected from each member of the frame population sample. For example, if one
group in the probe alters for the game of contacts is postal workers, then members

of the frame population sample should be asked if they are postal workers.

C.6 Term-by-term: ép and 75

In this section we describe how to estimate two adjustment factors: the degree ratio,

d,
§p = —oF (C.25)
drr
and the true positive rate,
Tp = L (C.26)
du,F

Estimating the degree ratio requires information from the survey of the hidden pop-
ulation and the survey of the frame population, while estimating the true positive
rate only requires information from the survey of the hidden population (Fig. C.2).
As Equations C.25 and C.26 make clear, both adjustment factors involve JH’ F SO we

first present an estimator for that quantity.

Result C.5 Suppose we have a sample sy taken from the hidden population using a

relative probability sampling design with relative probabilities of inclusion denoted cm;
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Sample of .
hidden population (sx

Sample of .
frame population (sr) > OF

Figure C.2: We estimate the true positive rate 7p using data from the survey of
the hidden population, and we estimate the degree ratio dr using the sample of the
hidden population and the sample of the frame population.

(Sec C.1). Then the estimator given by

Np ZiEsH Z]’ yi,(Aij)/(Cm)

L P S VT (20
is consistent and essentially unbiased for dy p if:
Y AnF = dH ANF, (reporting condition) (C.28)
and
danra = drp. (probe alter condition) (C.29)

Proof: From Property C.1, we can see that our estimator is consistent and

essentially unbiased for

Nr Yy anr _ Nr yr.anr (C.30)
Nanr Nu Ny Naop '
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Under the reporting condition (Equation C.28) this becomes

Nryganr  Nrdpanr

= C.31
Ny Nanr No Naor (G:31)
Finally, applying the probe alter condition in Equation C.29, we have
Np d Np d
Np @aanp _ NP ARH (C.32)
Ny Nanr Ng Np
=dgr. (C.33)
|

Result C.5 requires that reports are, in total, correct (Equation C.28). Like Re-
sult C.2, Result C.5 also requires us to know the size of the probe alters on the frame,
N nr. In some cases, this may not be readily available, but it may be reasonable to

assume that

N
Nanr = WF Na. (C.34)

Furthermore, if A is chosen so that all of its members are in F, then Ny~r = N4 and
YiA;nF = Yi,A,- In this situation, we do not need to specifically ask respondents about
connections to ANFE’; we can just ask about connections to A. Result C.5 also requires
a specific rate of connectivity between the probe alters and the hidden population
(Equation C.29). We discussed some of the consequences of these assumption in the

main text, where we made recommendations for practice (Section 4).
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C.6.1 Estimating the degree ratio, dp

We can combine our estimator for dy r (Result C.5) and our estimator for dg; (Re-

sult B.3), to estimate the degree ratio, dp.

Result C.6 The estimator

5 = dur (C.35)
drr

is consistent and essentially unbiased for 8p if dy p is consistent and essentially un-

biased for JH7F and JRF is consistent and essentially unbiased for JF,F.

Proof: This follows from the properties of a compound ratio estimator (Online
Appendix E). [ |
More concretely, combing the estimators in Result C.5 and Result B.3, results in

an estimator for gp with the following form:

NF ZiESH ZAjGAH yiv(AjnF)/(Cﬂ'lH)
~ Nager S icop enT)

0p = :
Mo Dicsr 2o Avedr Yide/ T

(C.36)

If the probe alters for the frame population and the hidden population are the
same, so that Ay = Ar = A, and if the probe alters are randomly distributed in the

frame population in the sense that

N
Nanr = Na WF, (C.37)

then we can reduce the constants in front of Equation C.36 to

Np N

Nan N

iF =4 =N (C.38)
Na Na
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In other words, when the probe alters for the frame and hidden population are the
same, and when the probe alters are randomly distributed in the frame population,
all of the factors involving the size of A drop out. This fact allows researchers to
use groups defined by first names (e.g., people named Michael) in the probe alters A,
even if the size of these groups is not known, as long as it is reasonable to assume

that A satisfies Equation C.37 (c.f., Salganik et al. (2011a)).

C.6.2 Estimating the true positive rate, 75

We can combine our estimator for vy (Result C.2) and our estimator for dy

(Result C.5) to estimate the true positive rate 7p.

Result C.7 The estimator

v
T = 2L (C.39)
du.F
1s consistent and essentially unbiased for T z'fb_\H,F 15 a consistent and essentially un-

biased estimator of vy p and if CZHJ: s a consistent and essentially unbiased estimator
Of d_H,F .

Proof: This follows directly from the properties of a compound ratio estimator
(Online Appendix E). [ |

More concretely, combing the estimator in Result C.2 and Result C.5 yields an

estimator for 7p with the following form:

P ZiESH aivAH/(Cﬂ-i)
= .
D icsy Yian /(€T3

(C.40)

All of the factors involving the size of A drop out of Equation C.40. This fact allows

researchers to use groups defined by first names (e.g., people named Michael) in the
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probe alters A, even if the size of these groups is not known (c.f., Salganik et al.

(2011b)).

C.7 Estimating the size of the hidden population, Ny

We now make use of all of the results for the individual terms we derived above to

present four different estimators for the size of the hidden population, Ny.

Result C.8 The generalized scale-up estimator given by

Ny = 201 (C.41)
UVl F
1s consistent and essentially unbiased for Ny if there are no false positive reports,

if Y is consistent and unbiased for yp g, and if vy g is consistent and essentially

unbiased for vy p.

Proof:  From the properties of a compound ratio estimator, we know that our
estimator is consistent and essentially unbiased for yp /vy r (Appendix E). By the
argument in the main text given in Section 2, leading to Equation 5, this quantity is

equal to Ng. [ |

Result C.9 The adjusted basic scale-up estimator given by

= Yrm 1

>|H

~

S
| >I‘I

(C.42)

ﬁ

1
UF P 6F F

QU

1s consistent and essentially unbiased for Ny if there are no false positive reports, and

if each of the individual estimators is consistent and essentially unbiased.

Proof: From the results in Online Appendix E, we know that this compound ratio

estimator will be consistent and essentially unbiased for yry/(dyr ¢r 0p 7r). The
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denominator is oy g by construction, leaving us with yr /Uy p. By the argument in
the main text given in Section 2, leading to Equation 5, this quantity is equal to Ng.

Result C.10 The adjusted scale-up estimator

o Gem 11
Ny =200 2 (C.43)

=~

dF,F 5F F

is consistent and essentially unbiased for Ny if there are no false positives, and if

each of the individual estimators is consistent and essentially unbiased.

Proof:  From the results in Online Appendix E, we know that this compound
ratio estimator will be consistent and essentially unbiased for yry/(dpr dp Tr). The
denominator is vy g by construction, leaving us with yg /0y . By the argument in
the main text given in Section 2, leading to Equation 5, this quantity is equal to N.

Result C.11 The adjusted scale-up estimator

~ v, 1 1
Ny=220 - — % (C.44)
dF,F 5F TF
1s consistent and essentially unbiased for Ny if each of the individual estimators is

consistent and essentially unbiased.

Proof: From the results in Online Appendix E, we know that this compound ratio
estimator will be consistent and essentially unbiased for (yr g 1r)/(drr 6F Tr). The
numerator is g ; by construction and the product of the denominators is Uy g by
construction, leaving us with y}, 1/ r. By the argument in Online Appendix A this

quantity is equal to Ng. [ |
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D Sensitivity analysis

All of the estimators that we propose require that specific conditions hold in order
to produce consistent and essentially unbiased estimates. These conditions can be
divided into four groups: (1) survey construction, (2) reporting behavior, (3) network
structure, and (4) sampling. In many practical settings, we expect that researchers
may not be confident that these conditions hold perfectly. Therefore, in this appendix,
we derive results that enable researchers to assess the sensitivity of their estimates
to violations of all four types of conditions. First, in Section D.1, we develop a
results that help researchers assess sensitivity to survey construction, reporting, and
network structure; then, in Section D.2, we turn to results that help researchers
assess sensitivity to sampling problems. Finally, in Section D.3, we combine all of the
sensitivity results to derive expressions that enable researchers to conduct sensitivity

analyses that simultaneously account for all of the conditions.

D.1 Sensitivity to non-sampling conditions: survey construc-

tion, reporting behavior, and network structure

Most estimators that we consider depend on conditions related to survey construc-
tion (for example, choosing the probe alters for the known population method) and
to reporting (for example, the assumption that respondents make accurate aggregate
reports about the probe alters); furthermore, the basic scale-up estimator is sensitive
to conditions about network structure (for example, the relative size of hidden popu-
lation and frame population members’ personal networks). In this section, we develop
sensitivity results for these nonsampling conditions. First, Result D.1 shows how one
of these estimators (ﬁq, r) is impacted by violations of the conditions it depends upon.

Next, using Result D.1 as a template, Table D.1 provides similar expressions for all
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of the estimators we discuss in the main text.

