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Abstract

Lowness For Computational Speed

by

Robertson Edward Bayer

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Theodore Slaman, Chair

From the original definition of a set whose jump is as simple as possible (A′ ≡T 0′), to
more recent definitions involving randomness, notions of lowness appear throughout recursion
theory. In that spirit, a non-recursive set A will be said to be low for speed if for any recursive
set R and any computation of R from A, there is an oracle-free computation of R that is no
more than polynomial-time slower than the A-computation.

We will construct such an r.e. set and discuss some properties of these sets. We will show
that promptly simple r.e. sets cannot be low for speed, and also that there are non-prompt
sets that are not low for speed. We conclude by showing that generic sets are low for speed
if and only if P = NP .
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Chapter 1

Preliminaries

1.1 Introduction

Various notions of lowness appear throughout recursion theory and computable mathematics.
While there is no unifying rule for what gets called a lowness notion, the general idea is that
low objects should have very little information in regards to the desired attribute. For
example, an r.e. set A is called lown if An ≡T 0n; that is, its nth jump is as simple as
possible. More recently, Zambella defined a notion of lowness in relation to randoms by
saying that a set A is low for random iff each Martin-Löf random real remains Martin-Löf
random relative to A; that is, A is not useful in finding patterns in random reals [21]. The
existence of such sets was proven by Kuc̆era and Terwijn [9].

Similarly, computability theory and complexity theory have long been concerned with the
effect, if any, of allowing computations access to extra information. Often, these questions ask
whether adding non-recursive sets actually buys any interesting help with recursive sets. For
example, as far back as 1950, Turing asked whether adding access to a source of randomness
would be of any benefit to search algorithms [19]. This can be thought of as asking whether
random sets are in some sense “low” for search speed. Over the years, complexity theorists
have studied many aspects of randomness. Perhaps the most famous examples of this are the
classical complexity theory questions of whether P = RP and whether P = BPP . Again,
this can be thought of as asking whether randomness is in some sense “low” for speed of
computation. Even the famous question of whether P = NP can be thought of as asking
whether non-determinism is “low” for polynomial-time computability.

In terms of more classical mathematical logic, we can look to Gödel for an example. In
1936, he hypothesized that for any recursive function h there were infinitely many formulas
provable in first order arithmetic whose proofs in second order arithmetic were shorter by a
factor of h than the shortest proofs of them in first order arithmetic [6]. That is, if l is the
length of the shortest proof in second-order arithmetic, then the shortest first-order proof
has length at least h(l). This conjecture was eventually proved by Parikh [16] in 1973. In
the language of lowness, this could be phrased as saying that second order arithmetic is not
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low for proof length over first order arithmetic.
In private correspondence, Eric Allender recently asked whether there was any non-

recursive set A such that any recursive set computable in polynomial time from A must in
fact be computable in polynomial time without A. A positive answer was given by Lance
Fortnow, also in unpublished correspondence.

A set with the property that PA ∩ Rec = P can in some sense be thought of as “low
for polynomial speed.” In that light, we will define a new notion of lowness, that of low
for speed, which is more general and is not restricted to polynomial time computation and
discuss various properties of these sets. Our main idea is that a set A is low for speed if
and only if it provides no non-trivial speedup to computations of recursive sets. That is,
knowing A does not provide any help in quickly computing recursive sets. Thus, unlike in
typical recursion theory, we will be critically concerned with the number of steps required in
various computations, not just with whether they give the correct answer.

In the remainder of this chapter, we give some background on our notation and describe
our model of computation before giving the formal definition of low for speed and giving
some general comments about the notion. We will also briefly discuss other lowness notions
related to speed of computation.

In chapter two, we will explore sets which are extremely not low for speed and then
construct an r.e. set which is low for speed. The construction will be given as a tree pri-
ority argument. Steffen Lempp [11] has produced an excellent set of notes providing an
introduction to priority arguments for the interested reader.

Chapter three explores the connection between prompt simplicity and low for speed. The
main results will be showing that no promptly permitting r.e. set can be low for speed, but
that there are also r.e. sets which are not promptly permitting and yet fail to be low for
speed in a strong way. The construction of this latter result will also be a priority argument.

Finally, in the fourth chapter we will discuss whether sets which are low for speed can
be constructed which are also generic. We will not answer this question, but will instead
show that answering it is equivalent to deciding the classical complexity theory question of
whether P = NP .

Chapters two through four are each largely self-contained, relying only on the notation,
conventions, and definitions given in this chapter. For clarity, definitions and concepts that
are used in only one chapter are generally discussed at the beginning of the chapter in which
they are used.

1.2 Notation and conventions

Before turning to the formal definition, it is helpful to formalize our notation and our model
of computation.

Unless otherwise noted, our sets will be subsets of 2<ω. Lower case Greek letters (σ, τ,
etc) will be used to denote elements of 2<ω and for any σ ∈ 2<ω, we will use |σ| to denote the
length of σ. For σ, τ ∈ 2<ω, we will use σˆτ to denote the string consisting of σ followed by τ ,
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and we will write σ ≺ τ if σ is an initial segment of τ . Lower case Latin letters (n,m, s, k, l,
etc) will be used for elements of N. Abusing notation, if n ∈ N, we will use |n| to denote
dlog2(n)e, the number of bits needed to represent n.

When A ⊆ 2<ω and n ∈ N, we use A � n to denote the set {σ ∈ A : |σ| ≤ n}. When
A ⊆ N, we mean the set {m ∈ A : m < n}. The complement of A will be denoted A.

Because we will be concerned not just with what sets are computable from others, but
also with how fast those computations are, it is important to be concrete about our model of
computation, and we will use the standard multi-tape Turing machine. For oracle machines,
we will use the query machine as described by Cook [4]. Namely, a query machine is a
standard Turing machine that in addition to the standard tapes and control features also
contains a distinguished query tape and three distinguished states: the query state, the yes
state, and the no state. When the machine enters the query state, it then transitions to the
yes state or no state depending on whether the string currently written on the query tape
is a member of the oracle. When counting steps required in a computation, a query to the
oracle will count as a single atomic operation.

