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A STATISTICAL MODEL

OF LOW-LEVEL PHONOLOGICAL PROCESSES1

Alan Cole and Michael H. 0'Malley
University of California, Berkeley

To correctly recognize differeing phonetic realizations of a word,
an automatic speech recognition system must incorporate informa-
tion about low-level phonological variation. A simple statistical
model is proposed to describe this variation, and an analysis
technique is developed to estimate the statistical parameters of
the model. Preliminary results suggest the usefulness of the
model for automatic speech recognition.

Description of the Problem

A great deal of the researchinautomatic speech recognition
has been based on the premise that speech recognition systems will
eventually have to incorporate detailed information about the
structure of speech and language -- a simple "pattern recognition"
analysis of the acoustic signal will never be sufficient. For
example, Fry and Denes write in 1956:

Linguistic knowledge must be added to primary recogni-
tion and to be completely successful the machine would
have to "know" as much about the Tanguage as a human
brain does.

The practical effects of this tenet were at first extremely
limited, but more recently, a determined effort has been made to
solve the many problems of including linguistic knowledge within
speech recognition systems.

The particular problem addressed here is how to incorporate
a knowledge of low-level phonetic and phonological rules into
recognition strategies.

The phonetic realization of a word will in general depend on
its context, on speech rate and style, on the speaker's dialect,
and on other similar factors. If the differing realizations are
all to be correctly recognized as the same word, then some know-
ledge of phonological variation is clearly necessary.

It should be emphasized that only those low-level phonologi-
cal processes which describe alternations in pronunciation are
considered here; higher Tevel processes (such as the derivation
of "sanity" from'sane+ity") are beyond the scope of this paper.
Figure 1 shows three examples of the sorts of rules which are of
interest.

Rules from the linguistic literature are not necessarily
directly applicable to automatic speech recognition. MWhile
optional phonological rules generate the possible phonetic reali-
zations of a word, it is also important to know the relative
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frequencies with which these different realizations occur -- rule
statistics are required.

The treatment of phonological variation in the framework of
speech recognition is also complicated by the notorious inaccuracy
of machine produced transcriptions, A basic step in most systems
is the segmentation and labeling of the acoustic signal to produce
what is approximately a phonetic transcription. But errors in
both the segmentation and the labeling occur frequently, as
illustrated in Figure 2, which shows a typical example of a
machine transcription.

The most frequent error is one of substitution. A segment is
given the wrong label, and so identified as the wrong phone. Ano-
ther common error is detection of a segment boundary where none
actually exists. This insertion error produces an extra segment
in the transcription, but may also be viewed as a decomposition
error, since a single real segment is decomposed into two trans-
cribed segments. Conversely, missing a real segment boundary
leads to a deletion error in the transcription, or a coalescence
error in the sense that two actual segments are merged into a sin-
gle transcribed segment.

To higher levels in the system, recognition errors and phono-
logical variation look the same, making it difficult to treat
either problem in isolation. It may be desirable to describe both
sources of variation with a single set of rules. If so, rules
from the linguistic literature will be inappropriate.

A Model of Low~level Variation

To deal with the problem of low-level phonological variation
in the context of automatic speech recognition, we propose a sim-
ple model.

First, each word has one or more base forms, each of which
represents a basic pronunciation of the word. More than one base
form is allowed per word to handle idiosyncratic variations such
as the two forms of "ejther":

(1) saled
(2) 7igdy

Since this alternation is not one which would be predicted by low-
level rules, both forms are given in the lexicon.

Low-Tevel phonological processes are modeled by a set of
generative rules. Each rule maps the base level into the surface
level without intermediate stages, and each segment at the surface
level is the output of some rule. Each rule must be an instance
of one of a small number of rule schemata, defined by the lengths
of the input and output strings. Figure 3 shows one possible set
of rule schemata. The model does not require that this specific
set be used, but it is assumed that each rule falls into one of a
limited set of patterns similar to those ‘shown.
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FIGURE 3. A set of rule schemata. The symbol "b"
represents a base segment, "s" a surface
segment.

