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Abstract

Previous research has cast doubt on whether the Markov con-
dition is a default assumption of human causal reasoning—as
causal Bayes net approaches suggest. Human subjects often
seem to violate the Markov condition in common-cause rea-
soning tasks. While this might be treated as evidence that
humans are inefficient causal reasoners, we propose that the
underlying human intuitions reflect abstract causal knowledge
that is sensitive to a great deal of contextual information—
knowledge of the “causal background”. In this paper, we in-
troduce a hierarchical Bayesian model of causal background
knowledge which explains Markov violations and makes addi-
tional, more fine-grained predictions on the basis of causally
relevant category membership. We confirm these predictions
using an experimental paradigm which extends that used in
previous studies of “Markov violation.”
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categorization; Bayes nets; Markov condition

Introduction
Causal Bayes nets are an increasingly popular approach to

human causal learning and reasoning (Waldmann & Mar-

tignon, 1998; Steyvers, Tenenbaum, Wagenmakers, & Blum,

2003; Griffiths & Tenenbaum, 2005; Sloman, 2005). How-

ever, recent research (see Rehder & Burnett, 2005; Wald-

mann, Cheng, Hagmayer, & Blaisdell, 2008; Walsh & Slo-

man, 2007) has cast doubt on the Markov condition, a central

assumption of this approach. This condition states that a vari-

able, conditioned on its causes, is independent of all variables

except its effects (Pearl, 2000; Spirtes, Glymour, & Scheines,

2000). A cause thus “screens off” its effects: for example, in

a simple common-cause network (Fig. 1a) inferences about

the state of an effect variable, E3, depend only on the state

of its cause C and not on the states of the other effects (E1

and E2). However, it is not difficult to create scenarios in

which our intuitions seem to violate this condition: Suppose

one day while in your favorite cafe you badly need to check

your email, but your laptop is unable to connect to the wire-

less network. From the past you know that e-mail does not

always work, but there is a fairly high probability that it does

when the transmitter is on. You see (from the indicator lights)

that the transmitter is on, so you ask your neighbor if his com-

puter is working, but it also isn’t connecting. You ask four

more people and get the same answer. Will you try another

person? You probably expect that the seventh computer will

be no different than the first six—also not working. If we take

the causal structure of this situation to be the overt one—the

transmitter independently causes each computer to connect to

the internet—then the Markov condition implies that the fail-

ure of any number of computers should not affect the proba-

bility that a final computer can connect. Thus, your intuition

that six instances of failure indicate that a failure in the sev-

enth case is likely is a case of a “Markov violation”1. Such

“Markov violations” in common-cause scenarios were exper-

imentally documented by Waldmann, Mayrhofer, and Hag-

mayer (2007). Earlier work by Rehder and Burnett (2005)

explored analogous “Markov violations” in reasoning about

causally related properties of object categories.

One interpretation of this finding is that the competency

of human causal reasoning is well described by causal Bayes

nets, but that humans are simply not efficient causal reason-

ers. Another interpretation is that the causal Bayes net for-

malism is not able to capture human causal reasoning, and

should be abandoned. We offer a third interpretation: that

causal Bayes nets can be used to describe human causal rea-

soning, but that the overt causal structure must be augmented

to account for knowledge of the causal background structure.

The causal background is the sum of all of the unobserv-

able causal influences potentially affecting a specific causal

system. This goes beyond overt causal structure that is ex-

plicitly known in a given situation, summarizing the addi-

tional subtleties of the real system. We do not propose that

people have specific knowledge of causal background fac-

tors (though this may sometimes be the case) but that they

have abstract knowledge about classes of background factors

that may influence causal relations between various classes

of events. This knowledge allows people to account for many

potential background influences implicitly, in aggregate form,

without representing them explicitly or individually. This is

related to the notion of the alternative cause in situations of

elemental causal induction (Cheng, 1997), however it extends

the alternative cause to non-elemental situations in which the

alternatives may affect multiple variables.

If this causal background knowledge is a coherent and use-

ful form of abstract knowledge, rather than a mere reflection

of inefficiencies in causal reasoning, then we should be able

to reveal finer structure within the intuitions of “Markov vio-

lation”. Imagine that, in the example above, the seventh com-

puter is of a completely different type than the other six (say,

a Mac instead of a PC). In this case you may be much more

likely to try once more to check your email, using this new

computer. Motivated by this intuition, we consider the effect

of categorical knowledge on “Markov violation”. It is well

known that categories can influence causal inferences and

vice versa (Lien & Cheng, 2000; Waldmann & Hagmayer,

2006; Ahn, 1998; Rehder, 2003). The notion that objects

have abstract causal types, which reflect similarities in causal

powers, has been formalized in the causal-schemata model

(Kemp, Goodman, & Tenenbaum, 2007) within a hierarchi-

1We use the quoted term “Markov violation” to indicate simply
the empirical phenomenon.
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cal Bayesian framework. In this paper we attempt to formal-

ize category-based causal background knowledge in a similar

hierarchical Bayesian model. This model then motivates an

empirical demonstration which parallels the opening exam-

ple, showing fine grained sensitivity of “Markov violation” to

context.