Other models of oracle computation are also common, and while all have the same com-
putational power from a recursion theory standpoint, they can differ wildly in the time
bounds on computations using them. For example, the model that consists of a read-only
tape consisting of the characteristic function for the oracle has the property that determining
whether a string of length n belongs to the oracle requires O(2n) steps since such a string
would be recorded in the 2nth position of the characteristic function. This would mean that
computing A ⊆ 2<ω from itself in the obvious way runs in time O(2n). The query machine
model, however, counts this computation as running in time O(n) since the machine needs
only to copy the input to the query tape and then make a query.

Uppercase Greek letters (Φ,Ψ,Θ, etc) will be used to denote functionals and will be
assumed to use machines as described above. We will write Φ(σ) = 1 if Φ accepts σ,
Φ(σ) = 0 if it rejects it, and Φ(σ) ↑ if Φ fails to converge. Again abusing notation, we
will often use Φ to refer to both the functional/machine and the set computed by that
functional. Relativizations using the oracle A will be denoted ΦA, etc and are done using
the query machines described above.

For any functional Φ and any σ ∈ 2<ω, we will use t(Φ, σ) to denote the number of steps
used in the computation of Φ(σ). If Φ(σ) ↑, we will say t(Φ, σ) = ∞. For any A ⊆ 2<ω,
t(ΦA, σ) will be the number of steps in the oracle machine computation of ΦA(σ) where
queries to the oracle are considered atomic operations as previously described.

For an oracle machine ΦA, we will also define the use of A in the computation ΦA(σ),
denoted µ(ΦA, σ), to be the length of the longest string written on the query tape in the
computation of ΦA(σ). If ΦA(σ) ↑, the use will be undefined.

In order to simplify some theorems and formulas, we impose the reasonable requirement
that machines must at least read their input, and so t(Φ, σ) ≥ |σ|. As a byproduct of our
model of computation, we get that

µ(ΦA, σ) ≤ t(ΦA, σ) (1.1)



CHAPTER 1. PRELIMINARIES 4

We will often be concerned with polynomial-bounded computation. To that end, we make
the implicit assumption that all polynomials discussed are non-decreasing and positive. In
fact, in most cases it is sufficient to consider only polynomials of the form p(n) = nc for
some constant c ∈ N.

We let P denote the set of all A ⊆ 2<ω which are recursive and computable in polynomial
time. That is, A ∈ P if and only if there is some total recursive Φ and some polynomial p
such that Φ = A and t(Φ, σ) ≤ p(|σ|) for all σ ∈ 2<ω.

As is standard, we let {We}e∈ω be the standard enumeration of all r.e. sets. Namely, if
{Φe} is an enumeration of all partial functionals, then we say n ∈ We ↔ Φe(n) ↓.

Given any r.e. set U , we will use Us for the stage s approximation to U in the standard
sense. That is, we assume {Us}s∈ω is an increasing sequence of finite sets whose union is U .
We will say n enters U at stage s if n ∈ Us − Us−1.

1.3 Low for speed

Before giving the definition of low for speed, we will consider the original question of Eric
Allender and give Fortnow’s proof of it. Before proving this theorem, recall that an r.e. set
A ⊆ 2<ω is hypersimple (Post, [17]) iff A is co-infinite and there is no recursive enumeration
of disjoint finite sets Dn such that A ∩Dn 6= ∅ for all n.

Theorem 1.1 (Fortnow). If A is hypersimple, B is recursive, and B ∈ PA, then B ∈ P.

Proof. Since A is hypersimple, by [18] there is no recursive function f such that

|A � f(n)| ≥ n for all n (1.2)

Suppose B is recursive and B ∈ PA − P . Note that since A ≡PT A, B ∈ PA and so

we can find a functional Ψ and a polynomial p such that ΨA = B and t(ΨA, σ) ≤ p(|σ|).
Our goal will be to construct a recursive function satisfying equation 1.2 contradicting the
hypersimplicity of A.

For each n, let Dn ⊆ 2<ω be a minimum-sized set of strings such that

∀σ |σ| < n⇒
[
ΨDn(σ) ↓= B(σ) & t(ΨDn , σ) ≤ p(|σ|)

]
(1.3)

Note that Dn is a recursive sequence of finite sets. From the definition, it is clear that
|Dn| is a non-decreasing sequence. Because an oracle computation taking at most p(n) steps
cannot query any strings of length exceeding p(n), we also get that |Dn| ≤ |A � p(n)|.

Lemma 1.2. The sequence |Dn| is unbounded.

Proof. Suppose not, and let n0, k be such that |Dn| = k whenever n ≥ n0. Suppose n > n0.
By equation 1.1 and the definition of Dn, we know µ(ΨDn , σ) ≤ p(n0) whenever |σ| < n0 so
we have

∀σ |σ| < n0 ⇒
[
ΨDn�p(n0)(σ) ↓= B(σ) & t(ΨDn�p(n0), σ) ≤ p(|σ|)

]
(1.4)
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By the minimality of the size of Dn0 , we know |Dn � p(n0)| ≥ |Dn0| = k. Since |Dn| = k,
we must have Dn = Dn � p(n0). There are only finitely many possible sets of strings with
lengths not exceeding p(n0), so one such subset F must appear infinitely often in the Dn

sequence. Then B = ΨF , so B ∈ P since F is finite and ΨF runs in polynomial time.

Let f(k) = p(n) for the smallest n such that |Dn| ≥ k. Note that f is computable and
that |A � f(k)| ≥ |Dn| ≥ k, contradicting the hypersimplicity of A and giving our desired
result.

Analyzing the proof above, we see that there is nothing special about the function p(n)
being a polynomial. In truth, we only needed p(n) to be a computable bound on t(ΨA, σ)
so that the Dn sequence is computable. By following the same proof as above, we can get:

Corollary 1.3 (Of the proof of Theorem 1.1). Let A be hypersimple, R be recursive, and Ψ
be a functional such that ΨA = R. If there is a total, non-decreasing, recursive function f
such that t(ΨA, σ) ≤ f(|σ|), then there is a total Θ such that Θ = R and t(Θ, σ) ≤ p(f(|σ|))
for some polynomial p.

