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Abstract 

A generalization of the differential geometry of forms and vector 

fields to the case of quantum Lie algebras is given. In an abstract 
formulation that incorporates many existing examples of differential 

geometry on quantum groups, we combine an exterior derivative, inner 

derivations, Lie derivatives, forms and functions all into one big alge

bra. In particular we find a generalized Cartan identity that holds on 
the whole quantum universal enveloping algebra of the left-invariant 

vector fields and implicit commutation relations for a left-invariant 

basis of 1-forms. 
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1 Introduction 
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The question of how to endow a quantum group with a differential geometry 

has been studied extensively (1, 2, 3, 4, 5, 6). Most of these approaches, how

ever, are rather specific: many papers deal with the subject by considering 

the quantum group in question as defined by its R-matrix, and others limit 

themselves to particular cases. Here we shall attempt a more abstract formu

lation which depends primarily on the underlying Hopf algebraic structure; 

this will therefore be a generalization of many previously obtained results. 

The approach we take starts with a Hop£ algebra, which we identify with 

the (quantum) universal enveloping algebra (UEA) of some Lie algebra, tak

ing its dual Hopf algebra to be the functions on the corresponding quantum 

group. We then construct a larger (non-Hop£) algebra which contains these 

as subalgebras combined by the "cross product" (7, 8, 9). The differential 

geometry is then introduced by including in the algebra an exterior deriva

tive, Lie derivatives, and inner derivations. (Much of the previous work in 

this area has emphasized the actions of these operators on functions and 

forms rather than treating them as elements in an extended algebra con- . 

taining the cross product algebra and giving the appropriate commutation 

relations). Our approach is constructive in nature; this implies that not only 

we must treat each given Hop£ algebra on a case-by-case basis, but that ques

tions concerning uniqueness and even existence arise. These problems will 

be addressed in section 3. 

2 Differential Geometry on Hopf Algebras 

2.1 Hopf Algebras 

A Hop£ algebra A (10, 11, 12, 7) is an associative unital algebra (A,·,+, k) 
over a field k, equipped with a coproduct 6 : A --... A ® A, an antipode 

S: A--... A, and a counit f: A--... k, satisfying (6 ® id)6(a) = (id ® 6)6(a), 



(E 0 id)~(a),;, (id 0 E)~(a) =a, and ·(S 0 id)~(a) = ·(id 0 S)~(a) = 1E(a), 

for all a E A. These axioms are dual to the axioms of an algebra. There 

are also a number of consistency conditions between t.he algebra and the 

coalgebra structure: ~(ab) = ~(a)~(b), t(ab) = E(a)E(b), S(ab) = S(b)S(a), 

~(S(a)) = r(S0S)~(a), where r(a®b) = b0a is the twist map, E(S(a)) = 

t:(a), and ~(1) = 101, S(1) = 1, f(1) = 1k, for all a,b EA. We will often 

use Sweedler's (11) notation for the coproduct: 

~(a)= a01 ® a1 21 (summation is understood). 

(~ 0 id)~(a) = a(l) 0 a(2) 0 a(3) etc. 
(1) 

·we call two Hop£ algebras U and A dually paired if there exists a non

degenerate inner product. < , >: U 0 A -+ k, such that. 

< xy,a > = < x0y,~(a) >=< x,a(J) >< y,a(2) >, (2) 

< x,ab > = < ~(x), a® b >=<X (I)• a>< x121, b >, (3) 

< S(x),a > = < x,S(a) >, (4) 

< x,1 > = t:{x), and < 1,a >= t:{a), (5) 

for all x, y E U and a, b E A, i.e. if the product of the first Hopf algebra 

induces the coproduct on the second and vice versa. Note that a Hop£ algebra 

is in general non-cocommut.ative, i.e. T o ~ f. ~. 