Result D.1 Suppose that J/\me, the researcher’s estimate of N gnp, 1S incorrect, so
that NAQF = ¢1 - Nanp. Suppose also that the reporting condition (Equation C.5)

of Result C.2 is incorrect, so that Vg anr = C2 - Vg anr. Finally, suppose that the

VH,ANF
Nanr

VH,F

i Call the estimator under
F

probe alter condition is incorrect, so that

:CS-

. oy o~k Kk . . . .
these imperfect conditions vy p. Then vy o is consistent and essentially unbiased for

630162 g instead of Vg p.

Proof: Under the assumptions listed above, we can write the new estimator as

[rpi— l Nr Z’iEsH Zj 5i,Aij/(CWZ-)
P e Naor D icsy 1/ (cmi)

(D.1)

We follow the same steps as the proof of Result C.2, but each time we use one of
our assumptions, the associated error is carried with it. So our estimator 6}7 o 1s

consistent and essentially unbiased for

I Nrp Ugar ¢ Np vganr 3¢ Np vgr

— — = ) D.2
c1 Nanr Ny c1t Nanr Ny c1 Nanr Nu (D-2)

“-22 Since Uy g is consistent and essentialy

In words, the estimand is now incorrect by =

unbiased for vp g, we conclude that 5}7 g 1s consistent and essentially unbiased for
“20pp. Note that if the assumptions needed for Result C.2 hold, then ¢; = 1,
co = 1, and ¢35 = 1, giving us the original result. [ |

Table D.1 shows results analogous to Result D.1 for all of the estimators we
propose. We do not prove each one individually, since the derivations all follow the
pattern of Result D.1 very closely. Researchers who wish to understand the how their
estimates are affected by the assumptions they make can use Table D.1 to conduct a

sensitivity analysis. Note that any problems with the sampling design could result in

A34



problems with the estimates that are not captured by the results in Table D.1. These

sampling problems are the subject of the next section.

D.2 Sensitivity to sampling problems

All of the estimators we discuss throughout this paper rely upon assumptions about
the sampling procedure that researchers use to obtain their data. In this section, we
develop sensitivity results that enable researchers to assess how violations of these
sampling assumptions will impact the resulting estimates. First, we investigate the
sensitivity of the estimator ypy from a probability sample (Online Appendix B.1),
and, next, we investigate the estimator %H Anr from relative probability sample (On-
line Appendix C.1).

For both estimators, we investigate how estimates are affected by differences be-
tween the inclusion probabilities that researchers use to analyze their data and the
true inclusion probabilities that come from the sampling mechanism. These problems
could arise if the sampling design is not perfectly executed, or if there is a problem

with the information underlying the sampling design.

D.2.1 Probability samples

First, we must define imperfect sampling weights.

Imperfect sampling weights. Suppose a researcher obtains a probability sample
sp from the frame population F (Online Appendix B.1). Let I; be the random
variable that assumes the value 1 when unit ¢ € F' is included in the sample sg, and
0 otherwise. Let m; = E[[;] be the true probability of inclusion for unit i € F', and let
w; = ﬂi be the corresponding design weight for unit :. We say that researchers have

imperfect sampling weights when researchers use imperfect estimates of the inclusion
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Estimator Tmperfect assump- Effective estimand
tions

EEF (Result B.3) (i) Ny=c Ny @a drr
(ii) CZ.A,F =C2 gF,F

(ili) yra = c3 dpa

(AiU,p (Result B.4) (i) Ni=c Ny 2% qpp

c1

(11) d_'A,I-‘ = C2 d_[;_’[-'

(iil) ypa = c3 dpa

qZ)F (Result B6) (1) CF,F ~ Cp JF,F % ¢F

(11) CzU,F ~> Cy diU.’F

6H,F (Result 02) (1) NAQF = cgch EH,F
c1 Naop

(i) Om,anr =
C2 VH ANF

(iii) VH,ANF __ VH,F

Nanr 3 Nr

0r (Result C.6) (i) dup ~ c1 dyr a s

(ii) JF,F ~ Co JF,F

?F (Result C?) (1) /Zi;H’F ~ Cp 'DH,F = TF

(11) JH,F ~3 Co CzH,F

NH (Result CS) (1) /Zi;H’F ~ Cp ZjH,F é NH

Ny (Result C.10) (i) Ep_p ~ ey dpp Py 32 = Nu

(11) S\F ~ Co (SF

(lll) ,’FF ~ C3 TR

Table D.1: Sensitivity of estimators to nonsampling assumptions. The first column
lists the most important estimators we discuss in the main text and appendixes. The
consistency and approximate unbiasedness of each estimator relies upon nonsampling
conditions being satisfied. These conditions are given in the second column, with
a modification: we add a constant to each condition; if the constant is 1, then the
original condition is satisfied. The estimand is then effectively changed to the quantity
listed in the third column. (NB: we use the symbol ~~ as a shorthand for ‘is consistent

and essentially unbiased for’.) For example, the first row shows CZR r and the three
conditions that the estimator in Result B.3 relies upon. Suppose that the first and
third hold, so that ¢; = 1 and ¢3 = 1, but that the second does not; instead, the probe
alters A have been chosen so that CZAF =11 JF,F. Then ¢y = 1.1. Looking at the
third column, we can see that our estimator will then be consistent and essentially
unbiased for 1.1 x JF,F instead of JF,F.



probabilities 7, and the corresponding design weights w} = Wi; Note that we assume
that both the true and the imperfect weights satisfy m; > 0 and «, > 0 for all 7.

The first result, Result D.2, concerns researchers who obtain a probability sample,
but who estimate yr y imperfect sampling weights.

Result D.2 shows the impact that imperfect sampling weights have on estimates

of yp g from a probability sample.

Result D.2 Suppose researchers have obtained a probability sample sg, but that they

have imperfect sampling weights. Call the imperfect sampling weights w} = %, call
the true weights w; = +, and define ¢; = Iwu—; = 5. Cdl Ypy = Y ics, Vinw; the

estimator for yp g using the imperfect weights. Then
bias(yy i) = Nelypu(€ — 1) 4 covr(yim, €)]. (D.3)

where € = 5~ Y icr €i» and covp(-,-) is the finite population unit covariance.

Proof: We can write the bias in the estimator ¥, ;; as

biaS[Z//\IF,H] = E[:/U\IFH] — YFH (D.4)
= Z wiE L]y i — ZyzH (D.5)
i€F iEF
:ZﬂyiH_ZyiH (D.6)
Lt 7" A ’
ieF t =

= yinle —1). (D.7)

i€EF

Now, recall that, for any a; and b;,

Z a; bz = NF [C_LZ_) + COVF(CLi, bz)} y (DS)

icF
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where @ and b are the mean values of a and b, and covy(as, b;) is the finite population

unit covariance between a; and b;. Applying this fact to Equation D.7, we have

bias[yp ;] = Z Yim (e — 1) (D.9)
i€k

= Nr [Jru(e = 1) + cove(ysm e — 1)] (D.10)

:NF [gF,H(E_ 1) +COVF(y¢’H,€¢)] . (Dll)

|

In order to further understand Result D.2, it is helpful to use the identity

covp(Yim, €) = corp(Yim, €) sdr(yig) sdr(e;), (D.12)

where sdp(-) is the unit finite-population standard deviation, and corp(y; m,€;) is the
correlation between the y; gy and the ¢;. Substituting this identity into Equation D.3

yields

bias[@\’EH] = Np [yru(€ — 1)+ corp(yim, €) sdr(yim) sdr(e;)] . (D.13)

Equation D.13 provides a qualitative understanding for when errors in the weights
will be more or less problematic. Several of the terms will typically be beyond the
researcher’s control: Np, gy, and sdp(y; m) are all properties of the population
being studied. The remaining terms, however, are related to errors in the weights.
The € — 1 term says that the bias will be minimized when % is close to 1 for all

i

i. The sdp(e;) term says that the bias will be reduced when the 7 values have low

variance—i.e., when deviations from the correct weight value do not vary between

units. And, finally, the corp(y; u,€;) term says that bias is lower in absolute value
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when errors in the weights are not related to the quantity being measured.

As we will see, it will be helpful to re-express Result D.2 in one additional way.
This re-expression highlights the similarities between several of the sensitivity results
we derive in this section. This final version of Result D.2 relies upon a quantity,
K, which serves as an index for the amount of error in the weights. First, note
that sdp(€;) = € cvp(e;), where cv(e;) is the coefficient of variation (i.e., the standard
deviation divided by the mean), and, likewise, sdp(yin) = Yrua cvp(yinm). Now,
define the index Kp = corp(y; g)cvr(yim)cvr(e). K can be positive, negative, or
zero. When the weights are exactly correct (i.e., m, = m; for all i), Kp = 0; on the
other hand, when there are large errors in the weights, K will be far from 0.1

Using K enables us to re-write Equation D.13 as

bias[ylF,H] = E[?//\,FH] —yra = Nr [Yra(€ = 1) + yru € Kr] (D.14)
< E[@\IF,H] :yEH—{—yF,H(E— 1)+yF,H EKF (D15)
=yrnu € (1+ Kp) (D.16)

Therefore, Result D.2 directly implies Corollary D.3.