We turn now to the formal definition of low for speed. Recall that our goal is to formalize
the idea of a set being of no non-trivial help when computing recursive sets. The following
definition is motivated by the original question asked by Eric Allender, the main difference
being that we no longer restrict ourselves to the complexity class P .

Definition 1.1. A ⊆ 2<ω is called low for speed iff it has the following property: Whenever
R is a recursive set and Ψ is a recursive functional such that ΨA = R, there is a total
recursive functional Θ and a polynomial p such that for all σ ∈ 2<ω,

Θ(σ) ↓= R(σ) & t(Θ, σ) ≤ p(t(ΨA, σ))

That is, knowing A provides no more than a polynomial time advantage when computing
recursive sets. We will write LFS for the set of all A ⊆ 2<ω which are low for speed.

The notion of low for speed is only interesting if we restrict ourselves to non-recursive
sets, as shown by the following theorem.

Theorem 1.4. Let R be a recursive set. Then R ∈ LFS⇔ R ∈ P.

Proof. (⇒) Suppose R is low for speed, and let Ψ be the identity oracle machine which
simply copies its input to the query tape and then accepts or rejects based on whether
the input is in the oracle. Then ΨR = R and t(ΨR, σ) ≤ C|σ| for some constant C. As
R ∈ LFS, there is some polynomial p and some total recursive Θ such that Θ = R and
t(Θ, σ) ≤ p(t(ΨR, σ)) ≤ p(C|σ|). Therefore, R ∈ P .

(⇐) Suppose R ∈ P , and let Ψ be a functional such that ΨR = S is some recursive set. We
must construct a functional Θ and a polynomial p such that Θ = S and t(Θ, σ) ≤ p(t(ΨR, σ)).
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Let Φ be a functional witnessing R ∈ P . That is, Φ = R and there is some polynomial q
such that t(Φ, σ) ≤ q(|σ|).

We will define Θ(σ) as follows: on input σ, run ΨR(σ) but whenever a query state is
reached, run Φ on the value printed on the query tape and act accordingly. Let t = t(ΨR, σ).
Then every query must have length no more than t and so each action of Θ corresponding
to one step of ΨR takes no more than poly(q(t)) steps to run Φ and act appropriately. By
replacing q with a larger polynomial, we may assume each simulation takes no more than
q(t) time. Therefore, we have:

t(Θ, σ) ≤
t∑
i=1

(number of steps needed to run Φ on query from stage i)

≤
t∑
i=1

q(t)

= t · q(t)

And so R ∈ LFS

Note that theorem 1.4 is only true using the query machine model of oracle computation,
and not for the characteristic function tape model. In particular, while the ⇐ direction
remains true, the proof for the ⇒ direction depends critically on the query tape model.

We can also relativize our definition of low for speed as follows, though this will not be
used until chapter 4.

Definition 1.2. A ⊆ 2<ω is called low for speed relative to B iff it has the following property:
Whenever R ≤T B and Ψ is a recursive functional such that ΨA⊕B = R, there is a total
recursive functional Θ and a polynomial p such that for all σ ∈ 2<ω,

t(ΘB, σ) ≤ p(t(ΨA⊕B, σ))

Unlike most other properties that are given the name low, it is easy to see that LFS is
not closed under relative computation. In fact, we have

Theorem 1.5. Every m-degree contains a set which is not low for speed.

Proof. Let A ⊆ 2<ω be given, and let B be a recursive set not in P . Note that such a set
exists by the time hierarchy theorem [7]. Then A⊕B ≡m A, but A⊕B is not low for speed
since B can be computed from A⊕B in time O(n) but B /∈ P .

We can, however, get downward closure if we restrict ourselves to polynomial-time re-
ductions.

Definition 1.3. If A,B ⊆ 2<ω, we write A ≤PT B and say A is polynomial-time reducible
to B if there is a total recursive functional Φ and a polynomial p such that ΦB = A and
t(ΦB, σ) ≤ p(|σ|). If A ≤PT B and B ≤PT , we write A ≡PT B.
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We denote by PA the set {B : B ≤PT A}.

Theorem 1.6. If B ≤PT A and A ∈ LFS, then B ∈ LFS.

Proof. The proof is very similar to the proof of the⇐ direction of theorem 1.4. In particular,
given some ΨB = R with R recursive, we can construct a machine Γ such that ΓA = ΨB by
replacing any queries to B with A-computations of B. Because B ≤PT A, we can do this in
a way such that there is some polynomial p such that

∀σ t(ΓA, σ) ≤ p(t(ΨB, σ))

Then since A ∈ LFS, there is some functional Θ and some polynomial q such that
Θ = ΓA = ΨB = R and

∀σ t(Θ, σ) ≤ q(t(ΓA, σ)) ≤ q(p(t(ΨB, σ)))

and so B is low for speed.
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Chapter 2

Existence

In this chapter, we will construct an r.e. set which is low for speed using a priority argument.

2.1 Some very non-low sets

In chapter 1, we gave examples of some sets which are not low for speed and noted that such
sets are extremely common. Before constructing our low for speed set, we give examples of
sets which not only fail to be low for speed, but are as far from it as possible.

We start with an easy example. Let {We} be a recursive enumeration of all r.e. sets.
Then the set A = {〈e, σ〉 : σ ∈ We} is r.e. and for every r.e. W we have W ≤PT A. In
fact, this reduction is not just polynomial-time, but is in fact linear since we may choose our
pairing function such that |〈e, σ〉| ≤ |e|+ |σ|+ c for some constant c.

Sets such as the one above could reasonably be called high for speed. It is then natural
to ask where in the structure of the r.e. degrees one can find such sets, and therefore what
properties they can have. For our next example, we will need the following definition.

Definition 2.1. Two r.e. sets A,B are said to form a minimal pair iff whenever C ≤T A
and C ≤T B, C ≤T 0.

