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Abstract

Numerics and stability for orbifolds

with applications to symplectic embeddings

by

Ben Wormleighton

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor David Eisenbud, Chair

This thesis studies the geometry of orbifolds – primarily via variation of GIT, derived cat-

egory methods, and numerics – and develops connections of equivariant algebraic geometry

with embedding problems in symplectic geometry, and with lattice point counting for ratio-

nal polytopes. We also compile many aspects of the disparate toolkit required to rigorously

study orbifolds.
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Chapter 1

Overview

Orbifolds are rich geometric objects that lie at the intersection of many fields, including

algebraic and symplectic geometry, representation theory, and combinatorics. This thesis

lives in this intersection: resolving questions about the birational geometry of important

families of orbifolds by representation-theoretic and combinatorial means and, conversely,

using the framework of orbifold geometry to shed new insight on aspects of symplectic

embeddings and polytope combinatorics.

McKay correspondence

We first examine the local model for orbifolds – quotient singularities Cn/G for a finite

subgroup G ⊆ GLn(C) – through the McKay correspondence in dimensions two and three.

The McKay correspondence is an expansive body of work encompassing many ways in which

the representation theory of G influences the geometry of Cn/G and its resolutions.

When G ⊆ SLn(C) the singularity Cn/G is Gorenstein, which allows many more tech-

niques from birational geometry to be applied. In dimensions two and three there is a crepant

resolution

G-HilbCn → Cn/G

with a natural moduli description, called the G-Hilbert scheme. There is an entrancing story

due to Gonzalez-Sprinberg–Verdier, Reid, Craw, Logvinenko, and Cautis–Craw–Logvinenko

of how the irreducible representations of G control the exceptional fibre E ⊆ G-HilbC3

that now goes by the name of ‘Reid’s recipe’. Here we are concerned with in some sense

the complementary question: how does representation theory help to relate different crepant

resolutions of Cn/G?

In two dimensions this question is addressed by work of Kronheimer [53]. One can

rephrase the moduli problem for G-HilbCn in any dimension to add a parameter or ‘sta-

bility condition’ θ living inside a large vector space to produce moduli spaces Mθ of quiver
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representations. When n = 2, 3 and for generic θ, Mθ is a crepant resolution of Cn/G, and

recovers the G-Hilbert scheme for certain choices of θ. For surface singularities, where there

is a unique crepant resolution, Kronheimer showed that the space of stability conditions

has a wall-and-chamber structure that can be identified with the Weyl chambers inside the

Cartan subalgebra of a certain simple Lie algebra. Crossing walls corresponds to contracting

and ‘regrowing’ various strata of the exceptional fibre.

In Chapter 3 following the author’s work in [76] we develop an analog of Kronheimer’s

result for abelian subgroups of SL3(C) using the interpretation of the McKay correspon-

dence on the level of derived categories by Bridgeland–King–Reid [14], Craw–Ishii , [26], and

Cautis–Craw–Logvinenko [17]. There is again a wall-and-chamber structure on the space of

stability conditions. Denote by C0 the chamber for the G-Hilbert scheme.

Theorem 1 (Theorem 3.9.1). There is an algorithm – called the unlocking procedure –

to explicitly compute a set of inequalities defining C0 from the data of Reid’s recipe and

the combinatorics of the exceptional fibre. Moreover, one can determine which of these

inequalities are irredundant and so actually define walls of C0. The birational type, unstable

locus, and derived equivalence for the wall can be read from the wall equation.

The full result that will be described in Chapter 3 is rather stronger than this statement: it

produces an explicit list of walls and their birational properties for any finite abelian subgroup

of SL3(C) without running any computation. The largely combinatorial presentation of walls

that this yields also serves to provide simpler proofs of results of Craw–Ishii and Nolla de

Celis–Sekiya. There should be versions for this result for other Gorenstein singularities, such

as for Gorenstein toric singularities via the theory of dimer models [11, 25,47].

Numerics

The numerics, particularly the Hilbert function

hilb(X,L)(m) := χ(X,L⊗m)

for L a Q-line bundle on X, when X is an orbifold are structured by Reid’s orbifold Riemann–

Roch. This family of results decomposes the Hilbert function for a polarised orbifold (X,L)

as

χ(X,L⊗m) = initial term +
∑
p

qp(L
⊗m)

where the initial term is a ‘Riemann–Roch-like expression’ in terms of c1(L) and various

classes on X, the sum is over singular points p of X, and qp(L
⊗m) is some quasi-polynomial

function in m. Following Reid we study the local contributions made by orbifold singularities
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to the Hilbert function. The first question we address is for del Pezzo surfaces with orbifold

singularities; to what extent can the anticanonical Hilbert function hilb(X,−KX)(m) capture the

singular locus of X? It is more convenient to package the Hilbert function by its generating

function or its Hilbert series

Hilb(X,−KX)(t) :=
∑
m≥0

χ(X,−mKX)tm

where we have also converted to additive notation for the divisors −mKX as opposed to

the multiplicative notation for the corresponding Q-line bundles (ω∨X)⊗m. In this notation

orbifold Riemann–Roch becomes

Hilb(X,L)(t) = initial term +
∑
p

Qp(L)

where the initial term is the generating function for a polynomial sequence, and Qp(L) is a

particular rational function in t. We refer to the difference

Hilb(X,−KX)(t)− initial term =
∑
p

Qp(−KX)

as the ‘total orbifold contribution’ for (X,−KX). Up to two elementary number-theoretic

conjectures (Conjectures 4.4.8 and 4.5.8), we have the following result.

Theorem 2 (Theorem 4.6.12). Fix a power series H(t) ∈ N[[t]]. Either there are no orbifold

del Pezzo surfaces with Hilbert series equal to H(t), or

• the collection of orbifold del Pezzo surfaces with Hilbert series H(t) naturally breaks up

into finitely many families, which are indexed by lattice points in a polytope associated

to H(t),

• for each family, there is a set of rigid singularities RB that appear on every del Pezzo

surface in that family,

• the singularities on different orbifold del Pezzo surfaces in the same family differ by

adding ‘cancelling tuples’ to the singularities in RB.

Cancelling tuples are sets of singularities arising from a series of crepant toric blowups

of a Q-Gorenstein smoothable cyclic quotient singularity (named as ‘T -singularities’ and

classified in two dimensions by Kollár–Shepherd-Barron). The moral of this result is that

there is a surprising amount of structure in the collection of orbifold del Pezzo surfaces with

a given Hilbert series.

The finiteness of the set of families with properties listed above has consequences for

classification.
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Theorem 3 (Theorem 4.7.2). For a given collection of Q-Gorenstein rigid singularities B
there exist constants m > 0 and M > 0 dependent only on and computable from B such that,

for any orbifold del Pezzo surface X with singularities B,

m ≤ K2
X ≤M

This allows us to show that certain power series cannot occur as the Hilbert series of

orbifold del Pezzo surfaces.

When X is a toric orbifold, Hilbert functions for ample divisors correspond to lattice point

counting functions for polytopes. We take the perspective that Reid’s orbifold Riemann–

Roch for polarised toric varieties should be viewed within the polytope algebra framework

of McMullen’s work on Ehrhart theory [58, 59]. Suppose Q is a simple rational polytope.

Denote by ΣQ its inner normal fan, and by (XQ, DQ) the associated polarised toric variety.

XQ is an orbifold as we assumed Q was simple. Suppose Q is ‘integer-height’: that is, for

each edge e ⊆ Q and choice of primitive normal ne one has 〈x, ne〉 ∈ Z for all x ∈ e. By

orbifold Riemann–Roch, there is then a decomposition

|Q ∩ Zn| = initial term +
∑

σ∈ΣQ(n)

qσ(Q) (?)

where we denote qσ(Q) = qσ(DQ). McMullen’s work studies abstract decompositions

|Q ∩ Zn| =
∑
F⊆Q

φ(N(F,Q)) vol(F ) (†)

where N(F,Q) is the normal cone to a face F ⊆ Q, for some function φ on cones in Rn.

There are many choices of function φ that work. When Q is rational φ depends both on

the normal cone to a face and the residue class of the affine span of the face under lattice

translation.

This allows geometric tools from deformation and singularity theory to be leveraged to

solve problems in rational Ehrhart theory, which studies the growth of lattice point counts

in dilates of rational polytopes. Such functions are known to be quasi-polynomials. There is

a natural candidate rQ called the denominator of Q for the period of this quasi-polynomial.

We study the problem of quasi-period collapse; seeking to characterise when the minimal

period πQ of this quasi-polynomial is smaller than rQ. The decomposition (?) is especially

amenable to studying these problems since all the periodicity is contained in the orbifold

contributions qσ(Q).

Mutations are a crucial part of an ongoing program exploring Fano mirror symmetry [20].

For a polytope P and a good choice of combinatorial data (w,F ) relative to P , there exists

a new polytope µ(w,F )P called the mutation of P . In two dimensions, if two Fano polygons
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P and P ′ are related by a sequence of mutations then there exists a Q-Gorenstein deforma-

tion between the corresponding toric del Pezzo surfaces XP and XP ′ . Such a deformation

preserves the anticanonical Hilbert series, hence the quasi-periods of the dual polytopes P∨

and (P ′)∨ agree. However it does not in general preserve the Gorenstein index, which is the

geometric avatar of the denominator. This the fundamental observation that allows us to

access new understanding of quasi-period collapse by geometric means.

Using this insight into the numerics of orbifold del Pezzo surfaces in combination with the

work of Akhtar–Kaspzryk on polytope mutation in [3], the author and Kasprzyk evidenced

the value of this approach in two dimensions. In the following we denote by `σ the ‘local

index’ [34, Note 3.19] of an orbifold singularity σ ∈ XQ.

Theorem 4 (Theorem 4.9.3). Let P ⊆ R2 be a Fano polygon. The quasi-period of the

(rational) dual polygon Q = P∨ has

πQ ≤ lcm{`σ : σ ∈ RB}

where RB is the reduced basket of singularities for the orbifold del Pezzo surface XQ. Fur-

thermore, Q exhibits quasi-period collapse if there exists some singularity τ ∈ Xsing
Q of local

index not dividing lcm{`σ | σ ∈ RB}.

This provides a geometric characterisation of quasi-period collapse for many two-dimensional

polytopes, which can be used to construct and classify interesting families of examples of

polygons with prescribed quasi-period collapse.

Symplectic embeddings

We also form connections between the numerics of Q-line bundles on orbifolds and obstruc-

tions to symplectic embeddings between symplectic 4-manifolds.

An active body of work in symplectic geometry is concerned with constructing (ideally

sharp) numerical obstructions to the existence of embeddings

ι : (X,ω)→ (X,ω′) such that ι∗ω′ = ω

One of the most successful recent movements in this area was the development of Em-

bedded Contact Homology (ECH) by Hutchings, originally to provide a symplectic model of

Seiberg–Witten Floer homology. A family of optimisation problems in ECH were used by

Hutchings and many coauthors to produce a weakly increasing sequence of real numbers

ck(X,ω) associated to a symplectic 4-manifold (X,ω) called ECH capacities such that

(X,ω) symplectically embeds in (X ′, ω′) =⇒ ck(X,ω) ≤ ck(X
′, ω′) for all k ∈ Z≥0
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We construct a family of optimisation problems in algebraic geometry that produce a se-

quence of invariants

calg
k (Y,C)

where C is a curve in an orbifold Y , called algebraic capacities and show that for many

important toric manifolds (XΩ, ω) the ECH capacities ck(X,ω) agree with the algebraic

capacities of a suitable algebraic compactification of the open manifold X◦Ω = XΩ \ ∂XΩ.

Theorem 5 (Theorem 5.3.16). Suppose Ω is a rational convex domain. Then

ck(XΩ, ω) = calg
k (YΩ, DΩ)

where (YΩ, DΩ) is a natural polarised toric surface associated to (XΩ, ω).

From the numerics of Q-divisors on orbifolds, we deduce several results regarding sub-

tler embedding obstructions from the sub-leading asymptotics of ECH capacities, answering

questions of Cristofaro-Gardiner and Hutchings. This connection opens up a great deal of po-

tential for further fruitful application of birational algebro-geometric methods to symplectic

embedding problems, and contrariwise. As an example, we formulate the following conjecture

for an ‘algebraic Weyl law’ controlling the asymptotics of solutions to these algebro-geometric

optimisation problems, and prove it in certain cases.

Conjecture 1 (Conjecture 5.5.2). For (Y,A) a polarised Q-factorial surface,

lim
k→∞

calg
k (Y,A)2

k
= 2A2

Declaration

Chapter 2 consists of exposition original in presentation but not in content. The results of

Chapter 3 are original to me having appeared in [76]. Chapter 4 is partly expository and

partly based on my work in [77] and my joint work with A. M. Kasprzyk in [50]. The results

of Chapter 5 are original to me following and slightly extending my paper [75].
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Chapter 2

Introduction to orbifolds

2.1 Quotients

Taking quotients in a geometric category is notoriously challenging. For instance, it is well-

known that arbitrary quotients of manifolds by group actions fail to be manifolds.

Example 2.1.1. Let ξ be an irrational real number. Consider the action of the group G = Z2

on the (topological, smooth,...) manifold M = R given by

(m,n) · x = x+m+ nξ

This action has an uncountable number of orbits, each of which is dense in R, and so the

quotient as a topological space has the indiscrete topology and so is not a manifold (for

instance, it is not Hausdorff.)

Similarly, taking quotients of varieties or schemes is a difficult business; the central

problem here is that satisfying the desired mapping properties of a quotient may suppress

the opportunity for interesting geometry. In the following we mostly follow [15].

Definition 2.1.2. Given a category C and an object M with a G-action α : G→ Aut(M), a

categorical quotient of M by G is an object X in C with a morphism π : M → X such that:

• π is equivariant: π ◦ α(g) = π ◦ α(h) for all g, h ∈ G,

• π is initial among G-equivariant morphisms in C whose domain is M ; that is, if X ′ is

an object in C with a G-action β : G → Aut(X ′) and f : M → X ′ is a G-equivariant
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morphism, then there exists a unique morphism f̃ in C such that

M

π

��

f

!!

X
f̃

// X ′

commutes.

Example 2.1.3. If M = Cn with the C×-action by scaling, regarded in the category of

complex schemes, a categorical quotient is just a point since every C×-equivariant morphism

from Cn is constant.

In this example, we see a natural and rich geometric situation being compressed too far.

We restrict to the category of algebraic groups acting on varieties for the next definition.

Definition 2.1.4. Given a scheme M with a G-action α : G → Aut(M), a geometric quo-

tient of M by G is a scheme X with a morphism π : M → X such that:

• for each y ∈ Y , π−1(y) is a G-orbit,

• X has the quotient or pushforward topology: U ⊆ X is open iff π−1(U) ⊆M is open

• OX = π∗(OGM).

Example 2.1.5. Continuing Example 2.1.3, X = pt is not a geometric quotient for the

C×-action on Cn since the preimage of the single point is not an orbit. However, restricting

the action to M = Cn \ {0} produces a geometric quotient Pn−1.

Restricting the G-action to a suitable G-invariant open subset is a persistent theme in

the treatment of quotients. The next theorem due to Rosenlicht indicates why this is the

case.

Theorem 2.1.6 ( [70, Theorem 2]). For any G-action on a variety M , there is a G-invariant

open subset M0 ⊆M such that the G-action on M0 has a geometric quotient.

The issue is that this open subset is not canonical in any sense, and so different choices

for M0 yield different quotients. There are two responses to this problem:

• enlarge the category of schemes to include objects that play the role of good quotients

in both senses described above (stacks),

• embrace the nonuniqueness of geometric quotients by studying them collectively.
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We will primarily emphasise the second approach and see that many situations of geomet-

ric, algebraic, and combinatorial interest naturally arise by studying the ways these different

quotients are related to each other, and to the action of G on M . We will also discuss

some relations with the first approach, since the two are typically not mutually exclusive in

applications.

2.2 Invariants

Suppose M is an affine variety or scheme over k with coordinate ring k[M ], and that G is a

subgroup of Aut(M). Define the invariant algebra for G acting on M by

k[M ]G := {f ∈ k[M ] : f(g · x) = f(x) for all x ∈M}

The problem of understanding the invariants of such a group action has a long history (for

example, at least back to [12].) We state one of the main theorems in this direction. Recall

that G is reductive if every kG-module is semisimple.

Theorem 2.2.1 ( [15, Theorem 1.24]). Let M be an affine variety and let G ⊆ Aut(M) be

a reductive group. Then

• k[M ]G is finitely generated,

• Define the affine quotient of M by G

M//G := Spec k[M ]G

The morphism M → M//G induced by the inclusion k[M ]G ⊆ k[M ] is surjective, G-

equivariant, and makes M//G a categorical quotient in the category of affine varieties

over k.

One can globalise this construction to arbitrary schemes using a G-invariant affine open

cover.

2.3 Orbifold singularities

Suppose V is a vector space over k, and that G ⊆ GL(V ) is a finite subgroup. We consider

the affine quotient V//G.
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Example 2.3.1. Suppose V = k2 for a field k of characteristic not 2, and G = 〈−id〉 is

the group of order 2 generated by the negative of the identity matrix. If the dual basis to the

standard basis e1, e2 on k2 is denoted x, y, then the affine quotient of V by G is

Spec k[x, y]G = Spec k[x2, xy, y2] ∼= (uw = v2) ⊆ A3

This affine variety has one singularity, at the origin.

Just like in this example V//G is usually singular. We call singularities arising on such

affine quotients orbifold singularities or quotient singularities. If the group G is finite cyclic,

we call these singularities cyclic quotient singularities. Notice that we do not demand that

these singularities are isolated.

Example 2.3.2. Finite cyclic subgroups of GLn(C) provide many valuable examples of orb-

ifold singularities. We use the notation

1

r
(a1, . . . , an)

to denote both the subgroup of GLn(C) generated by the matrix
εa1

εa2

. . .

εan


where ε is a primitive rth root of unity, and the corresponding cyclic quotient singularity.

Definition 2.3.3. Let X be a variety over k. We say that X is an orbifold or has orbifold

singularities if its (potentially nonisolated) singularities are all locally isomorphic to orbifold

singularities.

2.4 GIT

Geometric Invariant Theory (GIT) is a theory that systematises Theorem 2.1.6 within a

general framework; that is, it gives a general method of selecting invariant open subsets with

geometric quotients. We draw from a combination of [15,39,66] for this subsection.

Suppose M = Spec(R) is a smooth affine variety with the action of a reductive algebraic

group G. For a choice of character χ ∈ G∨ define

M// χG := Proj
⊕
d≥0

Rχ⊗d
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where Rχ⊗d := {f ∈ R : f(g · x) = χ(g)df(x)}. Elements of Rχ⊗d are called χ⊗d-semi-

invariant functions. This Proj is equal to

M// χG = (M \∆χ)//G =: M ss
χ //G

for some closed, G-invariant ∆χ ⊆M .

Let us analyse what is happening. By taking the Proj we are removing the locus ∆χ of

all points p ∈ M such that every semi-invariant function f has f(p) = 0. Such points are

called χ-unstable. All other points are called χ-semistable. This produces a G-equivariant

morphism

π : M \∆χ →M// χG

by evaluating at each point. At this point we have obtained what is referred to in the

literature as a ‘good quotient’. However, it is not clear that distinct G-orbits in M \∆χ go

to different points in M// χG. For this we require the notion of stable points.

Definition 2.4.1. A point p ∈ M is χ-stable if it is χ-semistable, if locally near p all G-

orbits are closed (for instance, inside a G-invariant distinguished open set), and if StabG(p)

is finite.

The local condition on orbits implies that distinct orbits near x are separated by semi-

invariant functions as desired. Denote by M s
χ the (open) set of χ-stable points in M .

Theorem 2.4.2. Consider the morphism π : M ss → M// χG. There exists an open set

X ⊆M// χG such that π−1(X) = M s
χ and π restricts to a geometric quotient M s

χ → X.

Example 2.4.3. Suppose G = k× and let it act on M = kn+1 by scaling. Suppose a ∈ Z>0

and χ(t) = ta. Then ∆χ is given by the vanishing of the ideal generated by the χ-eigenvectors

in the coordinate ring C[x0, . . . , xn] of M . These are exactly the homogeneous polynomials

of degree a and so ∆χ = {0} giving the familiar description of projective space (in its nth

Veronese embedding). Note that for a < 0, the χ-eigenspace is trivial and so the quotient is

empty. We suggest the reader contemplates what happens when a = 0.

As this example illustrates, this construction is effective at capturing quotients that

interest us but can backfire by producing empty quotients when some choices of χ yield no

stable points.

Example 2.4.4. Consider G = GLr(k) acting on M = Hom(kr, kn) and let k be infinite.

For any character χ, notice that χ-stable points of M must have rank r since otherwise it is
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easy to create infinite stabilisers. Moreover these low rank maps are also χ-unstable. Pick

the character χ(A) = det(A)a for positive a. We can write such a map as

X =


a1,1 a1,2 . . . a1,n

...
...

. . .
...

ar−1,1 ar−1,2 . . . ar−1,n

0 0 . . . 0


Note that such matrices are fixed by

At =


1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

0 0 . . . 0 t


and so for semi-invariant f one has

f(X) = f(At ·X) = χ(At)f(X) = taf(X)

hence f(X) = 0. For full rank X : kr → kn there is a nonzero r × r minor and the ath

power of this defines a χ-semi-invariant function that is nonzero at X, hence evidencing

that X is χ-semistable. Indeed, in this situation there are no non-stable semistable (‘strictly

semistable’) points.

It follows that M ss
χ /G = M s

χ/G parameterises r-dimensional subspaces of kn up to coor-

dinate change; that is, it is isomorphic to the Grassmannian Gr(r, n).

Note that the existence of semistable points requires that the kernel K of the action on

X is sent to 1 by χ. For an argument over the real or complex numbers, one can see this as

otherwise, if |χ(g)| < 1 for some g ∈ K, f(x) = f(gm · x) = χ(g)mf(x)→ 0 as m→∞.

Observe that the GIT quotient also comes with an ample line bundle from the Proj

construction. We can view this line bundle as coming from OM on the affine variety M that

we have equipped with a G-action via the character χ. It descends to an ample line bundle

L on the GIT quotient, for which the graded ring is exactly

R(M// χG,L) =
⊕
d≥0

Rχ⊗d

As was clear from the examples above, the resulting quotient depended very strongly on

the choice of character, but also that many different characters can yield the same quotient.

We will explore this dependence further in §3 and sooner in §2.5. It was also the case that



13

many characters existed for which the notions of stable and semistable agreed. We call

such characters ‘generic’ and will indeed see that they are truly generic in many contexts.

There are also many variations of the above (c.f. [66]) for GIT quotients of (quasi)projective

varieties. In these contexts many authors prefer to emphasise the choice of equivariant line

bundle on M instead of a character to parameterise their GIT quotients.

2.5 Toric orbifolds

Toric varieties will be a recurrent source of examples and results in the following. Philo-

sophically, toric varieties are partial compactifications of algebraic tori by torus-invariant

boundary strata. They are described combinatorially by cones, fans, and polytopes. This

and much more is detailed in [23]. We outline some of the key constructions below. We will

work over the complex numbers to prepare to make contact with the symplectic methods in

later chapters, though much of the following carries over the arbitrary fields.

Affine toric varieties arise from cones

Let N ∼= Zn be a lattice and let NR := N ⊗Z R be the associated real vector space. A cone

σ in NR is a subset of the form

Cone(S) := {
∑
v∈S

λvv : λv ≥ 0, all but finitely many λv are zero}

Let M = N∨ := HomZ(N,Z) be the dual lattice to N , and MR = M ⊗Z R the dual vector

space to NR. Define the dual cone to a cone σ ⊂ NR to be

σ∨ := {v ∈MR : 〈u, v〉 ≥ 0 for all u ∈ σ}

where 〈·, ·〉 is the dual pairing NR ×MR → R. Suppose now that σ is a rational polyhedral

cone: that there is a finite set of lattice points S ⊂ N such that σ = Cone(S). Such a cone

σ gives an affine toric variety Uσ as follows.

• Input: σ, a rational polyhedral cone

• Dualise to σ∨

• Take lattice points σ∨ ∩M to obtain a semigroup

• Take the semigroup algebra C[σ∨ ∩M ]; this is a finitely generated C-algebra

• Output: Uσ := SpecC[σ∨ ∩M ].
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Notice that the dense open torus arises from C[σ∨ ∩M ] ⊂ C[M ] ∼= C[Zn], which is the ring

of Laurent polynomials, or the ring of functions for the torus (C×)n. The cone σ (or rather

σ∨) is describing which functions on the torus extend to global functions on Uσ, which is

equivalent to describing the variety. One can describe the torus inside Uσ intrinsically as

TN := N ⊗Z C×

In this presentation, a vector m ∈M gives a function χm : TN → C via

χm(n⊗ t) = t〈m,n〉

Example 2.5.1. Take N = Z2 and let σ = Cone(e1, e2). The dual cone is σ∨ = Cone(e1, e2)

giving

σ∨ ∩M = Z2
≥0 and C[σ∨ ∩M ] ∼= C[x, y]

Hence Uσ ∼= C2. In this case, σ∨ prescribes that the only Laurent polynomials extending to

all of Uσ are the polynomials.

Toric varieties arise from fans

To construct non-affine (in particular, compact) toric varieties we glue together affine toric

varieties in an torus-equivariant way. The combinatorial avatar of this process is collecting

cones together in a fan. To start with, a face of a cone σ is a subset of σ of the form

σ ∩ (〈m, ·〉 = 0) for some m ∈ σ∨. The cones forming the boundary of σ are examples of

faces, as is the vertex of the cone (the origin). A fan in NR is a collection of cones Σ = {σ}
such that

• if τ ⊂ σ is a face, then τ ∈ Σ

• for any two cones σ1, σ2 ∈ Σ, σ1 ∩ σ2 is a face of each

A fan Σ produces a toric variety YΣ via gluing two affine pieces Uσ1 , Uσ2 according to the

(potentially zero-dimensional) face they have in common.

Example 2.5.2. Take N = Z2 and Σ to be the fan containing the cones σ1 = Cone(e1, e2), σ2 =

Cone(e1,−e1− e2), σ3 = Cone(e2,−e1− e2) and their faces. The two-dimensional cones give

three copies of C2 and the gluing prescribed by the faces makes this into P2. For example, σ1

and σ3 share the face Cone(e2) that corresponds to the toric variety C× × C. Gluing C2 to

C2 along C× × C is familiar from the gluing construction of projective space.
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Compact toric varieties arise from polytopes

Suppose P ⊂ NR is a lattice polytope. One can produce a fan ΣP from P via

ΣP := {Cone(S) : S ⊆ Vert(P ) such that all u ∈ S share a face}

This is called the face fan of P and defines a toric variety YP := YΣP that turns out to be

compact.

A polytope Q ⊂MR also defines a toric variety VQ. Let LQ = #Q∩M and define a map

φQ : TN → PLQ−1 by x 7→ (χm(x))m∈Q∩M . The toric variety VQ is defined to be the closure

of the image of φQ in PLQ−1. If we define the dual polytope

P∨ := {v ∈MR : 〈u, v〉 ≥ −1}

then the toric variety YP is also described abstractly as the variety VkP∨ for large enough k,

from which it is readily apparent that it is compact.

Example 2.5.3. A polytope for P2 is the triangle with vertices e1, e2,−e1 − e2. The dual

polytope is the triangle with vertices 2e1 − e2,−e1 + 2e2,−e1 − e2. This has 10 lattice points

and describes the third Veronese (or anticanonical) embedding of P2 in P9.

In the VQ presentation, one can interpret Q as the moment polytope for the compact

torus action on VQ by composing the map φQ with the moment map on PLQ−1.

Polytopes arise from divisors

A (Weil) divisor on a normal variety is a formal Z-linear combination of codimension one

subvarieties. Divisors on a variety X up to an equivalence relation called rational equivalence

form a group called the class group of X. For a toric variety X containing dense open torus

T , the class group is generated by the components of the toric boundary X \ T . If X = YΣ

is given by a fan, these boundary components correspond to the rays of Σ. The set of rays

is commonly denoted Σ(1). Thus, every divisor on YΣ is rationally equivalent to one of the

form ∑
ρ∈Σ(1)

aρDρ

One can associate a polytope P (D) to a divisor of this form as follows. Let uρ be the

primitive lattice point lying on the ray ρ. Then set

P (D) := {v ∈MR : 〈uρ, v〉 ≥ −aρ for all ρ ∈ Σ(1)}
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The hyperplanes defining the facets of P (D) are given by 〈uρ, ·〉 = −aρ and so this construc-

tion of P (D) taking in the data (uρ, aρ)ρ∈Σ(1) is often referred to as a ‘facet presentation’ for

P (D). Denote by O(D) the line bundle associated to a (Cartier) divisor D.

Lemma 2.5.4 ( [23], Prop. 4.3.3). Let D =
∑

ρ aρDρ. A basis of H0(O(D)) is in bijection

with lattice points of P (D). That is,

#P (D) ∩M = LP (D) = h0(O(D))

Notice that there can be multiple facet presentations corresponding to the same divisor

if some of the hyperplanes give redundant inequalities.

Divisors arise from support functions

Fix a fan Σ. The support |Σ| of Σ is the union of the cones it contains. A support function

on Σ is a function ϕ : |Σ| → R such that ϕ|σ is linear for each σ ∈ Σ. An integral support

function is a support function such that ϕ(|Σ| ∩ N) ⊂ Z. An integral support function ϕ

produces a (Cartier) divisor D via

D = −
∑
ρ∈Σ(1)

ϕ(uρ)Dρ

and this process is actually reversible (so long as D is Cartier).

Singularities on toric varieties

There are several combinatorial criteria for controlling how wild the singularities on a toric

variety can be. Most relevant to the present work is the following result.

Theorem 2.5.5 ( [23]). A toric variety XΣ of dimension n is an orbifold iff every top-

dimensional cone in Σ is generated by n + 1 rays. Such fans are called simplicial as their

top-dimensional pieces are cones over simplices.

Let σ be an n-dimensional cone with n + 1 rays. The key insight behind this result is

that the lattice Λ generated by the minimal generators of rays in σ has finite index in N and

the quotient G = N/Λ is a finite abelian group that acts on the toric variety Cn obtained

by replacing N by Λ as the lattice we use. The quotient Cn/G is exactly the toric variety

Uσ (using N as lattice) and so we obtain the local description of XΣ as an orbifold.
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Toric varieties as quotients

There is an alternative construction of toric varieties as GIT quotients due to Cox [21]. Let

Σ be a full-dimensional fan in NR with Σ(1) the set of rays in Σ. We define the Cox ring of

X = XΣ to be

S(X) = C[xρ : ρ ∈ Σ(1)]

A monomial xa1
ρ1
. . . xasρs here defines a Weil divisor D =

∑
aiDρi , leading us to often denote

this monomial by xD. We grade S(X) by

deg(D) = [D] ∈ A1(X)

where A1(X) is the Chow group of divisors on X. Observe that by construction xDxE =

xD+E and so this is indeed a grading. Denote the graded pieces by Sα for α ∈ A1(X).

We construct an ideal of S(X) called the irrelevant ideal : for a cone σ, create a monomial

xσ =
∏
ρ/∈σ(1)

xρ

Denote by BΣ the ideal generated by these monomials, equivalently the ideal generated

by xσ for all maximal cones of σ. The variety ZΣ of this ideal in SpecS(X) = CΣ(1) has

codimension at least 2. We will see that XΣ can be obtained as a categorical quotient of

CΣ(1) \ ZΣ, as a geometric quotient exactly when Σ is simplicial, and that this can all be

manoeuvred into the framework of GIT.

The Chow group A1(X) fits into an exact sequence

M → ZΣ(1) → A1(X)→ 0

Applying the Gale dual functor HomZ(−,C×) which is exact as C× is divisible,

T ← (C×)Σ(1) ← GΣ ← 0

where T is the torus inside XΣ and where GΣ is by definition the Gale dual of A1(X). Note

that (C×)Σ(1) and hence GΣ act naturally on SpecS(X) = CΣ(1) and also on CΣ(1) \ ZΣ.