Corollary D.3 From Result D.2, we also have

Ypg — Yru - € (1+ Kp), (D.17)

where — means ‘is consistent and unbiased for,” and Kr = corr(y; m, €;) cvr(Y;.g ) cvp(€;).
) 1,41 ;

1 K is similar to the identity in Equation D.12, except that it involves the coefficient of variation
instead of the standard deviation. This is convenient, because the coefficient of variation is unitless,
making Kr unitless (i.e., it does not depend on the scale of the particular quantity being estimated).
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D.2.2 Relative probability samples

We now turn to the estimator for the average visibility of hidden population members
(0mr). This estimator turns out to be more complex than the estimator we investi-
gated in the previous section. In order to derive complete sensitivity results for the
estimator 51{, F, it is useful to first understand the sensitivity of the estimator for the
average reported visibility of hidden population members to the probe alters, 0z _snr
(see Online Appendix C.4). %\H, AnF turns out to be the only part of estimating vy
that is sensitive to imperfections in sampling.

Since visibility will typically be estimated from a relative probability sample,
Result D.4 concerns researchers who obtain a relative probability sample but make
estimates of Oy _4nr using what we call imperfect relative sampling weights. We define

imperfect relative sampling weights precisely in the next paragraph, and then we

present Result D .4.

Imperfect relative sampling weights. Suppose a researcher obtains a relative
probability sample sy from a population H (Online Appendix C.1). Let I; be the
random variable that assumes the value 1 when unit ¢ € H is included in the sample
sy, and 0 otherwise, and let m; = E[[;]. We say that researchers have imperfect rel-
ative sampling weights when the true m; are not known and, instead, researchers use
imperfect estimates of the relative inclusion probabilities ¢'7}, where ¢’ is some un-
known constant, and the corresponding imperfect relative probability design weights
w; = # Note that we assume that both the true and the imperfect weights satisfy

m; > 0 and 7, > 0 for all 7.

Result D.4 Suppose researchers have obtained a relative probability sample sy, but

that the researchers have imperfect relative sampling weights. Call the imperfect sam-
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pling weights w;, = ﬁ, and define ¢; = Z. Call the estimator for Oy _anr (the reported

T

AN

-~/
visibilities; see Section C.2) using the imperfect relative sampling weights Uy anp:

2 Dicsy 245 Ui/ (€M)

= D.1
UH,.AﬂF ZigSH 1/(0,71_2) ( 8)

Then

~/

~ 0 - cov(D N
biaS(@H,AmF) = COUH(UZAQREZ) - ( H}G?Fy i) , (D.19)
_ H

bias from ratio estimator

-

Vv
bias from incorrect weights

where € = NLHZZE}I €i; ]\Af}{ = D icsy Wis Ny = L3 iem €5 cou(:) is the covariance
taken with respect to the sampling distribution; and covg(-) is the finite population

unit covariance among hidden population members.

Proof: The classic result of Hartley and Ross (1954) (see also Sarndal et al.,

1992, Result 5.6.1) shows that the expected value of the estimator in Equation D.18

is
1~ = N7
E[;):\’ = E[ZiESH Ww;0; AnF] B COV(“H,AmF> Ny) (D.20)
H’AQF E[ZiesH w;] ]E[ZiGSH w’i] ’

where the covariance is taken with respect to the sampling distribution. Now, note

that

B[N wl] =B Ll =E(Y L= Y =Y e =Ny (D2)
i€H ¢

i€sy i€H i€H t i€EH
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Therefore, we substitute Ny, for the denominator of the second term of Equation D.20,

which produces

~/ ~
=4 E[ZZESH wﬁ’LAOF] COV(ﬁH,AmFa Ny)
E[UH,.AQF] = E[Z w(] - N]/'{ :
1ESH

2

(D.22)

We do not substitute Ny, for the denominator of the first term, because we will now
see that we can instead produce a simpler expression.

The remainder of the proof focuses on the first term. Note that

T -
E wvz.AﬂF E ]wvaﬁF - E Iz o ,UzAﬁF E C7T/ zAﬂF__ E EUzAﬂFa

1€y i€H i€H i€H v i€H

(D.23)

and also that

B wi] =E[> Lul] =E[>_ I c;,] - Z CZ = Ze (D.24)

i€sy i€eH i€H ¢
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The bias of the estimator in Equation D.18 is therefore

~ ~

bias(@H,AmF) = E[EH,AQF] - EH,AHF (D.25)
= -~ .
_ ZieH €;0; ANF B COV(UH,AﬂFv Ny) B ZieH Vi, ANF (D.26)
dicn €i Ny Ny '
~/ ~
_ (ZzEH €U;, ANF _ ZieH 6i,AﬂF) _ COV(UH,AﬂFaNJ/‘I) (D.27)
ZieH € Ny N;{ '

- - =/ -~
B >icn €l AnF — NLH > icn Vi AnF D e €i _ COV(UH,AmF: Ny)
ZieH € Ny

(D.28)

~/ o~
o cov (0, anF €;) COV(”H,AmF: Ny)
= — N ;

(D.29)

€

where covy(+, -) is the finite-population unit variance among hidden population mem-
bers.

[ |

/_v

Result D.4 shows that the bias in the estimator vy 4~p with imperfect relative

probability weights is the sum of two terms: one term that arises due to intrinsic

bias in any ratio estimator, and one term that arises due to differences between

the imperfect weights and the true weights. A large literature shows that, in many

practical situations, the intrinsic bias in a ratio estimator will tend to be very small

(see, for example, Online Appendix E and also Sarndal et al. (1992, Chap. 5)). When

this intrinsic ratio bias is negligible, Result D.4 shows that the bias in the estimator

for 0 _anr with imperfect weights can be approximated by

= _ covy (Ui anr, €i)

bias(0y aqp) & . (D.30)
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Similar to the discussion of Result D.2, we can obtain additional insight into Equa-
tion D.30 by using the fact that covy (0; anr, €;) = corg (s anr, €) sdu (V; anr) sdu(€:),
where sdy(+) is the unit finite-population standard deviation, and cory (0; anr, €;) is
the correlation between the y; and ¢;. Substituting this identity into Equation D.30
yields

L ~ ~ sdp (€
bias(0y gnp) & cory (Vi anr, €) SdH(Ui’AmF)%. (D.31)

Equation D.31 provides a qualitative understanding of factors contributing to bias
due to imperfect relative sampling weights. One term, sdy(0; anr), is a property of
the population being studied and will typically be beyond the researcher’s control.
The other two terms are related to errors in the weights: first, the factor % is the
coefficient of variation in the ¢;; it will be minimized when the standard deviation of
the ¢; is small, relative to the mean; that is, it will be minimized when the errors in
the weights are uniform. Second, the magnitude of cory (; anr,€;) will be minimized
when there is no relationship between the imperfections in the weights, ¢;, and the
quantity of interest, U; onp.

Next, note that sdg (0; anr) = Oganr Vi (0ianr), where cvy (9; anr) is the coef-

ficient of variation. Equation D.31 can therefore be re-arranged to yield

~/

bias(0 g anp) ~ Vn.anr Ka, (D.32)

where we have defined Ky = cory (0; anr, €;)cvu (0;anr)cvu(€;) as an index for the
amount of error in the imperfect weights.
Using the index Ky helps to clarify the meaning of the ¢; in Result D.4. It

s

may seem unintuitive to define ¢; = 7, since the result assumes that neither m; or
1
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7, is known. But, we note that the Ky in Expression D.32 is not impacted if ¢; are
multiplied by a constant. Therefore, if researchers find it more natural to work with a
version of ¢; that involves multiplying all of the 7} or ; by a constant, then Result D.4
still applies. For example, imagine that a researcher has sampled from the hidden
population using respondent-driven sampling, and then makes estimates under the
assumption that respondents’ inclusion probabilities are proportional to their degrees
(m! o d;). This researcher might wonder how her estimate would be impacted if
this sampling assumption was incorrect (7, k d;). In this case, the researcher could
then make the necessary assumptions and calculate Ky assuming that, for example,
(m! o< dY), or (m} oc d?).

Finally, since E[EH,AFWF] = biaS(5H7AmF) + 5H7 AnF, we can conclude that

)

i

E[og anr] & Oganr(1+ Kg). (D.33)

Therefore, Result D.2 directly implies Corollary D.3.

Corollary D.5 From Result D.2, we also have

~

Oy anr ~ Omanr(1+ Ki), (D.34)

where ~» means ‘is consistent and essentially unbiased for,” and Ky = corg (0; anr, €;) cvn (s anr) com (€;,
1s an index for the amount of error in the imperfect relative sampling weights.
D.2.3 Summary and results for all estimators

Table D.2 uses K, the index for the magnitude of errors introduced by imperfect
weights, to summarize the results of our investigation into the impact that imperfect

sampling weights will have on three quantities that play a central role in the estimators
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Quantity Relevant results Effective estimand
under imperfect sampling

Upa = Dicsy YiA/ T (i) drr (Result B.3) ypa-€-[14+ Kp]

)

(11) dU,F (Result B4)

~

(iii) ¢r (Result B.6)

~

(iv) 0r (Result C.6)

Y = Ziesp Yim /T, (i) Yyrg (Result B.1) yrg - € [1+ Kp)]
< Sicay dnr /7)o A ]
VHANF = %qu/éz,w;) (i) vpr (Result C.2) Oranr - [1+ K]

Table D.2: Summary of estimators’ sensitivity to imperfect sampling. Here, sp is a
probability sample, sy is a relative probability sample, and the K's are indices for the
magnitude of errors in the imperfect weights; Kr, = corp(€;, yi a) cvr(€) cvp(yia);
Kp, = corp(€;, yim) cvi(e) eve(yin); and Ky = cory(€;, U anr) cvu (&) cvu (0 anr).
When the weights are exactly correct, each K is equal to 0.

