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List of Notations

In this Dissertation, boldfaced capital letters are used to denote matrices (e.g., A),

while boldfaced lowercase letters represent vectors (e.g., X). The following table enu-

merates all the symbols and their corresponding definitions as employed throughout

this Dissertation.

Notation Definition

R Set of Real numbers

Rn
Euclidean space

B(X) Borel σ-field over X ⊆ Rn

⟨⋅, ⋅⟩ Euclidean inner product

⟨A,B⟩ Frobenius inner product between matrices

∇x Gradient operator

∇x⋅ Divergence operator

∆x Laplacian operator

Hess(.) Hessian operator

log(⋅) Element-wise log

exp(⋅) Element-wise exponential

diag(⋅) Diagonal matrix of appropriate dimensions

In n × n identity matrix

1 Column vectors containing all ones

0 Column vectors containing all zeros

P Probability measure

N(µ,Σ) Gaussian PDF with mean µ and covariance matrix Σ

Eρ[⋅] Expectation operator w.r.t. the PDF ρ
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Notation Definition

P (Rn) The space of all probability density functions supported over

the subsets of Rn

P2 (Rn) The collection of probability density functions with finite

second moments

⊗ Kronecker product

∼ Follows the probability distribution

µu
The joint measure depends on the choice of control u

ess sup Essential supremum

∥ ⋅ ∥2 2 norms

∥ ⋅ ∥∞ ∞ norms

JnK The set of natural numbers from 1 to n, {1,2,⋯, n}
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Abstract

Measure-valued Proximal

Recursions for Learning and Control

Iman Nodozi

In this dissertation, we investigate convex optimization problems over the space of

probability measures, highlighting applications in stochastic control, stochastic mod-

eling, and stochastic learning. The theory and algorithms we develop can be applied

to problems such as sampling from unnormalized priors, policy iteration in reinforce-

ment learning, simulating mean-field dynamics, Wasserstein GANs, optimal distribu-

tion steering a.k.a. Schrödinger bridge, and its zero-noise limit: optimal mass trans-

port. We propose proximal recursions for solving these measure-valued optimization

problems, offering novel algorithms that extend the concept of gradient steps to the

space of probability measures.

We propose new algorithms for solving generalized Schrödinger bridge problems

where the drift and/or diffusion coefficient could be nonlinear in state as well as affine

or non-affine in control. We illustrate our results on both model-based and model-free

numerical case studies.

Furthermore, we demonstrate that our measure-valued proximal recursions are

also useful in stochastic modeling, specifically offering insights for a controlled mean

field model. We illustrate these ideas by deriving a controlled mean field dynamics

model for chiplet dynamics in micro assembly applications. This model extends fi-

nite population dynamics to a continuum, formulating a nonlocal, nonlinear PDE that

encapsulates stochastic forces and nonlinear interactions between chiplets and elec-

xxi



trodes. The deduced mean field evolution, was found to be a Wasserstein gradient

flow of a Lyapunov-like energy functional.

We then turn to applying our measure-valued proximal recursions in stochastic

learning. Here we propose two algorithms: one centralized and another distributed.

The proposed centralized algorithm solves mean field learning dynamics in a neural

network in over-parameterized limit. The proposed distributed algorithm generalizes

the well-known Euclidean alternating direction method of multipliers (ADMM) to the

space of probability measures. Numerical examples are given to illustrate the perfor-

mance of the proposed algorithms w.r.t. the state-of-the-art.
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1 | Introduction

1.1 Overview

In this Dissertation, we develop theory and algorithms for solving convex optimization

problems over the space of probability measures. These problems take the form

arg inf
µ∈P2(Rd)

F (µ) (1.1)

where the functional F (⋅) is convex, and P2(Rd) denotes the set of all probability

measures supported on Rd
with finite second moments. The perspective that moti-

vates this research is that problems of the form (1.1) appear in different guises across

stochastic learning and control. We give some examples below.

Sampling. Sampling from a given unnormalized prior is a central problem in statistics

and machine learning. A popular approach is to perform the so-called Langevin Monte

Carlo and its variants [6–10], where the idea is to evolve a point cloud subject to a

dynamics given by suitably designed Itô stochastic differential equation (SDE) such

that the stationary measure associated with this dynamics coincides with the desired

prior. The generator corresponding to the measure-valued dynamics turns out to be

a gradient flow of certain energy-like convex functional F (⋅) w.r.t. suitable distance

on the manifold P2(Rd). In other words, sampling via such Langevin-type algorithms

can be equivalently seen as solving a variational problem of the form (1.1).

Policy iteration in reinforcement learning. The task of computing optimal policy

in reinforcement learning can be transcribed into a problem of the form (1.1) by lifting

the parameterized policy space to the space of probability measures supported on the
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Introduction/Overview 1.1

policy space. This viewpoint has been put forth by several recent works [11–14]. The

key idea is that even though optimizing a parameterized policy over a large but fi-

nite dimensional parameter space is a nonconvex problem, optimizing a measure sup-

ported on the said joint parameter space is a convex problem in the measure-valued

decision variable. Thus, it is of interest to design gradient descent algorithms to di-

rectly solve (1.1) and to use the resulting measure to realize the policy.

Mean field neural network learning. Starting in 2018, several works [15–18] pointed

out that the learning dynamics for two layer neural networks under stochastic gra-

dient descent in the infinite width (i.e., over-parametrization) limit leads to a PDE

that is gradient flow of a functional F (µ) w.r.t. a metric on P2(Rd), i.e., it precisely

solves the infinite dimensional convex problem (1.1). Recent works have extended

this viewpoint beyond regularized empirical risk minimization, e.g., in unsupervised

learning settings such as GAN [19], for second order learning dynamics [20], and also

for different network architecture [21].

Stochastic prediction. The stochastic prediction problem in continuous time asks to

evolve the transient joint probability measures or probability density functions (PDFs)

over some state space subject to given sample path x(t) dynamics specified by an

Itô SDE modeling the underlying physics, and joint stochastic uncertainties over the

space of initial conditions and parameters specified by respective joint PDFs. Mathe-

matically, this amounts to solving a linear or nonlinear Fokker-Planck-Kolmogorov’s

(FPK) forward partial differential equation (PDE) initial value problem (IVP) of the

form

∂ρ

∂t
= Lρ, ρ(x, t = 0) = ρ0(x) (given), (1.2)

2
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where ρ(x, t) denotes the transient joint state PDF of the stochastic state x(t) at time

t, and L denotes the second order FPK operator. That the flow generated by this

deterministic PDE could be equivalently cast in a form (1.1) has been known for some

time [22, 23]. However, designing proximal algorithms to solve (1.1) for the purpose

of stochastic prediction, is a relatively recent endeavor [5, 24].

Stochastic estimation. Unlike the stochastic prediction problem that amounts to

computing the prior subject to a given stochastic dynamics, the stochastic estima-

tion problem amounts to computing the posterior or the conditional joint state PDF

given the history of noisy measurements up until time t. In other words, in a con-

tinuous time stochastic estimation setting, in addition to a prior stochastic process

model, one also has a stochastic measurement model as well as time-varying noisy

sensor data. The conditional joint state PDF solves a stochastic PDE known as the

Kushner-Stratonovich PDE [25–27]. A common computational approach for solving

the stochastic estimation problem is the so-called particle filtering algorithms where

one first estimates the prior joint PDF via Monte Carlo methods, and then maps the

prior to the posterior via Bayesian update. Recent works [28–30] have shown that

each of these two steps may be realized by solving a problem of the form (1.1), i.e., the

transient conditional can be realized by composing the minimizers of two sequential

measure-valued convex optimization problems.

Stochastic control for finite horizon distribution steering. The need to solve

equations of the form (1.2) also appears in designing feedback controllers that steers

the controlled state of a stochastic dynamical system from a prescribed initial joint

PDF to another over a finite horizon while minimizing the total control effort in doing

so. This is an atypical stochastic control problem with growing interests in systems-
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control literature [31,32]. Optimal control problems for probability and/or population

density functions have also been investigated before in robotics literature [33–37].

Solving this class of problems requires solving for the so-called Schrödinger factors,

which solve a system of uncontrolled forward-backward Kolmogorov PDEs. Having

an algorithmic handle to solve (1.1) then enables computing the optimal feedback con-

trols; see e.g., [38, 39].

Motivated by these examples, this Dissertation endeavors to advance the field by

designing different algorithms tailored for efficiently solving problems encapsulated

by (1.1). The remainder of this Dissertation is structured as follows.

1.2 Organization

This Dissertation is divided into three main parts. Each part is designed to not only

stand on its own by presenting comprehensive results in its specific area of focus but

also to contribute to the Dissertation’s overarching themes.

1. Part I focuses on stochastic control, specifically on generalized Schrödinger

bridge problems. It begins with a discussion on optimal mass transport and

the Schrödinger bridge, offering essential background in Section 2.1 for under-

standing optimal mass transport and its generalized version. Section 2.2 then

introduces the Schrödinger bridge and its generalized version, laying the foun-

dation for the subsequent analysis.

In this part, we explore control-affine and control non-affine Schrödinger bridge

problems across chapters, Chapter 3 and Chapter 4.

Chapter 3 focuses on control-affine generalized Schrödinger bridge problems.
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In this chapter, we formulate and solve the problem of finite horizon minimum

control effort steering of the state probability distribution between prescribed

endpoint joints applied to a finite population of networked noisy nonuniform

Kuramoto oscillators. Within this chapter:

• Section 3.1 outlines the problem formulation specifically for control-affine

Schrödinger problems.

• Section 3.2 discusses the existence and uniqueness of solutions to these

problems, providing a theoretical foundation for the proposed methods.

• Section 3.3 dives into the recovery of optimal solutions through Schrödinger

factors. These factors address a nonlinearly boundary-coupled system of

linear partial differential equations (PDEs).

• Section 3.4 presents a case study: optimal steering of distributions for the

Kuramoto oscillators. We extend our analysis to both first and second-

order Kuramoto oscillators.

Chapter 4 considers control non-affine generalized Schrödinger bridge prob-

lems. Across this chapter, we distinguish between two primary methodologies:

model-based control non-affine GSBP and model-free control non-affine GSBP.

On the application side, we show that the minimum effort control of colloidal

self-assembly (where the controlled drift and diffusion coefficients for colloidal

self-assembly are typically non-affine in control) can be naturally formulated in

the order-parameter space as a generalized Schrödinger bridge problem. Within

this chapter:

• Section 4.1 outlines the problem formulation specifically for control non-
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affine Schrödinger problems.

• In Section 4.2 we consider a specific model for the sample path dynamics

of colloidal SA.

• In Section 4.2.2, we detail our proposed stochastic optimal control prob-

lem formulation for the model-based non-affine control system for col-

loidal SA.

• In Section 4.2.3, we derive the first order conditions for optimality in the

form of a system of coupled PDEs.

• We then learn the solutions for this system of equations by training a

physics-informed neural network (PINN) [40, 41], as detailed in Section

4.2.4.

• In Section 4.3, we propose a data-driven learning and control framework,

named ‘neural Schrödinger bridge’, to solve such generalized Schrödinger

bridge problems by innovating on recent advances in neural networks.

• In Section 4.3.1, we define the neural Schrödinger bridge problem, utiliz-

ing neural network representations for the drift and diffusion coefficients.

This approach leverages learning from molecular dynamics (MD) simula-

tion data to inform the controlled neural stochastic differential equations

(SDEs).

• In Section 4.3.2, we gave an overview of the proposed learning and control

framework for solving the neural Schrödinger bridge problem.

• Section 4.3.3 discusses solving the GSBP optimality conditions using PINN

with Sinkhorn losses.
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• A detailed numerical case study is presented in Section 4.3.4, focusing on

a colloidal self-assembly (SA) system within an isothermal-isobaric (NPT)

ensemble.

2. Part II focuses on stochastic modeling, specifically on controlled mean field

models. We ground our development by deducing a controlled mean field model

for chiplet population dynamics in Chapter 5. This models the dynamics of a

continuum of chiplet population in the form of a nonlocal, nonlinear partial

differential equation. Within this chapter:

• We derive a controlled mean field dynamics (Section 5.1) for the macro-

scopic motion of the chiplet population. The derived model is non-affine

in control, and rather non-standard compared to the existing nonlocal dy-

namics models available in the literature.

• We establish that the derived mean field dynamics model can be under-

stood as the Wasserstein gradient flow (Section 5.2) of a free energy func-

tional over the manifold of chiplet population density functions.

3. Part III considers measure-valued proximal recursions for stochastic learning,

and spans Chapters 6 and 7. In Chapters 6, we design a proximal algorithm

for mean field learning. The mean field limit here applies to shallow over-

parameterized neural networks, i.e., networks with single hidden layer having

infinite width. Within this chapter:

• In Section 6.1, we provide the necessary background for the empirical risk

minimization and for the corresponding mean field limit.
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• The proposed proximal algorithm (including its derivation, convergence

guarantee, and implementation) is detailed in Section 6.2.

• We then report numerical case studies in Section 6.3 and Section 6.4 for

binary and multi-class classifications, respectively.

• Numerical results for a synthetic one-dimensional case study of learning

a sinusoid using the proposed proximal algorithm is provided in Section

6.5.

Finally, in Chapter 7, we propose a distributed algorithm to solve measure-

valued optimization problems with convex additive objectives. Within this chap-

ter:

• Our main idea is presented in Section 7.2.

• In Section 7.3, we propose our two-layer ADMM algorithm.

• In Section 7.4, we detail the proposed computational framework.

• In Section 7.5, we present sufficient conditions that guarantee the conver-

gence of the inner layer ADMM.

• In Section 7.6, we provide numerical examples to demonstrate the pro-

posed distributed computation framework.

The summary of our research and the future work directions are provided in

Chapter 8. All proofs are deferred to the Appendix.

8
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1.3 Preliminaries

In this section, we introduce and discuss in depth several foundational concepts and

mathematical tools that are essential for understanding the work presented in this

Dissertation.

1.3.1 Wasserstein space

For µ ∈ P2(X), and for any measurable map T defined on (X ,B(X)), let T#µ denote

the pushforward a.k.a. transport of the probability measure µ via T .

For X ,Y ⊆ Rd
, the squared 2-Wasserstein distance between a pair of probability

measures µx ∈ P2 (X) , µy ∈ P2 (Y), is defined as

W 2 (µx, µy) ∶= inf
π∈Π(µx,µy)

∫
X×Y

c (x,y) dπ(x,y), (1.3)

where Π (µx, µy) is the set of joint probability measures or couplings over the product

space X × Y ⊆ R2d
, having x marginal µx, and y marginal µy. Throughout, we use

the ground cost c (x,y) ∶= ∥x−y∥22 (the squared Euclidean distance) for x ∈ X ,y ∈ Y .

To lighten nomenclature, we henceforth refer to (1.3) as the “squared Wasserstein

distance” dropping the prefix 2.

It is well-known [42, Ch. 7] that the Wasserstein distance W defines a metric on

P2 (X). The minimizer of the linear program (1.3), denoted as πopt
, is referred to as

the optimal transportation plan. If µ ∈ P2,ac(X), then πopt
is supported on the graph of

the optimal transport map T opt
pushing µx to µy. We can rewrite (1.3) as

W 2 (µx, µy) = inf
MeasurableT ∶T#µx=µy

∫
X
c (x, T (x))dµx, (1.4)

and for the ground cost c (x,y) ∶= ∥x − y∥22, the arg inf for (1.4) is precisely T opt
that

is unique a.e. [43]. We refer to (P2 (X) ,W ) as the Wasserstein space since it allows

9
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to define a Riemannian-like geometry. In particular, letting L2(µ) denote the space of

functions from (X ,B(X)) to (Y,B(Y)), which are square integrable w.r.t. µ ∈ P2(X),

we define the tangent space of (P2 (X) ,W ) at µ ∈ P2(X) as

TµP2 (X) ∶= {∇ϕ ∣ ϕ ∈ C∞c (X)},

where the overline denotes closure w.r.t. L2(µ); see e.g., [44, Ch. 13].

A proper lsc functional Φ ∶ P2(X) ↦ (−∞,+∞] is said to be convex along general-

ized geodesics defined by the 2-Wasserstein distance [45, Ch. 9], if for any t ∈ [0,1] and

any µ1, µ2 ∈ P2(X), µ3 ∈ P2,ac(X), we have

Φ ((tT opt
3→1 + (1 − t)T

opt
3→2)# µ3) ≤ tΦ(µ1) + (1 − t)Φ(µ2),

where T opt
3→1 and T opt

3→2 are the optimal transport maps pushing µ3 forward to µ1, and µ3

forward to µ2, respectively. The measure-valued curve t↦ (tT opt
3→1 + (1 − t)T

opt
3→2)# µ3

interpolates between µ2(t = 0) and µ1(t = 1).

Given proper lsc Φ ∶ P2(X) ↦ (−∞,+∞], its strong Fréchet subdifferential µ ↦

∂Φ(µ) allows defining the Wasserstein gradient flow (WGF) of the functional Φ, see

e.g., [45, Ch. 11], [44, Ch. 23], [46]. Additionally, when Φ is convex along generalized

geodesics mentioned before, then the WGF can be characterized as the continuity

equation

∂µ

∂t
+∇ ⋅ (µv(µ)) = 0, v(µ) ∈ ∂Φ(µ) ∩ TµP2(X) ⇔ v(µ) = ∇

δΦ

δµ
, (1.5)

where ∇ is the d dimensional Euclidean gradient operator, and
δ
δµ denotes the func-

tional derivative w.r.t. µ. More generally, for non-smooth Φ, one can define WGF via

Evolution Variational Inequality (EVI) [45, Thm. 11.1.4], [47].

Following (1.5), we can formally define the Wasserstein gradient [42, Ch. 9.1], [45,

10
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Ch. 8] as

∇WΦ(µ) ∶= −∇ ⋅ (µ∇
δΦ

δµ
) , (1.6)

and express the WGF in the form

∂µ

∂t
= −∇WΦ(µ). (1.7)

In this work, we consider smoothΦwith singleton ∂Φ(µ) = {∇WΦ(µ)} [45, Ch. 10.4].

1.3.2 Sinkhorn regularization

For π ∈ Π (µx, µy) and a reference probability measure π0 supported over X × Y , the

notation π ≪ π0 means that π is absolutely continuous w.r.t. π0. Given a strictly

convex regularizer R(⋅), define the regularized squared Wasserstein distance

W 2
ε (µx, µy) ∶= inf

π∈Π(µx,µy)
π≪π0

∫
X×Y

c (x,y) dπ(x,y) + ε∫
X×Y

R(
dπ

dπ0
)dπ0(x,y) (1.8)

where ε > 0 is a regularization parameter, and

dπ

dπ0
denotes the Radon-Nikodym

derivative. Examples of π0 include the product measure µx(x)µy(y) [48] and the

uniform measure [49]. In this work, we consider the entropic regularizer

R(x) ∶= x logx − x for x ≥ 0, with the convention 0 log 0 = 0. (1.9)

It is known [50] that W 2
ε → W 2

in the limit ε ↓ 0. Even though the Sinkhorn loss

(1.8) does not define a metric overM, its computation offers several advantages over

that of (1.3). For instance, the entropic regularization makes the objective in (1.8)

strictly convex, and its discrete implementation was proposed [49] as a fast numerical

approximant of the OMT (1.3). The work in [49] considered the discrete version of (1.8)

with an entropic regularizerR as above, and named it as the Sinkhorn divergence. This
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entropy or Sinkhorn regularized squared Wasserstein distance has found widespread

applications in the computation and analysis of variational problems involving the

Wasserstein distance (see e.g., [50–53]), and will be useful in our development too.

1.3.3 Wasserstein barycenter

Given the measures µ1, . . . , µn ∈ P2 (X) and positive weights w1,⋯,wn, the Wasser-

stein barycenter [54] is given by

arg inf
µ∈P2(X)

n

∑
i=1
wiW

2 (µ,µi) . (1.10)

In (1.10), replacingW 2
byW 2

ε defined in (1.8) withR as in (1.9), results in the Sinkhorn

regularized Wasserstein barycenter

arg inf
µ∈P2(X)

n

∑
i=1
wiW

2
ε (µ,µi) . (1.11)

Notice that both (1.10) and (1.11) are in the form (1.1) with additive objectives wherein

the summand functionals are convex.

1.3.4 Wasserstein gradient of a functional

The Wasserstein gradient of a functional Φ ∶ P2 (Rd) ↦ R, denoted as ∇WΦ, evaluated

at ρ ∈ P2 (Rd), is given by [45, Ch. 8]

∇WΦ (ρ) ∶= −∇ ⋅ (ρ∇
δΦ

δρ
) (1.12)

where∇ denotes the standard Euclidean gradient, and
δ
δρ denotes the functional deriva-

tive w.r.t. ρ.

To exemplify the definition (1.12), consider the functional Φ(ρ) = ∫ ρ log ρ (neg-

ative entropy) for ρ ∈ P2 (Rd). Then
δΦ
δρ = 1 + log ρ, ∇(1 + log ρ) = ∇ρ/ρ, and we get

12
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∇WΦ (ρ) = −∇⋅∇ρ = −∆ρ, where ∆ ∶= ∇⋅∇ denotes the Euclidean Laplacian operator.

1.3.5 Wasserstein proximal operator

We use the notation prox
W
G(⋅)(ζ) to denote the Wasserstein proximal operator of proper

lsc G ∶ P2(X) ↦ (−∞,+∞], acting on ζ ∈ P2 (X), given by

prox
W
G(⋅)(ζ) ∶= arg inf

µ∈P2(X)

1

2
W 2 (µ, ζ) +G(µ). (1.13)

The Wasserstein proximal operator (1.13) can be seen as a generalization of the finite

dimensional Euclidean proximal operator of proper lsc g ∶ Rd ↦ (−∞,+∞], given by

prox
∥⋅∥2
g (z) ∶= arg inf

x∈Rd

1

2
∥x − z∥22 + g(x). (1.14)

Wasserstein proximal operators of the form (1.13) go back to the seminal work of [22],

and have been used in stochastic prediction [5], control [38], learning [12, 47, 55, 56],

and in modeling of population dynamics [57].

1.3.6 Legendre-Fenchel conjugate

The Legendre-Fenchel conjugate of a real-valued function f is

f∗(y) ∶= sup
x∈ domain(f)

(⟨y,x⟩ − f(x)) ,

where ⟨⋅, ⋅⟩ denotes the standard inner product. The function f∗ is convex even if f is

not. When f(x) = ⟨a,x⟩, a ∈ Rd ∖ {0}, then f∗(y) is the indicator function of {a},

i.e.,

f∗(y) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if y = a,

+∞ otherwise.

(1.15)
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1.3.7 Euclidean ADMM

The constrained optimization problem min
x∈RN

f(x) subject to x ∈ C ⊂ RN
, where the

function f and the set C are convex, can be re-written as min
x,z∈RN

f(x) + 1C(z) subject

to x = z where the indicator function 1C(z) ∶= 0 if z ∈ C, and 1C(z) ∶= +∞ if z ∉ C.

Denote the dual variable associated with the constraint x = z as ν ∈ RN
, and let ν̃ ∶=

ν/τ be the scaled dual variable for some parameter τ > 0. The Euclidean augmented

Lagrangian for this problem is Lτ (x,z, ν̃) ∶= f(x) + 1C(z) +
τ
2∥x − z + ν̃∥

2
2. Each

iteration of the Euclidean ADMM algorithm in the so-called “scaled form” [58, Ch. 5],

comprises of the following three steps:

xk+1 = argmin
x∈RN

f(x) +
τ

2
∥x − zk + ν̃k∥22

(1.14)

= prox
∥⋅∥2
1
τ
f
(zk − ν̃k) , (1.16a)

zk+1 = projC (x
k+1 + ν̃k) , (1.16b)

ν̃k+1 = ν̃k + (xk+1 − zk+1) , (1.16c)

where the iteration index k ∈ N0 (the set of whole numbers {0,1,2,⋯}), and projC

denotes the Euclidean projection onto C. The steps (1.16a)-(1.16b) involve alternat-

ing minimization of the augmented Lagrangian Lτ , and the step (1.16c) involves dual

ascent. Notice that in the scaled form Euclidean ADMM, the parameter τ does not

appear in (1.16c) as the pre-factor of the term in parenthesis. For Euclidean ADMM

convergence results, see e.g., [59], [60].

For a separable objective f(x1,⋯,xn) =
n

∑
i=1
fi(xi), where xi ∈ RN

and fi convex

for all i ∈ [n], it is immediate from (1.16) that the updates (1.16a) and (1.16c) can

be parallelized across the index i ∈ [n]. The nature of computation in step (1.16b)

depends on the constraint set C, see e.g., [61, Ch. 5]. For instance, if C is the consensus

constraint x1 = ⋯ = xn = z, then (1.16b) requires an averaging of the local updates,

14



Introduction/Preliminaries 1.3

resulting in a “broadcast and gather” computation. In (7.3.2), we will encounter an

instance of (1.16) that will admit parallelization.

1.3.8 Thompson metric

Consider z, z̃ ∈ K, where K is a non-empty open convex cone. Further, suppose that

K is a normal cone, i.e., there exists constant α such that ∥z∥ ≤ α∥z̃∥ for z ≤ z̃.

Thompson [62] proved thatK is a complete metric space w.r.t. the so-called Thompson

metric given by

dT(z, z̃) ∶=max{log γ(z/z̃), log γ(z̃/z)},

where γ(z/z̃) ∶= inf{c > 0 ∣ z ≤ cz̃}. In particular, if K ≡ RN
>0 (positive orthant of RN

), then

dT(z, z̃) = logmax{ max
i=1,...,N

(
zi
z̃i
) , max

i=1,...,N
(
z̃i
zi
)} . (1.17)

1.3.9 Some other definitions

Following the definition of Frobenius inner product between matrices, we define the

Frobenius inner product between the operator Hess and a matrix field Q(x) where

x ∈ X ⊆ Rn
, as

⟨Hess,Q(x)⟩ ∶= ∑
i,j

∂2

∂xi∂xj
Qij(x). (1.18)

Given probability measures µ0, µ1 on Rd
, the total variation distance

distTV(µ0, µ1) ∶=
1

2
sup
f
∣∫ f d(µ0 − µ1)∣

where the supremum is over all measurable f ∶ Rd → R, ∥f∥∞ ≤ 1. For f ∶ Rd → R,

we define its Lipschitz constant ∥f∥Lip ∶= supx≠y
∣f(x)−f(y)∣
∥x−y∥2 , and its bounded Lipschitz

15
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constant ∥f∥BL ∶= max{∥f∥∞, ∥f∥Lip}. The bounded Lipschitz distance [63, Ch. 11.3]

between probability measures µ0, µ1 is distBL(µ0, µ1) ∶= sup∥f∥BL≤1 ∣∫ f d(µ0 − µ1)∣.

Notice that distBL(µ0, µ1) ≤ 2 distTV(µ0, µ1).

ForX ⊆ Rd
, we useCb(X) to denote the space of all bounded continuous functions

φ ∶ X ↦ R, and Ck
b (X) comprises those which are also k times continuously differ-

entiable (in the sense of mixed partial derivatives of order k). We say that a function

sequence {gn}n∈N where gn ∈ L1(X), converges weakly to a function g ∈ L1(X), if

limn→∞ ∫X (gn − g)ψ = 0 for all ψ ∈ Cb(X). We symbolically denote the weak conver-

gence as gn ⇀ g.

1.4 Publications

Papers resulting from the research reported in this dissertation include [64–72]. Be-

low is a list of them, categorized into journal papers, conference proceedings, and

preprints.

Journal Papers

1. Alexis Teter, Iman Nodozi„ and Abhishek Halder. “ Proximal Mean Field Learn-

ing in Shallow Neural Networks”. Transactions on Machine Learning Research,

2023.

URL:

https://openreview.net/forum?id=vyRBsqj5iG

2. Iman Nodozi, Charlie Yan, Mira Khare, Abhishek Halder, and Ali Mesbah.

“Neural Schrödinger Bridge with Sinkhorn Losses: Application to Data-driven
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Minimum Effort Control of Colloidal Self-assembly”. IEEE Transactions on Con-

trol Systems Technology, 2023, pp. 1-14.

URL:

https://ieeexplore.ieee.org/abstract/document/10347388

3. Iman Nodozi, Abhishek Halder, and Ion Matei. “A Controlled Mean Field Model

for Chiplet Population Dynamics”. IEEE Control Systems Letters, 2023, pp. 1825

- 1830, also in 62nd IEEE Conference on Decision and Control (CDC), Singapore,

2023.

URL:

https://ieeexplore.ieee.org/abstract/document/10141980

Conference Proceedings

1. Charlie Yan, Iman Nodozi, and Abhishek Halder. “Optimal Mass Transport

over the Euler Equation”. Proceedings of the 62nd IEEE Conference on Decision

and Control (CDC), pp. 6819-6826, Singapore, 2023.

Invited paper in Session ‘Optimal Transport’

URL:

https://ieeexplore.ieee.org/document/10383425

2. Iman Nodozi, Jared O’Leary, Abhishek Halder, and Ali Mesbah. “A Physics-

informed Deep Learning Approach for Minimum Effort Stochastic Control of

Colloidal Self-Assembly”. Proceedings of American Control Conference (ACC), pp.

609-615, San Diego, California, USA, 2023.

Invited paper in Session ‘Learning and Stochastic Optimal Control’

URL:
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3. Iman Nodozi, and Abhishek Halder. “Schrödinger Meets Kuramoto via Feynman-

Kac: Minimum Effort Distribution Steering for Noisy Nonuniform Kuramoto

Oscillators”. Proceedings of the 61st IEEE Conference on Decision and Control

(CDC), pp. 2953-2960, Cancún, Mexico, 2022.

URL:

https://ieeexplore.ieee.org/abstract/document/9993420

4. Iman Nodozi, and Abhishek Halder. “A Distributed Algorithm for Measure-

valued Optimization with Additive Objective”. 25th International Symposium

on Mathematical Theory of Networks and Systems (MTNS), Bayreuth, Germany,

2022.

Invited paper in Session ‘Optimal transport: Theory and applications in

networks and systems’

URL:

https://arxiv.org/pdf/2202.08930.pdf

Preprints

1. Alexis Teter, Iman Nodozi„ and Abhishek Halder. “ Solution of the Probabilistic

Lambert’s Problem: Optimal Transport Approach”.

URL:

https://arxiv.org/pdf/2402.01209.pdf

2. Alexis Teter, Iman Nodozi, and Abhishek Halder. “Solution of the Probabilis-

tic Lambert Problem: Connections with Optimal Mass Transport, Schrödinger

Bridge, and Reaction-Diffusion PDEs”.
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19

https://arxiv.org/pdf/2401.07961.pdf
https://arxiv.org/pdf/2309.07351.pdf


2 | Background on Optimal Mass

Transport and Schrödinger Bridge

2.1 Optimal Mass Transport

2.1.1 Classical OMT

We start by summarizing the rudiments on classical OMT. Well-known references for

this topic are [42, 44]; for a brief summary see e.g., [73].

Static Formulation. The static formulation of classical OMT goes back to Gaspard

Monge in 1781, which concerns with finding a mass preserving transport map θ ∶

Rn ↦ Rn
pushing a given measureµ0 to anotherµT while minimizing a transportation

cost ∫Rn c(x,θ(x))dµ0 where c is some ground cost functional, i.e.,

c ∶ Rn ×Rn ↦ R≥0.

In other words, Monge’s formulation is a static optimization problem:

arg inf
measurable θ∶Rn↦Rn

∫
Rn
c(x,θ(x))dµ0 (2.1)

subject to x ∼ µ0, θ(x) ∼ µT . (2.2)

Notice that this is an infinite dimensional nonlinear nonconvex problem over measur-

able maps θ(⋅).

A common choice for c is half of the squared Euclidean distance, but in general,

the choice of the functional c plays an important role for guaranteeing the existence-

uniqueness of the minimizer θopt
(⋅). Even when the existence-uniqueness of the opti-

mal transport map θopt
(⋅) can be guaranteed, Monge’s formulation is computationally

less malleable as it requires solving a nonlinear nonconvex problem over all measur-
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able pushforward mappings θ ∶ Rn ↦ Rn
taking µ0 to µT . For c(x,y) ≡ 1

2∥x − y∥
2
2,

x,y ∈ Rn
, dµ0(x) = ρ0(x)dx,dµT (x) = ρT (y)dy, it is known [43] that θopt

exists,

is unique, and admits a representation θopt
= ∇ψ for some convex function ψ. Even

then, the direct computation of ψ is numerically challenging because it reduces to

solving a second order nonlinear elliptic Monge-Ampère PDE [42, p. 126]:

det (∇2ψ(x))ρT (∇ψ(x)) = ρ0(x)

where det and ∇2
denote the determinant and the Hessian, respectively.

A more tractable reformulation of the static OMT is due to Leonid Kantorovich in

1942 [74], which instead of finding the optimal transport map θopt
, seeks to compute

an optimal coupling πopt
between the given measures µ0, µT that solves

arg inf
π∈Π2(µ0,µT )

∫
Rn×Rn

c(x,y)dπ(x,y) (2.3)

where Π2(µ0, µT ) denotes the set of all joint probability measures π supported over

the product space Rn ×Rn
with x marginal µ0, and y marginal µT . Notice that (2.3) is

an infinite dimensional linear program. The map θopt
is precisely the support of the

optimal coupling πopt
. In the other direction, we can recover πopt

from θopt
as πopt =

(Id × θopt
) ♯ µ0 where Id denotes the identity map, and ♯ denotes the pushforward of

a probability measure.

Dynamic Formulation. Let P2 (Rn) denote the collection of probability density

functions (PDFs) supported over Rn
that have finite second moments, i.e.,

P2 (Rn) ∶= {ρ ∶ Rn ↦ R≥0 ∣ ∫
Rn
ρdx = 1,∫

Rn
∥x∥22ρdx < ∞} .

The dynamic formulation of OMT due to Benamou and Brenier [75] appeared at the

turn of the 21st century. When c(x,y) ≡ 1
2∥x−y∥

2
2 and µ0, µT admit respective PDFs
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ρ0, ρT , the dynamic formulation is the following stochastic optimal control problem:

arg inf
(ρu,u)∈P2(Rn)×U

∫

T

0
∫
Rn

1

2
∥u∥22 ρ

u(xu, t)dxudt (2.4a)

∂ρu

∂t
+∇xu ⋅ (ρuu) = 0, (2.4b)

ρu(xu, t = 0) = ρ0, ρu(xu, t = T ) = ρT . (2.4c)

The constraint (2.4b) is the Liouville PDE (see e.g., [76]) that governs the evolution of

the state PDF ρu(xu, t) under a feasible control policy u ∈ U . So (2.4) is a problem

of optimally steering a given joint PDF ρ0 to another ρT over time horizon [0, T ]

using a vector of single integrators, i.e., with full control authority in U . The solution

(ρopt,uopt) for (2.4) satisfies

ρopt(xu, t) = θt ♯ ρ0, θt ∶=(1 −
t

T
)Id +

t

T
θopt, (2.5a)

uopt(xu, t) = ∇xuϕ(xu, t),
∂ϕ

∂t
+
1

2
∥∇xuϕ∥22 = 0. (2.5b)

Thus, (2.5a) tells that the optimally controlled PDF is obtained as pushforward of the

initial PDF via a map that is a linear interpolation between identity and the optimal

transport map. Consequently, the PDF ρopt itself is a (nonlinear) McCann’s displace-

ment interpolant [77] between ρ0 and ρT . The optimal control in (2.5b) is obtained as

the gradient of the solution of a Hamilton-Jacobi-Bellman (HJB) PDE.

The ψ(x) in static OMT and the ϕ(x, t) in dynamic OMT are related [42, Thm.

5.51] through the Hopf-Lax representation formula

ϕ(x, t) = inf
y∈Rn
(ϕ(y,0) +

1

2t
∥x − y∥22) , t ∈ (0, T ], (2.6a)

ϕ(y,0) = ψ(y) −
1

2
∥y∥22, (2.6b)

i.e., ϕ(x, t) is the Moreau-Yosida proximal envelope [61, Ch. 3.1] of ϕ(y,0) = ψ(y) −

1
2∥y∥

2
2, and hence ϕ(x, t) is continuously differentiable w.r.t. x ∈ Rn

.
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Classical OMT allows defining a distance metric, called the Wasserstein metric W ,

on the manifold of probability measures or PDFs. In particular, when c(x,y) ≡ 1
2∥x−

y∥22, the infimum value achieved in (2.3) is the one half of the squared Wasserstein

metric between µ0 and µT , i.e.,

W 2(µ0, µT )∶= inf
π∈Π2(µ0,µT )

∫
Rn×Rn
∥x − y∥22 dπ(x,y), (2.7)

which is also equal to the infimum value achieved in (2.4), provided µ0, µT are abso-

lutely continuous. The tuple (P2 (Rn) ,W ) defines a complete separable metric space,

i.e., a polish space. This offers a natural way to metrize the topology of weak conver-

gence of probability measures w.r.t. the metric W .

2.1.2 Generalized OMT

The dynamic version of the generalized OMT is the following stochastic optimal con-

trol problem:

arg inf
(ρu,u)∈P2(Rn)×U

∫

T

0
∫
Rn
(q(xu) + r(u)) ρu(xu, t)dxudt (2.8a)

∂ρu

∂t
+∇xu ⋅ (ρuf (t,xu,u)) = 0, (2.8b)

ρu(xu, t = 0) = ρ0, ρu(xu, t = T ) = ρT . (2.8c)

We suppose that the cost functions q(⋅), r(⋅) and the controlled vector field f are

sufficiently smooth to make the problem (2.8) well-posed. In particular, we assume

that q + r is at least lower bounded.

Notice that the problem (2.8) reduces to the problem (2.4) when

q(⋅) ≡ 0, r(⋅) ≡
1

2
∥ ⋅ ∥22, f ≡ u.

In other words, (2.8) generalizes (2.4) in two ways. One generalization comes from
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considering more general (separable) cost-to-go in the objective. Another generaliza-

tion comes from considering more general (both time, state and control-dependent)

vector field in the Liouville PDE constraint.

Notice that the PDE (2.4b) is induced by the underlying controlled ODE: ẋu =

u. In contrast, the PDE (2.8b) is induced by the underlying controlled ODE: ẋu =

f (t,xu,u).

Just like the classical dynamic OMT (2.4) corresponds to the classical static OMT

(2.3), similar correspondence can be associated with (2.8). To do this, we slightly gen-

eralize the setting: we replace Rn
in (2.3) with an n dimensional Riemannian manifold

M. Consider an absolutely continuous curve γ(t) ∈ M, t ∈ [0, T ], and (γ, γ̇) ∈ T M

(tangent bundle). Then for x,y ∈ M, we think of c(x,y) in (2.3) to be derived from a

Lagrangian L ∶ [0, T ] × T M↦ R, i.e., express c as an action integral

c(x,y) = inf
γ(⋅)∈Γxy

∫

T

0
L(t,γ(t), γ̇(t)) dt, (2.9)

where

Γxy ∶= {γ ∶ [0, T ] ↦ Rn ∣γ(⋅) is absolutely continuous,γ(0) = x,γ(T ) = y}.