Theorem 2.5.6 ( [21, Theorem 2.1]). XΣ is naturally isomorphic to the categorical quotient

(CΣ(1) \ ZΣ)/GΣ. If Σ is simplicial, this is a geometric quotient.

Example 2.5.7. Consider the An singularity 1
n+1

(1, n). This is the affine toric variety U

corresponding to the cone σ with ray generators (0, 1), (n + 1,−n). We can compute A1(U)

from

Z2 → Z2 → A1(U)→ 0
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where the map Z2 → Z2 is given by

(a, b) 7→ (a(n+ 1)− bn, b)

whose cokernel is isomorphic to Z/(n+ 1). Hence GΣ
∼= Z/(n+ 1), which acts on C2 by the

familiar action inside SL2(C).

Toric varieties as GIT quotients

The quotient construction of a toric variety

X = XΣ = (CΣ(1) \ ZΣ)/GΣ

looks strikingly similar to a GIT quotient. Observe the GΣ-action just comes from the

A1(X)-grading on S(X). If we pick a character χ ∈ G∨Σ = A1(X) corresponding to an ample

divisor on X we can compute directly that rad(Bχ) = rad(BΣ) and so

CΣ(1)// χGΣ = XΣ

Indeed, as χ is an ample divisor on X, it has no basepoints on X nor does its lift to CΣ(1),

which is the linearisation provided by χ for OCΣ(1) .

Hence, every toric variety can be realised as a GIT quotient of affine space by an abelian

algebraic group. Reversing this process, one can provide a GIT construction of toric varieties

from fans that allows variation of GIT parameter to produce interesting geometry.

Fix a finite collection of primitive vectors B ⊆ N . We regard these as ray generators for

a fan Σ. Note that the Chow group of any XΣ with precisely these rays is fixed, and so one

obtains a ‘combinatorial class group’ A1(B) defined by the sequence

M → ZB π→ A1(B)→ 0 (∗)

This produces an algebraic group GB = Hom(A1(B),C×) that acts on AΣ(1) through the

grading deg(xρ) = π(ρ). The character group of GB is A1(B) and so a choice of class

χ ∈ A1(B) yields a GIT quotient

X = CB// χG

This is toric since G is abelian and, when G is a torus and χ is generic, will be a smooth

toric variety projective over the affine variety Spec (Sχ)0, which is independent of χ. The

sequence (∗) gives that A1(X) = A1(B).

We rephrase Cox’s theorem in this language.

Theorem 2.5.8. Every toric variety with fan Σ having Σ(1) ⊆ B occurs as a GIT quotient

AB// χG for some character χ.
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Note that that ‘degenerate’ characters inside A1(B) that are not ample for any XΣ with

Σ(1) = B can produce fans with fewer rays than B offers.

There are many choices of ample line bundle for a given toric variety X. The space of

these is the interior of the nef cone Nef(X) ⊆ A1(X)R = A1(B)R. For a different X, there

will be a different nef cone in A1(B)R. In this way, part of A1(B)R can be decomposed into

cones that form a fan. Notice that ample divisor classes must be effective and so this fan

won’t be supported beyond the positive octant. In the toric literature this is called the

‘secondary fan’ [22, §7]. Within each chamber, the GIT quotient is constant as an abstract

variety though its embedding changes with χ.

Example 2.5.9. Let v0 = (0, 0,−2), v1 = (1, 1, 1), v2 = (1,−1, 1), v3 = (−1,−1, 1), v4 =

(−1, 1, 1) ∈ R3. These vectors satisfy v1 + v3 = v2 + v4 and v0 = −(v1 + v3) = −(v2 + v4).

There are three complete toric varieties XΣ with Σ(1) ⊆ {v0, v1, v2, v3, v4} = B that, inside

the slice (z = 1), look like:

Figure 2.1: Fans with Σ(1) ⊆ B

• •

••

• •

••

• •

••

We compute the nef cones of each of these toric varieties X1 = XΣ1 , X = XΣ, X2 = XΣ2.

Recall from [23] that a divisor is nef iff its support function ψ is convex iff for every primitive

collection {w1, . . . , wr} one has

ψ(w1 + · · ·+ wr) ≥ ψ(w1) + · · ·+ ψ(wr)

From [7] ‘primitive collection’ is a set of ray generators of Σ that do not span a cone, but

such that every proper subset does. The primitive collections for Σ1 are {v0, v1, v3}, {v2, v4}
and so, letting −ai = ψ(vi), the inequalities defining Nef(X1) are

0 = ψ(v0 + v1 + v3) ≥ ψ(v0) + ψ(v1) + ψ(v3) = −a0 − a1 − a3 ⇔ a0 + a1 + a3 ≥ 0

−a1 − a3 = ψ(v1 + v3) = ψ(v2 + v4) ≥ ψ(v2) + ψ(v4) = −a2 − a4 ⇔ a2 + a4 ≥ a1 + a3

The exact sequence computing the class group of X1 is

Z3 → Z5 → Z2
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where the second map is (a0, . . . , a4) 7→ (a0 + a1 + a3, a0 + a2 + a4) =: (s, t). In A1(X1)R,

these inequalities are expressed simply as t ≥ s ≥ 0. The ample cone is t > s > 0.

Of course A1(X2) ∼= A1(X1) ∼= A1(B). The primitive collections for X2 are {v0, v2, v4}, {v1, v3},
which switch the roles of a1, a3 and a2, a4 (or s and t) in the inequalities. Hence, the nef

cone of X2 is given by s ≥ t ≥ 0 and the ample cone by s > t > 0.

Consider the singular toric variety X. The primitive collections are {v1, v3} and {v2, v4}
giving inequalities

a1 + a3 ≥ 0 and a2 + a4 ≥ 0

that are actually equivalent because of the relation v1 + v3 = v2 + v4 and the fact that they

all share a cone. This produces the locus s = t ≥ 0.

Figure 2.2: Secondary fan for B

Nef(X1)

Nef(X2)

Nef(X)

There are clear maps X1 → X ← X2, which are resolutions of X. These resolutions have

a single rational curve as exceptional fibre corresponding to the additional two dimensional

cone from the diagonal of the square at height 1. One obtains a birational map X1 →
X2, which is exactly the flop in this curve. X1 and X2 are the minimal resolutions of X

- isomorphic as varieties, but not as X-varieties. This is the exemplar of wall-crossing

geometry: crossing a ‘wall’ – a cone of characters yielding a ‘degenerate’ GIT quotient –

produced a correspondence X1 → X ← X2 realising a classical birational surgery.

2.6 Quiver varieties

A quiver is a directed graph. More formally, a quiver is a pair Q = (Q0, Q1) of sets with two

maps h, t : Q1 → Q0 taking an element of Q1, an arrow in the quiver, to its head vertex and

its tail vertex respectively.

Example 2.6.1. Consider the quiver Q = • ⇒ •. This can be encoded formally as Q =

({1, 2}, {a, b}) with h(a) = h(b) = 2 and t(a) = t(b) = 1.

Definition 2.6.2. A representation of Q (over a fieldk) is a Q0-graded kvector space V =⊕
i∈Q0

Vi with linear maps fα : Vi → Vj for each arrow i
α→ j in Q1. The dimension vector
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of V is dimV := (dimVi)i∈Q0. We often write a representation as either just V or as a

pair (V, (fα)α∈Q1). A graded linear map T = (Ti)i∈Q0 : V → W between two representations

V = (V, (fα)) and (W, (gα)) of Q is a homomorphism of representations if

Th(α) ◦ fα = gα ◦ Tt(α)

for all α ∈ Q1.

We obtain an abelian category repk(Q) of representations of Q over k.

Fix a dimension vector d for Q. A stability condition for Q is an element θ of

Θd := {ϑ ∈ HomZ(ZQG0 ,R) : ϑ(d) = 0}

We say that a representation V of dimension vector d is θ-stable if θ(U) := θ(dimU) > 0 for

all 0 6= U ( V . This is a combinatorialisation of usual GIT stability for quivers, as follows.

Define for V =
⊕

i∈Q0
Vi

R(Q, V ) =
⊕
α∈Q1

Hom(Vt(α), Vh(α))

The graded automorphism group acting on R(Q, V ) is

GL(V ) :=
∏
i∈Q0

GL(Vi)

We can view θ = (θi)i∈Q0 ∈ Θdim(V ) as a character for GL(V ) via

χθ(Ai)i∈Q0 =
∏
i∈Q0

det(Ai)
θi

and hence consider the GIT quotient

Mθ(Q, V ) := R(Q, V )// θ GL(V )

Observe that the condition θ(dim(V )) = 0 corresponds to the fact that the scalar subgroup

k× ⊆ GL(V ) acts trivially on R(Q, V ).

It follows from an argument of King [51, Prop. 3.1] that GIT stability for χθ corresponds to

the combinatorial notion of θ-stability introduced above. He uses this to show the following.

Theorem 2.6.3 ( [51, Prop. 4.3 & Prop. 5.3]). There is a fine moduli space Mθ(Q, d)

parameterising θ-stable representations of Q with dimension vector d. Moreover, this moduli

space is projective.
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It is often the case that the representations appearing naturally when taking quotients

come with relations between the maps fα. The natural place to express relations in terms

of arrows is the path algebra

kQ := k〈Q1〉/Ipath

where Ipath is generated by

αβ = 0 if t(α) 6= h(β)

In other words, elements of kQ are linear combinations of oriented paths in Q. This clearly

furnishes an equivalence of categories

rep(Q) ' kQ-mod

Relations between the maps fα composing a representation of Q can be expressed by a two-

sided ideal I ⊆ kQ. Indeed, the category rep(Q, I) of representations of Q such that the

fα obey all relations in I is equivalent to the category kQ/I-mod. There is an analog to

Theorem 2.6.3 though we lose the properness of the moduli space.

Theorem 2.6.4. There is a fine moduli spaceMθ(Q, I, d) parameterising θ-stable represen-

tations of Q satisfying relations I with dimension vector d. Moreover, this moduli space is

quasi-projective.

This arises from the same GIT construction using the GL(V )-action on the representation

space

R(Q, I) := {(fα)α∈Q1 ∈
⊕
α∈Q1

Hom(Vt(α), Vh(α)) : fγ = 0 for all γ ∈ I}

where for γ ∈ kQ we define fγ by defining fα1...αr = fαr ◦ · · · ◦ fα1 and extending linearly.

An important source of ideals in path algebras is potentials. Define kQcyc to be the vector

subspace of kQ generated by oriented cycles in Q. We call elements of kQcyc potentials. A

potential W ∈ kQcyc produces an ideal of kQ via the following procedure. Define the

derivative of a cycle γ = α1 . . . αr with respect to an arrow β by

∂βγ =

{
α1 . . . αi−1αi . . . αr β = αi,

0 β 6= αi for all i

One can extend the derivative linearly to define ∂βW for any potential W . With this defini-

tion, the ideal J(W ) corresponding to W , called the Jacobian ideal of W , is the two-sided

ideal of kQ generated by {∂βW : β ∈ Q1}. The quotient P(Q,W ) := kQ/J(W ) is called the

Jacobian algebra of (Q,W ).
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Nakajima quiver varieties

There is a symplectic version of these moduli spaces when the quiver Q and relations I

take a certain form, and when k = C. Let Q = (Q0, Q1) be a quiver. Define the ‘double

quiver’ Qdbl = (Q0, Q1 q Q∗1) to be the quiver with vertices Q0 and with two arrows α, α∗

for every arrow α in Q such that α links the same two vertices as it does in Q, and h(α∗) =

t(α), t(α∗) = h(α). Let U =
⊕

i∈Q0
Ui and define the ‘U -extended double quiver’ Q̃dbl to be

quiver with vertices Q̃0 = Q0 q {∞} and arrows Q1 = Q1 qQ∗1 qQ∞1 where

Q∞1 = {aij, bij}i∈Q0,j∈{1,...,dimUi}

with h(aij) = i and t(aij) =∞, and h(bij) =∞ and t(bij) = i.

Example 2.6.5. Let Q be the An quiver • → · · · → • with n vertices. Qdbl is

• • . . . • •

If Ui = k when i is one of the outermost vertices and Ui = 0 otherwise, we obtain the

following quiver as Q̃dbl

•

• • . . . • •

that is recognisable as the double of the affine Ãn quiver.

We call U a ‘framing’ for Q. Our treatment has already differed from the original work

of Nakajima [61]; we are using a reformulation due to Crawley-Boevey [29]. The notes of

Ginzburg [39] reconcile the two. We define

R̃(Q,U, V ) =
⊕
α∈Q1

Hom(Vt(α), Vh(α))⊕ Hom(Vt(α∗), Vh(α∗))⊕
⊕
i∈Q0

dimUi⊕
i=1

Vi ⊕ V ∗i

=
⊕
α∈Q1

Hom(Vt(α), Vh(α))⊕ Hom(Vh(α), Vt(α))⊕
⊕
i∈Q0

dimUi⊕
i=1

Vi ⊕ V ∗i

This is the representation space R(Q̃dbl, Ṽ ) where Ṽ is the Q̃0-graded vector space

Ṽ =
⊕
i∈Q0

Vi ⊕ C
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where degC =∞. It inherits a holomorphic symplectic structure via the pairing

Hom(Vt(α), Vh(α))× Hom(Vh(α), Vt(α))→ C, (fα, fα∗) 7→ tr(fα∗fα)

R̃(Q,U, V ) has a GL(V )-action where the one dimensional vector space at ∞ is left alone.

This action is Hamiltonian, and so we obtain a moment map

µ : R̃(Q,U, V )→ gl(V ), (fα)∪(fα∗)∪(aij, bij) 7→

 ∏
t(α)=i

fα∗fα −
∏

h(α)=i

fαfα∗ +

dimUi∏
j=1

bijaij


i∈Q0

conflating gl(V ) and gl(V )∨. Choosing λ ∈ gl(V ) gives a level set µ−1(λ) whose Hamiltonian

reduction we denote by

Mλ(Q,U, V ) := µ−1(λ)/GL(V )

The quotient here is simply the affine quotient on the level of varieties. Observe that taking

the preimage of the moment map is imposing a particular set of relations on representations

in R̃(Q,U, V ) however in general this symplectic construction is not a special case of the

previous GIT construction since there in the symplectic picture there is no action at the

vertex ∞. We will see some special cases later where they do actually agree. Nakajima’s

vision [61] for these varieties was to encode the relations for Kac–Moody algebras in terms of

their homology. When dim(Vi) = 1 for all i ∈ Q0, Mλ(Q,U, V ) is a ‘hypertoric variety’ – the

quaternionic analog of a complex toric variety – whose study has many valuable applications

in combinatorics [67].

2.7 Bridgeland stability

In contrast to the previous types of stability that have been discussed, Bridgeland stability

requires no explicitly equivariant context. We follow [13,54]. Let A be an abelian category.

The Grothendieck group of A is the abelian group

K(A) := Z ·ObjA/ ∼

where E1+E3 ∼ E2 whenever 0→ E1 → E2 → E3 → 0 is an exact sequence. In other words,

K-theory trivialises extensions in A. A stability function on A is a group homomorphism

Z : K(A)→ C

such that for all nonzero E ∈ K(A) one has Z(E) ∈ H ∪ R<0, where H := {a + ib : b > 0}
is the upper halfplane. Define the Z-slope of E to be

φZ(E) :=
1

π
arg(Z(E))

It is clear from this definition why we require the image to be constrained.
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Example 2.7.1. Let Q be a quiver and consider the abelian category A = rep(Q). If Q has

no loops or oriented cycles, then

K(A) = Z · {Si : i ∈ Q0}

where Si are the vertex simple modules with dimension vector (δij)j∈Q0. The reason for this

is easy to see from a small example. Take Q = • → • with vertex simple modules

S1 = C→ 0 and S2 = 0→ C

Take a general representation of the form V1
f→ V2. Split this into

ker f ⊕ V ′1 → im f ⊕ V ′2 = (ker f → 0)⊕ (V ′1
∼→ im f)⊕ (0→ V ′2)

The bookends are clearly multiples of vertex simples, so it suffices to express C 1→ C as an

extension of vertex simples. This is achieved by the sequence

0→ (0→ C)→ (C→ C)→ (C→ 0)→ 0

In this situation where K(A) is freely generated one can choose zi ∈ H ∪ R<0 and define

Z(Si) = zi to obtain a stability function.

Example 2.7.2. The original motivating example for stability functions comes from vector

bundles on algebraic curves. Consider the stability function given by Z(E) = − deg(E) +

i rk(E) on the category VecX of vector bundles on a smooth projective curve X. The associ-

ated slope is a rescaling of deg(E)/ rk(E), which is recognisable as the usual slope for vector

bundles on curves.

Definition 2.7.3. A nonzero object E ∈ A is Z-stable if for any nontrivial 0 6= F ( E one

has φZ(F ) < φZ(E). E is Z-semistable if such F ( E have φZ(F ) ≤ φZ(E).

Definition 2.7.4. A stability condition for A is a stability function Z : A → C such that

each E ∈ A has a filtration

0 = E0 ( · · · ( En−1 ( En = E

with quotients Qi = Ei/Ei−1 satisfying:

• each Qi is semistable,

• φZ(Qi) > φZ(Qi+1).

Such a filtration is called a Harder-Narasimhan filtration.
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Example 2.7.5. Let Q be a quiver without loops or oriented cycles. Let θ ∈ HomZ(ZQ0 ,R).

As in §2.6 define θ(E) := θ(dim(E)) for a representation E of Q. A stability condition for

rep(Q) is given by

Zθ(E) = θ(E) + i
∑
j∈Q0

dimEj

This arises from the previous construction by setting Z(Sj) = θ(j) + i. Let us observe

that Zθ-stability is nearly the same as θ-stability. If E is Zθ-stable and θ(E) = 0, then

a subrepresentation F ⊂ E has slope φZθ(F ) < φZθ(E) = 1/2, which means that the real

part of Zθ(F ) is larger than zero or, equivalently, that θ(F ) > 0. Note the requirement for

θ(E) = 0 comes from the fact that we are considering all of rep(Q) and not just those of

fixed dimension vector in order to study filtrations.

There is a modification of this definition for stability conditions on general triangulated

categories such as the derived category Db(X) of a variety X: these are Bridgeland stability

conditions.
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Chapter 3

Stability for orbifolds

3.1 Introduction to the McKay correspondence

Let G ⊂ SLn(C) be a finite subgroup. When n = 2 there is a famous ADE classification of

such subgroups that matches the classification of Du Val or modality zero singularities by tak-

ing a subgroup G to the quotient singularity 0 ∈ C2/G. This observation and the surrounding

deep interactions of the geometry of C2/G and its resolutions, and the representation theory

of G are known as the two-dimensional McKay correspondence [5,8,37,48,49,57,69]. In this

case, the unique minimal or crepant resolution has a modular interpretation as the G-Hilbert

scheme G-HilbC2.

The moduli space G-HilbM for M a variety and G ⊆ Aut(M) a finite subgroup param-

eterises G-clusters in M : zero-dimensional G-invariant subschemes M of C2 with H0(OZ) ∼=
C[G] as G-modules. One should think of G-clusters as being ‘scheme-theoretic group orbits’,

or degenerations of free group orbits with the reduced scheme structure. This was generalised

to three dimensions for finite abelian subgroups of SL3(C) by Nakamura [62] who showed

that G-HilbC3 is a crepant resolution of C3/G and then to all subgroups by the celebrated

work of Bridgeland–King–Reid [14]. They moreover established an equivalence of categories

Db(G-HilbC3) ' Db
G(C3) (3.1)

which also holds if G-HilbC3 is replaced by any projective crepant resolution of C3/G.

3.2 Abelian McKay correspondence

Let G ⊂ SL3(C) be a finite abelian subgroup. We will assume that G is cyclic, however most

of what follows carries over to the non-cyclic case. We will denote by 1
r
(a, b, c) the cyclic
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subgroup of SL3(C) generated by the matrix

g =

 εa

εb

εc


where ε is a primitive rth root of unity and a+ b+ c ≡ 0 mod r.

From the work of Craw [24] one can reinterpret G-Hilb as a moduli space of quiver repre-

sentations. The quiver in question is the McKay quiver with vertices indexed by irreducible

representations of G and the number of arrows between ρ and ρ′ defined to be

dim HomG(ρ′ ⊗ ρstd, ρ)

where ρstd is the standard representation of G acting on C3. We choose the dimension

vector d = (dim ρ)ρ and a stability parameter θ ∈ Θ as defined above. Locally to this

chapter we define Mθ := Mθ(Q, d) to be the fine moduli space of θ-stable representations

of the McKay quiver with dimension vector d subject to certain relations coming from

the associated preprojective algebra. When θ(ρ) > 0 for all ρ one has that Mθ(Q, d) =

G-HilbC3.

It is apparent from [14] that their smoothness result and equivalence of categories (3.1)

holds for any generic θ and so one obtains many resolutions Mθ(Q, d) and corresponding

equivalences of categories

Φθ : Db(Mθ)→ Db
G(C3)

These equivalences are Fourier-Mukai transforms coming from the universal family of Mθ.

Consider the diagram

Zθ

""{{

Mθ

##

C3

||

C3/G

where Zθ →Mθ is the universal family. The equivalence Φθ is the Fourier-Mukai transform

with kernel OZθ as described in [26, §2.4].

As alluded to in Chapter 2, the stability space Θ has a wall-and-chamber structure

such that any θ, θ′ from the same open chamber C ⊆ Θ produce isomorphic moduli spaces:

Mθ
∼= Mθ′ . For simplicity we denote by MC and ΦC the moduli space and equivalence of

categories for any generic θ ∈ C.
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When G is abelian, each resolution MC is toric. Fix the lattice N = Z3 + Z · (a
r
, b
r
, c
r
).

The singularity C3/G is described by the cone σ = Cone(e1, e2, e3) inside

NR := N ⊗Z R = R3
〈x1,x2,x3〉

and crepant resolutions correspond to triangulations of the cone face σ ∩ (x1 + x2 + x3 = 1)

such that the vertices of each triangle lies in N , and each triangle is smooth (its vertices form

a Z-basis of N). In figures we will always draw only the cone face to produce two-dimensional

pictures.

3.3 Reid’s recipe

Let us focus on the caseMC = G-HilbC3. We will denote the universal G-cluster by Z and

the chamber of Θ corresponding to G-Hilb by C0. Craw-Reid [28] present an entertaining

algorithm to construct the triangulation for G-Hilb that, after commenting on some of the

salient features, we will use without comment.

We call the triangulation for G-Hilb the Craw-Reid triangulation. It divides the junior

simplex into so-called ‘regular triangles’ of equal side length that fall into one of two cases:

• corner triangles, which have one of the vertices e1, e2, e3 of the junior simplex as a

vertex

• meeting of champions, for which none of the vertices of the junior simplex are vertices

Craw–Reid show that there is at most one meeting of champions triangle (possibly of side

length zero, in which case it is a point). After dividing the junior simplex into such triangles,

one subdivides them further into smooth triangles as depicted in Figure 3.1: the resulting

unimodal triangulation describes the resolution G-Hilb.

Figure 3.1: A regular triangle and its triangulation

• • • • •

•

•

•

•

• • •

• •

•

• • • • •

•

•

•

•

• • •

• •

•

In early versions of the McKay correspondence [69] one of the chief aims was to supply a

bijection from irreducible characters of G to a basis of cohomology on a crepant resolution.

This was explicitly computed for G-Hilb by Craw [24] when G is abelian using ‘Reid’s recipe’:
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a labelling of exceptional subvarieties by characters of G. Reid’s recipe is one of the main

tools we will use to compute walls and so we will describe it in some detail.

An exceptional curve C in G-Hilb corresponds to an edge in the Craw-Reid triangulation,

which in turn corresponds to a two-dimensional cone in the fan for G-Hilb. A primitive

normal vector (α, β, γ) to this cone defines a G-invariant ratio of monomials

xαyβzγ = m1/m2

where x, y, z are eigencoordinates on C3 for G. Mark the curve C with the character by

which G acts on m1 (or m2). We define the χ-chain to be the collection of all exceptional

curves (or edges in the Craw-Reid triangulation) marked by the character χ. We say that a

triangle in the Craw-Reid triangulation is a χ-triangle if one of its edges is marked with the

character χ.

After marking all curves, there is a procedure for labelling the compact exceptional

divisors, or interior vertices of the triangulation. Let D be such a divisor corresponding to

a vertex v. There are three cases:

• v is trivalent: D ∼= P2 and the three exceptional curves in D are all marked with the

same character χ. Mark D with χ⊗2.

• v is 4- or 5-valent, or 6-valent and not inside a regular triangle: D is a Hirzebruch

surface blown up in valency− 4 points. There are two pairs of exceptional curves in D

each marked with the same character χ and χ′. Mark D with χ⊗ χ′.

• v is 6-valent and lies in the interior of a regular triangle: D is a del Pezzo surface

of degree 6, and there are three pairs of exceptional curves each marked with the

same character χ, χ′, χ′′. D has two G-invariant maps to P2, mark D by the two

characters arising from the monomials constituting these two maps. These

two characters φ1, φ2 satisfy

χ⊗ χ′ ⊗ χ′′ = φ1 ⊗ φ2

For more detail see [24, Lemmas 3.1-3.4]. We will frequently refer to a curve or a divisor

marked with a character χ as a χ-curve or a χ-divisor.

Example 3.3.1. In Figure 3.2 with G = 1
30

(25, 2, 3), the leftmost curve marked with the

character 20 has normal (−2, 25, 0) giving the G-invariant ratio y25/x2. G acts on the

numerator and denominator by the character ε 7→ ε20, hence the marking. The divisor

marked with 23 incident to the previous curve marked with 20 has two pairs of curves with

characters 20 and 3 and a fifth curve with character 15. Thus, the divisor is correctly marked

by 20 + 3 = 23.
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We refer to divisors of the first two types - that is, all divisors not isomorphic to a del

Pezzo surfaces of degree 6 - as Hirzebruch divisors, and to divisors isomorphic to a del Pezzo

surface of degree 6 as del Pezzo divisors. We ask the reader to have grace on the slight

abuse of terminology as P2 is also a del Pezzo surface. For a character χ marking a curve,

we denote by Hirz(χ) the set of characters marking Hirzebruch divisors in the interior of the

χ-chain and by dP(χ) the set of characters marking del Pezzo divisors in the interior of the

χ-chain. We will often say ‘along the χ-chain’ in place of ‘in the interior of the χ-chain’.

3.4 Walls for G-Hilb

By definition, the vertices of the McKay quiver biject with the irreducible representations

Irr(G) of G and so one can conflate the stability space Θ with a quotient of the representation

ring of G (tensored with R). As θ varies, one obtains many different crepant resolutions

of C3/G; in the case that G is abelian, Craw-Ishii [26] show that all projective crepant

resolutions arise in this way. The stability space Θ has a wall-and-chamber structure such

that the moduli space Mθ(Q, d) is constant so long as θ remains inside a given chamber.

We denote the moduli spaceMC :=Mθ(Q, d) for any generic θ in a chamber C. Denote the

chamber corresponding to G-HilbC3 by C0. The positive octant

Θ+ := {θ ∈ Θ : θ(ρ) > 0 for all nontrivial ρ ∈ Irr(G)}

lies inside C0 however it is not usually equal to it. The primary purpose of this chapter is to

provide explicit combinatorial inequalities defining C0 and identify precisely which of these

define walls of C0. We remark that such equations were computed for a group of order 11

in [26, Example 9.6]. For alternative interpretations of this wall-and-chamber structure in

related contexts, see [63].

[26, Theorem 9.5] gives an abstract description of such inequalities, however making

calculations or deducing general statements from it are difficult tasks. One can view some

of the results herein as a combinatorialisation of this theorem, which turn out to be very

amenable to applications. To briefly outline the context and notation of [26] that we will

also use, for a chamber C ⊆ Θ the equivalence from (3.1) induces an isomorphism ϕC :

K0(MC)→ KG(C3) = Rep(G). Here K0(MC) denotes the K-group of sheaves supported on

the exceptional fibre ofMC → C3/G. Walls in Θ are cut out by hyperplanes (
∑

i αi ·θ(χi) =

0) for some characters χi ∈ Irr(G) and integers αi ∈ Z. The inequalities in [26] have three

different forms, each coming from exceptional subvarieties. Firstly, each exceptional curve

C ⊆ G-HilbC3 gives an inequality of the form

θ(ϕC0(OC)) > 0
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The characters appearing in of these inequalities are packaged in collections of monomials

associated to exceptional curves that were named by Nakamura in a different context as

G-igsaw pieces in [62]. Our first result is to pin down which characters lie in G-igsaw pieces.

Theorem 3.4.1. There is a combinatorial procedure that we call the unlocking proce-

dure for computing the characters appearing in a G-igsaw piece for an exceptional curve in

G-HilbC3.

To briefly illustrate how the procedure works, we consider the example of G = 1
30

(25, 2, 3).

The triangulation for G-Hilb is shown in Figure 3.2 along with Reid’s recipe.

Figure 3.2: G-Hilb and Reid’s recipe for G = 1
30

(25, 2, 3)
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We will demonstrate the unlocking procedure for the curve C shown on the left side

of Figure 3.3 marked with the character 5; that is, the character taking g 7→ ε5. On the

right side of Figure 3.3 we illustrate the unlocking procedure. Roughly, we consider all the

curves (or edges) marked with 5, add one character marking each divisor containing two

such curves (or vertices between two edges marked with 5), and finally add the characters

appearing in G-igsaw pieces for certain curves cohabiting a divisor with a curve marked with

5. In this case, the only such extra curve is marked with 9 and the G-igsaw piece for this

curve consists just of the character 9 itself. Some recursion will be necessary in general to

compute the smaller G-igsaw pieces of such curves. It follows that the G-igsaw piece for

C has characters 5, 9, 11, 14. Observe that this G-igsaw piece only picked one of the two

characters 7, 14 marking a divisor containing two 5-curves. We will elaborate later on how

the unlocking procedure identifies which of the two characters should be added.

Walls inside Θ are of various types denoted 0-III depending on the birational geometry

of the moduli spaces near the wall following [74]. Walls of Type I correspond to flops induced
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Figure 3.3: Unlocking for a 5-curve

•

••

•• 5

•

••
11

•

• •145 5 5
9

by curves. By [26, Theorem 9.12], every flop in a single exceptional (−1,−1)-curve can be

realised by a wall-crossing of Type I directly from C0, which is very much not true for other

resolutions; see [26, Example 9.13]. These walls are the easiest to compute. We denote the

set of characters appearing in a G-igsaw piece for an exceptional curve C by G-ig(C). The

following result is implied by [26, Cor. 5.2 + Prop. 9.7 + Theorem 9.12] and Theorem 3.4.1.

Proposition 3.4.2 (Prop. 3.8.2). Suppose C ⊆ G-HilbA3 is an exceptional (−1,−1)-curve

marked with character χ by Reid’s recipe. Then, the necessary inequality corresponding to C

that defines a Type I wall of C0 is given by

θ(ϕC0(OC)) =
∑

χ∈G-ig(C)

θ(χ) > 0

where G-ig(C) is computed by the unlocking procedure.

Walls of Type III arise from exceptional curves corresponding to certain ‘boundary’

edges in the triangulation for G-Hilb. The inequalities potentially defining such walls are

computed by the following result, which is a consequence of [26, Cor. 5.2] and Theorem 3.4.1.

Proposition 3.4.3. Suppose C ⊆ G-HilbA3 is an exceptional boundary curve marked with

character χ by Reid’s recipe. Then, the inequality corresponding to C is given by

θ(ϕC0(OC)) =
∑

χ∈G-ig(C)

deg(Rχ|C)θ(χ) > 0

where G-ig(C) is computed by the unlocking procedure, and where Rχ is the tautological line

bundle for χ.

We can also use the unlocking procedure to compute inequalities that do not come from

exceptional curves. The other two kinds of inequality come from exceptional divisors. For

each character ψ marking a divisor, we obtain an inequality θ(ψ) > 0. The second kind of

inequality coming from divisors is more complicated.
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Proposition 3.4.4 (Prop. 3.8.1). Suppose D′ is a (not necessarily prime) exceptional divisor

in G-HilbC3. Then any θ ∈ C0 satisfies

θ(ϕC0(ω
∨
D′)) =

∑
C⊆D′

∑
χ∈G-ig(C)

θ(χ) > 0

where C ranges over exceptional curves inside D′.