2.2 Cartan Calculus 

The purpose of this article is to generalize the Cartan calculus of ordinary 

commutative differential geometry to the case of quantum Lie algebras. Be

fore restricting ourselves t.o this particular case, we first consider an arbitrary 

Hop£ algebra, and for this case we will introduce an exterior derivative d, Lie 

deriv~tives £"' and inner derivations i,. The guideline for our generalization 

will be the classical Cartan identity 

£, = i,d + dir, (6) 

2 

. .._ 

the Leibniz rule 

d(ab) = d(a)b+ ad(b)l, (7) 

and the nilpotency of d. In the following we will work with a Hop£ algebra 

U which will be interpreted as an algebra of left-invariant differential oper

ators or vector fields, and the dually paired Hopf algebra A which in this 

interpretation is the algebra of functions on which elements of U act via 

xe>a = a(t) < x,a(2) >, (8) 

where x E U and a E A. The action of x on a pair of functions a, b E A is 

given in terms of the coproduct by 

x 1> ab = (x(l) 1> a)(x121 1> b). (9) 

This motivates the introduction of a product structure on the "cross product" 

algebra A'XIU [8, 9) via the commutation relation 

xa = a( I) < X(t)• a(2) > X(2)· (10) 

As in the classical case, the Lie derivative of a function is given by the action 

of the corresponding vect.or field, i.e. 

£,.(a)= x 1> a= a(t) < x, a(2) >, 
£,.a= a( I) < X(t)! a(2) > £,.1,,. 

(11) 

The Lie derivative along x of an element y E U is given by t.he adjoint action 

in U: 
£ ad 

,.(y) = x I> y = X(t)YS( X(2))· (12) 

To find the action of i,. we can now attempt to use the Cartan identity (6)* 

xe>a £"'(a) 
i,(da) + d(i,a). 

(13) 

IWe use parentheses to delimit operations like d, Ur and £, e.g. da = d(a) +ad. 
However, if the limit of the operation is clear from the context, we will suppress the 

parentheses, e.g. d(i,da) = d(i.,(d(a))). 
IThe idea is to use this identity as long as it is consistent and modify it when needed. 
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As the inner derivation ix contracts )-forms and is zero on 0-forms like a, we 

find 

ix(da) = x 1> a= a(l) < x,a(2) >. (14) 

However this cannot be true for any x E U because from the Leibniz rule for 

d we have d(l) = d(I · 1) = d(1)1 + 1d(1) = 2d(1) and any i:~: that gives 

a non-zero result upon contracting d( 1) will hence lead to a contradiction. 

From (14) we see that the troublemakers are x E U with t(x) f. 0. Noting 

that t(x- lt(x)) = 0 we modify equation (14) to read 

i:~:(da) = a(l) < x- It(x),a(l) >, (15) 

such that i.,(dl) = 1 < x- It(x), I >= 0. Without loss of generality we can 

now set 

d(1):::0 and i 1 :::0. (I6) 

For x E U with non-zero counit we also need to modify equation (6) to 

£>:-l<(x) = i.,d + di"' (11) 

or in view of (II) identifying £ 1 = 1 and using the linearity of the Lie 

derivative 

£x = i.,d + lt(x) + dix (generalized CarUm identity). 

Next consider for any form o 

£r(da) = d(i:~:da) + t(x)d(a) + i:~:(dda) 
= d(£xa)+O, 

which shows that Lie derivatives commute with the exterior derivative: 

£xd = d£x. 

From this and (II ) we find 

£rd(a) = d(a(l)) < X(t),a(2) > £"'(2J' 
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(18) 

(19) 

(20) 

(21) 

To find the complete commutation relations of ix with functions and forms 

rather than just its action on them we next compute the action of £"on a 

product of functions a, b E A 

£x(ab) = i:rd(ab) + t(x)ab 

= i:~:(d(a)b+ ad(b)) + t(x)ab 
(22) 

and compare with equation (9). In place of an arbitrary x E U let us for the 

moment specialize to the case of a set of left-invariant vector fields Xi E U, 

i = I ... n, with zero counit and with coproduct 

~Xi = Xi c;9 I + 0/ 0 Xii Oii EU. (23) 

A coproduct of this form is encountered in many know examples and as we 

shall see it is not hard to generalize the equations later. For this choice of 

vector fields we obtain 

ix,a = (Oii 1> a) ix; 
£o,;(a) ix;• 

(24) 

if we assume that the commutation relation of ix, with d(a) is of the general 

form 

ix,d(a) = ix,(da) +"braiding term"· ix,. ..____. 
eA · 

A calculat.ion of £ x; ( d( a )d( b)) along similar lines gives in fact 

ix;d(a) (Xi 1> a)- d(Oii 1> a) ix; 

ix;(da)- £o,;(da) ix; 

and we propose for any p-form a: 

ix,a = ix,(a) + (-l)P£o;,(a) ix,· 

(25) 

(26) 

(27) 