In particular, the choiceM≡ Rn
and L(t,γ, γ̇) ≡ 1

2∥γ̇∥
2
2 results in c(x,y) = ∥x−y∥22,

i.e., the standard Euclidean OMT (2.3). WhenM ≡ Rn
and f (t,xu,u) ≡ f̃(t,xu) +

B(t)u, i.e., a control-affine vector field withB(t) ∈ Rn×n
nonsingular for all t ∈ [0, T ],

then the Lagrangain L in (2.9) is

L(t,γ, γ̇) = q(γ) + r ((B(t))
−1
(γ̇ − f̃(t,γ))) .

We say that a Lagrangian L is superlinear (1-coercive) if

lim
∥γ̇∥2→∞

L

∥γ̇∥2
= +∞. (2.10)
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For the identified Lagrangian L in (2.9), if the mapping γ̇ ↦ L(⋅, ⋅, γ̇) is strictly convex

as well as superlinear, then we say L is a weak Tonelli Lagrangian [44, p. 118], [78, Ch.

6.2]. It is known that ifL in (2.9) is a weak Tonelli Lagrangian, then [78, Thm. 1.4.2] the

existence and uniqueness of the minimizing pair (ρopt,uopt) for (2.8) is guaranteed.

2.2 Schrödinger Bridge Problem

From a control-theoretic viewpoint, both the SBP and the OMT are stochastic optimal

control problems. Even then, it is helpful to think about the SBP as a further stochastic

generalization of the OMT. We explain this next.

2.2.1 Classical SBP

The classical SBP concerns with the minimum effort additive control needed to move

a given distribution to another over a presribed finite time horizon subject to the con-

straint that the uncontrolled sample paths evolve according to Brownian motion (i.e.,

standard Wiener process). This is a stochastic optimal control of the form

arg inf
(ρu,u)∈P2(Rn)×U

∫

T

0
∫
Rn

1

2
∥u∥22 ρ

u(xu, t)dxudt (2.11a)

∂ρu

∂t
+∇xu (ρuu) = β−1∆xuρu, (2.11b)

ρu(xu, t = 0) = ρ0, ρu(xu, t = T ) = ρT . (2.11c)

The constant β is referred to as the inverse temperature. Clearly, if β−1 ↓ 0, then the

classical SBP (2.11) reduces to the classical OMT (2.4).

Notice that unlike the first order Liouville PDE (2.4b), the PDE constraint (2.11b)

involves a second order Laplacian term. Thus, (2.11b) is a Fokker-Planck-Kolmogorov

(FPK) PDE. This can be motivated as follows. The macroscopic dynamics (2.11b) is
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induced by the controlled sample path dynamics:

dxu = u dt +
√
2β−1dw (2.12)

where u ∈ Rn
is the control, and w is the standard Wiener process in Rn

. In other

words, the trajectory-level controlled dynamics for the classical SBP is “single integra-

tor + Gaussian white noise”. The controlled Itô stochastic differential equation (SDE)

generalizes the controlled ODE

dxu

dt
= u,

which was indeed the sample path dynamics associated with (2.4b).

The SBP originated in the works of Erwin Scrödinger [79–81] and as such predates

both the mathematical theory of stochastic processes and feedback control. Scrödinger’s

original motivation behind this study was to seek a probabilistic interpretation of

quantum mechanics.

2.2.2 Generalized SBP

The generalized SBP is a stochastic optimal control problem of the form:

inf
(ρu,u)∈P2(Rn)×U ∫

T

0
∫
Rn
(q(xu) + r(u))ρu(x, t) dxdt (2.13a)

∂ρu

∂t
+∇xu ⋅ (ρuf (t,xu,u)) = β−1⟨Hess,G (t,xu,u)⟩ρu (2.13b)

ρu(xu, t = 0) = ρ0, ρu(xu, t = T ) = ρT , (2.13c)

where ⟨⋅, ⋅⟩ in (2.13b) is the Frobenius inner product, G (t,xu,u) ∈ Rn×n
is the diffui-

son tensor. The diffusion tensor G (t,xu,u) ∶= (g (t,xu,u))
⊺
g (t,xu,u) for some

diffusion coefficient g (t,xu,u) ∈ Rn×p
. Thus, the diffusion tensor, by definition, is

symmetric positive semi-definite.
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As in the case for the OMT, here too, the qualifier “generalized” refers to the pres-

ence of prior dynamics given by the controlled drift-diffusion coefficient pair (f ,g)

which was not considered in Schrödinger’s original investigations [79, 80]. Specifi-

cally, the FPK PDE (2.13b) is induced by a controlled sample path dynamics

dxu = f (t,xu,u) dt +
√
2β−1 g (t,xu,u)dw, (2.14)

where u ∈ Rm
is the control, and w is a standard Wiener process in R.

Let us now comment on how the classical SBP (2.11) can be seen as a special case

of the gernealized SBP (2.13). By setting f ≡ u and g ≡ In, we see that (2.14) reduces

to (2.12), and consequently the macroscopic dynamics (2.13b) specializes to (2.11b).

The reduction of (2.13) to (2.11) then follows by setting q(⋅) ≡ 0, r(⋅) = 1
2∥u∥

2
2.

In recent years, Schrödinger bridge problems and their connections to OMT have

come to prominence in both control [38,39,82,83] and machine learning [84–86] com-

munities.

A different way to interpret classical SBP is to view it as a stochastic dynamic

version of the optimal mass transport (OMT) problem. The dynamic OMT [75] is a

special case of (2.13c) with f ≡ u, g ≡ 0. For details on these connections from a

stochastic control perspective, we refer the readers to [82]. In recent years, SBPs and

their generalizations have come to prominence in both control [32,38,39,82] and ma-

chine learning [84–87] communities. In particular, a data-driven maximum likelihood

sampling solution of the classical SBP (i.e., with f ≡ u, g ≡ In) was proposed in [88]

assuming availability of the samples from the endpoint measures µ0, µT . Similar line

of ideas were pursued in [89, 90].

While solution methods for the GSBP (2.14) in general are not available in the

current literature, specialized algorithms for particular forms of f ,g have appeared.
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In [39], this result was extended for the case when additional (deterministic) state

constraints are present.

GSBPs with nonlinear drifts and full-state feedback linearizable structures were

considered in [91, 92]. GSBP instances for both first- and second-order noisy nonuni-

form Kuramoto oscillator models were solved in [83] using Feynman-Kac path integral

techniques. Closest to the GSBP (2.13) is the work in [68], which considered control

non-affine drift and diffusion coefficients and showed that the conditions of optimal-

ity involves additional coupled PDEs compared to the control-affine case. However,

the developments in [68] were still model based. Data-driven solution of control non-

affine GSBPs at the level of generality (2.13), as pursued in this work, is novel w.r.t.

the existing literature.
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3.1 Problem Formulation

In this chapter, we consider a control-affine nonlinear for the minimum energy gener-

alized SBP. Specifically, we aim to solve (2.13) given that:

q(⋅) ≡ 0, r(⋅) ≡
1

2
∥ ⋅ ∥22,

where the associated drift and diffusion coefficient pair (f ,g) in (2.14), are

f (t,x,u) ≡ f̃ (t,x) +B(t)u, g (t,x,u) ≡B(t) ∈ Rn×m.

i.e., the drift coefficient f is control affine and the diffusion coefficient g is C ([0, T ])

matrix that is independent of state and input. In this case, the stochastic process noise

enters through the input channels (e.g., modeling disturbance in forcing and/or actu-

ation uncertainties). So, in this chapter, we focus on problems the form

inf
u∈U

Eµu {∫
T

0
1
2∥u(x, t)∥

2
2 dt}

subject to dx = f̃(x, t)dt +B(t)u(x, t)dt +
√
2ϵB(t)dw(t),

x(t = 0) ∼ µ0(x), x(t = T ) ∼ µT (x),

(3.1)

where µ0, µT denote the joint state probability measures at t = 0 and t = T , respec-

tively. The vector field f̃ represents a prior nonlinear dynamics. In (3.1), the set of

feasible controls U comprises of the finite energy inputs over the time horizon [0, T ],

i.e., U ∶= {u ∶ Rn × [0,1] ↦ Rm ∣ ∥u∥2 < ∞} . In words, problem (3.1) asks to synthe-

size feedback control that steers the initial joint state distribution µ0 to the terminal

joint state distribution µT over [0, T ] while minimizing the average control effort in

doing so.
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We make the following assumptions for f̃(x, t) and B(t) :

• non-explosion and Lipschitz: there exist constants c1, c2 such that ∥f̃(x, t)∥2+

∥B(t)∥2 ≤ c1 (1 + ∥x∥2), and ∥f̃(x, t) − f̃(y, t)∥2 ≤ c2∥x − y∥2 for all x,y ∈

Rn, t ∈ [0, T ].

• uniformly lower bounded diffusion: there exists a constant c3 such that the

diffusion tensor D(t) ∶= B(t)B(t)⊺ satisfies ⟨x,D(t)x⟩ ≥ c3∥x∥22 for all x ∈

Rn, t ∈ [0, T ].

The first assumption rules out [93, p. 66] the possibility of finite time blow up of the

sample path x(t), and ensures the existence-uniqueness for the same. The second

assumption together with the first, ensures [94, Ch. 1] that for T ≥ t > s ≥ 0, the

transition density K(s,y, t,x) associated with the uncontrolled nonlinear SDE

dx(t) = f̃(x, t)dt +
√
2ϵB(t)dw(t) (3.2)

is strictly positive and everywhere continuous in x,y ∈ Rn
.

Assuming the absolute continuity of the joint probability measure µu
for all times,

we write dµu(x, t) = ρu(x, t)dx and hereafter consider the associated joint PDF

ρu(x, t). Problem (3.1) can then be recast as

inf
(ρu,u)

1

2 ∫
T

0
∫
Rn
∥u(x, t)∥22ρ

u(x, t)dxdt

subject to

∂ρu

∂t
+∇ ⋅ (ρu(f̃ +B(t)u)) = ϵ⟨D(t), Hess (ρu)⟩

ρu(x,0) = ρ0(x)(given), ρu(x, T ) = ρT (x)(given).

(3.3)

Next, we briefly discuss the existence-uniqueness for the solution of (3.3).

30



Control-affine Generalized Schrödinger Bridge/ Existence and Uniqueness 3.3

3.2 Existence and Uniqueness

Consider the change of variable (ρ,u) ↦ (ρ,m) given by m ∶= ρu, which results in

the following reformulation of (3.3):

inf
(ρ,m)

1

2 ∫
T

0
∫
Rn
J(ρ,m)dxdt (3.4a)

Subject to

∂ρ

∂t
+∇ ⋅ (ρ(f̃ +B(t)m)) = ϵ⟨D(t),Hess(ρ)⟩ (3.4b)

ρu(x,0) = ρ0(x, ρu(x, T ) = ρT (x) (3.4c)

where

J(ρ,m) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥m∥22/ρ if ρ > 0,

0 if (m, ρ) = (0,0),

+∞ otherwise.

Since J(ρ,m) is the perspective function of the strictly convex mapm↦ ∥m∥22, hence

J is jointly strictly convex in (ρ,m). The constraints (3.4b)-(3.4c) are linear in (ρ,m).

Thus, the problem (3.4) is convex. However, proving the existence of minimizing pair

(ρopt,mopt), or equivalently (ρopt,uopt), is nontrivial. It turns out that the existence-

uniqueness for the solution of (3.3) or (3.4), can be guaranteed [95, Theorem 3.2] for

compactly supported ρ0, ρ1, provided the transition density for (3.2) is strictly positive

and everywhere continuous in x,y ∈ Rn. This is where the aforesaid assumptions on

f̃(x, t),B(t) come into play. The details for two specific case studies, viz. the first

and the second order noisy nonuniform Kuramoto oscillators, are given in the next

sections.
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3.3 Conditions for Optimality

We next show that the first order optimality conditions for (3.3) lead to a coupled

system of nonlinear PDEs. Consider the Lagrangian associated with (3.3):

L(ρ,u, ψ) ∶=

∫

T

0
∫
Rn
{
1

2
∥u(x, t)∥22ρ(x, t) + ψ(x, t) × (

∂ρ

∂t
+∇ ⋅ ((f̃ +B(t)u)ρ(x, t))

−ϵ⟨D(t),Hess(ρ)⟩)}dxdt

(3.5)

where ψ(x, t) is a C1 (Rn;R>0) Lagrange multiplier. Let

P01 (Rn) ∶= {ρ(x, t) ∣ ρ ≥ 0,∫
Rn
ρdx = 1, ρ(x,0) = ρ0, ρ(x, T ) = ρT} . (3.6)

Performing the unconstrained minimization of the Lagrangian L over P01 (Rn) × U

yields the following result.

Proposition 3.1. [38, Proposition 1] (Optimal control and optimal state PDF) The

pair (ρopt(x, t),uopt(x, t)) that solves (3.3), must satisfy the system of coupled PDEs

∂ψ

∂t
+
1

2
∥B(t)⊺∇ψ∥

2
2 + ⟨∇ψ, f̃⟩ = −ϵ⟨D(t),Hess(ψ)⟩, (3.7a)

∂

∂t
ρopt +∇ ⋅ (ρopt (f̃ +B(t)⊺∇ψ)) = ϵ ⟨D(t),Hess (ρopt)⟩ , (3.7b)

with boundary conditions

ρopt(x,0) = ρ0(x), ρopt(x, T ) = ρT (x), (3.8)

and

uopt(x, t) =B(t)⊺∇ψ(x, t).

The proof of this result can be found in [38, Appendix A].

The PDE (3.7a) is the Hamilton-Jacobi-Bellman (HJB) equation while the PDE
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(3.7b) is the controlled FPK equation. Computing the optimal pair (ρopt,uopt), or

equivalently (ρopt, ψ) form (3.7)-(3.8) calls for solving a system of coupled nonlinear

PDEs with atypical boundary conditions, and is challenging in general.

Interestingly, it is possible to transform the HJB-FPK system of coupled nonlinear

PDEs (20)-(21) into a system of boundary-coupled linear PDEs, via the so-called Hopf-

Cole transform [96], [97] given by

φ(x, t) = exp(
ψ(x, t)

2ϵ
) (3.9a)

φ̂(x, t) = ρopt(x, t) exp(−
ψ(x, t)

2ϵ
) . (3.9b)

The following result is of our interest.

Theorem 3.1. [38, Theorem 2] (Hopf-Cole transform) Given f̃ , ϵ, ρ0, ρ1, consider the

Hopf-Cole transform (ρopt, ψ) ↦ (φ, φ̂) defined via (3.9), applied to the system of non-

linear PDEs (3.7)-(3.8). Then the pair (φ, φ̂) satisfies the system of linear PDEs

∂φ

∂t
= −⟨∇φ, f̃⟩ − ϵ⟨D(t),Hess(φ)⟩ (3.10a)

∂φ̂

∂t
= −∇ ⋅ (φ̂f̃) + ϵ⟨D(t),Hess(φ̂)⟩ (3.10b)

with boundary conditions

φ(x,0)φ̂(x,0) = ρ0(x), φ(x, T )φ̂(x, T ) = ρT (x). (3.11)

For the proof of the above, we refer the readers to [38, Appendix B].

The optimal controlled state PDF ρopt(x, t) solving (3.7) is given by

ρopt (x, t) = φ(x, t)φ̂(x, t). (3.12)

The optimal control for the same is given by

uopt(x, t) = 2ϵB(t)⊺∇ logφ. (3.13)
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We note that (3.10a) is the backward Kolmogorov equation in variable φ, and (3.10b)

is the forward Kolmogorov or the FPK equation in variable φ̂, associated with (3.2).

The essence of Theorem 3.1 is that instead of solving the system of coupled nonlin-

ear PDEs (3.7), we can solve the system of linear PDEs (3.10) provided that we compute

the pair (φ1, φ̂0) which serves as the endpoint data for

∂φ

∂t
= −⟨∇φ, f̃⟩ − ϵ⟨D(t),Hess(φ)⟩, φ(x, T ) = φT (x), (3.14a)

∂φ̂

∂t
= −∇ ⋅ (φ̂f̃) + ϵ⟨D(t),Hess(φ̂)⟩, φ̂(x,0) = φ̂0(x). (3.14b)

Denoting the forward and backward Kolmogorov operators in (3.14) as LFK and LBK

respectively, we can write (3.14) succinctly as an infinite dimensional two point bound-

ary value problem

∂

∂t

⎛
⎜
⎜
⎝

φ

φ̂

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

LBK 0

0 LFK

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

φ

φ̂

⎞
⎟
⎟
⎠

,

⎛
⎜
⎜
⎝

φ(x, T )

φ̂(x,0)

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

φT (x)

φ̂0(x)

⎞
⎟
⎟
⎠

. (3.15)

We next consider a case study for distribution steering via feedback control, namely

doing the same subject to controlled dynamics of a networked noisy nonuniform Ku-

ramoto oscillators. We point out the related literature and engineering relevance of

this problem.

3.4 Case Study: Kuramoto Oscillators

We consider the controlled sample path dynamics for a population of n first order

Kumarmoto oscillators, given by the Itô SDEs

dθi = (−
∂V

∂θi
+ vi)dt +

√
2σi dwi, i ∈ [n] ∶= {1,2,⋯, n},
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where V (θ1,⋯, θn) is a given smooth potential, the angular variable θi ∈ [0,2π) is

the state, vi is the control input, σi > 0 is the noise strength, and wi is the standard

(scalar) Wiener process noise for the ith oscillator. Defining re-scaled input ui ∶= σivi,

we write this dynamics in vector form:

dθ = (−∇θV (θ) +Su)dt +
√
2S dw (3.16)

where S ∶= diag (σ1, . . . , σn) ≻ 0, θ ∶= (θ1,⋯, θn)⊺, u ∶= (u1,⋯, un)⊺, and w ∶=

(w1,⋯,wn)⊺ is the standard Wiener process in n dimensions. For the first order Ku-

ramoto model (3.16), the state space is the n-torus Tn ≡ [0,2π)n, and the potential

V (θ) ∶= ∑
i<j

i,j∈[n]

kij(1 − cos(θi − θj − φij)) −
n

∑
i=1
Piθi, (3.17)

wherein the parameters Pi > 0. For i ≠ j, the coupling coefficients kij = kji ≥ 0 (and

not all kij = 0), and kii ≡ 0. Likewise, for i ≠ j, the phase shift φij = φji ∈ [0,
π
2 ), and

φii ≡ 0.

We also consider the controlled sample path dynamics for a population of n second

order Kumarmoto oscillators, given by the second order Langevin equations

miθ̈i + γiθ̇i = −
∂V

∂θi
+
√
2σi × standard Gaussian white noise,

where i ∈ [n], and V (⋅) is given by (3.17). We rewrite this dynamics as the vector Itô

SDE

⎛
⎜
⎜
⎝

dθ

dω

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

ω

−M−1
∇θV (θ) −M

−1Γω +M−1Su

⎞
⎟
⎟
⎠

dt +

⎛
⎜
⎜
⎝

0n×1
√
2M−1S dw

⎞
⎟
⎟
⎠

(3.18)

where ω ∶= (θ̇1,⋯, θ̇n)⊺, M ∶= diag (m1, . . . ,mn) ≻ 0, Γ ∶= diag (γ1, . . . , γn) ≻ 0, and

0n×1 denotes the n×1 vector of zeros. For the second order Kuramoto model, the state

space is the product of cylinders Tn ×Rn
.
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We address the following problem:

synthesize feedback controller u that transfers the stochastic state of (3.16) or (3.18)

from a prescribed initial to a prescribed terminal joint probability distribution over

a given finite time horizon, say t ∈ [0, T ].

This fits in the research theme of designing state feedback for dynamically reshap-

ing (as opposed to simply mitigating) uncertainties [31, 98] subject to networked Ku-

ramoto oscillator dynamics. As such, both first and second order Kuramoto oscil-

lator models are ubiquitous across physical, biological and engineering systems, see

e.g., [99, 100].

Notice that while the uncontrolled dynamics in (3.16) has gradient drift, the same

in (3.18) has mixed conservative-dissipative drift. A consequence is that unlike (3.16),

the stochastic process induced by (3.18), is not reversible and its infinitesimal generator

is hypoelliptic [101]. This makes the analysis and feedback synthesis for (3.18) even

more challenging than (3.16). For the controlled dynamics (3.16), the measure µu
is

supported over the state space Tn. Likewise, for (3.18), the measure µu
is supported

over Tn ×Rn
.

3.4.1 Related literature and novelty of our work

While there exists a significant literature on the dynamics and control of Kuramoto

oscillators in general [102–108], the stochastic control of Kuramoto oscillators remains

under-investigated. Ref. [109] considered global asymptotic phase agreement and fre-

quency synchronization in almost sure sense.

In the physics literature, several studies [110–112] analyze the distributional dy-

namics associated with the Kuramoto oscillators. However, these studies consider the

univariate distributional dynamics arising from the mean-field limit, i.e., by abstracting
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the dynamical interaction in the infinite population (n → ∞) regime. In comparison,

the perspective and approach taken in this paper are significantly different because

we focus on the dynamics of joint probability distribution supported over the states

of a finite population of oscillators. This is particularly relevant for engineering appli-

cations such as power systems, where a network of finitely many generators (often

modeled as second order nonuniform Kuramoto oscillators) and loads (often modeled

as first order nonuniform Kuramoto oscillators) interact together with their controlled

stochastic dynamics, see e.g., [106]. Well-known techniques such as the Kron reduc-

tion [113] allow transcribing such networked system in the form (3.18) with all-to-all

connection topology. Despite the engineering relevance, research on the multivariate

distributional dynamics for a finite population of nonuniform Kuramoto oscillators is

scant.

From a methodological standpoint, we recast the problem of minimum effort feed-

back steering of distributions subject to (3.16) or (3.18), as an instance of generalized

Schrödinger bridge problem – a topic undergoing rapid development [32, 82] in the

systems-control community. In [114], a similar approach was taken to realize feed-

back steering toward the invariant distribution of an uncontrolled oscillator dynamics.

Building on our prior work [38], here we focus on finite horizon steering between two

arbitrary compactly supported joint state probability distributions subject to (3.16) or

(3.18). However, for our controlled Kuramoto dynamics, it will turn out that the al-

gorithmic approach proposed in [38] will no longer apply and we will introduce new

ideas for the same.
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3.4.2 Optimal steering of distributions

We consider the stochastic optimal control problem over a prescribed time horizon

[0, T ], given by

inf
u∈U

Eµu [∫
T

0
∥u∥22 dt] (3.19)

subject to either

(3.16), θ(t = 0) ∼ µ0 (given), θ(t = T ) ∼ µT (given),

or

(3.18),

⎛
⎜
⎜
⎝

θ(t = 0)

ω(t = 0)

⎞
⎟
⎟
⎠

∼ µ0 (given),

⎛
⎜
⎜
⎝

θ(t = T )

ω(t = T )

⎞
⎟
⎟
⎠

∼ µT (given),

where µ0, µT denote the joint state probability measures at t = 0 and t = T , respec-

tively. In (3.19), the set of feasible controls U comprises of the finite energy inputs

over the time horizon [0, T ].

Assuming the absolute continuity of the joint probability measure µu
for all times,

we write dµu(x, t) = ρu(x, t)dx and hereafter consider the associated joint PDF

ρu(x, t). Problem (3.19) can then be recast as

inf
(ρu,u) ∫

T

0
∫
X
∥u(x, t)∥22 ρ

u(x, t) dx dt (3.20)

subject to either

∂ρu

∂t
= −∇θ ⋅ (ρ

u(Su −∇θV )) + ⟨D,Hess(ρu)⟩, (3.21a)

or

∂ρu

∂t
= ∇ω ⋅ (ρ

u (M−1
∇θV (θ) +M

−1Γω −M−1Su

+M−1DM−1
∇ω log ρu) − ⟨ω,∇θρ

u⟩,

(3.21b)

where the diffusion matrixD ∶= SS⊺, and ρu(x, t = 0) = ρ0 (given), ρu(x, t = T ) = ρT
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(given).

For the first order Kuramoto oscillators, we have x ∶= θ, X ∶= Tn, and for the sec-

ond order Kuramoto oscillators, we have x ∶= (θ,ω)⊺, X ∶= Tn ×Rn
. The constraints

(3.21a) and (3.21b) are the controlled Fokker-Planck or Kolmogorov’s forward (FPK)

PDEs corresponding to (3.16) and (3.18), respectively.

Endpoint PDFs

In this work, we suppose that the endpoint joint PDFs ρ0, ρT are supported on compact

subsets of X . For instance, when X = Tn, one may model ρ0, ρT as multivariate von

Mises PDFs [115, 116] supported on Tn:

ρk(θ) =
1

Zk
exp(⟨κk,cos(θ −mk)⟩ +

1

2
⟨sin(θ −mk),Λksin(θ −mk)⟩) , k ∈ {0, T},

(3.22)

where the parameters are the mean vectors m0,mT ∈ Tn, the concentration vec-

tors κ0,κT ∈ Rn
≥0, and the symmetric matrices

1 Λ0,ΛT ∈ Sn having zero diagonal

entries. In (3.22), sin(⋅) and cos(⋅) denote the elementwise sines and cosines, respec-

tively. The normalization constants Z0, ZT in (3.22) depend on the respective concen-

tration vector and symmetric matrix parameters.

The nonnegative entries of the concentration vectors κ0,κT admit a natural inter-

pretation: zero concentration vectors represent uniform distribution over Tn. Large

positive entries promote a higher concentration around the corresponding mean com-

ponents. When Λ is a zero matrix, then multivariate von Mises PDF can be written as

the product of univariate von Mises PDFs, see e.g., [117, Ch. 3].

When X = Tn × Rn
, we suppose that for k ∈ {0, T}, the ω marginals of ρk have

1
We use Sn to denote the set of n × n real symmetric matrices.
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compact supports Ωk ⊂ Rn
, and thus the joints ρk are supported on compact subsets

of X .

3.4.3 Existence and uniqueness of solution

First order case

From (3.17), we observe that V ∈ C2(Tn), which allows us [118, Ch. 1.2] to conclude

that the transition probability kernels associated with (3.16) remain continuous for all

t ≥ 0. Furthermore, the endpoint PDFs having compact supports imply ρ0, ρT are pos-

itive over their respective supports. Thus, following [38, Appendix E], the transition

probability kernels associated with (3.16) also remain positive for all t ∈ [0, T ].

The continuity and positivity of the transition probability kernels associated with

(3.16), together guarantee [81, Sec. 10], [119, Thm. 3.2] the existence-uniqueness for

the solution of the variational problem (3.20) subject to (3.21a) and the endpoint PDF

constraints.

Second order case

That the transition probability kernels remain positive, is ensured per the compactness

assumption of the endpoint joint PDFs’ supports together with the maximum principle

for parabolic PDEs.

Showing that the transition probability kernels also remain continuous for all

times, in this case, reduces to showing three conditions: (i) V ∈ C2 (Tn), (ii) inf V >

−∞, and (iii) uniform boundedness of the Hessian: ∥Hess(V )∥2 ≤ c for some c > 0

that does not depend on θ; see e.g., [120, Theorem 7], [121, Theorem 5]. The satisfac-

tion of the conditions (i)-(ii) are immediate. The induced 2-norm of Hess(V ) is upper
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bounded by

∑
i<j
kij cos (θi − θj − φij) ≤ ∑

i<j
kij,

and since kij ≥ 0 for all i, j ∈ [n] and there exists i, j ∈ [n] such that kij > 0, therefore,

(iii) also holds.

As in the first order case, the continuity and positivity of the transition probability

kernels, together guarantee the existence-uniqueness of the solution of (3.20) subject

to (3.21b) and the endpoint PDF constraints.

In the following Section, we express the solutions of (3.20) in terms of the so-called

Schrödinger factors for both first and second order controlled Kuramoto dynamics.

3.4.4 Optimal solutions and Schrödinger factors

First order case

Since S is not identity, the strengths of the process noise acting along the components

of (3.16) are nonuniform. To account this anisotropic noise, we consider an invertible

linear map θ ↦ ξ ∶= S−1θ, which by Itô’s lemma [93, Ch.4.2], results in the following

SDE for the transformed state vector ξ:

dξ = (u −Υ∇ξṼ (ξ))dt +
√
2 dw (3.23)

where the matrix Υ ∶= (∏
n
i=1 σ

2
i )S

−2
= diag (∏j≠i σ

2
j ) ≻ 0, and the potential

Ṽ (ξ) ∶=(
1

2
∑
i<j
kij (1 − cos(σiξi − σjξj − φij)) −

n

∑
i=1
σiPiξi)/(

n

∏
i=1
σ2
i ) .

In this new state coordinate, the problem (3.20) subject to (3.21a) and the endpoint

PDF constraints, takes the form

inf
(ρ̃u,u) ∫

T

0
∫
X
∥u(ξ, t)∥22 ρ̃

u(ξ, t) dξ dt (3.24a)
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∂ρ̃u

∂t
= −∇ξ ⋅ (ρ̃

u(u −Υ∇ξṼ )) +∆ξρ̃
u, (3.24b)

ρ̃u(ξ,0) = ρ0(Sξ)(
n

∏
i=1
σi) , ρ̃

u(ξ, T ) = ρT (Sξ)(
n

∏
i=1
σi) . (3.24c)

Applying Proposition 3.1 and Theorem 3.1 to (3.24), we derive a boundary-coupled

system of linear PDEs for the function pair (φ(t,ξ), φ̂(t,ξ)), given by
2

∂φ̂

∂t
= ∇ξ ⋅ (φ̂Υ∇ξṼ ) +∆ξφ̂, (3.25a)

∂φ

∂t
= ⟨∇ξφ,Υ∇ξṼ ⟩ −∆ξφ, (3.25b)

φ̂0(ξ)φ0(ξ) = ρ̃
u(ξ,0) = ρ0(Sξ)(

n

∏
i=1
σi) , (3.25c)

φ̂T (ξ)φT (ξ) = ρ̃
u(ξ, T ) = ρT (Sξ)(

n

∏
i=1
σi) , (3.25d)

whose solution recovers the optimal decision variables (ρ̃opt,uopt) for problem (3.24)

via the mapping

ρ̃opt(ξ, t) = φ̂(ξ, t)φ(ξ, t), uopt(ξ, t) = ∇ξ logφ(ξ, t). (3.26)

We refer to the function pair (φ, φ̂) as the Schrödinger factors, so named since their

product gives ρ̃opt
at all times, i.e., (φ, φ̂) comprise a factorization of ρ̃opt

. The optimally

controlled joint state PDF ρopt
for (3.20) is then obtained as

ρopt(θ, t) = ρ̃opt (S−1θ, t) /(
n

∏
i=1
σi) .

The optimal control in original coordinates is S∇θ logφ(S
−1θ, t).

Now the matter boils down to solving (3.25). Notice that (3.25a)-(3.25b) are the

uncontrolled forward and backward Kolmogorov PDEs, respectively, associated with

(3.23). It is tempting to apply further change of variables

t↦ s ∶= 1 − t, φ(ξ, t) ↦ p(ξ, s)

2
For notational ease, let φ̂0 ∶= φ̂(ξ,0), φ̂T ∶= φ̂(ξ, T ), φ0 ∶= φ(ξ,0), and φT ∶= φ(ξ, T ).
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proposed in [38, Theorem 3] to (3.25), for transforming (3.25a)-(3.25b) into forward-

forward PDEs as in [38, equation (33)]. When possible, this strategy allows using a

single FPK initial value problem (IVP) solver to set up a provably contractive fixed

point recursion for computing the pair (φ̂0, φ1). In our case, the aforesaid mappings

transform (3.25b) to

∂p

∂s
= ∇ξ ⋅ (p∇ξṼ ) +∆ξp + p ⟨∇ξṼ , (In −Υ)∇ξṼ ⟩ + ⟨∇ξp, (In −Υ)∇ξṼ ⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
extra terms compared to [38, equation (33b)]

, (3.27)

which has some additional terms compared to [38, equation (33b)].

An interesting observation follows: (3.27) becomes the same forward Kolmogorov

operator as in (3.25a) only if Υ equals identity. Consequently, the Algorithm Com-

puteFactorsSBP proposed in [38, Sec. V.D] that uses a single FPK IVP solver, cannot

be applied to our case. We need two different solvers for (3.25a) and (3.25b). To solve

(3.25a), we implement a modified form of the ProxRecur algorithm given in [5, Sec.

III.B] with the following distance functional which is a weighted version of the squared

2-Wasserstein distance between a pair of joint PDFs ϱ̃, ϱ̃k−1, given by

W 2
Υ (ϱ̃, ϱ̃k−1) ∶= inf

π∈Π(ϱ̃,ϱ̃k−1)
∫
T2n
⟨θ − θ̄,Υ(θ − θ̄)⟩ dπ(θ, θ̄), (3.28)

where Π (ϱ̃, ϱ̃k−1) is the set of joint PDFs supported on T2n
, having finite second mo-

ments, with given marginals ϱ̃, ϱ̃k−1.

To solve (3.25b), we employ the Feynman-Kac formula [122] as detailed in Algo-

rithm. 1.

Second order case

In the second order Kuramoto model (3.18), the anisotropy in process noise affects

the last n components. Motivated by our treatment in the first order case, we now
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consider the invertible linear map

⎛
⎜
⎜
⎝

θ

ω

⎞
⎟
⎟
⎠

↦

⎛
⎜
⎜
⎝

ξ

η

⎞
⎟
⎟
⎠

∶= (I2 ⊗ (MS−1))

⎛
⎜
⎜
⎝

θ

ω

⎞
⎟
⎟
⎠

(3.29)

which by Itô’s Lemma [93, Ch.4.2], results in the following SDE for the transformed

state vector (ξ,η)⊺:

⎛
⎜
⎜
⎝

dξ

dη

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

η

u − Υ̃∇ξU(ξ) − ∇ηF (η)

⎞
⎟
⎟
⎠

dt +

⎛
⎜
⎜
⎝

0n×n

In

⎞
⎟
⎟
⎠

dw (3.30)

where the matrix Υ̃ ∶= (∏
n
i=1 σ

2
im
−2
i )MS−2, and the potentials

U(ξ) ∶=(
1

2
∑
i<j
kij (1 − cos(

σi
mi

ξi −
σj
mj

ξj − φij))−

n

∑
i=1

σi
mi

Piξi)(
n

∏
i=1
(
mi

σi
)
2

) ,

F (η) ∶=
1

2
⟨η,S−1Γη⟩.

In this new state coordinate, the problem (3.20) subject to (3.21b) and the endpoint

PDF constraints, takes the form

inf
(ρ̃u,u) ∫

T

0
∫
X
∥u(ξ,η, t)∥22 ρ̃

u(ξ,η, t) dξ dη dt (3.31a)

∂ρ̃u

∂t
=∇η ⋅ (ρ̃

u (−u + Υ̃∇ξU(ξ) + ∇ηF (η))

− ⟨η,∇ξρ̃
u⟩ +∆ηρ̃

u,

(3.31b)

ρ̃u(ξ,η,0) = ρ0

⎛
⎜
⎜
⎝

(I2 ⊗SM−1)

⎛
⎜
⎜
⎝

ξ

η

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

(
n

∏
i=1

σ2
i

m2
i

) ,

ρ̃u(ξ,η, T ) = ρT

⎛
⎜
⎜
⎝

(I2 ⊗SM−1)

⎛
⎜
⎜
⎝

ξ

η

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

(
n

∏
i=1

σ2
i

m2
i

) .

(3.31c)

Applying Proposition 3.1 and Theorem 3.1 to (3.31), we next derive a boundary-
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coupled system of linear PDEs akin to (3.25), for the Schrödinger factors (φ, φ̂), given

by

∂φ̂

∂t
= −⟨η,∇ξφ̂⟩ + ∇η ⋅ (φ̂(Υ̃∇ξU(ξ) + ∇ηf̃(η))) +∆ηφ̂, (3.32a)

∂φ

∂t
= −⟨η,∇ξφ⟩ + ⟨Υ̃∇ξU(ξ) + ∇ηf̃(η),∇ηφ⟩ −∆ηφ, (3.32b)

φ̂0(ξ)φ0(ξ) = ρ0
⎛
⎜⎜
⎝
(I2 ⊗SM−1)

⎛
⎜⎜
⎝

ξ

η

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
(
n

∏
i=1

σ2i
m2
i

) , (3.32c)

φ̂T (ξ)φT (ξ) = ρT
⎛
⎜⎜
⎝
(I2 ⊗SM−1)

⎛
⎜⎜
⎝

ξ

η

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
(
n

∏
i=1

σ2i
m2
i

) . (3.32d)

The optimal decision variables (ρ̃opt,uopt) for problem (3.31) are obtained from the

solution of (3.32) as

ρ̃opt(ξ,η, t) = φ̂(ξ,η, t)φ(ξ,η, t), (3.33)

uopt(ξ,η, t) = ∇⎛
⎝
ξ

η

⎞
⎠

logφ(ξ,η, t).

The optimally controlled joint state PDF ρopt
for (3.20) in the second order case, is then

obtained as

ρopt(θ,ω, t) = ρ̃opt

⎛
⎜
⎜
⎝

(I2 ⊗MS−1)

⎛
⎜
⎜
⎝

θ

ω

⎞
⎟
⎟
⎠

, t

⎞
⎟
⎟
⎠

(
n

∏
i=1

m2
i

σ2
i

) .

The optimal control in the original coordinates is

(I2 ⊗SM−1)∇θ logφ

⎛
⎜
⎜
⎝

(I2 ⊗MS−1)

⎛
⎜
⎜
⎝

θ

ω

⎞
⎟
⎟
⎠

, t

⎞
⎟
⎟
⎠

.

As in the first order case, our algorithmic approach is to solve (3.32) via fixed

point recursion over the pair (φ̂0, φT ) that is provably contractive w.r.t. the Hilbert’s

projective metric. In particular, to solve the backward Kolmogorov PDE (3.32b), we
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use the Feynman-Kac formula. The PDE (3.32a) is the so-called kinetic Fokker-Planck

equation [123, p. 40], and to solve the same, we propose a modified version of the

proximal recursion proposed in [5, Sec. V.B]. Our modification concerns with the

distance functional in the proximal recursion, i.e., we consider the following analogue

of (3.28):

W̃ 2
h,Υ̃
(ϱ̃, ϱ̃k−1) ∶=

inf
π∈Π(ϱ̃,ϱ̃k−1)

∫
T2n×R2n

sh,Υ̃ (ξ,η, ξ̄, η̄) dπ (ξ,η, ξ̄, η̄) , (3.34)

where h > 0 is the step-size in proximal recursion, Π (ϱ̃, ϱ̃k−1) is the set of joint prob-

ability measures over the product space T2n × R2n
that have finite second moments

and marginal PDFs ϱ̃, ϱ̃k−1. The “ground cost" in (3.34) is

sh,Υ̃ (ξ,η, ξ̄, η̄) ∶=

⟨ (η̄ − η + hΥ̃∇U(ξ)) , Υ̃
−1
(η̄ − η + hΥ̃∇U(ξ)) ⟩

+ 12⟨(
ξ̄ − ξ

h
−
η̄ − η

h
) , Υ̃

−1
(
ξ̄ − ξ

h
−
η̄ − η

h
)⟩. (3.35)

In the next Section, we bring these ideas together to detail the algorithms for comput-

ing the optimal solutions in both the first and second order cases.