It was shown in [26, Prop. 3.8] that there are no Type II walls in Θ. However, it is still

interesting to compute the inequalities θ(ϕC(OC)) > 0 for (1,−3)-curves that would induce

contractions of this type.

Proposition 3.4.5 (Prop. 3.8.3). Suppose C ⊆ G-HilbA3 is an exceptional (1,−3)-curve

marked with character χ by Reid’s recipe. Then, the inequality corresponding to C is given

by

θ(ϕC0(OC)) = 2 · θ(χ⊗2) +
∑

χ∈G-ig(C)\{χ⊗2}

θ(χ) = 0

where G-ig(C) is computed by the unlocking procedure.

As a result of Prop. 3.4.4 and Prop. 3.4.5 we can immediately deduce the conclusion [26,

Prop. 3.8] for C0.

Corollary 3.4.6 (Cor. 3.8.4). C0 has no Type II walls.

We can similarly reprove [26, Theorem 9.12] by combinatorial means.

Proposition 3.4.7 (Prop. 3.8.5). Each flop in a (−1,−1)-curve in G-HilbC3 is induced by

a wall-crossing from C0.

We can use these formulae to show exactly which inequalities are necessary to define C0.

Theorem 3.4.8 (Theorem 3.9.1). Suppose G ⊆ SL3(C) is a finite abelian subgroup. The

walls of the chamber C0 for G-HilbC3 and their types are as follows:

• a Type I wall for each exceptional (−1,−1)-curve,

• a Type III wall for each generalised long side,

• a Type 0 wall for each irreducible exceptional divisor,

• the remaining walls are of Type 0 coming from divisors as in Prop. 3.4.4. We discuss

which of these are necessary and how to reconstruct the divisor D′ in §3.9.

We will define the term ‘generalised long side’ in Definition 3.8.13, which is an entirely

combinatorial notion.

The remainder of this chapter is devoted to proving Theorem 3.9.1 and its consequences.
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3.5 G-igsaw pieces

Consider the G-clusters at torus-fixed points of G-Hilb, or triangles in the Craw-Reid trian-

gulation. The ideal defining such a cluster is a monomial ideal and one can draw a Newton

polygon in the hexagonal lattice Z3/Z · (1, 1, 1) to illustrate the monomial basis. An example

of a torus-fixed G-cluster for the group G = 1
6
(1, 2, 3) is shown in Figure 3.4. Notice that

there is exactly one monomial in each character space for G as desired.

Figure 3.4: A torus-fixed G-cluster for G = 1
6
(1, 2, 3)

y
yz 1 x

z xz

The monomial ideal in C[x, y, z] defining this cluster is

〈x2, y2, z2, xy〉

Torus-fixed G-clusters for adjacent triangles separated by an exceptional curve C differ by

taking a subset of the monomials basing one G-cluster and moving them to other monomials

in the same character space; that is, multiplying by G-invariant ratios of monomials. This

process was studied in [62] and called a G-igsaw transformation. Let χ be the character

marking C. The subset of monomials in one of the two torus-invariant G-clusters partaking

in the G-igsaw transformation is called a G-igsaw piece for C. There is a single monomial

that divides all others in the G-igsaw piece, and this is the monomial in the G-cluster in the

character space for χ.

Example 3.5.1. We continue the example of G = 1
6
(1, 2, 3). The Craw-Reid triangulation

and Reid’s recipe for this group is shown in Figure 3.5. The triangle labelled by ? is the

triangle corresponding to the G-cluster from Figure 3.4.

Passing through the 4-curve C adjacent to the triangle ? performs a G-igsaw transforma-

tion with G-igsaw piece centred on the monomial with character 4, which in this case is xz.

The G-igsaw transformation switches xz for y2 - since the G-invariant ratio for C is xz/y2

- producing the new G-cluster
y2

y

yz 1 x

z
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Figure 3.5: Triangulation and Reid’s recipe for 1
6
(1, 2, 3)

•
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•

•
• ?

•

••
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2

1

3
4

If we pass through the 2-curve bordering ? then the G-igsaw piece contains the monomials

y, yz and produces the G-cluster

1 x x2

z xz x2z

As the two G-igsaw pieces for a given curve are related by multiplying by G-invariant

ratios, it is clear that they each have the same set of characters represented by their mono-

mials. We denote the set of characters in either G-igsaw piece for a curve C by G-ig(C). For

convenience we will also denote by χ(m) the character by which G acts on a monomial m.

3.6 Tautological bundles

The sheaf R = π∗OZ is locally free with fibre H0(OZ) above Z ∈ G-HilbC3. It splits into

eigensheaves

R =
⊕
χ∈IrrG

Rχ

and these summands are called tautological line bundles. Since G is abelian, the Rχ are line

bundles. [24] gives relations between these line bundles in K-theory, which translate to divis-

ibility relations between eigenmonomials. For a triangle τ in the Craw-Reid triangulation,

denote the monomial generating Rχ|Uτ by rχ,τ . We usually omit reference to τ so long as

the context is clear.

Theorem 3.6.1 ( [24, Theorem 6.1]). The relations between (generators of) tautological line

bundles are described by Reid’s recipe in the following way.

• If three lines marked with the same character χ meet at a vertex marked with ψ = χ⊗2

then

r2
χ = rψ
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• If four or five or six lines consisting of two pairs marked by characters χ, χ′ and zero

or one or two extra lines marked with further characters meet at a vertex marked with

ψ = χ⊗ χ′ then

rχ · rχ′ = rψ

• If six lines consisting of three pairs marked by characters χ, χ′, χ′′ meet at a vertex

marked with φ, φ′ then

rχ · rχ′ · rχ′′ = rφ · rφ′

The claim is that these relations hold and generate all relations between tautological

bundles. We will make heavy use of these divisibility relations between eigenmonomials to

study G-igsaw pieces for exceptional curves.

As alluded to, the work of Craw-Cautis-Logvinenko [17] categorifies Reid’s recipe via the

tautological bundles. Many of the constructions in [17, §3-4] resemble constructions made in

§3.7 below, however the computations they make are for the inverse equivalence of (3.1) to

that utilised in [26] and here. It would be of interest to make a more detailed comparison.

Evident from [17,26] and below, characters marking a divisor or a single curve are special.

They are termed ‘essential characters’ and have been further examined in [27,73].

3.7 Computing characters in G-igsaw pieces

Our motivating question for this section is the following: let C be a χ-curve, what are the

characters that appear in a G-igsaw piece for C? As we shall see, the answer depends

somewhat on how C sits inside G-Hilb, though it is still completely combinatorial.

Monomials for divisors

We will begin by proving results for (−1,−1)-curves (or those lying in the interior of a regular

triangle), starting with the following results relating the characters marking divisors along

the χ-chain to G-igsaw pieces for χ-curves.

Lemma 3.7.1. Suppose C is a χ-curve. Then G-ig(C) includes the character for each

Hirzebruch divisor along the χ-chain.

Proof. Theorem 3.6.1 implies that rχ | rψ for each ψ ∈ Hirz(χ) on every triangle. Hence,

any G-igsaw piece featuring rχ - such as a G-igsaw piece for C - will also feature each rψ
and so ψ ∈ G-ig(C).
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Lemma 3.7.2. Suppose C is a (−1,−1)-curve inside a regular triangle ∆ marked with χ.

Then the G-igsaw piece for C includes exactly one of each pair of characters marking a del

Pezzo divisor inside ∆ that is along the χ-chain.

Proof. Consider the local picture deduced from the proof of [24] Theorem 6.1 shown in Figure

3.6 for eigenmonomials near a vertex v inside ∆. We assume that ∆ is a corner triangle with

e3 as vertex and one side coming from a ray out of e1; the meeting of champions case is similar.

Here φ1, φ2 denote the characters marking the del Pezzo divisor at v, and a, b, c, d, e, f are

positive integers coming from the edges in the Craw-Reid triangulation defining out ∆. More

precisely, the two sides incident to e3 have the ratios xd : yb and ye : xc marking them, and

the side coming from a ray out of e1 has ratio zf : yc. r = f is the side length of the regular

triangle.

Figure 3.6: Generators for tautological bundles near v

Generators for Rφ1 Generators for Rφ2

xd−i : yb+izi

ye−j : xa+jzj

zf−k : xkyc+k

ye−jzi

ye−jzi

xa+jzf−k

xa+jzf−k

xd−iyc+k

xd−iyc+k

xd−i : yb+izi

ye−j : xa+jzj

zf−k : xkyc+k

xkye−j

yb+izf−k

yb+izf−k

xd−izj

xd−izj

xkye−j

Suppose C is a curve marked with xd−i : yb+izi - not necessarily incident to v - and hence

that χ = χ(xd−i). We will consider only this case as the same analysis goes through for

each of the curves marked with the other two ratios. The computation of eigenmonomials in

Figure 3.6 implies the divisibility relations shown in Figure 3.7. The χ-chain is dashed for

emphasis.

Indeed, some of the divisibility relations are clear; for example in the lower half of the

diagrams when rχ = xd−i and rφ1 = xd−iyc+k or rφ2 = xd−izj. The remaining claims are:

xd−i 6 | xkye−j xd−i 6 | xa+jzj yb+izi | ye−jzi yb+izi | yb+izf−k
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Figure 3.7: Divisibility relations near v

rχ | rφ1

rχ | rφ1

rχ 6 | rφ1

rχ 6 | rφ1

rχ | rφ1

rχ | rφ1

rχ 6 | rφ2

rχ | rφ2

rχ | rφ2

rχ | rφ2

rχ | rφ2

rχ 6 | rφ2

which are equivalent to

d− i > k d− i > a+ j b+ i ≤ e− j i ≤ f − k

respectively. Observe that the monomial xd−i doesn’t appear in any G-graphs for triangles

above the χ-chain in the diagram but xa+jzf−k does. Hence xd−i 6 | xa+jzf−k by the convexity

of monomial bases. Similarly one sees that xd−i 6 | xkye−j. From [28, Prop. 3.1]

i+ j + k = r ± 1 (3.2)

d− a = e− b− c = f = r (3.3)

with the ± depending on whether the χ-triangle we are using to compute a G-igsaw piece

for C is ‘up’ or ‘down’ (see [28, §3.2]). Notice also that since v is in the interior of a regular

triangle, each of i, j, k ≥ 1. From (3.3),

b+ i = e− c− j − k ± 1 ≤ e− j

and so yb+izi | ye−jzi. From (3.2),

f − k = i+ j ∓ 1 ≥ i

and so yb+izi | yb+izf−k. It follows that rχ divides rφ1 and does not divide rφ2 for every del

Pezzo divisor ‘to the right’ of C in the orientation of Figure 3.7, and that rχ divides rφ2 but

not rφ1 for every del Pezzo divisor ‘to the left’ of C, which establishes the lemma.
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This also expands on how the position of a curve determines which of the characters

marking a del Pezzo surface along the χ-chain makes it into the G-igsaw piece, as alluded

to while calculating walls for the example G = 1
30

(25, 2, 3) in §2.

Lemma 3.7.3. Suppose C is a (−1,−1)-curve marked with χ. Then G-ig(C) contains

exactly one of each pair of characters marking a del Pezzo divisor along the χ-chain.

Proof. Note that the only generalisation of Lemma 3.7.2 in this claim is that its conclusion

also holds for del Pezzo divisors along the χ-chain but in a different regular triangle to C.

This follows since at least one of the monomials in the ratio marking C (and the part of the

χ-chain inside ∆) still marks the χ-chain after it passes into a new regular triangle.

Lemmas 3.7.1-3.7.3 give an effective way of finding characters in G-ig(C). However, this

will turn out to not supply all characters in G-ig(C). We will transition into discussion of

the recursive procedure for filling in the remaining characters, and of the methods we will

use to verify that all characters have been located. We start with a lemma of Craw-Ishii.

Lemma 3.7.4 ( [26, Lemma 9.1]). A character χ marks a torus-invariant compact divisor

D ⊆ G-HilbC3 iff rχ is in the socle of every torus-invariant G-cluster in D.

Select a (−1,−1)-curve C marked with χ. This lies in two del Pezzo divisors from the

endpoints of the corresponding line segment. From Lemma 3.7.2 rχ divides exactly two of

the monomials in the character spaces labelling these two divisors. Suppose τ is a χ-triangle

neighbouring C. By the shape of the ratios in Figure 3.6 we can assume that rχ is not a power

of a single variable. The Unique Valley Lemma [62, Lemma 3.3] of Nakamura implies that rχ
divides exactly two elements of the socle of the torus-invariant G-cluster Zτ corresponding

to τ . Lemma 3.7.4 implies that the elements in the socle of Zτ that rχ divides correspond

exactly to these two characters labelling the neighbouring del Pezzo divisors. These are the

outermost monomials in the G-igsaw piece for C on τ , so that knowing them will allow us

to count how many characters appear in G-ig(C).

Recursive procedure: ‘unlocking’

We will describe the recursive procedure to compute G-igsaw pieces using only the data of

Reid’s recipe.

Input: an exceptional (−1,−1)-curve C marked with a character χ.

Let S = {χ}.

dP for each del Pezzo surface along the χ-chain, add one of the two characters marking it

to S
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H1 for each Hirzebruch divisor along the χ-chain, add the character marking it to S

For each Hirzebruch divisor D along the χ-chain, define a set of curves Cχ(D) by:

• if D is a boundary vertex on either side of which the χ-chain consists of boundary

edges, then Cχ(D) = ∅,

• if D is a boundary vertex of a regular triangle ∆ that is not in the previous case, then

Cχ(D) consists of all curves strictly inside ∆ incident to D that are not marked with

χ.

H2 for each Hirzebruch divisor D along the χ-chain, add the characters from the G-igsaw

pieces for curves in Cχ(D) to S.

Observe that to compute the characters on the G-igsaw piece for these curves combinato-

rially, one may need to iteratively apply the procedure until reaching a curve where the

characters in the G-igsaw piece can be read off immediately (see below for a description of

such curves).

Output: G-ig(C) = S.

We call this the unlocking procedure as passing through a Hirzebruch divisor ‘unlocks’

the simpler G-igsaw puzzles for the relevant curves incident to it that one can recursively

solve and then feed into the G-igsaw piece for C. It can be visualised as a flow through the

triangulation emanating from the curve C with preferred paths defining its tributaries. We

will first prove the validity of the unlocking procedure for curves inside regular triangles (i.e.

those able to define flops, or (−1,−1)-curves) before justifying the procedure for the other

exceptional curves.

Type Iy curves

In order to study G-igsaw pieces for curves inside regular triangles our treatment of the

three kinds of curve marked with different ratios as in Figure 3.6 will now diverge. We now

consider the edges marked with ratios of the form ye−j : xa+jzj. We say that such curves are

of Type Iy. The analysis from Lemma 3.7.2 gives a precise description of the socle of the

nearby torus-invariant G-clusters - depicted in Figure 3.8 - and hence the G-igsaw pieces for

χ-curves.
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Figure 3.8: Generators of eigenspaces along a χ(xa+jzj)-chain inside a regular triangle

φ0
φ1

φ2

φ3

φ4
. . . φm−2

φm−1
φm

rφ0
= xdzj

rφ1
= xa+jzj

rφ2
= xd−1zj

rφ3
= xa+jzj+1

rφ4
= xd−2zj

rφ5
= xa+jzj+2

rφm−3
= xd−(f−j−2)zj

rφm−2
= xa+jzf−1

rφm−1
= xd−(f−j−1)zj

rφm = xa+jzf

Lemma 3.7.5. The G-igsaw piece for a χ-curve of Type Iy on a χ-triangle chosen so that

in the coordinates used above rχ = xa+jzj is

rχ xrχ . . . xf−i−j−1rχ
zrχ

. .
.

zirχ

where the curve corresponds to the ith line segment from the bottom edge of the triangle.

Moreover, the χ-chain does not continue outside of this regular triangle. In particular,

Hirz(χ) = ∅.

Proof. The calculation of the G-igsaw piece follows immediately from the description of the

eigenmonomials in Figure 3.9. The χ-chain cannot continue outside of this regular triangle

since neither rφ0 nor rφm are divisible by rχ and so Theorem 3.6.1 implies that there cannot

be two edges marked with χ incident to either boundary vertex.

Notice that this means that there are f−j−1 characters to account for, excluding χ. But

this is exactly the number of del Pezzo surfaces along the χ-chain, each of which contributes

one character that depends on how far along the chain the curve is.

Corollary 3.7.6. For a χ-curve C of Type Iy, G-ig(C) consists exactly of χ and precisely

one character from each del Pezzo divisor along the χ-chain.

Observe that this is a situation in which there is no recursion necessary since Hirz(χ) = ∅.
This is one of the base cases that we will reduce to.
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Type Ix curves

Suppose now that C is a χ-curve inside a corner triangle with e3 as a vertex that is marked

with the ratio xd−i : yb+izi. We say that such curves are of Type Ix. [24, Lemma 3.4] yields

the identities in Figure 3.9 for eigenmonomials on triangles neighbouring the χ-chain, which

allow us to completely describe G-igsaw pieces inside regular triangles. In the following we

continue the notation of Figure 3.6 and let κ = r − (i+ 1).

Figure 3.9: Generators of eigenspaces along a χ-chain inside a regular triangle

φ0
φ1

1
φ2

1

φ1
2

φ2
2

. . . φ1
κ

φ2
κ

φm

rφ0
= xazi

rφ1
1

= xd−iyc+κ
rφ2

1
= xd−iz

rφ1
2

= xd−iyc+κ−1

rφ2
2

= xd−iz2

rφ5
= xd−iyc+κ−2

rφ2
κ−1

= xd−izκ−2

rφ1
κ

= xd−iyc+1

rφ2
κ

= xd−izκ−1

rφm = xd−iyc

Lemma 3.7.7. The G-igsaw piece for a χ-curve C of Type Ix on a χ-triangle chosen so

that in the coordinates used above rχ = xd−i is

yc+k−1rχ
. . .

yrχ
rχ

zrχ

. .
.

zjrχ

where C corresponds to the (j + 1)th line segment from the left edge of the triangle, and

i+ j + k = r. Moreover, the χ-chain continues to the right and does not continue to the left

of Figure 3.9.

Proof. The same argument as for Lemma 3.7.5 applies, except that rχ does divide rφm and

so by Theorem 3.6.1 the χ-chain must continue past the rightmost vertex.

Notice that the only characters in any such G-igsaw piece that are unaccounted for by

divisors along the χ-chain in the same regular triangle are those for the monomials

yrχ, . . . , y
crχ
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though ycrχ = rφm , which we have seen corresponds to a Hirzebruch divisor appearing along

the χ-chain.

Lemma 3.7.8. Suppose C is a χ-curve of Type Ix such that the χ-chain continues into

a boundary edge of a corner triangle with e2 as a vertex. Then G-ig(C) consists of χ,

one character from every del Pezzo divisor along the χ-chain, and the characters marking

Hirzebruch divisors along the χ-chain.

This follows since the e2-corner triangle has side length c and so there are exactly c

Hirzebruch divisors along the boundary part of the χ-chain that contribute the remaining

c characters to the G-igsaw piece. We say that the curves from Lemma 3.7.8 are of Type

Ixb. This is the other base case to which the unlocking procedure reduces.

Lemma 3.7.9. Suppose C is a χ-curve of Type Ix inside an e2-corner triangle and sup-

pose that the χ-chain continues into an e3-corner triangle (not necessarily the boundary).

Then G-ig(C) consists of χ, one character from each del Pezzo surface along the χ-chain,

the character marking the Hirzebruch divisor D between the two regular triangles, and the

characters from the G-igsaw piece of the Iy curve also incident to D inside the e3-corner

triangle.

Proof. Let C ′ be the Type Iy curve incident to D in the e3-corner triangle. Denote its

character by χ′. From Lemma 3.7.5 the characters in the G-igsaw piece for C ′ are χ′ and one

character from each del Pezzo divisor along the χ′-chain inside this regular triangle. From

examining the situation explicitly, on the lower χ-triangle neighbouring C one has rχ = xd−i

and rχ′ = xd−izi so that rχ | rχ′ near C. Also, one can see that the zone where rχ′ divides one

character from each del Pezzo divisor includes this basic triangle containing C and so these

divisibility relations remain. Hence, the G-igsaw piece for C ′ is contained in the G-igsaw

piece for C. The divisibility relations are depicted in Figure 3.10.

Suppose the ratio marking the common edge of the two corner triangles is zf : yc. From

Lemma 3.7.7 noting the change in notation coming from using an e2- instead of an e3-

corner triangle, the G-igsaw piece for C is missing f characters from the χ-chain to the

right. Continuing the adapted notation, we let the χ-chain enter the e3-corner triangle at

height d − i so that there are f − i new characters along the χ-chain corresponding to the

del Pezzo divisors along the χ-chain and the boundary Hirzebruch divisor D. There are

f − (f − i)− 1 = i− 1 divisors along the χ′-chain, making a contribution of i characters in

total including χ′ itself. Thus these account for all of the f missing characters.

Note that this vindicates the unlocking procedure for such curves, where only one recur-

sion was required to unlock the single Type Iy curve. The final case to consider is when the
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Figure 3.10: Unlocking for a Type Ix curve in an e3-corner triangle

•

•

χχ′

rχ = xd−i

rχ′ = xd−izi

rχ | rχ′ | rφ1
i

φ1
1, φ

2
1

. .
.

•

φ1
i , φ

2
i

χ-chain merges into an e1-corner triangle, whence it becomes a different kind of curve that

we will treat separately after the present case. We are still able to analyse it however.

Suppose the χ-chain passes through n e1-corner triangles before entering an e2-corner

triangle. Note that the curves in this last triangle are either boundary or Iy curves and

so this is the final triangle the χ-chain passes through. Note further that, as an Iy curve

cannot continue out of a regular triangle, the χ-chain must feed into the boundary of the

final e2-corner triangle.

Let the ratio xdm : ybm mark the edge opposite e1 for the mth e1-corner triangle ∆m

from the left and so ∆m has side length dm. Suppose the χ-chain enters ∆m at height im.

This means that the χ-chain picks up dm − im divisors from del Pezzo divisors and a single

Hirzebruch divisor inside ∆m. From analysing local divisibility relations as above, it is clear

that rχ divides all of the monomials in the G-igsaw pieces for the Type Ix curve incident to

the χ-chain and the leftmost Hirzebruch divisor inside each of these regular triangles. See

Figure 3.11 for a schematic. We denote Dm :=
∑m

q=1 dq and BDm :=
∑m

q=1(bq + dq).

By computing the characters on the nearby del Pezzo divisor, one can tell that these Type

Ix curves each have bm + im characters in their G-igsaw pieces, making the total number of

characters they contribute to the G-igsaw piece of C
n∑
q=1

(dq − iq + bq + iq) =
n∑

m=1

(bq + dq)

From the equations (3.3) the ratios marking the edges from e1 for the e1-corner triangles are

of the form

zf+
∑m
q=1 dq : yc−

∑m
q=1(bq+dq) for m = 0, . . . , n

with the last edge marked by zf+
∑n
q=1 dq : yc−

∑n
q=1(bq+dq). In particular, this means that the

e2-corner triangle has side length c −
∑n

q=1(bq + dq) and so the final part of the χ-chain
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Figure 3.11: Unlocking for a Type Ix curve in a series of e1-corner triangles

• • • ••
• • •

C

χ(xb1+i−1zf+1)

χ(zf+1)

χ(zf+d1+1)

χ(xb1+i−1zf+d1+1)

χ(zf+Dn−1+1)

χ(xbn−1+i−1zf+Dn−1+1)

zf : yc
zf+d1 : yc−(b1+d1)

zf+Dn : yc−BDn

contributes c−
∑n

q=1(bq + dq) characters to G-ig(C). Thus, in total we have

n∑
q=1

(bq + dq) + c−
n∑
q=1

(bq + dq) = c

characters, which is exactly the number that are not accounted for by del Pezzo divisors in

the e3-corner triangle that C inhabits by Lemma 3.7.7. This completes the proof of validity

of the unlocking procedure for curves of Type Ix.

Type Iz curves

The final type of curve occurring inside regular triangles is Type Iz: the curves marked

by ratios of the form zf−k : xkyc+k in the coordinates we have been using for an e3-corner

triangle. We repeat the G-igsaw analysis for these curves, represented in Figure 3.12 with

the χ = χ(zf−k)-chain dashed.

As in all previous cases, exactly one character marking each incident del Pezzo surface

has a monomial divisible by rχ and so we can pin down the socle and hence the G-igsaw

piece for such a curve.

Lemma 3.7.10. The G-igsaw piece for a (−1,−1)-curve marked with χ on a χ-triangle
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Figure 3.12: Divisibility relations near v

rχ 6 | rφ1

rχ 6 | rφ1

rχ | rφ1

rχ | rφ1

rχ | rφ1

rχ | rφ1

rχ | rφ2

rχ | rφ2

rχ | rφ2

rχ 6 | rφ2

rχ 6 | rφ2

rχ | rφ2

chosen so that in the coordinates used above rχ = zf−k is

yb+i−1rχ
. . .

yrχ
rχ xrχ . . . xd−i−krχ

where the curve corresponds to the ith line segment from the bottom edge of the triangle.

This means that there are b+ d− k characters in the G-igsaw piece for such a Iz curve.

We shift notation to match the setup of the final case for Type Ix curves shown in Figure

3.11. In particular, we assume our Type Iz curve C lies in an e1-corner triangle. Suppose

it lies in the mth triangle from the left. From considering local divisibility relations near

Hirzebruch divisors along the χ-chain this implies that C unlocks m− 1 Type Iy curves to

the left and n −m Type Ix curves to the right. From the calculations for Type Ix curves,

the n − m Type Ix curves each feature bq + iq characters in their G-igsaw pieces. From

a similar calculation, one can verify that the Type Iy curves contain iq characters in their

G-igsaw pieces. These unlocked curves thus contribute

m−1∑
q=1

iq +
n∑

q=m+1

(bq + iq) =
n∑

q=m+1

bq +
n∑
q=1

iq − im
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characters to G-ig(C). The part of the χ-chain in the e3-corner triangle studied in the

previous case contributes f− i0 characters, and the part in the e2-corner triangle contributes

c−
∑n

q=1(bq +dq). If i0 6= 0 then we unlock another Iy curve with i0 characters appearing in

its G-igsaw piece. If i0 = 0 then the χ-chain continues along the boundary of an e3-corner

triangle, contributing f characters. In either case there are f characters coming from the

e3-corner triangle. Lastly, there are
∑n

q=1(dq − iq) del Pezzo and Hirzebruch divisors along

the part of the χ-chain inside e1-corner triangles, giving in total

f︸︷︷︸
e3-corner

+
n∑

q=m+1

bq +
n∑
q=1

iq − im︸ ︷︷ ︸
unlocked curves

+
n∑
q=1

(dq − iq)︸ ︷︷ ︸
e1-corner

+ c−
n∑
q=1

(bq + dq)︸ ︷︷ ︸
e2-corner

= f + c−
m∑
q=1

bq − im

characters. Compare to the quantity b+ d− k in Lemma 3.7.10, which in these coordinates

is

c−
m∑
q=1

(bq + dq) + f +
m∑
q=1

dq − im = f + c−
m∑
q=1

bq − im

showing that every character in G-ig(C) is accounted for.

G-igsaw pieces for other curves

The procedure described above also works to compute G-igsaw pieces for curves not found in

the interior of regular corner triangles. Firstly, direct computations of divisibility relations

show that unlocking procedure as described above carries over verbatim to curves inside or

whose chains pass through a meeting of champions triangle. There is a more significant

expansion required for curves corresponding to boundary edges of regular triangles.

Input: An exceptional curve C corresponding to a boundary edge of a regular triangle. Let

S = {χ}.

H1 for each Hirzebruch divisor along the χ-chain, add the character marking it to S.

For each Hirzebruch divisor D along the χ-chain, define a set of curves Cχ(D) to consist of

the curves contained in D whose chain terminates at D or whose corresponding edges are

along ‘broken chains’ at D. A broken chain at D is a ρ-chain for some character ρ such that

D is contained in the interior of the chain and the two ρ-curves incident to D are marked

with different ratios. Pictorally, this means that the edges corresponding to these curves

have different slopes. We say that a chain passing through D is ‘straight’ at D if the two

curves incident to D in the chain are marked with the same ratio; that is, the corresponding

edges have the same slope. These situations are shown in Figure 3.13. For some examples
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in the case G = 1
30

(25, 2, 3) depicted in Figures 3.2 and 3.18, the 15-chain is broken at the

divisor D21 marked with 21 but straight at the divisors D19 and D17 marked with 19 and 17

respectively, and the 5-chain is straight at all the divisors it contains. It follows that, in this

example,

C6(D11) = {C8, C9} and C6(D21) = {C1
15, C

2
15, C18}

where Cρ is the curve incident to the relevant divisor marked with ρ, and C1
15, C

2
15 are the

two 15-curves incident to D21.

We say that a divisor D is ‘ahead’ of a boundary curve C if the edge corresponding to

C lies between the vertex for D and the vertex that the straight line containing C emanates

from. For example, when G = 1
30

(25, 2, 3), D19 and D21 are ahead of the 15-curve C contained

in D17 and D19, whereas D17 is not ahead of C.

H2 For each Hirzebruch divisor D ahead of C along the χ-chain, add the characters from

the G-igsaw pieces for curves in Cχ(D) to S.

Output: G-ig(C) = S.

Figure 3.13: Straight and broken chains

•

D

•

• •

χ

χ

m1 : m2 m1 : m2

•

D

•

• •

χ

χ

m1 : m2 m3 : m4

One proves that this procedure is valid in an analogous way to the procedure for curves

of Types Ix-Iz using neighbouring divisors to compute the socle and hence the G-igsaw

piece for C and then testing local divisibility relations to evidence that all these characters

come from the subvarieties in the procedure. We will sketch some new elements of the proof

below.

Proof. Choose coordinates so that C lies along the boundary of an e1-corner triangle. Con-

sider the two boundary curves C and C ′ shown in Figure 3.14.

One can verify using local divisibility relations that the only difference between the G-

igsaw piece for C and for C ′ is that the latter loses the characters in the G-igsaw pieces for
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Figure 3.14: Two boundary curves

•

•

•

• •
• •

C

C ′

the curves on one side of the χ-chain. It hence suffices to just compute the G-igsaw piece

for the curve in the χ-chain incident to e1.

Suppose that D is a Hirzebruch divisor along the χ-chain. If D is at the boundary of two

e1-corner triangles or an e1-corner triangle and a meeting of champions - as shown in Figure

3.15 - then one can check that rχ divides the G-igsaw pieces for the Type Iy curves C3 and

C4.

Figure 3.15: D bordering two e1-corner triangles or meeting of champions

•

D

•

• •

• •

χ

χ

C1 C2

C3 C4

Suppose now that D borders an e2- and an e3-corner triangle, or an e1-corner triangle

and an e3-corner triangle. We illustrate this situation in Figure 3.16, along with some of the

ratios marking curves.

The same argument as in the previous case gives that rχ divides the G-igsaw pieces for

C3 and C4.

To treat the remaining two curves C1 and C2 in each case, we use a generalised form

of [28, §3.3.2]: an edge ` continues in a straight line past a boundary edge `0 if and only if

the ratio marking ` features any common variables x, y, z raised to a strictly lower exponent

than in the ratio marking `0. One can verify this by a case-by-case analysis using as its base

the original result from [28]. This implies that rχ divides the G-igsaw pieces for ‘broken
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Figure 3.16: D bordering an e1- or an e2-corner triangle and an e3-corner triangle

•

D

•

• •

• •

χ

χ

C1 C2

C3 C4

•

D

•

• •

• •

C3 C4

zf : yc

zf : yc

xd−i : yb+izi xd−i : zh+i′yi
′

edges’ that do not continue in a straight line past the χ-chain and that it does not divide

any monomials in the G-igsaw pieces for ’straight edges’ that do continue past the χ-chain.

Variations of the arguments above work just as well for the cases not depicted when

some of the edges incident to D are also boundary edges of regular triangles. Counting up

all these monomials and comparing them with a socle calculation shows that these are all the

characters in the G-igsaw piece for C, which validates the unlocking procedure for boundary

curves.