=~/
we consider throughout this paper: ¥ 4, Y g, and 0y 4-p. The results in Table D.2

show how the magnitude of the index K is directly related to the bias that results

from imperfect sampling weights.

D.3 Combined sensitivity results

We now combine our analysis of sensitivity to reporting, network structure, and survey
construction (Section D.2.1) and sensitivity to sampling problems (Section D.2.2) to
derive results that describe the sensitivity of the generalized and the modified basic
scale-up estimator to all of the conditions they rely upon. Roughly, what we show
below is that the results about estimators’ sensitivity to nonsampling conditions (such
as survey construction and reporting) and results about estimators’ sensitivity to

sampling conditions combine naturally.

A46



D.3.1 Generalized scale-up

In this section, we derive an expression for the sensitivity of the generalized scale-up
estimator to all of the conditions it relies upon. First, we derive a combined sensitivity
result for vy (Result D.6). We then make use of the combined sensitivity result for

EJ_\}LF to derive a combined sensitivity result for the generalized scale-up estimator

(Result D.7 and Corollary D.8).

Result D.6 Suppose researchers have obtained a relative probability sample sy to

estimate Vg p, but that the researchers have imperfect relative sampling weights. Call

the imperfect relative sampling weights wi? = #, call the true probabilities of in-
H _
clusion m;, and define el = :,H Call the estimator for Uy anp using the imperfect

~
relative sampling weights Uy 4np-

Suppose also that the researcher’s estimate of N anp is incorrect, so that ]\A/'AQF =
c1- Nanp. Suppose that the reporting condition (Equation C.5) of Result C.2 is incor-

rect, so that Vg anr = €2 - Va anp. Finally, suppose that the probe alter condition is

VH,ANF
Nanr

= c3- ”ﬁf . Call the estimator for vy p under these imperfect

incorrect, so that
L, . ~Ix
conditions Uy p.
Then

~I% _ C3 Co
Vg r ~ VHF

(1+ Kp) (D.35)

1

where ~ means ‘is consistent and essentially unbiased for’, and Ky = cory (0; anr, €17) cvy (05 anr ) cvn (€

Proof: First, we note that Corollary D.5 shows that

~

= = ,6H,.AﬁF
Vg anp ~ Vg anr(1+ Ky) = ———

N Ko, (D.36)
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The remainder of the proof follows the argument from Results D.1 and C.2 very
closely. Under the assumptions listed above, we can write the imperfect estimator
/%

Uy p as

A~k 1 N Fo=

Vpp=— —"10 D.37
H,F o N_AmF H,ANF ( )

We follow the same steps as the proof of Results C.2, but each time we use one of
our assumptions, the associated error is carried with it. So our estimator 5; F s

consistent and essentially unbiased for

i 1 Np Uganr

Ve~ (14 KH)E Nor Ny (D.38)
c2 Nr vganr
— (14 Ky)= A0 D.39
( H)Cl Nanr Ny (D-39)
N
= (14 k)22 2 Tir (D.40)

¢t Nar Ny

In words, the estimand is now incorrect by (1 + K H)% Since vy p is consistent
. . _ % . . .
and essentialy unbiased for vy r, we conclude that vy » is consistent and essentially

unbiased for (1 + Kp)“-2vy r. Note that if the conditions needed for Result C.2

C1

hold, then ¢; = 1, ¢co = 1, ¢c3 = 1, and Ky = 0, then we are left with our original

result for vz (Result C.2). [

Result D.7 Suppose researchers have obtained a probability sample sp to estimate

yrm, but that the researchers have imperfect sampling weights. Call the imperfect

ok

F 1 F _ —
F and define €; = —x =

sampling weights w;" = Tr,%, call the true weights wl’

D =

Ky

s~

I1F
Z} . Call the estimator for ypm under these imperfect conditions Y .

K2

Suppose also researchers have also obtained a relative probability sample sy to es-

timate Vg p but that the researchers have imperfect relative sampling weights. Call the
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imperfect relative sampling weights wif = C,ﬂ%, call the true probabilities of inclusion

H
i, and define el = 77:7,,. Suppose also that the researcher’s estimate of N gnp is incor-
i

rect, so that NAOF = ¢1 - Nanr. Suppose that the reporting condition (Equation C.5)

of Result C.2 is incorrect, so that Vg anr = C2 - Vg anp. Finally, suppose that the

probe alter condition is incorrect, so that % = c3- vﬁf . Call the estimator for

_ . oy =~k
vp,r under these imperfect conditions vy p.

Finally, suppose that there are false positive reports, so that y;{H = npyru. Let

the generalized scale-up estimator for Ny in this situation be ]V}} = 81 Then
VH F
~ 1+ K 1
N CUFER) o 1 (D.41)

1+ Ky c3conp

‘o - - - P N | F. _
where ~ means ‘is consistent and essentially unbiased for’; € = 7 Yoier€i s Kg=

cory (0, anr, ef)ch(ﬁi7AmF)ch(efI),' and Kp, = corp(Yi m, ef)cvp(yiﬂ)cvp(ef).

Proof: The generalized scale-up estimator is formed from a ratio of estimators,
one in the numerator (7 ) and one in the denominator (v ). We have already de-
rived results for each of the numerator and the denominator separately; our approach
will therefore be to combine them. We must account for the fact that, in addition to
the assumptions required for the estimator of the numerator and the denominator,
the generalized scale-up estimator also requires the additional condition that there
are no false positive reports.

We begin with the denominator, 6}1, r. Result D.6 shows that

~I% _ C3 Co
Vg, r ~ VHF

(14 Kn), (D.42)

where Ky = corg(0; anr, €)ev(9; anr)ev(el). Thus, Expression D.42 shows the

sensitivity of the denominator of the generalized scale-up estimator to violations of
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all of the conditions it relies upon.
Turning now to the numerator of the generalized scale-up estimator, Corollary D.3

shows that

?/]F,H ~ YFH "€ (1+ Kr), (D.43)

where K, = corp(y; m, €/ )evr(yim)evr(el). Thus, Expression D.43 shows sensitivity
of the numerator of the generalized scale-up estimator to violations of all of the
conditions it relies upon.

Using the fact that a ratio estimator is consistent and essentially unbiased for the
ratio of the estimand of its numerator and denominator (see Online Appendix E and

Sarndal et al. (1992, chap. 5)), we therefore have

&1+ Kp) & yru
1+ Ky c3 C27_)H,F'

N~ (D.44)

Finally, by definition we have yry = y} 1/nr, which we can substitute into Expres-

sion D.44 to produce

F1+Kp) o  Yrm
1+ Ky c3cnppr

Ngw

(D.45)

By the argument in Section 2 and Appendix A, Ny = y}r 5/ VUm.F. Substituting Ny

for y ;;/Tn,r in the expression above completes the proof. [

Corollary D.8 From Result D.7, it follows that, for the generalized scale-up estima-
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tor,

-~ 1+KH C3 Co

Ix
Nii - =5 : - e~ Np. (D.46)
€ (1 + KFl) Ccq
—_— ~~~
sampling visibility ~ mo false
conditions estimator ~Positives

conditions condition

Researchers who wish to conduct a sensitivity analysis for estimates made using
the generalized scale-up method can therefore (1) assume values or ranges of values
for Ky, €, K, c1, ¢2, c3, and np and (2) use Corollary D.8 to determine the resulting
values of Ny. Thus, researchers can use this approach to explore the sensitivity of

their estimates to all of the assumptions they had to make.

D.3.2 Modified basic scale-up

In this section, we develop an expression for the sensitivity of the modified basic
scale-up estimator to all of the conditions it relies upon. First, we derive a combined
sensitivity result for EF r (Result D.9). We then make use of the combined sensitivity
result for /dlp r to derive a combined sensitivity result for the modified basic scale-up

estimator (Result D.10 and Corollary D.11).

Result D.9 Suppose researchers have obtained a probability sample sp to estimate

JEF; however, suppose that the researchers have imperfect sampling weights. Call the

imperfect sampling weights wif’ = #, call the true weights wf = (;%F? and define

F
el = ::,F Let the estimator for yr.a using these imperfect weights be Yp 4.

Suppose also that researchers have chosen a set of probe alters A in order to use
the known population method (Result B.3). However, suppose that the researcher’s
estimate of N4 is incorrect, so that NA = ¢ - Ny. Suppose also that the reporting

condition (Equation B.6) of Result B.3 is incorrect, so that yp o = co - dp 4. Finally,
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suppose that the probe alter condition (Equation B.7) of Result B.3 is incorrect, so

that (ZA,F = c3 - JEF. Call the estimator for JF,F under these imperfect conditions
%
dF,F-

Let the known population estimator for Jp,p (Result B.3) under these imperfect

%

conditions be dp . Then

% Co C3

dpp — e"(1+ Kp,) - -dpF, (D.47)

1

where — means ‘is consistent and unbiased for’, and Kr, = corp(y; 4, €) cor(yi ) cvp(el).