Modeling

In this section we build up a hierarchical Bayesian model

which captures a reasoner’s knowledge about both overt

causal structure, and the structured causal background. We

make the simplifying assumption that the overt causal struc-

ture, given by specific world-knowledge or experimental in-

structions, is that of a simple common-cause network (as in

Fig. 1a). This structure predicts an influence of the cause

on each of the effects, but predicts that the effects are other-

wise independent (a consequence of the Markov condition).

However, there may be many unobserved factors which could

potentially affect any system—preventive causes, missing en-

abling conditions, etc.—and these factors can cause addi-

tional correlations between the effect variables. We will cap-

ture these background correlations by augmenting the overt

causal structure with an unobserved common noise source

that represents all of the additional influences which poten-

tially affect the different effect variables. Further, unobserved

factors are more likely to be shared by objects within a cat-

egory than those in different categories. In our model this

kind of sensitivity to category structure is a consequence of

a refined common noise source: we include a separate noise

source for each category, shared by effect variables pertaining

to category members. Finally, we will augment the model to

handle both uncertainty over the causally relevant categories,

and the role of perceptual features in suggesting relevant cat-

egories.

Background correlation

We begin with the standard common-cause network shown in

Fig. 1a, which we assume to be parametrized as in a noisy-or

causal structure: the cause C has power wC to bring about

each effect independently (see Cheng, 1997). To capture

unobserved influences common to all of the effect variables

we introduce an additional variable PN which also acts as a

causal parent to all of the effects, preventing C from bringing

about its effects via a noisy-and-not parametrization2. With

what probability will the final effect En be on, given the states

of the common cause C and the other effects E1...En−1 (but

not the unobservable background variable PN)? This is given

2It is possible to also include a common generative influence, we
have omitted this for reasons of simplicity.

by3:

P(En=1|C,E1, ...,En−1)

= ∑
PN

P(En=1|C,PN,E1, ...,En−1)P(PN|C,E1, ...,En−1)

= ∑
PN

P(En=1|C,PN)P(PN|C,E1, ...,En−1)

(1)

In the first step we have introduced the hidden variable PN
and marginalized over its possible values; in the second step

we have used the independence of the effect variables given

all of their parent variables (this is the Markov condition,

which once again holds formally after accounting for the

background influences via PN). The reasoning captured by

Eq. 1 can be considered as a two step process: First the state

of PN is inferred, then, given that state, the state of the target

effect En is inferred.

Structuring the background correlation

Let us say now, that we are given the knowledge that the ef-

fect variables partition into distinct categories, and that all the

relevant unobserved causal factors are specific to a single cat-

egory. How can we capture this additional structure? Instead

of a single hidden variable PN we will have one such vari-

able PNz j for each category z j of the partition z (see Fig. 1c).

Writing Ez j (excluding En) for the effect variables in the z jth

category, we now have:

P(En=1|C,E1, ...,En−1,z)

= ∑
PNzn

P(En=1|C,PNz j)P(PNz j |C,Ezn) (2)

Notice that the state of En only depends on the states of other

variables within its category.

Uncertainty over relevant categories

However, we may suspect that there are causally relevant cat-

egories, but not know what they are. For instance, if the ef-

fects pertain to particular objects which have features sug-

gesting separate categories. We may maintain uncertainty

over the correct categorization, while still gaining the abil-

ity to leverage any categories which present themselves, by

placing a prior distribution on categories (this is very similar

to the construction of causal schemata in Kemp, Goodman,

and Tenenbaum (2007)). We use a Chinese Restaurant Pro-

cess prior P(z) on the partition z (see Pitman, 2002), and we

additionally assume that there are features F associated with

the objects that also depend on the partition through the like-

3The learner in our experimental situations doesn’t know the true
value of the causal strengths wC and wPN . We place a Beta prior
over these causal strengths to represent this uncertainty, and must
then integrate over the strengths, giving: P(En=1|C,E1, ...,En−1) =∫