As an example use case, if G-Hilb has a meeting of champions of side length 0 with the

three champions marked with a character χ then for any curve C along the χ-chain the

characters in the G-igsaw piece are given by the unlocking procedure applied to the branch

of the χ-chain that C lies on, combined with all the characters from (Hirzebruch) divisors

along the other two branches of the χ-chain. We will see an example of this in §3.7.

Observe that the unlocking procedure for these curves directly generalises the unlocking

procedure for (−1,−1)-curves in the sense that the construction of Cχ(D) in §3.7 agrees with

the construction via broken chains here.

Example: G = 1
30(25, 2, 3)

We will illustrate the unlocking procedure for G-Hilb in the case that G = 1
30

(25, 2, 3). In

the figures below, dashed lines are edges within a regular triangle and undashed lines are

the result of the first stage of the Craw-Reid triangulation.
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Figure 3.17: G-Hilb for G = 1
30

(25, 2, 3)
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••

•

•

•

•

•

•

•
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• • • •

•

•

•

•

•

•

Figure 3.18: Reid’s recipe for G = 1
30

(25, 2, 3)
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Consider the 15-curve C15 shown in Figure 3.19. This curve is of Type Ixb since after

the (−1,−1)-curve on the left side it feeds into a boundary edge of a regular triangle. This

gives

G-ig(C15) = {15, 17, 19, 21}
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Figure 3.19: Unlocking for a 15-curve
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••
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•
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•
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21

• 19

17

15
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15

15

Consider the 5-curve C5 shown in Figure 3.20. It passes into the right side of the junior

simplex, unlocking the 9-curve of Type Iy and giving

G-ig(C5) = {5, 9, 11, 14}

Figure 3.20: Unlocking for a 5-curve

•

••

•• 5

•

••

11

•

• •145 5 5

9

Consider the 2-curve C2 shown in Figure 3.21. This is a curve of Type Iz. We first get

the character 17 marking the divisor on the 2-chain, unlocking the 27-chain. The 27-chain

contains a del Pezzo divisor contributing the character 22 in this case. Hence

G-ig(C2) = {2, 17, 22, 27}
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Figure 3.21: Unlocking for a 2-curve
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Lastly, we will consider the boundary 15-curve C ′15 shown in Figure 3.22.

Figure 3.22: Unlocking for a boundary 15-curve
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At the first step we include the 15-chain and the curves of Type Ix and Iy unlocked by

it. These curves are marked with characters 10, 24, 18. The 18-curve and the 24-curve are

of Type Iy and only contribute their own character to the G-igsaw piece. The 10-curve is of

Type Ixb and so we add the Hirzebruch divisors along the 10-chain. As a result

G-ig(C ′15) = {10, 13, 15, 16, 17, 18, 19, 21, 24}

Example: G = 1
35(1, 3, 31)

We will use the example of G = 1
35

(1, 3, 31) to illustrate a phenomenon implicit, but less

clear in the long side picture. The triangulation for G-Hilb is shown in Figure 3.23. Reid’s

recipe is found in Figure 3.24.
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Figure 3.23: G-Hilb for G = 1
35

(1, 3, 31)
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Figure 3.24: Reid’s recipe for G = 1
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Consider the 3-curve C3 incident to e1. The unlocking procedure for this curve is shown

in Figure 3.25 giving

G-ig(C3) =

{
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18,

20, 21, 22, 24, 25, 26, 28, 29, 30, 32, 33, 34

}
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Notice that every chain meeting the 3-chain in a vertex is broken there. Repeating for the

next 3-curve along the chain produces the same unlocking sequence except that the topmost

part including the 1-chain and the 12-chain are not included, capturing that the monomials

in the corresponding character spaces are no longer divisible by r3 there.

Figure 3.25: Unlocking for a 3-curve
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3.8 Computing the walls of C0

Inequalities from curves

In [26, §9] Craw-Ishii provide an abstract description of some sufficient inequalities to carve

out the chamber C0. These inequalities arise from the interpretation of C0 mapping to the

ample cone of G-Hilb. From Kleiman’s criterion, one obtains inequalities

θ(ϕC0(OC)) > 0

for all exceptional curves C ⊆ G-Hilb. If this inequality is necessary to define C0, the

geometry of C determines the type of the wall as follows:

• If C is a (−1,−1)-curve - that is, it corresponds to an interior edge inside a regular

triangle - then (θ(ϕC0(OC)) = 0) ∩ C0 is a Type I wall.

• If C is a (1,−3)-curve - that is, it corresponds to one of the edges incident to a trivalent

vertex - then (θ(ϕC0(OC)) = 0) ∩ C0 is a Type II wall.

• If C is contained in a Hirzebruch divisor but it is not in either of the previous cases,

then (θ(ϕC0(OC)) = 0) ∩ C0 is a Type III wall.
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As discussed, there are no Type II walls and so the inequalities from the second case cannot

be necessary. One can express the inequality θ(ϕC(OC)) > 0 abstractly via [26, Cor. 5.2], a

consequence of which is

θ(ϕC(OC) =
∑
ρ

deg(Rρ|C)θ(ρ)

Any character ρ not in G-ig(C) has Rρ|C = OC and so it doesn’t appear in the sum above.

It follows that

θ(ϕC(OC)) =
∑

ρ∈G-ig(C)

deg(Rρ|C)θ(ρ)

which empowers the unlocking procedure to compute and interpret these inequalities.

Inequalities from divisors

To complete the classification, the walls of Type 0 are obtained from divisors. Suppose F is a

G-equivariant coherent sheaf on C3 with H0(F ) = C[G] as G-modules; in the language of [26]

F is a G-constellation, which generalises the notion of G-cluster. Suppose w is a Type 0 wall

of C0 with unstable locus D. Let θ ∈ w and suppose that S ⊆ F is a nontrivial subsheaf

such that θ(S) = 0. That is, F is θ-destabilised by S. [26, Cor. 4.6 + Remark 4.7] says that

either S or Q = F/S is rigid and so defines a constant family on D. It follows that D is

exactly the divisor parameterising such rigid sub- or quotient sheaves. From [26, Cor. 5.6 +

Theorem 9.5] the equation of a type 0 wall w is one of the following:

• if w comes from a divisorD parameterising rigid subsheaves, thenD = Dψ is irreducible

and the inequality defining the wall is θ(ϕC0(R−1
ψ |D) = θ(ψ) > 0.

• if w comes from a divisor D′ parameterising rigid quotient sheaves, then D′ is connected

but potentially reducible and the inequality defining the wall is θ(ωD′) = θ(Q) < 0

where Q is the representation defined by a quotient sheaf in D′.

We can be more precise in the second case. For the representation Q to be constant across

D, it means that Rρ|D′ is trivial for all ρ ⊆ Q. Equivalently, all torus-invariant G-clusters

in D′ share the same eigenmonomial rρ for each ρ ⊆ Q or, also equivalently, ρ /∈ G-ig(C) for

any C ⊆ D′.

Proposition 3.8.1. Suppose D′ is a (possibly reducible) divisor in G-HilbC3. Then the

inequality for the rigid quotient parameterised by D′ is

θ(ϕC0(ω
∨
D′)) =

∑
C⊆D′

∑
χ∈G-ig(C)

θ(χ) > 0
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Proof. This follows since reversing the inequality θ(Q) < 0 gives

θ(ϕC0(ωD′)) = θ(Q) < 0 =⇒ θ(ϕC0(ω∨D′)) = θ(C[G]/Q) > 0

and C[G]/Q contains exactly the characters in the statement of the proposition.

Type I walls

We know from [26, Theorem 9.12] that all flops in a single (−1,−1)-curve C are achieved

by a wall-crossing from C0. Moreover, we have deg(Rρ|C) = 1 for all ρ ∈ G-ig(C) from [26,

Cor. 6.3]. The unlocking procedure hence gives a combinatorial way of writing down the

equations of these walls.

Proposition 3.8.2. Suppose C ⊆ G-HilbA3 is an exceptional (−1,−1)-curve marked with

character χ by Reid’s recipe. Then, the Type I wall corresponding to C is given by

θ(ϕC0(OC)) =
∑

χ∈G-ig(C)

θ(χ) = 0

where G-ig(C) is computed by the unlocking procedure.

No Type II walls

Proposition 3.8.3. Suppose C ⊆ G-HilbA3 is an exceptional (1,−3)-curve marked with

character χ by Reid’s recipe. Then, the inequality corresponding to C is given by

θ(ϕC0(OC)) = 2 · θ(χ⊗2) +
∑

χ∈G-ig(C)\{χ⊗2}

θ(χ) = 0

where G-ig(C) is computed by the unlocking procedure.

Proof. Notice that such a curve C lies inside the exceptional P2 in the meeting of champions

case when the meeting of champions triangle has side length 0. Thus the P2 is marked with

χ⊗2 and lies in the socle of any torus-invariant G-cluster. From Theorem 3.6.1 rχ⊗2 = r2
χ

and so r2
χ is the furthest character from rχ in the G-igsaw piece in some direction. Note that

deg(Rρ|C) = min{k : rkχ | rρ}

and so all the characters in G-ig(C) appear with multiplicity 1 except for r2
χ, which appears

with multiplicity 2. This gives the required formula.

As a result we can immediately deduce the conclusion of [26, Prop. 3.8] for C0.
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Corollary 3.8.4. C0 has no Type II walls.

Proof. Suppose C is an exceptional (1,−3)-curve marked with χ. From Prop. 3.8.3 a G-igsaw

piece for C consists of χ, χ2, and the characters marking the (Hirzebruch) divisors along

the χ-chain. Let D′ be the exceptional P2 containing C. Consider the inequality for rigid

quotients parameterised by D′: from Prop. 3.8.1 the characters appearing in this inequality

are exactly the characters in the G-igsaw pieces of all three χ-curves converging at D′. These

are

{χ, χ⊗2} ∪ Hirz(χ)

which are exactly the characters appearing in the inequality for C. However, the inequality

for rigid quotients parameterised by D′ has multiplicities all equal to 1. When combined with

the inequality θ(χ⊗2) > 0 coming from rigid subsheaves parameterised by D′ this implies

that the inequality ϕC0(OC) > 0 is redundant.

All flops in (−1,−1)-curves

Using Prop. 3.8.2 and the unlocking procedure one can show directly that every (−1,−1)-

curve produces a necessary inequality, recovering [26, Theorem 9.12] by purely combinatorial

means.

Proposition 3.8.5. Suppose C is an exceptional (−1,−1) curve inside G-HilbC3. Then

the inequality θ(ϕC0(OC)) > 0 is necessary and so defines a wall of C0.

Proof. Suppose C is marked with χ. From the unlocking procedure we can write the in-

equality corresponding to C in the form

θ(χ) +
∑
i

θ(ψi) + θ(ρ1) +
∑
i

θ(ψ1
i ) + · · ·+ θ(ρm) +

∑
i

θ(ψmi ) > 0 (3.4)

where ρj are the characters marking curves Cj unlocked by C and ψji are the characters in

the G-igsaw piece for Cj. Note that curves unlocked by C cannot continue on both sides of

the χ-chain, since they meet the χ-chain at a Hirzebruch divisor found at the intersection

of the χ-chain and an edge of a regular triangle, where only two chains can continue. The

inequality for the (−1,−1)-curve Cj is

θ(ϕC0(OCj)) = θ(ρj) +
∑
i

θ(ψji ) > 0

In order to express (3.4) in terms of other inequalities, we must have an inequality featuring

the character χ. These can only arise from other χ-curves or divisors parameterising rigid

quotients not featuring χ. Other χ-curves will feature at least one different character in
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their G-igsaw piece compared to G-ig(C): indeed, other curves in the same regular triangle

will feature a different collection of del Pezzo divisors, curves in other regular triangles will

either feature different del Pezzo divisors or unlock different curves, and χ-curves along a

boundary edge will have different unlocking behaviour. In particular, the inequalities from

these curves will not be summands of the inequality (3.4). Inequalities from rigid quotients

not containing χ will also not be summands of (3.4) since the unlocking procedure implies

that there are no divisors Dρ along the χ-chain for which all characters marking curves

incident to Dρ are represented in G-ig(C). It follows that (3.4) is necessary.

Irredundant inequalities - examples

The aim of these final sections is to precisely describe all the walls of C0. We start with an

accessible example.

Example 3.8.6. Consider G = 1
6
(1, 2, 3). G-Hilb and Reid’s recipe are shown in Figure

3.26. We compute the inequalities coming from curves and divisors that define C0 via the

Figure 3.26: G-Hilb and Reid’s recipe for 1
6
(1, 2, 3)

•

••
•

•

•
•

•

••
5

•

•
•

32

2

1

3
4

unlocking procedure.

θ(χ1) > 0 (A1)

θ(χ2) + θ(χ5) > 0 (A2)

θ(χ2) + θ(χ3) + 2θ(χ4) + 2θ(χ5) > 0 (B2)

θ(χ3) + θ(χ5) > 0 (A3)

θ(χ3) + θ(χ4) + θ(χ5) > 0 (B3)

θ(χ4) > 0 (A4)

θ(χ5) > 0 (A5)

θ(χ2) + θ(χ3) + θ(χ4) + θ(χ5) > 0 (B5)
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(A1) is from the curve marked with the essential character 1. Similarly for (A4). We then

have two inequalities (A2) and (B2) coming from the two 2-curves, and two (A3) and (B3)

from the two 3-curves. The 5-divisor gives two inequalities (A5) and (B5) for rigid subsheaves

and quotients it parameterises.

We can see that (B2) is redundant by expressing it as a combination of (A2), (A3) and

(A4). Similarly, (B3) can be expressed in terms of (A3) and (A4). No further reductions are

possible, and so the walls of C0 (with their types) in this example are:

θ(χ1) = 0 (I)

θ(χ2) + θ(χ5) = 0 (III)

θ(χ3) + θ(χ5) = 0 (I)

θ(χ4) = 0 (I)

θ(χ5) = 0 (0)

θ(χ2) + θ(χ3) + θ(χ4) + θ(χ5) = 0 (0)

Example 3.8.7. We continue with a more detailed example for G = 1
30

(25, 2, 3). Continuing

the calculations in §3.7, we find that the inequalities from curves in G-Hilb are:

θ2 + θ27 + θ22 + θ17 > 0 (A2)

θ2 + θ5 + θ8 + θ11 + θ14 > 0 (B2)

θ3 + θ13 + θ18 + θ23 + θ28 > 0 (A3)

θ3 + θ5 + θ7 + θ9 + θ11 + θ13 + θ23 + θ28 > 0 (B3)

θ3 + θ5 + θ7 + θ9 + θ11 + θ13 + θ15 + θ17 + θ19 + θ21 > 0 (C3)

θ4 + θ29 + θ24 + θ19 + θ14 > 0 (A4)

θ4 + θ7 + θ29 + θ24 + θ19 > 0 (B4)

θ4 + θ7 + θ10 + θ13 + θ16 + θ19 + θ29 > 0 (C4)

θ4 + θ7 + θ10 + θ13 + θ16 + θ19 + θ22 > 0 (D4)

θ5 + θ7 + θ9 + θ11 > 0 (A5)

θ5 + θ7 + θ8 + θ11 > 0 (B5)

θ5 + θ8 + θ11 + θ14 > 0 (C5)
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θ6 + θ8 + θ9 + θ10 + θ11 + θ13 + 2θ12 + 2θ14 + 2θ16 + 2θ15 + 2θ17 + 2θ19 + 3θ18

+3θ20 + 3θ22 + 3θ21 + 3θ23 + 3θ25 + 4θ24 + 4θ26 + 4θ28 + 4θ27 + 4θ29 + 4θ1
> 0 (A6)

θ6 + θ8 + θ10 + 2θ12 + 2θ14 + 2θ16 + 3θ18 + θ9 + θ11 + θ13 + 2θ15 + 2θ17

+2θ19 + 3θ21 + θ1 + 4θ26 + +2θ16 + 3θ23 + 3θ20 + 3θ22 + 4θ24 + 4θ26
> 0 (B6)

θ6 + θ8 + θ10 + 2θ12 + 2θ14 + 2θ16 + 3θ18 + θ9 + θ11 + θ13

+2θ15 + 2θ17 + 2θ19 + 3θ21 + θ1 + θ26 + θ21 + θ16
> 0 (C6)

θ6 + θ8 + θ10 + 2θ12 + 2θ14 + 2θ16 + θ1 + θ26 + θ21 + θ16 + θ9 + θ11 + θ13 > 0

(D6)

θ6 + θ1 + θ26 + θ21 + θ16 + θ11 + θ8 + θ9 > 0 (E6)

θ6 + θ1 + θ26 + θ21 + θ16 + θ11 > 0 (F6)

θ8 > 0 (A8)

θ9 > 0 (A9)

θ10 + θ13 + θ16 > 0

(A10)

θ10 + θ12 + θ14 + θ16 + θ18 + θ5 + θ7 + θ9 + θ11 + θ13 > 0

(B10)

θ10 + θ13 + θ12 + θ14 + θ16 > 0

(C10)

θ12 + θ7 > 0

(A12)

θ12 + θ14 > 0

(B12)

θ15 + θ17 + θ19 + θ21 > 0

(A15)

θ15 + θ17 + θ19 + θ18 + θ21 > 0

(B15)

θ15 + θ17 + θ18 + θ21 + θ24 + θ10 + θ13 + θ16 + θ19 > 0

(C15)

θ15 + θ18 + θ21 + θ24 + θ27 + θ10 + θ13 + θ16 + θ19 + θ22 + θ5 + θ8 + θ11 + θ14 + θ17 > 0

(D15)
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θ18 > 0 (A18)

θ20 + θ23 + θ26 + θ29 > 0 (A20)

θ20 + θ22 + θ23 + θ26 > 0 (B20)

θ20 + θ23 + θ22 + θ24 + θ26 > 0 (C20)

θ20 + θ15 + θ17 + θ19 + θ21 + θ22 + θ24 + θ26 + θ28 > 0 (D20)

θ24 > 0 (A24)

θ25 + θ27 + θ29 + θ1 > 0 (A25)

θ25 + θ28 + θ1 > 0 (B25)

θ27 + θ22 > 0 (A27)

θ27 + θ29 > 0 (B27)

θ28 > 0 (A28)

The bolded inequalities correspond to curves C with NC not of type (−1,−1). We know

by [26, Theorem 9.12] that the other inequalities are necessary and define Type I walls of

C0. The inequalities from divisors parameterising rigid subsheaves are:

θ1 > 0 (A1)

θ7 > 0 (A7)

θ11 > 0 (A11)

θ13 > 0 (A13)

θ14 > 0 (A14)

θ16 > 0 (A16)

θ17 > 0 (A17)

θ19 > 0 (A19)

θ21 > 0 (A21)

θ22 > 0 (A22)

θ23 > 0 (A23)

θ26 > 0 (A26)

θ29 > 0 (A29)
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We record the redundancies for the bold (or potentially redundant) inequalities.

(F6) + (A8) + (A9) + (A10) + (B12) + (A15)

+(A18) + (A20) + (A24) + (A25) + (B27) + (A28)
=⇒ (A6)

(F6) + (A8) + (A9) + (A10) + (B12) + (A15) + (A18) + (A20) + (A24) =⇒ (B6)

(F6) + (A8) + (A9) + (A10) + (B12) + (A15) + (A18) =⇒ (C6)

(F6) + (A8) + (A9) + (A10) + (B12) =⇒ (D6)

(F6) + (A8) + (A9) =⇒ (E6)

(A5) + (B12) + (A18) =⇒ (B10)

(A10) + (B12) =⇒ (C10)

(A15) + (A18) =⇒ (B15)

(A15) + (A18) + (A10) + (A24) =⇒ (C15)

(A15) + (A18) + (A10) + (A24) + (A27) + (C5) =⇒ (D15)

(B20) + (A24) =⇒ (C20)

(A15) + (B20) + (A24) =⇒ (D20)

We have killed off the inequalities from all curves except for the (−1,−1)-curves and one

curve (F6) from the long side.

Irredundant inequalities from curves

Observe that the vast majority of inequalities in Examples 3.8.6-3.8.7 define walls of Type I.

We should be unsurprised by the cancellation of all except one bolded inequality in Example

3.8.7 due to the following result from [26].

Lemma 3.8.8 ([26, Corollaries 6.3 & 6.5]). Suppose w = (
∑
αiθi = 0) is a Type I or III

wall of C0. Then all αi ∈ {0, 1}.

Chambers other than C0 can have coefficients αi = −1, however since the trivial repre-

sentation appears in no G-igsaw piece we can exclude this possibility.

Corollary 3.8.9. Suppose G-HilbC3 has a meeting of champions of side length 0. Then the

inequality for any curve along one of the three champions is redundant.

Proof. Suppose χ is the character marking each of the champions. Then, by Theorem 3.6.1,

r2
χ = rχ2 globally on G-Hilb and so deg(Rχ2 |C) = 2 for all χ-curves C. It follows from

Lemma 3.8.8 that none of these inequalities can be strict.

We can also show this directly via unlocking. This reproves Cor. 3.8.4.
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Lemma 3.8.10. Suppose C is a χ-curve. If the unlocking procedure for C doesn’t unlock

a curve or divisor marked with χ2 then all the coefficients in the inequality θ(ϕC0(OC)) > 0

are equal to 0 or 1.

Proof. This is because if some ρ has deg(Rρ|C) ≥ 2 then r2
χ | rρ and so r2

χ must feature in

the G-igsaw piece for C and is hence equal to rχ2 near C.

Lemma 3.8.11. Suppose a curve C0 unlocks a curve C1 of character ρ. Let ψ ∈ G-ig(C1).

If C is a curve that unlocks C0, then deg(Rψ|C) ≥ deg(Rρ|C).

Proof. As used previously, deg(Rρ|C) = max{k ∈ Z≥0 : rkχ | rρ}. From this formulation,

clearly if rρ | rψ then deg(Rψ|C) ≥ deg(Rρ|C), but this is the case by definition of G-igsaw

piece.

We say that an inequality
∑

i αiθ(χi) > 0 with nonnegative coefficients is a summand of

another inequality
∑

j βjθ(ρj) > 0 with nonnegative coefficients if the difference
∑

i αiθ(χi)−∑
j βjθ(ρj) also has nonnegative coefficients in the basis IrrG. If an inequality coming from

curves or divisors decomposes into other inequalities as summands, then it is redundant and

does not define a wall of C0.

Lemma 3.8.12. Suppose C is a curve on the boundary of a regular triangle marked with a

character χ. Suppose the χ-chain contains a (−1,−1)-curve. Then the inequality θ(ϕC0(OC)) >

0 is redundant.

Proof. Suppose C is marked with character χ. Let C0 be the first (−1,−1)-curve in the

χ-chain moving inwards from C. Then the G-igsaw piece for C consists of exactly the

characters in the G-igsaw piece for C0 along with the characters in the G-igsaw pieces for

any curves C1, . . . , Cn unlocked by C at Hirzebruch divisors before C0. Let the character

marking Ci be χi. The inequality for C decomposes as

θ(ϕC0(OC)) =
∑

ρ∈G-ig(C0)

αρθ(ρ) +
n∑
i=1

∑
ρ∈G-ig(Ci)

βiρθ(ρ) (3.5)

where αρ and βiρ are nonnegative multiplicities given by the appropriate calculation of

deg(Rρ|?). Note that αχ = 1. One can thus write

θ(ϕC0(OC)) = θ(ϕC0(OC0)) +
∑

ρ∈G-ig(C0)

(αρ − 1)θ(ρ)

+
m∑
i=1

βiχiθ(ϕC0(OCi)) +
∑

ρ∈G-ig(Ci)

(βiρ − βiχi)θ(ρ)
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From Lemma 3.8.11, αρ−1 and βρ−βχ′ are both nonnegative. If all the remaining ρ in these

sums with nonzero coefficients are characters marking divisors then one can express each

term γρθ(ρ) = γρθ(ϕC0(R−1
ψ |D)) for some divisor D, thus evidencing that (3.5) is redundant.

Suppose instead that some ρ = ρ1 marks a curve unlocked by C0 or some Ci. We assume

the latter; the former is treated identically. Denote this new curve by Ci,1. Then∑
ρ∈G-ig(Ci)

(βiρ − βiχi)θ(ρ)

= (βiρ1
− βiχi)θ(ϕC0(OCi,1)) +

∑
ρ∈G-ig(Ci,1)

(βiρ − βiρ1
)θ(ρ) +

∑
ρ/∈G-ig(Ci,1)

(βiρ − βiχi)θ(ρ)

where again each coefficient is nonnegative by Lemma 3.8.11 applied to Ci,1. Observe that

there are strictly fewer nonzero coefficients in this expression than before, since at the least

we removed the term for ρ1. Continuing in this way for each character appearing that marks

a curve, we can reduce to the situation where the only characters with nonzero coefficients

in the error term are those that mark divisors. At that point we have already seen how to

express the error term in terms of inequalities coming from divisors, and so we have shown

that (3.5) is redundant.

Definition 3.8.13. Let χ be a character marking a curve in G-Hilb. We say that the χ-

chain is a generalised long side if it starts and ends on the boundary of the junior simplex,

and all the edges along the χ-chain are boundary edges of regular triangles. We exclude the

lines meeting at a trivalent vertex if there is a meeting of champions of side length 0 from

this definition.

For example, any long side is a generalised long side. The 15-chain for 1
35

(1, 3, 31) is a

generalised long side as can be seen in Figure 3.24.

Example 3.8.14. We compute the inequalities for curves along the 15-chain in G-Hilb for

G = 1
35

(1, 3, 31). From the unlocking procedure or computing G-igsaw pieces directly, the

inequalities for the 15-curves starting from e1 and moving downwards are

θ15 + θ18 + θ21 + θ24 + θ7 + θ10 + θ13 + θ16 + θ11 + θ14 + θ17 + θ20 > 0 (A15)

θ15 + θ18 + θ21 + θ16 + θ11 + θ14 + θ17 > 0 (B15)

θ15 + θ16 + θ17 + θ18 > 0 (C15)

θ15 + θ16 + θ17 + θ18 > 0 (D15)

Clearly (C15) and (D15) depend on each other; the inequality is the same since they are fibres

of the P1-bundle structure on the Hirzebruch surface marked with 18, and so contracting
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one must contract the other. We consider some of the additional inequalities coming from

(−1,−1)-curves:

θ7 + θ10 + θ13 > 0 (A7)

θ11 + θ14 > 0 (A11)

θ21 > 0 (A21)

θ24 + θ20 > 0 (A24)

We can deduce

(C15) + (A7) + (A11) + (A21) + (A24) =⇒ (A15)

(C15) + (A11) + (A21) =⇒ (B15)

so that (A15) and (B15) are redundant.

Consider a generalised long side marked with character χ. Recall that each χ-chain

consists of potentially several straight line segments. We call a curve in the χ-chain final if

it is the furthest curve along the χ-chain away from a vertex along such a line segment. For

example, for G = 1
35

(1, 3, 31), the dashed curves in Figure 3.27 are final.

Figure 3.27: Final curves for G = 1
35

(1, 3, 31)

•

•• • • • • • • • •

•

•

• • • • •

• •

Final curves not along a long side are also those contained in an exceptional Hirzebruch

surface (with no blowups) or, equivalently, those corresponding to edges incident to a 4-

valent vertex. There can be at most two final curves for each generalised long side, with

exactly one when the generalised long side is actually a long side.
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Lemma 3.8.15. Suppose χ is a character marking a curve and that the χ-chain is a gen-

eralised long side. Then, the inequality for each non-final curve C in the χ-chain is is

redundant. The final curves all produce the same inequality:

θ(χ) +
∑

ψ∈Hirz(χ)

θ(ψ) > 0

which is a necessary inequality defining a Type III wall of C0.

Proof. First, the inequality for a final χ-curve C features only the Hirzebruch divisors along

the χ-chain by the unlocking procedure. It has all nonzero coefficients equal to 1 for the

following reason. χ2 cannot mark a Hirzebruch divisor along the χ-chain because to do so one

would require another chain, say with character ρ, to cross the χ-chain and have χ⊗ρ = χ2.

Of course, this would mean that ρ = χ, but chains do not self-intersect. Hence, χ2 does not

appear in the G-igsaw piece for C and so all multiplicities must be equal to 1 by Lemma

3.8.10. This is clearly a necessary inequality, as χ is the only character in the inequality

coming from a curve and there is no divisor that contains only χ-curves - in contrast to the

case of a trivalent vertex.

To see that the other inequalities coming from curves along a generalised long side are

redundant, we will decompose these inequalities similarly to before. Let C be such a curve

and write

θ(ϕC0(OC)) = θ(χ) +
∑

ψ∈Hirz(C)

αψθ(ψ) +
n∑
i=1

∑
ρ∈G-ig(Ci)

βiρθ(ρ)

where C1, . . . , Cn are the curves unlocked by C. By exactly the same methods as in the

proof of Lemma 3.8.12, one can express the final term as a sum of inequalities from curves

and divisors. The first two terms are equal to

θ(χ) +
∑

ψ∈Hirz(C)

αψθ(ψ) = θ(ϕC0(OC′)) +
∑

ψ∈Hirz(χ)

(αψ − 1)θ(ϕC0(R−1
ψ |Dψ))

where C ′ is a final χ-curve and Dψ is the divisor marked with ψ. Of course αψ ≥ 1 and so

we have shown that the inequality from C is redundant.

We consider the example G = 1
25

(1, 3, 21), which has a meeting of champions of side

length 2.

Example 3.8.16. We show the triangulation for G-Hilb and Reid’s recipe for G = 1
25

(1, 3, 21)

in Figures 3.28-3.29. Observe that of the three champions, the 3-chain and 9-chain are gen-

eralised long sides whilst the 1-chain contains a (−1,−1)-curve. We hence obtain two Type
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III walls from the champions and another for the 21-chain, with inequalities

θ3 + θ8 + θ12 + θ16 + θ20 + θ24 > 0 (F3)

θ9 + θ10 + θ11 + θ12 > 0 (C9)

θ21 + θ22 + θ23 + θ24 > 0 (C21)

Figure 3.28: G-Hilb for G = 1
25

(1, 3, 21)

•

•• • • • • • •

••

•

• •

•

Figure 3.29: Reid’s recipe for G = 1
25

(1, 3, 21)
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3.9 Summary

We compile the main results - Cor. 3.8.4, Prop. 3.8.5, Lemma 3.8.12, Lemma 3.8.15 - of this

section.

Theorem 3.9.1. Suppose G ⊆ SL3(C) is a finite abelian subgroup. The walls of the chamber

C0 for G-HilbC3 and their types are as follows:

• a Type I wall for each exceptional (−1,−1)-curve,

• a Type III wall for each generalised long side,

• a Type 0 wall for each irreducible exceptional divisor,

• each remaining wall is of Type 0 and comes from a divisor parameterising a rigid

quotient.

Prop. 3.8.1 describes how to recover the unstable locus or the corresponding reducible

divisor D′ for each wall of Type 0 from a rigid quotient. Let w be a wall of C0. Denote by

E(w) the set of edges in the Craw-Reid triangulation corresponding to curves C for which

all characters in G-ig(C) appear in the equation of the wall. The desired divisor D′ inducing

w is then the union of the divisors corresponding to vertices for which all incident edges are

in E(w). We observe that the unlocking procedure allows the check of which walls from rigid

quotients are necessary to be performed combinatorially.
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Chapter 4

Numerics for orbifolds

Having studied some aspects of the birational geometry of orbifold singularities via stability,

we now attend to studying numerical invariants of quotient singularities and the implications

this has for the global geometry of projective orbifolds.

4.1 Orbifold Riemann-Roch

The canonical reference for numerical invariants of quotient singularities is [68], which we

imitate substantially in the following.

Suppose Cn/µr is a quotient singularity with quotient map π : An → An/µr. µr acts

on π∗OAn , decomposing it into eigensheaves Li consisting of all regular functions satisfying

ε · f = εif .

Now let X be an orbifold. Let Q ∈ X be a singularity; we say that Q is a cyclic quotient

singularity of type 1
r
(a1, . . . , an)i if there exists an affine chart Q ∈ U ⊆ X in which x is the

only singular point and U ∼= An/µr with the weights of actions being a1, . . . , an, and locally

OX(D) ∼= Li.