The construction of a minimal pair is due independently to Lachlan [10] and Yates [20].
By adapting Lachlan’s proof showing the existence of a minimal pair of high sets, we can get
the following theorem. The proof of this theorem also provides a relatively straightforward
example for our first 0′′-priority construction.

Theorem 2.1. There is a minimal pair of r.e. sets A,B such that whenever R is recursive
R ≤PT A and R ≤PT B.

Proof. We will build A,B as subsets of 2<ω using a 0′′-priority construction.

Requirements
Let {Φe}e∈ω be a recursive listing of all functionals. We will ensure that Φe ≤PT A and

Φe ≤PT B for all total Φe by building A,B such that A[e] =∗ Φe and B[e] =∗ Φe when Φe is
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total. Here we are considering 〈·, ·〉 to be a function from N × 2<ω → 2<ω. We therefore
must meet the following requirements:

• Ne : If ΦA
e = ΦB

e = R, then R is recursive.

• PA
e : ∃σ (Φe(〈e, σ〉) 6= A(〈e, σ〉)).

• CA
e : If Φe is total, then A[e] =∗ Φe.

• PB
e , C

B
e : As above, but with B instead of A.

Remark. Here we are using Posner’s trick as described in IX.1.4 of [18]. Namely, instead of
considering pairs Ψ,Γ such that ΨA = ΓB, it is sufficient to consider only a single Φ since
the requirements ensure A 6= B and thus if σ0 ∈ A − B, we can build a single Φ such that
ΦC(σ) = ΨC(σ) if σ0 ∈ C and ΦC(σ) = ΓC(σ) otherwise.

Strategies
We now describe how a single strategy works.

Strategy for Pe
We will meet the PA

e requirements by the standard diagonalization method. Namely, our
strategy will be as follows:

1. Pick some σ ∈ 2<ω with 〈e, σ〉 having length larger than anything referenced so far in
the construction and keep 〈e, σ〉 out of A.

2. Wait until Θe(〈e, σ〉) ↓= 0.

3. Enumerate 〈e, σ〉 into A and stop.

There are two possible outcomes for PA
e :

• Wait in step (2) forever. Then Θe(〈e, σ〉) ↑6= A(〈e, σ〉).

• Stop after reaching step (3). Then Θe(〈e, σ〉) = 0 but A(〈e, σ〉) = 1.

In either case, the strategy ensures that requirement PA
e is met.

A PA
e strategy is said to be injured if the 〈e, σ〉 it is monitoring is put into A without its

consent. In this case, the strategy must pick a new, longer σ and start over.
Strategies for PB

e are defined in the obvious way.

Strategy for CA
e

1. Pick some N0 larger than the length of anything mentioned in the construction so far.
Require all computations to assume A[e] = Φe for strings of length exceeding N0. Start
with σ as the first string in 2<ω of length N0 (assume we have ordered 2<ω in some
way so that shorter strings appear before longer ones).
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2. Wait until Φe(σ) ↓.

3. If it gives 1, put σ into A[e]. If it gives 0, keep σ out of A[e]. In either case, pick the
next σ in our ordering of 2<ω and go back to step (2).

There are two possible outcomes here. We can either choose infinitely many σ because
Φe is total, or we will find a σ such that Φe(σ) ↑. We will call the former outcome ∞ and
the latter w (for “w”ait). Note that ∞ is a Π0

2 outcome and w is Σ0
2.

A Ce strategy is injured if some string of length greater than N0 enters A[e] and we haven’t
yet seen Φe(σ) ↓= 1. In that case, it must pick a new N0 and start over.

Strategy for Ne

We can ensure that ΦA
e = ΦB

e = R→ R is recursive by doing the following:

1. Start with n = 0.

2. Wait until we see ΦAs
e � n = ΦBs

e � n.

3. When we do, select either A or B to restrain. Suppose it’s A. Do not allow any strings
of length less than or equal to max{µ(ΦAs

e , σ) : |σ| ≤ n} to enter A. (If it’s B, use a
similar restraint on B).

4. Increment n by one and go back to step 2.

As with the Ce strategies, there are two possible outcomes to this strategy. We can either
increment n forever because we see increasingly longer lengths of agreement, or we eventually
end in step 2 waiting forever. As before, we will call the former outcome ∞ and the latter
w (for “w”ait) and note that ∞ is a Π0

2 outcome and w is Σ0
2.

Remark. The naming conventions used for requirements is largely historical. The Pe require-
ments are so named because they can be satisfied by taking the positive action of putting
certain strings into our sets. The Ce requirements deal with coding. The Ne requirements
are said to be negative requirements because they can be met by keeping strings out of our
sets.

Tree of strategies and the construction
We begin by ordering the requirements in some effective way such that for all e, PA

e

comes before CA
e in the list and likewise for PB

e and CB
e . Let o be the only outcome of the

P strategies and let Λ = {o, w,∞} be the set of all outcomes and order it by o <Λ ∞ <Λ w.
Our tree of strategies will be a tree T ⊆ Λ<ω. We want to interpret level i of our tree as
corresponding with strategies for the ith requirement in our list and if γ ∈ T , then γ(i)
corresponds to the outcome of strategy i. Formally, we say

T = {γ ∈ Λ<ω : γ(i) = o↔ requirement i is a P requirement} (2.1)

By convention, we think of strategy trees as growing downward. We can then picture this
tree as in figure 2.1. At each stage of the construction, we will traverse down through the
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tree following the path that currently appears to be correct and let each strategy along that
path act. When a strategy acts, it assumes that it is correct about the eventual outcome of
requirements above it in the tree. For example, the circled strategy in figure 2.1 takes its
actions assuming that N0 will no longer see agreement between ΦA

0 and ΦB
0 , and that Φ0 is

total and so A[0] will be equal to Φ0 above the N0 picked by CA
0 .

∞ w

o

o

∞ w

o

o

∞ w

o

o

∞ w

o

o

∞ w

o

o

∞ w

o

o

∞ w N0

PA
0

PB
0

CA
0

PA
1

PB
1

CB
0

PA
2

Figure 2.1: An example of a tree of strategies used in the proof of theorem 2.1. The circled
strategy acts under the assumption that N0 will have outcome w and CA

0 will have outcome
∞.