Substitution b
Deletion b
Insertion [0}
Coalescence b
Decomposition b $15,

Each rule is also characterized by an application probability
which is a function of its context.® The precise nature of this
probability function is unimportant; it might simply be a Tist of
appropriate probabilities for each of the relevant contexts. Ano-
ther possibility is the use of a variable rule model such as those
discussed by Cedergren and Sankoff (1974).

The derivation of an output form from a base form involves
the application of several rules. We will assume that the proba-
bility of each such derivation is given by some function of the
individual rule probabilities. Again, the exact nature of this
function is unimportant. One simple possibility is to calculate
the probability of a derivation as the product of the probabilities
of the individual rules applying in that derivation, This defini-
tion corresponds to an assumption of statistical independent of
rule applications; different assumptions will lead to different
definitions.

As a final point, since there are no intermediate Tevels
between the base and surface levels, there is no need for rule
ordering. That is, a rule cannot apply to another rule's output,
so the order in which they apply is irrelevant.

Though this model of phonological variation is computationally
simple, it may not be immediately applicable in a speech recogni-
tion system where transcription errors mask, and are confused with,
phonological variation. We may, however, take the previously sug-
gested approach of describing the combined effects of both sources
of variationwith a single set of rules. In this case, the machine
transcription corresponds to the surface or output level of the
model.

To show one way in which this model could be used in a speech
recognition system, assume that we are given a machine transcrip-
tion of some utterance which is to be recognized, and that a num-
ber of base sequences have been hypothesized, perhaps with the aid
of a preliminary examination of the phonetic transcription or
with syntactic, semantic, and pragmatic information.

We wish to know which of these base sequences, if any, is the
correct one. Since it will normally be impossible to give an
absolutely certain answer to this question, we instead simply try
to find that hypothesized base sequence which is most 1ikely to
have generated the observed transcription.

This process is conceptually straightforward. Find all pos-
sible derivations producing the transcription from any one of the
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base sequences.4 Since each such derivation has a probability,
we need only find that derivation whose probability, weighted by
the a priori probability of the base sequence underlying it, is
greatest. That base sequence is then selected as the one most
Tikely to be correct (of the given set of possibilities).

The simplicity of the proposed model of combined phonolo-
gical variation and recognition error, and in particular its lack
of rule ordering, allows finding the most 1ikely derivation with-
out actually finding all possible derivations. Briefly, the
mathematical technique of dynamic programming allows us to drop
from consideration those partial derivations which cannot possibly
turn out to be the most likely.>

The model thus appears to be a computationally attractive
one for use within automatic speech recognition systems. Two
questions remain., First, how do we actually find the rules and
their application probabilities? And second, how accurate is the
model? The following two sections will suggest answers to these
questions.

Estimation of Rule Probabilities

In the past, the determiniation of rule application proba-
bilities has been a laborious task, The data must be examined to
find the number of rule applications in a given context compared
with the total number of occurrences of that context. Since the
context must occur enough times in the data to provide some sta-
tistical reliability in the estimates, a large amount of data is
normally required. But before the rule counts can be determined,
each utterance must be carefully and consistently transcribed.
This has been a time consuming and expensive task.

No real solution to the problem exists if only phonological
variation is to be studied. But if it is acceptable for the
rules to describe both phonological variation and machine recog-
nition error, then machine produced transcriptions may be used
instead of hand transcriptions. This allows virtually unlimited
amounts of data to be analyzed. The solution is especially use-
ful, of course, in speech recognition, where information about
both sources of variation is required.

A second, more theoretical problem is how to tell which rules
have actually applied. A complete set of generative rules may
well be ambiguous in spite of the rule writer's precautions. That
is, more than one derivation may produce a given output from a
given base form.