Theorem 4.1.1 ( [68, Theorem 8.5]). Suppose µr acts on a smooth projective variety Y with

N fixed points at which µr acts with weights a1, . . . , an. Let π : Y → X be the quotient map,

and let Li be the ith eigensheaf of π∗OY as above. Then

χ(Y,Li) =
1

r
χ(OY ) +N · σi(

1

r
(a1, . . . , an)) (4.1)

where

σi(
1

r
(a1, . . . , an)) =

1

r

∑
ε∈µr

εi∏n
i=1(1− εai)

neglecting any terms where 1− εaj = 0 for some j.
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This is the local situation: the appearance of a singularity of type 1
r
(a1, . . . , an)i con-

tributes to the Euler characteristic via the quantity σi(
1
r
(a1, . . . , an)), which is commonly

called a Dedekind sum. Dedekind sums are intriguing quantities much studied in number

theory and combinatorics - for example, [78] and the survey [9] - that frequently recur in

studying the cohomology of toric varieties [65].

Since the quantities σi(
1
r
(a1, . . . , an)) are completely local to the singularity, with multiple

singularities one simply adds the various contributions to obtain the Euler characteristic. We

thus have:

Theorem 4.1.2 ( [68, Cor. 8.6]). Suppose X is an orbifold and that L = OX(D) is a

divisorial sheaf on X. Then

χ(X,L) = initial term +
∑
p

qp(D)

where the initial term is a ‘Riemann–Roch’ type formula involving D and various classes on

X, and

qp(D) = σi(
1

r
(a1, . . . , an))− σ0(

1

r
(a1, . . . , an))

when p is a singular point of type 1
r
(a1, . . . , an) and OX(D) is locally isomorphic to Li near

p.

The terms σi − σ0 come from eliminating χ(OY ) from (4.1). A precise description of the

initial term is given in [68, §8.6]

4.2 Numerics of quotient singularities

Properties of cyclic quotient singularities

In this subsection, we will review some of the deformation theory of cyclic quotient sin-

gularities. Recall that the singularity 1
r
(1, a) is the affine toric variety associated to the

cone

σr,a = Cone(e2, re1 − ae2) ⊆ NR

The lattice height of such a cone - the lattice distance between the origin and the line segment

joining the two primitive ray generators of the cone; the edge of the cone - is called the local

index [34, Note 3.19] of the cone and can be calculated as in [4] to be

`σr,a =
r

gcd(r, a+ 1)
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The width of a cone is the number of lattice line segments along the edge of the cone.

Equivalently, it’s one less than the number of lattice points along the edge, which can be

computed to be

width(σr,a) = gcd(r, a+ 1)

We will often conflate a singularity and its corresponding cone in NR. Recall that an isolated

cyclic quotient singularity is a T -singularity if it is Q-Gorenstein smoothable. These were

classified by Kollár and Shepherd-Barron:

Lemma 4.2.1 ( [52, Prop. 3.10]). An isolated cyclic quotient singularity is a T -singularity

if and only if it takes the form
1

dn2
(1, dnc− 1)

for some c with gcd(n, c) = 1.

Notice that the local index of a T -singularity written as in this classification is `σ = n

and that there are dn lattice points lying along the edge of the cone. On the level of cones,

a T -singularity thus looks like:

Figure 4.1: T -singularity

•

•

•

•

•
n

dn

Prosaically, the cone of a T -singularity has width a multiple of its height. A T -singularity

of width equal to local index - as thin as possible - is called an elementary T -singularity.

4.3 Polytope mutation

Crucial to the formulation of mirror symmetry for Fano varieties is the notion of polytope

mutation developed in [1]. This is a combinatorial procedure that produces from a polytope

P , a ‘weight vector’ w ∈ M , and an appropriate choice of convex subset F ⊆ P another
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polytope µw,FP whose toric variety is a deformation of the toric variety associated to P .

Applied locally to cones, it enables one to realise the smoothing of Kollár and Shepherd-

Barron for T -singularities.

Let N ∼= Zd be a rank d lattice and set NQ := N ⊗Z Q. Let P ⊆ NQ be a lattice

polytope. We require – and will assume for the remainder of this subsection – that P

satisfies the following two conditions:

(a) P is of maximum dimension in N , dim(P ) = d;

(b) the origin is contained in the strict interior of P , 0 ∈ P ◦.

Condition (b) is not especially stringent, and can be satisfied by any polytope with P ◦∩N 6= ∅
by lattice translation. It is, however, an essential requirement in what follows.

Let M := Hom(N,Z) ∼= Zd denote the dual lattice. Given a polytope P ⊆ NQ, the dual

polyhedron is defined by

P ∗ := {u ∈MQ | u(v) ≥ −1 for all v ∈ P} ⊆MQ.

Condition (b) gives that P ∗ is a (typically rational) polytope.

Following [2, §3], let w ∈ M be a primitive lattice vector. Then w : N → Z determines

a height function (or grading) which naturally extends to NQ → Q. We call w(v) the height

of v ∈ NQ. We denote the set of all points of height h by Hw,h, and write

wh(P ) := conv(Hw,h ∩ P ∩N) ⊆ NQ

for the (possibly empty) convex hull of lattice points in P at height h.

Definition 4.3.1. A factor of P ⊆ NQ with respect to w ∈ M is a lattice polytope F ⊆ w⊥

such that for every negative integer h ∈ Z<0 there exists a (possibly empty) lattice polytope

Rh ⊆ NQ such that

Hw,h ∩ vert(P ) ⊆ Rh + |h|F ⊆ wh(P ).

Here ‘+’ denotes Minkowski sum, and we define ∅+Q = ∅ for every lattice polytope Q.

Definition 4.3.2. Let P ⊆ NQ be a lattice polytope with w ∈M and F ⊆ NQ as above. The

mutation of P with respect to the data (w,F ) is the lattice polytope

µ(w,F )(P ) := conv

 ⋃
h∈Z<0

Rh ∪
⋃

h∈Z≥0

(wh(P ) + hF )

 ⊆ NQ.
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It is shown in [2, Prop. 1] that, for fixed data (w,F ), any choice of {Rh} satisfying

Definition 4.3.1 gives GLd(Z)-equivalent mutations. Since we regard lattice polytopes as

being defined only up to GLd(Z)-equivalence, this means that mutation is well-defined. One

can readily see that translating the factor F by some lattice point v ∈ w⊥∩N gives isomorphic

mutations: µ(w,F+v)(P ) ∼= µ(w,F )(P ). In particular if dim(F ) = 0 then µ(w,F )(P ) ∼= P .

Finally, we note that mutation is always invertible [2, Lemma 2]: if Q := µ(w,F )(P ) then

P = µ(−w,F )(Q).

Remark 4.3.3. Informally, mutation corresponds to the following operation on slices wh(P )

of P : at height h one Minkowski adds or “subtracts” |h| copies of F , depending on the sign

of h. Definition 4.3.1 ensures that the concept of Minkowski subtraction makes sense.

For a T -singularity with cone σdn2,dnc−1, mutation with respect to the factor given by the

cone edge and the weight vector given by the inward normal to the cone edge has the effect

of removing a line segment of length `σ = n from the edge of σdn2,dnc−1.

Figure 4.2: Mutation of a T -singularity

•

•
•

•
•n dn

•

•
•

•
•n

(d− 1)n

n

The result is that σdn2,dnc−1 mutates to σ(d−1)n2,(d−1)nc−1. Successive mutation reduces

it to the empty cone; in other words, the singularity is smoothed. The same procedure

applies to a general singularity 1
r
(1, a) yet may not terminate in the empty cone. Indeed,

by definition the only cones for which this process will reduce to the empty cone are the

T -singularities. Let σr,a be the cone for 1
r
(1, a) and let its local index be `. In general, one

will be able to remove subcones of the form σd`2,d`c−1 from σr,a by mutation and hence can

deform to a cone with width equal to the residue of the width of σr,a; in particular, smaller

than `. This cone is the residue res(σr,a) of σr,a. A singularity is called residual if it is an

isolated cyclic quotient singularity with width less than its local index. In other words, no

more line segments can be removed from its edge by mutation.

Lemma 4.3.4. An isolated cyclic quotient singularity is a residual singularity if and only if

it can be written in the form
1

k`
(1, kc− 1)
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where ` is the local index, 0 < k < `, gcd(`, c) = 1, and gcd(`, kc− 1) = 1.

Proof. Let 1
r
(1, a) be a residual singularity of local index `. Then, letting k = gcd(r, a+ 1),

r = k` and a + 1 = kc for some c with gcd(`, c) = 1. The final coprimality condition is

necessary for the singularity to be isolated. The width of 1
r
(1, a) is k and so the condition

0 < k < ` is equivalent to the singularity being residual.

The quantity c is called the slope of the singularity (or of the cone).

Orbifold del Pezzo surfaces

We focus in this subsection on orbifold del Pezzo surfaces: two dimensional Fano varieties

with only isolated cyclic quotient singularities. The basket of singularities on a orbifold del

Pezzo surface X is the multiset of types of singularities appearing on X.

Example 4.3.5. The weighted projective space P(a, b, c) is an orbifold del Pezzo surface,

with basket

B = {1

a
(b, c),

1

b
(c, a),

1

c
(a, b)}

Hilbert series

In [3] Ahktar–Kasprzyk use orbifold Riemann–Roch to produce the following formula for the

anticanonical Hilbert series of an orbifold del Pezzo surface.

Lemma 4.3.6 ( [3, Cor. 3.5]). Suppose X is an orbifold del Pezzo surface with basket B.

Then

HilbX(t) =
1 + (K2

X − 2)t+ t2

(1− t)3
+
∑
σ∈B

Qσ

where

Qσr,a =
1

1− tr
r∑
i=1

(δr,a,(a+1)i − δr,a,0)ti−1

where δr,a,i is a Dedekind sum defined as

δr,a,i =
1

r

∑
ξ∈µr\{1}

ξi

(1− ξ)(1− ξa)

Notice that each singularity σ in B makes two contributions to the Hilbert series: a local

contribution in the orbifold correction terms Qσ and a global contribution to the degree.

The latter is captured by:
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Lemma 4.3.7 ( [3, Prop. 3.3]). The degree of an orbifold del Pezzo surface with basket B is

given by

K2
X = 12− n−

∑
σ∈B

Aσ

where n is the Euler number of the smooth locus of X, and

Aσr,a = m+ 1−
m∑
i=1

d2
i bi + 2

m∑
i=1

didi+1

with [b1, . . . , bm] the Hirzebruch-Jung continued fraction expansion of r
a+1

and di the discrep-

ancy at the ith component of the exceptional fibre of the minimal resolution of σr,a.

Example 4.3.8. A T -singularity τ of the form 1
dn2 (1, dnc− 1) has Aτ = d and Qτ = 0.

It is worth noting that these formulae are explicit enough to actually compute all the

possible combinations of singularities that would produce a given power series. However,

they allow no structural description of this collection of possible baskets, which turns out to

be very geometric.

4.4 Shattering and the hyperplane sum

Much of the present chapter is geared towards finding and investigating high amounts of

structure in the collection of quotient singularities, especially at a fixed local index. We

introduce two inverse operations - shattering and the hyperplane sum - that decompose or

combine singularities of a fixed local index. The singularities that are indecomposable with

respect to these operations contain the cohomological information of all quotient singularities

and hence allow the problems considered here to be simplified.

Shattering

Suppose σ is a cone and that v is a primitive lattice point on the edge of σ. The fan obtained

by inserting a ray through v and hence dividing σ into two new cones is a crepant blowup

Y of Xσ. Recall that a map f : Y → X of Gorenstein schemes is crepant if f ∗KX = KY ;

that is, it has no discrepancy. In the toric situation above this occurs exactly when the ray

generator v lies on the edge of σ. This toric variety Y has two affine pieces corresponding

to the two dimensional cones, which are each cyclic quotient singularities. The local indices

of these new singularities will be the same as the local index of the original cone since v was

primitive. This procedure can be repeated to produce a collection of cones with edges lying

along a common hyperplane. We call this operation shattering, and the cones obtained from
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σ by this process shards of σ. Below we show 1
9
(1, 2) shattering into two shards corresponding

to the singularities 1
6
(1, 1) and 1

3
(1, 1).

Figure 4.3: Shattering a T -singularity
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Note that the blowup corresponding to the ray through the other lattice point in the

interior of the cone edge would not be crepant as this lattice point is not primitive.

The hyperplane sum

Definition 4.4.1. The hyperplane sum of two cones σ1 = Cone(u, v) and σ2 = Cone(v, w)

with ray generators clockwise ordered such that:

• the vectors v − u and w − v are parallel,

• both cones are of the same local index,

to be σ1 ∗ σ2 := Cone(u,w), which is the usual Minkowski sum when it is defined.

Equivalently σ1 and σ2 have hyperplane sum defined to be σ1+σ2 only when this cone also

has the same local index as σ1 and σ2. One can see that this process is inverse to shattering.

Continuing the conflation of cones and singularities, we will say that the hyperplane sum
1
r
(1, a) ∗ 1

s
(1, b) of two singularities is defined if there are two cones σ1 and σ2 corresponding

to the singularities that are as in Definition 4.4.1. In this case, the hyperplane sum is defined

to be the singularity corresponding to the resulting cone σ1 ∗ σ2. Thus,

1

6
(1, 1) ∗ 1

3
(1, 1) =

1

9
(1, 2)

Notice that this is well-defined as the singularity defined by a cone is unchanged by the

action of GL2(Z) on N but that it is noncommutative: the hyperplane sum σ2 ∗σ1 in general

won’t even be defined if σ1 ∗ σ2 is.

Geometrically, the hyperplane sum is a crepant blowdown contracting the torus-invariant

curve corresponding to the ray through v. From this is follows that:
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Lemma 4.4.2. (Additivity) Let σ1 ∗ · · · ∗ σn = σ. Then

Qσ1 + · · ·+Qσn = Qσ and Aσ1 + · · ·+ Aσn = Aσ

Corollary 4.4.3. Let σ1 ∗ · · · ∗ σn = τ , a T -singularity. Then

Qσ1 + · · ·+Qσn = 0 and Aσ1 + · · ·+ Aσn = Aτ =
width(τ)

`τ

Proof of Lemma 4.4.2. Let X be a toric del Pezzo surface whose fan contains the cone σ

and with all other cones smooth. Let Y be the toric variety associated to the fan that

agrees with X everywhere outside of σ and there has σ replaced by σ1, . . . , σn. The natural

map f : Y → X is given by n − 1 crepant blowups in torus-fixed points according to the

cones σ1, . . . , σn. Since f is surjective, h0(−dKX) = h0(−d(f ∗KX)) = h0(−dKY ). Thus the

Hilbert series of X agrees with that of Y .

Note that K2
X = f ∗K2

X = K2
Y and so the initial term of HilbX(t) and HilbY (t) agree.

Hence the orbifold correction terms Qς satisfy

Qσ =
∑
ς∈BX

Qς =
∑
ς∈BY

Qς =
n∑
i=1

Qσi

as desired. Suppose that there are m smooth cones in the fans of X and Y . The degree

formula above gives that

12−m− Aσ = K2
X = K2

Y = 12−m−
n∑
i=1

Aσi

and so the degree correction terms also agree. The corollaries follow from the lemma com-

bined with Example 4.3.8.

In the sense of Cor. 4.4.3 T -singularities are negligible from the perspective of orbifold

contributions to Hilbert series, though they still contribute to the degree. Say that a residual

singularity σ is hyperplane inverse (or just ‘inverse’ if the context is clear) to another residual

singularity σ′ if the hyperplane sum σ∗σ′ is defined and equal to an elementary T -singularity.

By explicit calculation one finds that:

Lemma 4.4.4. The hyperplane inverse of σ : 1
kn

(1, kc− 1) is

σ−1 :
1

n(n− k)
(1, (n− k)(n− c)− 1).
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Notice that (σ−1)−1 is isomorphic to σ. Let the ‘dual singularity’ 1
r
(1, a) := 1

r
(1, a) with

aa ≡ 1 mod r and call a cyclic quotient singularity σ self-dual if σ = σ. The effect of dualising

a singularity reverses its gluing behaviour in that two singularities σ and σ′ are hyperplane

summable if and only if σ′ and σ are. This follows as the element of GL2(Z) taking σ to σ

is orientation-reversing. The hyperplane sum is thus not actually defined on isomorphism

classes of quotient singularities, but requires a choice of root of unity in addition.

Indecomposable singularities and maximal shatterings

Viewed on the level of cones, one can split a given residual singularity into ‘indecompos-

able’ hyperplane summands: those that cannot be shattered further. These are exactly the

cones containing no primitive lattice points along the interior of their edge, which are not

necessarily of width 1.

Definition 4.4.5. A cyclic quotient singularity σ is indecomposable if a (or every) cone

corresponding to it has no primitive lattice points lying on the interior of its edge.

Note that an indecomposable singularity is in particular a residual singularity of local

index at least 3. Define the residual quiver at local index ` to be the quiver with a vertex

for every indecomposable singularity (distinguishing dual singularities) of local index ` and

with an arrow drawn between σ and σ′ if and only if σ and σ′ are hyperplane summable.

The following quiver is the result of applying the construction in the case of local index 5.

1
5
(1, 1) 1

5
(1, 2)

1
10

(1, 1)1
5
(1, 3)

Lemma 4.4.6. For given ` the residual quiver at local index ` is a cycle of length φ(`), where

φ is Euler’s totient function. Moreover, there is exactly one indecomposable singularity of

every slope c ∈ (Z/`Z)×.

Before proving this lemma, observe that for any two singularities σ1 and σ2, though they

may not be hyperplane summable, there will always be a unique singularity σg of smallest

width such that σ1 ∗ σg and σg ∗ σ2 are well-defined. This is because, picking a cone for σ1,

one can always move a cone representing σ2 to have edge lying on the hyperplane given by

the cone edge of σ1 by the action of GL2(Z). This cone σg is called the gluing cone of σ1

and σ2.
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Proof. If gcd(`, c − 1) = 1 then the singularity of slope c and width 1 is indecomposable.

Suppose gcd(`, c−1) 6= 1 but gcd(`, 2c−1) = 1. Then the residual singularity with slope c and

width 2 contains only non-primitive interior edge lattice points and so is also indecomposable.

Continuing, if gcd(`, c−1) 6= 1 and gcd(`, 2c−1) 6= 1 but gcd(`, 3c−1) = 1 then the residual

singularity with slope c and width 3 will be indecomposable. For a given slope c one can

pick w = 2c−1 ∈ Z/`Z as a width for which gcd(`, wc − 1) = 1 since wc ≡ 1 mod `. Hence

this process exhausts all c ∈ (Z/`Z)×. Clearly no other values of c are possible and each

level with fixed width excludes all previous levels, giving that the number of vertices of the

residual quiver is equal to the number of choices of c, which is φ(`). There is a unique

indecomposable singularity that can be glued onto a given singularity by extending its cone

edge. It follows that every vertex is linked to exactly two others. This says that the quiver

is a collection of cycles. However given any two indecompables σ1 and σ2 there is a gluing

cone joining them. Maximally shattering this gluing cone gives a path from σ1 to σ2 in the

residual quiver; therefore the quiver is connected and so forms a single cycle.

Conjecture #1

In this section we will state the first conjecture that the main results of this paper will

depend upon. We will fix notation:

• R` is the set of indecomposable singularities of local index `

• Res(`) is the set of residual singularities of local index `

• σ will denote a residual singularity of local index `

From the general theory of Hilbert series for Gorenstein schemes - see, for example, [6], [16],

or [60] - applied to this particular situation one can write

Qσ =
δ0 + δ1t+ · · ·+ δ`−1t

`−1

`(1− t`)
(4.2)

for δi ∈ Z. Define the δ-vector of σ to be δ(σ) := (δ0, δ1, . . . , δ`−1). From Lemma 4.3.6

δi = `(δr,a,(a+1)(i+1) − δr,a,0)

The δ-vector has the properties:

• δ(σ) is palindromic

• δ0 = δ`−1 = 0.
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Because of the second property, we will abbreviate the δ-vector to omit the first and last

terms. For example, the δ-vector of 1
5
(1, 1) with

Q 1
5

(1,1) =
t3 − 2t2 + t

5(1− t5)

is (1,−2, 1). We now prove these two properties.

Proof. Suppose σ = 1
r
(1, a) with local index `. We start by proving that Qσ can be written

in the form (?). It suffices that the numerator in the expression of Qσ in Lemma 4.3.6 with

denominator 1− tr is divisible by 1 + t` + t2` + · · ·+ tr−`, or equivalently that

δr,a,(a+1)(`+i) = δr,a,(a+1)i

This follows immediately from noting that (a+ 1)` ≡ 0 mod r and that the final argument of

such a Dedekind sum is well-defined modulo r. To prove the first property - that δ`−1−i = δi
- observe that it suffices that the first ` terms of the numerator of Qσ in the expression of

Lemma 4.3.6 are palindromic, or that

δr,a,(a+1)(`−i) = δr,a,(a+1)(i+1)

Computing directly using the fact that (a+ 1)` ≡ 0 mod r,

δr,a,(a+1)(`−i) =
∑ ε(a+1)(`−i)

(1− ε)(1− εa)
=
∑ ε−(a+1)i

(1− ε)(1− εa)

Multiplying by ε−(a+1) in numerator and denominator yields∑ ε−(a+1)(i+1)

ε−(a+1)(1− ε)(1− εa)
=
∑ ε−(a+1)(i+1)

(ε−1 − 1)(ε−a − 1)
=
∑ ε(a+1)(i+1)

(1− ε)(1− εa)
= δr,a,(a+1)(i+1)

using the bijection ε 7→ ε−1 on the rth roots of unity. The second property now follows from

the equality

δr,a,(a+1)` = δr,a,0

since (a+ 1)` ≡ 0 mod r and so the (`− 1)th coefficient δ`−1 = δr,a,(a+1)` − δr,a,0 = 0.

Lemma 4.4.7. An isolated cyclic quotient singularity τ is a T -singularity if and only if

Qτ = 0.

Proof. The only if implication follows from Example 4.3.8. It suffices to show that every

residual singularity makes a nonzero contribution to the Hilbert series. This follows using

the shattering in [3] decomposing a cone into T -cones and a single residual cone. For the
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forward implication, let 1
r
(1, a) be a residual singularity and consider the weighted projective

plane X = P(1, a, r). This has three affine pieces isomorphic to A2, 1
r
(1, a) and 1

a
(1, r) and

thus its Hilbert series is

HilbX(t) =
1 + (K2

X − 2)t+ t2

(1− t)3
+Qσ1 +Qσ2

where σ1 : 1
r
(1, a) and σ2 : 1

a
(1, r). Let these have local indices `1 and `2 - which are coprime

- and write

δ(σi) = (δij)j=1,...,`i−2

One can compute the t-coefficient of the Hilbert series to be

h0(−KX) = 1 +K2
X +

δ1
1

`1

+
δ2

1

`2

(4.3)

As the dimension of a vector space, this must be an integer. Recall that the degree of X is

(1 + a+ r)2/ar, which has the same fractional part as

1 + a

r
+

1 + r

a
+

1 + a+ r

ar
(4.4)

Consider the the residues of (4.4) mod Z · 1
`1

and Z · 1
`2

. Suppose the residue of (∗) mod Z · 1
`2

is zero. Then
1 + a

r
+

1 + a+ r

ar
≡ 0 modZ · 1

`2

as (1 + r)/a has denominator `2 in lowest terms. Combining fractions, this requires in

particular that r divides (1 + a)2 as r is coprime to `2. Let k be the width of σ1 so that

r = k`1 and 1 + a = kc for some c coprime to `1. For k`1 to divide k2c2 one must have that

`1 divides k, but this is contrary to the definition of residual singularity. It follows that both

residues are nonzero and so, for (†) to be an integer, δ1
1 and δ2

1 must be nonzero.

This proof actually shows that the first coefficient of the δ-vector of a residual singularity

is nonzero. Notice that this argument would fail for a T -singularity where, by definition, the

local index `1 divides the width k.

Given a semigroup S and a set R, let the formal semigroup consisting of S-linear com-

binations of elements of R be denoted by S〈R〉. If S = Z this is just the formal lattice

generated by R. Define the δ-lattice for local index ` to be the sublattice

∆(`) := Z〈δ(σ) : σ ∈ Res(`)〉 ⊆ Z`−2

generated by all the δ-vectors of residual singularities (equivalently, indecomposable singu-

larities) of local index `.
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Given a list of residuals T = (σ1, . . . , σn) there is a unique expression

(σ1
1, . . . , σ

m1
1 , . . . , σ1

n, . . . , σ
mn
n )

where σji ∈ R` and σ1
i ∗ · · · ∗ σ

mi
i = σi. This tuple is the maximal shattering of T denoted

by ρ(T ). Combinatorially the cones corresponding to each σi have been shattered as much

as possible to decompose into a hyperplane sum in terms of R`. Note that by definition of

R` this is maximal exactly in this sense. Of course∑
i

Qσi =
∑
i,j

Qσji
and

∑
i

Aσi =
∑
i,j

Aσji

by the additivity in Lemma 4.4.2. From the characterisation in terms of non-primitive lattice

points, the maximal shattering of any singularity is unique. After being linearly extended

ρ defines a surjective monoid homomorphism N[Res(`)]→ N[R`] which is left-inverse to the

inclusion N[R`]→ N[Res(`)]. Consider the map Φ̃` completing the diagram

N[Res(`)]
Φ`

%%

ρ

��

N[R`]
Φ̃`

// ∆(`)

where ∆(`) is the lattice of δ-vectors of orbifold contributions of local index ` as above.

Φ̃` exists and is unique since, geometrically, ρ applies a collection of crepant blowups that

preserve the orbifold contributions Qσ and hence their δ-vectors. We make use of semigroups

of the form N〈R〉 to record the (nonnegative) quantities of each singularity inside a basket.

These maps all extend to lattice homomorphisms

ΦZ
` : Z〈Res(`)〉 → ∆(`), Φ̃Z

` : Z〈R`〉 → ∆(`), ρZ : Z〈Res(`)〉 → Z〈R`〉

With the objective of studying relations between orbifold contributions we assume the fol-

lowing conjecture, which has been verified up to local index 34 in Sage. It has echoes of the
1
2
φ(r) in [68] §5.9 as well as of many other results across the study of Dedekind sums. The

reader can add the caviate ` ≤ 34 on any subsequent results making use of this conjecture.

Conjecture 4.4.8. rank ∆(`) = 1
2
φ(`).

4.5 Cancelling tuples

Note that any collection of singularities in the kernel of Φ` contributes zero in orbifold

correction terms to the Hilbert series.
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Definition 4.5.1. A cancelling tuple is a finite collection of residual singularities σ1, . . . , σn
such that

∑n
i=1Qσi = 0.

Equivalently,
∑n

i=1 σi ∈ ker Φ`. If σ1, . . . , σn is a cancelling tuple then ρ(σ1), . . . , ρ(σn)

is also a cancelling tuple. Hence
∑n

i=1 ρ(σi) ∈ ker Φ̃`. A cancelling tuple can be decom-

posed nonuniquely into minimal cancelling tuples: cancelling tuples that contain no smaller

cancelling tuples.

Lemma 4.5.2. An elementary T -singularity of local index ` is composed of exactly one

of every indecomposable at local index ` glued in the cyclic order prescribed by the residual

quiver. Hence, distinguishing dual singularities, there are exactly φ(`) T -singularities at local

index ` parameterised by choosing a starting point in the residual quiver.

Proof. Write τ = σ1 ∗ · · · ∗ σm with each σi an indecomposable singularity. Since a T -

singularity can be glued to itself by mutation, σm must be the indecomposable singularity

immediately preceding σ1 in the residual quiver. Thus, since one must follow the cycle

around the quiver in order to glue indecomposable singularities, τ is a circuit of the quiver

beginning at σ1 and ending at the previous vertex σm. Suppose σ1 appears again as one of

the σi for i > 1. Then τ = (σ1 ∗ · · · ∗σm)∗ (σ1 ∗ · · · ∗σm)∗ · · · ∗ (σ1 ∗ · · · ∗σm) so that the cycle

can end with σm. Suppose there are p cycles of the residual quiver in this decomposition of

τ . The cone σ1 ∗ · · · ∗ σm has p
∑m

i=1Qσi = Qτ = 0 and so
∑m

i=1 Qσi = 0. Thus by Lemma

4.4.7 σ1 ∗ · · · ∗ σm is also a T -singularity. This contradicts the fact that τ is an elementary

T -singularity unless there is only a single circuit of the quiver.

Corollary 4.5.3. The widths of all indecomposable singularities of local index ` sum to `.

Let σ1, . . . , σn be the indecomposable singularities of local index ` listed in cyclic order

according to the residual quiver. From the lemma above Φ`(
∑n

i=1 σi) = 0 and so σ1, . . . , σn
form a cancelling tuple. This arises from maximally shattering an elementary T -cone. Hence,

rank ker Φ̃Z
` ≥ 1 as there is at least one cancelling tuple of every local index, which is formed

of indecomposable singularities. The objective of the rest of this section is to prove, assuming

the conjecture on the rank of ∆(`), that:

Lemma 4.5.4. All of the minimal cancelling tuples consisting of singularities of local index

` arise from shattering a T -cone in some way.

Clearly shattering a T -cone does produce a cancelling tuple, however the converse is more

subtle.

Φ̃` surjects onto the δ-lattice ∆(`) ∼= Z 1
2
φ(`) as Φ` does and so rank Φ̃Z

` = 1
2
φ(`). We can

identify isomorphic singularities in R`: this has the effect of conflating the singularities σ
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and σ̄. These two singularities have the same orbifold contribution and so Φ̃` passes to the

quotient to give a surjection Φ̃Z
` : Z〈R`/∼=〉 → ∆(`). The rank of Z〈R/∼=〉 is φ(`) − 1

2
S(`)

where S(`) is the number of non-self dual residuals of local index ` contained in the gener-

ating set R`, which is seen by noting that one of each pair σ, σ̄ of non-self dual residuals are

exactly those that are removed by quotienting out by isomorphism.

To prove Lemma 4.5.4 it suffices that rank ker Φ̃Z
` = 1 since, as seen, there is already a

cancelling tuple obtained from cycling around the residual quiver and so if the kernel of Φ̃Z
` is

cyclic then this special cancelling tuple must generate it. This follows because the coordinate

vector of this cancelling tuple in the standard basis of Z〈R`/∼=〉 is primitive as it contains a 1

as an entry corresponding to the single occurence of the self-dual indecomposable singularity
1
`
(1, 1) when ` is odd or 1

2`
(1, 1) when ` is even. Rank-nullity then informs us that Lemma

4.5.4 is equivalent to

S(`) = φ(`)− 2

or, equivalently, that there are exactly two self-dual singularities contained in R` for any `.

A self-dual residual of width w and slope c is one for which (wc − 1)2 ≡ 1 mod `w or,

equivalently, wc ≡ 2 mod `. Suppose ` is odd. There is then exactly one self-dual residual of

width 1 and 2 given by the equation w = 2c̄ as 2 is invertible modulo `. If ` is even then at

width w = 2 one can solve for invertible c obtaining c = 1. Indeed c ≡ 1 mod ` is needed but

this satisfies the coprimality conditions.

Lemma 4.5.5. There are at most two self-dual indecomposables at any local index.

Proof. Consider the residual quiver Q(`) for local index `, which is a φ(`)-cycle. It carries

an involution given by ι : σ 7→ σ̄ which reverses the direction of the arrows. ι hence fixes at

most 2 vertices, which correspond to self-dual indecomposables by definition.

There are actually exactly two self-dual residuals at every local index; explicitly these

are 
1
`
(1, 1), 1

2`
(1, 1) if ` is odd,

1
2`

(1, 1), 1
2`

(1, `+ 1) if ` ≡ 0, 4 mod 8,
1
2`

(1, 1), 1
4`

(1, `+ 1) if ` ≡ 2 mod 8,
1
2`

(1, 1), 1
4`

(1, 3`+ 1) if ` ≡ 6 mod 8.

as can be verified by some modular arithmetic. This proves Lemma 4.5.4 subject to Conjec-

ture 4.4.8.
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Corollary 4.5.6. One can order the generating set R`/∼= of Z〈R`/∼=〉 such that in those

coordinates ker Φ̃Z
` = Z · (1, 2, . . . , 2, 1) where the ones correspond to the two self-dual inde-

composables and the twos identify the 1
2
φ(`)− 1 non-self dual pairs.