Now we are ready to generalize to an arbitrary x E U instead of Xi· We 

observe that ix = i(x-l<(x)) because of i 1 = 0 and the linearity of the inner 

5 



derivation. The special coproduct given in (23) can now be replaced by 

~(x- 1f(x)) = X(J) 0 X(2)- lf(x) 01 

(x- 1f(x)) 01 + X(J) 0 (x(2)- lf(x(2))) 
(28) 

leading to 

i(x-J<(:r)}a = i(x-l<(x)}( a) + ( -1 )"£"'(I) (a) i(X(2)-I<(X(>))j. (29) 

which is equivalent to 

i:ra = i .. ( a)+ ( -1 )" £ .. 1, 1 (a) i:r1w (30) 

For a more direct. argument. we could also use the requirement. that ( 11) and 

(18) be mutually consistent: The left-hand side of the second equation in 

(11) gives (using the Leibniz rule) 

£,a= i:rd(a) + i,ad + !(x)a + di,a 

and the right-hand side gives 

0·(1) < X(t)• 0(2) > £"'(>) = 

ap 1 < x1 1 l• a1 21 > di:r1, 1 

+a(l) < x, a(2) > +a(l) < X(J)• 0(2) > i .. 1, 1d. 

Equating the two and using (11), (15), (19), and i:r(a) = 0, we find 

(31) 

(32) 

i:rd(a)- i:r(da) + £:r01 (da) i:r1, 1 = -[i:ra- i:r(a)- £:r1, 1(a) i:r
1
,
1
,d)+. (33) 

Therefore, we propose equation (30) for any p-form a, so that both sides of 

the above relation vanish. 

Missing in our list are commutation relations of Lie derivatives with vector 

. fields and inner derivations. It was shown in [9) that the product in U can 

be expressed in terms of a right. coact. ion ~A : U --* U 0 A, denoted ~A (y) = 

6 

yl 11 0 yl21', such that xy = yl 11 < xp 1,yl2l' > x121 • In our context (12) this 

gives 

£r{Y) 

£.,£y 

X(J)YS(x(2)) = y<•l < x,yl 21' >, 
£ £ -£ (2)' £ £.(11(y) "'!71- y!ll < X(J"Y > X(71' 

and - using the Cartan idcnt.it.y -

£ 0 - 0 £ - 0 (2)' £ 
xly - t £,

111
(y) x!7l - ly(l) < X (I)• y > X(>)" 

(34) 

(35) 

(36) 

Here is a summary of commutation relations valid on any form; x, y E U, 
a E A, a is a p-form and v E AXJU is a vector field. 

£,a= O(J)<Xpj,0(2)>£:r(2) (37) 

........ 

£ .. d{a) = d{a(J)) < X(J),a(2) > £.,!>1 (38) 0 

£ .. a = £x111 (a) £"!7l (39) 

ira = a(l) < .T(l)•f1(2) > i"'!7l (40) . 

i .. d(a) = O(J) < x- 1f(x),a(2) > -d(o(l)) < X(l)•o(2) > ix121 ( 41) 

i,a = i:r(a)+(-l)"£:r11)(a)i:rp1 {42) 

da = d(a) + (-1)"ad (43) 

dd(a) = -(-1)"d(a)d (44) 

£:r(t1) = X(J)V5(X(2)) (45) 

d2 = 0 (46) 

d£r = £rd (47) 

£, = di, + l£(x) + i:rd (48) 

£:r£y = £ (2)' £ y(ll<X(l)•?/ > "'Pl (49) 
£ 0 0 (2)' £ 

xly = ly!I)<T(l"Y .> r 121 (50) 
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2.3 Maurer-Cartan Forms 

The most generalleft.-invariant 1-form can be written II] 

Wb := S(b(l))d(b(2)) = -d(Sb(tj)b(2) (51) 

(left-invariance: ALl<wb) = S(b(2))b(3) ~ S(b(t))d(b(4)) = 1 0 wb), (52) 

corresponding to a function bE A. If this function happens to be tik, where 

t E Mm(A) is a matrix representation of U with ~(tik) =t;; ~ tik and S(t):;::: 

t- 1 , we obtain the well-known Cartan-Maurer form w1 = t- 1d(t). Here is a 

nice formula for the exterior derivative of wb: 

d(wb) = d(Sb(t))d(b(2J) 

= d( Sb(tl)b(2lS( bl3l)d( bl4l) 

= -Wb(llWb(2l' 

The Lie derivative is 

£r(Wb} = £r01 (Sb(i))£r121 (db(2)) 

= < X(t)• S( b(t)) > S(b(2))d( b(J)) < X(2)• b(4) > 
wbm < x, S( b(1 1)b131 > 

= < xlll• S( b(1 1) > wbm < x121, b(3) > . 