Let γ, δ be strategies on T . We say γ has higher priority than δ iff either γ is above δ
(γ ≺ δ) or γ is to the left of delta (γ(i) <Λ δ(i) for the least i where they differ). Throughout
the construction, we will only require that strategies respect restraints imposed by higher
priority strategies and may freely ignore restraints imposed by lower priority strategies. That
is, we allow higher priority strategies to injure lower priority ones.

Because we are building an r.e. set, the only real action we can take is putting strings
into A or B. Both P and C strategies need to do this in order to satisfy their requirements,
so we describe the procedure for doing so. Let γ be some strategy on T and suppose it wants
to put some σ into A (putting σ into B is similar). If σ has length less than an A-restraint
imposed by a strategy to the left of γ, then it cannot do it and must give up on putting n into
A (in practice, this will not happen since any restraints imposed by strategies to the left of
γ will cause γ to be injured and pick an n above that restraint). γ can ignore any restraints
imposed by strategies to the right of it since they all have lower priority. Therefore, we need
only consider restraints imposed by strategies above γ on the tree. Any restraints imposed
by P or C strategies must be respected, as must any restraints imposed by N strategies that
γ thinks will have outcome w (again, this will not happen since such restraints would have
injured γ when they were put in place). However, if γ believes that the Ne strategy will
have outcome ∞, then it can wait to see an increase in length of agreement and then ask
Ne to drop the A-restraint entirely and put σ into A at that point. We will need to do some
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bookkeeping work to ensure that the restraints drop back simultaneously and that we drop
back both A and B infinitely often, but this is the general idea.

We must also ensure that the computations used by N strategies are not injured by coding
strategies that may try to put infinitely many strings into A[e] arbitrarily late. We will say
a computation ΨAs(σ) is CA

e -compatible above M at stage s if whenever the computation
queries whether 〈e, τ〉 ∈ As with |τ | ≥ M , we have Φe(τ) ↓= As(〈e, τ〉) in ≤ s steps. We
define CB

e -compatibility in the same way.
We are now ready to describe the construction. At stage s, we will construct a path γ of

length s through T . We will build it in stages, and start with γ0 = λ, the empty string. We
start with two initially empty sets QA, QB that will hold the strings the strategies want to
put into A or B, respectively. Suppose γi has been defined. This represents a strategy in T
so let it act as follows based on what type of strategy it is:

(γi is a PA
e strategy): Follow the strategy as described previously. If Φe(〈e, σ〉) ↓= 0 in

≤ s steps and σ 6∈ As, then try to put σ into A. If restraints from ∞-outcome N strategies
above γ prevent this, put σ into QA instead. Set γi+1 = γi ˆ o.

(γi is a CA
e strategy): If we do not currently have an N0, pick one larger than the length

of anything mentioned so far in the construction and impose the restraint that no lower
priority strategy can put 〈e, σ〉 into A for any σ with |σ| > N0. Either way, now check if
Φe(σ) ↓ in ≤ s steps for the first σ we have not yet seen Φe converge on. If it does not
converge, set γi+1 = γi ˆ w and continue down the tree.

If it does converge and |σ| > N0, then attempt to put σ into A[e]. If restraints from
∞-outcome N strategies above γ prevent this, put 〈e, σ〉 into QA instead. Choose the next
σ to monitor and set γi+1 = γi ˆ∞.

(γi is an Ne strategy): Find the maximal n such that ΦAs
e � n = ΦBs

e � n and such that
all the computations involved are compatible (as described earlier) with all C strategies that
γi believes have outcome∞. If this n has increased since last time this strategy was visited,
set γi+1 = γi ˆ∞. If it has not increased, set γi+1 = γi ˆ w.

The CB
e and PB

e strategies are handled in the obvious way.
Suppose we have now built our path γ. We must now pick whether to drop A or B

restraints for each N strategy that found an increased length of agreement. If min{|σ| :
σ ∈ QA} ≤ min{|σ| : σ ∈ QB}, then have all such strategies drop their A restraint and
put everything from QA into A. Each such N strategy now imposes a B-restraint equal
to the maximum use from any B-computation it used when finding the increased length of
agreement. If minQB < minQA, do the same with A and B reversed. Injure all strategies
to the right of γ. This concludes stage s.

Verification
We must now verify that our construction actually satisfies all the requirements. Let

f ∈ [T ] be the leftmost path visited infinitely often during the construction. Formally, if γs
is the path built at stage s, then f = lim infs γs.

Remark. Note that f ≤T 0′′. This is the reason constructions like this are called 0′′-priority
arguments.
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Lemma 2.2. f is correct about the outcome of all strategies on it.

Proof. We go by induction on i. Start with i = 0. Now assume f(j) is correct for j < i. We
must show f(i) is correct. Let γi = f � i. If γi is a P strategy, then we trivial get f(i) being
correct since there is only one possible outcome. If γi is an N strategy, then f(i) = ∞ iff
we see ΨA � n = ΨB � n for infinitely many n and so ΨA = ΨB. If γi is a C strategy, then
f(i) =∞ iff Φe(σ) ↓ for all σ and so Φe is in fact total.

Lemma 2.3. Any strategy on the true path is injured only finitely many times.

Proof. By the definition of f , there is some stage s such that the construction never goes left
of f after stage s. Therefore, only finitely many strategies to the left of f are ever visited and
each is visited only finitely many times, so they can collectively cause only a finite number of
injuries to f . All strategies to the right of f have lower priority than every strategy on f and
by our construction respect all restraints imposed by higher priority strategies. Therefore,
we need only be concerned with some γi = f � i being injured by strategies above it. We
go by induction on i to show γi is injured only finitely many times. γ0 is the root of the
tree and has higher priority than anything else and is therefore never injured. Suppose γj is
injured only finitely many times for all j < i and consider γi.