%
Proof: Under the assumptions above, we can write the imperfect estimator dp

as
dpp=— 22 (D.48)
Using the exact same argument as Result D.2 and Corollary D.3, we have
Upa = € (L+ Kp,) - ypa. (D.49)
%
Applying this to the imperfect estimator dp , we have
A~ _F 1 yF,.A __F 1 _
dpp—€ (1+Kp) — - ——=€ (14 Kp,)-— -Ura. (D.50)
, cg Ny C1

We will obtain the rest of the result by following the argument of Result B.3 closely,

but carrying the errors from the conditions that are not met through with each step.
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First, by assumption, yr 4 = cadp 4, yielding

% C _
dpp — & (1+ Kg,) - C—2 ~dp.a. (D.51)
1

Next, again by assumption, d FA= csd F.F, SO We have

I Co C _

C1
which is our result. [ |

Result D.10 Suppose researchers have obtained a probability sample sg to estimate
yra and dpp in order to produce estimates from the modified basic scale-up method.

Howewver, suppose that the researchers have imperfect sampling weights. Call the

imperfect sampling weights wif' = #, call the true weights wf = C%F’ and define
F IF
el = :fF = ZiF . Let the estimator for ypu using these imperfect weights be Y 5.

Suppose also that researchers have chosen a set of probe alters A in order to use
the known population method (Result B.3). However, suppose that the researcher’s
estimate of N4 is incorrect, so that NA = ¢y - N4. Suppose also that the reporting
condition (Equation B.6) of Result B.3 is incorrect, so that ypa = ¢2 - dp 4. Suppose
also that the probe alter condition (Equation B.7) of Result B.3 is incorrect, so that
JA,F =c3- JF,F. Call the estimator for CZF,F under these imperfect conditions j;F

Finally, suppose that the basic scale-up conditions do not hold; that is, suppose
that there are false positive reports, so that y;C,H = NrYr.a; suppose that there are false
negative reports, so that vy p = TFCZH,F,' and suppose that the average personal network
size of hidden population members is not equal to the average personal network size

of frame population members, so that JHJ: = 5Fd_F7F.
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Let the modified basic scale-up estimator for Ny in this situation be

]/\7,* . /ZJIF,H
o= IOH (D.53)

~/%

dF,F

Then

e 1 + KF ) C1 TF 5F
A L 1 : - Ny, D.54
T (1+Kp) caes f ( )

where ~ means ‘is consistent and essentially unbiased for’; Kp, = corp(yi m, €F) cvp(yig) cop(el);

i
and Kg, = corp(yi s, €) cvr(yi a) cvp(el).

Proof:

The modified basic scale-up estimator is formed from a ratio of estimators for the
numerator (yr ) and denominator (dp ). We have already derived results for each
of the numerator and the denominator separately; our approach will therefore be to
combine them. We must account for the fact that, in addition to the assumptions
required for the estimator of the numerator and the denominator, the modified ba-
sic scale-up estimator also requires the additional conditions that there are no false
positive reports, that there are no false negative reports, and that the degree ratio is
one.

For the numerator, Result D.9 shows that

~k Cy C3 _

dpp — € (1+ Kp,) - ~dpp. (D.55)

1

Thus, Expression D.55 shows sensitivity of the denominator of the modified basic

scale-up estimator to violations of all of the conditions it relies upon.

Ab4



Turning now to the numerator of the modified basic scale-up estimator, Corol-

lary D.3 shows that
Urg — yrw € (1+ Kp), (D.56)

where Kr, = corp(yim, € )eve(yim)ceve(ell). Thus, Expression D.56 shows sensitivity
of the numerator of the modified basic scale-up estimator to violations of all of the
conditions it relies upon.

Using the fact that a ratio estimator is consistent and essentially unbiased for the
ratio of the estimand of its numerator and denominator (see Online Appendix E and

Sarndal et al. (1992, chap. 5)), we therefore have

(1+ Kpg,) G YrH
14+ Kp,) c2c3 dpp

N s (D.57)
Finally, by assumption, we have yppy = y;H/nF, and Uy p = CZF’F/(TF dr). Sub-

stituting these assumptions into Expression D.58 produces

(1+Kr) & 1mor Yen

]/\?I* —~
T (1+Kp) ces np  Upr

(D.58)

By the argument in Section 2 and Appendix A, Ny = y} 5/ V. F. Substituting Ny

for Yy /Tm,r in the expression above completes the proof. n

Corollary D.11 From Result D.10, it follows that, for the modified basic scale-up

estimator,

% (1+KF2)‘ €2¢  NF

H' ~ Np. (D.59)
(1 + K 1 ) 1 T OF
——— N N~
sampling known basic
conditions  Population  scale-up

conditions conditions
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Researchers who wish to conduct a sensitivity analysis for estimates made using
the generalized scale-up method can therefore (1) assume values or ranges of values
for Kg,, Kg,, ¢1, ¢, c3, Op, Tr, and np; and (2) use Corollary D.11 to determine
the resulting values of Ny. Thus, researchers can use this approach to explore the
sensitivity of their estimates to all of the assumptions they had to make, individually

and jointly.

E Approximate unbiasedness of compound ratio

estimators

E.1 Overview

Several of the estimators we propose are nonlinear, which means that they are not
design-unbiased (Sarndal et al., 1992). While ratio estimators are common in survey
sampling and the bias of these estimators is commonly regarded as insignificant (Sarn-
dal et al., 1992), several of the estimators we propose are somewhat more complex
than standard ratio estimators. In fact, all of our nonlinear estimators turn out to
all be special cases of a ratio of ratios (Table E.1), which is also known as a double

ratio estimator (Rao and Pereira, 1968). Any double ratio can be written

Ry

Ry % Y10
Ry I (E1)

If we have unbiased estimators for each of the four terms, we can estimate Ry by

S’\)
I
()

(E.2)

Y
Il
5
=0
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In this appendix we investigate when we can expect the biases in our estimators
to be small enough to be negligible; we conclude that, in practice, the bias is typically

negligible when compared to sampling and non-sampling error.

E.2 The general case

We will focus on the relative bias in our estimator, 7;. The relative bias is given by

E[ra] — Ra

B, —
d Rd

(E.3)

B, expresses the bias in our estimator 7 in terms of the true value; a relative bias
of 0.5, for example, means that our estimator is typically 0.5 times bigger than the
true value. This is a natural quantity to consider because estimators that have small
relative bias have small bias in substantive terms.

Our approach will be to follow Rao and Pereira (1968) in using a Taylor series to

form an approximation to the relative bias. This is accomplished in Result E.1.

Result E.1 (Rao and Pereira, 1968) If To, T1, }j\o, and @1 are unbiased estimators,
and |(Z1—71)/71| < 1 and |(Yy— o) /To| < 1, then the relative bias of the double ratio

estimator, By, is approzimated by

xr1?

- R , 2 2
Bi=—p—"~Bi=0C55 —Caj — G — Gom — Caogi T G + 0 +Cs
(E.4)

where Cz 5 = %ﬁﬁ) is the relative covariance between T and , and Cg = %@

Proof: Define
To — o

5~ = , E.5
= (E:5)
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with analogous definitions for dz , 0z , and o5 . We can express 74 as

N R(1+(5§1)(1+(5§0) (E 6)

Tqa = . .

(1‘+-5§O)(1<+-5§1)
The relative bias then becomes
Elry] — 140z )(1+ 9z
m:l%ilﬂ( ISR Y (E.7)
(1+35,)(1+65,)

The strategy is now to expand the two factors in the denominator and to then discard
high-order terms. What remains will be an approximation to the true relative bias.

Recall that if |z| < 1 then 1= = > 2’ and, in particular, = = 1 —2® +

2% — - ... We'll make use of this expansion for the two factors in the denominator of

Equation E.7; that is, we assume that |d5,| < 1 and |0z, | < 1. Then we have
&:Ew+%m+%M—%+%—WM—%+%—~J—1 (E.8)

If we multiply this out and retain only terms up to order 2, we obtain the following

approximation:

deE[aeac + 85,05, — 03,05, — 0,05, — 03,05, — 85,05, + 05, + 05, — &, — b5 — 02 — 2

1Yo Z0o" Yy Z0o "~ Yo 2o~ T1 171 Yo "Y1 z1 Yo

(E.9)

Since we assumed that the estimators for the individual components of r4 are unbi-

ased, we know that

E[s; ] = 0, (E.10)
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We can also determine that

Cov (/fl 3 /g\l)

Elés 6: | = —————, E.11
[ 1 y1] xlyl ( )
and, that
9 var(7)
E[2,] = (E12)
1 '1.1
Applying these relationships to Equation E.9, we find
By ~C; 5 + 05130 —Cs3 — 050750 — G35, — C@O@ + C;l + O;O, (E.13)
which is our result. |

Result E.1 is useful because it reveals the behavior of double ratio estimators
in quite general contexts. To understand what it says a bit more intuitively, note
that Result E.1 is framed in terms of the relative covariances and variances of the
estimators To, T1, 50, and ,. In the special case of simple random sampling with
replacement, we can re-write the approximation in terms of the finite population

variances and covariances and a constant, x:

Bél =K [00617310 - Cl’l,y1 - C(yo,yl - Cxo,m - Cﬂ?o,yo + Cyhxo + 050 + C:%l] ) (E'14)

where kK = (% — %), n is our sample size, and N is the size of the population. In the

case of simple random sampling, the relative bias depends upon the finite population
variances of the underlying population values and the size of our sample.
For designs other than simple random sampling, there is no analogous expression

as simple as Equation E.14. However, speaking roughly, if we have an idea that our
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sampling plan has a typical design effect (deff) for the quantities inside the square
brackets in Equation E.14, then we can see that we would simply replace the k in
Equation E.14 by (k - deff) in order to get a sense of the approximate relative bias.
Notice, also, that Result E.1 is framed largely in terms of relative covariances.
When we apply Result E.1, we will often make use of the fact that the relative

covariances can be expressed in terms of correlations and coefficients of variation as

follows:
7,y - ~y/var(Z)/var(y
’ xry ry
= pzz ev(7) ev(y), (E.16)
where pz = is the correlation between the estimators 7 and 7, and cv(Z) = V;r@ is

the coefficient of variation of the estimator 7. We will also make use of the fact that

C2 = cv(T)?