(53) . 

(54) 

The contraction of left-invariant forms with ir - i.e. by a left-invariant 

x E U - gives a number in the field k rather than a function in A as was 

the case for d(a): 

ir(wb) = ir( -d(Sb(l))b(2)) 

-ir( dSb(t j)b(2) 

- < x -lt(x),S(b(l)) > S(b(2))b(3) 

- < x,S(b) > +t:(x)t(b). 
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(55) 

As an exercise and t.o check consistency we will compute t.he same expression 

in a different way: 

i.r(wb) = i.r(S(b(l))d(b(2J)) 

= < X(t)•S(b(l)) > S(b(2))i.r(2)(db(2)) 

< X(t)• S( b(l)) > S( b(2))b(3) < x(ll - lt:(x(2)), b(4) > 
< X(t)•S(b(l)) >< X(2)- lt(X(2j),b(2) > 
t(x)t(b)- < x,S(b) >. 

3 Quantum Lie Algebras 

(56) 

Now we turn our attention to the case where the Hop£ algebras in question 

are quantum Lie algebras and functions on the quantum group correspond

ing to that algebra. We start with a Lie algebra g; its quantum universal 

enveloping algebra U9g is the Hopf algebra whose elements are polynomials 

in the generators of g modulo (deformed) commutation relations. Dually 

paired with U9g is Fun(G9 ), the Hop£ algebra of functions on the quantum 

group G 9 • 

In the following we would like to concentrate on a bicovariant basis of 

left-invariant vector fields 19] {Xi E U9gli = I, ... , n }, i.e. the x;s are left

invariant and close under right coaction: 

A~(x;) 1 ~x;, 

~A(X;) = Xi~ Ti;, (57) 

with T E Mn(A). The identification with g is made by requiring that, in 

the classical limit, the x;s reduce to either a generator of g or a Casimir 

operator in U(g). (Note that. such a choice of basis might· not. be unique 

or even possible.) We interpret. 7;, :=span{x;} as the quantum analog of a 

tangent bundle, and take U (see previous section) to be its UEA. 

Dual to this basis of vector fields is a basis of }-forms wi = wb; corre

sponding to a set of fpnctions hi E A that sat.isfy 

ix,(w1) =- < x;,S(bi) >=of. (58) 
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7,; :=span {wi} is t.o be interpreted as the quantum analog of the cotan

gent bundle. Using these particular 1-forms we can reexpress the exterior 

derivative on funct.ions a E A as 

d(a) = w;(Xi 1> a)= wi £x;(a). (59) 

From the previous equat.ion and the Leibniz rule ford, we find 

aw; = wi £e,;(a), (60) 

where 

E>/ = -x;111 < x;121 ,S(b;) > +x;t:(b;). (61) 

Furthermore, t.he requirement that d be invariant under coactions gives an 

(often overlooked) additional condition on the bi's: 

6.A(w;) = wi 0 s-1(T;;) (62) 

and therefore 

6Ad(t/) = ll 0 s-•(T;;), (63) 

where 6Ad(b) = b(2J 0 S(b(t))b(3) and we have used that 6.A(wb) = Wb(•> 0 

S(b1l))b131• Jf we assume for simplicity a coproduct of the standard form 

6(x;) =Xi 01 + 0/ 0 X;. (64) 

where 0/ E Uqg then from (54) and (55) we find commutation relations for 

ix; with wi 
. j ri £ ( i). t,;w = o; - o;• w txo 

= of -wm < O;k,S- 1(Tim) > ix• 
(65) 

which can be used t.o define the wedge product II as some kind of antisym

metrized tensor product. as follows.§ As in the classical case we make an 

ansatz for the product. of two forms in terms of tensor product.s 

wi llwi = w; 0wi- C,iimnWm 0wn, (66) 

I So far we have suppressed the A-symbol; to avoid confusion we will reinsert it in this 

paragraph. 
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with as yet unknown numerical constants uiimn E k, and define ix; to act on 

this product by contracting in the first tensor product space; i.e. 

i,,(wj llwk) = 6fwk- uikmn6;"wn. 