3.4.5 Algorithms

In the following, we first outline the proximal algorithm for solving the forward Kol-

mogorov PDEs (3.25a) and (3.32a). Then we presents the Feynman–Kac algorithm for

solving the backward Kolmogorov PDEs (3.25b) and (3.32b). Finally, we summarizes

the overall algorithm for solving (3.25) and (3.32).
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Proximal algorithm

For solving IVPs involving the forward Kolmogorov PDEs (3.25a) and (3.32a), we em-

ploy proximal recursions over the space of measurable positive functions over discrete

time tk−1 ∶= (k−1)hwhere the index k ∈ N, and h > 0 is (here constant) time step-size.

These recursions are of the form

ϕ̂k = prox
d
hϕ̂
(ϕ̂k−1) ∶= arg inf

ϕ̂

1

2
(d (ϕ̂, ϕ̂k−1))

2
+ hΨ (ϕ̂) (3.36)

where ϕ̂k−1(⋅) ∶= ϕ̂ (⋅, tk−1), d(⋅, ⋅) is a distance-like functional, Ψ is an energy-like

functional, and ϕ̂0 is suitable initial condition. The recursion (3.36) reads as “the

proximal operator of the functional hΨ w.r.t. the distance d". The pair (d,Ψ) is con-

structed in a way that the sequence of functions {ϕ̂k−1}k∈N generated by (3.36) satisfies

ϕ̂k−1(⋅) → φ̂(⋅, t) in L1 (X) as h ↓ 0.

For (3.25a), we set d ≡WΥ given by (3.28), andΨ(ϕ̂) ≡ ∫∏n
i=1[0,2π/σi)

(Ṽ + log ϕ̂) ϕ̂dξ.

For (3.32a), we set d ≡Wh,Υ̃ given by (3.34), and

Ψ(ϕ̂) ≡ ∫
(∏n

i=1[0,2πmi/σi))×Rn
(U + F + log ϕ̂) ϕ̂ dξ dη

. For a discussion on the convergence guarantees and on implementation of these

proximal updates via fixed point recursions, we refer the readers to [5]; see also [38,

Sec. V-B,C].

Feynman-Kac algorithm

For solving IVPs involving the backward Kolmogorov PDEs (3.25b) and (3.32b), we

employ the Feynman-Kac path integral formulation [93, Ch. 8.2], [124], [125, Ch. 3.3],

[126]. We consider a general form of backward PDEs as

∂φ

∂t
= Lbackwardφ = ⟨∇x̃φ, f⟩ + trace (G(t, x̃)⊺Hess(φ)G(t, x̃)) (3.37)
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To find the solution of the above PDE at t0 = τ , we can use the following algorithm

based on Feynman–Kac formula.

Algorithm 1 Feynman-Kac Algorithm for solving backward PDE IVP

1: procedure FeynmanKac(φT (x̃T ), x̃T , T, x̃τ , τ, f ,G,
Nr,nSample,dim, h, λ, ς)

2: x̃r ← [0nSample×dim×Nr] ▷ initialize

3: φr ← [0nSample×Nr]

4: numSteps= T−τ
h

5: for i ← 1 to Nr do

6: x̃temp = [xτ ,0nSample×dim×numSteps]

7: for k ← 1 to numSteps do

8: x̃temp(∶, ∶, k +1) = x̃temp(∶, ∶, k)+hf(k, x̃(∶, ∶, k))+G(k, x̃k)(wk+1 −wk)
▷ Euler-Maruyama update

9: end for

10: x̃r(∶, ∶, i) ← x̃temp(∶, ∶,numSteps + 1)
11: φr(∶, i) ← ElasticNet(φT (x̃T ), x̃T ,

x̃r(∶, ∶, i), λ, ς)
12: end for

13: return φ(τ, x̃τ) ←
1
Nr

Nr

∑
i=1
φr(∶, i)

14: end procedure

In line 11 of the above algorithm, we implement an elastic net regression with

the ς1 as the L1 norm term and ς2 as the L2 norm term coefficient to estimate the

value of φT at x̃r(∶, ∶, i) by knowing the values of φT (x̃T ) and x̃T . We use the ADMM

algorithm [58, Ch. 5] to implement the ElasticNet regression.

Overall algorithm

We now bring together the ideas from scattered point cloud-based computation and

Feynman Kac formula and outline the overall algorithm to solve the SBPs for the first

and second-order Kuramoto oscillators. We perform a recursion over the pair(φ̂0(x̃), φ1(x̃)),

and the computational steps for the same are:
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Step 1. Guess φ0(x̃) (everywhere positive).

Step 2. Compute φ̂0(x̃) = ρ̃0(x̃)/φ0(x̃)

Step 3. Solve IVP (3.25a) or (3.32a) till t = 1 to obtain φ̂1(x̃).

Step 4. Compute φ1(x̃) = ρ̃1(x̃)/φ̂1(x̃)

Step 5. Use Algorithm 1 to calculate φ0(x̃) = φ(0, x̃) for (3.25b) or (3.32b).

Step 6. Repeat until the pair (φ̂0(x̃), φ1(x̃)) has converged

Step 7. Compute the Schrodinger factors at any time t, i.e., the pair (φ̂(t, x̃), φ(t, x̃))

using the IVPs (3.25) and (3.32).

Step 8. Compute the discrete optimal pair (ρ̃opt,uopt) from (3.26) or (3.33), with

the obtained (φ̂(t, x̃), φ(t, x̃)).

Step 9. Bring back the variables to the original coordinate (θ,ω).

3.4.6 Numerical example

First order case

We consider an instance of (3.16) with n = 2 oscillators, i.e., θ ∈ X = T2
. We generated

the following parameters uniformly random from the respective intervals: Pi ∈ [0,10],

σi ∈ [1,5] for i = 1,2, and k12 ∈ [0.7,1.2], φ12 ∈ [0,
π
2 ).

We set the final time T = 1, and ρ0, ρT as in (3.22) (see Fig. 3.1) with κ0 = (1,1)
⊺
,

κT = (0.01,0.01)
⊺
, m0 = (π,π)

⊺
, mT = (0,0)

⊺
, Λ0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1

1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ΛT = 0.1Λ0. We

solve (3.25) following the steps in Section 3.4.5. Specifically, we solve the backward

PDE (3.25b) via Algorithm 1 with parameters Nr = 100, h = 0.1,nSample = 441, λ1 =

λ2 = 0.01. To solve the forward PDE (3.25a), we used the PROXRECUR algorithm

from [5, Sec. III-B.1] with algorithmic parameters ε = 1, β = 0.1, δ = 0.1, L = 300

together with the modifications mentioned in Section 3.4.5.
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Fig. 3.2a shows the snapshots of the optimally controlled joint ρopt(θ, t) steering

ρ0 to ρT over time horizon [0,1]. Fig. 3.2b shows the snapshots of the uncontrolled

joint ρunc(θ, t) from the same ρ0. The snapshots of the magnitude of optimal control

are depicted in Fig. 3.2c.

(a) t = 0 (b) t = 1

Figure 3.1: Endpoint von Mises θ PDFs over T2
.

Second order case

We next consider an instance of (3.18) with n = 2 oscillators, i.e., (θ,ω) ∈ X = T2 ×

R2
. We set T = 1, and use {Pi, σi}i=1,2, k12, φ12 as in the first order case above. We

consider the initial joint PDF ρ0(θ,ω) ≡ ρ0(θ)×Unif ([0,0.2]2), and the terminal joint

PDF ρT (θ,ω) ≡ ρT (θ) ×Unif ([0,0.2]2) where the θ marginals ρ0, ρT are identical to

ρ0, ρT in the first order case, and Unif(⋅) denotes the uniform PDF. In other words, the

endpoint joint PDFs ρ0, ρT are supported on the compact set T2 × [0,0.2]2.

We solve (3.32) using the same computational set up as in the subsection above

except that the PROXRECUR algorithm [5, Sec. III-B.1] for solving the forward PDE

(3.32a) is suitably modified as mentioned in Section 3.4.5.

Fig. 3.3a shows the snapshots of the θ marginals of the optimally controlled joints

ρopt(θ,ω, t). Fig. 3.3b shows the θ marginal snapshots of the uncontrolled joints. The

snapshots of the magnitude of optimal control are depicted in Fig. 3.3c. A comparison
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(a) Contour plots of the optimally controlled state PDFs ρopt(θ, t) over T2
. Each subplot is a

snapshot in time t ∈ [0,1].

(b) Contour plots of the uncontrolled state PDFs ρunc(θ, t) over T2
. Each subplot is a snapshot

in time t ∈ [0,1].

(c) Contour plots of the 2-norm magnitude of the optimal control over T2
. Each subplot is a

snapshot in time t ∈ [0,1].

Figure 3.2: Simulation results for the optimal PDF steering for the first order Kuramoto os-

cillators over t ∈ [0,1]. The color denotes the value of the plotted variable; see colorbar (dark

hue = high, light hue = low).
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(a) Contour plots of θ marginals of the optimally controlled joints ρopt(θ,ω, t) over T2
. Each

subplot is a snapshot in time t ∈ [0,1].

(b) Contour plots of θ marginals of the uncontrolled joints ρunc(θ,ω, t) over T2
. Each subplot

is a snapshot in time t ∈ [0,1].

(c) Contour plots of the 2-norm magnitude of the optimal control over T2
. Each subplot is a

snapshot in time t ∈ [0,1].

Figure 3.3: Simulation results for the optimal PDF steering for the second order Kuramoto

oscillators over t ∈ [0,1]. The color denotes the value of the plotted variable; see colorbar

(dark hue = high, light hue = low).
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of Figs. 3.2c and 3.3c reveals that in the second order case, the prior dynamics being

mixed conservative-dissipative, the optimal control entails forcing that is about two

orders of magnitude above the same for the first order case. Fig. 3.4 shows four opti-

mally controlled sample paths on T2
for the first order case (in red) and another four

for the second order case (in blue).

Figure 3.4: The optimally controlled first order (in red) and second order (in blue) Kuramoto

sample paths on T2
for the numerical simulation in Section 3.4. The circled and diamond

markers denote the initial and terminal angular coordinates, respectively.

Order parameter

In the coupled oscillator context, a measure of synchronization, or lack thereof, is the

order parameter r ∶= 1
n ∣∑

n
j=1 exp(ιθj)∣ ∈ [0,1] where ι ∶=

√
−1; see e.g., [102, Sec. 3.2].

For instance, r = 0 implies lack of synchrony, and r = 1 implies synchronized motion

in the state space. Fig. 3.5 shows the snaphsots of the order parameter PDFs under

optimal control for the aforesaid numerical simulation. As the optimal control steers

the stochastic state θ from unimodal to bimodal, the r PDFs in Fig. 3.5 slightly flatten

over this transfer horizon and develop a secondary peak around r = 0.5.
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Figure 3.5: PDFs of r for the numerical simulation in Section 3.4.
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4 | Control Non-affine Generalized

Schrödinger Bridge

4.1 Problem Formulation

Motivated by feedback control of colloidal self-assembly (SA), in this chapter, we con-

sider a control non-affine system for the minimum energy generalized SBP. Specifi-

cally, we aim to solve (2.13) given that:

q(⋅) ≡ 0, r(⋅) ≡
1

2
∥ ⋅ ∥22,

where the associated drift and diffusion coefficient pair (f ,g) in (2.14), can either be

given as an Itô SDE that models the dynamics of colloidal SA pathways, as detailed

in [127, 128] or they not available from first principle physics, but are instead ap-

proximated in a data-driven manner (e.g., using neural networks). This is particularly

challenging since both f and g can, in general, be non-autonomous (i.e., may have

explicit t-dependence) as well as nonlinear in state, and non-affine in control.

Specifically, we focus on learning the solution of the nonlinear stochastic optimal

control problems over a given fixed time horizon [0, T ] of the form

inf
u∈U

Eµu [∫
T

0

1

2
∥u(t,x)∥22 dt] (4.1a)

subject to dx = f(t,x,u)dt +
√
2 g(t,x,u)dw, (4.1b)

x(t = 0) ∼ µ0 (given), x(t = T ) ∼ µT (given), (4.1c)

where µ0, µT denote the prescribed probability measures over the state space X ⊆ Rn

at t = 0 and t = T , respectively. The constraint in (4.1b) is a controlled Itô SDE with

the state vector x ∈ X , the control vector u ∈ Rm
, and the standard Wiener process

w ∈ Rp
. For the solution to the SDE (4.1b) to be for colloidal SA systems, the state
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vector x represents suitable order parameters. The drift coefficient f is a vector field

given by mapping f ∶ [0, T ]×X×U ↦ Rn
, and the diffusion coefficient g is a matrix field

given by mapping g ∶ [0, T ] × X × U ↦ Rn×p
. For the SDE solutions to be well-posed,

we will detail suitable smoothness assumptions on f and g.

Associated with the diffusion coefficient g, is a diffusion tensor G ∶= gg⊺ ∈ Sn+,

which being an outer product, is a symmetric positive semidefinite matrix field G ∶

[0, T ] × X × U ↦ Sn+. In (4.1a), we suppose that the set of admissible controls U

comprises of finite energy Markovian inputs within a prescribed time horizon, i.e.,

U ∶= {u ∶ [0, T ] × X ↦ Rm ∣ ⟨u,u⟩ < ∞} , (4.2)

The superscript u in µu
indicates that the joint measure depends on the choice of

control u. Thus, the objective in (4.1a) is to minimize the control effort in steering

the state statistics from µ0 to µT under a prespecified time horizon and controlled

stochastic dynamics constraints, over all admissible control policies u(t,x) in U .

In feedback control of colloidal SA systems, the objective generally is to design

control policies that steer the system from an initial disordered stochastic state to a

desired terminal ordered crystalline stochastic state [129,130]. These stochastic states

are naturally encoded in terms of suitable order parameters. As such, formulation

(4.1) is particularly appealing in this context because it allows for directly shaping the

multivariate distribution of order parameters via optimal control synthesis. The drift

and diffusion coefficients f ,g in equation (4.1b) allow for the representation of the free

energy landscape, which is crucial for circumventing kinetic traps or local minima

when directing the system towards a desired end state, typically a global minimum

within the solution space.
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4.1.1 Smoothness of the learnt drift and diffusion coefficients

For an admissible Markovian policy u(t,x) ∈ U , we assume that the coefficients f

and g satisfy

(A1) non-explosion and Lipschitz conditions: there exist constants c1, c2 such that

∥f(t,x,u(t,x))∥2 + ∥g(t,x,u(t,x))∥2 ≤ c1 (1 + ∥x∥2) ,

and that

∥f(t,x,u(t,x)) − f(t, x̃,u(t, x̃))∥2 ≤ c2∥x − x̃∥2

for all x, x̃ ∈ X , t ∈ [0, T ];

(A2) uniformly lower bounded diffusion: there exists constant c3 such that the

diffusion tensor G = gg⊺ satisfies

⟨x,G (t,x,u(t,x))x⟩ ≥ c3∥x∥
2
2

for all t ∈ [0, T ].

The assumption (A1) guarantees [93, p. 66] existence-uniqueness for the sample path

of the SDE (2.13b). The assumptions (A1), (A2) together guarantee [94, Ch. 1] that the

generator associated with (2.13b) yields absolutely continuous probability measures

µu
for all t > 0 provided the prescribed initial probability measure µ0 ∶= µu(t = 0,x)

is absolutely continuous.

In this work, we assume that the given endpoint measures µ0, µT are absolutely

continuous, i.e., µ0 = ρ0(x)dx, µT = ρT (x)dx where ρ0, ρT are the corresponding

endpoint joint state PDFs. If the solution for (4.1) exists, then under the stated reg-

ularity assumptions on f and g, the corresponding controlled measure µu(t,x) will

remain absolutely continuous with dµu(t,x) = ρu(t,x)dx for admissible u ∈ U . We

next discuss reformulating (4.1) in terms of the controlled joint state PDF ρu.
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4.1.2 PDF steering problem

With the assumptions in Section 4.1.1, the GSBP (4.1) can be rewritten as a state PDF

steering problem:

inf
(ρu,u) ∫

T

0
∫
X

1

2
∥u(t,x)∥22 ρ

u(t,x) dx dt (4.3a)

subject to

∂ρu

∂t
= −∇x ⋅ (ρ

uf) + ⟨Hess,Gρu⟩, (4.3b)

ρu(0,x) = ρ0, ρu(T,x) = ρT . (4.3c)

The constraint (4.3b) is the controlled Fokker-Planck-Kolmogorov (FPK) PDE which

governs the flow of the joint state PDF ρu associated with the SDE (2.13b). For a

derivation of (4.3b) from (2.13b), see e.g., [131, Prop. 3.3]. For the term ⟨Hess,Gρu⟩

in (4.3b), note from (1.18) that

⟨Hess,Gρu⟩ = ∑
i,j

∂2

∂xi∂xj
(Gij(t,x,u(t,x))ρ

u(t,x)) .

The boundary conditions (4.3c) at t = 0 and t = T involve the prescribed initial and

terminal joint state PDFs ρ0 and ρT , respectively.

We note that when f ≡ u, g (and hence G) ≡ In, then (4.3b) reduces to the con-

trolled heat PDE, and problem (4.3) reduces to the classical SBP. Furthermore, when

f ≡ u, g ≡ 0, then (4.3b) reduces to the Liouville PDE [76] for integrator dynamics

ẋ = u, and problem (4.3) reduces to the dynamic OMT.

Remark 4.1. To better understand the correspondence between (4.1) and (4.3), notice

that (4.3a) is simply a re-writing of (4.1a) by “opening up” the expectation operator w.r.t.

the controlled state probability measure dµu(t,x) = ρu(t,x)dx. The constraint (4.3b)

is the PDF dynamics induced by the sample path dynamics (2.13b). Intuitively, the term

1
2∥u∥

2
2ρ

udx is a generalized kinetic energy, and the state-time integral (4.3a) encodes
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total control effort over the finite horizon [0, T ]. The FPK PDE (4.3b) is a continuity

equation expressing the conservation of probability mass under the drift coefficient f

and the diffusion coefficient g (thus the diffusion tensor G).

4.1.3 Existence and uniqueness of solution

Under the assumptions stated already in Section 4.1.1, the controlled PDF ρu exists for

u ∈ U . For the existence-uniqueness of solution for the variational problem (4.3), we

further assume that

(A3) the PDF ρu remains positive and continuous for all t ∈ [0, T ].

Then, following [119, Thm. 3.2], [132], problem (4.3) is guaranteed to admit a unique

solution; see also [133, Sec. 10].

We next deduce the first order optimality conditions for the GSBP (4.3) in the form

of a coupled system ofm+2 PDEs with boundary conditions, wherem is the number of

control inputs. With respect to the existing literature on the conditions of optimality

for GSBPs, this system of PDEs for non-affine control is the most general, and is a new

result.

4.1.4 Conditions for optimality

We start with the Lagrangian associated with the GSBP (4.3):

L(ρu,u,ψ) ∶= ∫
T

0
∫
X
{
1

2
∥u(t,x)∥22ρ

u(t,x) + ψ(t,x)×

(
∂ρu

∂t
+∇x.(ρ

uf) − ⟨Hess,Gρu⟩)}dx dt

(4.4)

where ψ(t,x) is a C2([0, T ];X) Lagrange multiplier. Let

P0T (X) ∶= {ρ(t,x) ≥ 0 ∣ ∫
X
ρdx = 1,
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ρ(t = 0,x) = ρ0, ρ(t = T,x) = ρT}. (4.5)

Performing the unconstrained minimization of the Lagrangian L over P0T (X) × U ,

where U is given in (4.2), we get the following result.

Theorem 4.1. (Optimal control and optimal state PDF)

The pair (ρuopt(t,x),uopt(t,x)) that solves (4.3), must satisfy the following system of

m + 2 coupled PDEs:

∂ψ

∂t
=
1

2
∥uopt∥

2
2 − ⟨∇xψ,f⟩ − ⟨G,Hess(ψ)⟩, (4.6a)

∂ρuopt
∂t
= −∇x ⋅ (ρ

u
optf) + ⟨Hess,Gρuopt⟩, (4.6b)

uopt = ∇uopt (⟨∇xψ,f⟩ + ⟨G,Hess(ψ)⟩) , (4.6c)

with boundary conditions

ρuopt(0,x) = ρ0, ρuopt(T,x) = ρT , (4.7)

where ψ(t,x) is a C2([0, T ];X) value function.

Remark 4.2. The conditions of optimality (4.6) relate the primal variables (ρuopt(t,x),

uopt(t,x)) with the dual variable (i.e., Lagrange multiplier) ψ(t,x). Specifically, the

HJB PDE (4.6a) and the controlled FPK PDE (4.6b) express the dual and the primal feasi-

bility, respectively. The optimal control policy equation (4.6c) expresses the primal-dual

relation.

The system (4.6) for our non-affine GSBP comprises ofm+2 coupled PDEs in three

unknowns: ρopt,uopt, ψ, where m is the number of control inputs. This is because

(4.6c) itself gives m PDEs coupled in ψ and uopt, while the equation pair (4.6a)-(4.6b)

are coupled in ρuopt,uopt, ψ. To the best of the authors’ knowledge, this is the first

work to derive and numerically solve the conditions of optimality for control-non-
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affine GSBP in multi-dimensional state space. As detailed in the Theorem 4.1, the

resulting system of equations is fundamentally different from the control-affine SBPs

in that the optimal control is no longer an explicit functional of the (sub)gradient of the

associated value function solving a HJB PDE. As a result, existing approaches from the

literature such as the Hopf-Cole transform [134, 135] followed by a contractive fixed

point recursion [38, 136], or Feynman-Kac path integral techniques That we used in

Chapter 3, cannot be used to numerically solve our system of equations. Leveraging

recent advances in NNs, we propose a computational framework to learn the solution

for this system of m + 2 PDEs and boundary conditions.

Table 4.1 summarizes how known results in the literature can be recovered as

special cases of (4.6).

4.2 Case Study: Colloidal Self-assembly Sample Path

Model

In this section, we consider a one-dimensional special case of (4.1b), as represented

by the Itô SDE given below:

d⟨C6⟩ =D1(⟨C6⟩, π) dt +
√
2D2(⟨C6⟩, π) dw (4.8)

where t denotes time, and the state variable ⟨C6⟩ ∈ [0,6] is an order parameter de-

noting the average number of hexagonally close packed particles around each par-

ticle. This specific model, derived from [127, 128], provides a focused exploration of

SA phenomena in colloidal systems through a mathematical lens. We consider the

dynamics (4.8) over a fixed time horizon [0, T ]. The control input u ∶= π(⟨C6⟩, t) ∈
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R denotes electric field voltage [137] that results from a Markovian control policy

π ∶ [0,6] × [0, T ] ↦ R, and w denotes the standard Wiener process in R. In (4.8),

the functionals D1(⋅, ⋅) and D2(⋅, ⋅) are referred to as the drift and the diffusion land-

scapes, respectively. In the colloidal SA context, bothD1,D2 are nonlinear in state and

non-affine in control.

Typically, the drift landscape D1 is expressed in terms of the so-called free energy

landscape F and the diffusion landscape D2, as

D1(⟨C6⟩, π) =
∂

∂⟨C6⟩
D2(⟨C6⟩, π)

−
D2(⟨C6⟩, π)

kB θ

∂

∂⟨C6⟩
F (⟨C6⟩, π), (4.9)

where the Boltzmann constant kB = 1.38066 × 10−23 Joules per Kelvin, and θ denotes

a suitable temperature in Kelvin. In Section 4.2.5, we will give illustrative numerical

results for specific choices of the diffusion and the free energy landscapes. For an

admissible Markovian policy π(⋅, t), we assume that the landscapesD1,D2 satisfy the

assumptions (A1) and (A2) presented in Section 4.1.1.

4.2.1 Related works

Colloidal SA is the process by which discrete components (e.g., micro-/nano-particles

in solution) spontaneously organize into an ordered state [138]. The spontaneous self-

organization central to colloidal SA enables “bottom-up” materials synthesis, which

can allow for manufacturing advanced, highly-ordered crystalline structures in an

inherently parallelizable and cost-effective manner [130, 139]. The fact that colloidal

SA can begin with micro- and/or nano-scale building blocks of varying complexity

indicates that this bottom-up engineering approach can be used to synthesize novel

metamaterials with unique optical, electrical, or mechanical properties [130,139,140].
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Colloidal SA is an inherently stochastic (i.e., random) process prone to kinetic ar-

rest due to particle Brownian motion [130, 139, 141, 142]. This leads to variability in

materials manufacturing and possibly high defect rates, which can severely compro-

mise the viability of using colloidal SA to reproducibly manufacture advanced mate-

rials. This lack of reproducibility in turn prevents colloidal SA from achieving cost-

effective and scalable manufacturing of such materials [130, 139, 143, 144]. Thus, the

thermodynamic and kinetic driving forces that govern colloidal SA, will need to be

precisely and systematically modulated to consistently and efficiently direct colloidal

SA systems towards high-value mass-producible structures and materials.

To more reproducibly drive collodial SA systems towards desired structures, it

has been proposed to design a model-based feedback control policy wherein a global

actuator (e.g., electric field voltage) is manipulated based on currently available in-

formation on the system state and a dynamical system model [127, 128, 145]. Work

in [127] presents a model predictive control (MPC) method for controlling colloidal

SA. These authors consider the dynamical model for the stochastic colloidal assem-

bly process based on actuator-parameterized Langevin equations. In [128, 145], the

system is guided towards the desired highly-ordered structure based on a Markov de-

cision process optimal control policy.

In comparison, the perspective and approach taken in this chapter towards opti-

mal control of a colloidal SA process are significantly different, as we seek to control

the time evolution of the joint probability distribution supported over the states of

colloidal SA. Our technical approach and contributions are as follows.

(1) We show that the problem of controlling colloidal SA over a finite-time hori-

zon can be naturally formulated as a control non-affine generalized Schrödinger

Bridge. The notion of lifting the stochastic control of colloidal SA directly onto
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the space of state probability measure as an SBP, is novel.

(2) While there exists a growing literature on numerically solving the SBPs with

nonlinear prior dynamics [38,39,71,91,146], these works leverage specific struc-

tures of the underlying drift and diffusion terms in an SDE. In contrast, the

typical colloidal SA application, as considered here, requires more generic con-

siderations since the drift and diffusion coefficients can be nonlinear w.r.t to the

states as well as non-affine in control. We show that, unlike the existing SBP

conditions of optimality, our setting leads to a system of three coupled PDEs

with endpoint PDF constraints. These three PDEs are the controlled FPK PDE,

the HJB PDE, and a policy PDE.

(3) The resulting system of three coupled PDEs is not amenable to existing compu-

tational approaches for the SBPs, such as the contractive fixed point recursions

on the so-called Schrödinger factors. To address this challenge, we employ the

notion of physics-informed neural networks (PINN) (e.g., [40,41]) to train a deep

neural network approximating the solution of our coupled PDE system and the

boundary conditions.

The distinct feature of the proposed control methodology is that it derives an opti-

mal control policy that steers a given probability distribution of the order parameters

of a colloidal SA system to a desired one over a finite-time horizon. The computation

does not require making parametric approximations of the statistics, such as the Gaus-

sian mixture or exponential family. It also avoids approximating the nonlinearities in

the drift and diffusion a priori, e.g., via Taylor series.

Our technical contribution is a new control methodology. To make the exposi-

tion concrete, we use a specific univariate SDE model from the literature [127, 128]
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to demonstrate the proof-of-concept for our proposed method. The specificity of the

model is used from the outset as a didactic writing style, even though our proposed

method is general, i.e., not contingent on the nonlinearity structure or dimensionality

of the SDE model.

4.2.2 Controlled self-assembly as distribution steering

We propose reformulating the problem of designing a control policy π(⟨C6⟩, t) for

the controlled self-assembly subject to (4.8), to that of steering the statistics of the

stochastic state ⟨C6⟩ from a prescribed initial probability measure µ0 at t = 0 to a

prescribed terminal probability measure µT at t = T . This is motivated by the fact

that ⟨C6⟩ ≈ 0 implies disordered crystalline structure while ⟨C6⟩ ≈ 5.1 implies an

ordered structure. So steering the stochastic state from disordered to ordered naturally

transcribes to steering a high concentration of probability mass around 0 to the same

around 5.1. Note the target value of ⟨C6⟩ is 5.1 and not 6 due to edge effects in the

lattice structure.

We emphasize here that we use the term “statistics” in nonparametric sense, i.e.,

we allow arbitrary probability measures µ0, µT supported on the compact set [0,6],

and ask for provable steering of µ0 to µT via control, not just steering of first few

statistical moments of µ0 to µT such as mean and variance. Even if µ0, µT have finite

dimensional sufficient statistics, the transient ⟨C6⟩ probability measures induced by

the nonlinear SDE (4.8) for a given control policy π, may not have so. This motivates

formulating the control synthesis as a two point boundary value problem over the

(infinite dimensional) manifold of state probability measures. So, for this case study,

we focus on the nonlinear stochastic optimal control model-based non-affine problems
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Figure 4.1: The prescribed initial PDF ρ0 (solid line) at the initial time t = 0, and the prescribed

terminal PDF ρT (dashed line) at the final time t = T . Both PDFs are supported over [0,6],
which is the range of values for the state variable ⟨C6⟩ denoting a crystallinity order parameter.

In particular, ⟨C6⟩ ≈ 0 implies a disordered state and ⟨C6⟩ ≈ 5-6 implies a highly ordered state.

over a given fixed time horizon [0, T ] of the form

inf
π∈U ∫

T

0
Eµπ [

1

2
π2] dt

subject to d⟨C6⟩ =D1(⟨C6⟩, π)dt +
√
2D2(⟨C6⟩, π) dw,

⟨C6⟩(t = 0) ∼ µ0 (given),

⟨C6⟩(t = T ) ∼ µT (given),

(4.10)

where µπ ≡ µπ(⟨C6⟩, t) denotes the controlled state probability measure at time t. In

other words, we design state feedback for dynamically reshaping uncertainties subject

to the dynamical constraint (4.8), endpoint statistical constraints, and the deadline

constraint.

Recall that the input is the electrical field voltage, and the minimum effort objective
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Figure 4.2: The architecture of the physics-informed neural network with the system order

parameter and time as the input features x ∶= (⟨C6⟩, t). The output y comprises of the value

function, optimally controlled PDF, and optimal control policy, i.e., y ∶= (ψ, ρπopt, πopt).

is a natural candidate to promote control parsimony.

We suppose that the endpoint probability measures µ0, µT are absolutely contin-

uous with respective PDFs ρ0, ρT ; see Fig. 4.1. Then, we can rewrite (4.10) as the

variational problem:

inf
(ρπ ,π) ∫

T

0
∫
R

1

2
π2(⟨C6⟩, t)ρ

π(⟨C6⟩, t) d⟨C6⟩ dt (4.11a)

subject to

∂ρπ

∂t
= −

∂

∂⟨C6⟩
(D1ρ

π) +
∂2

∂⟨C6⟩
2
(D2ρ

π), (4.11b)

ρπ(⟨C6⟩,0) = ρ0, ρπ(⟨C6⟩, T ) = ρT , (4.11c)

where (4.11b) is the controlled FPK PDE. The feasible pair (ρπ, π) ∈ P0T × U .

4.2.3 Conditions for optimality

The next theorem is a specialization of Theorem 4.1, from which we derive the first-

order conditions for optimality for problem (4.11). These conditions take the form of

three coupled PDEs with endpoint boundary conditions while tacitly assuming ex-

istence and uniqueness. In Section 4.2.4, we will numerically solve this system via

PINN.
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Theorem 4.2. (First order conditions for optimality)

The pair (ρπopt(⟨C6⟩, t), πopt(⟨C6⟩, t)) that solves (4.11), must satisfy the system of cou-

pled PDEs

∂ψ

∂t
=
1

2
(πopt)

2 −D1
∂ψ

∂⟨C6⟩
−D2

∂2ψ

∂⟨C6⟩
2
, (4.12a)

∂ρπopt
∂t
= −

∂

∂⟨C6⟩
(D1ρ

π
opt) +

∂2

∂⟨C6⟩
2
(D2ρ

π
opt), (4.12b)

πopt(⟨C6⟩, t) =
∂ψ

∂⟨C6⟩

∂D1

∂πopt
+

∂2ψ

∂⟨C6⟩
2

∂D2

∂πopt
, (4.12c)

in unknowns (ψ(⟨C6⟩, t), ρπopt(⟨C6⟩, t), πopt(⟨C6⟩, t)) with boundary conditions

ρπopt(⟨C6⟩,0) = ρ0, ρπopt(⟨C6⟩, T ) = ρT . (4.13)

4.2.4 Solving the conditions for optimality using PINN

We propose leveraging recent advances in neural network based computational frame-

works to jointly learn the solutions of (4.12)-(4.13). In the following, we discuss train-

ing of a PINN [40, 41] to numerically solve (4.12)-(4.13), which is a system of three

coupled PDEs together with the endpoint PDF boundary conditions.

The proposed architecture of the PINN is shown in Fig. 4.2. In our problem,

x ∶= (⟨C6⟩, t) comprises of the features given to the DNN, and the DNN output

y ∶= (ψ, ρπopt, πopt) comprises of the value function, optimally controlled PDF, and

optimal policy. We parameterize the output of the fully connected feed-forward DNN

via θ ∈ RD
, i.e.,

y(x) ≈ NN(x;θ), (4.14)

whereNN(⋅;θ) denotes the neural network approximant parameterized by θ, andD

is the dimension of the parameter space (i.e., the total number of to-be-trained weight,
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bias and scaling parameters for the DNN).

The overall loss function for the network, denoted as LNN , consists of the sum of

the losses associated with the three equations in (4.12) and the losses associated with

the boundary conditions (4.13). Specifically, let Lψ be the loss term for the HJB PDE

(4.12a), let Lρπopt be the loss term for the FPK PDE (4.12b), and let Lπopt be the loss term

for the control policy equation (4.12c). Likewise, let Lρ0 and LρT denote the loss terms

for the corresponding endpoint constraints (4.13). Then

LNN ∶= Lψ + Lρπopt + Lπopt + Lρ0 + LρT , (4.15)

where each summand loss term in (4.15) is evaluated on a set of n collocation points

{xi}ni=1 in the domain of the feature space Ω ∶= [0,6] × [0, T ], i.e., {xi}ni=1 ⊂ Ω, and

Lψ ∶=
1

n

n

∑
i=1

⎛

⎝

∂ψ

∂t
∣
xi

−
1

2
(πopt)

2∣
xi

+D1
∂

∂⟨C6⟩
ψ∣

xi

+D2
∂2

∂⟨C6⟩
2
ψ∣

xi

⎞

⎠

2

,

Lρπopt ∶=
1

n

n

∑
i=1

⎛

⎝

∂ρπopt
∂t
∣
xi

+
∂

∂⟨C6⟩
(D1ρ

π
opt)∣

xi

−
∂2

∂⟨C6⟩
2
(D2ρ

π
opt)∣

xi

⎞

⎠

2

,

Lπopt ∶=
1

n

n

∑
i=1

⎛

⎝
πopt∣xi

−
∂

∂⟨C6⟩
ψ

∂

∂πopt
D1∣

xi

−
∂2

∂⟨C6⟩
2
ψ

∂

∂πopt
D2∣

xi

⎞

⎠

2

,

Lρ0 ∶=
1

n

n

∑
i=1
(ρπopt(⋅, t = 0)∣xi

− ρ0(⋅)∣xi
)
2
,

LρT ∶=
1

n

n

∑
i=1
(ρπopt(⋅, t = T )∣xi

− ρT (⋅)∣xi
)
2
,

for each collocation point xi, i = 1,⋯, n. For training the PINN, we minimize the

overall loss (4.15) by solving

θ∗ = argmin
θ∈RD

LNN ({xi}
n
i=1;θ). (4.16)

In the next Section, we detail the simulation set up and report the numerical results.
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Figure 4.3: Training data in the domain Ω = [0,6] × [0,200].

Figure 4.4: The PINN residuals for solving the conditions for optimality (4.12)-(4.13).

4.2.5 Numerical example

We consider the colloidal SA from [127, 128], where the free energy and the diffusion

landscapes are

F (⟨C6⟩, π) = a kB θ (⟨C6⟩ − b − cπ)
2
, (4.17)

D2(⟨C6⟩, π) = d exp (−(⟨C6⟩ − b − cπ)
2) + f, (4.18)

with known parameters a = 10, b = 2.1, c = 0.75, d = 4.5 × 10−3, f = 0.5 × 10−3,

kB = 1.38066 × 10−23 Joules per Kelvin, and θ = 293 Kelvin.

We use the DeepXDE library [41] for training the PINN. In particular, we choose
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a neural network with 3 hidden layers with 70 neurons in each layer. The activation

functions are chosen to be tanh(⋅). The input-output structure of the network is as

explained in Section 4.2.4. For solving (4.16), we use the Adam optimizer [147].

We fix the final time T = 200 s, and consider the endpoint PDFs ρ0, ρT shown in

Fig. 4.1, represented as truncated normal PDFs (see e.g., [148, Sec. 2.2]):

ρi(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

σi

ϕ (x−µiσi
)

Φ(
b − µi
σi
) −Φ(

a − µi
σi
)

for a ≤ x ≤ b,

0 otherwise,

where i ∈ {0, T}, µ0 = 0, µT = 5, σ0 = 0.2, σT = 0.1, a = 0, b = 6. The functions

ϕ(⋅) and Φ(⋅) denote the standard normal PDF, and the standard normal cumulative

distribution function, respectively. Recall from Section 4.2.2 that our proposed method

is applicable for arbitrary compactly supported endpoint PDFs.

As shown in Fig. 4.3, we choose 1000 training points at each of the initial (t = 0 s)

and terminal (t = 200 s) times, and another 5000 state-time points inside the domain

Ω ∶= [0,6] × [0,200]. We used the residual-based adaptive refinement method in [41]

for generating these training points. As shown in Fig. 4.4, after 15,000 training epochs,

the residuals for all loss functions go below 10−3. The training was performed in

Python 3 on a MacBook Air with 1.1 GHz Quad-Core Intel Core i5 processor and 8 GB

memory. The computational time for training was 2097.40 seconds.

Fig. 4.5 shows the optimal policy πopt (⟨C6⟩, t) obtained as the output of the trained

PINN. The value function ψ (⟨C6⟩, t) obtained as another output of the trained PINN

is shown in Fig. 4.6. In Fig. 4.7, the snapshots of the optimally controlled PDFs ρπopt ob-

tained from the trained PINN are shown as solid curves with grey filled areas. To verify

these results, we sampled 1000 initial states from the given ρ0 using the Metropolis-
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Figure 4.5: The optimal policy πopt (⟨C6⟩, t) obtained as an output of the trained PINN solving

the conditions for optimality (4.12)-(4.13).

Hastings [149] Markov Chain Monte Carlo algorithm, and then performed closed-loop

simulations using the optimal policy πopt (⟨C6⟩, t) (shown in Fig. 4.5) obtained from

the PINN. The stem plots shown in Fig. 4.7 depict the kernel density estimates (KDE)

of these closed-loop trajectories. The KDE stems provide empirical approximations

for the closed-loop optimally controlled PDFs, which match very well with the learnt

solutions from PINN.

Fig. 4.8 shows the 1000 random sample paths for the closed loop simulation using

the learnt optimal policy πopt (⟨C6⟩, t) that provably steers the given ρ0 from t = 0 to

the given ρT at t = T over [0, T ] ≡ [0,200] s.