It also follows that the residual quiver always takes the form

σ1
sd

σ1

. . .

σm
σ2

sd

σ̄m
. . .

σ̄1

where the σisd are the two self-dual indecomposables, and the σi, σ̄i are the non-self dual

pairs of indecomposables; so m = 1
2
φ(`)− 1. Observe that if one maximally shatters a

non-elementary T -cone τ then one must obtain a non-minimal cancelling tuple: the result

will consist of a minimal cancelling tuple for each elementary T -cone inside τ . Because the

degree contribution Aτ of a T -singularity τ is equal to its width divided by its local index,

it follows that:

Corollary 4.5.7. If
∑
Qσi = 0 then

∑
Aσi ∈ N and the second sum is zero iff the list of

σis is empty.

Conjecture #2

Another natural question is whether or not minimal cancelling tuples can involve singularities

of different local indices. This is unresolved but serves to sharpen later results and so is stated

as a conjecture.

Conjecture 4.5.8. Suppose
∑n

i=1 Qσi = 0. Then `σi = `σj for all i, j.

Remark 4.5.9. Let CQS(`) be the set of cyclic quotient singularities of local index ` and

consider the map ρ : CQS(`)→ N[R`]→ N[R`/∼=]. This is a surjection onto a free semigroup

of rank 1
2
φ(`) + 1. The T -singularities form a ray given in coordinates as above by N ·

(1, 2, . . . , 2, 1) within this semigroup that exactly consists of the Q-Gorenstein smoothable

singularities. We are curious about any analogous combinatorics in higher dimensions, which

may lead to or confirm a suitable definition of ‘residual singularity’ there.
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4.6 Recovering baskets from Hilbert series

Decomposing baskets

We will start by decomposing a basket of singularities into two pieces - one containing only

cancelling tuples, and one that is actually detectable by the Hilbert series.

Definition 4.6.1. Let X be an orbifold del Pezzo surface with basket BX .

• An invisible basket in BX is a subset IB ⊆ BX such that
∑

σ∈IBQσ = 0 and that no

nonempty subcollection ∅ 6= T ⊆ B \ IB has that
∑

σ∈T Qσ = 0.

• The collection BX \ IB is called the reduced basket for IB in BX . It will be denoted

by RB.

Equivalently, call a multiset S of singularities invisible if
∑

σ∈S Qσ = 0. An invisible

basket for X is a maximal invisible submultiset IB ⊆ BX .

Definition 4.6.2. Let B be a multiset of singularities. Set B(`) := {σ ∈ B : `σ = `} to be

the `th piece of B. Define RB(`) and IB(`) similarly.

The orbifold correction terms of a Hilbert series provide data only on the level of a

reduced basket as an invisible basket is by definition invisible to it. The extent to which a

series determines a reduced basket is discussed below. Conjecture 4.5.8 implies the following:

Suppose X is an orbifold del Pezzo surface with basket B featuring singularities

of local indices `1, .., `N . Then the decomposition

HilbX(t) =
1 + (K2

X − 2)t+ t2

(1− t)3
+
∑

σ∈B(`1)

Qσ + · · ·+
∑

σ∈B(`N )

Qσ

is unique in that it corresponds to grouping terms with a common denominator

of the form 1− t`i.

Consequently, write QB(`) :=
∑

σ∈B(`) Qσ for the `th part of the decomposition of the

orbifold contribution from B. An easy fact independent of this conjecture is that the initial

term can be identified from the Hilbert series as a whole as the only part with a triple pole

at 1. Note that the order of vanishing at 1 cannot be diminished by the numerator since

K2
X > 0 implies that 1 + (K2

X − 2)t+ t2 cannot have 1 as a root.

Corollary 4.6.3. The degree of an orbifold del Pezzo surface is determined by its Hilbert

series.
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Convex geometry and reduced baskets

We situate the problem of computing the possible reduced baskets for an orbifold del Pezzo

surface with a given Hilbert series or total orbifold contribution in the setting of convex

geometry where it is most easily visualised. This will be accompanied by an example for

local index 5. Recall that Res(`) is the set of indecomposable singularities of local index `.

Denote by Res+(`) a choice of one residual singularity of each hyperplane inverse pair

{σ, σ−1}. There is a map

ϕ : Z〈Res+(`)〉 → N〈Res(`)〉

given by interpreting interpreting a linear combination v1σ1 + · · · + vrσr ∈ Z〈Res+(`)〉 as a

basket of singularities by taking vi-copies of σi if vi ≥ 0 or (−vi) copies of σ−1
i if vi < 0.

Observe that by construction the image of ϕ consists of all baskets containing no cancelling

pairs and hence it must contain every possibility for a reduced basket. Composing with the

map Φ` to ∆(`) gives the linear map Φ+
` : Z〈Res+(`)〉 → ∆(`) associating to σ the δ-vector

of its orbifold contribution Qσ. Note that this is well-defined as Qσ−1 = −Qσ. The elements

of ker Φ+
` correspond to cancelling m-tuples with m > 2.

Example 4.6.4. At local index 5 there are eight residual singularities falling into the fol-

lowing inverse pairs:

{1

5
(1, 1),

1

20
(1, 11)}, {1

5
(1, 2),

1

20
(1, 3)}, { 1

10
(1, 1),

1

15
(1, 11)}, { 1

10
(1, 3),

1

15
(1, 2)}

Making the choice

Res+(5) = {σ1 =
1

5
(1, 1), σ2 =

1

20
(1, 3), σ3 =

1

10
(1, 1), σ4 =

1

15
(1, 2)}

gives orbifold contributions with δ-vectors

q1 = (1,−2, 1), q2 = (2, 1, 2), q3 = (3, 4, 3), q4 = (1, 3, 1)

Their span is a two dimensional lattice since q1 + q4 = q2 and q1 + 2q4 = q3. These relations

define the cancelling tuples

1

5
(1, 1),

1

5
(1, 2),

1

15
(1, 2) and

1

5
(1, 1),

1

15
(1, 11),

1

15
(1, 2),

1

15
(1, 2).

Now suppose that δ ∈ ∆(`) is the δ-vector of some rational function

Q =
δ1t+ δ2t

2 + · · ·+ δ`−2t
`−2

`(1− t`)
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that could be the total orbifold contribution of some basket B of singularities of local index

`. Suppose B0 ∈ Z〈Res+(`)〉 satisfies

Φ+
` (B0) = δ

That is, it is a particular solution to the problem of finding a basket producing the given

total orbifold contribution. By definition, any other basket with this property will differ as

an element of Z〈Res+(`)〉 by a cancelling tuple or, equivalently, an element of ker Φ+
` .

Example 4.6.5. Consider the orbifold contribution

Q =
2t3 + t2 + 2t

5(1− t5)

with δ-vector (2, 1, 2). A particular basket producing this orbifold contribution is

B0 = {1

5
(1, 1),

1

15
(1, 2)}

corresponding to the vector (1, 0, 0, 1) ∈ Z4 in the coordinates of Example 4.6.4. The set of

baskets containing no cancelling pairs with this total orbifold contribution is, in coordinates,

B0 + ker Φ+
` = {(1 + λ+ µ,−λ,−µ, 1 + λ+ 2µ) : λ, µ ∈ Z}

In order to find all of the reduced baskets - those not containing any cancelling tuples

- that produce a given total orbifold contribution, one must exclude all baskets containing

cancelling tuples. To this end, define the signature of a vector v ∈ Zn to be

sgn(v) := (sgn(v1), . . . , sgn(vn))

where sgn is the usual sign function satisfying sgn(0) = 0. Define

Lv :=
⊕
vi 6=0

N · sgn(vi)ei ⊕
⊕
vi=0

Z · ei and S(v) := v + Lv

A vector u ∈ Zn is said to feature in another vector v ∈ Zn if u ∈ S(v). Note that S(v) is

a smooth affine rational polyhedral cone. Inside the lattice Z〈Res+(`)〉 using as coordinates

the distinguished basis Res+(`), the cone S(v) consists of the baskets containing v since

allowing no sign changes corresponds to the property that no singularities appearing in v

can be removed in moving to a basket found in S(v).

If v is a cancelling tuple, no reduced baskets can lie in S(v) as all baskets there will all

contain the cancelling tuple v. In particular, there can only be finitely many solutions along

any affine ray of the form {u+λv : λ ≥ 0} parallel to ker Φ+
` , since eventually the cancelling

tuple v ∈ ker Φ+
` will feature in u+ λv for λ� 0. This shows:
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Lemma 4.6.6. There only finitely many reduced baskets along each affine ray parallel to

ker Φ+
` .

Working with a given δ-vector δ ∈ ∆(`) and particular choice of basket B0 whose total

orbifold contribution has this δ-vector, this means that the reduced baskets producing this

total orbifold contribution biject with lattice points in the complement of the union as v

ranges over all cancelling tuples of the convex rational polyhedra

Kv,δ := S(v) ∩ (B0 + ker Φ+
` ) = S(v) ∩ (Φ+

` )−1(δ)

inside B0 + ker Φ+
` . More concisely, the reduced baskets producing an orbifold contribution

with δ-vector δ biject with lattice points inside

(Φ+
` )−1(δ) \

⋃
v∈ker Φ+

`

Kv,δ

Example 4.6.7. Returning to Example 4.6.5 and the δ-vector (2, 1, 2) ∈ ∆(5), since ker Φ+
`
∼=

Z2 one can sketch the intersection Kv,δ of the cones S(v) with B0 + ker Φ+
` . Here some of

the resulting polyhedra Kv,δ are drawn, enough for the purposes at hand.

Figure 4.4: Possible reduced baskets for (2, 1, 2)

•

• •

•

∗

∗

∗

∗

∗

In this example the polyhedra Kv,δ exclude a cobounded set and so there is only a finite

number of possible reduced baskets for the δ-vector (2, 1, 2). That is, there are only finitely

many reduced baskets giving rise to the given orbifold contribution. They can be seen from

this to be

(1, 0, 0, 1) (1,−1, 1, 0) (0, 0, 1,−1) (0, 1, 0, 0)

or
1

5
(1, 1),

1

15
(1, 2);

1

5
(1, 1),

1

5
(1, 1),

1

5
(1, 2),

1

10
(1, 1);

1

10
(1, 1),

1

10
(1, 3);

1

20
(1, 3).

They all have total degree contribution
∑

σ∈RB Aσ = −8/5.
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Proof of main result

We return to the situation of general but fixed local index ` in order to generalise the phe-

nomena found in the example above. We apply Conjecture 4.4.8 to show that there are only

a finite number of choices for reduced basket given a particular total orbifold contribution.

Theorem 4.6.8. There are only finitely many reduced baskets for a given total orbifold

contribution.

Proof. From previous discussion around Conjecture 4.5.8 it suffices that we consider the

case of a single local index `. Recall the maximal shattering map ρ : N〈Res(`)〉 → N〈R`〉.
Let v be the image of an elementary T -singularity under ρ. As seen previously, in special

coordinates this is the vector (1, 2, . . . , 2, 1).

Suppose that B and B′ are two baskets with the same total orbifold contribution. Then,

subject to Conjecture 4.4.8, their maximal shatterings ρ(B) and ρ(B′) must differ by a

vector of the form λ · v in coordinates as above. Notice also that there are only finitely

many baskets B ∈ N〈Res(`)〉 with a given maximal shattering ρ(B) = T as there are only

finitely many ways to glue together the finite number of singularities in T . Hence, if for any

given T ∈ N〈R`〉 there is some λ � 0 such that any B ∈ N〈Res(`)〉 with ρ(B) = T + λ · v
contains a cancelling tuple, then the result would be shown. The reduced baskets with the

total orbifold contribution for T would then correspond to the preimages under ρ of T +µ ·v
with 0 ≤ µ < λ and that contain no cancelling tuples.

This statement is equivalent to the following, which we will actually prove: for each

T ∈ N〈R`〉 and for each N ∈ N there is λ � 0 such that every B ∈ N〈Res(`)〉 with

ρ(B) = T + λ · v contains at least N cancelling tuples.

We proceed by induction on |T | = n. If n = 0, then one can construct arbitrarily many

cancelling tuples inside baskets whose maximal shattering is of the form λ·v as follows. Since

the indecomposable singularities in a maximal shattering of the form λ · v coalesce to form

a T -singularity τ of width λ, a basket B of size p with this maximal shattering corresponds

to a choice of p − 1 lattice points on the edge of τ , for which the corresponding crepant

blowups produce the singularities in B. These lattice points must be width less than ` apart

in order for the corresponding singularities to be residual. Notice that p − 1 ≥ λ as one

has to choose a lattice point inside each of the elementary T -singularities constituting τ . If

λ = `+ 1 then at least two of the lattice points must differ by a cone of width a multiple of

`, which is hence a T -singularity. The cones subtended by the lattice points between these

two lattice points thus form a cancelling tuple. Repeating the process starting from the end

of this T -singularity, one can produce N cancelling tuples by setting λ = N(`+ 1).

Suppose the statement is true for all T of size n−1. Let T have size n and choose σ0 ∈ T .

Then T0 = T \ {σ0} has size n− 1 and so there is λ such that every B with ρ(B) = T0 +λ · v
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contains at least N + 1 cancelling tuples. By adding the single singularity σ0 back in to

such a basket B, one can reduce the number of cancelling tuples at most by 1. Thus, this

same λ has the property that every B with ρ(B) = T + λ · v contains at least N cancelling

tuples.

Using the recursion for λ from the induction, one obtains:

Corollary 4.6.9. For a collection of indecomposable singularities T of size n, every basket

B with maximal shattering ρ(B) = T + λ · v contains at least N cancelling tuples when

λ ≥ (N − n)(`+ 1).

Though the proof above relies on Conjecture 4.4.8, it seems plausible that there is a direct

convex geometric proof bypassing this dependency, the most general form of which could look

like the following. Recall that an affine ray is a subset of Rn of the form {u+λv : λ ≥ 0} for

some u, v ∈ Rn and for some λ0 ∈ R≥0. It is rational if u and v can be chosen to be lattice

points.

Conjecture 4.6.10. Suppose K =
⋃N
i=1Ki ⊆ Rn is the union of finitely many affine convex

rational polyhedra and suppose that Rn \ K contains infinitely many lattice points. Then

Rn \K contains an affine rational ray.

In combination with Lemma 4.6.6, by choosing Ki appropriately amongst the Kv,δ one

obtains the same result but independently of Conjecture 4.4.8. The pertinent set

RBod(`, δ) := (Φ+
` )−1(δ) \

⋃
v∈ker Φ+

`

Kv,δ

is then a bounded subset of Z〈Res+(`)〉 whose lattice points correspond to the finite number

of reduced baskets whose total orbifold contribution has δ-vector δ. We call this subset the

reduced body for the given total orbifold contribution.

Define the width of a collection of singularities to be the sum of the widths of the singu-

larities. If the collection arises from shattering a T -singularity τ then its width equals the

width of τ , which is also related to its total contribution to the degree via Cor. 4.4.3.

As noted in Cor. 4.6.3 the degree of an orbifold del Pezzo surface X can be read off from

its Hilbert series. It has a decomposition

K2
X = 12− (RK2

X(`1) + · · ·+RK2(`N) + IK2)

where RK2(`) :=
∑

σ∈RB(`) Aσ is the degree contribution from the `th piece of the reduced

basket and IK2 is the (nonnegative integral) contribution from the extended invisible basket

ÎB := IB ∪ {T -singularities on X}
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with

IK2 =
∑
σ∈ÎB

Aσ =
∑
σ∈ÎB

width(σ)

`σ

from Cor. 4.4.3. Notice that the Euler number term from Lemma 4.3.7 is accounted for in

IK2
X by including the T -singularities. Knowing a reduced basket for X then prescribes the

degree contribution of the corresponding invisible basket. Notice that the definitions of these

quantities only rely on the basket of singularities on X with a choice of invisible/reduced

basket and so it m es sense to speak of each of them as associated to just a basket with a

choice of invisible/reduced basket.

Example 4.6.11. For the total orbifold contribution from Example 4.6.7 with δ-vector

(2, 1, 2) ∈ ∆(5) the four possible reduced baskets all have RK2 = −8/5. Suppose one fixes a

Hilbert series H(t) with this total orbifold contribution from which one can read the degree K2.

Any invisible basket must have total degree contribution IK2 = 12−RK2 −K2
X = 68

5
−K2

X ,

which is indeed integral since K2
X ≡ 3

5
modZ for any surface with this Hilbert series.

We now collect the results of the paper subject to Conjectures 4.4.8 and 4.5.8, and

established by the results and discussion of the last two sections.

Theorem 4.6.12. Fix a power series H(t) ∈ N[[t]]. Either there are no orbifold del Pezzo

surfaces with Hilbert series equal to H(t), or

• the reduced basket of an orbifold del Pezzo surface with Hilbert series equal to H(t) is

one of a finite number of possibilities, which are determined by the orbifold correction

part of H(t) and in bijection with the lattice points of the associated reduced body.

• the basket of such an orbifold del Pezzo surface with reduced basket RB is given by

adding to the singularities in RB a collection of cancelling tuples – which are obtained

by shattering T -singularities – whose total degree contribution is determined by RB
and H(t).

Example 4.6.13. For the total orbifold contribution

8t3 − t2 + 8t

5(1− t5)

there are 18 possible reduced baskets which all lie in the affine plane (5, 0, 0, 3) + ker Φ.

Unlike in Example 4.6.7, the reduced body contains multiple lattice points along a single ray:

(5, 0, 0, 3) + λ(1, 0,−1, 2), which have differing degree contributions. This shows that, in

general, the total degree contribution from the reduced basket depends on more than simply

the orbifold contribution.
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To discuss an application of this result, recall that the Gorenstein index `X of a Fano

variety X is the smallest positive integer m such that mKX is Cartier. For orbifold del Pezzo

surfaces, this is the lowest common multiple of the local indices of all the singularities on X.

Example 4.6.14. Returning to the total orbifold contribution of Example 4.6.11 with δ-

vector (2, 1, 2) ∈ ∆(5) it follows from the above that a basket for an orbifold del Pezzo surface

X of Gorenstein index 5 with this orbifold contribution can contain at most 82 singularities:

4 at most from a reduced basket and then at most 5 + 1 = 6 in a minimal cancelling tuple

from the discussion of the n = 0 case in the proof of Theorem 4.6.8, of which there can be at

most 13 = b68
5
c from the Fano condition K2

X > 0. If X is allowed to have Gorenstein index

5` then imitating this calculation yields that the number of singularities on X can be at most

4 + 13(5`+ 1) = 65`+ 17

This example generalises easily using Theorem 4.6.12 to the following corollary.

Corollary 4.6.15. Fix a total orbifold contribution Q ∈ Q(t) and a positive integer `∗. There

exists a number N(Q, `∗) dependent only on and computable from Q and `∗ such that any

orbifold del Pezzo surface with total orbifold contribution Q and Gorenstein index bounded

above by `∗ has at most N(Q, `∗) singularities.

As in the example, it is straightforward to compute N(Q, `∗) using the proof of Theorem

4.6.8 once the reduced bodies for the `th pieces of Q have been found.

4.7 Degree bounds

Let H(t) ∈ N[[t]]. If H(t) is the Hilbert series of an orbifold del Pezzo surface X, then X

must have degree given by the formula in Lemma 4.3.6. Denote this number by K2
H . As seen

in the previous section, choosing a reduced basket to capture the total orbifold contribution

of H(t) enforces a choice of the degree contribution of a corresponding invisible basket.

More precisely, for a choice of reduced basket RB and invisible basket IB one requires

K2
H = 12−RK2 −

∑
σ∈ÎB

width(σ)

`σ

whereRK2 :=
∑

σ∈RB Aσ. Since the last term is nonnegative, one must have K2
H+RK2 ≤ 12.

There are three cases:

• if K2
H +RK2 < 12 then there are infinitely many possibilities for the extended invisible

basket of an orbifold del Pezzo surface with Hilbert series H(t)
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• if K2
H + RK2 = 12, then there is only one possible extended invisible basket for an

orbifold del Pezzo surface with Hilbert series H(t) containing RB, which is the empty

set since there is no more flexibility in the degree allowing one to add T -singularities

or cancelling tuples

• If K2
H + RK2 > 12 then there are no possible extended invisible baskets for orbifold

del Pezzo surfaces surfaces with Hilbert series H(t).

Testing across all reduced baskets gives the following non-existence result.

Corollary 4.7.1. With notation as above, if K2
H +RK2 > 12 for all reduced baskets asso-

ciated to H(t) then there are no orbifold del Pezzo surfaces with Hilbert series H(t).

For example there are no orbifold del Pezzo surfaces with Hilbert series

1 +mt+ t2

(1− t)3
,m ≥ 11

since the only reduced basket for this power series is the empty set with RK2 = 0 and so

K2
H + RK2 = m + 2 > 12. Observe that in addition there are no toric orbifold del Pezzo

surfaces with Hilbert series
1 + 10t+ t2

(1− t)3

since a projective toric surface has at least three (possibly smooth) affine pieces or singu-

larities corresponding to the faces of its polygon and so must feature at least one cancelling

tuple.

In general, as there are only finitely many reduced baskets for a given total orbifold

contribution, the discussion above along with the Fano condition K2
X > 0 show how to

produce bounds on the degree of any orbifold del Pezzo surface with that total orbifold

contribution.

Theorem 4.7.2. For a given collection of residual singularities B there exist constants m > 0

and M > 0 dependent only on and computable from B such that, for any orbifold del Pezzo

surface X with BX = B,

m ≤ K2
X ≤M

4.8 A different perspective

Broadly speaking, the approach taken so far in this paper has been deformation-theoretic:

we have sought to classify the possible collections of singularities that could correspond to
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baskets of singularities (which are by construction deformation classes of singularities) on an

orbifold del Pezzo surface with a given Hilbert series. An alternative perspective one could

take is to allow not just deformations but also crepant blowups. From this perspective,

residual singularities are replaced by indecomposable singularities as the appropriate notion

of ‘rigid’ singularities.

To briefly explore this perspective, define two invariants Ψ`(X) and Ψ̃`(X) of an orbifold

del Pezzo surface X by

Ψ`(X) := ρ(BX(`)) ∈ N〈R`〉 and Ψ̃`(X) := ρ(B̃X(`)) ∈ N〈R`〉

That is, Ψ`(X) is the collection of indecomposable singularities obtained by maximally shat-

tering all the residues of singularities of local index ` on X, and Ψ̃`(X) is the collection of

indecomposable singularities obtained by maximally shattering all singularities on X. The

former allows both deformations and crepant blowups to be taken; the latter allows no de-

formation, for example, it recognises the T -singularities on X. In this language, Theorem

4.6.12 becomes the following.

Theorem 4.8.1. Fix a power series H(t) ∈ N[[t]]. There exists an affine ray %H(t) ⊆ N〈R`〉
such that any orbifold del Pezzo surface X with Hilbert series H(t) has the property that

Ψ`(X) lies on %H(t). Moreover the slope of %H(t) is independent of H(t) and corresponds to a

maximally shattered elementary T -singularity of local index `. The same is true for Ψ̃`(X)

with the same ray %H(t) (possibly truncated).

The theorem also holds if the Hilbert series H(t) is replaced by a total orbifold contribu-

tion Q ∈ Q(t).

4.9 Hilbert functions of toric orbifolds

As discussed in Chapter 2 the Hilbert function of ample divisors on toric varieties are given

by counting lattice points in polytopes. We develop this perspective in this section, and

state results of the author and A. M. Kasprzyk from [50] using techniques from orbifold

geometry (primarily deformation theory) to resolve questions in polytope combinatorics.

Ehrhart theory

Let M be a lattice and suppose Q ⊆M⊗ZR =: MR is a convex polytope; that is, the convex

hull of finitely many points in MR. We will assume that our polytopes are full-dimensional,

so that dimQ = rankM . We will often select M = Zd. If the vertices of Q are elements of
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M , we say that Q is a lattice polytope. If its vertices are elements of MQ := M ⊗Z Q then

we say that Q is a rational polytope.

Let

ehrQ(k) := |kQ ∩M |

be the function Z≥0 → Z counting the number of lattice points in dilates kQ of Q. We call

this function the Ehrhart function of Q. The values of the Ehrhart polynomial of Q form a

generating function

EhrP (t) :=
∑
k≥0

ehrQ(k)tk

called the Ehrhart series of Q.

Ehrhart [38] showed that when Q is a lattice polytope ehrQ can be expressed as a poly-

nomial of degree dimQ

ehrQ(k) = cdk
d + . . .+ c1k + c0

which we call the Ehrhart polynomial of Q. The leading coefficient cd is given by volQ/d!,

cd−1 is equal to vol(∂Q)/2(d − 1)! and c0 = 1. Here vol(·) denotes the normalised volume,

and ∂Q denotes the boundary of Q. For example, if Q is two-dimensional (that is, Q is a

lattice polygon) we obtain

ehrQ(k) =
vol(Q)

2
k2 +

|∂Q ∩M |
2

k + 1

Setting k = 1 in this expression recovers Pick’s Theorem [64].

When P is a rational polytope the situation is more interesting. A quasi-polynomial with

period s ∈ Z>0 is a function q : Z→ Q defined by polynomials q0, q1, . . . , qs−1 such that

q(k) = qi(k) when k ≡ imod s

The degree of q is the largest degree of any monomial appearing in the qi. The minimum

period of q is called the quasi-period of q, and necessarily divides any other period. Ehrhart

showed that ehrQ is given by a quasi-polynomial of degree d, which we call the Ehrhart

quasi-polynomial of Q.

Quasi-period collapse

Let πQ denote the quasi-period of ehrQ. The smallest positive integer rQ ∈ Z>0 such that

rQQ is a lattice polytope is called the denominator of Q. It is certainly the case that ehrQ is

rQ-periodic, however it is perhaps surprising that the quasi-period of ehrQ does not always

equal rQ; this phenomenon is called quasi-period collapse.
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Example 4.9.1 (Quasi-period collapse). Consider the triangle

Q := Conv{(5,−1), (−1,−1), (−1, 1/2)}

with denominator rQ = 2. This has

ehrQ(k) =
9

2
k2 +

9

2
k + 1

and so πQ = 1, which is smaller than rQ.

Quasi-period collapse is poorly understood, although it occurs in many contexts. For

example, de Loera–McAllister [35, 36] consider polytopes arising naturally in the study of

Lie algebras (Gel’fand–Tsetlin polytopes, and polytopes determined by Clebsch–Gordan

coefficients) that exhibit quasi-period collapse. In dimension two McAllister–Woods [55]

show that there exist rational polygons with rQ arbitrarily large but with πQ = 1 (see also

[50]). Haase–McAllister [42] give a constructive view of this phenomena in terms of GLd(Z)-

scissor congruence; here a polytope is partitioned into pieces that are individually modified

via GLd(Z) transformation and lattice translation, then reassembled to give a new polytope

which by construction has equal Ehrhart quasi-polynomial but different denominator.

Quasi-period collapse for dual-Fano polygons

Definition 4.9.2. A lattice polytope P ⊆ NR is Fano if its vertices are primitive lattice

points, and the origin lies within the interior of P . We say that a rational polytope Q ⊆MR

is dual-Fano if Q is dual to a Fano polytope.

The toric variety associated to a dual-Fano polytope via the inner normal fan (or equiv-

alently from a Fano polytope via the spanning fan) is a toric Fano variety. A (dual-)Fano

polygon thus defines a toric del Pezzo surface, which must have at worst orbifold singularities.

The Hilbert series of orbifold del Pezzo surfaces were studied previously in this chapter.

We partitioned B into two pieces: a reduced basket and an invisible basket, for which the

latter – along with any T -singularities – is not detectable by the Hilbert series. From our

viewpoint it is this invisibility that causes quasi-period collapse.

Theorem 4.9.3. Let Q ⊆ MR be a dual-Fano polygon. Let RB be a reduced basket for XQ

with corresponding invisible basket IB. Let the set of T -singularities on XQ be denoted T .

The quasi-period of Q is bounded by

πQ ≤ lcm{`σ | σ ∈ RB}
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Furthermore, Q exhibits quasi-period collapse if there exists some τ ∈ IB ∪ T of local index

not dividing lcm `σ | σ ∈ RB. Moreover, the quasi-period collapse is measured by IB:

rQ = lcm{πQ} ∪ {`σ | σ ∈ IB ∪ T }

We expect that the inequality in the first part of the theorem is an equality; this follows

from stronger versions of the conjectures earlier in this chapter. This result empowers the

construction of interesting families of examples – for example, many rational triangles with

quasi-period 1 – and (currently only partial) classification results.

Example 4.9.4. This result can be used to construct an infinite family of dual-Fano tri-

angles corresponding to fake weighted projective planes (cyclic quotients of weighted projec-

tive planes) with arbitrary denominator ` and quasi-period 1. Let `, w, c be integers with

0 < w, c < ` and gcd(`, wc− 1) = 1. Let gcd(`, w) = g, w = gh, and ` = gk. Then, there is

a fake weighted projective plane of the form

P(h, k − h, k)/(Z/`g)

with singularities

1

2`
(1, 2c− 1),

1

`(`− 2)
(1, (`− 2)(`− c)− 1),

1

`2
(1, `(c− 1)− 1)

whose Hilbert function is a polynomial. The same techniques can be used to produce another

infinite family of the form

P(1, `− 1, `)/(Z/`)

with singularities

1

`
(1, c− 1),

1

`(`− 1)
(1, (`− 1)(`− c)− 1),

1

`2
(1, `(c− 2)− 1)

and again a polynomial Hilbert function. These examples are complementary to the dual-

Fano triangles of qG-smoothable weighted projective spaces

P(a2, b2, c2)

for (a, b, c) a Markov triple satisfying

a2 + b2 + c2 = 3abc

as classified by Hacking–Prokhorov [43] that also have polynomial Hilbert function.
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Chapter 5

Applications to symplectic

embeddings

The final chapter of this thesis addresses the application of numerics on orbifolds to sym-

plectic embedding problems. We will also introduce elements of algebraic positivity, or the

numerical asymptotics of divisors on orbifolds, as they also become highly relevant to this

story. For the purposes of this chapter, a symplectic manifold is a smooth manifold poten-

tially with boundary or corners equipped with a nondegenerate 2-form ω.

5.1 Symplectic embeddings and symplectic capacities

A smooth map ι : X1 → X2 between symplectic manifolds (X1, ω1) and (X2, ω2) is a sym-

plectic embedding if it is a smooth embedding such that ι∗ω2 = ω1.

Symplectic capacities are numerical invariants measuring obstructions to embedding one

symplectic manifold into another. Perhaps the simplest such obstruction is the volume; a

symplectic manifold (X1, ω1) can be embedded in another symplectic manifold (X2, ω2) only

if vol(X1, ω1) ≤ vol(X2, ω2). A more sophisticated obstruction is the Gromov width: the

supremum of the radii of balls that can symplectically embed into the given symplectic man-

ifold. As Gromov’s nonsqueezing theorem [40] illustrates, this is a nontrivial and interesting

invariant even for simple submanifolds of Rn.

There are many different capacities in past and current usage - see [19] and the numerous

references therein for an overview - that were invented in order to answer more sophisticated

embedding questions about symplectic 4-manifolds. In this paper we will focus on Embedded

Contact Homology or ECH capacities, which were developed by Hutchings in [44] and have

since been studied by many authors in, for example, [18], [31], [30], [33]. To an exact

symplectic 4-manifold X with contact-type boundary they associate an increasing sequence
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of real numbers

ck(X) for k ∈ Z≥0

One of their early successes was studying embeddings of ellipsoids where the ellipsoid with

symplectic radii a, b

E(a, b) := {(x, y) ∈ C2 :
|x2|
πa

+
|y2|
πb

< 1}

embeds into E(c, d) iff ck(E(a, b)) ≤ ck(E(c, d)) for all k. Moreover, ck(E(a, b)) was computed

to be the kth largest number of the form am + bn for m,n ∈ Z≥0. We will introduce ECH

capacities more formally in §5.2.