But from (65) we already know how to compute this, namely 

ix;(wi II wk) = 6{wk- £0;~(wi)6} 
= 6{wk- wm < 0/, s- 1(Tim) > 

and by comparison we find: 

or 
w; II wi 

Uijmn =< Omi,S- 1(T'n) > 

wi 0wi- < Omi,S- 1(Tin) > wm 0wn 

= (/- u)ijmnWm 0wn 

w; 0 wi- wk 0 £o.,(wi). 

(67) 

(68) 

{69) 

(70) 

.. ._ 

These equations can be used to obtain the (anti)commutation relations be

tween the wis; by using the characteristic equation for a, projection matrices 

orthogonal to the antisymmetrizer I - a can be found, and these will an

nihilate wi II wi. The resulting equations will determine how to commute . 

the 1-forms. Using the same method we can also obtain a tensor product 

!=lecomposition of product.s of inner derivations 

• • - • • •ij '. • . 
1m II tn - tm 0 In- 0' mnta 0 t,, (71) 

defined to act on !-forms by contract.ion in the first. tensor product space. 

This can again be used t.o find (anti)commutation relations for the is via 

projection matrices as mentioned above. 

Remark: The tensor product decomposition of the wedge product is invariant 

under linear changes of the {x;} basis, but it does depend on our choice of 

quantum tangent bundle. 
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There is actually an operator W that recursively translates wedge prod

ucts into the tensor product representation: 

for any p-form a. E.g.: 

W:i\~-+~·0A~- 1 , p~ 1, 

W(a) = wn 0 ix.(a) 

wn 0 i-.:.(w1 A wk) = wn 0 (h~wk- £o.m(w1)h~) 

= w1 0 wk- wn 0 £o.•(w1). 

(72) 

{73) 

W is not limited to llopf algebras with a coproduct of the standard form 

(64); any form of the coproduct is admissible. For example, the. matrix u 
will generalize to 

u~n =- < Xm,S- 1(Tin)S{l1) > +t(bi) < Xm,S- 1(Tin) >. (74) 

This is a generalization of results in [1). However examples of bicovariant 

vector fields with comultiplication more general than (64) have not been 

studied yet. 

4 Conclusion 

In this article we were able to define the actions of an exterior derivative, Lie 

derivatives and inner derivations on forms and non-commutative functions 

such that these objects· satisfy a closed algebra, namely a generalized Cartan 

Calculus. Most of the relations that we derive require only a Hopf algebra 

struct.ure. To be able to give commutation relations for inner derivations, 

forms, and forms wit.h functions, however, we need t.o make reference to a 

(finite) bicovariant basis of left-invariant vector fields. Such a bicovariant. 

basis permits the decomposition of wedge products into tensor products as 

well as a realization of the exterior derivative in terms of }-forms and vector 

fields. It is interesting to observe that all the "braiding" was done by Lie 

derivatives like e.g. £o,,. 
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We focused on Lie derivatives and inner derivations along left-invariant 

vector fields i.e. elements of U. This approach is both a generalization 

and a restriction of the undeformed theory: The classical case only involves 

derivatives along vector fields in the tangent bundle (e.g. X E span(g)) but 

allows functional coefficients i.e. the vector fields need not be left-invariant. 

In contrast to this we introduce derivatives along any element of the UEA. 

Noting that 1 + X and even ex are such elements, the name "transport" 

instead of "derivative" might be more appropriate. An attempt to introduce 

derivatives along elements in A><lU leads us to the following set of equations: 

ifx = fix (75) 

£1x = dfix+fixd+t(x)£J (76) 

£1x = f£x+d(f)ix+t(x)(£r:-n (77.) 

£h:d = d£,)( (78) 

The range of validity of these equations is rather limited; if, for instance, 

we allow x to have non-zero counit then the aforementioned formulas seem 

to be only consistent when evaluated on a or d(a), where a E A is an ar

bitrary function. If however we consider only xs with zero counit. then the 

problematic term £ 1 drops out of all equations. Equation (77) becomes 

£ fx = J £x + d{f)ix, t(x) = o, (79) 

and can be used to define Lie derivatives recursively on any form. There 

does not seem to be a way to generalize (45), i.e. to introduce Lie deriva

tives of vector fields along arbitrary elements of A><lU in the quantum case. 

Exceptions will be discussed in [13): 
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