4.3 Case Study: Colloidal Self-assembly Model Free

In this section, we shift our attention to scenarios where the drift and diffusion coef-

ficient pair (f ,g) in (4.1b), cannot be derived directly from fundamental physics as

what we had in Section 4.2. Instead, these coefficients are estimated through data-

driven methods. Specifically, a pair of neural networks (NNs) are trained to approxi-
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Figure 4.6: The value function ψ (⟨C6⟩, t) obtained as an output of the trained PINN solving

the conditions for optimality (4.12)-(4.13).

mate f and g in (4.1), utilizing molecular dynamics (MD) simulation data. In practice,

the drift and diffusion coefficients are difficult to model from first principles. This is

because accurately capturing the interplay between various forces and interactions,

such as van der Waals forces, electrostatic interactions, and solvent-mediated inter-

actions, is challenging. As a result, empirical or semi-empirical approaches [127], as

well as coarse-grained or phenomenological models [145], are often employed to ap-

proximate these coefficients based on either experimental data or MD simulation data.

Another modeling difficulty specific to colloidal SA is that both f ,g are typically

nonlinear in state x, as well as non-affine in control u. Furthermore, f and g both

have explicit time dependence in practice. To circumvent these modeling issues, in this

work, we propose a learning and control framework where f and g are given learnt

from high-fidelity MD simulation data as the outputs of NN representations NDrift

and NDiffusion, respectively. With these learnt representations for f and g, we propose

a computational framework–based on another neural network–to numerically solve

(4.1) for control synthesis.
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Figure 4.7: Snapshots of the optimally controlled joint PDFs ρπopt steering the state ⟨C6⟩
distribution from the given ρ0 to ρT , as in Fig. 4.1, over the given time horizon [0, T ] ≡ [0,200]
s subject to the controlled noisy nonlinear sample path dynamics (4.8). The solid black curves

with grey filled areas are obtained from the PINN. The stem plots are the KDE approximants

of the optimally controlled PDF snapshots obtained from the closed-loop sample paths, as

explained in Section 4.2.5.

4.3.1 Neural Schrödinger bridge

Our overall approach is to learn (f ,g) as fully connected feed-forward NN represen-

tations, denoted by NDrift and NDiffusion, respectively. Both these NNs are designed to

be functions of the current time t ∈ [0, T ], the system state x, and the control input u.

These two networks are trained to predict the future states of the system based on the

tuple (t,x,u). Training of these networks using MD simulations is detailed in Section

4.3.4. Fig. 4.9 gives an overview of the proposed learning and control framework. We

consider both NDrift and NDiffusion to have tangent hyperbolic, i.e., tanh(⋅) activation
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(a) Optimally controlled ⟨C6⟩ state trajec-

tories.

(b) Optimal control uopt trajectories.

Figure 4.8: The 1000 random sample paths resulting from the closed loop simulation using

the learnt optimal policy πopt (⟨C6⟩, t).

functions. Tangent hyperbolic nonlinearities are known to be slope-restricted [150,

Proposition 2]. As a result, the output of a fully connected feed-forward NN with

tanh activation remains component-wise slope-restricted. Consequently, f ,g being

the respective outputs of the networks NDrift,NDiffusion, are guaranteed [151, Theorem

2] to be Lipschitz continuous. Motivated by the Lipschitz continuity of the outputs

from NDrift and NDiffusion under an admissible Markovian policy u(t,x) ∈ U , the

assumptions (A1) and (A2) presented in Section 4.1.1 are deemed valid for this sce-

nario.

4.3.2 Related works

Feedback control has emerged as a promising approach to enhance the reproducibility

of colloidal SA systems towards desired structures. Previous studies [140,152] demon-

strated the effectiveness of proportional-integral control on simple test systems. How-

ever, applying such basic control approaches to complex colloidal SA systems with

possible kinetically arrested dynamics may not yield satisfactory results. Alterna-
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tive approaches like model predictive control (MPC) or dynamic programming have

been suggested. For instance, [127] presents an MPC approach based on energy land-

scapes estimated from MD simulations. However, this method can be computationally

demanding for large-scale systems or systems with complex interactions, especially

considering that the solution time for MPC might exceed the sampling time of SA,

particularly for fast dynamics. This challenge becomes even more compounded as the

size and complexity of the SA model grows.

On the other hand, [145] utilizes a dynamic programming-based approach, which

results in a lookup table of optimal actions for given states. Despite its theoretical ele-

gance, dynamic programming suffers from the ‘curse of dimensionality’, rendering it

impractical for systems of higher complexity due to the exponential growth in compu-

tational resources required. For both these methods, the accuracy of the control relies

heavily on the quality of the underlying model. To this end, model-free reinforce-

ment learning can alleviate modeling challenges in optimal control of colloidal SA

systems [153, 154]. Furthermore, recent advances in NNs have provided a promising

alternative for modeling the hidden physics of stochastic dynamic systems without

making assumptions about the final equations representing the physics of the system

(e.g., [155–158]). We employ the NNs,NDrift andNDiffusion, to represent the energy and

diffusion landscapes of a colloidal SA control problem, critical to guiding the system

to a desired final state.

This section makes the following specific contributions.

• We introduce a novel computational approach named ‘neural Schrödinger bridge’,

which utilizes neural networks (NNs) in two distinct ways:

1. A pair of NNs are trained to approximate the functions f and g, utilizing
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Data-driven learning
(Sec. III) 

Neural Schrödinger bridge
(Sec. IV)

MD simulation data 

Colloidal SA system

(Sec. II) (Sec. III)
Data-driven learning Neural Schrödinger bridge

Colloidal SA system

Molecular Dynamics simulation data

Figure 4.9: An overview of the proposed learning and control framework for solving the

generalized Schrödinger Bridge Problem (4.1) for colloidal self-assembly. Here, ρ0 and ρT
denote the probability density functions associated with the endpoint measures µ0 and µT ,

respectively.

molecular dynamics (MD) simulation data.

2. The optimality conditions of the GSBP, as functions of these NN represen-

tations, are solved using PINNs.

• We elucidate that the optimality conditions for such GSBPs necessitate solving

a novel system of m+ 2 coupled PDEs with two boundary conditions, where m

is the number of control inputs. This system of PDEs represents a new direc-

tion in the theory of Schrödinger bridges and related stochastic optimal control

problems.

• Our work extends beyond connecting the colloidal self-assembly problem with

GSBP, by tackling the challenges posed by nonlinear, non-affine, and explicitly

time-dependent control dynamics that emerge from data-driven learning of the
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controlled neural SDEs. The standard computational techniques for GSBPs are

insufficient in this context.

• To overcome the limitations of standard PINNs in enforcing distributional end-

point constraints, we propose a PINN architecture with Sinkhorn losses. This

innovation not only addresses the constraints more effectively but also differen-

tiates through these losses for training, presenting a potentially independently

interesting architecture. This contribution is of broad interest to researchers in

control theory and machine learning, particularly those using diffusion models

for learning and control.

We clarify here that, from a methodological viewpoint, the proposed framework is

different from two recent works [159] and [160], which also bring together SBPs and

NNs. In [159], the main idea was to learn the uncontrolled f ,g as NNs, i.e., to learn

an unforced neural SDE using the population samples via SBP. The unforced SDE was

learnt via a stochastic version of the principle of least action, i.e., by appealing to how

SBP can be seen as a stochastic version of dynamic OMT. The work in [160] proposed

learning a classical SBP between unpaired images. Different from these works, our

colloidal SA context requires learning the controlled f ,g as controlled neural SDEs

before proceeding for optimal control synthesis – the latter is an instance of GSBP,

which is then solved via a new variant of PINN that we propose herein.

4.3.3 Solving the conditions for optimality using PINN with

Sinkhorn losses

In this Section, we propose a new variant of the PINN designed for numerically solv-

ing (4.6)-(4.7). As we explain next, the entropy-regularized squared Wasserstein dis-
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…

…

…

Loss

Figure 4.10: The architecture of the physics-informed neural network with the system state

x, and the time t as the input features ξ ∶= (x, t). The network output η comprises of the

value function, optimally controlled PDF, and optimal control policy, i.e., η ∶= (ψ, ρuopt,uopt).
The networks N

Drift
and N

Diffusion
are fully trained from MD simulation.

tance, which is given in (1.3), is better suited for automatic differentiation w.r.t. neural

network parameters for PINN training, which is what we need for our boundary con-

ditions (4.1c) (or equivalently (4.7)).

Learning with Sinkhorn losses

To better understand the advantage of learning with Sinkhorn losses, consider the

squared Euclidean distance matrix C ∈ Rd×d
, and for a given pair of d-dimensional

probability vectors µ1,µ2, let Π(µ1,µ2) denote the set of all coupling matrices, i.e.,

Π(µ1,µ2) ∶= {M ∈Rd×d ∣M ≥ 0 (element-wise),

M1 = µ1,M
⊺1 = µ2}. (4.19)

The dimension d here represents the number of samples involved, i.e., the dimension-

ality of the standard simplex in which µ1,µ2 belong to. Then the discrete version of
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(1.3) becomes

W 2
ε (µ1,µ2) = min

M∈Π(µ1,µ2)
⟨C + ε logM ,M⟩ (4.20)

where ε > 0 is a fixed regularization parameter. The convex problem (4.20) can be

solved using the Sinkhorn recursions [161, 162] a.k.a. iterative proportional fitting

procedure (IPFP) [163]. These recursions are motivated by the observation that the

minimizer of (4.20) must be a diagonal scaling of the known matrix Γ ∶= exp (−C2ε ) ∈

Rd×d
>0 where the exponential is element-wise, i.e.,

M = diag(v1)Γ diag(v2) (4.21)

for to-be-determined v1,v2 ∈ Rd
.

Starting with some initial guess, the Sinkhorn recursions alternate between up-

dating v1 and v2 until convergence:

vk+11 ← µ1 ⊘ (Γv
k
2) , (4.22a)

vk+12 ← µ2 ⊘ (Γ
⊺vk+11 ) , (4.22b)

for recursion index k = 0,1,⋯; the symbol ⊘ denotes the element-wise (Hadamard)

division. The updates (4.22a)-(4.22b) can be seen as alternating Kullback-Leibler pro-

jections [51, 164] with guaranteed linear convergence.

When ε = 0 in (4.20), we get an LP corresponding to the discrete version of (1.3).

This LP has d2 unknowns with d2 + 2d constraints, and solving the same as standard

network flow problem has Õ (d2
√
2d) complexity [165] which is impractical for large

d. Furthermore, using (1.3) as the endpoint loss for training a PINN to learn the solu-

tion of (4.6)-(4.7), requires us to compute

AutoDiffθW
2 (µi, µ

epoch index

i (θ)) ∀ i ∈ {0, T} (4.23)
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for each epoch of the training, where AutoDiffθ refers to the standard reverse mode

automatic differentiation w.r.t. PINN training parameter θ. Evaluating (4.23) then

amounts to differentiating through a very large scale LP which is computationally

challenging even for moderately large d.

In contrast, using (1.3) as the endpoint loss for training a PINN to learn the solution

of (4.6)-(4.7), requires us to compute

AutoDiffθW
2
ε (µi, µ

epoch index

i (θ)) ∀ i ∈ {0, T} (4.24)

for a fixed ε > 0. Because the Sinkhorn recursions (4.22) involve a series of differen-

tiable linear operations, it is amenable to Pytorch auto-differentiation to support back-

propagation. Thus usingW 2
ε instead ofW 2

as the endpoint distributional losses incur

lesser computational overhead allowing us to train PINNs for nontrivial GSBPs. This

advantage of Sinkhorn losses over Wasserstein losses, has also been pointed out in a

different context in [166]. Rigorous consistency results have appeared in [167] show-

ing that the derivatives of the iterates from Sinkhorn recursion computed through

automatic differentiation, indeed converge to the derivatives of the corresponding

Sinkhorn loss.

Proposed PINN architecture

Our proposed architecture for the PINN is shown in Fig. 4.10. For the GSBP considered

here, the state-time ξ ∶= (x, t) comprises the features that are inputs to the network,

and the network output η ∶= (ψ, ρuopt,uopt) comprises of the value function, optimally

controlled PDF, and optimal policy.

The proposed PINN is a fully connected feed-forward NN with multiple hidden
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layers, and we parameterize its output using the network parameter θ ∈ RD
, i.e.,

η(ξ) ≈ NSchrödinger Bridge(ξ;θ), (4.25)

whereNSchrödinger Bridge(⋅;θ) denotes the NN approximant parameterized by θ. Here D

denotes the dimension of the parameter space, i.e., the total number of to-be-trained

weight, bias and scaling parameters for the NN. For all neurons, we use the tanh

activation functions.

As mentioned in Section 4.3.1, the explicit expressions for f and g, the drift and

diffusion coefficients, are not available from first-principle physics. We learn these

coefficients from MD simulation data (see Section 4.3.4, 4.3.4). As shown in Fig. 4.10,

the networksNDrift andNDiffusion, represent the learnt drift f and the learnt diffusion g,

respectively, which are used to evaluate the loss function LN
Schrödinger Bridge

for the PINN.

The PINN loss function LN
Schrödinger Bridge

consists of the sum of the losses associated

with the m + 2 equations in (4.6), and the losses associated with the boundary condi-

tions (4.7). Specifically, let Lψ be the MSE loss for the HJB PDE (4.6a). Likewise, let

Lρuopt be the MSE loss for the FPK PDE (4.6b), and because the control policy has m

components (u1, . . . , um), let Lujopt ∣j=1,...,m be the corresponding MSE loss term for

each control policy component in (4.6c).

However, the MSE losses are insufficient to capture the distributional mismatch

for endpoint boundary conditions (4.7). Per Section 4.3.3, we use the Sinkhorn losses

as the boundary condition losses Lρ0 and LρT , and differentiate through the corre-

sponding Sinkhorn recursions.

Thus,

LN
Schrödinger Bridge

∶= Lρ0 + LρT + Lψ + Lρuopt +
m

∑
j=1
Lujopt , (4.26)
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where each summand loss term in (4.26) is evaluated on a set of N collocation points

{ξi}
N
i=1 in the domain of the feature spaceΩ ∶= X ×[0, T ], i.e., {ξi}

N
i=1 ⊂ Ω. For instance,

the equation error losses are of the form

Lψ ∶=
1

N

N

∑
i=1
(
∂ψ

∂t
∣
ξi

−
1

2
∥uopt∥

2
2∣

ξi

+⟨∇ψ,f⟩∣ξi

+⟨G,Hess(ψ)⟩∣ξi)
2
,

Lρuopt ∶=
1

N

N

∑
i=1

⎛

⎝

∂ρuopt
∂t
∣
ξi

+ ∇.(ρuoptf)∣ξi

−⟨Hess,Gρuopt⟩∣ξi
)
2
,

Lujopt ∣j=1,...,m ∶=
1

N

N

∑
i=1
(ujopt ∣ξi

−
∂

∂ujopt
(⟨∇xψ,f⟩

+⟨G,Hess(ψ)⟩)∣ξi)
2
,

where ujopt denotes the jth component of the optimal control uopt.

We implemented the Sinkhorn recursions with the log-sum-exp (LSE) technique

[168, Section 3] to maintain numerical stability at the expense of minor memory over-

head. We employed mini-batching for sampling our PINN output, and used the same

sample indices to sample from our prescribed ρ0, ρT . The squared Euclidean distance

matrix C mentioned in Section 4.3.3 was constructed from the output batch points.

We used the PINN software library [41] with a Pytorch backend to perform nu-

merical experiments using the above loss functions. The PINN library [41] was not

written for Schrödinger bridge-type problems, so we needed to modify it to suit our

needs. One modification was to program PINN to compute loss between outputs and

distributions directly and integrate the Sinkhorn iteration algorithm into the library.

We also modified it to perform the mini-batching we needed. In summary, for training
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the PINN, the overall loss (4.26) was minimized over θ ∈ RD
by solving

θ∗ = argmin
θ∈RD

LN
Schrödinger Bridge

({ξi}
N
i=1;θ). (4.27)

The next section details the simulation setup and reports the numerical results.

4.3.4 Numerical example

We now present a numerical case study of a colloidal SA system where the drift co-

efficient f and the diffusion coefficient g are not analytically available, instead they

are learnt as NN representations NDrift and NDiffusion, from MD simulation data. Such

learnt representations are nonlinear in the state x and non-affine in control u. We

then solve the GSBP (4.1) using the PINN architecture proposed in Section 4.3.3 to

design a minimum effort controller steering the distribution in the order-parameter

space to synthesize the body-centered cubic (BCC) crystal structure over the given

time horizon. Fig. 4.11 shows an initial disordered structure and a final BCC struc-

ture.

System description

We consider the in-silico representation of isotropic colloidal particles with identical

Lennard-Jones interaction potentials within an NPT (isothermal-isobaric) ensemble.

The Lennard-Jones potential is used to model particle interactions in the system and

is defined as

U(r) ∶= 4ϵ((
σ

r
)
12

− (
σ

r
)
6

) , (4.28)

where r denotes the particle radius, and ϵ denotes the depth of the potential energy

well and thus quantifies the strength of attractive forces between particles. The symbol
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σ denotes the distance at which the potential energy is nullified, thereby demarcating

the intermolecular potential’s shift from attraction to repulsion depending on particle

size [169, p. 234].

(a) (b)

Figure 4.11: (a) An initial disordered crystalline structure. (b) A final BCC structure with

minor defects. These images were generated using OVITO [1].

An ensemble of 2048 particles is initialized at a given temperature and pressure.

While the positions of these particles may be considered as the most natural states of a

colloidal SA system, they result in an unmanageably high-dimensional state space. To

circumvent this difficulty, we seek a lower-dimensional representation. To this end,

the Steinhardt bond order parameters ⟨C10⟩ and ⟨C12⟩ are used in this work, which are

directly defined in terms of the particle positions. To calculate these parameters [170]

from the MD simulation data, we proceed through a series of steps, as discussed below.

We first extract the positional information for each particle from the MD simula-

tion data (see Section 4.3.4). Next, we identify the neighbors for each particle based

on the Voronoi method [171]. Using this information, we calculate the spherical har-

monics, Ylm, indexed by two quantum numbers, viz. the azimuthal or orbital quantum

number, denoted by l, and the magnetic quantum number, denoted by m.

The azimuthal quantum number defines the shape of the orbital, and for our con-
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text l ∈ [1,12]. The magnetic quantum number represents the orientation of the or-

bital in space, and for our context m ∈ [−l, l], see e.g., [172, p. 545]. Accordingly, the

spherical harmonics are defined as

Ylm(θ, ϕ) ∶=

¿
Á
ÁÀ2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)e

imϕ, (4.29)

where θ and ϕ represent the polar and azimuthal angles, respectively. In (4.29), the

Pm
l denote the associated Legendre polynomials [173, p. 331–339], which is a class of

functions that arise in the solution to Laplace’s equation in spherical coordinates.

Let ν(i) denote the number of neighbors of particle i, and let rij signify the posi-

tional vector between particle i and its neighbor j. Subsequently, the lth bond order

parameter Cl(i), for each particle i, is computed as [170]

Cl(i) =
⎛

⎝

4π

2l + 1

l

∑
m=−l

RRRRRRRRRRR

1

ν(i)

ν(i)
∑
j=1

Ylm (rij)
RRRRRRRRRRR

2
⎞

⎠

1
2

, (4.30)

where the index i ∈ [0, ν] and ν represents the total number of particles in the en-

semble (ν = 2048 in our case study). Furthermore, index j ∈ [0, ν(i)]. In (4.30), nor-

malizing by the number of neighbors ensures that the final system order parameter is

size-independent and thus, scalable across different systems. That is, the normaliza-

tion ensures that Cl(i) ∈ [0,1].

Next, the individual bond order parameters Cl(i) are averaged over all particles in

the ensemble to calculate the averaged lth Steinhardt bond order parameter

⟨Cl⟩ =
1

ν

ν

∑
i=1
Cl(i), (4.31)

which can be used to describe the state of a colloidal SA system.
1

Therefore, the

physics-based order parameters serve as a reduced-dimensionality conduit that en-

1
In actual self-assembly systems, image analysis techniques can be used to locate and track particle

centers, as well as compute local and global order parameters in real-time (e.g., see [140]).
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hances the efficiency and effectiveness of our subsequent analyses by circumventing

the need to work with high-dimensional particle position data.
2

In this work, we specifically choose the order parameters ⟨C10⟩ and ⟨C12⟩ for

their efficacy in distinguishing between the body-centered cubic (BCC) and the face-

centered cubic (FCC) structures. The values of ⟨C10⟩ and ⟨C12⟩ for defect-free assem-

bled BCC and FCC structures do not overlap, which enables differentiation between

the two structure types.

In summary, the controlled dynamics of our colloidal SA system is described by

the SDE (2.13b), where the state and inputs are defined as

x ∶= (⟨C10⟩, ⟨C12⟩) ∈ X ≡ [0,1]
2,

u ∶= (temperature,pressure) ∈ U .

We denote the components of the optimal control policy uopt as uopt1 , uopt2 respectively.

Learning drift and diffusion coefficients

To learn the NN representations NDrift and NDiffusion, which model the drift and dif-

fusion coefficients f and g in the SDE (2.13b), we performed MD simulations for the

above-described system using the Python package HOOMD-blue [175] with final time

T = 200 s. The simulation data consisted of 200 state trajectories, i.e., the trajectories

of the order parameters ⟨C10⟩, ⟨C12⟩ for t ∈ [0, T ], that represent the time evolution

of position of the ν = 2048 particles of the colloidal SA system, mentioned earlier in

Section 4.3.4. Each state trajectory was generated under different linear temperature

and pressure ramp rates (i.e., u), which were sampled using a Latin Hypercube de-

sign and scaled to [−0.005,0.005], the input range for the simulation. To generate the

2
In this work, the Steinhart bond order parameters were calculated using the Python package Freud

[174].
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Figure 4.12: Validation losses for nine different neural network models N
Drift

and N
Diffusion

,

for the drift and diffusion terms in the SDE (2.13b), with legend numbers corresponding to

model numbers in Table 4.2.

training and test data for learning the NN models, the state trajectories were sampled

500 times.

Building on our earlier work [156],NDrift andNDiffusion were trained on the MD data

with a controlled neural SDE. The NNs are designed to be functions of the current time

t ∈ [0, T ], the system state x, and the control input u. The networks are passed to

(2.13b) to predict the state evolution. The MSE loss is computed for each time step,

and the learning process aims to minimize the total MSE loss between the networks’

predicted states and the actual observed states from the MD simulation trajectories.

For model optimization, we used the Adam optimizer [147] which adjusts the learning

rate on a per-parameter basis. The learning rate was initially set to a predefined con-

stant, as per Table 4.2, and was subsequently adjusted using an exponential learning

rate scheduler with a decay rate of 0.999. This scheduler reduces the learning rate

multiplicatively after each epoch. The data was partitioned into a 70/20/10 distribu-

tion for the training, testing, and validation subsets, respectively. The implementation
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of these networks was done with the torchsde [176] Python package.

To determine the best architecture for the NNsNDrift andNDiffusion, we used hyper-

parameter (depth and width, batch size, learning rate) turning as detailed in Table 4.2;

a total of nine models were trained and evaluated. All of the NN architectures follow

a sequential design of fully connected layers, with 5 input units and an output layer

of 2 units. The architectures vary in the number of hidden layers and their nodes, all

using tanh activation functions. Architecture 1 employs one hidden layer with 200

nodes; architecture 2 utilizes a hidden layer of 1000 nodes; and architecture 3 deploys

six hidden layers with 200 nodes each. The batch size, defining the number of samples

to be processed before updating the model, is tuned for learning. Lastly, we adjust

the learning rate, a factor determining how much the model’s parameters should be

adjusted with respect to the calculated error, for balanced and steady learning without

risking instability or slow convergence. The MSE was used as the loss function for all

models.

Fig. 4.12 shows the validation MSE loss for all models, which are evaluated by

using the NDrift and NDiffusion in (2.13b) to predict the state x, and then comparing the

predicted states with those obtained from MD simulations. These validation results

demonstrate that all models converge, indicating that the training time was sufficient.

As seen in Table 4.2 and Fig. 4.12, model 7 exhibited the best performance evidenced

by its minimal validation loss. Consequently, we used model 7 for representing the

colloidal SA dynamics in the form of (2.13b). Its corresponding NDrift and NDiffusion

are used for the optimal control synthesis for the GSBP. On an NVIDIA GTX 1080,

each model undergoes training that, on average, takes 10 seconds per training step.

To complete 100 epochs, this process requires approximately 1.2 hours per model. The

approximate inference time for the model is 0.0123 seconds.
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Figure 4.13: The PINN residuals in solving the conditions of optimality (4.6)-(4.7) for the

simulation in Section 4.3.4.

Controller synthesis

With the f ,g learnt as per Section 4.3.4 for the colloidal SA system described in Sec-

tion 4.3.4, we considered the GSBP (4.3) over fixed time horizon [0, T ], where the

final time T = 200 s, the initial state x(t = 0) ∼ ρ0 = N (m0,Σ0), and the terminal

state x(t = T ) ∼ ρT = N (mT ,ΣT ). Here, the notation N (m,Σ) stands for a joint

Gaussian distribution with mean vector m and covariance matrix Σ. We used

m0 = (0.2,0.2)
⊺, mT = (0.4,0.375)

⊺, Σ0 =ΣT = 0.1I2. (4.32)

In particular, the statistics of the initial state x(t = 0) ∼ N (m0,Σ0) is chosen to

coincide with that used in the MD simulation in Section 4.3.4. The mean mT for

the target terminal state x(t = T ) ∼ N (mT ,ΣT ) was chosen to represent the BCC

crystal structure. Hence, the control objective for the GSBP represents the problem of

designing a minimum effort Markovian controller that provably steers the stochastic

order parameters in a way to synthesize BCC crystal structure over the prescribed

time horizon.

We used the PINN NSchrödinger Bridge proposed in Section 4.3.3 for numerically solv-

ing the GSBP conditions of optimality (4.6)-(4.7). For our PINN implementation, the
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(a) Contour plots of the optimally controlled state PDFs ρuopt(t,x) over the state space [0,1]2.

(b) Contour plots of the optimal control component u1opt(t,x) over the state space [0,1]2.

(c) Contour plots of the optimal control component u2opt(t,x) over the state space [0,1]2.

(d) Contour plots of the value function ψ (t,x) over the state space [0,1]2.

Figure 4.14: Results for the GSBP simulation detailed in Section 4.3.4 over time t ∈ [0,200].
The color denotes the value of the plotted variable; see colorbar (dark red = high, light yellow

= low).
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(a) Optimally controlled ⟨C10⟩ state

trajectories.

(b) Optimally controlled ⟨C12⟩ state

trajectories.

Figure 4.15: The 150 random sample paths resulting from closed-loop simulations using the

learnt optimal policy uopt (t, ⟨C10⟩, ⟨C12⟩).

domain for state-time collocation is Ω = [0,1]2 × [0,200]. Our network consisted of

4 hidden layers, each containing 70 neurons, all with tanh activation functions. We

trained the PINN for 100,000 epochs using the Adam optimizer [147] with a learning

rate of 10−3. All our training were performed on a computing platform with NVIDIA

Quadro p1000, 640Cuda cores, and 64GB RAM. For the collocation, we usedN = 3000

pseudorandom samples, drawn using Sobol distribution, between the endpoint bound-

ary conditions at t = 0 and t = 200. We also uniformly randomly sampled 3,000 sam-

ples every 20,000 epochs to satisfy compute constraints. For computing the Sinkhorn

losses at the endpoint boundary conditions, we used an entropic regularization pa-

rameter of ε = 0.1 as in (4.20). For the computing platform mentioned above, training

the proposed PINN on average takes 2 seconds per epoch, so to complete 100,000

epochs, it takes approximately 55.5 hours.

Fig. 4.13 shows the PINN residuals in (4.26), and Fig. 4.14 shows the correspond-

ing GSBP solutions obtained from the trained PINN. In particular, Fig. 4.14a shows

the evolution of the optimally controlled transient joint PDFs ρu
opt
(t,x) interpolating
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the fixed ρ0, ρT mentioned above. Notice that, even though the initial and terminal

stochastic states are both chosen to have Gaussian statistics, the transient joints in

Fig. 4.14a are non-Gaussian. This is expected since the learnt f ,g, as well as the

optimal controller uopt (see Fig. 4.14b-4.14c), are nonlinear in state. A comparison

of Fig. 4.14b and Fig. 4.14c with Fig. 4.14d also shows that the optimal controls are

high (resp. low) in regions where the value function ψ changes rapidly, i.e., when the

(sub)gradient of ψ is large (resp. small).

To further illustrate the GSBP results, we performed a closed loop sample path

simulation for 150 initial state samples x(t = 0) ∼ ρ0 (with the same ρ0 mentioned be-

fore) using the learnt optimal control policy uopt (t, ⟨C10⟩, ⟨C12⟩) that provably steers

the given ρ0 from t = 0 to the given ρT (BCC crystal) at t = T = 200 s. The correspond-

ing closed-loop state sample paths shown in Fig. 4.15 demonstrate that the optimal

policy indeed steers the controlled stochastic state from around (0.2,0.2) to around

(0.4,0.375) with high probability, as specified per problem data (4.32).

For the closed-loop simulations, we constructed a k-d tree [177] (with leaf size =

2) for fast querying of the PINN-trained optimal control policy uopt (t, ⟨C10⟩, ⟨C12⟩).

This construction takes 1.785 seconds. During the numerical integration of the SDE,

querying the optimal control policy takes 0.227 milliseconds. Without the k-d tree

construction, this querying is 1000x slower (approximately 0.22 seconds). With k-d

tree-based querying, to simulate a closed-loop sample path as in Fig. 4.15 using the

Euler-Maruyama scheme with 500 equispaced time steps in [0, T ], taking approxi-

mately 177 seconds. These experiments suggest that the proposed control approach

is practically viable for colloidal SA.
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Model

number

Learning

rate

Batch size

(of epoch)

Model

architecture

Validation

loss

Training

loss

1 10−3 1/4 1 0.390 0.057
2 10−2 1/4 1 0.460 0.024
3 10−4 1/4 1 1.260 0.120
4 10−3 1 1 3.890 0.200
5 10−3 1/4 1 0.200 0.016
6 10−3 1/4 2 9.290 0.072
7 10−3 1/4 3 0.030 0.003
8 10−4 1/4 3 0.031 0.007
9 10−3 1 3 0.110 0.015

Table 4.2: Comparison of different model architectures and hyperparameters for learn-

ing the NN representations NDrift and NDiffusion for the drift f and diffusion g, respec-

tively. The different architectures vary in the number of hidden layers and their nodes,

all using tanh activation function. Architecture 1 employs one hidden layer with 200

nodes, architecture 2 utilizes a hidden layer of 1000 nodes, and architecture 3 deploys

six hidden layers with 200 nodes each.
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5 | A Controlled Mean Field Model

for Chiplet Population Dynamics

This Chapter is motivated by micro-assembly applications, such as printer systems

[178,179] and manufacturing of photovoltaic solar cells, where an array of electrodes

can be used to generate spatio-temporally non-homogeneous electric potential land-

scapes for dynamically assembling the “chiplets”–micron sized particles immersed in

dielectric fluid–into desired patterns. In such applications, the electric potentials gen-

erated by the array of electrodes induce non-uniform dielectrophoretic forces on the

chiplets, thereby resulting in a population-level chiplet dynamics. The purpose of the

present work is to propose a controlled mean field model for the same.

There have been several works [180–184] on the modeling and dielectrophoretic

control of chiplet population. However, a continuum limit macroscopic dynamics that

accounts for both chiplet-to-chiplet and chiplet-to-electrode nonlocal interactions, as

considered herein, has not appeared before.

The mean field limit pursued here involves considering the number of chiplets and

electrodes as infinity, i.e., to think both of them as continuum population. There are

two reasons why this could be of interest. First, the continuum limit helps approx-

imate and better understand the dynamics for large but finitely many chiplets and

electrodes, which is indeed the situation in the engineering applications mentioned

before. Second, the distributed control synthesis problem for large but finite popula-

tion becomes computationally intractable, as noted in recent works [183, 185, 186]. A

controlled mean field model opens up the possibility of designing a controller in the

continuum limit with optimality guarantees. Such a controller can then be applied to

a large but finite population with sub-optimality bounds. We clarify here that in this
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work, we only present the mean field model and its properties. We leave the control

synthesis problem for our follow up work.

As in prior works such as [183], we consider the chiplet dynamics in two dimen-

sional position coordinate. Specifically, let x(t) ∈ R2
denote the position vector of a

chiplet at any fixed time t ∈ [0,∞), and let

u ∶ R2 × [0,∞) ↦ [umin, umax] ⊂ R

denote a causal deterministic control policy, i.e., u = u(x, t). The control u represents

the electrode voltage input, and in practice, the typical voltage range [umin, umax] =

[−400,400] Volt. We denote the collection of admissible control policies as U . For a

typical experimental set up detailing the sensing-control architecture, see [183, Sec.

II].

A viscous drag force balances the controlled force vector field fu induced by the

joint effect of the chiplet-to-chiplet and chiplet-to-electrode interactions. At the low

Reynolds number context relevant here, the viscous drag force is proportional to ẋ,

where the proportionality constant µ denotes the viscous coefficient of the dielectric

fluid. Ignoring the acceleration due to negligible mass of a chiplet, the dynamics then

takes a form

µẋ
¯

viscous drag force

= fu

¯
controlled interaction force

+ noise (5.1)

where the noise may result from stochastic forcing due to environmental fluctuations

(e.g., dielectric fluid impurities) and/or unmodeled dynamics.
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5.1 Controlled Mean Field Model

In this Section, we introduce the chiplet population dynamics. Such model has its ori-

gin in the physical processes enabling silicon microchips to be manipulated by both

electrophoretic and dielectrophoretic forces when they are placed in dielectric carriers

such as Isopar-M [187]. These carriers have low conductivity which allows long-range

Coulomb interactions. In general, the dielectrophoretic forces dominate, and they are

induced by the potential energy generated by electrostatic potentials created in elec-

trodes. The electrodes are formed by depositing nm-scale Molybdenum-Chromium

(MoCr) onto a glass substrate via vapor deposition and then directly patterning them

with a laser ablation tool. The electrodes are then insulated from the chiplets and di-

electric fluid by thermally laminating a micrometer-scale thick perfluoroalkoxy (PFA)

film. The dielectric forces act on the chiplets, while viscous drag forces proportional

to their velocities oppose their motion. Due to the negligible mass of the chiplets, their

acceleration can be ignored.

Let us denote the normalized chiplet population density function (PDF) at time t as

ρ(x, t). By definition, ρ ≥ 0 and ∫R2 ρ dx = 1 for all t.

We make the following assumptions.

A1. Under an admissible control policy u ∈ U , the chiplet normalized population

distribution over the two dimensional Euclidean configuration space remains

absolutely continuous w.r.t. the Lebesgue measure dx for all t ∈ [0,∞). In

other words, the corresponding PDFs ρ(x, t) exist for all t ∈ [0,∞).

A2. Under an admissible control policy u ∈ U , we have ρ ∈ P2(R2) for all t.

The sample path dynamics of a chiplet position is governed by a controlled non-
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local vector field

fu ∶ R2 × [0,∞) × U × P2(R2) ↦ R2

induced by a controlled interaction potential ϕu ∶ R2 ×R2 × [0,∞) ↦ R, i.e.,

fu(x, t, u, ρ) ∶= −∇(ρ ∗ ϕu) , (5.2)

where ∗ denotes generalized convolution in the sense

(ρ ∗ ϕu) (x, t) ∶= ∫
R2
ϕu(x,y, t)ρ(y, t)dy.

The superscript u in ϕu emphasizes that the potential depends on the choice of control

policy. In particular,

ϕu(x,y, t) ∶= ϕucc(x,y, t) + ϕ
u
ce(x,y, t), (5.3a)

ϕucc(x,y, t) ∶=
1

2
Ccc (∥x − y∥2) (ū(y, t) − ū(x, t))

2
, (5.3b)

ϕuce(x,y, t) ∶=
1

2
Cce (∥x − y∥2) (u(y, t) − ū(x, t))

2
, (5.3c)

for x,y ∈ R2
and

ū(x, t) ∶=
∫R2 Cce (∥x − y∥2)u(y, t)ρ(y, t)dy

∫R2 Cce (∥x − y∥2)ρ(y, t)dy
. (5.4)

The subscripts cc and ce denote the chiplet-to-chiplet and chiplet-to-electrode inter-

actions, respectively. As before, the superscript u highlights the dependence on the

choice of control policy. In (5.3b)-(5.3c), Ccc and Cce respectively denote the chiplet-

to-chiplet and chiplet-to-electrode capacitances. These capacitances can be deter-

mined using two dimensional electrostatic COMSOL
®

[188] simulations for a symmet-

ric chiplet geometry. Such simulation model comprises two metal plates with dimen-

sions defined by the chiplet and electrode geometry, surrounded by a dielectric with

properties identical to those of the Isopar-M solution. The capacitances are computed
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from the charges that result on each conductor when an electric potential is applied

to one and the other is grounded. Once the capacitance among chiplets and electrodes

at different distances are computed, differentiable parameterized capacitance function

approximations (e.g., linear combination of error functions) can be fitted to that data.

In words, (5.3a) says that the total controlled interaction potential ϕu is a sum of the

chiplet-to-chiplet interaction potential ϕucc given by (5.3b), and the chiplet-to-electrode

interaction potential ϕuce given by (5.3c).

The expressions for (5.3b), (5.3c), (5.4) arise from capacitive electrical circuit ab-

straction that lumps the interaction between the electrodes and the chiplets. In [183,

Sec. III], such an abstraction was detailed for a finite population of n chiplets and m

electrodes. The expressions (5.3b), (5.3c), (5.4) generalize those in the limit n,m→∞.

On the other hand, specializing (5.3b), (5.3c), (5.4) for a finite population {xi}i∈JnK with

ρ ≡ 1
n ∑

n
i=1 δxi

where δxi
denotes the Dirac delta at xi ∈ R2

, indeed recovers the devel-

opment in [183, Sec. III].

Remark 5.1. An immediate observation from (5.3) is that even though the potential ϕucc

is symmetric in x,y, the potential ϕuce is not. Therefore, the overall controlled interaction

potential ϕu is not symmetric in x,y.

Without loss of generality, we assume unity viscous coefficient in (5.1), i.e., µ = 1

(since otherwise we can re-scale the fu). In addition, assuming the chiplet velocity is

affected by additive standard Gaussian White noise, the sample path dynamics of the

ith chiplet position xi(t) then evolves as per a controlled interacting diffusion, i.e., as

a Itô stochastic differential equation (SDE) with nonlocal nonlinear drift:

dxi = f
u
(xi, t, u, ρ) dt +

√
2β−1 dwi(t), i ∈ JnK, (5.5)

where fu is given by (5.2), β > 0 denotes inverse temperature, and wi(t) ∈ R2
denote
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i.i.d. realizations of a standard Wiener process that isFt-adapted on a complete filtered

probability space with sigma-algebraF and associated filtration (Ft)t≥0. In particular,

F0 contains all P-null sets and Ft is right continuous.