A trivial example may serve to clarify the difficulty. Let
us assume that we have both a degemination rule (which deletes
one of two adjacent identical consonants) and a dental deletion
rule (which deletes /t/ or /d/ between an obstruent and a fo]}ow—
ing consonant). Then, for example, the phonetic form [lae sta'm]
for "last time" is produced by either one of the two rules, Which
one shall we say has actually applied?
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This problem is especially severe when the "rules" describe
machine recognition error instead of or in addition to phonolo-
gical variation, Because of the large number of errors that can,
and sometimes will, be made, it is often possible to describe the
erroneous transcription of an utterance as the result of any one
of several different combinations of specific errors.

We suggest the use of an iterative estimation procedure to
answer the question of which rules have applied and to find appli-
cation probabilities for these rules,

We start with a set of utterances for which the correct base
forms are known, and for which transcriptions (hand or machine)
are available. We also assume that we have a set of rules whose
application probabilities are unknown,

The first step is to make a rough guess at the application
probabilities of the rules. These guesses might be totally unmo-
tivated (e.g., every rule applies with probability one-half in all
contexts), but should, if possible, be based on previous studies
or on an examination of a subset of the data or at least on Tlin-
guistic intuition.

Using the estimated rule probabilities, it is now possible
to determine the most probable derivation out of all derivations
which produce the observed transcription from the known base
sequence. By assuming that this most probable derivation is in
fact the correct one, we now have a probabilistic answer to the
fundamental question of which rules have applied.

After repeating this process for each utterance, it is pos-
sible to tally the number of times each rule has applied in a
given context, and the total number of times that context has
occurred in the data. These frequency counts may then be analyzed
by, for example, one of the variable rule models proposed by
Cedergren and Sankoff (1974) or Sankoff (1975) to obtain new esti-
mates of rule application probabilities.

These new estimates will not be perfect since the decisions
about which rules actually applied were based on the original
guesses of application probabilities, so that some of these deci-
sions will have been incorrect. The new estimates will be better
than the original ones, however, in the sense that they explain a
greater proportion of the variation present in the data,

The entire procedure may be performed repeatedly, each time
using the most recent set of estimates. This produces successive-
1y better sets of estimates which will eventually converge to a
final set of values.

One problem of this maximum 1ikelihood method for determining
application probabilities of all rules simultaneously is that the
final results may depend on the initial estimates, A locally op-
timum set of probabilities is always found, but finding the global
optimum may depend on an auspicious set of initial estimates.

For this reason, it is desirable to make the initial esti-
mates of rule probabilities as accurate as possible, Alternative-
ly, the entire procedure may be repeated with several different
sets of initial values in the 1ikelihood that at least one such
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set will yield the best possible answer.

The foregoing has assumed that the rules are known and that
only their application probabilities as a function of context are
unknown. In practice, especially when using machine transcrip-
tions, this will not ordinarily be true. However, this is not a
serious problem, for the initial set of rules may include not only
all known rules, but all suspected, or even all possible, rules,
As the iterative estimation technique is applied, rules which ex-
hibit no descriptive power with respect to the data will be given
zero or near zero probabilities, and may be discarded. The remain-
ing rules, which all have a significant probability of applying in
at least some contexts, are the rules actually observed in the
data.

We have, then, what is in at least a limited sense a discov-
ery procedure for rules. If machine transcriptions are used, then
these rules will represent the combined effects of phonological
variation and recognition error, while, if hand transcriptions are
used, the rules will describe phonological variation together with
any possible inconsistencies in the hand transcription process.

Preliminary Results

To test the usefulness of the model proposed here, a small
pilot study was performed on a data base consisting of 33 sen-
tences read by a single speaker. A total of 48 different words
occurred one or more times in the data. A machine transcription
of each utterance was provided by Carnegie-Mellon University's
Hearsay Il speech understanding project.

The purpose of the study was to determine rule probabilities
on the basis of the data, and to evaluate the accuracy of these
rules, Because machine transcriptions were used, we expected the
rules to describe both phonological variation and machine trans-
cription error.

Not knowing which rules were actually appropriate, we in-
cluded all possible rules of segment substitution, deletion, and
insertion (the first three forms shown in Figure 3). This gave a
total of slightly more than 4,000 rules.