A particular type of symplectic manifold that ECH capacities provide an attractive means

of studying is toric domains. Consider the moment map

µ : C2 → R2

for the 2-torus action on C2. Given a region Ω ⊆ R2, XΩ := µ−1(Ω) is a toric symplectic 4-

manifold potentially with boundary. If the domain Ω is a certain kind of convex polygon with

two edges lying on the coordinate axes, XΩ is called a convex toric domain. We omit mention

of the symplectic form since we will always take the induced form from C2. Such symplectic

manifolds are exact with contact-type boundary. The work of Cristofano-Gardiner–Choi [30]

provides a somewhat combinatorial formula for the ECH capacities of such spaces in terms

of lattice paths and lattice point counts, which we will make heavy use of.

5.2 ECH capacities

Combinatorial definitions

ECH is formally defined in terms of contact geometry. It is constructed explicitly in [44]

however there is a combinatorial rephrasing of ECH in the case of toric domains that is most

applicable to the situation at hand, which is how we will primarily present it here. This

material comes from [18,30,44].

Suppose Ω ⊆ R2 is any polygon. Define the Ω-length of a vector v to be

`Ω(v) := v × pv

where pv is a boundary point of Ω such that Ω is contained in the right halfplane bounded

by the line spanned by v translated to contain pv. Here × means the cross product u× v =

det(u | v). Define the Ω-length of a piecewise linear path Λ to be

`Ω(Λ) =
∑

`Ω(vi)
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where the sum ranges over the edge vectors vi of Λ. Notice that, from a local calculation,

one has

`Ω(∂Ω) = 2 Vol(Ω)

Definition 5.2.1. A convex domain is a convex region Ω ⊆ R2 whose boundary consists of

• a line segment between the origin and a point (a, 0) on the positive horizontal axis

• a line segment between the origin and a point (0, b) on the positive vertical axis

• the graph of a convex piecewise linear function f : [0, a]→ [0, b]

We say that a convex domain is a convex lattice domain if the points (a, 0) and (0, b) are

lattice points and if the function f is piecewise linear such that each vertex is a lattice point.

In other words, a convex lattice domain is a convex domain that is also a lattice polygon.

Convex rational domains are defined similarly.

We call the corresponding symplectic manifold XΩ = µ−1(Ω) a convex toric domain if Ω

is a convex domain, or a convex toric lattice domain if Ω is a convex lattice domain. One

can also repeat these definitions with convex replaced by concave.

Following [30] - which built on [18,56] - the weight sequence associated to a convex lattice

domain Ω is a sequence w(Ω) of numbers defined as follows. Let ∆a be the convex hull of the

points (0, 0), (a, 0), (0, a). Let c be the smallest number such that Ω ⊆ ∆c. Equivalently, c is

the radius of the smallest ball in C2 containing XΩ. The two components of the complement

∆c\Ω are affine equivalent to two concave domains Ω2 and Ω3. There is a recursive definition

weight sequences for concave domains as follows. Consider the concave domain Ω2. Let b1

be the largest real number such that ∆b1 ⊆ Ω2. The complement of ∆b1 in Ω2 consists of two

(possibly empty) concave domains and so one can recurse to obtain a multiset of numbers

w(Ω2) := {b1, b2, . . . }. We define

w(Ω) := (c;w(Ω2);w(Ω3))

Example 5.2.2. Let Ω = Conv((0, 0), (0, 2a), (a, a), (a, 0)) for some a ∈ Z>0. Here c = 2a,

leaving a single concave region Ω3 illustrated in the third figure, which is affine equivalent to

∆a. The weight sequence for Ω is hence (2a; ∅; a).

Construction

Using the constructions above, we define ECH capacities combinatorially.
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Figure 5.1: Example of weight sequence
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Definition 5.2.3. A convex lattice path is a piecewise linear path starting on the positive

vertical axis and ending on the positive horizontal axis such that its vertices are lattice points.

After adding the pieces along the coordinate axes, convex lattice paths are exactly bound-

aries of convex lattice domains. For a polygon Λ we denote by LΛ the number of lattice points

enclosed by Λ, including on those its boundary. We state a result of Cristofaro-Gardiner but

using the perspective of convex lattice domains instead of convex lattice paths.

Theorem 5.2.4 ( [30, Cor. 8.5]). Let Ω be a convex domain. Then

ck(XΩ) = min{`Ω(∂Λ) : LΛ = k + 1}

where the minimum is taken over convex lattice domains Λ.

Define the cap function of a symplectic 4-manifold X with contact-type boundary to be

capX(r) := #{k ∈ Z≥0 : ck(X) ≤ r}
= 1 + max{k ∈ Z≥0 : ck(X) ≤ r}

for r ∈ Z≥0. In certain situations - such as ellipsoids with integral radii - the cap function

recovers all of the ECH capacities.

Corollary 5.2.5. If Ω is a convex domain, then

capXΩ
(r) = max{LΛ : `Ω(∂Λ) ≤ r}

where the maximum ranges over convex lattice domains Λ.

Proof. After including the zeroth capacity, one has

capXΩ
(r) = #{k : ∃Λ with `Ω(Λ) ≤ r and LΛ = k + 1}

= 1 + max{k : ∃Λ with `Ω(Λ) ≤ r and LΛ = k + 1}
= max{LΛ : `Ω(Λ) ≤ r}

as required.
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ECH capacities and weight sequences

The weight sequence w(Ω) contains all the information required to compute ck(XΩ).

Lemma 5.2.6. Suppose w(Ω) = (c; a1, . . . , as; b1, . . . , bt). Then

ck(XΩ) = min{ck+k2+k3(B(c))− ck2(qsi=1B(ai))− ck3(qtj=1B(bj)) : k2, k3 ∈ Z≥0}

This follows from [30, Cor. A.5] combined with [18, Theorem 1.4].

Key properties of ECH capacities

ECH capacities have the following properties recorded in [18], which we will use throughout

the chapter:

• Monotonicity: If (X,ω) embeds into (X ′, ω′) then ck(X,ω) ≤ ck(X
′, ω′) for all k

• Disjoint union: If (X,ω) = qni=1(Xi, ωi) then

ck(X,ω) = max∑
ki=k

n∑
i=1

cki(Xi, ωi) for all k

• Conformality: For each k and λ ∈ R+, ck(X,λω) = λck(X,ω)

Asymptotics of ECH capacities

Asymptotically, capacities return the volume constraint for symplectic embeddings.

Theorem 5.2.7 ( [31, Theorem 1.1]). Suppose (X,ω) is a compact symplectic 4-manifold,

then

lim
k→∞

ck(X,ω)2

k
= 4 Vol(X,ω)

When X = XΩ is a convex toric domain, this limit also equals 4 Vol(Ω).

This is known as the ‘Weyl law’ for ECH capacities.

5.3 Algebraic formulation of ECH capacities

There is a purely algebro-geometric framework that we will establish in which one can recast

ECH capacities for convex toric domains arising from rational polygons. This also applies

for a different class of toric domains called free convex toric domains that are defined in
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§5.3. For a rational convex domain Ω ⊆ R2 (or an irrational convex domain with rational

slopes) one can associate the toric surface YΣ(Ω) associated to the inner normal fan of Ω. In

this setting Ω defines a divisor DΩ on YΣ(Ω).

Theorem 5.3.1. (Theorem 5.3.16 + Theorem 5.3.17 + Theorem 5.3.20) Let Ω be any

rational convex domain or a free rational convex toric domain. Then

ck(XΩ) = min{D ·DΩ : h0(YΣ(Ω), D) ≥ k + 1}
capXΩ

(r) = max{h0(YΣ(Ω), D) : D ·DΩ ≤ r}

where both extrema range over all nef Q- or R-divisors on YΣ(Ω).

It is irrelevant whether we work with Q- or R-divisors. For the special case evaluating

the cap function at r`Ω(∂Ω) =: λr, we have

capXΩ
(λr) = max{h0(D) : (D − rDΩ) ·DΩ ≤ 0}

We can also state some of the results of this chapter in purely combinatorial terms. We

will later describe a pseudonorm `Ω dependent on Ω called the Ω-length, which is central to

the combinatorialisation of ECH capacities. For a polygon Λ, define its Ω-perimeter `Ω(∂Λ)

to be the sum of the Ω-lengths of the line segments composing its boundary ∂Λ.

Theorem 5.3.2. (Cor. 5.4.11) Suppose Ω is a tightly constrained convex lattice domain with

lower bound1 r0 = 0 and let λ = `Ω(∂Ω). Then rΩ contains the most lattice points of any

convex lattice domain of Ω-perimeter at most rλ for all r ∈ Z≥0.

Ω-stretching

Consider a convex domain Ω ⊆ R2. For a polygon Λ define SΩΛ to be the polygon with

edges parallel to the edges of Ω by placing an edge of slope vi at the point or points at which

vi is tangent to Λ, using corners if necessary. For example,

We call the resulting polygon SΩΛ the Ω-stretching of Λ. The following lemma is due to

Michael Hutchings.

Lemma 5.3.3. `Ω(∂Λ) = `Ω(∂SΩΛ).

Proof. Let p1, . . . , pk denote the vertices of Ω. Let qi be a point on ∂Λ such that a tangent

vector to ∂Λ at qi is parallel to the vector pi − pi−1. Then by definition, the Ω-length of ∂Λ

is ∑
i

pi × (qi+1 − qi)

1For example, these assumptions are met if one of the weights of Ω is equal to 1, and we conjecture that
they are met whenever the gcd of the weights is 1.
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Figure 5.2: Example of Ω-stretching

Ω
Λ

SΩΛ

Notice that the same points qi still satisfy the requirements for computing the Ω-length of

∂SΩΛ, so that the nothing changes in the expression of `Ω(∂SΩΛ) from that for `Ω(∂Λ).

The effect of Ω-stretching is to produce a polygon of the same Ω-length but with edges

parallel to the edges of Ω.

Slope polytopes

Let Ω be a rational convex domain. Denote its set of edges by Edge(Ω). An edge-orientation

o of ∆ is an orientation of each of its edges in such a way that the boundary of ∆ is an

oriented cycle. A polygon with an edge-orientation is called edge-oriented. Given an edge-

oriented convex lattice domain Ω, define the slope ve of an edge e ∈ Edge(Ω) to be the

primitive lattice vector in the direction of the oriented edge. That is, of e has endpoints e−
and e+ with orientation making e− the tail and e+ the head, ve is the primitive ray generator

of the ray R≥0 · (e+ − e−).

Definition 5.3.4. The slope polytope of an edge-oriented convex lattice domain Ω is the

lattice polytope

Sl(Ω) := Conv(ve : e ∈ Edge(Ω))

This produces a compact toric variety YSl(Ω) (via the spanning fan) on which the algebraic

geometry side of the story will take place. We will actually work with a blowup of this toric

variety, which we will denote by ỸSl(Ω).

This blowup is obtained by creating a new fan by inserting rays through any slopes ve that

are not vertices of Sl(Ω). For example, suppose that Ω has slopes −e1, e2, e1, e1−e2, e1−2e2.

The slope polytope only has vertices −e1, e2, e1, e1−2e2 and so one extra ray has to be added

for e1 − e2. This is demonstrated pictorally below.

We will denote the resulting fan for the blowup by Σ̃Sl(Ω). Observe that this fan is in

some sense a rotation of the inner normal fan of Ω after picking bases, though they naturally
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Figure 5.3: Blowup of YSl(Ω)
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Fan for YSl(Ω) Fan for ỸSl(Ω)

live in dual lattices. At the end of this section we will provide an alternative version of the

content below phrased in terms of the inner normal fan instead of the slope polytope. It can

be favourable to use each of these perspectives at different times.

Balance divisors

As above, let Ω be a rational convex domain oriented clockwise with slope polytope Sl(Ω).

We will subsequently always assume that Ω has this orientation. Define the Ω-length of a

vector v ∈ R2 to be

`Ω(v) := v × pv

where pv is a boundary point of Ω such that the halfplane pv +{u ∈ R2 : u×v ≥ 0} contains

Ω. Recall that the two-dimensional cross product u× v of two vectors u and v is defined to

be the determinant of the matrix with u and v as first and second columns respectively.

Lemma 5.3.5. Suppose Ω is lattice (resp. rational). The Ω-length is an integral (resp.

rational) support function for the fan Σ̃Sl(Ω).

Proof. Suppose v, v′ are adjacent slopes in Ω. The Ω-length applied to any vector w ∈
Cone(v, v′) = σ is given by

`Ω(w) = p× w

where p is the vertex shared between the two edges of slopes v and v′ respectively. This is

linear on the cone σ, which features in ΣSl(Ω) by definition and describes all full-dimensional

cones in ΣSl(Ω) as v, v′ range over adjacent slopes. `Ω is clearly integral on integral vectors

when the vertices of Ω are lattice points, and similarly for the rational case.
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Definition 5.3.6. The balance divisor for Ω is the Q-Cartier divisor DΩ associated with

the support function −`Ω. Notice the change in sign.

Corollary 5.3.7. The coefficients of DΩ as a Weil divisor are

av = `Ω(v)

for a (primitive) slope vector v of Ω.

Corollary 5.3.8. DΩ is ample.

Proof. It is a straightforward check that −`Ω is a strictly convex function, which corresponds

to DΩ being ample.

Lemma 5.3.9. The polytope for DΩ is the result of rotating Ω by 90◦ anticlockwise around

the origin.

Proof. Denote by Ω⊥ the rotated version of Ω. The edges of Ω are by construction orthogonal

to the rays of Σ̃Sl(Ω) and so there is a facet presentation of Ω⊥ coming from this fan or,

equivalently, a divisor D on ỸSl(Ω). Order the slopes v1, . . . , vs with corresponding toric

boundary divisors D1, . . . , Ds. It suffices that the coefficient ai of D along Di is the same

as the corresponding coefficient in DΩ. We will now compute this directly. The edge ei of

P⊥ with slope vi is carved out by the orthogonal hyperplanes to vi−1, vi, vi+1. Suppose that

vi−1, vi+1 form a Z-basis for Z2. They are independent over Q and the case when they are

not a Z-basis is similar. By a change of coordinates, suppose vi−1 = (1, 0), vi+1 = (0,−1)

and vi = (α, β). Then the endpoints of the edge in Ω⊥ corresponding to vi are(
−ai−1,

αai−1 − ai
β

)
and

(
−βai+1 + ai

α
, ai+1

)
After rotating back, the Ω-length of vi is then

`Ω(vi) =

∣∣∣∣∣ α β

ai+1
βai+1+ai

α

∣∣∣∣∣ = ai

which is the same as the corresponding coefficient in DΩ.

Corollary 5.3.10. LrΩ = h0(rDΩ).

Notice that there are many choices of Ω with the same slope polytope Sl(Ω) and so to

reflect the choice of Ω an extra choice has to be made in the geometry. This choice is a

polarisation, where ỸSl(Ω) is polarised by the ample divisor DΩ. The same proof actually

shows:
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Corollary 5.3.11. Let Λ be a polygon with all edges parallel to edges of Ω. Denote by Λ⊥

the 90◦ anticlockwise rotation of Λ about the origin. The coefficients of a divisor DΛ on

ỸSl(Ω) with polygon Λ⊥ are

DΛ =
∑

`Λ(v)Dv

with notation as above.

When Ω is lattice, DΩ is Cartier. Cartier divisors can also be characterised by their

Cartier data, which has a toric version found in §4.2 of [23]. To this end, let (a, b)⊥ := (−b, a).

This has the property that −u · v⊥ = u× v.

Corollary 5.3.12. The Cartier data for DΛ is mσi = q⊥i , where qi is the vertex in common

between the edges of slopes vi, vi+1, the vertices in Σ(Ω) bounding σi.

Proof. As seen, vi × qi = ai and so vi · q⊥i = −ai.

The balance divisor also captures the Ω-length by how it intersects other divisors. We

will prove the following lemma in toric geometry to progress towards this.

Lemma 5.3.13. Let XΣ be a projective toric surface. An R-divisor D on XΣ is nef iff D ·Dρ

equals the lattice length of the edge of P (D) corresponding to ρ for each ray ρ ∈ Σ(1).

Proof. The if part is clear by the toric Kleiman condition. For the converse, observe that

if D is ample then there is a unique facet presentation of Λ⊥ := P (D) as every slope is

represented by an edge in P (D). This means that D must be equal to∑
`Λ(uρ)Dρ

adapting notation from Cor. 5.3.11 and the result follows from the proof of that corollary. If

D is nef, then it must be the case that some of the inequalities in the facet presentation are

only just redundant: that is, none of the hyperplanes have empty intersection with P (D), but

some might only intersect at a vertex. This follows as the interior of the nef cone is the ample

cone, or from the description of nef and ample divisors in [8] Theorem 2.15 or [23] Theorem

6.4.9. It suffices to show that D ·Dρ = 0 for any ρ giving a redundant hyperplane (that is,

an edge of length 0) but this follows from a direct calculation using [23] Prop. 6.4.4.

Suppose that Λ is a polygon with edges parallel to the edges of Ω. As discussed above,

there is a facet presentation of Λ⊥ and so there is a nef divisor DΛ on ỸSl(Ω) with this as its

polygon.

Lemma 5.3.14. `Ω(∂Λ) = DΛ ·DΩ.
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Proof. From Lemma 5.3.13, the lattice length of the edge of slope vi in Λ is DΛ · Di. The

Ω-length of the edge is thus (DΩ ·Di) · `Ω(vi). Summing all these up gives the Ω-perimeter

as

`Ω(∂Λ) =
∑

(DΛ ·Di) · `Ω(vi) = DΛ ·
∑

`Ω(vi)Di = DΛ ·DΩ

as required.

Corollary 5.3.15. `Ω(∂Λ) = `Λ(∂Ω).

Proof of Theorem 5.3.1

We are now in a position to convert the definition of ECH capacities and cap functions into

purely algebro-geometric language.

Theorem 5.3.16. Suppose Ω is a rational convex domain. Then

ck(XΩ) = min
D
{D ·DΩ : h0(ỸSl(Ω), D) ≥ k + 1}

capXΩ
(r) = max

D
{h0(ỸSl(Ω), D) : D ·DΩ ≤ r}

where both extrema range over all nef Q- or R-divisors D on ỸSl(Ω).

Proof. Since intersection with DΩ describes the Ω-length and the number of lattice points

enclosed equals h0, the only thing to check is that the extrema ranging over nef Z-, Q-

or R-divisors is equivalent to ranging over convex lattice paths. We will focus on the real

case from which it will eventually be apparent why the minima are achieved by integral nef

divisors. We use nef divisors to ensure that each ‘edge length’ D ·Di is nonnegative. Note

that the two equalities in the theorem are equivalent and so we will focus only on the first.

For convenience denote

calg
k (ỸSl(Ω), DΩ) = inf{D ·DΩ : h0(ỸSl(Ω), D) ≥ k + 1}

Note that a minimum really is attained. Indeed, pick a nef R-divisor D? with at least k + 1

global sections. Then calg
k (ỸSl(Ω)) ≤ D? ·DΩ and the infimum is the same if we take it over

all nef R-divisors with h0(ỸSl(Ω), D) ≥ k + 1 and D ·DΩ ≤ D? ·DΩ. Observe that this extra

condition places an upper bound on each of the (nonnegative) lattice lengths of edges of the

polygon P (D) for such D. This infimum thus takes place over a compact region inside the

(closed) nef cone and is therefore realised by some divisor.

Suppose that D = DΛ realises this minimum. Its (rotated) polygon Λ must have a lattice

point on every edge as otherwise one could perturb the coefficient in the facet presentation

for an edge with no lattice point to obtain a divisor with the same number of global sections
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but smaller intersection with DΩ. Notice that this implies that D is a Q-divisor. Let Λ′ be

the convex hull of all lattice points in Λ. Note that k′+ 1 = LΛ = LΛ′ for some k′ ≥ k. Then

SΩΛ′ = Λ by construction (as we assumed that Λ has a lattice point on each edge) and so

by Lemma 5.3.3 and Lemma 5.3.14 we have `Ω(∂Λ′) = `Ω(∂SΩΛ) = `Ω(∂Λ) = D ·DΩ. Now

we will show that, potentially after translation, ∂Λ′ is a convex lattice path in the sense of

Definition 5.2.3.

Λ has two distinguished (possible length 0) edges of slopes −e1 and e2 by construction of

Sl(Ω) that meet at a point p0. For these edges to each contain a lattice point, they must each

be subsets of affine lines of the form (y = β) and (x = α) respectively for some α, β ∈ Z.

Hence p0 = (α, β) ∈ Z2 is a lattice point. We can thus use this lattice point to translate Λ

back to the origin without changing the pairing with DΩ (the Ω-length) or the dimension of

global sections. By convexity Λ′ thus also contains two adjacent edges with slopes −e1 and

e2. Since Λ has slopes parallel to the slopes of Ω and is convex, the boundary of Λ forms

a convex rational path in the sense of Definition 5.2.3. It follows that the boundary of Λ′

forms a convex lattice path and hence features in the minimum of Theorem 5.2.4 giving the

combinatorial formula for ck′(XΩ). Consequently,

ck(XΩ) ≤ ck′(XΩ) ≤ `Ω(∂Λ′) = `Ω(∂Λ) = D ·DΩ = calg
k (ỸSl(Ω), DΩ)

For the converse inequality, suppose that Λ is a lattice polygon whose boundary ∂Λ is a

convex lattice path realising the minimum of Theorem 5.2.4. That is, ck(XΩ) = `Ω(∂Λ) and

LΛ = k+1. Then Ξ = SΩΛ is a rational polygon with edges parallel to the edges of Ω, which

hence defines a nef Q-divisor DΞ on ỸSl(Ω). Now, using Lemma 5.3.3 and Lemma 5.3.14,

ck(XΩ) = `Ω(∂Λ) = `Ω(∂SΩΛ) = DΞ ·DΩ

Notice that SΩΛ contains at least as many lattice points as Λ and so h0(ỸSl(Ω), DΞ) ≥ k + 1

giving

calg
k (ỸSl(Ω),DΩ

) ≤ DΞ ·DΩ = ck(XΩ)

which supplies the converse inequality.

Notice that calg
k (ỸSl(Ω), DΩ) uses h0 ≥ k + 1 instead of equality (as in the original opti-

misation problem for ECH capacities in Theorem 5.2.4) because there might not be divisors

on ỸSl(Ω) with k+ 1 sections; for example, there are no divisors D on P2 with h0(P2, D) = 2.

Combinatorially, this comes from the fact that the lattice paths in Definition 5.2.3 are al-

lowed any rational slopes whereas the paths coming from divisors in Theorem 5.3.16 must

have edges parallel to edges of Ω.
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Reformulation in terms of the inner normal fan

There is another fan one can associate to a polytope P now living in MR called the inner

normal fan Σ(P ), which consists of cones in NR. For a polygon P ⊆ R2, this is the fan with

rays generated by inward-pointing normals to each of the faces and with all two-dimensional

cones between them included. Observe that, after picking a basis as we implicitly did above,

the fan Σ̃Sl(Ω) for the blowup ỸSl(Ω) of YSl(Ω) is the 90◦ anticlockwise rotation of Σ(Ω): taking

slopes is dual to taking normals.

Completely analogously, we obtain a toric variety YΣ(Q) that is isomorphic to the previous

toric variety ỸSl(Ω) with an ample divisor DΩ whose coefficient along the divisor Dρ is `Ω(v),

where ρ is the ray generated by a normal to the edge of slope v. (YΣ(Ω), DΩ) has the same

intersection theoretic and cohomological properties as the pair (ỸSl(Ω), DΩ) and so the results

of the previous subsections exactly cross over to this setting.

Theorem 5.3.17. Suppose XΩ is a rational convex toric domain. Then

ck(XΩ) = min{D ·DΩ : h0(YΣ(Ω), D) ≥ k + 1}
capXΩ

(r) = max{h0(YΣ(Ω), D) : D ·DΩ ≤ r}

where both extrema range over all nef Q- or R-divisors on YΣ(Ω).

We remark that the advantage of the inner normal fan in this context is its familiarity

as a standard object of toric algebraic geometry, however the approach via slope polytopes

is quite pleasing and may have better duality properties. For the sake of familiarity and

consistency, we will continue to use Σ(Ω) instead of Σ̃Sl(Ω) for the remainder of the chapter.

Free convex toric domains

One can also consider the situation when Ω ⊆ R2 is a convex body that doesn’t intersect

the coordinate axes, which is where fibres of the moment map decrease in dimension and

pick up nontrivial isotropy. We call such XΩ free convex toric domains. This was one of the

situations originally considered in [44]. There is an analogous theorem there to Theorem

5.2.4. To state it, we define for such Ω a new pseudonorm `v?Ω depending on a vector v? ∈ Ω◦

as follows. Consider Ω′ = Ω− v?. This is now a polygon with the origin in its interior. We

consider the norm || · ||Ω′ whose unit ball is Ω′ and its dual norm on (R2)∗

||φ||∗Ω′ := max{φ(v) : v ∈ Ω′}

We identify (R2)∗ with R2 via the dot product, giving

||u||∗Ω′ := max{u · v : v ∈ Ω′}
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Define the length in this pseudonorm of a polygonal path ψ consisting of line segments

v1, . . . , vr to be

`v?Ω (ψ) :=
r∑
i=1

||vi||∗Ω′

Lemma 5.3.18 ( [45], Exercise 4.13). The length of closed polygonal paths measured in `v?Ω
is independent of v?.

We denote the restriction of `v?Ω to closed polygonal paths by `′Ω to indicate its indepen-

dence of v?.

Theorem 5.3.19 ( [44], Theorem 1.11). Suppose Ω ⊆ R2 is a polygon that does not intersect

either coordinate axis so that XΩ is a free convex toric domain. Then

ck(XΩ) = min{`′Ω(∂Λ) : LΛ = k + 1}

where the minimum ranges over lattice polygons Λ.

As discussed in [45] Exercise 4.16 it is equivalent to take the minimum over all poly-

gons with edges parallel to edges of Ω and with no constraints on their vertices with the

modification that LΛ ≥ k + 1.

Theorem 5.3.20. Suppose XΩ is a free rational convex toric domain. Then,

ck(XΩ) = min{D ·DΩ : h0(YΣ(Ω), D) ≥ k + 1}
capXΩ

(r) = max{h0(YΣ(Ω), D) : D ·DΩ ≤ r}

where DΩ is the balance divisor from Definition 5.3.6 and where both extrema range over all

nef Q- or R-divisors on YΣ(Ω).

Proof. As before, the two equalities are equivalent and so we will only show the first. Let

v? ∈ Ω◦ and set Ω′ = Ω − v?. Suppose that u1, u2 are outward normals to adjacent faces

of Ω. The dual norm || · ||∗Ω′ is linear on Cone(u1, u2), since the maximum of v · − will be

achieved (possibly non-uniquely) at the vertex shared between the two adjacent edges for

any v ∈ Cone(u1, u2). It is hence a support function on the outer normal fan Σ−(Ω), which

is just the negative of the inner normal fan. Notice that for v ∈ Cone(u1, u2), the dual norm

||v||∗Ω′ = v ·p where p is the vertex described above, but this is equal to −v⊥×p by definition.

Note that p is exactly the point of ∂Ω′ at which −v⊥ is tangent to ∂Ω′ so that p = pv as in

the definition of Ω′-length in §5.2. Hence,

||v||∗Ω′ = `Ω′(−v⊥)
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It follows that

ck(XΩ) = min{`′Ω(∂Λ) : LΛ = k + 1}
= min{`Ω′(∂Ξ) : LΞ = k + 1}

via the correspondence Λ 7→ −Λ⊥, where both minima range over all lattice polygons Λ or Ξ

respectively. By a similar (actually simpler) argument to the proof of Theorem 5.3.16, this

second minimum can be seen to be equal to

min{D ·DΩ′ : h0(YΣ(Ω), D) ≥ k + 1}

Now Ω′ is just a translate of Ω and so D ·DΩ = D ·DΩ′ for all divisors D, which gives the

result.

We finally observe that all of the machinery developed above works equally well when Ω

is an irrational polygon with rational slopes, since rationality is only required on the level

of edges to define a fan that will produce a toric variety. The only difference is that DΩ will

no longer be a Q-divisor.

5.4 Eventual expressions for ECH capacities

The aim of this section is to define ‘tightly constrained’ convex domain and to prove the

following theorem giving an explicit eventual description of the cap function for such convex

toric domains.

Studying cap functions

Theorem 5.4.1. Suppose Ω is a tightly constrained convex lattice domain with Ω-perimeter

λ. Then, there exists x0 ∈ Z≥0 such that for all x ≥ x0 and for each r = 0, . . . , λ− 1,

capXΩ
(r + λx) = ehrΩ(x) + rx+ γr

for some constant γr ∈ Z depending only on r. If Ω has a weight equal to 1 then Ω is tightly

constrained and moreover one can choose x0 = 0.

In order to do so, we will study the combinatorics of Ω in terms of its weight sequence,

and then use this data to compute the cap function recursively. We will discuss the tightly

constrained assumption on Ω and how every convex toric lattice domain conjecturally reduces

to this case.
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We also observe that the periodicity in the expression for capXΩ
is actually concentrated

in the constant coefficient. Indeed, if y = r + λx then

capXΩ
(y) = ehrΩ(

y − r
λ

) + r
y − r
λ

+ γr

= vol(Ω)

(
y − r
λ

)2

+
1

2
L∂Ω

y − r
λ

+ 1 + r
y − r
λ

+ γr

=
1

2λ
y2 +

1

2λ
L∂Ωy −

rL∂Ω

2λ
− r2

2λ
+ γr

=
1

2λ
y2 +

1

2λ
L∂Ωy +O(1)

Recall that λ = 2 vol(Ω), allowing one to express this function in more Ehrhart-theoretic

terms.

Examples

We start by presenting some suggestive examples of calculations of capacities and cap func-

tions for some basic convex toric domains.

Example 5.4.2. capE(a,b)(r) = ehrQ(r), the Ehrhart quasipolynomial of the rational triangle

Q = Conv((0, 0), (1/a, 0), (0, 1/b))

This is also equal to the Hilbert function of O(1) for the weighted projective plane P(1, a, b).

Example 5.4.3. The cap function for the polydisk P (a, b) has

capP (a,b)(2abr) = (ar + 1)(br + 1) = hilb(P1×P1,O(a,b))(r)

Example 5.4.4. Let Ω(a) be the convex hull of the points (0, 0), (0, 2a), (a, a), (a, 0). One

has

capXΩ(a)
(3ar) = h0(X, rD)

where X is the first Hirzebruch surface, or P2 blown up in one point, and where D = 3C+2F

with C the (−1)-curve and F a fibre in the P1-bundle structure on X.

Combinatorics of weight sequences

Recall that the weight sequence associated to a convex domain Ω consists of a number and

two lists that we will write as (c; ai; bi). We will assume that the lists are finite sets of
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integers, which implies that Ω is rational. From the asymptotics of capacities of convex

domains,

Vol(Ω2) = Vol(qiB(ai)) =
1

2

∑
a2
i

and so

`Ω(∂Ω) = 2 Vol(Ω) = Vol(B(c))− Vol(qiB(ai))− Vol(qiB(bi)) = c2 −
∑

a2
i −

∑
b2
i

Consider now the number of lattice points enclosed by a concave domain, excluding those

on the upper boundary. Each ball B(bi) contributes 1
2
bi(bi + 1) lattice points; note that the

transformation realising the inductive description of the weight sequence is a special affine

linear map and so preserves lattice point counts. Hence the number of lower lattice points

(i.e. excluding the upper boundary) in Ω3 is∑ 1

2
bi(bi + 1)

and thus the number of lattice points enclosed by Ω is

1

2
(c+ 1)(c+ 2)−

∑ 1

2
αi(αi + 1)−

∑ 1

2
bj(bj + 1)

For future reference will note that this is equal to

1 +
1

2
c(c+ 3)−

∑ 1

2
αi(αi + 1)−

∑ 1

2
bj(bj + 1)

Reducing the problem

For a convex domain Ω with weight sequence w(Ω) = (c; ai; bj), Lemma 5.2.6 gives that the

ECH capacities of XΩ are given by

ck(XΩ) = min{ck+k2+k3(B(c))− ck2(qiB(ai))− ck3(qjB(bj)) : k2, k3 ∈ Z≥0}

By the disjoint union property of capacities, this is equal to

ck(XΩ) = min{ck+
∑
i ki+

∑
j mj

(B(c))−
∑
i

cki(B(ai))−
∑
j

cmj(B(bj)) : ki,mj ∈ Z≥0}

It follows that the cap function of XΩ is given by

capXΩ
(r) =

1 + max{k : ∃ki,mj with ck+
∑
i ki+

∑
j mj

(B(c))−
∑
i

cki(B(ai))−
∑
j

cmj(B(bj)) ≤ r}
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The capacities of a ball B(q) take the form

ck(B(q)) = dq when
1

2
d(d+ 1) ≤ k ≤ 1

2
δ(δ + 3)

Hence, to maximise k, one may assume that ki = 1
2
αi(αi + 1), mj = 1

2
βj(βj + 1), and

k+
∑

i ki +
∑

jmj = 1
2
δ(δ+ 3) for some αi, βj, δ. Therefore capXΩ

(r) is 1 plus the maximum

of

C(δ, αi, βj) :=
1

2
δ(δ + 3)−

∑
i

1

2
αi(αi + 1)−

∑
j

1

2
βj(βj + 1)

subject to

δc−
∑
i

αiai −
∑
j

βibi ≤ r

where αi, βj, δ range over nonnegative integers.