The study of SDEs with nonlocal nonlinear drift originated in [189], and has grown

into a substantial literature, see e.g., [190, 191]. In statistical physics, such models are

often referred to as “propagation of chaos”–a terminology due to Kac [192]. A novel

aspect of the model (5.5) w.r.t. the existing literature is that the interaction potential

ϕu has a nonlinear dependence on the control policy u(x, t) as evident from (5.3).

5.1.1 Existence-uniqueness of solution for (5.5)

For a given causal control policy u ∈ U , it is known [193, Thm. 2.4] that an interacting

diffusion of the form (5.5) with initial condition xi0 ∼ ρ0 admits unique weak solution

provided the following four conditions hold:

(i) the drift fu is jointly Borel measurable w.r.t. R2 × [0,∞) ×P (R2),

(ii) the diffusion coefficient

√
2β−1I2 is invertible, and the driftless SDE dz(t) =

√
2β−1

dw(t) admits unique strong solution,

(iii) the drift fu is uniformly bounded,

(iv) there exists κ > 0 such that

∥fu (x, t, u(x, t), ρ) − fu (x, t, u(x, t), ρ̃) ∥2

≤ κ distTV (ρ, ρ̃) uniformly in (x, t) ∈ R2 × [0,∞).

We assume that the capacitances Ccc,Cce in (5.3)-(5.4) are sufficiently smooth, and the

controlu can be parameterized to ensure smoothness for guaranteeing that∇xϕucc,∇xϕuce

(and thus ∇xϕu) are ∥ ⋅ ∥2 Lipschitz and uniformly bounded.

As ∇xϕu is bounded, fu = ∫R2 ∇xϕu(x,y, t)ρ(y)dy, which being an average of
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Lipschitz, is itself Lipschitz and thus continuous. Since fu is continuous, the preimage

of any Borel set in R2
under fu is a measurable set in R2 ×[0,∞)×U ×P2(R2). Thus,

condition (i) holds.

Condition (ii) holds for any β > 0 since z(t) is a Wiener process with variance

2β−1.

For (iii), we find ess sup
(x,t)∈R2×[0,∞)

∥fu (x, t, u(x, t), ρ) ∥∞

= ess sup
(x,t)∈R2×[0,∞)

∥ ∫
R2
∇xϕ

u(x,y, t)ρ(y)dy∥∞

≤ ess sup
(x,t)∈R2×[0,∞)

∫
R2
∥∇xϕ

u(x,y, t)ρ(y)∥∞dy

≤ ∫
R2

ess sup
(x,t)∈R2×[0,∞)

∥∇xϕ
u(x,y, t)ρ(y)∥∞dy

= ∫
R2

ess sup
(x,t)∈R2×[0,∞)

∥∇xϕ
u(x,y, t)∥∞ρ(y)dy (5.6)

where we used the Leibniz rule, triangle inequality, and that ρ ≥ 0. Per assumption,

∇xϕu is uniformly bounded, and we have: (5.6) ≤ M ∫R2 ρ(y)dy = M for some con-

stant M > 0.

Condition (iv) holds because

∥fu (x, t, u(x, t), ρ) − fu (x, t, u(x, t), ρ̃) ∥2

=∥∇x ∫
R2
ϕu(x,y, t)(ρ(y) − ρ̃(y))dy∥2

=∥ ∫
R2
(∇xϕ

u(x,y, t)) (ρ(y) − ρ̃(y))dy∥2

≤c distBL(ρ, ρ̃) ≤ κ distTV(ρ, ρ̃) ∀(x, t) ∈ R2 × [0,∞)

for some constant c > 0, κ ∶= 2c, and the second to last inequality follows from ∇xϕu

being bounded and Lipschitz.

Thus, we can guarantee the existence-uniqueness of sample path xi(t), i ∈ JnK,
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solving the interacting diffusion (5.5).

5.1.2 Derivation of the Controlled Mean Field Model

Our next result (Theorem 5.1) derives the macroscopic mean field dynamics as a non-

linear Fokker-Planck-Kolmogorov partial differential equation (PDE), and establishes

the consistency of the mean field dynamics in the continuum limit vis-à-vis the finite

population dynamics.

Theorem 5.1. Supposing A1, consider a population of n interacting chiplets, where

the ith chiplet position xi ∈ R2
, i ∈ JnK, evolves via (5.5). Denote the Dirac measure

concentrated atxi as δxi
and let the random empirical measure ρn ∶= 1

n ∑
n
i=1 δxi

. Consider

the empirical version of the dynamics (5.5) given by

dxi = f
u
(xi, t, u, ρ

n) dt +
√
2β−1 dwi(t),

with respective initial conditions x0i ∈ R2
, i ∈ JnK, which are independently sampled

from a given PDF ρ0 supported on a subset of R2
. Then, as n→∞, almost surely ρn ⇀ ρ

where the deterministic function ρ is a PDF that evolves as per the macroscopic dynamics

∂ρ

∂t
= −∇ ⋅ (ρfu) + β−1∆ρ

= ∇ ⋅ (ρ∇(ρ ∗ ϕu + β−1(1 + log ρ))) , (5.7)

with the initial condition

ρ(⋅, t = 0) = ρ0 ∈ P (R2) (given). (5.8)

Notice that the Cauchy problem (5.7)-(5.8) involves a nonlinear nonlocal PDE which in

turn depends on control policy u.

The solution ρ(x, t), x ∈ R2
, t ∈ [0,∞), for the Cauchy problem (5.7)-(5.8) is
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understood in weak sense. In other words, for all compactly supported smooth test

functions θ ∈ C∞c (R2, [0,∞)), the solution ρ(x, t) satisfies

∫

∞

0
∫
R2
(
∂θ

∂t
+Lρθ)ρ dx dt+∫

R2
ρ0(x)θ(x,0) dx = 0 (5.9)

where Lρ is defined as in (B.3). Note that, the reason why ρ satisfying (5.9) for all θ ∈

C∞c (R2, [0,∞)) is called a “weak solution” of (5.7)-(5.8) is because such ρ may not

be sufficiently smooth to satisfy (5.7). In the next Section, we provide a variational

interpretation of the solution for problem (5.7)-(5.8).

5.2 Chiplet Population Dynamics as Wasserstein Gra-

dient Flow

The structure of the PDE in (5.7) motivates defining an energy functional

Φ(ρ) ∶= Φcc(ρ) +Φce(ρ) +Eρ [β−1 log ρ]

= Eρ [ρ ∗ ϕu + β−1 log ρ] (5.10)

where Eρ denotes the expectation w.r.t. the PDF ρ, and

Φcc(ρ) ∶= ∫
R2×R2

ϕucc(x,y)ρ(x)ρ(y)dx dy, (5.11a)

Φce(ρ) ∶= ∫
R2×R2

ϕuce(x,y)ρ(x)ρ(y)dx dy. (5.11b)

In (5.10), the term Eρ [ρ ∗ ϕu] quantifies the interaction energy while the scaled nega-

tive entropy term β−1Eρ [log ρ] quantifies the internal energy. We have the following

result.

Theorem 5.2. Let Φ ∶ P2 (R2) ↦ R be the energy functional given in (5.10). Then,

(i) the chiplet population dynamics given by (5.2), (5.3), (5.7) is Wasserstein gradient flow
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of the functional Φ, i.e.,

∂ρ

∂t
= −∇WΦ(ρ). (5.12)

(ii) Φ is a Lyapunov functional that is decreasing along the flow generated by (5.7), i.e.,

d
dtΦ ≤ 0.

Remark 5.2. Theorem 5.2 shows that for an admissible control policy u ∈ U , the chiplet

population dynamics (5.7)-(5.8) can be seen as gradient descent of the energy functional

Φ on the manifold P2 (R2) w.r.t. the Wasserstein metric. We point out that the state-

ment of Theorem 5.2 remains valid in the deterministic limit, i.e., when the noise strength

√
2β−1 ↓ 0. In that case, the functional Φ in (5.10) comprises of only the interaction en-

ergy term Eρ [ρ ∗ ϕu], and
δΦ
δρ = ρ∗ϕ

u
. Other than this, the proof of Theorem 5.2 remains

unchanged.

Remark 5.3. In the recent systems-control literature, the Wasserstein gradient flow in-

terpretations and related proximal algorithms [5, 38] for several linear and nonlinear

Fokker-Planck-Kolmogorov PDEs in prediction and density control have appeared. New

gradient flow interpretations have also appeared [28–30] for well-known filtering equa-

tions. We next point out that the Wasserstein gradient flow interpretation deduced in

Theorem 5.2 allows approximating the weak solution of (5.12) by recursive evaluation of

a Wasserstein proximal operator on the manifold P2 (R2).

Theorem 5.3. For a given control policy u ∈ U and potentials (5.3), let Φ̂(ϱ, ϱk−1) ∶=

Eϱ [ϱk−1 ∗ ϕu + β−1 log ϱ], ϱ, ϱk−1 ∈ P2(R2), k ∈ N. Consider the Wasserstein proximal

recursion:

ϱk = prox
W
τ Φ̂
(ϱk−1)

∶= arg inf
ϱ∈P2(R2)

{
1

2
W 2 (ϱ, ϱk−1) + τ Φ̂(ϱ, ϱk−1)} (5.13)
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over discrete time tk−1 ∶= (k − 1)τ with fixed step-size τ > 0, and with initial condition

ϱ0 ≡ ρ0 ∈ P2 (R2). Let ρ(x, t) be the weak solution of (5.12) for the same u ∈ U and the

functional Φ given by (5.10)-(5.11). Using the sequence of functions {ϱk−1}k∈N generated

by the recursion (5.13), define an interpolation ϱτ ∶ R2 × [0,∞) ↦ [0,∞) as

ϱτ(x, t) ∶= ϱk−1(x, τ) ∀ t ∈ [(k − 1)τ, kτ), k ∈ N.

Then ϱτ(x, t)
τ↓0
Ð→ ρ(x, t) in L1(R2) for all t ∈ [0,∞).

Proof. Follows the development in [194, Sec. 12.3–12.5].

Remark 5.4. For a given control policy u ∈ U , the Wasserstein proximal recursion (5.13)

can in turn be leveraged for numerically updating the PDFs over discrete time with a

small step-size τ . To illustrate Theorem (5.2), we fixed a linear control policy u = ⟨k,x⟩

with gain k ∶= (8.5 × 10−3,−1 × 10−2)⊺, and solved (5.13) with τ = 0.1 via [5, Algo-

rithm 1] for n = 400 uniformly spaced grid samples in the domain [−4mm,4mm]
2

starting from an initial bivariate Gaussian ρ0 = N ((0.5,0.5)⊺,0.1I2). Fig. 5.1 shows

the corresponding decay of the energy functional Φ in (5.10)-(5.11), computed using

these PDFs obtained from the Wasserstein proximal updates. As in [183, Sec. III], our

simulation used capacitances Ccc(∥x − y∥2),Cce(∥x − y∥2) in (5.3b)-(5.3c) of the form

n

∑
i=1
ai [erf((∥x − y∥2 + δ)/ci) − erf((∥x − y∥2 − δ)/ci)]where erf(⋅) denotes the error func-

tion, the parameters ai, ci are sampled uniformly random in [0,1], and δ (half of the

electrode pitch) = 10 micrometer.
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Figure 5.1: The energy functional Φ given by (5.10)-(5.11) versus time for the simula-

tion set up summarized in Remark 5.4.
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6 | Centralized Computing: Mean

Field Learning

6.1 Empirical Risk Minimization for Supervised Learn-

ing

We consider a supervised learning problem where the dataset comprises of the fea-

tures xxx ∈ X ⊆ Rnx , and the labels y ∈ Y ⊆ R, i.e., the samples of the dataset are tuples

of the form

(xxx, y) ∈ X × Y ⊆ Rnx ×R.

The objective of the supervised learning problem is to find the parameter vector θθθ ∈ Rp

such that y ≈ f(xxx,θθθ) where f is some function class parameterized by θθθ. In other

words, f maps from the feature space X to the label space Y . To this end, we consider

a shallow neural network with a single hidden layer having nH neurons. Then, the

parameterized function f admits representation

f(xxx,θθθ) ∶=
1

nH

nH

∑
i=1

Φ (xxx,θθθi) , (6.1)

where

Φ (xxx,θθθi) ∶= aiσ(⟨wwwi,xxx⟩ + bi) (6.2)

for all i ∈ [nH] ∶= {1,2,⋯, nH}, and σ(⋅) is a smooth activation function. The

parameters ai,wwwi and bi are the scaling, weights, and bias of the ith hidden neuron,

respectively, and together comprise the specific parameter realization θθθi ∈ Rp
, i ∈ [nH].

We stack the parameter vectors of all hidden neurons as

θθθ ∶= (θθθ1,θθθ2, . . . ,θθθnH
)
⊺
∈ RpnH
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and consider minimizing the following quadratic loss:

l(y,xxx,θθθ) ≡ l(y, f(xxx,θθθ)) ∶= (y − f(xxx,θθθ))
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
quadratic loss

. (6.3)

We suppose that the training data follows the joint probability distribution γ, i.e.,

(xxx, y) ∼ γ. Define the population risk R as the expected loss given by

R(f) ∶= E(xxx,y)∼γ[l(y,xxx,θθθ)]. (6.4)

In practice, γ is unknown, so we approximate the population risk with the empirical

risk

R(f) ≈
1

ndata

n
data

∑
j=1

l (yj,xxxj,θθθ) (6.5)

where ndata is the number of data samples. Then, the supervised learning problem

reduces to the empirical risk minimization problem

min
θθθ∈RpnH

R(f). (6.6)

Problem (6.6) is a large but finite dimensional optimization problem that is nonconvex

in the decision variable θθθ. The standard approach is to employ first or second order

search algorithms such as the variants of SGD or ADAM [147].

6.1.1 Learning algorithm dynamics: the mean field limit

While universal function approximation theorems for neural networks have been

known for long [195,196], such guarantees do not account the dynamics of the learn-

ing algorithms. Starting in 2018, several works [15–18] pointed out that the first or-

der learning dynamics for two layer neural networks in the infinite width (i.e., over-

parametrization) limit leads to a PDE that enjoys a remarkable structure.

Specifically, the idea is to consider the continuum limit of hidden layer neuronal
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populations by letting nH →∞. Then (6.1) becomes the ensemble average

f = ∫
Rp

Φ(x,θ) dµ(θ)
´¹¹¹¹¸¹¹¹¹¶

hidden neuronal population mass

= ∫
Rp

Φ(x,θ)ρ(θ)dθ = Eθ[Φ(x,θ)] (6.7)

where µ denotes the joint population measure supported on the hidden neuronal pa-

rameter space Rp
. Assuming the absolute continuity of the joint population measure

µ for all times, we write dµ(θ) = ρ(θ)dθ where ρ denotes the joint parametric PDF.

Consequently, the risk functional R, now viewed as a functional of the joint PDF ρ,

takes the form

F (ρ) ∶=R(f(x, ρ)) = E∆ [
1

2
∥y − ∫

Rp
Φ(x,θ)ρ(θ)dθ∥

2

2

]

=F0 + ∫
Rp
V (θ)ρ(θ)dθ + ∫

R2p
U(θ, θ̃)ρ(θ)ρ(θ̃)dθdθ̃,

(6.8)

where

F0 ∶= E(x,y) [∥y∥22] ,

V (θ) ∶= E(x,y)[−2yΦ(x,θ)],

U(θ, θ̃) ∶= E(x,y)[Φ(x,θ)Φ(x, θ̃)].

(6.9)

Hence the supervised learning problem, in this mean field limit, becomes an infinite

dimensional static optimization problem

min
ρ
F (ρ). (6.10)

Notice from (6.9) that F is a sum of three functionals: the first summand being F0

which is independent of ρ, the second summand being a potential energy given by

expected value of “drift potential” V which is linear in ρ, and the last summand being

a bilinear interaction energy involving an “interaction potential” U .

The main result in [15] was that using first order stochastic gradient descent learn-

ing dynamics induces a gradient flow of the functional F w.r.t. the 2-Wasserstein met-
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ric W2, i.e., the mean field learning dynamics results in a joint PDF trajectory ρ(t,θ).

Then the minimizer in (6.10) can be computed from the large t limit of the following

nonlinear PDE:

∂ρ

∂t
= −∇W2F (ρ) = −∇ ⋅ (ρ∇

δF

∂ρ
) . (6.11)

In particular, [15] considered the regularized risk functional
1

Fβ(ρ) ∶= F (ρ) + β
−1
∫
Rp
ρ log ρ dθ, β > 0, (6.12)

by adding a strictly convex regularizer (scaled negative entropy) to the unregularized

risk F . In that case, the sample path dynamics corresponding to the macroscopic

dynamics (6.11) precisely becomes the noisy stochastic gradient descent

dθ = −∇θ (V (θ) + ∫
Rp
U(θ, θ̃)ρ(θ̃)dθ̃) dt +

√
2β−1 dw, (6.13)

where w is the standard Wiener process in Rp
. In this regularized case, (6.11) becomes

∂ρ

∂t
= ∇θ ⋅ (ρ(V (θ) + ∫

Rp
U(θ, θ̃)ρ(θ̃)dθ̃)) + β−1∆θρ. (6.14)

In [15], asymptotic guarantees were obtained for the solution of (6.14) to converge to

the minimizer of Fβ . Our idea outlined next, is to solve the minimization of Fβ using

measure-valued proximal recursions.

6.1.2 Proximal mean field learning

For numerically computing the solution of the PDE IVP (6.14), we propose proximal

recursions over P2 (Rp), defined as the manifold of joint PDFs supported over Rp

having finite second moments. Symbolically,

P2 (Rp) ∶= {Lebesgue integrableρover Rp ∣ ρ ≥ 0,∫
Rp
ρ dθθθ = 1,∫

Rp
θθθ⊺θθθρ dθθθ < ∞}.

1
The parameter β > 0 is referred to as the inverse temperature.
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Proximal updates generalize the concept of gradient steps, and are of significant

interest in both finite and infinite dimensional optimization [61,197–201]. For a given

input, these updates take the form of a structured optimization problem:

proximal update

= arg inf
decision variable

{
1

2
dist2 (decision variable, input)

+ time step × functional (decision variable)},

(6.15)

for some suitable notion of distance dist (⋅, ⋅) on the space of decision variables, and

some associated functional. It is usual to view (6.15) as an operator mapping input ↦

proximal update, thus motivating the term proximal operator.

The connection between (6.15) and the gradient flow comes from recursively eval-

uating (6.15) with some initial choice for the input.

For suitably designed pair (dist (⋅, ⋅) , functional), in the small time step limit, the

sequence of proximal updates generated by (6.15) converge to the infimum of the

functional. In other words, the gradient descent of the functional w.r.t. dist may be

computed as the fixed point of the proximal operator (6.15). For a parallel between

gradient descent and proximal recursions in finite and infinite dimensional gradient

descent, see e.g., [28, Sec. I]. Infinite dimensional proximal recursions over the man-

ifold of PDFs have recently appeared in uncertainty propagation [24, 202], stochastic

filtering [28–30], and stochastic optimal control [38, 39].

In our context, the decision variable ρ ∈ P2 (Rp) and the distance metric dist ≡W2.

Specifically, we propose recursions over discrete time tk−1 ∶= (k−1)hwhere the index

k ∈ N, and h > 0 is a constant time step-size. Leveraging that (6.14) describes gradi-

ent flow of the functional Fβ w.r.t. the W2 distance metric, the associated proximal
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recursion is of the form

ϱk = prox
W2

hFβ
(ϱk−1) ∶= arg inf

ϱ∈P2(Rp)
{
1

2
(W2 (ϱ, ϱk−1))

2
+ h Fβ (ϱ)} (6.16)

where ϱk−1(⋅) ∶= ϱ (⋅, tk−1), and ϱ0 ≡ ρ0. The notation prox
W2

hFβ
(ϱk−1) can be parsed as

“the proximal operator of the scaled functional hFβ w.r.t. the distance W2, acting on

the input ϱk−1 ∈ P2 (Rp)”. Our idea is to evaluate the recursion in the small h limit,

i.e., for h ↓ 0.

To account for the nonconvex bilinear term appearing in (6.12), following [203, Sec.

4], we employ the approximation:

∫
R2p

U(θθθ, θ̃θθ)ϱ(θθθ)ϱ(θ̃θθ)dθθθdθ̃θθ ≈ ∫
R2p
U(θθθ, θ̃θθ)ϱ(θθθ)ϱk−1(θ̃θθ)dθθθdθ̃θθ ∀k ∈ N.

We refer to the resulting approximation of Fβ as F̂β , i.e.,

F̂β (ϱ, ϱk−1) ∶= ∫
Rp
(F0 + V (θθθ) + (∫

Rp
U(θθθ, θ̃θθ)ϱk−1(θ̃θθ)dθ̃θθ) + β

−1 log ϱ(θθθ))ϱ(θθθ)dθθθ.

Notice in particular that F̂β depends on both ϱ, ϱk−1, k ∈ N. Consequently, this ap-

proximation results in a semi-implicit variant of (6.16), given by

ϱk ∶= arg inf
ϱ∈P2(Rp)

{
1

2
(W2 (ϱ, ϱk−1))

2
+hF̂β (ϱ, ϱk−1)}. (6.17)

We have the following consistency guarantee, among the solution of the PDE IVP

(6.14) and that of the variational recursions (6.17). The rigorous statement and proof

are provided in Appendix C.

The rigorous statement and proof are provided in Appendix C.

Theorem 6.1. (Informal) Consider the regularized risk functional (6.12) wherein F is

given by (6.8)-(6.9). In the small time step (h ↓ 0) limit, the proximal updates (6.17) with

ϱ0 ≡ ρ0 converge to the solution for the PDE IVP (6.14).

We next detail the proposed algorithmic approach to numerically solve (6.17).
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6.2 ProxLearn: Proposed Proximal Algorithm

The overall workflow of our proposed proximal mean field learning framework is

shown in Fig. 6.1. We generate N samples from the known initial joint PDF ϱ0 and

store them as a weighted point cloud {θθθi0, ϱ
i
0}
N

i=1. Here, ϱi0 ∶= ϱ0 (θθθ
i
0) for all i ∈ [N]. In

other words, the weights of the samples are the joint PDF values evaluated at those

samples.

For each k ∈ N, the weighted point clouds {θθθik, ϱ
i
k}

N

i=1 are updated through the two-

step process outlined in our proposed Algorithm 2, referred to as ProxLearn. At a

high level, lines 9–18 in Algorithm 1 perform nonlinear block co-ordinate recursion on

internally defined vectors zzz,qqq whose converged values yield the proximal update (line

19). We next explain where these recursions come from detailing both the derivation

of ProxLearn and its convergence guarantee.

6.2.1 Derivation of ProxLearn

The main idea behind our derivation that follows, is to regularize and dualize the dis-

crete version of the optimization problem in (6.17). This allows us to leverage certain

structure of the optimal solution that emerges from the first order conditions for op-

timality, which in turn helps design a custom numerical recursion.

Specifically, to derive the recursion given in ProxLearn, we first write the discrete

version of (6.17) as

ϱϱϱk = argmin
ϱϱϱ
{ min
MMM∈Π(ϱϱϱk−1,ϱϱϱ)

1

2
⟨CCCk,MMM⟩ + h ⟨vvvk−1 +UUUk−1ϱϱϱk−1 + β

−1 logϱϱϱ,ϱϱϱ⟩}, k ∈ N,

(6.18)
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where

Π (ϱϱϱk−1,ϱϱϱ) ∶= {MMM ∈ RN×N ∣MMM ≥ 000 (elementwise),MMM111 = ϱϱϱk−1, MMM
⊺111 = ϱϱϱ}, (6.19)

vvvk−1 ≡ V (θθθk−1) , (6.20)

UUUk−1 ≡ U (θθθk−1, θ̃θθk−1) , (6.21)

and CCCk ∈ RN×N
denotes the squared Euclidean distance matrix, i.e.,

CCCk(i, j) ∶= ∥θθθ
i
k − θθθ

j
k−1∥

2
2 ∀(i, j) ∈ [N] × [N].

We next follow a “regularize-then-dualize” approach. In particular, we regularize

(6.18) by adding the entropic regularization H(MMM) ∶= ⟨MMM, logMMM⟩, and write

ϱϱϱk = argmin
ϱϱϱ
{ min
MMM∈Π(ϱϱϱk−1,ϱϱϱ)

1

2
⟨CCCk,MMM⟩ + ϵH(MMM) + h ⟨vvvk−1 +UUUk−1ϱϱϱk−1 + β

−1 logϱϱϱ,ϱϱϱ⟩} ,

(6.22)

where k ∈ N and ϵ > 0 is a regularization parameter.

Following [204, Lemma 3.5], [5, Sec. III], the Lagrange dual problem associated

with (6.22) is

(λλλopt

0 ,λλλopt

1 ) =

argmax
λλλ0,λλλ1∈RN

⎧⎪⎪
⎨
⎪⎪⎩

⟨λλλ0,ϱϱϱk−1⟩ − F̂
⋆
β (−λλλ1) −

ϵ

h
(exp (λλλ⊺0h/ϵ) exp (−CCCk/2ϵ) exp (λλλ1h/ϵ))

⎫⎪⎪
⎬
⎪⎪⎭

(6.23)

where

F̂ ⋆β (⋅) ∶= sup
ϑ
{⟨⋅, ϑ⟩ − F̂β(ϑ)} (6.24)

is the Legendre-Fenchel conjugate of the free energy F̂β in (6.17), and the optimal

coupling matrixMMM opt ∶= [mopt(i, j)]
N
i,j=1 in (6.22) has the Sinkhorn form

mopt(i, j) = exp (λλλ0(i)h/ϵ) exp (−CCCk(i, j)/(2ϵ)) exp (λλλ1(j)h/ϵ) . (6.25)
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To solve (6.23), considering (6.12), we write the “discrete free energy” as

F̂β(ϱϱϱ) = ⟨vvvk−1 +UUUk−1ϱϱϱk−1 + β
−1 logϱϱϱ,ϱϱϱ⟩ . (6.26)

Its Legendre-Fenchel conjugate, by (6.24), is

F̂ ⋆β (λ) ∶= sup
ϑ
{λλλ⊺ϱϱϱ − vvv⊺k−1ϱϱϱ − ϱϱϱ

⊺UUUk−1ϱϱϱk−1 − β
−1ϱϱϱ⊺ logϱϱϱ}. (6.27)

Setting the gradient of the objective in (6.27) w.r.t. ϱϱϱ to zero, and solving for ϱϱϱ gives

the maximizer

ϱϱϱmax = exp (β (λλλ − vvvk−1 − β
−1111 −UUUk−1ϱϱϱk−1)) . (6.28)

Substituting (6.28) back into (6.27), we obtain

F̂ ⋆β (λ) = β
−1111 exp (β (λλλ − vvvk−1 −UUUk−1ϱϱϱk−1) − 111) . (6.29)

Fixing λλλ0, and taking the gradient of the objective in (6.23) w.r.t. λλλ1 gives

exp (λλλ1h/ϵ)⊙(exp (−CCCk/2ϵ)
⊺
exp (λλλ0h/ϵ)) =

exp(−βvvvk−1 − βUUUk−1ϱϱϱk−1 − 111) ⊙ (exp (λλλ1h/ϵ))
−βϵ

h . (6.30)

Likewise, fixingλλλ1, and taking the gradient of the objective in (6.23) w.r.t. λλλ0, gives

exp (λλλ0h/ϵ) ⊙ (exp (−CCCk/2ϵ) exp (λλλ1h/ϵ)) =ϱϱϱk−1. (6.31)

Next, letting ΓΓΓk ∶= exp (−CCCk/2ϵ), qqq ∶= exp (λλλ0h/ϵ), zzz ∶= exp (λλλ1h/ϵ), and ξξξk−1 ∶=

exp(−βvvvk−1 − βUUUk−1ϱϱϱk−1 − 111), we express (6.30) as

zzz ⊙ (ΓΓΓ⊺kqqq) =ξξξk−1 ⊙ zzz
−βϵ

h , (6.32)

and (6.31) as

qqq ⊙ (ΓΓΓkzzz) =ϱϱϱk−1. (6.33)
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Finally using (6.19), we obtain

ϱϱϱk = (MMM
opt)

⊺
1 =

N

∑
j=1
mopt(j, i) = zzz(i)

N

∑
j=1

ΓΓΓk(j, i)qqq(j) = zzz ⊙ΓΓΓ
⊺
kqqq. (6.34)

In summary, (6.34) allows us to numerically perform the proximal update.

Remark 6.1. Note that in Algorithm 2 (i.e., ProxLearn) presented in Section 6.2, the

lines 11, 12, and 19 correspond to (6.32), (6.33) and (6.34), respectively.

6.2.2 Convergence of ProxLearn

Our next result provides the convergence guarantee for our proposed ProxLearn al-

gorithm derived in Section 6.2.1.

Proposition 6.1. The recursions given in lines 7–18 in Algorithm 2 ProxLearn, con-

verge to a unique fixed point (qqqopt,zzzopt) ∈ RN
>0×RN

>0. Consequently, the proximal update

(6.34) (i.e., the evaluation at line 19 in Algorithm 2) is unique.

Proof. Notice that the mappings (qqq(∶, ℓ),zzz(∶, ℓ)) ↦ (qqq(∶, ℓ + 1),zzz(∶, ℓ + 1)) given in

lines 11 and 12 in Algorithm 2, are cone preserving since these mappings preserve

the product orthant RN
>0 ×RN

>0. This is a direct consequence of the definition of qqq,zzz

in terms of λλλ0,λ1λ1λ1.

Now the idea is to show that the recursions in lines 11 and 12 in Algorithm 2, as

composite nonlinear maps, are in fact contractive w.r.t. a suitable metric on this

cone. Following [5, Theorem 3], the zzz iteration given in line 11 in Algorithm 2,

ProxLearn, for ℓ = 1,2, . . ., is strictly contractive in the Thompson’s part metric [62]

and thanks to the Banach contraction mapping theorem, converges to a unique fixed

point zzzopt ∈ RN
>0.

We note that our definition of ξξξk−1 is slightly different compared to the same in

[5, Theorem 3], but this does not affect the proof. From definition of CCCk, we have
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CCCk ∈ [0,∞) which implies ΓΓΓk(i, j) ∈ (0,1]. Therefore, ΓΓΓk is a positive linear map

for each k ∈ N. Thus, by (linear) Perron-Frobenius theorem, the linear maps ΓΓΓk

are contractive. Consequently the qqq iterates also converge to unique fixed point

qqqopt ∈ RN
>0.

Since converged pair (qqqopt,zzzopt) ∈ RN
>0 × RN

>0 is unique, so is the proximal update

(6.34), i.e., the evaluation at line 19 in Algorithm 2.

We next discuss the implementation details for the proposed ProxLearn algo-

rithm.

6.2.3 Implementation of ProxLearn

We start by emphasizing that ProxLearn updates both the parameter sample loca-

tions θθθik and the joint PDF values ϱik evaluated at those locations, without gridding the

parameter space. In particular, the PDF values are updated online, not as an offline a

posteriori function approximation as in traditional Monte Carlo algorithms.

We will apply ProxLearn, as outlined here, in Section 6.3. In Section 6.4, we will

detail additional modifications of ProxLearn to showcase its flexibility.

Required inputs of ProxLearn are the inverse temperature β, the time step-size

h, a regularization parameter ε, and the number of samples N . Additional required

inputs are the training feature data XXX ∶= [xxx1 . . .xxxn
data
]
⊺
∈ Rn

data
×nx and the corre-

sponding training labels yyy ∶= [y1 . . . yn
data
]
⊺
∈ Rn

data , as well the weighted point cloud

{θθθik−1, ϱ
i
k−1}

N
i=1 for each k ∈ N. Furthermore, ProxLearn requires two internal param-

eters as user input: the numerical tolerance δ, and the maximum number of iterations

L.
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1 step delay

Euler-Maruyama 

scheme

proxd2
hΨ(⋅)

1 step delay

θk−1 θk

ϱk−1
ϱk

Figure 6.1: Schematic of the proposed proximal algorithm for mean field learning,

updating scattered point cloud {θθθik−1, ϱ
i
k−1}

N

i=1 for k ∈ N. The location of the points

{θθθik−1}
N

i=1 are updated via the Euler-Maruyama scheme; the corresponding probabil-

ity weights are computed via proximal updates highlighted within the dashed box.

Explicitly performing the proximal updates via the proposed algorithm, and thereby

enabling mean filed learning as an interacting weighted particle system, is our novel

contribution

.

For k ∈ N, let

ΘΘΘk−1 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(θθθ1k−1)
⊺

(θθθ2k−1)
⊺

⋮

(θθθNk−1)
⊺

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ RN×p, ϱϱϱk−1 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ϱ1k−1

ϱ2k−1

⋮

ϱNk−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ RN
>0.

In line 2 of Algorithm 2, ProxLearn updates the locations of the parameter vector

samples θθθik in Rp
via Algorithm 3, EulerMaruyama. This location update takes the

119



Centralized Computing: Mean Field Learning/Case study: Binary Classification 6.3

form:

θθθik = θθθ
i
k−1 − h∇(V (θθθ

i
k−1) + ω (θθθ

i
k−1)) +

√
2β−1 (ηηηik − ηηη

i
k−1) , (6.35)

where ω(⋅) ∶= ∫ U(⋅, θ̃θθ)ϱ(θ̃θθ)dθ̃θθ, and ηηηik−1 ∶= ηηη
i(t = (k − 1)h), ∀k ∈ N.

To perform this update, EulerMaruyama constructs a matrixPPP k−1 whose (i, j)th

element isPPP k−1(i, j) = Φ(xxxj,θθθik−1). FromPPP k−1, we construct vvvk−1 andUUUk−1 as in lines

3 and 5. In line 6 of Algorithm 3, EulerMaruyama uses the automatic differentiation

module of PyTorch Library, Backward [205], to calculate the gradients needed to

update ΘΘΘk−1 to ΘΘΘk ∀k ∈ N.

OnceΘΘΘk, vvvk−1, andUUUk−1 have been constructed via EulerMaruyama, ProxLearn

maps the N × 1 vector ϱϱϱk−1 to the proximal update ϱϱϱk.

We next illustrate the implementation of ProxLearn for binary and multi-class

classification case studies. A GitHub repository containing our code for the implemen-

tation of these applications can be found athttps://github.com/zalexis12/

Proximal-Mean-Field-Learning.git. Please refer to the Readme file therein

for an outline of the structure of our code.

6.3 Case study: Binary Classification

In this Section, we report numerical results for our first case study, where we apply

the proposed ProxLearn algorithm for binary classification.

For this case study, we perform two implementations on different computing plat-

forms. Our first implementation is on a PC with 3.4 GHz 6-Core Intel Core i5 processor,

and 8 GB RAM. For runtime improvement, we then use a Jetson TX2 with a NVIDIA

Pascal GPU with 256 CUDA cores, 64-bit NVIDIA Denver and ARM Cortex-A57 CPUs.
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Algorithm 2 Proximal Algorithm

1: procedure ProxLearn(ϱϱϱk−1,ΘΘΘk−1, β, h, ε,N,XXX,yyy, δ,L)

2: vvvk−1, UUUk−1, ΘΘΘk ← EulerMaruyama(h,β,ΘΘΘk−1,XXX,yyy,ϱϱϱk−1) ▷ Update the

location of the samples

3: CCCk(i, j) ← ∥θθθki − θθθ
j
k−1∥

2

2
4: ΓΓΓk ← exp(−CCCk/2ε) ▷ Lines 4-8 define the terms needed in re-expressing

(6.30) as (6.32)

5: ξξξk−1 ← exp(−βvvvk−1 − βUUUk−1ϱϱϱk−1 − 111)
6: zzz0 ← randN×1
7: zzz ← [zzz0,000N×(L−1)]
8: qqq ← [ϱϱϱk−1 ⊘ (ΓkΓkΓkz0z0z0),000N×(L−1)]
9: ℓ = 1

10: while ℓ ≤ L do

11: zzz(∶, ℓ + 1) ← (ξξξk−1 ⊘ (ΓΓΓ
⊺
kqqq(∶, ℓ))

1
1+βε/h ▷ Following (6.32)

12: qqq(∶, ℓ + 1) ← ϱϱϱk−1 ⊘ (ΓΓΓkzzz(∶, ℓ + 1)) ▷ Following (6.33)

13: if ∣∣qqq(∶, ℓ + 1) − qqq(∶, ℓ)∣∣ < δ and ∣∣zzz(∶, ℓ + 1) − zzz(∶, ℓ)∣∣ < δ then

14: Break

15: else

16: ℓ← ℓ + 1
17: end if

18: end while

19: return ϱϱϱk ← zzz(∶, ℓ) ⊙ (ΓΓΓ
⊺
kqqq(∶, ℓ)) ▷ Use (6.34) to map ϱϱϱk−1 to ϱϱϱk

20: end procedure

6.3.1 WDBC data set

We apply the proposed algorithm to perform a binary classification on the Wisconsin

Diagnostic Breast Cancer (henceforth, WDBC) data set available at the UC Irvine ma-

chine learning repository [206]. This data set consists of the data of scans from 569

patients. There are nx = 30 features from each scan. Scans are classified as “benign”

(which we label as −1) or “malignant” (labeled as +1).

In (6.1), we define Φ (xxx,θθθik−1) ∶= a
i
k−1 tanh(⟨www

i
k−1,xxx⟩ + b

i
k−1) ∀i ∈ [N] after (k − 1)

updates. The parameters aik−1,www
i
k−1 and bik−1 are the scaling, weight and bias of the ith

sample after (k − 1) updates, respectively. Letting p ∶= nx + 2, the parameter vector of
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Algorithm 3 Euler-Maruyama Algorithm

1: procedure EulerMaruyama(h,β,ΘΘΘk−1,XXX,yyy,ϱϱϱk−1)

2: PPP k−1 ←ΦΦΦ(ΘΘΘk−1,XXX) ▷ Lines 2-4 construct the argument of the gradient in

(6.35)

3: UUUk−1 ← 1/ndataPPP k−1PPP
⊺
k−1

4: uuuk−1 ← UUUk−1ϱϱϱk−1
5: vvvk−1 ← −2/ndataPPP k−1yyy
6: DDD ← Backward (uuuk−1 + vvvk−1) ▷ Approximate the gradient of (6.35) using

PyTorch library Backward [205]

7: GGG←
√
2h/β × randnN×p

8: ΘΘΘk ←ΘΘΘk−1 + h ×DDD +GGG ▷ Complete the location update via (6.35)

9: end procedure

the ith sample after (k − 1) updates is

θθθik−1 ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

aik−1

bik−1

wwwik−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Rp, ∀ i ∈ [N].

We set ϱ0 ≡ Unif ([0.9,1.1] × [−0.1,0.1] × [−1,1]nx), a uniform joint PDF sup-

ported over np = nx + 2 = 32 dimensional mean field parameter space.

We use 70% of the entire data set as training data. As discussed in Section 6.2, we

learn the mean field parameter distribution via weighted scattered point cloud evolu-

tion using ProxLearn. We then use the confusion matrix method [207] to evaluate

the accuracy of the obtained model over the test data, which is the remaining 30% of

the full data set, containing ntest points.