P(En=1|C,E1, ...,En−1,w)dw. These integrals all have standard
solutions, and we omit them from our exposition for clarity.
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Figure 1: a) An example of a simple causal Bayes net, here a common-cause model. The cause variable C is connected to

its effects via causal arrows. The state of each effect node depends only on the state of the cause node. Due to the Markov

condition, the effects are independently influenced by C. b) Modeling the Markov violation by inserting a common preventive

noise node PN. This hidden node interacts with C. If PN is present, the causal influence of C is lowered for all effects. Thus,

if E1, ...,En−1 were observed absent, even if the cause is present, PN likely, and this lowers the probability of En. c) Adding

structure to the simple PN-model. For each cluster effect variables a common preventive noise node is added. This leads to

dependent conditional probabilities within clusters but not between clusters.

lihood P(F |z)4. Hence:

P(En=1|C,E1, ...,En−1,F)

= ∑
z

P(En=1|C,E1, ...,En−1,z)P(F |z)P(z) (3)

Model predictions
What inferences do we expect on the basis of this model?

In the case without categories (Fig. 1b) this is quite simple.

When the common cause is present, if observed effects are off

it will provide evidence that PN is on (preventing the activity

of C). Hence, the conditional probability of the target effect

should decrease with an increasing number of absent collat-

eral effects. That is, we predict a violation of the Markov

condition—or rather the Markov condition as it would hold

for a simple model lacking PN. In the case that the common

cause is absent, the conditional probability of the target ef-

fect will be independent of the states of the collateral effects

(since the preventer has nothing to prevent). In this case the

probability of the target effect should only depend on its base

rate.

Whenever a causally relevant category is known with cer-

tainty (Fig. 1c), the same predictions apply with respect to

those effects belonging to the same category, but not to the

effects of the other category. That is, we predict only within
category “Markov violations”.

When there is uncertainty over the relevant categories the

influence of the PN nodes is marginalized out over all possi-

bilities. This leads to graded influences, since there will be

some weight on partitions that puts any group of effects to-

gether. The more probable a partition given the features, the

higher the influence of category members within this cate-

gory on each other. This leads to the prediction that the more

similar two effects are, the more dependent their conditional

probabilities should be.

4We take the dependence of features on category to be given as
in the infinite mixture model (see Pitman, 2002)—a model of cat-
egorization related to Anderson’s rational model (Anderson, 1991).
Other feature-based categorization models could be substituted.

Experiment
We wished to test whether the “Markov violation” phe-

nomenon in human causal inference is sensitive to category

structure, as predicted by the model. For this purpose we used

a version of the “mind sending” task used by Waldmann et al.

(2007), which adapted the mind reading alien task of Steyvers

et al. (2003) and combined it with the reasoning task intro-

duced by Rehder and Burnett (2005). In this task, subjects

were presented with four aliens, Gonz, Murks, Brxxx, and

Zoohng, who mostly think of nothing but sometimes think of

“POR” (“food” in the alien language), further, Gonz is able

to transmit its thoughts of POR to the other aliens. Thus the

thoughts of Murks, Brxxx, and Zoohng are statistically de-

pendent on the thoughts of Gonz. In the test phase subjects

rated the conditional probability of a target alien, e.g. Murks,

thinking of POR given the thoughts of the other aliens. The

results showed that participants’ estimate of the target ef-

fect’s probability are—in this case—strongly influenced by

the thoughts of the other effect aliens.

The model predicts that the presence/absence of events

which are similar to the target event have more impact on

estimated probability than the presence/absence of events dis-

similar to the target event. To investigate the influence of cate-

gory structure we adapted the task of Waldmann et al. (2007),

by increasing the number of effects aliens and introducing a

(binary) color feature for the effect aliens. As in the original

task, subjects had to reason about the thoughts (POR/nothing)

of a target effect alien in a common-cause structure with re-

spect to the thoughts of the common cause alien and the other

effect aliens.

Method
Participants 60 students from the University of Goettingen

(33 female, 27 male; mean age 25.1 years) participated in

exchange for candy.

Procedure and Materials In the instruction phase we pre-

sented participants with instructions about six aliens: Gonz,
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Figure 2: An example of a test panel used in the experi-

ment. Experimental manipulation varried the thoughts of the

mind sending alien Gonz (POR or nothing) and the number

of aliens of each color thinking POR. As dependent measure

subjects were requested to rate the probability that the target

alien (indicated by a question mark above its head) thinks of

POR in the given situation. (Thus 0, 1, or 2 aliens of the same

color as the target alien might successfully think of POR, and

0, 1, or 2 aliens of the other color.)