Final calculations

Lemma 5.4.5. Fix a weight sequence (c; a1, . . . , as; b1, . . . , bt) and let λ = c2−
∑
a2
i −
∑
b2
i .

Suppose (δ, αi, βi) maximises C(δ, αi, βj) subject to

δc−
∑
i

αiai −
∑
j

βjbj = r

Then the sequence (δ + c, αi + ai, βi + bi) maximises C(δ′, α′i, β
′
i) subject to

δ′c−
∑
i

α′ibi −
∑
j

β′jbj = r + λ

Proof. Suppose there exists (δ′, α′i, β
′
j) with C(δ′, α′i, β

′
j) > C(δ + c, α + ai, βj + bj). We will

show that C(δ′ − c, α′i − ai, β′j − bj) > C(δ, αi, βj), contradicting maximality since

(δ′ − c)c−
∑

(α′i − ai)ai −
∑

(β′j − bj)bj = r

For convenience, relabel the bj as as+j and βj as αs+j and write C(δ, αi) = C(δ, αi, βj).

Compute 2C(δ′ − c, α′i − ai) to be

(δ′ − c)(δ′ − c+ 3)−
∑

(α′i − ai)(α′i − ai + 1)

= δ′(δ′ + 3)−
∑

α′i(α
′
i + 1)− cδ′ +

∑
α′iai − c(δ′ + 3) +

∑
(α′i + 1)ai + c2 −

∑
a2
i

= δ′(δ′ + 3)−
∑

α′i(α
′
i + 1)− (r + λ)− (r + λ)− 3c+

∑
ai + λ

> (δ + c)(δ + c+ 3)−
∑

(αi + ai)(αi + ai + 1)− 2r − λ− 3c+
∑

ai
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This is equal to

= δ(δ + 3)−
∑

αi(αi + 1) + cδ −
∑

αiai + c(δ + 3)

−
∑

(αi + 1)ai + c2 −
∑

a2
i − 2r − λ− 3c+

∑
ai

= C(δ, αi, βj) + r + r + 3c−
∑

ai + λ− 2r − λ− 3c+
∑

ai

= C(δ, αi, βj)

as desired.

Definition 5.4.6. Say that a convex lattice domain Ω (or a convex lattice toric domain XΩ)

with weight sequence (c; ai; bi) is tightly constrained with lower bound r0 if for all r ≥ r0 the

maximum of C(δ, αi, βj) subject to

δc−
∑
i

αiai −
∑
j

βibi ≤ r

is attained by some (δ, αi, βj) with

δc−
∑
i

αiai −
∑
j

βibi = r

Say that Ω is tightly constrained if it is tightly constrained with some lower bound r0.

Lemma 5.4.7. Ω being tightly constrained with lower bound r0 is equivalent to the statement

that for every positive integer r ≥ r0 there is some k ∈ Z≥0 such that ck(XΩ) = r.

Proof. By definition the cap function of XΩ is 1 plus the largest value of k such that ck(XΩ) ≤
r. If there is some k with ck(XΩ) = r then this largest value of k will be achieved by some

k with ck(XΩ) = r by monotonicity. The largest value of k corresponds to a value of

C(δ, αi, βj) from the reasoning above, for which the corresponding capacity takes the value

δc−
∑
αiai −

∑
βjbj = r.

Equivalently, capXΩ
(r + 1) > capXΩ

(r) for all r ≥ r0, so that capXΩ
is eventually strictly

increasing.

Example 5.4.8. Suppose XΩ = E(a, b) is an ellipsoid with a prime, a < b, and gcd(a, b) = 1.

Then XΩ is tightly constrained with lower bound (a− 1)b to cover all residues mod a.

Lemma 5.4.9. Suppose Ω has at least one weight equal to 1. Then Ω is tightly constrained

with lower bound r0 = 0.
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Proof. Suppose (c; ai; bj) is a weight sequence with a1 = 1. Let (δ, αi, βj) maximise C(δ, αi, βj)

subject to δc −
∑

i αiai −
∑

j βjbj ≤ r. Suppose δc −
∑

i αiai −
∑

j βjbj < r. Modify

(δ, αi, βj) to (δ, α′i, βj) where α′1 = α1 − 1 and α′i = αi for i ≥ 2. This sequence has

C(δ, α′i, βj) = 1
2
δ(δ + 3) − 1

2
(α1 − 1)α1 −

∑
1
2
αi(αi + 1) −

∑
1
2
βj(βj + 1) > C(δ, αi, βj) and

δc− (α1 − 1)a1 −
∑
αiai −

∑
βjbj = δc−

∑
i αiai −

∑
j βjbj + b1 ≤ r. This contradicts the

fact that (δ, αi, βj) was maximal.

Conjecture 5.4.10. Suppose that gcd{c, a1, . . . , as, b1, . . . , bt} = 1. Then Ω is tightly con-

strained.

Notice that the conjecture will certainly fail for weight sequences without the coprimality

assumption. For example, the ball B(2) has capacities that are all even numbers and so there

can be no odd values of the constraint. We will henceforth make the assumption that Ω is

tightly constrained.

Corollary 5.4.11. For a tightly constrained convex lattice domain Ω with lower bound r0 =

0, ∂Ω is an optimal path among lattice paths of length at most `Ω(∂Ω).

Proof. Clearly capXΩ
(0) = 1 + 0 is attained by (δ, αi, βj) = (0, 0, . . . , 0). Hence,

capXΩ
(λ) = 1 + C(c, ai, bj) =

1

2
(c+ 1)(c+ 2)−

∑
ai(ai + 1)−

∑
bj(bj + 1) = LΩ

as required.

Lemma 5.4.12. Let Ω be a tightly constrained convex lattice domain. Denote the Ω-

perimeter of Ω by λ. Then there exists x0 ∈ Z≥0 such that for all x ≥ x0 and for each

r = 0, . . . , λ− 1,

capXΩ
(λx+ r) = Vol(Ω)x2 + (

1

2
L∂Ω + r)x+ γr

for some γr ∈ Z, where L∂Ω is the number of lattice points on the boundary of Ω.

Proof. From Lemma 5.4.9 and the assumption that Ω is tightly constrained one has that the

maximum value of C(δ, αi, βj) subject to δc−
∑

i αiai −
∑

j βjbj ≤ r + λ is

C(δ′, α′i, β
′
j) + r +

1

2
c(c+ 3)−

∑ 1

2
bi(bi + 1) = C(δ′, α′i, β

′
j) + r + LΩ − 1

when (δ′, α′i, β
′
j) is maximal subject to δ′c−

∑
i α
′
iai−

∑
j β
′
jbj ≤ r, at least for large enough

r. It follows that, for r + λx large enough,

capXΩ
(r + λ(x+ 1)) = capXΩ

(r + λx) + r + λx+ LΩ − 1 (5.1)
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This implies that capXΩ
(r+λx) is eventually a quadratic polynomial. Solving the difference

equation (5.1) gives the leading term as λ/2 and gives the linear coefficient as LΩ−Vol(Ω)−
1 + r. By Pick’s formula the linear term is equal to 1

2
L∂Ω + r, and we have seen that

λ/2 = `Ω(∂Λ)/2 = Vol(Ω).

This is the desired quasipolynomial representation of capXΩ
. However, we would also like

this to have an algebro-geometric interpretation. The Ehrhart polynomial of Ω, as a lattice

polygon, is

ehrΩ(x) = Vol(Ω)x2 +
1

2
L∂Ωx+ 1

Corollary 5.4.13. Let Ω be a tightly constrained convex lattice domain of Ω-perimeter λ.

Then, for any r ∈ {0, 1, . . . , λ− 1} and sufficiently large x ∈ Z≥0

capXΩ
(r + λx) = ehrΩ(x) + rx+ γr

= hilb(YΣ(Ω),DΩ)(x) + rx+ γr

for some γr ∈ Z. In particular, for all sufficiently large x ∈ Z≥0

capXΩ
(λx) = ehrΩ(x) + γ0 = hilb(YΣ(Ω),DΩ)(x) + γ0

We believe that always γr = capXΩ
(r) − 1, which is what one would obtain from the

difference equation (∗) holding for all x ∈ Z, not just all sufficiently large x. This would in

particular imply that γ0 = 0. Suppose XΩ is not tightly constrained. Assuming Conjecture

5.4.10, one can scale Ω to obtain a convex lattice domain Ω′ that is tightly constrained. Let

qΩ′ = Ω. Then, using the scaling axiom from §5.2, for any r = 0, . . . , q − 1 one has

capXΩ
(r + qx) = capXΩ

(qx) = capXΩ′
(x)

Thus, knowing Theorem 5.4.1 for tightly constrained convex toric lattice domains is sufficient

to completely describe the long term behaviour of the cap function for all convex toric lattice

domains.

Example 5.4.14. For XΩ = B(2), one has

capXΩ
(r) =

{
capB(1)(

r
2
) r ≡ 0 mod 2

capB(1)(
r−1

2
) r ≡ 1 mod 2

=

{
1
8
(r + 2)(r + 4) r ≡ 0 mod 2

1
8
(r + 1)(r + 3) r ≡ 1 mod 2

Conjectures

We conjecture that the word ‘eventually’ may be dropped in all the above results, and that

in fact the cap function of a tightly constrained convex toric lattice domain is given entirely
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by the quasipolynomial in Theorem 5.4.1. Of course, this is already proven if one of the

weights of Ω is equal to 1.

We furthermore believe that the following strengthening of the prior results holds.

Conjecture 5.4.15. Suppose that XΩ is a tightly constrained toric domain. Then:

• there exist convex lattice domains Ω0, . . . ,Ωλ−1 such that, for any r = 0, . . . , λ− 1 and

any sufficiently large x ∈ Z≥0,

capXΩ
(r + λx) = |(Ωr + xΩ) ∩ Z2|

• there exist divisors D0, . . . , Dλ−1 on YΣ(Ω) such that, for any r = 0, . . . , λ− 1 and any

sufficiently large x ∈ Z≥0,

capXΩ
(r + λx) = h0(YΣ(Ω), Dr + xDΩ)

Moreover, we conjecture that Ω0 = {0} so that γ0 = 0, and that all of these claims actually

hold for all x ∈ Z≥0, not just for all sufficiently large x.

These conjectures state that capXΩ
is (eventually) given by a ‘mixed Ehrhart quasipolyno-

mial’ or a ‘mixed Hilbert quasipolynomial’ as studied in [41]. Cristofaro-Gardiner–Kleinman

in [32] have previously approached symplectic embeddings problems for ellipsoids via Ehrhart

theory, and one can view some aspects of this chapter as pursuing a related philosophy for

convex toric lattice domains.

5.5 Algebraic capacities

In analogy with the quantities appearing on the algebraic side to compute ECH capacities

for convex toric domains, we define purely algebraic invariants for polarised surfaces. Denote

by WDiv(Y ) the group of Weil Z-divisors on a surface Y . We denote the set of nef divisors,

as opposed to nef divisor classes, on Y with coefficients in K ∈ {Z,Q,R} by nef(Y )K ⊆
WDiv(Y ) ⊗Z K. We also denote the cone of pseudo-effective divisors on Y (or the Mori

cone) by NE(Y ). By a ‘polarised surface’ (Y,A) we mean a projective surface Y with an

ample R-divisor A.

Construction

We define the ‘round-down’ bDc of a Weil R-divisor D =
∑
aiDi on Y by

bDc :=
∑
baicDi
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where the Di are prime Weil divisors on Y . Define also the index of a Weil R-divisor D on

Y to be

I(D) := bDc · (bDc −KY )

When Y is smooth Noether’s formula gives

χ(D) = χ(OY ) +
1

2
I(D)

where χ(D) := χ(bDc) = h0(bDc)− h1(bDc) + h2(bDc).

Definition 5.5.1. Let (Y,A) be a polarised Q-factorial surface. Define the kth algebraic

capacity of (Y,A) to be

calg
k (Y,A) := inf

D∈nef(Y )Q
{D · A : χ(D) ≥ k + χ(OY )}

and the corresponding counting function

cap(Y,A)(r) := #{k : calg
k (Y,A) ≤ r}

Note that we require Y to be Q-factorial so that intersection numbers make sense. When

Y is smooth we have

calg
k (Y,A) = inf

D∈nef(Y )Q
{D · A : I(D) ≥ 2k} (5.2)

We note that this construction agrees with the algebraic formulation of ECH involving

toric surfaces, which are all automatically Q-factorial. Indeed, by Demazure vanishing [23,

Theorem 9.3.5] the higher cohomology of toric nef Q-divisors vanishes, and so χ(D) = h0(D).

As toric varieties are rational χ(OY ) = 1 and hence

calg
k (Y,A) := inf

D∈nef(Y )Q
{D · A : h0(D) ≥ k + 1}

as used in Theorem 5.3.16. Of course, taking the infimum over nef divisors with rational

coefficients gives the same result as over nef divisors with real coefficients.

The reformulation (5.2) for smooth surfaces in terms of the index is attractive for compar-

isons with symplectic geometry. For a more general expression of this type, suppose Y has

rational singularities. There is a Noether-like formula in this situation: suppose ϕ : Y ′ → Y

is a resolution, then for any Cartier divisor D on Y

χ(D) = χ(OY ) +
1

2
ϕ∗D · (ϕ∗D −KY ′)
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If further ϕ is a crepant resolution then we have a true Noether formula on Y

χ(D) = χ(OY ) +
1

2
ϕ∗D · (ϕ∗D − ϕ∗KY )

= χ(OY ) +D · (D −KY )

As discussed in Chapter 3, crepant resolutions are available for surfaces only when Y has

Du Val singularities. In this case, one can formulate algebraic capacities using (5.2) using

Noether’s formula just as for the smooth case. Surfaces with only Du Val singularities are

called ‘canonical surfaces’, as the Du Val singularities are exactly the canonical singularities

in dimension two [68, §1].

Algebraic Weyl law

Given the analogy between algebraic capacities and ECH capacities in the toric case, one

can hope for comparable asymptotic structure to exist in general.

Conjecture 5.5.2 (Algebraic Weyl Law). For (Y,A) a polarised Q-factorial surface,

lim
k→∞

calg
k (Y,A)2

k
= 2A2

One could hope for this to be true in the generality stated, or restrict to the setting of

canonical or smooth surfaces. We know this result is true for any toric surface Y with a

smooth torus-fixed point equipped with an ample R-divisor A, since in this case P (A) is

affine-equivalent to a convex domain with rational slopes.

We include some speculation as to how a proof in any of these settings might proceed.

Heuristics suggest that eventually divisors of the form D = dA + δ for d � 0 and for some

‘small’ divisor δ will be at least approximately optimal for calg
k (Y,A) with k � 0 and so

minimising

D · A = dA2 + δ · A subject to D · (D −KY ) = d2A2 + small error terms

gives

calg
k (Y,D) ∼ inf

d
{dA2 : d2A2 ≥ 2k} ∼

√
2A2k

and so

lim
k→∞

calg
k (Y,A)2

k
= lim

k→∞

2A2k

k
= 2A2

Showing that divisors of the form dA + δ are approximately optimal could be done by

proving a recurrence for optimisers for calg
k (Y,A). Lastly, we note that Conjecture 5.5.2 is

straightforward to verify for canonical surfaces of Picard rank 1 where the existence of such

a normal form for optimisers is clear. As a consequence of Theorem 5.3.16 this also reproves

the symplectic Weyl law for balls and for dilates of the ellipsoids E(1, 2) and E(2, 3).
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5.6 Sub-leading asymptotics for ECH capacities

We return to the world of symplectic embeddings. We know that the ECH capacities asymp-

totically recover the volume constraint for the existence of symplectic embeddings by

lim
k→∞

ck(X,ω)2

k
= 4 vol(X)

and so we can study the ‘sub-leading asymptotics’ via the error terms

ek(X,ω) := ck(X,ω)− 2
√

vol(X,ω)k

There has been much recent work to understand the asymptotics of ek(X), which should

provide potentially subtler numerical obstructions to the existence of symplectic embeddings;

see [46, Cor. 1.13] and Cor. 5.6.3 below. We follow the convention of referring to a compact

domain in R4 whose boundary is smooth and transverse to the radial vector field as a ‘nice

star-shaped domain’. Sun in [72] showed that when (X,ω) is a nice star-shaped domain

ek(X,ω) = O(k125/252)

and Cristofaro-Gardiner–Savale [33] improved this to

ek(X,ω) = O(k2/5)

The primary methods used in extracting these asymptotics come from Seiberg–Witten the-

ory. For the case of not-necessarily star-shaped domains in R4 Hutchings [46] showed by

more direct methods that

ek(X,ω) = O(k1/4)

The author’s understanding is that the expectation for all (X,ω) is

ek(X,ω) = O(1)

which these estimates are approaching. This is the case for all examples that have been

computed.

Rational convex toric domains

We use Theorem 5.4.1 to prove a result computing the lim inf and lim sup of the error ek(X)

for many toric domains, in particular showing that ek(X,ω) is O(1) in these cases.

Proposition 5.6.1. Suppose X = XΩ is a tightly constrained lattice convex toric domain.

Then

lim inf
k→∞

ek(XΩ) = 1− 1

2
L∂Ω and lim sup

k→∞
ek(XΩ) = −1

2
L∂Ω
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Proof. Write V = vol(X) for brevity. Suppose r � 0 and let k0 be the largest k such that

ck(X) = r−1 and k1 be the largest k such that ck(X) = r. Note that k0(r) = capX(r−1)−1

and k1(r) = capX(r)− 1. From Theorem 5.4.1 we have

1

4V
(r − 1)2 +

1

4V
L∂Ω(r − 1) + γ′′i = k0(r) and

1

4V
r2 +

1

4V
L∂Ωr + γ′′i = k1(r)

where i is the residue of rmodλ = 2V and γ′′i = γ′i − 1. Using the quadratic formula

r = 2V

− 1

4V
L∂Ω +

√(
1

4V

)2

− 1

V
γ′′i +

1

V
k1(r)


= −1

2
L∂Ω +

√
1

4
− 4V γ′′i + 4V · k1(r)

and

r − 1 = 2V

− 1

4V
L∂Ω +

√(
1

4V

)2

− 1

V
γ′′i +

1

V
k0(r)


= −1

2
L∂Ω +

√
1

4
− 4V γ′′i + 4V · k0(r)

Note that for k with ck(X) = r

r − 2
√
V · k1(r) ≤ ek(X) ≤ r − 2

√
V · (k0(r) + 1)

as k1(r) is the largest k with ck(X) = r and k0(r) + 1 is the smallest. It follows that

−1

2
L∂Ω +

√
1

4
− 4V γ′′i + 4V · k1(r)−

√
4V · k1(r) ≤ ek(X)

≤ 1− 1

2
L∂Ω +

√
1

4
− 4V γ′′i + 4V · (k0(r) + 1)−

√
4V · (k0(r) + 1)

with both bounds achieved. Since 1
4
− 4V γ′′i is O(1) and

√
x+B −

√
x → 0 as x → ∞ for

bounded B we see that

lim inf
k→∞

ek(X) = −1

2
L∂Ω and lim sup

k→∞
ek(X) = 1− 1

2
L∂Ω

as required.

Observe that this generalises Hutchings’ calculation in [46, Example 1.2] for B(1) with

L∂Ω = 3.
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Corollary 5.6.2. Suppose Ω = qΩ0 is a rational or real scaling of a tightly constrained

lattice convex domain Ω0. Then

lim inf
k→∞

ek(XΩ) = q(1− 1

2
L∂Ω) and lim sup

k→∞
ek(XΩ) = −q

2
L∂Ω

If Conjecture 5.4.10 is true then Cor. 5.6.2 applies to any convex domain Ω with rational

slopes (in particular, all rational convex domains) since one can scale Ω to a lattice convex

domain with coprime weights.

Corollary 5.6.3. Suppose Ω,Ω′ are tightly constrained lattice convex domains of the same

volume, and suppose that X◦Ω symplectically embeds in XΩ′. Then L∂Ω ≥ L∂Ω′.

Of course a similar version of this corollary exists for scaling of tightly constrained convex

toric domains.

Review of the Ruelle invariant

Hutchings [46] considers the ‘Ruelle invariant’ Ru(X,ω) of a nice star-shaped domain in R4.

We will not recall the fairly involved definition of the Ruelle invariant here, and instead refer

the reader to [46, §1.2]. Its relevance to sub-leading asymptotics in ECH comes from the

following conjecture and theorem of Hutchings.

Conjecture 5.6.4 ( [46, Conjecture 1.5]). If (X,ω) is a ‘generic’ nice star-shaped domain

in R4 then

lim
k→∞

ek(X,ω) = −1

2
Ru(X,ω)

Theorem 5.6.5 ( [46, Theorem 1.10]). This conjecture is true whenever (X,ω) is a ‘strictly’

convex or concave toric domain.

A strictly convex toric domain is a convex toric domain arising from Ω ⊆ R2 where the

upper part of the boundary of Ω is the graph of a function f with f ′(0) < 0 and f ′′ < 0.

The definition of ‘strictly concave’ is similar. Hutchings also computes the Ruelle invariant

for many ‘generic’ toric domains.

Proposition 5.6.6 ( [46, Prop. 1.11]). If XΩ is a nice toric domain such that the part of

∂Ω excluding the axes has strictly negative slope everywhere, then

Ru(XΩ) = a+ b

where (a, 0) and (0, b) are the vertices of Ω lying on the x- and y-axes respectively.

We will consider and prove some versions of these statements for rational or lattice convex

toric domains. In some sense these are the opposite of the cases considered by Hutchings

since such XΩ are very non-generic.
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Algebraic Ruelle invariant

Just as in the symplectic setting, assuming Conjecture 5.5.2 holds one can define algebraic

error terms

ealg
k (Y,A) := calg

k (Y,A)−
√

2A2k

Define the algebraic Ruelle invariant Rualg(Y,A) for many polarised toric surfaces (Y,A)

by the following. When P (A) is affine-equivalent to a tightly constrained lattice convex

domain, define

Rualg(Y,A) := −KY · A− 1

When P (A) is affine-equivalent to a scaling qΩ0 of a tightly-constrained lattice convex domain

Ω0, define

Rualg(Y,A) := qRualg(Y,
1

q
A)

Conjecture 5.4.10 implies that this defines the algebraic Ruelle invariant for all (Y,A) where

Y has a smooth torus-fixed point. It follows from the definition that

Rualg(Y, qA) = qRualg(Y,A)

where defined. From standard toric geometry and Prop. 5.6.1 we have the following result.

Note that toric surfaces are automatically Q-factorial.

Proposition 5.6.7. For (Y,A) a polarised toric surface such that P (A) is (affine-equivalent

to) a tightly constrained lattice convex domain

Rualg(Y,A) = L∂P (A) − 1

Furthermore, whenever P (A) is (affine-equivalent to) a real scaling of a tightly constrained

lattice convex domain,

−1

2
Rualg(Y,A)

is the midpoint between lim infk→∞ e
alg
k (Y,A) and lim supk→∞ e

alg
k (Y,A).

Observe that when Y is a weighted projective space of the form P(1, r, s) and A =

O(lcm(r, s)), the algebraic Ruelle invariant is the quantity a+b from [46, Prop. 1.11], agreeing

with the symplectic Ruelle invariant, in this case for the ellipsoid

E

(
r

gcd(r, s)
,

s

gcd(r, s)

)
That said, it is currently unclear how to compare the algebraic and symplectic Ruelle invari-

ants in a meaningful, geometric way.
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Weight sequences for algebraic capacities

We suspect that there is a good analog of weight sequences for ample divisors (at least on

rational surfaces) that mimics the role of weight sequences from ECH for toric domains; a

good starting point for this seems to be the work of Biran [10] on ‘nef vectors’. This would

provide a reflection of Conjecture 5.4.10 in the algebraic setting, and would refine results

such as Prop. 5.6.7 above. The ideal situation that we could conjecture is that P (A) is

affine-equivalent to a tightly-constrained lattice convex domain if and only if, in addition to

Y having a smooth torus-fixed point, A is a primitive Cartier divisor (that is, A is Cartier

and there is no Cartier divisor A0 with qA0 = A for q ∈ Z≥2).

This would enable a more general definition of the algebraic Ruelle invariant: for (Y,A)

a Q-factorial polarised surface with A = qA0 for a primitive Cartier divisor A0 and some

q ∈ R, set

Rualg(Y,A) := q(−KY · A0 − 1)

Using this more general definition we conjecture that the sub-leading asymptotics of the

algebraic error terms are centred around the algebraic Ruelle invariant just as in Prop. 5.6.7.

Conjecture 5.6.8. For any Q-factorial polarised surface (Y,A)

lim inf
k→∞

ealg
k (Y,A) + lim sup

k→∞
ealg
k (Y,A) = −Rualg(Y,A)

5.7 Connection to minimal hypersurfaces

Lastly, we will outline connections of algebraic capacities to minimal (hyper)surface theory.

One of the fundamental tools in sourcing and studying minimal hypersurfaces – for example

in Song’s recent proof [71] of Yau’s conjecture – is min-max theory. Some of the principal

objects in this theory are min-max widths, which have many striking similarities to capacities

in symplectic geometry. To define these widths, we require the notion of a p-sweepout. These

are continuous maps

Φ: X → Z1

where X is a finite-dimensional simplicial complex and Z1 is a certain topological space

of codimension one Z/2-chains on M , satisfying a nondegeneracy condition. Z1 is homo-

topy equivalent to RP∞; denote its Z2-cohomology ring by C[λ]. With this notation, the

nondegeneracy condition for p-sweepouts is that (Φ∗λ)p 6= 0. We refer to [71, §2.3] for an

actual definition. One should imagine a p-sweepout as being a formal generalisation of a

p-dimensional family of hypersurfaces in M . To a p-sweepout Φ one can associate its mass

function MΦ : X → R given at x by taking the g-area of the chain Φ(x).
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The pth min-max width for a compact Riemannian manifold (M, g) is then

ωp(M, g) := inf
Φ

sup{MΦ(x) : x ∈ dom(Φ)}

where the infimum ranges over p-sweepouts Φ with ‘no concentration of mass’ (see [71, §2.3]),

and dom Φ is the domain of Φ. This infimum should essentially be achieved by the g-area of

a minimal hypersurface, hence the application to problems such as Yau’s conjecture.

One can make a similar construction for p-sweepouts of codimension two, in which one

uses a space Z2 of codimesion two Z/2-chains, which is homotopy equivalent to CP∞. This

produces codimension two min-max widths

ω2
p(M,h)

defined similarly to the min-max widths above. The crucial example for our purposes is the

following.

Example 5.7.1. Suppose M is a smooth complex projective algebraic variety equipped with

an ample divisor A. Let D be a nef (or big) divisor with h0(D) = p + 1. This defines a

(real) codimension two p-sweepout for M by pulling back the hyperplane sections of M in the

morphism to Pp by the linear system |D|.

In particular, it follows that the codimension two min-max weights in this situation satisfy

ω2
p(M, g) ≤ calg

p (M,A)

where g is the metric corresponding to A. It is conceivable that this is actually an equality,

and that further ties are present between the theory of minimal hypersurfaces and algebraic

capacities.
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Chapter 6

Retrospective

This thesis sought to explore and establish connections between the algebraic geometry of

orbifolds and other forms of algebra, geometry, and combinatorics. As a concomitant of this,

we aimed to find and ask meaningful algebro-geometric questions inspired by phenomena

elsewhere in mathematics. The main arenas in which we saw this play out were:

• McKay correspondence: uniting orbifold geometry with the representation theory of

finite groups and of quivers, as well as with the combinatorics associated to these

objects and coming from toric geometry

• Ehrhart theory: orbifold Riemann–Roch produces a particular decomposition of the

Ehrhart function that enables us to apply deformation and singularity theory to answer

subtle questions about lattice point counting

• Symplectic embeddings: obstructions to symplectic embeddings prompt various opti-

misation problems for nef divisors on orbifolds, which are of intrinsic interest and also

help to study embeddings for ‘special’ manifolds that are typically harder to treat with

symplectic methods.

We offered evidence new insight supplied by each of these connections, but we firmly

believe that in each arena there is much more to uncover. As one example, in the the worlds

of embedded contact homology and of minimal hypersurfaces there are powerful consequences

to the existence of a Weyl law; what could the presence of a Weyl law for algebraic capacities

imply?
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[11] Bocklandt, R., Craw, A., and Vélez, A. Q. Geometric Reid’s recipe for dimer models.

Mathematische Annalen 361, 3-4 (2015), 689–723.

[12] Boole, G. Exposition of a general theory of linear transformations. Cambridge Math.

J. 3 (1841), 106–119.

[13] Bridgeland, T. Stability conditions on triangulated categories. Annals of Mathematics

(2007), 317–345.

[14] Bridgeland, T., King, A., and Reid, M. The McKay correspondence as an equivalence of

derived categories. Journal of the American Mathematical Society 14, 3 (2001), 535–554.

[15] Brion, M. Introduction to actions of algebraic groups. Les cours du CIRM 1(1) (2010),

1–22.

[16] Buckley, A., Reid, M., and Zhou, S. Ice cream and orbifold Riemann–Roch. Izvestiya:

Mathematics 77, 3 (2013), 461.

[17] Cautis, S., Craw, A., and Logvinenko, T. Derived Reid’s recipe for abelian subgroups

of SL3(C). arXiv preprint arXiv:1205.3110 (2012).

[18] Choi, K., Cristofaro-Gardiner, D., Frenkel, D., Hutchings, M., and Ramos, V. G. B.

Symplectic embeddings into four-dimensional concave toric domains. Journal of Topol-

ogy 7, 4 (2014), 1054–1076.

[19] Cieliebak, K., Hofer, H., Latschev, J., and Schlenk, F. Quantitative symplectic geome-

try. arXiv preprint math/0506191 (2005).

[20] Coates, T., Corti, A., Galkin, S., Golyshev, V., and Kasprzyk, A. Mirror symmetry

and Fano manifolds. arXiv preprint arXiv:1212.1722 (2012).

[21] Cox, D. The homogeneous coordinate ring of a toric variety. Jour. Algebraic Geom. 4

(1995), 17–50.

[22] Cox, D. A. Recent developments in toric geometry. arXiv preprint alg-geom/9606016

(1996).

[23] Cox, D. A., Little, J. B., and Schenck, H. K. Toric varieties. American Mathematical

Soc., 2011.

[24] Craw, A. An explicit construction of the McKay correspondence for A-Hilb C3. Journal

of Algebra 285, 2 (2005), 682–705.



135

[25] Craw, A., Heuberger, L., and Amador, J. T. Combinatorial Reid’s recipe for consistent

dimer models. arXiv preprint arXiv:2001.07506 (2020).

[26] Craw, A., and Ishii, A. Flops of G-Hilb and equivalences of derived categories by

variation of GIT quotient. Duke Mathematical Journal 124, 2 (2004), 259–307.

[27] Craw, A., Ito, Y., and Karmazyn, J. Multigraded linear series and recollement. Math-

ematische Zeitschrift 289, 1-2 (2018), 535–565.

[28] Craw, A., and Reid, M. How to calculate A-Hilb C3. In Séminaires & Congrés (2002),
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