For each test point xxxtest ∈ Rnx , we construct

φφφ(xxxtest) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Φ(xxxtest,θθθ1k−1)

Φ(xxxtest,θθθ2k−1)

⋮

Φ(xxxtest,θθθNk−1)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ RN
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where θθθik−1 is obtained from the training process. We estimate fMeanField in (6.7) in two

ways. First, we estimate fMeanField as a sample average of the elements of φφφ. Second,

we estimate fMeanField by numerically approximating the integral in (6.7) using the

propagated samples {θθθik−1, ϱ
i
k−1}

N
i=1 for k ∈ N. We refer to these as the “unweighted

estimate” and “weighted estimate,” respectively. While the first estimate is an em-

pirical average, the second uses the weights {ϱik−1}
N
i=1 obtained from the proposed

proximal algorithm. The fMeanField “unweighted estimate” and “weighted estimate”

are then passed through the softmax and argmax functions respectively, to produce

the predicted labels.

6.3.2 Numerical experiments

We set the number of samples N = 1000, numerical tolerance δ = 10−3, the maximum

number of iterations L = 300, and the regularizing parameter ε = 1. Additionally, we

set the time step to h = 10−3. We run the simulation for different values of the inverse

temperature β, and list the corresponding classification accuracy in Table 6.1. The

“weighted estimate,” the ensemble average using proximal updates, produces more

accurate results, whereas the “unweighted estimate,” the empirical average, is found

to be more sensitive to the inverse temperature β.

For each fixed β, we perform 106 proximal recursions incurring approx. 33 hours

of computational time. Fig. 6.2a shows the risk functional, computed as the averaged

loss over the test data using each of the two estimates described above.

To improve the runtime of our algorithm, we run our code on a Jetson TX2 module,

converting data and variables to PyTorch variables.

We begin calculations in Float32, switching to Float64 only when needed to avoid

not-a-number (NaN) errors. This switch typically occurs after 2 × 105 to 3 × 105 iter-
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Unweighted Weighted

(a) Regularized risk calculated via CPU.

Unweighted Weighted

(b) Regularized risk calculated via GPU.

Figure 6.2: The solid line shows the regularized risk functional Fβ versus the number

of proximal recursions shown for the WDBC dataset with β = 0.05. The shadow shows

the Fβ variation range for different values of β ∈ {0.03,0.05,0.07}.

Table 6.1: Classification accuracy of the proposed computational framework for the

WDBC Dataset

β Unweighted Weighted

0.03 91.17% 92.35%

0.05 92.94% 92.94%

0.07 78.23% 92.94%

ations. As shown in Table 6.2, we train the neural network to a comparable accuracy

in only 2.5 × 105 iterations. The new runtime is around 6% of the original runtime

for the CPU-based computation. Fig. 6.2b shows the risk functional calculated via this

updated code. We parallelize these calculations, taking advantage of the GPU capacity

of the Jetson TX2.

We utilize these improvements in runtime to additionally experiment with our

choice of ε. Table 6.3 reports the final values of the regularized risk functional F̂β and

corresponding runtimes for varying ε. As expected, larger ε entails more smoothing

and lowers runtime. The corresponding final regularized risk values show no signifi-

cant variations, suggesting numerical stability.
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Table 6.2: Classification accuracy on Jetson Tx2, after 2.5 × 105 iterations

β Unweighted Weighted Runtime (hr)

0.03 91.18% 91.18% 1.415

0.05 91.18% 92.94% 1.533

0.07 90.59% 91.76% 1.704

Table 6.3: Comparing final F̂β and runtimes for various ε

ε Unweighted Final F̂β Runtime (s)

0.1 1.4348 × 10−2 32863

0.5 1.3740 × 10−2 11026

1 1.0412 × 10−2 5022

5 1.1293 × 10−2 4731

10 9.8849 × 10−3 4766

6.3.3 Computational complexity

In this case study, we determine the computational complexity of ProxLearn as fol-

lows. Letting

aaak−1 ∶= (a1k−1 ⋯ aNk−1)
⊺
, bbbk−1 ∶= (b1k−1 ⋯ bNk−1)

⊺
, WWW k−1 ∶= (www1

k−1 ⋯ wwwNk−1)
⊺
,

we create the N × ndata matrix

PPP k−1 ∶=(aaak−1111
⊺)⊙tanh(WWW k−1XXX

⊺ + bbbk−1111
⊺), (6.36)

which has complexity O(ndataNnx). The subsequent creation of matrix UUUk−1 in line

3 of Algorithm 3 has complexity O(ndataN2), and creating vvvk−1 and uuuk−1 takes com-

plexity O(Nndata) and O(N2) respectively.

The complexity in calculating the relevant derivatives of vvvk−1 and uuuk−1 is O(N2

ndatanx) (these derivatives are calculated in Appendices C and C). UpdatingΘΘΘk−1 using
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Table 6.4: Comparison of average classification accuracy from [3, Table 1] to our al-

gorithm, ProxLearn

Dataset JKO-ICNN SWGF+RealNVP ProxLearn, Weighted ProxLearn, Unweighted

Banana 0.550 ± 10−2 0.559 ± 10−2 0.551 ± 10−2 0.535 ± 5 ⋅ 10−2
Diabetes 0.777 ± 7 ⋅ 10−3 0.778 ± 2 ⋅ 10−3 0.736 ± 2 ⋅ 10−2 0.731 ± 10−2
Twonorm 0.981 ± 2 ⋅ 10−4 0.981 ± 6 ⋅ 10−4 0.972 ± 2 ⋅ 10−3 0.972 ± 2 ⋅ 10−3

these results has complexity ofO(Np) = O(Nnx). Therefore, the process of updating

ΘΘΘk−1 via EulerMaruyama is O(N2ndatanx).

The significant complexity in the remainder of ProxLearn arises in the construc-

tion of matrixCCCk in line 3 and the matrix-vector multiplications within the while loop

in lines 11, 12.

The creation of the N ×N matrixCCCk, in which each element is the vector norm of

a nx×1 vector, isO(nxN2). In a worst-case scenario, the while loop runs L times. The

operations of leading complexity within the while loop are the multiplications of the

ΓΓΓk matrix of size N ×N with the N × 1 vectors, which have a complexity of O(N2).

Therefore, the while loop has a complexity of O(LN2).

Updating ϱϱϱk−1 thus has a complexity ofO((nx+L)N2). In practice, the while loop

typically ends far before reaching the maximum number of iterations L.

From this analysis, we find that the overall complexity of ProxLearn isO(N2(ndata

nx +L)). In comparison, the per iteration complexity for JKO-ICNN is O(Ninner(N +

1)Nbatch+N3)whereNinner denotes the number of inner optimization steps, andNbatch

denotes the batch size. The per iteration complexity for SWGF isO(NinnerNprojNbatch log

Nbatch)whereNproj denotes the number of projections to approximate the sliced Wasser-

stein distance.
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6.3.4 Comparisons to existing results

From Fig. 6.2, we observe that there is a significant burn in period for the risk func-

tional curves. These trends in learning curves agree with those reported in [15]. In

particular, [15, Fig. 3] and Fig. 7.3 in that reference’s Supporting Information, show

convergence trends very similar to our Fig. 6.2: slow decay until approx. 105 itera-

tions and then a significant speed up. The unusual convergence trend was explicitly

noted in [15]: “We observe that SGD converges to a network with very small risk,

but this convergence has a nontrivial structure and presents long flat regions”. It is

interesting to note that [15] considered an experiment that allowed rotational symme-

try and simulated the radial (i.e., with one spatial dimension) discretized PDE, while

we used the proposed proximal recursion directly in the neuron population ensemble

to solve the PDE IVP, i.e., similar convergence trends were observed using different

numerical methods applied to the same mean field PDE IVP. This makes us speculate

that the convergence trend is specific to the mean field PDE dynamics itself, and is

less about the particular numerical algorithm. This observation is consistent with re-

cent works such as [208] which investigate the mean field learning dynamics in two

layer ReLU networks and in that setting, show that the learning can indeed be slow

depending on the target function.

As a first study, our numerical results achieve reasonable classification accuracy

compared to the state-of-art, even though our proposed meshless proximal algorithm

is very different from the existing implementations. We next compare the numerical

performance with existing methods as in [56] and [3]. We apply our proximal algo-

rithm for binary classification to three datasets also considered in [56] and [3]: the

banana, diabetes, and twonorm datasets.

The banana dataset consists of 5300 data points, each with nx = 2 features, which
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we rescale to lie between 0 and 8. We set β = 0.05, draw our initial weights www from

Unif ([−2,2]nx) and bias b from Unif ([−0.3,0.3]), and set ϱϱϱ0 ≡ Unif (0,1000). We run

our code for 3500 iterations, splitting the data evenly between test and training data.

The diabetes dataset consists of nx = 8 features from each of 768 patients. Based on

our experimental results, we make the following adjustments to our algorithm: we re-

define β = 0.65,ϱϱϱ0 ≡ Unif (0,1000), and draw our initial weightswww from Unif ([−2,2]nx).

We rescale the data to lie between 0 and 1, and use half of the dataset for training pur-

poses, and the remainder as test data. In this case, we run our code for 4.99 × 105

iterations.

The twonorm dataset consists of 7,400 samples drawn from two different normal

distributions, with nx = 20 features. We again consider 50% of the same as training

data and used the remaining 50% as test data, and rescale the given data by a factor

of 8. Based on our empirical observations, we redefine β = 1.95, and once more draw

our initial weights www from Unif ([−2,2]nx) and set ϱϱϱ0 ≡ Unif (0,1000). In this case,

we perform 104 proximal recursions in each separate run.

We run our code five times for each of the three datasets under consideration and

compute “unweighted estimates” and “weighted estimates” in each case, as described

above. These estimates assign each data point a value: negative values predict the label

as 0, while positive values predict the label as 1. From these results, we calculate the

weighted and unweighted accuracy by finding the percentage of predicted test labels

that match the actual test labels. The average accuracy over all five runs is reported

in Table 6.4, alongside the results reported in [3, Table 1]. We achieve comparable

accuracy to these recent results.
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6.4 Case study: Multi-class Classification

We next apply the proposed proximal algorithm to a ten-class classification problem

using the Semeion Handwritten Digit (hereafter SHD) Data Set [206]. This numerical

experiment is performed on the aforementioned Jetson TX2.

6.4.1 SHD data set

The SHD Data Set consists of 1593 handwritten digits. By viewing each digit as 16×16

pixel image, each image is represented by nx = 162 = 256 features. Each feature is a

boolean value indicating whether a particular pixel is filled. We subsequently re-scale

these features such that xxxi ∈ {−1,1}nx .

6.4.2 Adaptations to ProxLearn for multi-class case

To apply ProxLearn for a multi-class case, we make several adaptations. For instance,

rather than attempting to determine f(xxx) ≈ y, we redefine f(xxx) to represent a map-

ping of input data to the predicted likelihood of the correct label. We therefore redefine

the variables, parameters, and risk function as follows.

Each label is represented by a 1×10 vector of booleans, stored in a ndata×10 matrix

YYY where Yi,j = 1 if the ith data point xxxi has label j, and Yi,j = 0 otherwise.

We construct the N × ndata matrix PPP k−1 by defining the (j, i) element of PPP k−1 as

PPP k−1(j, i) ∶=ΦΦΦ(θθθ
j
k−1,XXX(i, ∶),YYY (i, ∶))

∶= ⟨softmax(XXX(i, ∶)(θθθjk−1)
⊺), (YYY (i, ∶))

⊺
⟩ (6.37)

where ⟨⋅, ⋅⟩ denotes the standard Euclidean inner product. The softmax function in

(6.37) produces a 10 × 1 vector of non-negative entries that sum to 1. By taking the
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inner product of this vector with the Boolean vector YYY (i, ∶), we define PPP k−1(j, i) =

ΦΦΦ(θθθjk−1,XXX(i, ∶),YYY (i, ∶)) as the perceived likelihood that the data point i is labeled cor-

rectly by sample j. As our model improves, this value approaches 1, which causes the

probability of an incorrect label to drop.

As this newly defined PPP k−1 does not call for bias or scaling, the weights alone are

stored in the N × p matrix ΘΘΘk−1. In this case, p ∶= 10nx, as each of the nx features

requires a distinct weight for each of the ten labels. For convenience, we reshape

ΘΘΘk−1 = (θθθ1k−1, ...,θθθ
N
k−1), where each θθθik−1 is a 10 × nx matrix. Therefore, ΘΘΘk−1 is a

10 × nx ×N tensor.

We redefine the unregularized risk to reflect our new ΦΦΦ as follows:

F (ρ) ∶= E(xxx,yyy) (1 − ∫
Rp

Φ(xxx,yyy,θθθ)ρ(θθθ)dθθθ)
2

. (6.38)

Expanding the above, we arrive at a form that resembles (6.8), now with the following

adjusted definitions:

F0 ∶= 1, (6.39)

V (θθθ) ∶= E(xxx,yyy)[−2Φ(θθθ,xxx,yyy)], (6.40)

U(θθθ, θ̃θθ) ∶= E(xxx,yyy)[Φ(θθθ,xxx,yyy)Φ(θ̃θθ,xxx,yyy)]. (6.41)

We use the regularized risk functional Fβ as in (6.12) where F now is given by (6.38).

Due to the described changes in the structure of ΘΘΘk−1, the creation of CCCk in line 3 of

ProxLearn results in a 10×N ×N tensor, which we then sum along the ten element

axis, returning an N ×N matrix.

Finally, we add a scaling in line 7 of EulerMaruyama, scaling the noise by a factor

of 1/100.

130



Centralized Computing: Mean Field Learning/Case study: Multi-class Classification6.4

6.4.3 Numerical experiments

With the adaptations mentioned above, we set the inverse temperature β = 0.5, ϵ = 10,

the step sizeh = 10−3, andN = 100. We draw the initial weights from Unif ([−1,1]10nx).

We take the first ndata = 1000 images as training data, reserving the remaining ntest =

593 images as test data, and execute 30 independent runs of our code, each for 106

proximal recursions.

To evaluate the training process, we create a matrix PPP test
k−1 ∈ RN×ntest , using test

data rather than training data, but otherwise defined as in (6.37). We then calculate a

weighted approximation of Fβ :

Fβ ≈
1

ntest

∥111 − (PPP test
k−1)

⊺ϱϱϱ∥

2

2

, (6.42)

and an unweighted approximation:

Fβ ≈
1

ntest

∥111 −
1

N
(PPP test

k−1)
⊺111∥

2

2

, (6.43)

which we use to produce the risk and weighted risk log-log plots shown in Fig. 6.3.

Notably, despite the new activation function and the adaptations described above,

our algorithm produces similar risk plots in the binary and multi-class cases. The run

time for 106 iterations is approximately 5.3 hours.

To evaluate our multi-class model, we calculate the percentage of accurately la-

beled test data by first taking argmax (XXXtestΘΘΘk−1) along the ten dimensional axis,

to determine the predicted labels for each test data point using each sample of ΘΘΘk−1.

We then compare these predicted labels with the actual labels. We achieved 61.079%

accuracy for the test data, and 75.330% accuracy for the training data.
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Figure 6.3: The solid line shows the average regularized risk functional Fβ versus the

number of proximal recursions shown for the Semeion dataset with β = 0.5. The

narrow shadow shows the Fβ variation range with the same β using the results of 30

independent runs, each starting from the same initial point cloud {θθθi0, ϱ
i
0}
N

i=1.

6.4.4 Updated computational complexity of ProxLearn

In the binary case, the creation of matrix CCCk requires O(nxN2) flops. In the case of

multi-class classification concerning m classes, CCCk is redefined as the sum of m such

matrices. Therefore, creating the updated matrix CCCk takes O(mnxN2) flops. Thus,

updatingϱϱϱk−1 is of complexityO((mnx+L)N2). The complexity of EulerMaruyama

can be generalized from the discussion in Section 6.3.

6.5 Case study: Learning Sinusoid

To better visualize the functionality of the proposed algorithm, we perform a synthetic

case study of learning a sinusoid following the set up as in [209, Sec. 2.1]. We per-

formed 5000 iterations of ProxLearn with N = 1000 samples (no mini-batch) from

the initial PDF ϱ0(θ ≡ (a, b,w)) = Unif ([−1,1] × [−1,1] × [−1.5,1.5]), and used al-

132



Centralized Computing: Mean Field Learning/Case study: Learning Sinusoid 6.5

Iteration#1 Iteration#1000 Iteration#5000

Figure 6.4: The evolution of the regularized risk F̂β versus iteration index k for the

proposed ProxLearn. Inset plots compare the ground truth (sinusoid) with the output

from the network at three specific iterations.

gorithm parameters β = 0.3, h = 10−4, δ = 10−3, ε = 10−3, L = 10. The evolution of

the associated regularized risk functional and the learnt functions are shown in Fig.

6.4. Fig. 6.5 shows the function approximations learnt by our proposed algorithm

at the end of 3200 iterations for 20 randomized runs with the same initial PDF and

parameters as reported here.

To illustrate the effect of finite N on the algorithm’s performance, we report the

effect of varyingN on the final regularized risk value F̂β for a specific synthetic exper-

iment. We observe that increasing N improves the final regularized risk, as expected

intuitively.
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Figure 6.5: Comparison of the ground truth (here sin(x)) with the learnt approximants

obtained from the proposed ProxLearn after 3200 iterations for 20 randomized runs.

All randomized runs use the same initial PDF and parameters as reported here.

Table 6.5: Comparing final F̂β for varying N

N Final F̂β
500 0.01241931
700 0.01075817
1000 0.00806645
2000 0.00762518
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7 | Distributed Computing:

Wasserstein Consensus ADMM

7.1 Problem Formulation

Recall the notation that P2(Rd) denotes the space of Borel probability measures over

Rd
with finite second moments. Consider its subset

P2,ac(Rd) ∶= {µ ∈ P2(Rd) ∣ µ is absolutely continuous w.r.t. the Lebesgue measure}.

A probability measure µ ∈ P2,ac(Rd) admits a joint PDF ρ(θ) ∶= dµ
dθ such that ρ ≥ 0 for

all θ ∈ Rd
and ∫Rd ρ dθ = 1.

We consider measure-valued optimization problems of the form (1.1) where the

objective F is additive, i.e., F (µ) = F1(µ) + F2(µ) + ⋯ + Fn(µ) for some finite in-

teger n > 1, and the functionals Fi ∶ P2(Rd) ↦ R are convex for all i ∈ [n]. If the

optimization in (1.1) is instead over P2,ac(Rd), then we can equivalently write it as

arg inf
ρ

F1(ρ) + F2(ρ) +⋯ + Fn(ρ) (7.1)

where the decision variable ρ is a joint PDF over Rd
with finite second moment.

Instances of (1.1) are often encountered in machine learning [11, 15, 16, 18, 19, 57]

and control [5, 38]. For example, given the measures µ1, . . . , µn ∈ P2 (X) and positive

weights w1,⋯,wn, computing the Wasserstein barycenter [54]

arg inf
µ∈P2(X)

n

∑
i=1
wiW

2 (µ,µi) (7.2)

is an instance of (1.1) where Fi(µ) ∶= wiW (µ,µi), and W denotes the 2-Wasserstein

distance. As another example, consider maximum likelihood deconvolution, i.e., the

problem of estimating an unknown probability measure µ from n noisy observations
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Yi =Xi +Zi, i ∈ [n]

Most existing algorithms [4, 50, 52, 56, 203, 210–214] for this class of problems re-

quire centralized computation; relatively few works [215,216] are available on solving

specific instances of (1.1) via distributed computation. The main contribution of this

work is to deduce a distributed algorithm for solving (1.1) by generalizing the Eu-

clidean consensus ADMM to Wasserstein spaces. Our proposed algorithm realizes

measure-valued operator splitting [217–219] but allows explicit distributed updates.

Motivation and contributions

While problem (1.1) appears across many disciplines, one particular motivation be-

hind our work is to numerically solve the transient solutions for measure-valued PDE

initial value problems (IVPs). These PDEs are often nonlinear and nonlocal (see e.g.,

the second case study in (7.6)), and difficult to solve scalably via traditional scientific

computing methods such as finite difference. However, it is known that the flow in-

duced by such PDE IVPs can often be seen [45, Ch. 11], [46] as gradient descent of a

suitable free energy Lyapunov functional F (µ) w.r.t. the 2-Wasserstein metric over

the space of measures. Then, high-level idea is to leverage this variational reformu-

lation to compute the transient solutions for such IVPs by numerically performing

Wasserstein gradient descent on (1.1).

The specific idea in this work is to further recognize that the functional F in prac-

tice has an additive structure F (⋅) = F1(⋅) + ⋯ + Fn(⋅), which comes from different

spatial operators (e.g., advection, interaction, diffusion) appearing in the PDE. One of

our contribution here is to show that it is possible to leverage this additive structure

in F to generalize the Euclidean ADMM to the Wasserstein space. The proposed algo-

rithm can then be seen as a nonlinear superposition principle where different comput-
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ers solve different (simpler) PDE IVPs by performing proximal update on a modified

version of Fi, and then combine the resulting updates in a nonlinear manner. Histor-

ically, this point of view is very close to the origin of operator splitting [220, 221] in

the PDE community that motivated the development of ADMM [222], albeit in the

finite-dimensional setting.

We clarify here that while augmented Lagrangian methods for infinite dimensional

problems have been investigated before, they appeared in the Hilbert spaces [223] or

reflexive Banach spaces [224,225]. In contrast, our definition (7.4) for the Wasserstein

augmented Lagrangian is novel. Our development is also different from the (standard)

augmented Lagrangian for Wasserstein gradient flow as in [203, equation 2.12], and

directly works on the Wasserstein space.

7.2 Main Idea

To leverage the additive structure of the objective in (1.1) for distributed computation,

we start by rewriting it in the consensus form. Specifically, we relabel the argument

of the functional Fi as µi for all i ∈ [n], and then impose the consensus constraint

µ1 = µ2 = ⋯ = µn. Letting Pn+12 (X) ∶= P2(X) ×⋯ ×P2(X)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n+1 times

, we thus transcribe (1.1)

into

arg inf
(µ1,⋯,µn,ζ)∈Pn+1

2 (X)
F1(µ1) + F2(µ2) +⋯ + Fn(µn) (7.3a)

subject to µi = ζ for all i ∈ [n]. (7.3b)
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Denote an element of the base space as θ ∈ X ⊆ Rd
. Akin to the standard (Euclidean)

augmented Lagrangian, we define the Wasserstein augmented Lagrangian

Lα(µ1,⋯, µn, ζ, ν1,⋯, νn) ∶=
n

∑
i=1
{Fi(µi) +

α

2
W 2 (µi, ζ) + ∫

X
νi(θ) (dµi − dζ)} (7.4)

where νi(θ), i ∈ [n], are the Lagrange multipliers for the constraints in (7.3b), and

α > 0 is a regularization constant.

Motivated by the Euclidean ADMM, we then set up the recursions

µk+1i = arg inf
µi∈P2(X)

Lα (µ1,⋯, µn, ζ
k, νk1 ,⋯, ν

k
n) (7.5a)

ζk+1 = arg inf
ζ∈P2(X)

Lα (µ
k+1
1 ,⋯, µk+1n , ζ, νk1 ,⋯, ν

k
n) (7.5b)

νk+1i = νki + α (µ
k+1
i − ζk+1) (7.5c)

where i ∈ [n], and the recursion index k ∈ N0. For convenience, let

νk
sum
(θ) ∶=

n

∑
i=1
νki (θ), k ∈ N0. (7.6)

We view (7.5a)-(7.5b) as primal updates, and (7.5c) as dual ascent.

Substituting (7.4) in (7.5), dropping the terms independent of the decision variable

in the respective arg inf , re-scaling, and using (7.6), the recursions (7.5) simplify to

µk+1i = arg inf
µi∈P2(X)

1

2
W 2 (µi, ζ

k) +
1

α
{Fi(µi) + ∫

X
νki (θ)dµi}

= prox
W
1
α
(Fi(⋅)+∫ νki d(⋅))

(ζk) , (7.7a)

ζk+1 = arg inf
ζ∈P2(X)

n

∑
i=1
{
1

2
W 2 (µk+1i , ζ) −

1

α ∫X
νki (θ)dζ}

= arg inf
ζ∈P2(X)

{(
n

∑
i=1
W 2 (µk+1i , ζ)) −

2

α ∫X
νk

sum
(θ)dζ}, (7.7b)

νk+1i = νki + α (µ
k+1
i − ζk+1) . (7.7c)

We refer to (7.7) as the Wasserstein consensus ADMM generalizing its finite dimen-
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Inner layer
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ADMM
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2 μk+1
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Figure 7.1: High level schematic of the proposed two-layer ADMM algorithm illus-

trated with one central and n = 3 distributed processors. The central processor up-

dates ζk+1. The “upstairs” (lighter shade) of the distributed processors update µk+1
i

via outer layer ADMM (7.3.1). These distributed µk+1
i updates and the centralized ζk+1

values are passed to the “downstairs” (darker shade) of the distributed processors for

updating ζk+1 via an inner layer ADMM (7.3.2).

sional Euclidean counterpart in the sense (7.7a)-(7.7b) are analogues of the so-called

x and z updates, respectively [61, Ch. 5.2.1]. However, important difference arises

in (7.7b) compared to its Euclidean counterpart due to the sum of squares of Wasser-

stein distances. In the Euclidean case, the corresponding z update can be analytically

performed in terms of the arithmetic mean of the x updates. While (7.7b) involves

a generalized mean of the updates from (7.7a), we now have Wasserstein barycentric

proximal of a linear functional in νk
sum

w.r.t. n measures {µk+11 ,⋯, µk+1n }.

The proximal updates (7.7a) are closely related to the WGFs of the form (1.7) gen-

erated by the respective (scaled) free energy functionals

Φi(µi) ∶= Fi(µi) + ∫
X
νki dµi, µi ∈ P2(X), i ∈ [n]. (7.8)

As per the assumptions on Fi, the functionals Φi are also proper lsc and convex along

generalized geodesics defined by the 2-Wasserstein distance. As 1/α ↓ 0, the sequence
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Φi(⋅) = Fi(⋅) + ∫ νk
i d(⋅) PDE in (5.12) Name

∫Rd (V (θ) + νk
i (θ))dµi(θ)

∂µ̃i

∂t
= ∇ ⋅ (µ̃i (∇V +∇νk

i )) Liouville equation

∫Rd (ν
k
i (θ) + β−1 logµi(θ))dµi(θ)

∂µ̃i

∂t
= ∇ ⋅ (µ̃i∇νk

i ) + β−1∆µ̃i Fokker-Planck equation

∫Rd νk
i (θ)dµi(θ) + ∫R2d U(θ,σ)dµi(θ)dµi(σ)

∂µ̃i

∂t
= ∇ ⋅ (µ̃i (∇νk

i +∇(U ⊛ µ̃i))) Propagation of chaos equation

∫Rd (ν
k
i (θ) +

β−1

m−1
1⊺µm

i )dµi(θ),m > 1
∂µ̃i

∂t
= ∇ ⋅ (µ̃i∇νk

i ) + β−1∆µ̃m
i Porous medium equation

Table 7.1: Specific instances of the PDE in (5.12) for different choices of Fi, and hence Φi. The

Euclidean gradient operator ∇ is w.r.t. θ ∈ Rd. The operator ⊛ can be seen as a generalized

convolution, given by (U ⊛ µ̃i)(θ) ∶= ∫Rd U(θ,σ)dµ̃i(σ) where U(θ,σ) is symmetric and

positive definite for all (θ,σ) ∈ Rd ×Rd.

{µki (α)}k∈N0 generated by the updates (7.7a) converge to the measure-valued solution

trajectory µ̃i(t, ⋅), t ∈ [0,∞) solving the IVP

∂µ̃i
∂t
= −∇WΦi (µ̃i) , µ̃i(t = 0, ⋅) = µ̃

0
i (⋅), i ∈ [n]. (7.9)

Thus, in a rather generic setting, performing the proximal updates (7.7a) in parallel

across the index i ∈ [n], amounts to performing distributed time updates for the ap-

proximate transient solutions of the IVPs (7.9).

For specific choices of i ∈ [n], important examples ofFi include ∫ V (θ)dµi(θ) (po-

tential energy for some suitable advection potential V ), β−1 ∫ logµi(θ)dµi(θ) (inter-

nal energy with the “inverse temperature” parameter β > 0), ∫R2d U(θ,σ)dµi(θ)dµi(σ)

(interaction energy for some symmetric positive definite interaction potential U ). In

Table 7.1, we summarize how the PDE in (5.12) specializes in such cases. An interest-

ing observation for (7.7a) is that for each i ∈ [n], the dual variables νki contribute as

time-varying advection potentials irrespective of whether Fi already has an advection

potential or not.

Remark 7.1. The Lagrange multiplier νi for the ith measure consensus constraint (7.3b)

is an element of the dual space of P2 comprising of bounded linear functionals of the

elements ofP2. Thus, when the primal updates forµi are identified with the corresponding

WGFs, then the Lagrange multipliers νi become “algorithmic” advection potentials. For
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the same reason, the integral involving the Lagrange multiplier ends up being simply an

Euclidean inner product post-discretization; see (7.10).

In the next Section, we propose a two-layer ADMM algorithm (see (7.1)) to solve

(7.7).

7.3 Results

To numerically realize the recursions (7.7), we consider a sequence of discrete proba-

bility distributions {µk
1,⋯,µ

k
n,ζ

k
}k∈N0 where each distribution is a probability vector

of lengthN×1, representative of the respective probability values atN samples. Thus,

for each fixed k ∈ N0, the tuple

(µk
1,⋯,µ

k
n,ζ

k
) ∈∆N−1 ×⋯ ×∆N−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n+1 times

=∶ (∆N−1)
n+1

(the product simplex).

Likewise, for each fixed k ∈ N0, the Lagrange multipliers (νk1,⋯,ν
k
n) ∈ RnN

, and

νk
sum
=

n

∑
i=1

νki ∈ RN
.

Given probability vectors ξ,η ∈∆N−1
, let

ΠN (ξ,η) ∶= {M ∈ RN×N ∣M ≥ 0 (elementwise), M1 = ξ, M⊺1 = η}.

Also, let C ∈ RN×N
denote the squared Euclidean distance matrix for the sampled

data {θr}r∈[N] in Rd
, i.e., the entries of the matrix C are C(i, j) ∶= ∥θi − θj∥22 for all

i, j ∈ [N].

For each i ∈ [n] and k ∈ N0, we write the discrete version of (7.7) as

µk+1
i = prox

W
1
α
(Fi(µi)+⟨νk

i ,µi⟩)
(ζk)

= arg inf
µi∈∆N−1

{ min
M∈ΠN(µi,ζ

k)

1

2
⟨C,M ⟩ +

1

α
(Fi(µi) + ⟨ν

k
i ,µi⟩)}, (7.10a)
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ζk+1 = arg inf
ζ∈∆N−1

{(
n

∑
i=1

min
M i∈ΠN(µk+1

i ,ζ)

1

2
⟨C,M i⟩) −

2

α
⟨νk

sum
,ζ⟩}, (7.10b)

νk+1i = νki + α (µ
k+1
i − ζk+1) , (7.10c)

wherein (7.10a)-(7.10b) used the discrete version of (1.3).

Replacing the squared Wasserstein distance (1.3) in (7.7) by its Sinkhorn regular-

ized version (1.8), modify the recursions (7.10) as

µk+1
i = prox

Wε
1
α
(Fi(µi)+⟨νk

i ,µi⟩)
(ζk)

= arg inf
µi∈∆N−1

{ min
M∈ΠN(µi,ζ

k)
⟨
1

2
C + ε logM ,M⟩ +

1

α
(Fi(µi) + ⟨ν

k
i ,µi⟩)}, (7.11a)

ζk+1 = arg inf
ζ∈∆N−1

{(
n

∑
i=1

min
M i∈ΠN(µk+1

i ,ζ)
⟨
1

2
C + ε logM i,M i⟩) −

2

α
⟨νk

sum
,ζ⟩}, (7.11b)

νk+1i = νki + α (µ
k+1
i − ζk+1) , (7.11c)

where ε > 0 is a regularization parameter.

Remark 7.2. For ε ↓ 0, the solution of the inner minimization (7.11a) is known [52, Sec.

3] to be a consistent approximation of that in (7.10a). The Wasserstein proximal update

(7.10a) can, in principle, be performed by the proximal gradient Jordan-Kinderlehrer-

Otto (JKO) algorithm as in [47] with more general regularization. Our motivation for

choosing Sinkhorn regularization is computational convenience. As we explain in (7.3.1),

when we dualize the inner minimization problem in (7.11a), not only do we have strong

duality, but we can also explicitly write the proximal update in terms of the multipliers,

which can be obtained, in general, numerically via provably contractive block-coordinate

ascent. Note that [47, Remark 1] mentions the computational convenience of performing

the JKO update for the negative entropy regularization.

Remark 7.3. We note a prior work [226] that computes unregularized Wasserstein barycen-

ter using multiblock ADMM. However, the nested minimization in (7.10b) is different
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from computing the barycenter in that it involves computing the Wasserstein barycentric

proximal.

We next provide novel results and algorithmic details to perform the recursions

(7.11).

7.3.1 The µ update

The Sinkhorn regularized recursion (7.11a) allows us to get semi-analytical handle on

the nested minimization via strong duality. Specifically, consider the convex functions

Fi,Gi ∶∆N−1 ↦ R for all i ∈ [n] where

Gi(µi) ∶= Fi(µi) + ⟨ν
k
i ,µi⟩,

and denote the Legendre-Fenchel conjugate of Gi as G∗i . Following [204, Lemma 3.5],

[5, Sec. III], the Lagrange dual problem associated with (7.11a) is

(λopt

0i ,λ
opt

1i ) = argmax
λ0i,λ1i∈RN

{⟨λ0i,ζk⟩ −G
∗
i (−λ1i)−

αε(exp(
λ⊺0i
αε
) exp(−

C

2ε
) exp(

λ1i

αε
))}, i ∈ [n]. (7.12)

Using (7.12), the proximal updates in (7.11a) can then be recovered from the following

proposition.

Proposition 7.1. ( [204, Lemma 3.5], [5, Theorem 1]) Given α, ε > 0, the squared Eu-

clidean distance matrix C ∈ RN×N
, and the probability vector ζk ∈ ∆N−1

, k ∈ N0. Let 0

denote the N × 1 vector of zeros. For i ∈ [n], the vectors λopt
0i ,λ

opt
1i ∈ RN

in (7.12) solve

the system

exp(
λopt

0i

αε
) ⊙ (exp(−

C

2ε
) exp(

λopt
1i

αε
)) = ζk, (7.13a)
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0 ∈ ∂λopt
1i
G∗i (−λ

opt
1i ) − exp(

λopt
1i

αε
) ⊙ (exp(−

C⊺

2ε
) exp(

λopt
0i

αε
)) . (7.13b)

The proximal update µk+1
i in (7.11a) is given by

µk+1
i = exp(

λopt
1i

αε
) ⊙ (exp(−

C⊺

2ε
) exp(

λopt
0i

αε
)) . (7.14)

We point out that if Fi(µi) = β
−1⟨logµi,µi⟩ where β > 0, then Proposition 7.1

reduces exactly to [5, Theorem 1] allowing further simplification of (7.13b). As we

explained toward the end of Section 7.2 (see also Table 7.1, second row), this spe-

cific choice of Fi is of practical interest. In this particular case, the system (7.13) can

be solved via certain cone-preserving block coordinate iteration proposed in [5, Sec.

III.B,C] that is provably contractive w.r.t. the Thompson metric [62] [227, Ch. 2.1].

This makes the proximal update (7.14) semi-analytical in the sense the pair (λopt

0i ,λ
opt

1i )

needs to be numerically computed by performing the block coordinate iteration while

“freezing” the index k ∈ N0. With the converged pair (λopt

0i ,λ
opt

1i ), the evaluation (7.14)

is analytical for each k ∈ N0.

In our context, another case of interest is when Fi and henceGi, is linear in µi. We

next show that the proximal update µk+1
i in this case can be computed analytically,

obviating the zero order hold sub-iterations mentioned above. We summarize this

result in the following Theorem (proof in Appendix A).

Theorem 7.1. Given a ∈ RN ∖ {0}, let Φ(µ) ∶= ⟨a,µ⟩ for µ ∈ ∆N−1
. Let C ∈ RN×N

be the squared Euclidean distance matrix, and for ε > 0, let Γ ∶= exp (−C/2ε). For any

ζ ∈∆N−1
, α > 0, the proximal operator

prox
Wε
1
α
Φ
(ζ) = exp(−

1

αε
a) ⊙ (Γ⊺ (ζ ⊘ (Γ exp(−

1

αε
a)))) . (7.15)

Remark 7.4. The case of advection PDE shown in the first row of Table 7.1 can be treated

via Theorem 7.1 with Φi(µ) = ⟨V + νki ,µ⟩, for given i ∈ [n]. In this discrete version,
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V ∈ RN
is the advection potential.

The case of interaction PDE shown in the third row of Table 7.1 can also be treated

via Theorem 7.1 with Φi(µ) = ⟨Uµk + νki ,µ⟩, for given i ∈ [n]. In this discrete version,

U ∈ RN×N
is the interaction potential.

In the following, we show how to solve (7.14) for two case studies. Theorem 7.2 is

for the porous medium equation (the last row of Table 7.1) [228], and Theorem 7.3 is

for the Wasserstein barycenter case study (1.10).

Theorem 7.2. Let Γ ∶= exp (−C/2ε). For the porous medium equation, the vectors

(λopt

0i ,λ
opt

1i ) can be found by solving for yi, zi from the following system of equations:

yi ⊙ (Γ
⊺yi) =ζ

k
(7.16a)

zi ⊙ (Γ
⊺yi) =(β)

1
m−1 (

m − 1

m
)

m
m−1
(−

m

m − 1
)

(1⊺ (−αε ln(zi) − ν
k
i )
m
)

2−m
m−1 (−αε ln(zi) − ν

k
i )
m−1

(7.16b)

and then inverting the maps

yi ∶= exp(
λ0i

αε
) , zi ∶= exp(

λ1i

αε
) . (7.17)

Let (yopt
i ,zopt

i ) be the solution of (7.16). The vector µk+1
i in (7.14), can then be ob-

tained as

µk+1
i = zopt

i ⊙ (Γ
⊺yopt

i ) .

For the case that m = 2, the zi update equation (7.16b) will be:

zi ⊙ (Γ
⊺
kyi) =

β

2
(αε ln(zi) + ν

k
i ) . (7.18)
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Equation (7.18) is a transcendental equation, with the solution written in terms of the

Lambert W function as

zi =
−b

a
W (
−a

b
exp(

−c

b
)) (7.19)

where W is the Lambert W function and a = (Γ⊺kyi), b =
β
2αε, and c = β

2ν
k
i .