E.3 Applying Result E.1 to scale-up

We now apply Result E.1 to understand the biases in the nonlinear estimators we
propose for realistic situations. For each particular estimator, we can simplify the
expression in Result E.1. In order to do so, we first remove terms that do not appear
in the estimator itself (for example, in gp, there is no 7,). Additionally, we assume
that the estimates produced from a sample from the frame population and a sample
from the hidden population will be independent of one another, meaning that their
correlation will be 0. Table E.1 summarizes the nonlinear estimators we propose,

along with the specific version of the approximate relative bias from Result E.1 that
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applies.

Finally, in order to give a sense of the magnitude of the coefficients of variation
and correlations found in real studies, we estimated the quantities that go into the
approximate relative bias from the studies available to us. Table E.2 shows the
coefficients of variation for the estimated degree (the values of 7 for gp) in surveys
from Rwanda, the United States, and Curitiba, Brazil. Further, Tables E.3 and E.4
show the relevant coefficients of variation and pairwise correlations for all remaining
quantities using data from Curitiba, Brazil (currently, the only setting where we
have data from a sample of the hidden population). For all values in these tables,
the estimated variance of the estimators is calculated using the bootstrap methods
presented in Section F.1.

Since we have both a sample from the frame population and a sample from the
hidden population in Curitiba, we can compute numerical estimates of the bias of
each nonlinear estimator in the context of that study. We can see that in this study
bias caused by the nonlinearity of the estimator was not a big problem: in each case,
the estimated approximate bias was less than one percent of the estimate (Table E.5).

To conclude, we derived an expression for the approximate relative bias in double
ratio estimators in general. We then simplified the approximation for each specific
nonlinear estimator that we propose. Finally, we used data from a real scale-up study
in Curitiba, Brazil to estimate magnitude of the biases caused by the non-linearity
of the estimators in a specific scale-up study. From these results, we conclude that
theses estimators are essentially unbiased, and that sampling error and non-sampling

error will dominate any bias introduced by the nonlinear form of the estimators.
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&v(d) source

0.05 Rwanda
0.10 Curitiba
0.02 US

Table E.2: Estimated coefficients of variation for the average degree from 3 different
scale-up surveys. These play a role in the approximate relative bias for the estimate of
dr. Our approximation tells us that the larger these values are, the worse the relative
bias will be. The estimates were computed using the rescaled bootstrap procedure.

estimated coef. of variation

Zz’es " Yi, AnF /€T 0.08
D icsy ViAnF/CT 0.08
Diesy L/cmi 0.06

Table E.3: Estimated coefficients of variation for quantities derived from a sample
from the hidden population. These quantities play a role in the approximate relative
bias for the estimate of all of the nonlinear estimators we propose. The estimates
were computed using the respondent-driven sampling bootstrap procedure (Salganik,
2006).

F  Variance estimation and confidence intervals

In addition to producing point estimates, researchers must also produce confidence
intervals around their estimates. The procedure currently used by scale-up researchers

begins with the variance estimator proposed in Killworth et al. (1998b):

se(Ny) = (F.1)
and then produces a confidence interval:
Ny + 21_ap8e(Ny), (F.2)

where 1—a is the desired confidence level (typically 0.95), and 2,5 is the /2 quantile

of the standard Normal distribution.
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estimated correlation

(TO\F(ZZ‘GSH yz’,AmF/CWi, ZiesH @i,AmF/CWi) 0.92
COT(ZZESH yi,AﬁF/Cﬂ-i? ZiesH 1/C7T’L) 071
Cor(ZiesH 77i,AmF/C7Tiv ZiesH 1/cm;) 0.68

Table E.4: Estimated pairwise correlations for quantities derived from a sample from
the hidden population. These quantities play a role in the approximate relative bias
for the estimate of all of the nonlinear estimators we propose.

approx. rel. bias, B; estimate estimated absolute bias

TF 0.0005 0.77 0.0004
op 0.0105 0.69 0.0073
Ny 0.0026 114498.00 298.0000

Table E.5: Approximate relative bias in the estimates of the nonlinear quantities using
data taken from the Curitiba study, the point estimates produced by the Curitiba
study, and the estimated implied absolute bias. For each quantity, the bias is very
small.

Unfortunately, the variance estimator (Equation F.1) was derived from the basic
scale-up model (Equation 11), and so it suffers from the limitations of that model. In
particular, it has three main problems, none of which seem to have been appreciated
in the scale-up literature and all of which lead it to underestimate the variance in
most situations. First, the variance estimator in Equation F.1 does not include any
information about the procedure used to sample respondents, which can lead to prob-
lems when complex sampling designs, such as stratified, multi-stage designs, are used.
Second, it implicitly assumes that the researchers have learned about ZiGSF d;  in-
dependent alters, which is not true if there are barrier effects (i.e., non-random social
mixing). Finally, like virtually all variance estimators, it only provides a measure of
uncertainty introduced by sampling but not other possible sources of error.

To address the first two problems but not the third, we propose that researchers

used the rescaled bootstrap variance estimation procedure (Rao and Wu, 1988; Rao

et al., 1992; Rust and Rao, 1996) with the percentile method; a combination that, for

A64



convenience, we will refer to as the rescaled bootstrap. This procedure, described in
more detail below, has strong theoretical foundations; does not depend on the basic
scale-up model; can handle both simple and complex sample designs; and can be used
for both the basic scale-up estimator and the generalized scale-up estimator.

In addition to the theoretical reasons to prefer the rescaled bootstrap, empirically,
we find that the rescaled bootstrap produces intervals with slightly better coverage
properties in three real scale-up studies. In particular, using the internal consistency
check procedure proposed in Killworth et al. (1998a) for all groups of known size
in three real scale-up datasets—one collected via simple random sampling (McCarty
et al., 2001) and two collected via complex sample designs (Salganik et al., 2011a;
Rwanda Biomedical Center, 2012)—we produced a size estimate using the basic scale-
up estimator (Equation 12), and we produced confidence intervals using (1) the cur-
rent procedure (Equation F.1); (2) the simple bootstrap (which does not account for
complex sample designs) with the percentile method; and (3) the rescaled bootstrap
(which does account for complex sample designs) with the percentile method.

This empirical evaluation (Figure F.1) produced three main results. First, as ex-
pected, we found that the current confidence interval procedure produces intervals
with bad coverage properties: purported 95% confidence intervals had empirical cov-
erage rates of about 5%. This poor performance does not seem to have been widely
appreciated in the scale-up literature. Second, also consistent with expectation, we
found that the rescaled bootstrap produced wider intervals than both the current pro-
cedure and the simple bootstrap, especially in the case of complex sample designs.
Third, and somewhat surprisingly, the rescaled bootstrap did not work well in an
absolute sense: purported 95% confidence intervals had empirical coverage rates of
about 10%, only slightly better than the current procedure.

We speculate that there are two possible reasons for the surprisingly poor cover-
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age rates of the rescaled bootstrap. The first is bias in the basic scale-up estimator.
As described in detail in Sarndal et al. (1992, Sec 5.2), bias in an estimator can de-
grade the coverage rates for confidence intervals. For example, if Native Americans
(one of the groups in the study of McCarty et al. (2001)) have smaller personal net-
works than other Americans, then there will be a downward bias in the estimated
number of Native Americans (Equation 20). This bias will necessarily degrade the
coverage properties of any confidence interval procedure, especially if the bias ratio
<bias(NH)/se(NH)) is large (see Sarndal et al. (1992, Sec 5.2)). The second possible
reason for the surprisingly poor coverage rates could also be some unknown problem
with the rescaled bootstrap or the percentile method. Because (i) the rescaled boot-
strap and percentile method have strong theoretical foundations (Rao and Wu, 1988;
Rao et al., 1992; Rust and Rao, 1996; Efron and Tibshirani, 1993) and (ii) we expect
that the basic scale-up estimates are biased in most situations (see Equation 20),
we believe that the main reason for the poor coverage is the bias. However, we also
believe that future research should explore the properties of the rescaled bootstrap
and percentile method in greater detail.