(γi is a Pe strategy): PA
e strategies are only injured if the 〈e, σ〉 they are monitoring

enters A before they see Φe(〈e, σ〉) ↓= 0. The only other strategy that might do this is the
strategy for CA

e , but by our ordering of the requirements we ensured that such a strategy
must appear lower in the tree. PB

e strategies are similar. Therefore, a Pe strategy is never
injured by a strategy above it in the tree.

(γi is a Ce strategy): CA
e could only possibly be injured by PA

e since they are the only
ones dealing with A[e]. Since PA

e acts at most once after each time it is injured and we know
PA
e is injured at most finitely often, we conclude CA

e is injured at most finitely often.
(γi is an Ne strategy): Such a strategy is injured iff a higher priority strategy puts a

short string into A or B despite γi’s restraint. We have already seen that Pe′ strategies on
f act only finitely many times, so the total number of injuries due to Pe′ strategies above
γi must be finite. Suppose j < i and γj is a Ce′ strategy. If f(j) = w, then by lemma 2.2,
γj eventually stops seeing Φe′ converging and so stops putting in strings. If f(j) =∞, then
γi only ever considers computations that are consistent with all the eventual actions of γj.
Therefore, γi is injured at most finitely many times.

Lemma 2.4. Every strategy on the true path successfully satisfies its requirement.

Proof. Let γ be a strategy on the true path, and suppose it is not injured after stage s0.
If γ is a P or C strategy, it is enough to show that when it requests to put strings into

either A or B it is eventually successful. Suppose it wants to put σ into A at stage s > s0. If
it doesn’t do it immediately, then it must be because it put it into QA and QB was selected
at the end of stage s. Since γ is not injured after stage s and γ is visited infinitely often,
it will continue to put σ into QA until it is successful at getting σ into A. Since there are
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only finitely many τ with |τ | ≤ |σ|, eventually QB will not contain any strings shorter than
σ and therefore σ will go into A at that time (if not before).

Now suppose γ is a strategy for Ne. If ΦA
e 6= ΦB

e , then the requirement is satisfied
trivially. Suppose now that ΦA

e = ΦB
e . Let s0 be the last stage at which Ne is injured. We

will now build a recursive Θ such that Θ = ΦA
e = ΦB

e as follows. On input σ, monitor the
construction of A,B until a stage s > s0 where γ is visited and ΦAs

e � m = ΦBs
e � m for some

m ≥ |σ| and all computations are compatible with any Ce strategies above γ that γ believes
have outcome ∞. When such a stage is found, output Θ(σ) = ΦA

e (σ) = i and halt.
Since γ is on the true path, it will be visited infinitely often and since ΦA

e = ΦB
e we will

eventually find an m such that ΦA
e � m = ΦB

e � m. By our previous lemma, γ will have
the correct guess about the outcome of any C strategies above it, so we can in fact wait
for C-compatible computations. Therefore, Θ is total. Since Ne will never be injured, the
restraints imposed on A or B guarantee that either Φ

As′
e (σ) = i or Φ

Bs′
e (σ) = i for all stages

s′ ≥ s. Therefore, Θ is correct and total as needed.

As f contains a strategy for every requirement, A is as required.

2.2 Existence of an r.e. set which is low for speed

Theorem 2.5. There is a non-recursive r.e. set which is low for speed.

We will use a 0′′-priority argument to construct an r.e. set A satisfying the theorem.
To simplify our notation, we will think of A as a subset of N. We will build A in stages

and will use As to denote the approximation to A at stage s. When α ∈ 2<ω, we will say “α
is an initial segment of A” or “A extends α”, and write α ≺ A iff A � |α| = α. We will say
α is “A-accessible at stage s” iff As � |α| ⊆ α. Intuitively, a string α is As-accessible if we
can make α an initial segment of A by enumerating more things into A.

Remark. For the reader who wishes to build A as a subset of 2<ω instead of a subset of N,
we can consider building A as a subset of {1n : n ∈ N}. Then everywhere in the proof where
we say n ∈ A, interpret it as 1n ∈ A, and so on.

The requirements
In order to accomplish our goal, we must meet the following requirements:

• For each e ∈ ω, Pe: A 6= Θe where {Θe}e∈ω is some effective ordering of all partial
recursive functionals.

• For all functionals Ψ and R, LΨ,R: If ΨA = R and R is total, there is some total Φ
such that Φ = R and some polynomial p such that t(Φ, σ) ≤ t(ΨA, σ).
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The Pe requirements ensure that A is non-recursive, and the LΨ,R requirements ensure
it is low for speed.

The strategies
Strategy for Pe

We will meet the Pe requirements in the usual way. Namely, our strategy will be as
follows:

1. Pick some n ∈ N with |n| larger than anything referenced so far in the construction
and keep n out of A.

2. Wait until Θe(n) ↓= 0.

3. Enumerate n into A and stop.

There are two possible outcomes for Pe:

• Wait in step (2) forever. Then Θe(n) ↑6= A(n).

• Stop after reaching step (3). Then Θe(n) = 0 but A(n) = 1.

In either case, the strategy ensures that requirement Pe is met.
A Pe strategy is injured if its n is put into A (presumably by a higher priority strategy)

before it sees Θe(n) ↓= 0. If this happens, the strategy must forget about the n it was
monitoring and start over with a new one the next time it is visited.

Strategy for LΨ,R

Our goal is to enumerate a recursive Φ that is no worse than polynomial-time slower than
ΨA. To accomplish this, we will monitor Ψα(σ) for various α that are A-accessible at stage
s. Whenever we see Ψα(σ) ↓= i taking s steps, we will enumerate Φ(σ) = i at stage s. In
this case, we will say Φ simulates Ψ.

In order to succeed in meeting our requirement, we must ensure that this simulation takes
no more than poly(s) many steps and therefore we cannot monitor more than poly(s) α at
stage s. However, there are generally exponentially many α that are A accessible at stage s
with |α| = s. Therefore, we restrict ourselves to monitoring only linearly many possible α.
At stage s, for any k ≤ s with k 6∈ As, we define αk = (As � k) ∪ [k, s], and only monitor
computations using α of this form. That is, we assume that if we put k into A at stage s,
then all numbers between k and s will also go into A. It can be helpful to visualize the αk as
a collection of threads branching off from our current guess of A. This is visualized in figure
2.2.