Theorem 7.3. Given ξ ∈ P2(X) and νk ∈ RN
let Φ(µ) ∶= wW 2 (µ,ξ) + ⟨νk,µ⟩. Let

C ∈ RN×N
be the squared Euclidean distance matrix, and for ε > 0 let Γ ∶= exp (−C/2ε),

K ∶= exp (−C/ε). For any ζ ∈ ∆N−1
, α > 0, and 0 < w < 1 let (yopt

, zopt) ∈ RN
>0 ×RN

>0

be the solution of

y ⊙ (Γ⊺z) = ζ, (7.20a)

z ⊙ (Γ⊺y) = z−
1

αw ⊙ exp(
−νk

ε
) ⊙Kξ ⊘ (K (z−

1
αw ⊙ exp(

−νk

ε
))) (7.20b)

Then

prox
Wε
1
α
Φ
(ζ) = zopt ⊙ (Γ⊺yopt) . (7.21)

To address the solution of (7.20), we propose the following recursion for ℓ = 1,2, . . .,

which is contracting in Thompson metric (1.17) on RN
>0

z(∶, ℓ + 1) =(z(∶, ℓ)−
1

αw ⊙ exp(
−ν(∶, ℓ)k

ε
) ⊙Kξ ⊘ (K (

z(∶, ℓ)−
1

αw ⊙ exp(
−ν(∶, ℓ)k

ε
)))) ⊘ (Γ⊺z(∶, ℓ)) . (7.22)

The preceding results show that the update (7.11a) can be numerically realized via

(7.13)-(7.14). We next consider numerically realizing the update (7.11b).
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7.3.2 The ζ update

The update (7.11b) can be seen as a problem of computing the Sinkhorn regularized

Wasserstein barycenter with an extra linear regularization. We next show that as in

Section 7.3.1, dualization also helps to solve problems of this type. In particular, the

following Proposition from [53, Sec. 4.1], rephrased in our notation, will be useful in

the sequel.

Proposition 7.2. ( [53, Proposition 1]) Let

W 2
ε,µi
(ζ) ∶= min

M i∈ΠN (µi,ζ)
⟨
1

2
C + ε logM i,M i⟩, ε > 0,

for given µi ∈ ∆
N−1

for all i ∈ [n], and for a given squared Euclidean distance matrix

C ∈ RN×N
. Let the superscript

∗
denote the Legendre-Fenchel conjugate. Given weights

w1,⋯,wn > 0, linear operator A, and a convex real-valued function J , consider the

variational problem

ζopt
= argmin

ζ∈∆N−1
J (Aζ) +

n

∑
i=1
wiW

2
ε,µi
(ζ). (7.23)

The dual problem of (7.23) is given by

(uopt
1 ,⋯,uopt

n ,vopt) = argmin
(u1,⋯,un,v)∈R(n+1)N

J∗ (v) +
n

∑
i=1
wi (W

2
ε,µi
)
∗
(ui)

subject to A∗v +
n

∑
i=1
wiui = 0, (7.24)

and the primal-dual relation giving the minimizer in (7.23) is

ζopt
= ∇ui

(W 2
ε,µi
)
∗
(uopt

i ) ∈ ∆
N−1, for all i ∈ [n]. (7.25)

We recast (7.11b) in the form (7.23) by setting the probability vectors µi ≡ µ
k+1
i ,

the weights w1 = w2 = ⋯ = wn = 1, the operator A as identity, and the function
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J(⋅) ≡ ⟨− 2
αν

k
sum
, ⋅⟩. Since J is linear, we have

J∗(v) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if v = − 2
αν

k
sum
,

+∞ otherwise.

(7.26)

Also, A being the identity operator, we get A∗v = v. Therefore, the dual problem

(7.24) corresponding to (7.11b) becomes

(uopt
1 ,⋯,uopt

n ) = argmin
(u1,⋯,un)∈RnN

n

∑
i=1
(W 2

ε,µk+1
i
)
∗
(ui)

subject to
n

∑
i=1

ui =
2

α
νk

sum
. (7.27)

Consequently, the update (7.11b) can be performed by first solving the problem (7.27),

and then evaluating the gradient of the Legendre-Fenchel conjugate (7.25) at the min-

imizer of (7.27). Furthermore, taking advantage of the structure of these Legendre-

Fenchel conjugates allows us to deduce the following (proof in Appendix C).

Theorem 7.4. Given α, ε > 0, the squared Euclidean distance matrix C ∈ RN×N
, and

the probability vectors µk+1
i ∈ ∆N−1

for all i ∈ [n], k ∈ N0, let Γ ∶= exp (−C/2ε). The

dual problem (7.27) corresponding to (7.11b) can be rewritten as

(uopt
1 ,⋯,uopt

n ) = argmin
(u1,⋯,un)∈RnN

n

∑
i=1
⟨µk+1

i , log (Γ exp (ui/ε)) ⟩

subject to
n

∑
i=1

ui =
2

α
νksum. (7.28)

The update ζk+1 in (7.11b) is given by

ζk+1 = exp (uopt
i /ε) ⊙ (Γ (µ

k+1
i ⊘ (Γ exp (uopt

i /ε)))) ∈ ∆
N−1, for all i ∈ [n].

(7.29)

We observe that (7.28) has a separable sum objective where each summand is a
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weighted log-sum-exp (thus convex). Denoting these summands as

fi(ui) ∶= ⟨µ
k+1
i , log (Γ exp (ui/ε)) ⟩, ui ∈ RN

for all i ∈ [n], (7.30)

we write (7.28) in the scaled ADMM form (1.16):

uℓ+1i = prox
∥⋅∥2
1
τ
fi
(zℓi − ν̃

ℓ
i) , i ∈ [n], (7.31a)

zℓ+1 = projC (u
ℓ+1 + ν̃ℓ) , (7.31b)

ν̃ℓ+1i = ν̃
ℓ
i + (u

ℓ+1
i − z

ℓ+1
i ) , i ∈ [n], (7.31c)

where ℓ ∈ N0 is the ADMM iteration index while holding the index k fixed, τ > 0,

and uℓ ∶= (uℓ1,⋯,u
ℓ
n) ∈ RnN

, zℓ ∶= (zℓ1,⋯,z
ℓ
n) ∈ RnN

, ν̃ℓ ∶= (ν̃ℓ1,⋯, ν̃
ℓ
n) ∈ RnN

for all

ℓ ∈ N0. The constraint set C in (7.31b) corresponds to the equality constraint in (7.28),

i.e.,

C ∶= {(z1,⋯,zn) ∈ RnN ∣ z1 +⋯ + zn =
2

α
νksum}. (7.32)

To proceed further, we need the following Lemma (proof in Appendix D).

Lemma 7.1. For any v ∶= (v1,⋯,vn) ∈ RnN
, where the subvectors vi ∈ RN

for all

i ∈ [n], let v ∶= 1
n ∑

n
i=1 vi ∈ RN

. Then the Euclidean projection of v onto C in (7.32) is

projC (v) = (v1 − v +
2

nα
νksum,⋯,vn − v +

2

nα
νksum) ∈ RnN .

Thanks to Lemma 7.1, we can parallelize (7.31b) as

zℓ+1i = (u
ℓ+1
i −

1

n

n

∑
i=1

uℓ+1i ) + (ν̃
ℓ
i −

1

n

n

∑
i=1

ν̃ℓi) +
2

nα
νksum, i ∈ [n]. (7.33)

Therefore, (7.28) can be solved in a distributed manner:

uℓ+1i = prox
∥⋅∥2
1
τ
fi
(zℓi − ν̃

ℓ
i) , i ∈ [n], (7.34a)

zℓ+1i = (u
ℓ+1
i −

1

n

n

∑
i=1

uℓ+1i ) + (ν̃
ℓ
i −

1

n

n

∑
i=1

ν̃ℓi) +
2

nα
νksum, i ∈ [n], (7.34b)
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ν̃ℓ+1i = ν̃
ℓ
i + (u

ℓ+1
i − z

ℓ+1
i ) , i ∈ [n]. (7.34c)

The proximal update (7.34a) does not admit an analytical solution. To compute (7.34a),

we take advantage of the structured Hessian (see Appendix E) of the proximal objec-

tive and implement the Newton’s method with variable step size computed by back-

tracking line search. The diagonal plus sum of rank one structured Hessian in Ap-

pendix D makes the per iteration complexity for the Newton’s method to be O(N2)

flops instead of O(N3) flops–the latter would be the case for Cholesky factorization-

based solution of the associated linear system. Figure 7.2 shows that the typical con-

vergence for the Newton’s method occurs in approx. 5 iterations, much faster than

gradient descent (see Figure 7.2 caption for details).

In the following (Section 7.4), we outline the overall implementation of our dis-

tributed computational framework to solve (7.11) and (7.34). first for each agent, we

update µ1
i with proxWε

1
α
Φ
(.) and generate samples from the known initial distribution.

Then, with a random value for ζ0
and ν0

i , and

7.4 The Overall Algorithm

In Fig. 7.3, we detail the computational framework proposed in Section 7.3.1 and Sec-

tion 7.3.2. We view Fig. 7.3 as an expanded version of the high level schematic given

in Fig. 7.1, i.e., Fig. 7.3 depicts the low level details omitted in Fig. 7.1.

Note that in the inner layer ADMM, to update zi in Eq. (7.34b), we need
1
n

n

∑
i=1

uℓ+1i

from the other distributed processors and the pipeline below the diagram in Fig. 7.3

gathers these data from all distributed processors and feeds to Eq. (7.34b).

In summary, the computational steps are as follows.

Step 0. Split the objective F as Eq. (7.3a) and relabel the argument of the func-
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39

Figure 7.2: Main plot: A typical instance of the proximal optimization problem (7.34a)

with N = 441, ε = τ = 0.1, random initial guess, randomly generated input data (i.e.,

proximal argument in RN
), random parameter µ ∈ ∆N−1

, and the Euclidean distance

matrix C ∈ RN×N
for uniform grid over [−1,1]2 with spatial discretization length

0.1 in both directions. The problem instance was solved via the gradient descent and

the Newton’s method with the same numerical tolerance 10−4. The stopping criterion

for the gradient descent was the norm of the gradient being less than or equal to the

numerical tolerance. For the Newton’s method, we used the standard stopping crite-

rion [2, p. 487]: one half of the squared Newton decrement being less than or equal to

the numerical tolerance. Both algorithms used variable step size via backtracking line

search (see Appendix E) with parameters α0 = 0.3, β0 = 0.7. For gradient descent, the

proximal objective after the last iteration was equal to 90.018062265357955; the same

for Newton’s method was equal to 90.018072956312977. Inset plot: The CPU time

comparisons for 15 instances of (7.34a) with randomly chosen initial guess, proxi-

mal argument and parameter µ ∈ ∆N−1
while keeping all other parameters fixed and

same as before across all problem instances. The longer (resp. shorter) bars are for the

gradient descent (resp. Newton’s method). For all 15 problem instances, the gradient

descent took 2000–2002 iterations while the Newton’s method required 5–6 iterations.

So the convergence trend shown in the main plot is typical.
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Figure 7.3: Detailed schematic of the proposed computational framework. As in

Fig. 7.1, the lighter and darker shades correspond to the “upstairs” and “downstairs”

computation in the distributed processors, respectively, which in turn, correspond to

the outer and inner layer ADMM, respectively.

tionals Fi as µi ∀i ∈ [n].

Step 1. Initialize µ0
i , ζ

0
everywhere positive, and ν0

i arbitrary ∀i ∈ [n].

Step 2. Perform distributed “upstairs” updates Eq. (7.11a) for µk+1
i via Proposi-

tion 7.1 (outer layer ADMM).

Step 3. Perform distributed “downstairs” updates uopt

i from the inner layer ADMM

Eq. (7.34).

Step 4. Perform centralized update for ζk+1 using Eq. (7.29) (outer layer ADMM).

Step 5. Perform distributed “upstairs” updates for νk+1i using Eq. (7.11c) (outer

layer ADMM).

The above steps are repeated until a user-specified maximum number of outer

layer iterations are done, or the maximum of the pairwise Wasserstein distances fall
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below a prescribed tolerance.

7.5 Convergence Guarantee for the Inner Layer ADMM

In the following, we present sufficient conditions that guarantee the convergence of

inner layer ADMM Eq. (7.34). To this end, we need two preparatory lemmas.

Lemma 7.2. [229, p. 58, Thm. 2.1.6] AC2
convex function f with domain(f) = RN

, has

Lipschitz continuous gradient w.r.t. ∥ ⋅ ∥2 with Lipschitz constant L > 0 if v⊺∇2f(u)v ≤

L∥v∥22 for all u,v ∈ RN
.

Lemma 7.3. The C2
convex function f given by Eq. (D.17) with domain(f) = RN

, has

Lipschitz continuous gradient w.r.t. ∥ ⋅ ∥2 with Lipschitz constant L =
1

ε2
∥Γµk+1∥∞.

Proof. Let e ∶= exp(u/ε). From Eq. (D.20), for all u,v ∈ RN
, we have

v⊺∇2f(u)v =
1

ε2
v⊺ [diag ((Γ⊺µk+1) ⊙ e⊘ (Γe)) −

diag ((Γ⊺µk+1) ⊘ (Γe)
2
)Γ⊙ (ee⊺)]v ≤

1

ε2
v⊺ diag ((Γ⊺µk+1) ⊙ e⊘ (Γe))v,

(7.35)

since the quadratic term followed by the minus sign is nonnegative. Hence Eq. (7.35)

yields

v⊺∇2f(u)v ≤
1

ε2
∥ (Γ⊺µk+1) ⊙ e⊘ (Γe) ∥∞∥v∥

2
2 ≤

1

ε2
∥Γ⊺µk+1∥∞∥e⊘ (Γe) ∥∞∥v∥

2
2.

(7.36)

Recall that Γ ∶= exp (−C/2ε) where C ∈ RN×N
is a squared Euclidean distance

matrix. So the entries of the symmetric matrix C are in [0,∞) and thus, the entries

of the symmetric matrix Γ are in (0,1] with all diagonal entries being equal to 1.
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Therefore, ∥e⊘ (Γe) ∥∞ ≤ 1, and Eq. (7.36) gives

v⊺∇2f(u)v ≤
1

ε2
∥Γµk+1∥∞∥v∥

2
2 ∀u,v ∈ RN ,

where we dropped the transpose due to the symmetry of Γ. Invoking Lemma 7.2,

we conclude the proof.

Theorem 7.5. Let C , Γ, and µk+1
i ∈∆N−1

for all i ∈ [n], k ∈ N0, as in Theorem 7.4. If

τ >

√
2

ε2
∥Γµk+1

n ∥∞, (7.37)

then the sequence (uℓ1,⋯,u
ℓ
n) generated by the inner layer ADMM given in Eq. (7.34)

converge to the optimal solutions of problem Eq. (7.28), i.e., (uℓ1,⋯,u
ℓ
n)

ℓ↗∞
ÐÐ→ (uopt

1 ,⋯,uopt
n ).

Proof. We start our proof by presenting a sufficient condition for convergence of

certain generic multi-block ADMM, and show that the inner layer ADMM given in

Eq. (7.34) satisfies these conditions.

To this end, we start with the following convex minimization problem:

min
(u1,⋯,un)∈RnN

g1 (u1) + g2 (u2) +⋯ + gn (un)

subject toA1u1 +A2u2 +⋯ +Anun = b,

ui ∈ Ui for all i ∈ [n], (7.38)

where Ai ∈ RN×N ,b ∈ RN
, the sets Ui ⊆ RN

are closed convex, and gi ∶ Ui → R are

closed convex functions for all i ∈ [n]. The augmented Lagrangian for Eq. (7.38) is

Lτ (u1, . . . ,un;λ) ∶= g1 (u1) +⋯ + gn (un) + ⟨λ,
n

∑
i=1

Aiui − b⟩ +
τ

2
∥
n

∑
i=1

Aiui − b∥

2

,

(7.39)

where λ ∈ RN
is the Lagrange multiplier, and τ > 0 is a penalty parameter. For
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Eq. (7.38), consider the multi-block ADMM recursions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uℓ+11 = argminu1∈U1 Lτ (u1,u
ℓ
2, . . . ,u

ℓ
n;λ

ℓ
) ,

uℓ+12 = argminu2∈U2 Lτ (u
ℓ+1
1 ,u2,u

ℓ
3, . . . ,u

ℓ
n;λ

ℓ
) ,

⋮

uℓ+1n = argminun∈Un Lτ (u
ℓ+1
1 ,uℓ+12 , . . . ,uℓ+1n−1,un;λ

ℓ
) ,

λℓ+1 = λℓ + τ (
n

∑
i=1

Aiu
ℓ+1
i − b) .

(7.40)

For Eq. (7.38), when the following conditions [230, Corollary 3.5]:

c1. the matrices Ai have full column rank for all i ∈ [n − 1], and An = IN ,

c2. the sets Ui are closed convex for all i ∈ [n],

c3. the mappings gi are lower bounded for all i ∈ [n],

c4. τ >
√
2L where L is Lipschitz constant (w.r.t. ∥ ⋅ ∥2) for ∇ungn,

are satisfied, then as the recursion index ℓ ↗ ∞, the solution of the multi-block

ADMM Eq. (7.40) converges to the optimal solutions of Eq. (7.38). Notice that the

recursions Eq. (7.34) associated with the problem Eq. (7.28), are indeed an instance

of the generic recursions Eq. (7.40) associated with Eq. (7.38). In particular,

gi(ui) ≡ ⟨µ
k+1
i , log (Γ exp (ui/ε)) ⟩,

where the probability vectors µk+1
i ∈ ∆N−1

for all i ∈ [n], k ∈ N0. Thus motivated,

we check the conditions c1-c4.

Specifically, condition c1 for Eq. (7.28) is satisfied because Ai = IN for all i ∈ [n].

Condition c2 for Eq. (7.28) holds since Ui = RN
for all i ∈ [n], which are closed as

well as affine (hence convex) sets.
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For condition c3, we need to verify that the mappings ui ↦ gi(ui) =

⟨µk+1
i , log (Γ exp (ui/ε)) ⟩ are uniformly lower bounded. The lower bound for

ui ↦ gi(ui) can be found as the following unconstrained minimum

gopti ∶= min
ui∈RN

⟨µk+1
i , log (Γ exp (ui/ε)) ⟩, (7.41)

which is the minimum of a convex combination of log-sum-exp composed with an

affine map.

By choosing matrix A as an invertible matrix and introducing two new variables,

ũ ∈ RN
and y ∈ RN

, we reformulate problem Eq. (7.41) as:

min
y∈RN

f0(y) ∶= µj log
N

∑
i=1

exp(yi)

subject to u/ε =Aũ,

Aũ + logγj = y, (7.42)

where yi is ith element of vector y. The Lagrangian of the reformulated problem is

L(u, ũ,y,κ,η) = µj log
N

∑
i=1

exp(yi) + η
⊺ (Aũ + logγj − y) +κ

⊺ (u/ε −Aũ) ,

(7.43)

where κ and η are the Lagrangian multipliers, and the corresponding Lagrange dual

function is defined as

h(η,κ) = inf
u,ũ,y
{µj log

N

∑
i=1

exp(yi) + η
⊺ (Aũ + logγj − y) +κ

⊺ (u/ε −Aũ)}.

(7.44)

Minimizing over u results in h(η,κ) = −∞ unless κ = 0. Substituting κ = 0 in

Eq. (7.44), we get

h(η) = inf
ũ,y
(µj log

N

∑
i=1

exp(yi) + η
⊺ (Aũ + logγj − y)) . (7.45)
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Minimizing over ũ results in h(η) = −∞ unless A⊺η = 0. So,

h(η) = η⊺ logγj + infy
(µj log

N

∑
i=1

exp(yi) − η
⊺y) = η⊺ logγj + f

∗
0 (η), (7.46)

where the conjugate of f0 is

f∗0 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⟨η, log
η

µj
⟩ η ⪰ 0, 1⊺η = 1,

∞ otherwise.

(7.47)

Therefore, the dual problem of Eq. (7.42) is

max
η∈RN

η⊺ logγj − ⟨η, log
η

µj
⟩

subject to η ⪰ 0,

1⊺η = 1,

A⊺η = 0. (7.48)

The solution to the above entropy maximization problem provides a lower bound

for the mappings u ↦ µj log⟨γj, exp (u/ε)⟩ in RN
, thus helping satisfy condition

c3.

From Lemma 7.3, ∇ungn has the Lipschitz constant L =
1

ε2
∥Γ⊺µk+1∥∞. So, by choos-

ing

τ >

√
2

ε2
∥Γ⊺µk+1∥∞

we satisfy condition c4. This completes the proof.

7.6 Experiments

In this section, we provide numerical examples to demonstrate the proposed dis-

tributed computation framework.

157



Distributed Computing: Wasserstein Consensus ADMM/Experiments 7.6

Figure 7.4: The analytical stationary solution for the FPK equation (7.49), given by

µ∞ =
1
Z exp (−β ((1 + x41)/4 + (x

2
2 − x

2
1)/2))dx, where Z is the normalization con-

stant.

7.6.1 Linear Fokker–Planck equation

In this example, we consider a linear variant of the Fokker–Planck equation,

∂µ

∂t
= ∇ ⋅ (µ∇V ) + β−1∆µ, µ(x,0) = µ0(x) (7.49)

where V (x1, x2) =
1
4 (1 + x

4
1) +

1
2 (x

2
2 − x

2
1) and x = (x1, x2) ∈ [−2,2]2. As shown

in [5], the stationary measure is µ∞(x) ∝ exp(−βV (x))dx, which for our choice of

V , is bimodal (see Figure 7.4).

Here, n = 2 and by looking at Table 7.1, we choose

F1(µ) = ⟨V k,µ⟩ (7.50a)

F2(µ) = ⟨β
−1 logµ,µ⟩ (7.50b)

where the drift potential vector V k ∈ RN
is given by V k(i) ∶= V (xik) , i = 1, . . . ,N .

We artificially relabeled the argument of the functionals F1 and F2 as µ1 and µ2,
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respectively. Because F1 is linear in µ1, we use (7.15) with Φ1(µ) = ⟨V k−1 + νk1,µ⟩

to analytically compute the proximal update µk+1
1 . The simulation parameters are

considered to be α = 12, τ = 150, β = 1, and ε = 5 × 10−2. We define G2(µ2) ∶=

F2(µ2) + ⟨ν
k
2,µ2⟩ = ⟨β

−1 logµ2 + ν
k
2,µ2⟩, and compute the proximal update µk+1

2 by

(7.14). In this case, we use the PROXRECUR algorithm from [5, Sec. III-B.1] with

algorithmic parameters, δ = 10−4, β = 1, and L = 20 to solve (7.14). For doing so, we

generate N = 1681 samples from the initial distribution

µ0 =
1

5
N (m1,Σ) +

1

5
N (m2,Σ) +

1

5
N (m3,Σ) +

1

5
N (m4,Σ) +

1

5
N (m5,Σ)

with m1 = (1,1)⊺, m2 = (−1,−1)⊺,m3 = (1,−1)⊺, m4 = (−1,1)⊺, m5 = (0,0)⊺, and

Σ = 0.1I2. We use N(m,Σ) to denote a multivariate Gaussian distribution with

mean vector m and covariance matrix Σ.

The resulting evolution of µ1 and µ2 are shown in Figure 7.5; it can be seen that after

5000 iterations of the outer layer ADMM (7.11), both µ1 and µ2, tend to the known

stationary solution µ∞ given in Figure 7.4. We solve (7.34a) via the gradient descent

method with a fixed step size as 0.001. The number of iterations of the inner layer

ADMM given in (7.34) is 3. The simulation time was 99.89 sec. It is remarkable that

all simulations are performed on a same MacBook Air with Intel Core i5 CPU, 1.1

GHz, and 8 GB RAM.

7.6.2 Nonlinear aggregation-drift-diffusion equation

Next, we consider an aggregation-drift equation of the form

∂µ

∂t
= ∇ ⋅ (µ∇U ⊛ µ) + ∇ ⋅ (µ∇V ) + β−1∆µ2

(7.51)
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(a) Contour plots of the transient solution of the joint measure µ1

(b) Contour plots of the transient solution of the joint measure µ2

Figure 7.5: Evolution of the solution to the linear Fokker–Planck equation (7.49), with

V (x1, x2) = 1
4
(1 + x41) + 1

2
(x22 − x21). The computational domain is [−2,2] × [−2,2]. The

color denotes the value of the plotted variable; see colorbar (dark red = high, light yellow =

low).

where U(x) = ∣x∣2/2 − ln(∣x∣) and V (x) = −1
4 ln(∣x∣). As given in [4, Sec. 4.3.2], in

the limit β−1 ↓ 0, the stationary measure, µ∞(x), is a torus with the inner and outer

radius of Ri =

√
1
4 , and Ro =

√
1
4 + 1, respectively. To avoid evaluation of U(x) and

V (x) at x = 0, we respectively set U(0) and V (0) to equal the average value of U and

V on the cell of width 2h = 2 ∗ 0.005 centered at 0, i.e., U(0) = 1
2h ∫

h

−hU(x)dx and

V (0) = 1
2h ∫

h

−h V (x)dx.

In this example, we have three terms (interaction: ∇⋅(µ∇U ⊛µ), drift: ∇⋅(µ∇V ),

and diffusion: β−1∆µ2
). We choose four different ways of splitting (7.51) and present

the simulation results for each case of splitting.

In the first case, we choose ∇ ⋅ (µ∇U ⊛ µ) and ∇ ⋅ (µ∇V ) with each other as the

first term and β−1∆µ2
as the second term

∂tµ = ∇ ⋅ (µ∇V ) + β
−1∆µ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i=1

+∇ ⋅ (µ∇U ⊛ µ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i=2

.

In the second case, we choose ∇ ⋅ (µ∇U ⊛µ) and β−1∆µ2
with each other as the first
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term and ∇ ⋅ (µ∇V ) as the second term

∂tµ = ∇ ⋅ (µ∇U ⊛ µ) + β
−1∆µ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i=1

+∇ ⋅ (µ∇V )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i=2

.

In the third case, we choose ∇ ⋅ (µ∇U ⊛µ) and ∇ ⋅ (µ∇V ) with each other as the first

term and β−1∆µ2
as the second term

∂tµ = ∇ ⋅ (µ∇V ) + ∇ ⋅ (µ∇U ⊛ µ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i=1

+β−1∆µ2

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
i=2

.

Finally in the fourth case, we choose ∇ ⋅ (µ∇U ⊛µ)as the first term, ∇ ⋅ (µ∇V ) as the

second term and β−1∆µ2
as the third term

∂tµ = ∇ ⋅ (µ∇V )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i=1

+∇ ⋅ (µ∇U ⊛ µ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i=2

+β−1∆µ2

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
i=3

.

The corresponding Fi and the Wasserstein distance between the solution of Fi and

Fj i.e. µk
j and µk

j for each cases of splitting are given in Table 7.2. For each case, we

artificially relabeled the argument of the functionals Fi as µi.

For the first case of splitting (the first row in Table.7.2), we defineG1(µ1) ∶= F1(µ1)+

⟨νk1,µ1⟩ = ⟨V k + β−1µ1 + ν
k
1,µ1⟩, and obtain the proximal update µk+1

1 by (7.14).

BecauseF2 is linear inµ2, we use (7.15) withΦ2(µ2) = ⟨U kµk
2+ν

k
2,µ2⟩ to analytically

compute the proximal update µk+1
2 .

For the second case of splitting (the second row in Table.7.2), we define G1(µ1) ∶=

F1(µ1) + ⟨ν
k
1,µ1⟩ = ⟨U kµk + β−1µ1 + ν

k
1,µ1⟩, and obtain the proximal update µk+1

1

by (7.14). Because F2 is linear in µ2, we use (7.15) with Φ2(µ2) = ⟨V k + νk2,µ2⟩ to

analytically compute the proximal update µk+1
2 .

For the third case of splitting (the third row in Table.7.2), we defineG2(µ2) ∶= F2(µ2)+

⟨νk2,µ2⟩ = ⟨β
−1µ2 + ν

k
2,µ2⟩, and obtain the proximal update µk+1

2 by (7.14). Because

F1 is linear in µ1, we use (7.15) with Φ1(µ1) = ⟨V k +U kµk
1 + ν

k
1,µ1⟩ to analytically
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Splitting case Functionals Wasserstein distance

#1

F1(µ) = ⟨V k + β−1µ,µ⟩ ,
F2(µ) = ⟨Ukµ

k,µ⟩

#2

F1(µ) = ⟨Ukµ
k + β−1µ,µ⟩,

F2(µ) = ⟨V k,µ⟩

#3

F1(µ) = ⟨Ukµ
k +V k,µ⟩,

F2(µ) = ⟨β−1µ,µ⟩

#4

F1(µ) = ⟨V k,µ⟩ ,
F2(µ) = ⟨Ukµ

k⟩ ,
F3(µ) = ⟨β−1µ,µ⟩

Table 7.2: Corresponding choice of functionals Fi, i ∈ {1,2,3} for each cases of splitting

(7.51) and the Wasserstein distance between the solution of Fi and Fj i.e. µki and µki , i, j ∈
{1,2,3}, i ≠ j for 100 times executions of the code with the same initial samples. In the

functional column, the drift potential vector V k ∈ RN and the symmetric matrix Uk are given

by V k(i) ∶= V (xik) , i = 1, . . . ,N and Uk(i, j) ∶= U (xik −x
j
k) , i, j = 1, . . . ,N . We executed

the code for each case of splitting 100 times and plot the averaged Wasserstein distance for

each splitting case. The figures in the first three rows shows the averaged Wasserstein distance

of the solution of each term after 10000 iterations for the cases that we split (7.51) to two terms

and the shadow shows the variation range for each case of splitting. In the last row, each curve

shows the averaged Wasserstein distance of the solution of each term after 10000 iterations

for the cases that we split (7.51) to three terms. The shadow shows the variation range of each

Wasserstein distances of µ1, µ2, and µ3. Because we start from the same initial distribution

for µi, i = {1,2,3}, W (µki ,µkj ) , i, j ∈ {1,2,3}, i ≠ j at k = 0 is zero.

compute the proximal update µk+1
1 .

Finally, for the fourth case of splitting (the last row in Table.7.2), we define G3(µ3) ∶=

F3(µ3) + ⟨ν
k
3,µ3⟩ = ⟨β

−1µ3 + ν
k
3,µ3⟩, and obtain the proximal update µk+1

3 by (7.14).

BecauseF2 is linear inµ2, we use (7.15) withΦ2(µ2) = ⟨U kµk
2+ν

k
2,µ2⟩ to analytically

compute the proximal update µk+1
2 . Also, because F1 is linear in µ1, we use (7.15) with

Φ1(µ1) = ⟨V k +U kµk
1 + ν

k
1,µ1⟩ to analytically compute the proximal update µk+1

1 .
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In all four cases above, we use (7.19) to modify the PROXRECUR algorithm given

in [5, Sec. III-B.1], and then solve (7.14) with the modified version of the PROXRECUR

algorithm for the porous medium equation.

The resulting evolution of µ1 and µ2 for the first case are shown in Figure 7.6; it can

be seen that after 10000 iterations of the outer layer ADMM (7.11), both µ1 and µ2,

tend to the known stationary solution (torus with inner and outer radius of 0.5 and

√
5
4 ). The resulting evolution of µ1 and µ2 for the other cases behave almost the same.

The averaged Wasserstein distance for each case of splitting is shown in Table. 7.2. All

the simulation parameters and the initial distributions are the same as the previous

example, only in the last case, α = 15 and τ = 10. The averaged simulation time after

100 execution for each case of splitting is 294.06 sec, 285.32 sec, 289.87 sec, and 108.99

sec, respectively.

(a) Contour plots of the transient solution of the joint measure µ1

(b) Contour plots of the transient solution of the joint measure µ2

Figure 7.6: Evolution of the solution to the aggregation-drift equations (7.51), with U(x) =
∣x∣2/2 − ln(∣x∣) and V (x) = −1

4 ln(∣x∣). The computational domain is [−2,2] × [−2,2]. The

color denotes the value of the plotted variable; see colorbar (dark red = high, light yellow =

low).

Table 7.3 shows a comparison between how long it took for the centralized and

proposed Wasserstein ADMM methods to run using the same simulation setup. It

also displays the accuracy results by plotting the Wasserstein distances between the
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centralized and Wasserstein ADMM iterations, based on the known stationary mea-

sure. These results provide two clear findings: Firstly, the proposed ADMM updates

are faster (much faster when using three-way splitting) than the corresponding up-

dates in the centralized approach. Secondly, as the iterations continue, the proposed

algorithm outperforms the centralized method in terms of accuracy, as seen in the

improvement of Wasserstein distance to the known stationary solution. In Table 7.4,

we show how the final objective value changes for this case study based on different

ADMM barrier parameter values (α). We maintained a constant inner ADMM itera-

tion number of 3 throughout this analysis. We also performed simulations varying the

inner ADMM iteration number while keeping α = 12 fixed. The resulting fluctuations

in the final objective value are detailed in Table 7.5.

7.6.3 Grouping of summand functionals

In (1.1), F = F1 + ⋯ + Fn, n > 1, where the summand functionals Fi, i ∈ [n], are

necessarily distinct. Suppose that we have n indistinguishable computing elements

available for distributed computation. We can use any subset of them to implement

our proposed algorithm depending on how we group the n distinct summand func-

tionals. Clearly, the grouping {{F1,⋯, Fn},{0},⋯,{0}} corresponds to centralized

computation. Then the number of ways to implement our distributed algorithm over

n computing elements is

Bn − 1, n = 2,3,⋯, where Bn denotes the nth Bell number [231]. (7.52)
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Case Functionals Wasserstein distances

#1

F1(µ) = ⟨V k + β−1µ,µ⟩ ,
F2(µ) = ⟨Ukµ

k,µ⟩

#2

F1(µ) = ⟨Ukµ
k + β−1µ,µ⟩,

F2(µ) = ⟨V k,µ⟩

#3

F1(µ) = ⟨Ukµ
k +V k,µ⟩,

F2(µ) = ⟨β−1µ,µ⟩

#4

F1(µ) = ⟨V k,µ⟩ ,
F2(µ) = ⟨Ukµ

k,µ⟩ ,
F3(µ) = ⟨β−1µ,µ⟩

Table 7.3: For the aggregation-drift-diffusion nonlinear PDE case study in Section

7.6.2, comparison of the Wasserstein distances to the known stationary solution µ∞,

from the iterates of the centralized (µk
centralized

), and from the iterates of the proposed

Wasserstein ADMM algorithm µk
i , i ∈ 1,2,3. The known µ∞ here is a uniform mea-

sure over an annulus with the inner radiusRi = 1/2 and the outer radiusRo =
√
5/2 [4,

Sec. 4.3.2]. All Wasserstein distances are computed by solving the corresponding Kan-

torovich LPs as in Table 7.2. All simulations are done with the same setup as in Table

7.2. Material H, Table 2, i.e., with the same uniform grid over [−2,2]2 with 1681 sam-

ples, β−1 = 0.0520 as in [4, Sec. 4.3.2], and the same µ0, U, V and other parameters

reported in Section 7.6.2. For centralized computation, we used the proximal recur-

sion algorithm in [5]. The figures in the last column show that after 10000 iterations,

the Wasserstein distances between µi and µ∞ in all cases are smaller than the corre-

sponding Wasserstein distance between the centralized solution and µ∞. The average

runtime (averaged over 100 executions of the same code as in Table 2, Supp. Mate-

rial) from the proposed Wasserstein ADMM algorithm in all cases remain below 300
sec, and especially it is recorded at 108.99 sec in case #4, significantly below the total

runtime of the centralized variant (310.21 sec).
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α 11 11.5 12 12.5 13 13.5 14 14.5 15

F 10000
, case #1 10.9058 10.9224 10.8978 10.9064 10.8922 10.9203 10.9124 10.9203 10.9139

F 10000
, case #2 11.0624 11.0598 11.0618 11.0578 11.0694 11.0692 11.0591 11.0570 11.0561

F 10000
, case #3 11.0296 11.0325 11.0275 11.0312 11.0338 11.0301 11.0395 11.0351 11.0305

F 10000
, case #4 16.5087 16.5012 16.5106 16.5080 16.5049 16.5029 16.5030 16.5018 16.5057

Table 7.4: Value of the objective F 10000 ∶= ⟨V k +U kµk + β−1µ,µ⟩∣k=10000 at the final

consensus iterate µ ≡ µ10000
for cases in Figure 7.6 w.r.t. different values of ADMM

barrier parameter α ∈ [11,15].

Inner layer ADMM iter. # 3 4 5 6 7 8 9 10

F 10000
, case #1 10.9263 10.8981 10.9165 10.8997 10.9124 10.9157 10.8813 10.9009

F 10000
, case #2 11.0638 11.0546 11.0643 11.0625 11.0632 11.0583 11.0701 11.0678

F 10000
, case #3 11.0368 11.0457 11.0374 11.0381 11.0363 11.0359 11.0318 11.0322

F 10000
, case #4 16.5072 16.5023 16.5046 16.5001 16.5123 16.5039 16.5045 16.5034

Table 7.5: Value of the objective F 10000 ∶= ⟨V k +U kµk + β−1µ,µ⟩∣k=10000 at the final

consensus iterate µ ≡ µ10000
for cases in Figure 7.6 w.r.t. different number for the

Inner layer ADMM iteration.

The minus one in (7.52) discounts the centralized computation. The first few Bell

numbers are B2 = 2,B3 = 5,B4 = 15,B5 = 52,B6 = 203,⋯.

For our first experiment in Section 7.6, n = 2 and there is B2 − 1 = 1 way to

implement the proposed algorithm. For our second experiment in Section 7.6, n = 3

and there are B3 − 1 = 4 ways to implement the proposed algorithm.

More generally, if we have n distinct summand functionals with r ≤ n indistin-

guishable computing elements available, then the number of ways to implement our

distributed algorithm is

r

∑
k=1
{(
n

k
)},where {(

n

k
)} denote the Stirling numbers of the second kind [232, p. 244].

(7.53)

For r = n, (7.53) reduces to (7.52).
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7.6.4 Wasserstein barycenter

The Wasserstein Barycenter as described in [54] and [233], for a set of discrete distribu-

tions ξi ∈ P2(X), for i = 1, . . . , n; is characterized by the solution to this optimization

problem:

arg inf
µ∈P2(X)

n

∑
i=1
wiW

2 (µ,ξi) (7.54)

where 0 < wi < 1 and

n

∑
i=1
wi = 1.

Optimization problem (7.54), can be written in the consensus form as (7.3) as below:

arg inf
(µ1,⋯,µn,ζ)∈Pn+1

2 (X)
F1(µ1) + F2(µ2) +⋯ + Fn(µn) (7.55a)

subject to µi = ζ for all i ∈ [n], (7.55b)

where Fi(µi) = wiW
2 (µi,ξi).

In this example, we consider three distinct distributions represented by ξi, i =

1,2,3, each characterized by unique geometric shapes: a donut, a heart, and an X,

as depicted in Figures 7.7b, 7.7a, and 7.7c, respectively. Our goal is to compute the

Wasserstein barycenter for these distributions, leveraging our novel distributed algo-

rithm.

In this series of experiments, we explore the Wasserstein barycenter computations

through four distinct scenarios.

• Between heart and donut shapes, with F1(µ1) =
1
2W

2 (µ1,ξ1) and F2(µ2) =

1
2W

2 (µ2,ξ2).

• Between heart and X shapes, with F1(µ1) =
1
2W

2 (µ1,ξ1) and F3(µ3) =
1
2W

2(

167



Distributed Computing: Wasserstein Consensus ADMM/Experiments 7.6

(a) Heart-shaped distribu-

tion (ξ1)

(b) Donut-shaped distribu-

tion (ξ2)

(c) X-shaped distribution

(ξ3)

Figure 7.7: Visual representation of distinct distributions for ξi, i = 1,2,3, illustrating

heart, donut, and X shapes, respectively, in the context of the Wasserstein Barycenter

problem ((7.54)).

µ3,ξ3).