An additional concern about these empirical results is that they only apply to the
basic scale-up estimator and not the generalized scale-up estimator. Unfortunately,
we cannot assess the performance of the rescaled bootstrap procedure when used with
the generalized scale-up estimator because the generalized scale-up estimator has not
yet been used for populations of known size.

These empirical results, and the theoretical arguments that follow, lead us to three
conclusions. First, confidence intervals from the rescaled bootstrap are preferable to
intervals from the current procedure. Second, researchers should expect that the
confidence intervals from the rescaled bootstrap procedure will be anti-conservative

(i.e., they will be too small). Third, creating confidence intervals around scale-up
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estimates is an important area for further research.

Next in Section F.1 we review the standard bootstrap and rescaled bootstrap;
describe how we applied these methods to three real scale-up datasets; and describe
the results in Figure F.1 in greater detail. Finally, in Section F.2 we describe how

researchers can use the rescaled bootstrap with the generalized scale-up estimator.

F.1 Variance estimation with a sample from I

The goal of a bootstrap variance estimation procedure is to put a confidence in-
terval around an estimate N n that is derived from a sample sp. The most stan-
dard bootstrap procedure has three steps. First, researchers generate B replicate
samples, sg), sg), e ,S%B) by randomly sampling with replacement from sgp. Sec-
ond, these replicate samples are then used to produce a set of replicate estimates,
N 1(11 ), N l(q? ), e ,]V I({B). Finally, the replicate estimates are combined to produce a con-
fidence interval; for example, by the percentile method which chooses the 2.5th and
97.5th percentiles of the B estimates (Fig. F.2) (Efron and Tibshirani, 1993).

When the original sample can be modeled as a simple random sample, this stan-
dard bootstrap procedure is appropriate. For example, consider the scale-up study
of McCarty et al. (2001) that was based on telephone survey of 1,261 Americans
selected via random digit dialing.!? We can approximate the sampling design as sim-
ple random sampling, and draw B = 10,000 replicate samples of size 1,261. In this
case the bootstrap confidence intervals are, as expected, larger than the confidence

intervals from Equation F.1, since they account for the clustering of responses with

respondent; on average, they are 2.05 times wider.

12The original data file includes 1,375 respondents. From these cases, 113 respondents who had
missing data for some of the aggregated relational data questions and 1 respondent who answered
7 for all questions (see Zheng et al. (2006)). Further, consistent with common practice (e.g., Zheng
et al. (2006)), we top coded all responses at 30, affecting 0.26% of responses.
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Figure F.1: Assessing confidence interval procedures using scale-up studies in the
United States (McCarty et al., 2001), Rwanda (Rwanda Biomedical Center, 2012),
and Curitiba, Brazil (Salganik et al., 2011a). The true size of each group is shown with
a black dot. Estimates made use the basic scale-up estimator are shown with circles.
The rescaled bootstrap confidence intervzjxés include the true group size for 3.4%, 9.1%,
and 15.0% of the groups in the US, Rwan g),S and Curitiba, respectively. The standard
bootstrap confidence intervals include the true group size for 3.4%, 9.1%, and 10.0%
of the groups. The currently used procedure (Equation F.1), contains the true group
size for 3.4%, 9.1%, and 5.0% of the groups.
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Figure F.2: Schematic of the bootstrap procedure to put a confidence interval around
Ny when there is a sample from the frame sp.

This standard bootstrap procedure, however, can perform poorly when the original
data are collected with a complex sample design (Shao, 2003). To deal with this
problem, Rust and Rao (1996) proposed the rescaled bootstrap procedure that works
well when the data are collected with a general multistage sampling design, a class of
designs that includes most designs that would be used for face-to-face scale-up surveys.
For example, it includes stratified two-stage cluster sampling with oversampling (as
was used in a recent scale-up study in Rwanda (Rwanda Biomedical Center, 2012))
and three-stage element sampling (as was used in a recent scale-up study in Curitiba,
Brazil (Salganik et al., 2011a)); a full description of the designs included in this class
is presented in Rust and Rao (1996).

The rescaled bootstrap includes two conceptual changes from the standard boot-
strap. First, it approximates the actual sampling design by a closely related one that
is much easier to work with. In particular, if we assume that primary sampling units
(PSUs) are selected with replacement and that all subsequent stages of sampling are

conducted independently each time a given PSU is selected, then we can use the
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with-replacement sampling framework in which variance estimation is much easier;
see Sarndal et al. (1992) Result 4.5.1 for a more formal version of this claim. It is
important to note that this approximation is generally conservative because with-
replacement sampling usually results in higher variance than without-replacement
sampling. Therefore, we will be estimating the variance for a design that has higher
variance than the actual design. In practice, this difference is usually small because
the sampling fraction in each stratum is usually small (Rao et al., 1992; Rust and Rao,
1996); see Sarndal et al. (1992) Section 4.6 for a more formal treatment. To estimate
the variance in this idealized with-replacement design, resampling should be done
independently in each stratum and the units that are resampled with replacement
should be entire PSUs, not respondents.

This change—resampling PSUs, not respondents—introduces the need for a sec-
ond change in the resampling procedure. It is known that the standard bootstrap
procedure is off by a factor of (n—1)/n where n is the sample size (Rao and Wu, 1988).
Thus, when the sample size is very small, the bootstrap will tend to underestimate
the variance. While this issue is typically ignored, it can become important when we
resample PSUs rather than respondents. In particular, the number of sampled PSUs
in stratum h, ny, can be small in complex sample designs. At the extreme, in a design
with two sampled PSUs per stratum, which is not uncommon, the standard bootstrap
would be expected to produce a 50% underestimate of the variance. Therefore, Rao
et al. (1992) developed the rescaled bootstrap, whereby the bootstrap sample size
is slightly smaller than the original sample size and the sample weights are rescaled
to account for this difference. Rust and Rao (1996) recommend that if the original
sample includes n;, PSUs in strata h, then researchers should resample n;, — 1 PSUs

and rescale the respondent weights by ny,/(n, — 1). That is, the weight for the j*
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person in PSU i in the b replicate sample is

b np b

where w;; is the original weight for the j unit in the " PSU, ny, is the number of
PSUs in strata h, and rz@ is the number of times the i PSU was selected in replicate
sample b.

In Figure 1, we compared the three different procedures for putting confidence in-
tervals around the basic scale-up estimator: the current procedure (Killworth et al.,
1998b), the standard bootstrap with the percentile method, and the rescaled boot-
strap with the percentile method. We made this comparison using data from scale-up
studies in the United States, Rwanda,'® and Curitiba, Brazil.'# As expected, the
rescaled bootstrap produced confidence intervals that are larger than those from the

standard bootstrap, which in turn are larger than those from the current scale-up

13The scale-up study in Rwanda used stratified two-stage cluster sampling with unequal probabil-
ity of selection across strata in order to oversample urban areas. Briefly, the sample design divided
Rwanda into five strata: Kigali City, North, East, South, and West. At the first stage, PSUs—in this
case villages—were selected with probability proportional to size and without replacement within
each stratum with oversampling in the Kigali City stratum. This approach resulted in a sample of
130 PSUs: 35 from Kigali City, 24 from East, 19 from North, 26 from South, and 26 from West. At
the second stage, 20 households were selected via simple random sampling without replacement from
each PSU in Kigali City and 15 households from each PSU in other strata. Finally, all members of
the sampled household over the age of 15 were interviewed. The study included a survey experi-
ment which randomized respondents to report about one of two different personal networks; to keep
things simple, we use responses about only one personal network here. For full details see Rwanda
Biomedical Center (2012). The original data file includes 2,406 respondents. From these cases, we
removed 2 respondents who had missing data for some of the aggregated relational data questions.
Further, consistent with common practice (e.g., Zheng et al. (2006)), we top coded all responses at
30, affecting 0.12% of responses.

14The scale-up study in Curitiba, Brazil used two-stage element sampling where 54 primary sam-
pling units (PSUs)—in this case census tracks—were selected with probability proportional to their
estimated number of housing units and without replacement. Then, within each cluster, eight sec-
ondary sampling units (SSUs)—in this case people—were selected with equal probability without
replacement. For full details see Salganik et al. (2011a). The original data file includes 500 re-
spondents. From these cases, we removed no respondents who had missing data for some of the
aggregated relational data questions. Further, consistent with common practice (e.g., Zheng et al.
(2006)), we top coded all responses at 30, affecting 0.58% of responses.

ATl



variance estimation procedure. In the study from Curitiba, the rescaled bootstrap
procedure produced confidence intervals 1.17 times larger than the standard boot-
strap and 2.84 times larger than the current procedure. In the Rwanda case, the
rescaled bootstrap procedure produced confidence intervals 1.35 times larger than
the standard bootstrap and 2.65 times larger than the current procedure.

Finally, Figure F.1 shows the estimated confidence intervals for the groups of
known size in the three studies described above. The coverage rates for the boot-
strap confidence intervals for the US, Rwanda, and Curitiba, are 3.4%, 9.1%, 15.0%.
While this is far from ideal, we note that it is slightly better than the currently used
procedure (Equation F.2), which produced coverage rates of 3.4%, 9.1%, 5.0%, and
it is also slightly better than the standard bootstrap, which produced coverage rates
of 3.4%, 9.1%, and 10.0%.