Because of the limited size of the data base, it was not pos-
sible to determine the effect of context on rule probabilities
except in the cases of a few exceptionally frequent rules, Conse-
quently, for the purposes of this study, all rules were assumed to
be context-free.

The initial estimates of substitution probabilities were
based on a preliminary study of the data; all insertion and dele-
tion probabilities were arbitrarily estimated by two separate con-
stants.

The iterative estimation technique described above was then
applied separately to utterances 1-16, utterances 17-33, and to
the entire set of 33 utterances, resulting in three sets of final
probabilities, based on different portions of the data. Of the
original set of more than 4,000 possible rules, only slightly more
than 10% ever occurred.
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Assuming our model, and given the context-free nature of the
rules, the probabilities are the best possible. But a fundamental
question still remains: how accurately can the model describe the
actual variation in the transcriptions? The answer to this ques-
tion is not obvious; in fact, it is not even easy to decide what
"accuracy" means in this context.

For the purposes of speech recognition, one useful though
indirect measure of accuracy is how well an actual recognition
system performs when using the model. If the model is hopelessly
inadequate, good recognition scores will never be obtained. On
the other hand, good recognition scores imply that the model is a
useful one.

Consequently, we designed a simple recognition experiment to
evaluate the adequacy of the model. For each word in the set of
utterances, a single incorrect word was randomly chosen from a
Tist of words often confused (by the machine) with the correct
word. Both the correct word and the incorrect word were assumed
to be possible, giving, for each sentence, many possible word
sequences, depending on which word was chosen at each point,

Using the final set of probabilistic rules, the model was
then applied as previously explained to find that word sequence
most likely to have generated the observed machine transcription,
The percentage of correct words chosen was used as a measure of
performance for the model.

Because at any point only one of two words was possible,
chance performance was 50%. Using the initial guesses at applica-
tion probabilities, performance was significantly better than
chance, with correct words being selected 80,3% of the time. Us-
ing the final calculated values of rule application probabilities,
a performance of 93.9% was achieved, which is a statistically
highly significant improvement over the initial guesses, Further
details are shown in Table 1.

TABLE 1. Word recognition scores with rule probabilities
based on different portions of the data.

Probabilities based
on utterances

Score on Initial

utterances | estimates 1-16 17-33 1-33
1-16 78.7% 93.5% | 85.2% | 93.5%
17-33 81.8% 80.2% | 93.4% | 94.2%
1-33 80.3% 86.5% | 89.5% | 93.9%

These results indicate that the model of combined phonologi-
cal variation and transcription error which we have proposed is
accurate enough to be of use in automatic speech recognition, even
when the effect of context is ignored, Use of contextual informa-
tion will further improve this accuracy.
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The procedure for estimating rule probabilities also appeared,
at Teast in this instance, to be a robust one. Although seven
iterations were required before the probability estimates con-
verged, one or two iterations would have been sufficient to obtain
very nearly the same performance. Table 2 shows the recognition
performance obtained with the probability estimates resulting from
each iteration.

TABLE 2. Improvement in word recognition scores on
utterances 1-33 with iteration of the rule
application probability estimation procedure.

Iteration , 0 I 1 , 2 , 3 I 4 , 5 , 7
Recognition | 80.3 | 93.0 | 93.4 | 94.3 | 93.9 | 93.9 | 93.9

To illustrate the sort of rules which might result when a
larger data base permits contextual effects to be taken into ac-
count, we examined several rules which occurred frequently enough
in our data to allow at least a crude estimate of the influence of
context,

One such rule was the insertion of an [n] in the transcrip-
tion. Possible contexts were classified according to the nature
of the preceding segment (consonant, vowel, or utterance boundary)
and the following segment (stop consonant, non-stop consonant,
vowel, or utterance boundary) at both the base and surface levels.
The data was analyzed by the variable rule model of Sankoff (1975)6.
Results are shown in Table 3. In this model, probabilities great-
er than one-half represent factors favorable to rule application,
while factors with probabilities less than one-half tend to block
the rule.