Our construction will maintain a list of branch points to monitor. In practice, we will
monitor those αk where k is a number that one of the Pe strategies is monitoring and therefore
could eventually want to put into A; this will be described in more detail later. At stage s,
the strategy for LΨ,R will run Ψαk(σ) for s steps for each k being monitored and also run
ΨAs(σ) for s steps. If we see Ψαk(σ) ↓= i, enumerate Φ(σ) = i if Φ(σ) has not already been
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αk1 = As � k1 ∪ [k1, s]

A
k0 k1 k2

Figure 2.2: A visual representation of the αk along which we monitor Ψ. At stage s we will
check if Ψαk(σ) ↓ in ≤ s steps and simulate if so.

defined. We will eventually show that this can be done in a way so that there is a polynomial
p such that t(Φ, σ) ≤ p(t(ΨA, σ)).

Presuming such a polynomial exists, we must now ensure two things.
First, we must make sure that Φ(σ) is fast enough. Because we have been monitoring

computations of increasing lengths, the fact that we had not yet defined Φ(σ) must mean
that there was no computation using any of the currently monitored αk that took less than
s steps. Therefore, we need only be concerned with computations along future α that are
not currently being monitored. We thus require that any future k added to the monitored
set have the property that |k| > s, and so we know that computations along such a thread
that we didn’t see as part of ΨAs(σ) must have use greater than s and therefore take more
than s steps.

Second, we must make sure that our simulator, Φ(σ), actually gives the correct answer. To
do this, we must ensure that it remains possible that αk ≺ A which we can do by forbidding
any n < k from entering A. However, we cannot impose arbitrarily long restrictions for each
σ separately forever and have any hope of allowing other strategies to act. Therefore, we
need a way to eventually drop this restraint. Because we only need Φ to be total and correct
if R is total with ΨA = R, we can wait for R(τ) ↓ for all τ with |τ | ≤ |σ|. While we could
wait just for R(σ) ↓, this would cause problems for our simulators being able to follow the
construction since they cannot search over all possible strings in polynomial time. If we see
R(σ) ↓= i, we say R protects the computation since we are then guaranteed that Φ(σ) is
correct. If R(σ) ↓6= i, then we force R 6= ΨA by ensuring αk ≺ A and then stop worrying
about this requirement. If R(σ) ↑, then we need not worry further about this (Ψ, R) pair.

An LΨ,R strategy therefore has three outcomes. We name these three outcomes as follows:

1. ∞: ∀σ R(σ) ↓= ΨA(σ)

2. s1: ∃σ R(σ) ↓6= ΨA(σ)

3. s2: ∃σ R(σ) ↑

Note that ∞ is a Π0
2 outcome, s1 is Σ0

1, and s2 is Σ0
2.
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An LΨ,R strategy is injured if either:

1. It has seen Ψαk ↓= i but has not yet seen R(σ) ↓= i and some number less than k
enters A.

2. It has seen Ψαk ↓= i, has seen R(σ) ↓6= i, and has put αk into A and then some number
less than k enters A.

In either case, an injury causes the strategy to forget all computations it had seen or sim-
ulated so far and begin creating a new simulator. This means also that any diagonalization
it had accomplished while trying to force outcome s1 is erased as well.

Tree of strategies and the construction
Order the requirements in some effective way with order type ω and order the outcomes

for L requirements by s1 <L ∞ <L s2. We will define our tree level-by-level. The ith level
will consist of strategies for the ith requirement. At an LΨ,R node, we will branch three times
and label the branches ∞, s1, s2 corresponding to the possible outcomes. No branching is
necessary at nodes corresponding to Pe strategies (if we want to be precise, we can say there
is one branch labeled by some new outcome symbol). We identify a strategy with the string
representing its position in the tree. An example tree is shown in figure 2.3.

s1 s1 s1∞ ∞ ∞s2 s2 s2

s1 ∞
s2

LΨ0,R0

P0

LΨ1,R1

P1

LΨ2,R2

Figure 2.3: An example tree of strategies.

We say a strategy γ has higher priority than any strategy δ which is either below it or
to the right of it in the tree. That is, if either γ ≺ δ or if γ(i) <L δ(i) for the least i such
that γ(i) 6= δ(i).

We will now describe how strategies act based on their position in the tree and the
assumptions they have about higher-priority strategies. Because we are building an r.e. set,
the only action that can be taken is putting numbers into A.

Suppose some strategy γ wants to put n into A at stage s. We must get permission
from all higher-priority strategies to do so. We proceed back up the tree to ask each LΨ,R

strategy for permission in turn, and act based on γ’s guess about the eventual outcome of
that strategy:
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• s1: γ is working under the assumption that ΨA 6= R. Since LΨ,R has higher priority
than γ, the last injury to γ must have occurred after the diagonalization and so |n|
must be larger than anything used to accomplish that diagonalization. As this is the
only restraint imposed by a LΨ,R that has successfully been diagonalized against, γ
may safely put n into A.

• s2: We are assuming R is partial and so need not respect any restraints imposed by
LΨ,R. Therefore, γ may safely put n into A.

• ∞: We are assuming R is total and we have not diagonalized against Ψ so we need
to respect any restraints in place. LΨ,R will prevent γ from putting n into A only if it
would make an unprotected computation cease to be A-accessible. That is, if there is
some σ and some m > n such that Ψαm(σ) ↓= i has been simulated, but we have not
yet seen R(τ) ↓= i for all τ with |τ | < |σ|. This setup is shown visually in figure 2.4.

Ψαm(σ) ↓

A
n m

Figure 2.4: We cannot put n into A until R(σ) ↓ to protect the simulated value.