F.2 Variance estimation with sample from F' and H

Producing confidence intervals around the generalized scale-up estimator is more dif-
ficult than the basic scale-up estimator because the generalized estimator has uncer-
tainty from two different samples: the sample from the hidden population and the
sample from the frame population. To capture all of this uncertainty, we propose
combining replicate samples from the frame population with independent replicate
samples from the hidden population in order to produce a set of replicate estimates.
More formally, given sg, a sample from the frame population, and an independent

sample sy from the hidden population, we seek to produce a set of B bootstrap

replicate samples for sp and sg, sg), sg), e ,S%B) and sg), sg), e ,S(HB), which are
then combined to produce a set of B bootstrap estimates: ]VI(;) = f(sg),sg)),

]VI({Q) = f(sg), sg)), . ]/\7}{3) = f(s%B), s(ff)). Finally, these B replicate estimates are
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Figure F.3: Schematic of the bootstrap procedure to put a confidence interval around
Ny when there is a sample from the frame sy and a sample from the hidden population

SH-
converted into a confidence interval using the percentile method (Fig. F.3).

Because of the challenges involved in sampling hard-to-reach populations, the two
most likely sampling designs for sy will be time-location sampling and respondent-
driven sampling. If sy was selected with time-location sampling, we recommend
treating the design as a two-stage element sample (see Karon and Wejnert (2012))
and using the procedure of Rust and Rao (1996). If sy was selected with respondent-
driven sampling, as was done in a recent study of heavy drug users in Curitiba,
Brazil (Salganik et al., 2011b), we recommend using the best available bootstrap
method for respondent-driven sampling data, which at the present time is the pro-
cedure introduced in Salganik (2006). One implementation detail of that particular
bootstrap procedure is that it requires researchers to divide the sample of the hidden
population into two mutually exclusive groups. In this case, we recommend dividing
the hidden population into those who are above and below the median of their es-
timated visibility v; p in order to capture some of the extra uncertainty introduced

if there are strong tendencies for more hidden members of the hidden population to
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recruit each other.

Because the generalized scale-up estimator has never been used for groups of
known size, we cannot explore the coverage rate of the proposed procedure. How-
ever, based on experience with respondent-driven sampling, we suspect that variance
estimation procedures for hidden populations will underestimate the actual uncer-
tainty in the estimates (Goel and Salganik, 2009, 2010; Yamanis et al., 2013; Verdery
et al., 2013; Rohe, 2015). If this is the case, then the intervals around the generalized
scale-up estimates will be anti-conservative.

In conclusion, Sec. F.1 presents a bootstrap procedure for simple and complex
sample designs from the sampling frame, and Sec. F.2 extends these results to ac-
count for the sampling variability introduced by having a sample from the hidden
population. We have shown that the performance of these procedures on three real
scale-up datasets is consistent with theoretical expectations. Additional research in
this area, which is beyond the scope of this paper, could adopt a total survey error
approach and attempt to quantify all sources of uncertainty in the estimates, not
just sampling uncertainty. Additional research could also explore the properties and

sensitivity of these confidence interval procedures though simulation.

G Simulation study

In this appendix, we describe a simulation study comparing the performance of the
generalized and basic network scale-up estimators. The results of these simulations
confirm and illustrate several of the analytical results in Section 3 of the paper. Most
importantly, the simulations show that the generalized network scale-up estimator is
unbiased for all of the situations explored by the simulation, while the basic network

scale-up estimator is biased for all but a few special cases. Moreover, our analytical
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results correctly predict the bias of the basic network scale-up estimator in each case.

Our simulation study is intentionally simple in order to clearly illustrate our an-
alytical results; it is not designed to be a realistic model of any scale-up study. Con-
cretely, our simulations compare the performance of generalized and basic scale-up
estimators as three important quantities vary: (1) the size of the frame population
F| relative to the size of the entire population, U; (2) the extent to which people’s
network connections are not formed completely at random, also called the amount
of inhomogenous mixing; and (3) the accuracy of reporting, as captured by the true
positive rate 77 (see Equation 18).

We simulate populations consisting of N = 5,000 people, using a stochastic block-
model (White et al., 1976; Wasserman and Faust, 1994) to randomly generate net-
works with different amounts of inhomogenous mixing. Stochastic block models as-
sume population members can be grouped into different blocks. For any pair of people,
1 and j, the probability that there is an edge between ¢ and j is completely determined
by the block memberships of ¢ and j.

In our simulation model, each person can be either in or out of the frame popu-
lation F' and each person can also be either in or out of the hidden population H,
producing four possible blocks: FH, F-H, ~F—-H, and -FH. (Here, we use the
logical negation symbol, =, to denote not being in a group.) The probability of an
edge between any two people ¢ and j is then governed by a Bernoulli distribution

whose mean is a function of the two block memberships:

Pr(i < j) ~ Bernoulli(ftg(i) ¢()) (G.1)

where ¢(i) is the block containing i, g(j) is the block containing j, ¢ <» j denotes

an undirected edge between i and j, and pg)4(;) is the probability of an edge be-
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tween a member of group ¢(i) and a member of group ¢(j). In a network with a
no inhomogenous mixing (equivalent to an Erdos-Renyi random graph), jig) ¢¢;) will
be the same for all 7 and 7. On the other hand, in a network with a high level of
inhomogenous mixing, fiy(,4;) Will be relatively small when g(i) # g(j) and jtg(,4(j)
will be relatively large when g(i) = g(j)*.

Each random network drawn under our simulation model depends on seven pa-
rameters. The first four parameters describe population size and group memberships;

they are:
e NNV, the size of the population
e pp, the fraction of people in the frame population
e py, the fraction of people in the hidden population
® prig, the fraction of hidden population members also in the frame population

The next three parameters govern the amount of inhomogenous mixing in the

network that connects people to each other:

e (, the probability of an edge between two people who are both in the same

block.

e ¢, the relative probability of an edge between two vertices that differ in frame
population membership. For example, a value of 0.6 would mean that the
chances of having a connection between a particular person in F' and a particular
person not in F is 60% of the chance of a connection between two members of

F or two members of —F.

15Computer code to perform the simulations was written in R (R Core Team, 2014) and used
the following packages: devtools (Wickham and Chang, 2013); functional (Danenberg, 2013); gg-
plot2 (Wickham, 2009); igraph (Csardi and Nepusz, 2006); networkreporting (Feehan and Salganik,
2014); plyr (Wickham, 2011); sampling (Tillé and Matei, 2015); and stringr (Wickham, 2012).
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Figure G.1: The mixing matrix used to generate a random network using the stochas-
tic block model. Entry (7, j) in the matrix describes the probability of an edge between
two people, one of whom is in group ¢ and one in group j. The probabilities are gov-
erned by (, &, and p. In our simulations, we generate networks with different amounts
of inhomogenous mixing between hidden population members and non-hidden popu-
lation members by fixing ¢ = 0.05 and £ = 0.4, and then varying p from 0.1 (extreme
inhomogenous mixing between hidden and non-hidden population members) to 1
(perfectly random mixing between hidden and non-hidden population members).

e p, the relative probability of an edge between two vertices that differ in hidden
population membership. For example, a value of 0.8 would mean that the
chances of having a connection between a particular person in H and a particular
person not in H is 80% of the chance of a connection between two members of

H or two members of = H.

Together, the parameters (, £, and p are used to construct the mixing matrix M (Fig-
ure G). Note that varying the parameter p will change several structural features of
the network in addition to the amount of inhomogenous mixing; for example, changing
p will alter the degree distribution. Our analytical results show that the generalized
network scale-up estimator is robust to changes in these structural features.

The final parameter, 77, is used to control the amount of imperfect reporting.
After randomly drawing a network using the stochastic block model, we generate a

reporting network as follows:

1. convert all undirected edges ¢ <> j in the social network into two directed

reporting edges in the reporting network: one ¢+ — j and one j — 1

2. select a fraction, 1 — 7, of the edges that lead from members of the frame pop-
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ulation to members of the hidden population uniformly at random and remove

them from the reporting graph.

Given a simple random sample of 500 members of the frame population and a relative
probability sample of 30 members of the hidden population, the reporting graph is
then used to compute the basic and generalized scale-up estimates for the size of the
hidden population.

Across our simulations, we fix five of the parameters at constant values (N =
5,000; pr = 0.03; ppig = 1; ¢ = 0.05; { = 0.4). We systematically explore varying
the remaining parameters: we investigate p for values from 0.1 to 1 in increments of
0.1; we investigate pp for values 0.1, 0.5, and 1; and we investigate 7 for 0.1, 0.5, and
1. For each combination of the parameter values, we generate 10 random networks.
Within each random network, we simulate 500 surveys. Each survey consists of
two samples: a probability sample from the frame population, with sample size of
500; and a relative probability from the hidden population of size 30, with inclusion
proportional to each hidden population member’s personal network size. For each
unique combination of parameters, we averaged the results across the surveys and

across the randomly generated networks.

AT8