Murks, Mezukt, Zoohng, Brxxx, and Karkas, who usu-

ally think of nothing (illustrated by an empty bubble) and

sometimes think of POR (indicated by a bubble containing

“POR”). Participants were told that Gonz is able to trans-

mit its thoughts into the heads of the other aliens (i.e., Gonz

served as cause in a common-cause structure with five ef-

fects). It was emphasized that the effect aliens frequently

think of POR if Gonz thinks of POR, and that Gonz isn’t

perfect, which means that he sometimes fails to transmit his

thoughts due to inattention; the four possible cases with two

aliens thinking of POR or nothing were shown as illustra-

tions. In addition, it was pointed out that there were two

kinds of effect aliens and that these kinds are indicated by

the color of the aliens: green and yellow; but it was not spec-

ified what influence this might have (leading to uncertainty

about the relevance of this feature). Identical pictures were

used for all effect aliens—with two different colors—in order

to exclude influences of implicit features. There were always

two green collateral effect aliens and two yellow collateral

effect aliens. The target effect alien’s color was counterbal-

anced across subjects. In the test phase subjects were con-

fronted with several test panels with all the non-target aliens

thinking of POR or nothing (for an example see Fig. 2). For

each panel, subjects were requested to imagine ten situations

with the given configuration and then to judge, in how many

of these situations the target alien—Murks—would probably

think of POR. (It was pointed out that this is merely a proba-

bility judgment.)

Design The predictions were tested in a 2x3x3 repeated

measurement ANOVA design, with the following factors: the

thoughts of the cause alien (nothing vs. POR, i.e., C=0

and C=1); the number of effect aliens of the same category

(i.e., same color) as the target alien that are thinking of POR

(0, 1, or 2—three levels); the number of effect aliens of the

opposite category (i.e., other color) thinking of POR (0, 1,

or 2—also three levels). Because this would lead to 18 test

cases, subjects were tested on both levels of the C factor in

a balanced partial confounded randomized block design (see

Kirk, 1995). So, within the 3x3-combinations on each level

of C only three cases were given to each participant, chosen

such that each level of each factor was realized once for each

subject (so, three subjects constitute a full data set). The order

of the test cases was randomized across subjects.

Predictions Let us clarify the predictions of our model ap-

plied to this particular task. First, there should be a strong

influence of the state of the common cause (C=0 vs. C=1),

as was found by Waldmann et al. (2007). When the common

cause is absent (C=0), the conditional probability of the tar-

get effect should be nearly independent of the states of other

effects (also found by Waldmann et al.). In the case that the

common cause is present (C=1), and hence the preventive

noise sources come into play, the model predicts that a strong

“Markov violation” should be found with respect to aliens

with the same color; a smaller violation should be found with

respect to the differently colored aliens. The latter prediction

follows because, although we have only one feature, there is

uncertainty about the causal relevance of this feature, and the

possible existence of causally relevant categories is not be-

trayed by obvious features.

Results

The main prediction is about different effect sizes of the

main effect (i.e., different amounts of “Markov violation”),

hence the results are displayed as marginalized main effects

in Fig. 3. The left hand side of the figure shows the data, the

right hand side the model predictions5.

In general, the ratings are much higher when the cause

alien thinks of POR, which reveals a strong influence of the

C factor, as expected from causal Bayes net theory. If the

cause alien thinks of nothing (the lower two lines), the num-

ber of effect aliens thinking of POR has no influence on the

ratings; the number of same colored effect aliens thinking of

POR has no effect (F = 1.91), and neither does the number

of different colored effect aliens thinking of POR (F < 1).

This is in line with the model predictions. If the cause alien

5To compute the predictions a Monte Carlo simulation with
50,000 repetitions was performed. Only the background rate of the
effects and the general strength of the preventive noise nodes were
adjusted by hand and set to a Beta(1,3) and a Beta (5,1) distribution.
The other parameters of the model were set to values given by the
simple model applied to the data of Waldmann et al. (2007) and by
Kemp, Goodman, and Tenenbaum (2007).
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Figure 3: Mean rating and standard error of the number of times the target aliens thinks of POR plotted against the number

of times collateral aliens think of POR (in the left panel the experimental data, in the right panel the model predictions). The

upper two lines in each panel correspond to the sending alien thinking of POR, the lower two lines to the sending alien thinking

of nothing. Results shown as marginalized main effects: The solid lines average over the number of opposite category aliens

thinking of POR (showing in column 1/1, for instance, the average ratings over conditions in which the number of opposite-

same aliens thinking of POR was: 0-1, 1-1, and 2-1.) The dashed line averages over the number of same category aliens. The

columns indicate the number of effect aliens within the relevant group thinking of POR. (Note that the solid and dashed series

thus represent the same data, averaged in two different ways in order to examine the effects within each category separately.