TABLE 3. Effect of context on probability of the [n]-
insertion rule §>n. The symbol "##" signifies
an utterance boundary.

Input probability P = 0.07

Preceding ##_ V_ C_

base

segment 0.55 0.53 0.42

Following C v C _##
base _|+stop] _|~stop

segment 0.54 0.51 0.49 0.47
Preceding V_ ##_ C_
transcribed

segment 0.65 0.53 0.32

Following _## C -V c
transcribed +stop -stop

segment 0.87 T0.69 0.25 ~0.16
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One of the most favorable contexts for [n]-insertion is seen
to be between a vowel and a following stop or utterance boundary
(at the transcription Jevel). Since this fails to correspond to
any known phonological rule, the [n]-insertion rule clearly repre-
sents a recognition error phenomenon.

On the other hand, the /v/-deletion rule shown in Table 4 ap-
pears to be similar to a real phonological process previously
noted by Shockey (1973). In our case, /v/-deletion is most like-
1y to occur before a (surface level) consonant, and especially
1ikely to occur before a (base level) /m/. The effect of left
context could not be estimated for this rule because, except for
two cases, the left context was essentially the same for all
occurrences of /v/.

TABLE 4. Effect of the following base and surface segments
on probability of the /v/-deletion rule v>0.

Input probability Pg = 0.25

Following om c* v
base

segment 0.75 0.42 0.32
Following c* m v
transcribed

segment 0.53 0.50 0.46

*The symbol "C" is here used to include all
consonants except m.

The final example, a [t]-insertion rule, appears to repre-
sent a combination of real phonological tendencies and recognition
error. The analysis in Table 5, which includes the effect of a
single segment of context at the base level only, indicates that
[t]-insertion is most Tikely between two consonants. In the par-
ticular context of a preceding /n/ and a following /s/, this is a
special case of the homorganic stop insertion rule (this context
occurred twice in the data; both times [t]-insertion took place).
However, in many other cases, the rule seems to be an artifact of
machine recognition error.

TABLE 5. Effect of the preceding and following base segments
on probability of the [t]-insertion rule §~t.

Input probability P = 0.01

Preceding C_ V_
base
segment 0.68 0,32
Following C v
base

segment 0.62 0.38
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These examples illustrate that when machine transcriptions are
used, rules can reflect either true phonological variation or
transcription error. But in most cases, the rules will demonstrate
a combination of these two factors.

In conclusion, we have described a model of phonological
variation and an analysis technique which allows automatic pro-
cessing of large amounts of data to compute estimates of applica-
tion probabilities simultaneously for an entire set of rules.

The method appears to be a promising way of including infor-
mation about phonological variation in speech recognition systems.
Furthermore, as machine transcriptions of speech become better,
the probabilistic rules will describe true phonological variation
more accurately. But even with the current level of machine
transcription, we believe the results are both informative and
suggestive.

Notes

]This research was sponsored by the Advanced Research Projects
Agency of the Department of Defense and monitored by the U.S, Army
Reseagch Office under grant DAHC04-75-G0088,

This transcription was produced by Carnegie-Mellon University's
Hearsay II speech understanding system. Because the system may
make several guesses at the identity of a single sound, several
possibilities are shown in many locations. Uncertainty about seg-
mentation also produces overlapping phones.

3"Context" is interpreted broadly to include both phonologi -
cal (base Tevel) and phonetic (surface level) context as well as
other relevant linguistic and extra-linguistic factors,

If the set of rules is sufficiently "complete", at least one
such gerivation always exists,

Details of several similar techniques are discussed by Bahl
and Jelinek (1975) in connection with asomewhat different model of
machige recognition error.

In this model, the probability p of rule application in some
context is defined by

n .

]_P_=H]_5_
-p i=0 'Pi

where pg is an overall input probability, and pi is a probability

associaged with that particular factor of the i'th (of n) factor

groups actually occurring in the context.
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