• Between donut and X shapes, with F2(µ2) =
1
2W

2 (µ2,ξ2) and F3(µ3) =
1
2W

2(

µ3,ξ3).

• Among all three shapes: heart, donut, and X, with F1(µ1) =
1
3W

2 (µ1,ξ1),

F2(µ2) =
1
3W

2 (µ2,ξ2), and F3(µ3) =
1
3W

2 (µ3,ξ3).

The parameter n in (7.55) that shows the number of distributed processors is set n = 2

for pairwise comparisons and n = 3 for the comprehensive analysis involving all three

shapes. For allFi, we use (7.21) withΦi(µi) ∶= wiW
2 (µk

i ,ξi)+⟨ν
k
i ,µ

k
i ⟩ to compute the

proximal updateµk+1
i . We use (7.22) to modify the PROXRECUR algorithm given in [5,

Sec. III-B.1], to solve (7.20) with the modified version of the PROXRECUR algorithm

for this case study.

Figure 7.8 showcases the iterative evolution of Wasserstein barycenters as com-

puted by three distributed processors, each tasked with a unique geometric distribu-

tion: Processor #1 with a donut shape, Processor #2 with a heart shape, and Proces-
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sor #3 with an X shape. This figure offers a visual timeline of the algorithm’s perfor-

mance across several iterations, highlighting the dynamic process of shape adaptation

and convergence.

Distinctively, each processor’s primary assignment is denoted in bold blue, while

contributions received from other processors are depicted in light blue. This color dif-

ferentiation aids in visualizing the flow and integration of information across the dis-

tributed network. The triangle’s center serves as a focal point for the amalgamation of

all three shapes. Moreover, the Wasserstein barycenters resulting from pairwise com-

binations of the shapes are represented along the triangle’s edges. For example, the

edge connecting the heart and donut shapes illustrates the intermediate barycenter

derived from these two distributions. As the iterations progress, we observe a grad-

ual blending and convergence of the distinct shapes towards a cohesive barycenter.

The final iteration reveals a notable harmonization of the shapes, encapsulating the

essence of each original distribution while presenting a new, integrated form. This

visual documentation eloquently captures the essence of distributed computation in

Wasserstein barycenters.

169



Distributed Computing: Wasserstein Consensus ADMM/Experiments 7.6

(a) first iteration

(b) Iteration #10

(c) Iteration #2000
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(d) Iteration #3500

(e) Iteration #9600

Figure 7.8: Dynamic evolution of distributed processors in computing Wasserstein

barycenters: A series of snapshots illustrating the iterative refinement process across

distributed processors, each designated with a specific shape (donut, heart, X). These

images trace the convergence journey from the initial assignment through multiple

iterations (1, 10, 2000, 3500, 9600), showcasing the collaborative exchange and pro-

gressive adaptation of shapes towards a unified solution.
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8 | Summary and Future Work

Throughout this dissertation, we explored convex optimization in the space of prob-

ability measures, showcasing its ubiquity in stochastic control, stochastic modeling,

and stochastic learning. The methods developed here hold promise for a wide range

of applications, from enhancing machine learning models, simulating mean-field dy-

namics, optimizing Wasserstein barycenters, and controlling probability distributions.

Our investigation began with solving the generalized Schrödinger bridge prob-

lems that are nonlinear in state, and possibly non-affine in control. The effectiveness

of our proposed algorithms were demonstrated in both model-based and data-driven

settings.

We then introduced a controlled mean field model for the dynamics of chiplets

in micro-assembly applications, offering a detailed analysis of their interactions and

collective behavior. Our results establish consistency of the model in a limiting sense

and demonstrate that the resulting PDF evolution can be seen as an infinite dimen-

sional gradient descent of a Lyapunov-like energy functional w.r.t. the Wasserstein

metric. Our future work for this part will investigate the synthesis of optimal control

of the chiplet joint PDF w.r.t. suitable performance objective that allows steering an

initial joint PDF to a desired terminal joint PDF. We note that the feedback synthesis

for density steering subject to a controlled mean field nonlocal PDE is relatively less

explored but has started appearing in recent works; see e.g., [234–236].

We then turned to stochastic learning. We designed a proximal mean field learn-

ing algorithm to train an over-parameterized subsumes shallow neural network in the

over-parameterized regime. The proposed algorithm is meshless and non-parametric.

It implements the Wasserstein proximal recursions realizing the gradient descent of

172



Summary and Future Work/ 8.0

entropic-regularized risk. Numerical case studies in binary classification, multi-class

classification, and learning 1D sinusoid demonstrate that the ideas of mean field learn-

ing can be attractive as a computational framework beyond purely theoretical inter-

ests.

Existing efforts to generalize the theoretical results for the mean field learning as

in this work, from single to multi-hidden layer networks, have been pursued in two

different limiting sense. One line of investigations [18,237,238] take the infinite width

limit one hidden layer at a time while holding the (variable) widths of other hidden

layers fixed. More precisely, if the ith hidden layer has Ni neurons, then the limit is

taken by first normalizing that layer’s output by Nγi
i for some fixed γi ∈ [1/2,1] and

then letting Ni → ∞ for an index i while holding other Nj’s fixed and finite, j ≠ i.

A different line of investigations [239, 240] consider the limit where the widths of all

hidden layers simultaneously go to infinity. In this setting, the population distribution

over the joint (across hidden layers) parameter space is shown to evolve under SGD

as per a McKean-Vlasov type nonlinear IVP; see [239, Def. 4.4 and Sec. 5]. We antici-

pate that the proximal recursions proposed herein can be extended to this setting by

effectively lifting the Wasserstein gradient flow to the space of measure-valued paths.

Though not quite the same, but this is similar in spirit to how classical bi-mariginal

Schrödinger bridge problems [32, 241] have been generalized to multi-marginal set-

tings over the path space and have led to significant algorithmic advances in recent

years [242–244].

Finally, we proposed a novel computational framework for distributed compu-

tation in solving measure-valued optimization problems. Our findings provide new

insights in generalizing the well-known finite dimensional Euclidean ADMM to its

Wasserstein and Sinkhorn counterparts. The proposed framework leverages existing

173



Summary and Future Work/ 8.0

proximal and Jordan-Kinderlehrer-Otto (JKO) schemes, and open up the possibility of

designing measure-valued operator splitting algorithms. While we provided conver-

gence guarantee for the proposed inner layer ADMM, an important undertaking not

pursued here is the convergence guarantee for the overall scheme. This is also the

topic of our future work.
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A | Proofs for Chapter 4

Proof of Theorem 4.1

Proof. For X ⊆ Rn
, let r0 ∈ R ∶= R ∪ {−∞,+∞} (two point compactification of the

real line R) be defined as r0 ∶= supx∈X ∥x∥2.

We write the Lagrangian (4.4) as the sum of three state-time integrals:

∫

T

0
∫
X

1

2
∥u∥22ρ

udx dt + ∫
T

0
∫
X
ψ
∂ρu

∂t
dx dt

+∫

T

0
∫
X
(
∂ρu

∂t
+∇x ⋅ (ρ

uf) − ⟨G,Hess (ρu)⟩)ψdx dt. (A.1)

In above, for the second summand, we invoke the Fubini–Tonelli theorem to switch

the order of integration and perform integration by parts w.r.t. t. This gives

∫

T

0
∫
X
ψ
∂ρu

∂t
dx dt

=∫
X
(∫

T

0
ψ
∂ρu

∂t
dt)dx

=∫
X
([ψρu]

t=T
t=0 − ∫

T

0

∂ψ

∂t
ρudt)dx

=∫
X
(ψ(T,x)ρT (x) − ψ(0,x)ρ0(x))dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
constant over P0T (X) × U

−∫

T

0
∫
X

∂ψ

∂t
ρudxdt. (A.2)

For the third summand in (A.1), we perform integration by parts w.r.t. x, to obtain

∫

T

0
∫
X
(
∂ρu

∂t
+∇x ⋅ (ρ

uf) − ⟨Hess,Gρu⟩)ψ dx dt

=∫

T

0
(∫
X
(
∂ρu

∂t
+∇x ⋅ (ρ

uf))ψ dx−⟨Hess,Gρu⟩ψdx)dt

=∫

T

0
( lim
∥x∥2→r0

[ψ(t,x)∫
∂ρu

∂t
dx])−∫

T

0
∫
X
⟨∇xψ,f⟩ρ

udxdt

− ∫

T

0
∫
X
⟨Hess,Gρu⟩ψ dx dt

= −∫

T

0
∫
X
⟨∇xψ,f⟩ρ

udxdt −∫
T

0
∫
X
⟨Hess,Gρu⟩ψ dx dt (A.3)

175



Proofs for Chapter 4/ A.0

where we assumed that the limits at ∥x∥2 → r0 are zero.

Now consider the second summand in (A.3), and perform two-fold integration by

parts w.r.t. x as

∫
X
⟨Hess,Gρu⟩ψ dx

=∫
X
∑
i,j

∂2

∂xi∂xj
(Gijρ

u)ψ dx

=∑
i,j
∫
X

∂2

∂xi∂xj
(Gijρ

u)ψ dx

= −∑
i,j
∫
X

∂(Gijρu)

∂xj

∂ψ

∂xi
dx

=∑
i,j
∫
X
(Gijρ

u)
∂2ψ

∂xj∂xi
dx

=∫
X
∑
i,j

(Gijρ
u)

∂2ψ

∂xj∂xi
dx

=∫
X
⟨G,Hess(ψ)⟩ρudx, (A.4)

which helps rewrite (A.3) as

−∫

T

0
∫
X
⟨∇xψ,f⟩ρ

udxdt −∫
T

0
∫
X
⟨G,Hess(ψ)⟩ρudx dt. (A.5)

Combining (A.2), (A.3), (A.5), and dropping the constant term, the Lagrangian (A.1)

simplifies to

∫

T

0
∫
X
(
1

2
∥u∥22 −

∂ψ

∂t
− ⟨∇xψ,f⟩ − ⟨G,Hess(ψ)⟩)ρudx dt. (A.6)

Minimizing (A.6) w.r.t. u for a fixed PDF ρu yields (4.6c).

We then substitute (4.6c) back in (A.6), and equate the resulting expression to zero,

to arrive at the dynamic programming equation

∫

T

0
∫
X
(
1

2
∥∇uopt (⟨∇xψ,f⟩ + ⟨G,Hess(ψ)⟩) ∥22

−
∂ψ

∂t
− ⟨∇xψ,f⟩ − ⟨G,Hess(ψ)⟩)ρu(t,x)dx dt = 0. (A.7)
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Since (A.7) should be satisfied for arbitrary ρu, we get

∂ψ

∂t
=
1

2
∥∇u (⟨∇xψ,f⟩ + ⟨G,Hess(ψ)⟩) ∥22 − ⟨∇xψ,f⟩

− ⟨G,Hess(ψ)⟩

which is the HJB PDE (4.6a). The FPK PDE (4.6b) and the boundary conditions (4.7)

follow from the primal feasibility conditions (4.3b) and (4.3c), respectively.

Proof of Theorem 4.2

Proof. Consider the Lagrangian associated with (4.11):

L(ρπ, π,ψ) ∶=∫
T

0
∫
R
{
1

2
π2ρπ + ψ × (

∂ρπ

∂t
+

∂

∂⟨C6⟩
(D1ρ

π) −
∂2

∂⟨C6⟩
2
(D2ρ

π))}dx dt

(A.8)

where ψ(⟨C6⟩, t) is a C1(R;R≥0) Lagrange multiplier.

Performing integration by parts, the Lagrangian (A.8) can be written as

L(ρπ, π,ψ) = ∫
T

0
∫
R
(
1

2
π2 −

∂ψ

∂t
−D1

∂ψ

∂⟨C6⟩
−D2

∂2

∂⟨C6⟩
2
ψ)ρπ dx dt. (A.9)

For ρπ fixed, pointwise minimization of (A.9) with respect to π yields (4.12c).

By substituting (4.12c) in (A.9) and equating the resulting expression to zero, we get

the dynamic programming equation

∫

T

0
∫
R

⎛

⎝

1

2
(
∂ψ

∂⟨C6⟩

∂D1

∂π
+

∂2ψ

∂⟨C6⟩
2

∂D2

∂π
)

2

−
∂ψ

∂t

−D1
∂ψ

∂⟨C6⟩
− D2

∂2ψ

∂⟨C6⟩
2
)ρπ(⟨C6⟩, t)d⟨C6⟩ dt = 0.

(A.10)

For (A.10) to be satisfied for arbitrary ρπ, we must have

∂ψ

∂t
=
1

2
(
∂ψ

∂⟨C6⟩

∂D1

∂π
+

∂2ψ

∂⟨C6⟩
2

∂D2

∂π
)

2

−D1
∂ψ

∂⟨C6⟩
−D2

∂2ψ

∂⟨C6⟩
2
, (A.11)

which upon using (4.12c), gives the HJB PDE (4.12a). The associated FPK PDE (4.12b)
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and the boundary conditions (4.13) follow from (4.11b) and (4.11c), respectively.

178



B | Proofs for Chapter 5

Proof of Theorem 5.1

Proof. To describe the dynamics of ρn as n→∞, we start with investigating the time

evolution of the quantity

⟨φ, ρn⟩ ∶=
1

n

n

∑
i=1
φ (xi) (B.1)

for any compactly supported test function φ ∈ C2
b (R2).

Using Ito’s rule, we have

dφ (xi) = Lρnφ (xi)dt +∇φ
⊺ (xi)

√
2β−1dwi (B.2)

wherein the infinitesimal generator

Lρφ(x) ∶= ⟨f
u
(x, t, u, ρ),∇xφ(x)⟩ + β

−1∆φ. (B.3)

Thus,

d ⟨φ, ρn⟩ =
1

n

n

∑
i=1

dφ (xi)

= ⟨Lρnφ, ρ
n⟩dt +

1

n

n

∑
i=1

√
2β−1∇φ⊺ (xi)dwi

∶= ⟨Lρnφ, ρ
n⟩dt + dMn

t (B.4)

where Mn
t is a local martingale.

Because φ ∈ C2
b (R2), we have ∣

√
2β−1∇φ⊺ (xi)∣ ≤ C uniformly for some C > 0.

Notice that the quadratic variation of the noise term in (B.4) is

[Mn
t ] ∶=

1

n2

n

∑
i=1
∫

t

0
∣
√
2β−1∇φ⊺ (xi(s))∣

2
ds ≤

tC2

n
,
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and using Doob’s martingale inequality [245, Ch. 14.11],

E(sup
t≤T

Mn
t )

2

≤ E(sup
t≤T
(Mn

t )
2
) ≤ 4E ((Mn

t )
2
)

≤ 4E ([Mn
t ]) ≤

4tC2

n
.

Hence in the limit n →∞, the noise term in (B.4) vanishes, resulting in a determin-

istic evolution equation.

For any t > 0, we take {ρn}∞n=1 to be the (random) elements ofΩ = C([0,∞),P(R2)),

the set of continuous functions from [0,∞) into P(R2) endowed with the topology

of weak convergence. Following the argument of Oelschläger [246, Proposition 3.1],

the sequence Pn of joint PDFs on Ω induced by the processes {ρn}∞n=1 , is relatively

compact in P (Ω), which is the space of probability measures on Ω. Oelschläger’s

proof makes use of the Prohorov’s theorem [247, Ch. 5]. The relative compactness

implies that the sequence Pn weakly converges (along a subsequence) to some P,

where P is the joint PDFs induced by the limiting process ρ. By Skorohod represen-

tation theorem [247, Theorem 6.7], the sequence {ρn}∞n=1 converges P-almost surely

to ρ. Since the martingale term in (B.4) vanishes as n→∞, we obtain

d ⟨φ, ρ⟩ = ⟨Lρφ, ρ⟩dt = ⟨φ,L
∗
ρρ⟩dt (B.5)

where L∗ is the adjoint (see e.g., [248, Ch. 2.3, 2.5], [249, p. 278]) of the generator L

given by (B.3), and is defined as

L∗mρ(x, t) ∶ = −∇ ⋅ (ρf
u
(x, t, u,m)) + β−1∆ρ

= ∇ ⋅ (ρ∇(m ∗ ϕu + β−1(1 + log ρ)))

where m ∈ P (R2). For any test function φ ∈ C2
b (R2), (B.5) is valid almost every-

where, and therefore, ρ is almost surely a weak solution to the nonlinear Fokker-
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Planck-Kolmogorov PDE initial value problem (5.7)-(5.8).

Proof of Theorem 5.2

Proof. (i) We start by noticing that the functional derivative

δΦ

δρ
= ρ ∗ ϕu + β−1(1 + log ρ). (B.6)

Next, we rewrite (5.7) as

∂ρ

∂t
= ∇ ⋅ (ρ∇

δΦ

δρ
) , (B.7)

which by definition (1.12), yields (5.12).

(ii) To show that Φ is decreasing along the flow generated by (5.7), we find

d

dt
Φ = ∫

δΦ

δρ

∂ρ

∂t
dx

(B.7)

= ∫
δΦ

δρ
∇ ⋅ (ρ∇

δΦ

δρ
)dx

= −∫ ⟨∇
δΦ

δρ
, ρ∇

δΦ

δρ
⟩dx

= −∫ ⟨∇
δΦ

δρ
,∇
δΦ

δρ
⟩ρdx

= −Eρ
⎡
⎢
⎢
⎢
⎢
⎣

∥∇
δΦ

δρ
∥

2

2

⎤
⎥
⎥
⎥
⎥
⎦

≤ 0.

(B.8)

In order to get from the second line to the third line of (B.8), we used the duality
a

be-

tween the gradient and divergence operators, namely the fact that for differentiable

scalar field s(x) and vector field v(x), we have

⟨∇s,v⟩L2 + ⟨s,∇ ⋅ v⟩L2 = 0, (B.9)

where ⟨p,q⟩L2 ∶= ∫ ⟨p,q⟩dx. Specifically, in (B.8), s ≡ δΦ
δρ and v ≡ ρ∇ δΦ

δρ .
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a
In words, the gradient and the negative divergence are adjoint maps.
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C | Proofs for Chapter 6

Proof of Theorem 6.1

We provide the formal statement followed by the proof.

Theorem 5.1. Consider the regularized risk functional (6.12) wherein F is given by

(6.8)-(6.9). Let ρ(t,θθθ) solve the IVP (6.14), and let {ϱk−1}k∈N be the sequence generated

by (6.17) with ϱ0 ≡ ρ0. Define the interpolation ϱh ∶ [0,∞) ×Rp ↦ [0,∞) as

ϱh(t,θθθ) ∶= ϱk−1(h,θθθ) ∀t ∈ [(k − 1)h, kh), k ∈ N.

Then ϱh(t,θθθ)
h↓0
Ð→ ρ(t,θθθ) in L1(Rp).

Proof. Our proof follows the general development in [194, Sec. 12.3]. In the follow-

ing, we sketch the main ideas.

We have the semi-implicit free energy

F̂β(ϱ, ϱk−1) = Eϱ [F0 + V (θθθ) + ∫
Rp
U(θθθ, θ̃θθ)ϱk−1(θ̃θθ)dθ̃θθ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶V

advec
(ϱ)

+β−1Eϱ [log ϱ] , k ∈ N,

wherein the summand

Vadvec(ϱ) ∶= Eϱ [F0 + V (θθθ) + ∫
Rp
U(θθθ, θ̃θθ)ϱk−1(θ̃θθ)dθ̃θθ]

is linear in ϱ, and contributes as an effective advection potential energy. The remain-

ing summand β−1Eϱ [log ϱ] results in from diffusion regularization and contributes

as an internal energy term.

We note from (6.9) that the functional Vadvec(ϱ) is lower bounded for all ϱ ∈ P2 (Rp).

Furthermore, Vadvec(ϱ) and∇Vadvec(ϱ) are uniformly Lipschitz continuous, i.e., there
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exists C1 > 0 such that

∥∇Vadvec(ϱ)∥L∞(Rp) + ∥∇
2Vadvec(ϱ)∥L∞(Rp) ≤ C1

for all ϱ ∈ P2 (Rp) where the constant C1 > 0 is independent of ϱ, and ∇2
denotes

the Euclidean Hessian operator.

Moreover, there exists C2 > 0 such that for all ϱ, ϱ̃ ∈ P2(Rp), we have

∥∇Vadvec(ϱ) − ∇Vadvec(ϱ̃)∥L∞(Rp) ≤ C2W2 (ϱ, ϱ̃) .

Thus, Vadvec(ϱ) satisfy the hypotheses in [194, Sec. 12.2].

For t ∈ [0, T ], we say that ρ(t,θθθ) ∈ C ([0, T ],P2 (Rp)) is a weak solution of the IVP

(6.14) if for any smooth compactly supported test function φ ∈ C∞c ([0,∞) ×Rp),

we have

∫

∞

0
∫
Rp
((
∂φ

∂t
− ⟨∇φ,∇Vadvec(ϱ)⟩)ρ + β

−1ρ∆φ)dθθθdt = −∫
Rp
φ(t = 0,θθθ)ρ0(θθθ). (C.1)

Following [194, Sec. 12.2], under the stated hypotheses on Vadvec(ϱ), there exists

weak solution of the IVP (6.14) that is continuous w.r.t. the W2 metric.

The remaining of the proof follows the outline below.

• Using the Dunford-Pettis’ theorem, establish that the sequence of functions

{ϱk(h,θθθ)}k∈N solving (6.17) is unique.

• Define the interpolation ϱh(t) ∶= ϱk(h,θθθ) if t ∈ ((k − 1)h, kh] for all k ∈ N.

Then establish that ϱh(t) solves a discrete approximation of (C.1).

• Finally combine the gradient estimates and pass to the limit h ↓ 0, to conclude

that ρh(t) in this limit solves converges to the weak solution of (C.1) in strong

L1(Rp) sense.

For the detailed calculations on the passage to the limit, we refer the readers to [194,
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Sec. 12.5].

Expressions involving the derivatives of vvv

We define matrices

TTT ∶= tanh (WXWXWX⊺ + bbb111⊺) ,

SSS ∶= sech2
(WXWXWX⊺ + bbb111⊺) ,

where 111 is a vector of all ones of size ndata × 1, and the functions tanh(⋅) and sech2
(⋅)

are elementwise. Notice that TTT ,SSS ∈ RN×ndata . Then

vvv = −
2

ndata

aaa⊙ (tanh(WWWXXX⊺ + bbb111⊺)yyy) = −
2

ndata

aaa⊙ (TyTyTy) .

Proposition C.1. With the above notations in place, we have

∂vvv

∂aaa
111 =

N

∑
k=1

∂vvvk
∂aaa
= −

2

ndata

TyTyTy, (C.2)

and

∂vvv

∂bbb
111 =

N

∑
k=1

∂vvvk
∂bbb
= −

2

ndata

aaa⊙SySySy. (C.3)

Furthermore,

N

∑
k=1

∂vvvk
∂WWW
= −

2

ndata

[(aaa111⊺) ⊙ (SSS (XXX ⊙ yyy111⊺))] . (C.4)

Proof. The kth element of vvv is vvvk = −
2

ndata
aaak∑

ndata
i=1 [TTT k,iyyyi]. Thus,

∂vvvk
∂aaaj
=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 for k ≠ j,

− 2
ndata
∑
ndata
i=1 [TTT k,iyyyi] for k = j.
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So the matrix
∂vvv
∂aaa is diagonal, and

[
∂vvv

∂aaa
111]

k

= −
2

ndata

ndata

∑
i=1
[TTT k,iyyyi] = −

2

ndata

[TyTyTy]k .

Hence, we obtain

∂vvv

∂aaa
111 = −

2

ndata

TyTyTy,

which is (C.2).

On the other hand,

∂vvvk
∂bbbk
=

∂

∂bbbk
[−

2

ndata

aaak
ndata

∑
i=1
[TTT k,iyyyi]]

= −
2

ndata

aaak
ndata

∑
i=1

∂

∂bbbk
[TTT k,iyyyi] .

Note that

∂

∂bbbk
[TTT k,iyyyi] =

∂

∂bbbk
tanh(

nx

∑
j=1
(WWW k,jXXX i,j) + bbbk)yyyi

= sech2
(
nx

∑
j=1
(WWW k,jXXX i,j) + bbbk)yyyi = SSSk,iyyyi.

Therefore,

∂vvvk
∂bbbj
=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 for k ≠ j,

− 2
ndata

aaak∑
ndata
i=1 [SSSk,iyyyi] for k = j.

As the matrix
∂vvv
∂bbb is diagonal, we get

[
∂vvv

∂bbb
111]

k

= −
2

ndata

aaak
ndata

∑
i=1
[SSSk,iyyyi] = −

2

ndata

aaak [SSSyyy]k ,

and so

∂vvv

∂bbb
111 = −

2

ndata

aaa⊙SySySy,

which is indeed (C.3).
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Likewise, we take an element-wise approach to the derivatives with respect to

weightsWWW k,m. Note that such a weightWWW k,m will only appear in the kth element of

vvv, and so we only need to compute

∂vvvk
∂WWW k,m

= −
2

ndata

aaak
ndata

∑
i=1

∂

∂WWW k,m

[TTT k,iyyyi] .

Since

∂

∂WWW k,m

[TTT k,iyyyi] =
∂

∂WWW k,m

tanh(
nx

∑
j=1
(WWW k,jXXXj,i) + bbbk)yyyi

= sech2
(
nx

∑
j=1
(WWW k,jXXX i,j) + bbbk)XXX i,myyyi = SSSk,iXXX i,myyyi,

we have

∂vvvk
∂WWWm,j

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 for k ≠m,

− 2
ndata

aaak∑
ndata
i=1 [SSSk,iXXX i,myyyi] for k =m.

Thus,

N

∑
k=1

∂vvvk
∂WWWm,j

= −
2

ndata

aaam
ndata

∑
i=1
[SSSm,iXXX i,myyyi]

= −
2

ndata

aaam [SSS (XXX ⊙ (yyy111
⊺))]m,j .

Therefore, considering 111 ∈ Rnx , we write

N

∑
k=1

∂vvvk
∂WWW
= −

2

ndata

[(aaa111⊺) ⊙ (SSS (XXX ⊙ yyy111⊺))] ,

thus arriving at (C.4). This completes the proof.
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Expressions involving the derivatives of uuu

Expressions involving the derivatives of uuu, are summarized in the Proposition next.

These results find use in Sec. 6.3. We start by noting that

uuu =
1

ndata

(111⊺aaa⊙TTT )(111⊺aaa⊙TTT )⊺ρρρ

=
1

ndata

(111⊺aaa⊙TTT )(aaa⊺111⊙TTT ⊺)ρρρ.

Proposition C.2. With the above notations in place, we have

∂uuu

∂aaa
°
N×N

111

®
N×1

=
1

ndata

[((ϱϱϱaaa⊺) ⊙ (TTTTTT ⊺))111 + 111 (aaa⊙ ϱϱϱ)
⊺
TTTTTT ⊺111] , (C.5)

and

∂uuu

∂bbb
°
N×N

111

®
N×1

=
1

ndata

[((a1a1a1⊺) ⊙ (STSTST ⊺) ⊙ (111 (aaa⊙ ϱϱϱ)
⊺
))111

+ ((1a1a1a⊺) ⊙ (STSTST ⊺) ⊙ ((aaa⊙ ϱϱϱ)111⊺))111] . (C.6)

Furthermore,

N

∑
k=1

∂uuu

∂WWW i,j

=
1

ndata

N

∑
k=1

ndata

∑
m=1

aiak(ϱi + ϱk)Tk,mSi,mXm,j. (C.7)

Proof. Letting ttt⊺i denote the ith row of TTT , we rewrite uuu as follows:

uuu =
1

ndata

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1ttt
⊺
1

⋮

aNttt
⊺
N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[ρ1a1ttt1 +⋯ + ρNaNtttN]
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=
1

ndata

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1ttt
⊺
1(ρ1a1ttt1 +⋯ + ρNaNtttN)

⋮

aNttt
⊺
N(ρ1a1ttt1 +⋯ + ρNaNtttN)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For i ≠ k, we thus have

∂uuui
∂aaak
=

1

ndata

aittt
⊺
i (ρktttk) =

1

ndata

aiρkttt
⊺
i tttk.

Likewise, for i = k, we have

∂uuuk
∂aaak
=

1

ndata

akρkttt
⊺
ktttk +

1

ndata

ttt⊺k(ρ1a1ttt1 +⋯ + ρNaNtttN).

Combining the above, we obtain
∂uuu
∂aaa , and hence (C.5) follows. On the other hand, for

i ≠ k, we have

∂uuui
∂bbbk
=

1

ndata

aittt
⊺
i ρkak

∂tttk
∂bbbk
=

1

ndata

aittt
⊺
i ρkaksssk,

and for i = k, we obtain

∂uuui
∂bbbk
=

1

ndata

ai (
∂tttk
∂bbbk
)

⊺
(ρ1a1ttt1 +⋯ + ρNaNtttN)

+
1

ndata

akttt
⊺
kρkak

∂tttk
∂bbbk

=
1

ndata

ai(sssk)
⊺(ρ1a1ttt1 +⋯ + ρNaNtttN)

+
1

ndata

akttt
⊺
kρkaksssk.

Combining the above, we obtain
∂uuu
∂bbb , and hence (C.6) follows.

Finally, noting thatWWW i,j is in the ith row of TTT , for i ≠ k, we obtain

∂uuuk
∂WWW i,j

=
1

ndata

akttt
⊺
kρiai

∂ttti
∂WWW i,j

=
1

ndata

akttt
⊺
kρiai(sssi ⊙xxxj),
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where xxxj is the jth column ofXXX . Likewise, for i = k, we get

∂uuuk
∂WWW i,j

=
1

ndata

ak (
∂tttk
∂WWW i,j

)

⊺

(ρ1a1ttt1 +⋯ + ρNaNtttN)

+
1

ndata

akttt
⊺
kρkak

∂tttk
∂WWW i,j

=
1

ndata

ak(sssi ⊙xxxj)
⊺(ρ1a1ttt1 +⋯ + ρNaNtttN)

+
1

ndata

akttt
⊺
kρkak(sssi ⊙xxxj).

Combining the above, we obtain
∂uuu

∂WWW i,j
, thereby arriving at (C.7).
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Proof of Theorem 7.1

We start from (7.12) by dropping the indices i and k, and set G(µ) = ⟨a,µ⟩, where

a ∈ RN ∖ {0}.

For notational ease, let y ∶= exp (λ0

αε
) ,z ∶= exp (λ1

αε
) ∈ RN

>0. Since G is linear, its

Legendre-Fenchel conjugate is an indicator function:

G∗(−λ1) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if λ1 = −a,

+∞ otherwise.

Therefore, (7.12) yields

λopt
0 = argmax

λ0∈RN

{⟨λ0,ζ⟩ − αε⟨y,Γz⟩}, (D.1a)

λopt
1 = −a. (D.1b)

From (D.1b),

zopt = exp(−
1

αε
a) . (D.2)

Setting the gradient of the objective in (D.1a) to zero, determines λopt
0 , or equivalently

yopt
as

yopt = ζ ⊘ (Γzopt) . (D.3)

From (7.14), the proximal update is

prox
Wε
1
α
Φ
(ζ) = zopt ⊙ (Γ⊺yopt)

(D.3)

= zopt ⊙ (Γ⊺ (ζ ⊘ (Γzopt))) . (D.4)
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Substituting (D.2) in (D.4), we arrive at (7.15).

Proof of Theorem 7.2

A Lyapunov functional associated with the porous medium equation given in the last

row of Table 7.1 is the free energy

Fi(µi) = Eµi [νki + β−1
µm−1i

m − 1
] . (D.5)

From (D.5), the “discrete free energy” is

Fi(µi) = ⟨ν
k
i + β

−1 µ
m−1
i

m − 1
,µi⟩ . (D.6)

Its Legendre-Fenchel conjugate is given by

F ⋆i (λi) = sup
µi

{λ⊺iµi − (ν
k
i )
⊺µi −

β−1

m − 1
1⊺µm

i } . (D.7)

Setting the gradient of the objective function in (D.7) w.r.t. µi to zero, and solving

for µi yields

(µi)max = (β
m − 1

m
(λi − ν

k
i ))

1
m−1

. (D.8)

Substituting (D.8) back into (D.7), results

F ⋆i (λi) = (β (
m − 1

m
1⊺(λi − ν

k
i ))

m

)

1
m−1

. (D.9)

Fixing λ0i, and taking the gradient of the objective in (7.12) w.r.t. λ1i gives
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∇λ1i
F ⋆i (−λ1i) = zi ⊙ (Γ

⊺yi) . (D.10)

Substituting (D.9) into the left-hand-side of (D.10) results in (7.16b). The rest of the

proof follows exactly the second part of the proof of [5, Theorem 1].

Proof of Theorem 7.3

Proof. Following [233, Theorem 2.4], the Legendre-Fenchel conjugate of Φ(µ) is

Φ⋆(λ) = −⟨C −λ1T ,X⋆
⟩ + εE (X⋆

) (D.11)

where X⋆
= diag (exp ( λ

wε −
ν
ε
))K diag(ξ ⊘K exp ( λ

wε −
ν
ε
)) and E(.) represents

Shannon entropy function.

Let y ∶= exp (λ0

αε
) ∈ RN

>0,z ∶= exp (
λ1

αε
) ∈ RN

>0, and drop the subscripts i in Eq. (7.12)

for notational ease. Fixing λ1, and taking the gradient of the objective in Eq. (7.12)

w.r.t. λ0 gives Eq. (7.20a).

On the other hand, fixing λ0, and taking the gradient of the objective in Eq. (7.12)

w.r.t. λ1 gives

∇λ1Φ
∗ (−λ1) = z ⊙ (Γ

⊺y) (D.12)

where from Eq. (D.11), we have

∇λ1Φ
∗(−λ1) = exp(

−λ1

wε
−
νk

ε
) ⊙ (Kξ ⊘ (K exp(

−λ1

wε
−
νk

ε
)))

= z−
1

αw ⊙ exp(
−νk

ε
) ⊙Kξ ⊘ (K (z−

1
αw ⊙ exp(

−νk

ε
))) . (D.13)

Using Eq. (D.13) into the left hand side of Eq. (D.12) results in Eq. (7.20b). Finally,
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Eq. (7.14) yields the proximal update Eq. (7.21).

Proof of Theorem 7.4

It is known [53, Theorem 2.4] that for given ε > 0 and µ ∈∆N−1
, the Legendre-Fenchel

conjugate (W 2
ε,µ)

∗
(u) is C∞(RN) w.r.t. u ∈ RN

, and the gradient ∇u (W 2
ε,µ)

∗
(u) is

1/ε Lipschitz. Furthermore, [53, Theorem 2.4] gives the explicit formula

(W 2
ε,µ)

∗
(u) = −ε⟨µ, log (µ⊘ (Γ exp (u/ε))) ⟩, (D.14a)

∇u (W
2
ε,µ)

∗
(u) = exp (u/ε) ⊙ (Γ (µ⊘ (Γ exp (u/ε)))) ∈ ∆N−1. (D.14b)

Using (D.14a) in the objective of (7.27) followed by algebraic simplification yields

(7.28). Using (D.14b) in (7.25), we obtain (7.29).

Proof of Lemma 7.1

We re-write the constraint set C as

C = {z ∈ RnN ∣Az =
2

α
νk

sum
}, (D.15)

where z = (z1,⋯,zn), zi ∈ RN
for all i ∈ [n], A ∶= [IN ,⋯,IN] ∈ RN×nN

, and IN is

the N ×N identity matrix.

Following [250, Sec. 4], we have

projC (v) = v −A
†

(Av −
2

α
νk

sum
) (D.16)

where the superscript
†

denotes the Moore-Penrose pseudoinverse. For our A ∈
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RN×nN
, (D.16) simplifies to

projC (v) = v −A
⊺
(AA⊺)

−1
(Av −

2

α
νk

sum
)

= v −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
nIN

⋮

1
nIN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(
n

∑
i=1

vi −
2

α
νk

sum
)

= v −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v − 2
nαν

k
sum

⋮

v − 2
nαν

k
sum

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

thus completing the proof.

Gradient and Hessian of (7.30)

For notational ease, let us drop the indices i ∈ [n] and k ∈ N0 for the time being, and

focus on computing the gradient and Hessian of

f(u) ∶= ⟨µ, log (Γ exp (u/ε)) ⟩

w.r.t. u ∈ RN
for given µ = (µ1,⋯, µN) ∈ ∆N−1

. Notice that f is twice continuously

differentiable but is not everywhere strictly convex; e.g., f is affine along any line

u = u01 where u0 is some nonzero real and 1 denotes the N × 1 vector of ones.

Denote the jth row of the matrix Γ ∈ RN×N
as γj , and write

f(u) =
N

∑
j=1
µj log⟨γj, exp (u/ε)⟩. (D.17)

Using the chain rule in (D.17), we have

∇uf =
1

ε

N

∑
j=1
µj

γj ⊙ exp (u/ε)

⟨γj, exp (u/ε)⟩
=
1

ε
(Γ⊺µ) ⊙ exp (u/ε) ⊘ (Γ exp (u/ε)) . (D.18)

195



Proofs for Chapter 7 / D.0

Bringing back the indices i ∈ [n] and k ∈ N0 as in (7.30), and letting ei ∶= exp (ui/ε),

the expression (D.18) gives

∇ui
fi =

1

ε
(Γ⊺µk+1

i ) ⊙ ei ⊘ (Γei) . (D.19)

Likewise, we get the Hessian

∇2
ui
fi =

1

ε2
[diag ((Γ⊺µk+1

i ) ⊙ ei ⊘ (Γei)) − diag ((Γ
⊺µk+1

i ) ⊘ (Γei)
2
)Γ⊙ (eie

⊺
i )]

(D.20)

where (Γei)
2

denotes the elementwise square of the vector Γei.

Because the matrix C is symmetric, Γ is symmetric too, and we can drop the

transpose from (D.20). Furthermore, since Γ ⊙ (eie
⊺
i ) = diag (ei)Γdiag (ei), we can

rewrite (D.20) as

∇2
ui
fi =

1

ε2
diag ((Γµk+1

i ) ⊙ ei ⊘ (Γei)) [IN − diag (1⊘ (Γei))Γdiag (ei)] . (D.21)

Notice that the matrix diag (1⊘ (Γei))Γdiag (ei) is elementwise positive and row

stochastic, and therefore, by Perron-Frobenius theorem, the matrix in square braces

in (D.21) has zero as a simple eigenvalue. Thus, the Hessian (D.21) is positive semidef-

inite. The Hessian of the proximal objective in (7.34a) is IN +
1
τ∇

2
ui
fi where τ > 0, and

is, therefore, strictly positive definite.

Backtracking Line Search

For unconstrained minimization of an objective f0 via recursive algorithms such as

gradient descent or Newton’s method, at each iteration, we compute the correspond-

ing descent direction ∆x at x ∈ domain(f0). Then we apply the recursive update rule

x ← x + t∆x where t is a variable step size at that iteration. A standard method of
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computing the step size is the backtracking line search [2, p. 464]. Given parameters

α0 ∈ (0,0.5), β0 ∈ (0,1), the backtracking line search starts with an initial step size

t = 1, and while f0(x + t∆x) > f0(x) +α0t⟨∇f,∆x⟩, sets t← β0t. The resulting value

of t is used as the step size at that iteration.
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