The crossing of the lines thus cannot be interpreted as an interaction.)

thinks of POR and can therefore transmit its thoughts (the up-

per two lines), both types of effect aliens have an influence.

The number of same category effect aliens thinking of POR

reveals a stronger effect (F2,112 = 22.53, p < 0.0001) than the

number of opposite category effect aliens thinking of POR

(F2,112 = 6.60, p < 0.01). (The interaction of these factors

isn’t significant (F4,112 = 1.44, p = 0.224)6, as predicted by

the model.)

To test the main hypothesis—whether the number of same

color effect aliens thinking of POR has the greater influence

on the subjective conditional probability of the target effect—

a test must be constructed, because no standard procedure is

available. The interesting question is, whether the same cate-

gory factor explains more variance than the opposite category

factor, which simply means that it has more influence on the

dependent measure. So, an appropriate statistic for testing

this is the ratio of the variances explained by the first and

the second factor. The empirical variance ratio is 3.413. To

test its significance, we constructed a bootstrap distribution

of this variance ratio under the null hypothesis that the vari-

ances are equal (i.e., the ratio is 1). For this purpose we drew

6Because Figure 3 only shows marginalized main effects, the in-
teraction cannot be obtained by simple examination. The slopes in
the figure display the different strengths of the factor’s influence on
the ratings (the higher the slope the more variance is explained by
the corresponding factor).

bootstrap samples from the data under the assumption that

the factors are exchangeable (i.e., that color doesn’t matter)7.

The p-value of the empirical variance ratio with respect to the

bootstrap distribution is 0.026. Hence, the number of same

color effect aliens thinking of POR has a greater influence

on the subjective conditional probability rating of the target

effect than the number of different color aliens thinking of

POR. This is in line with the main prediction of the model.

Discussion
Our experimental results replicate the finding of “Markov vi-

olation”, but also shows that this phenomenon is sensitive to

subtle contextual factors—”Markov violations” are stronger

within categories of effects than between them. This is con-

sistent with the idea that people have abstract intuitions about

influences of the underlying causal background structure.

Other current theories of human causal reasoning suggest that

Markov violations express irrationalities of the human mind,

and offer no compelling account of the sensitivity of these

violations to context. In contrast, we have developed a hier-

archical Bayesian model that provides a rational account of

these findings. The model was designed to capture abstract

causal background structure associated with causal types of

objects, and does so by extending the causal Bayes nets pic-

ture with a form of abstract knowledge.

710,000 bootstrap samples were drawn.
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Our experiment was designed to demonstrate that similar-

ity structure affects causal reasoning in “Markov violation”

situations. For this purpose we limited the task to a single

relevant feature, the aliens’ color. In this setting the ambi-

guity of causally relevant categories is minimized. By con-

trast, consider the earlier example, when no computer will

connect to the wireless network in your favorite cafe—while

you are pushing to finish your CogSci paper. These comput-

ers have many features—Macs vs. PCs, laptops with white

cases vs. those with black cases, etc. These features do not

weigh equally on your intuitions about whether a final com-

puter will work: it’s brand may matter, but probably not it’s

size. Our model allows that different features might have dif-

ferent causal relevance for the inference task of interest. In-

deed, confronted with evidence the model will learn which

features matter with respect to any structured dependencies in

the data and which features do not. However, little is known

about how and whether people acquire such abstract knowl-

edge about the causal background; further experiments are

clearly needed.

We believe that the flavor of causal reasoning studied

here—which accounts for causal background structure—is

necessary to capture real-world human reasoning abilities. In

most natural contexts there are a myriad of influences which

cannot each be considered individually, but whose overall in-

fluence is significant. Yet it is likely that richer forms of

causal background knowledge than we have considered will

be needed to capture human intuitions. These might, for in-

stance, include notions of agent-patient relationships or do-

main restrictions on causal influence. In addition, it is impor-

tant to consider other modeling approaches to these issues,

such as the combination of causality and similarity described

in Kemp, Shafto, Berke, and Tenenbaum (2007).

We have suggested that experimental tests showing

“Markov violations” do not reflect fundamental human irra-

tionality, but the invocation of an important form of abstract

knowledge about the causal background structure. If our in-

terpretation is correct, then a great deal of important psychol-

ogy is hidden within “Markov violations” and similar phe-

nomena.
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