Because γ assumes that R is total, it can wait for R to converge and then put n into
A. Therefore, any αm with m > n will not be initial segments of A and so with γ’s
priority we remove them from the list of monitored threads. In order to allow the
simulator that LΨ,R is building to keep track of the active threads in polynomial time,
we need to wait to give the simulator time to “see” these actions taking place. By the
recursion theorem, we can find s′ such that it takes the simulator s′ steps to see that
this request was made. γ now imposes the global restraint (with priority γ) that we
only simulate along αk for k ≤ n until a stage t such that we can see that R(τ) is
defined for all τ with |τ | < s′ and can see so in t steps. All future visits to γ or an
LΨ,R strategy of lower priority must check if this condition has been met. Suppose we
eventually find such a t. Then we now have permission from LΨ,R to put n into A.
Continue to maintain the restraint on LΨ,R’s monitored set and proceed up the tree to
the next LΨ,R strategy.

Once we have visited every higher priority strategy and gotten permission from all of
them, put αn into A and drop any restraints γ imposed on monitoring.
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We can think of the above procedure as a way to ask any LΨ,R of higher priority than
the strategy that wants to put n into A to move its monitoring to threads αk with k ≤ n.
This then allows us to free put n into A since αn must have been a monitored computation.

The construction
Our construction will be in stages by recursion on s.
Stage s = 0: Set A0 = ∅ and do nothing.
Stage s + 1: Traverse the tree of strategies to depth s, defining a length s path δ by

recursion. δ(0) is just the root of our tree. Suppose we have defined our path up length
i < s. Our action depends on whether γ = δ � i is a Pe strategy or an LΨ,R strategy.

If γ represents a strategy for Pe, do the following:

1. If this strategy does not currently have an n ∈ N it is monitoring, pick one with
|n| larger than anything mentioned so far in the construction. Add αn to the list of
things to be monitored for all LΨ,R strategies that have not had their monitored set
restricted by a strategy of priority higher than γ and injure any strategies of lower
priority. Permanently prohibit any strategies of lower priority from putting n into A.
If we already have an n from a previous visit to γ, proceed directly to step 2.

2. Run s steps of Θe(n). If it does not converge or if Θe(n) = 1, do nothing at this stage.

3. If Θe(n) ↓= 0 in ≤ s steps, put αn into A using the previously described method.

Set δ(i) to be the only successor of γ.

If γ represents a strategy for LΨ,R, do the following:
If we have previously reached the s1 outcome for this strategy and have not been injured

since, then do nothing. Otherwise, run s steps of Ψαk(σ) for all αk currently in the monitored
set and for all σ with |σ| < s. For each σ, simulate the shortest computation that we see
converge by enumerating Φ(σ) = i. Look for αk, σ such that the following three properties
hold:

• Ψαk(σ) ↓6= R(σ) ↓

• R(τ) ↓ for all τ with |τ | ≤ |σ| and the total time to see this is ≤ s.

• k is larger than any restrictions placed by higher priority Pe strategies or higher priority
LΨ,R strategies that γ believes have outcome s1.

If we can find such a k, σ, use the previously described method to put αk into A. Set our
outcome to be s1, injure all lower priority strategies, and permanently prohibit any lower
priority strategies from putting a number less than k into A.

Set δ(i) according to our current guess as to the outcome of this strategy. Namely, if γ
has successfully diagonalized to ensure outcome s1, either at this stage or a previous one,
set δ(i) = s1. Otherwise, find the maximum n such that R(σ) ↓ in ≤ s steps for all σ with
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|σ| ≤ n. If this value has increased since we last visited γ, set γ(i) = ∞ and injure all
strategies below the s2 outcome. Otherwise, set δ(i) = s2.

Verification
We must now verify that our construction actually satisfies the requirements. As usual we

define the true path, f , to be the leftmost path visited infinitely often. That is, f = lim infs δs
where δs is the path we built at stage s.

Lemma 2.6. The true path is correct about the outcome of each strategy.

Proof. We go by induction on f � i. There is only one possible outcome for Pe strategies, so
we need only consider LΨ,R strategies.

Suppose γ = f � i is a strategy for LΨ,R. Suppose stage s is the last stage at which γ is
injured.

If f(i) = s1, it must be because we found an αk, σ after stage s such that Ψαk(σ) ↓6=
R(σ) ↓. Because γ was not injured after this, our restraint on A was never violated and
therefore αk ≺ A and so ΨA(σ) = Ψαk(σ) 6= R(σ).

If f(i) = s2, it must be because we at some point failed to find larger and larger n such
that R(σ) ↓ for all σ with |σ| < n. Because γ is visited infinitely often, we must have run R
on these σ for arbitrarily many steps. Therefore, ∃σR(σ) ↑.

If f(i) =∞, then we must have found infinitely many n such that R(σ) ↓ for all σ with
|σ| < n and therefore R(σ) ↓. Therefore, we must only verify that in fact ΨA = R. Let s be
the last stage at which γ was injured. If ΨA 6= R, then at some point we would have seen
Ψαk(σ) 6= R(σ) for some αk we were monitoring. But this would force outcome s1, which
is held permanently if it is ever encountered after the last injury to γ. Thus, we must have
ΨA = R.

Lemma 2.7. Every strategy on the true path is injured at most finitely often.

Proof. Note from the construction that a strategy can only be injured by strategies of higher
priority than it. We go by recursion on f :

The strategy f � 0 is the highest priority strategy in the entire construction and cannot
be injured by any other strategy.

Suppose γ = f � i is a strategy on the true path and f � j is injured at most finitely
often for each j < i. Any strategy to the left of γ must be visited only finitely often by
the definition of the true path and therefore cannot injure γ more than finitely many times.
Only finitely many strategies to the left of γ are ever visited, so the total injury caused by
strategies to the left of γ is finite. Strategies below or to the right of γ cannot injure γ at
all. From the construction, it is clear that each strategy δ causes lower-priority strategies
to be injured at most twice for each time δ is injured. For Pe strategies, it occurs when the
strategy either picks a new n or sees Θe(n) ↓= 0. For LΨ,R strategies, it occurs only when
the strategy diagonalizes to ensure a s1 outcome. Therefore, since each f � j with j < i is
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injured at most finitely many times by induction, it must be that γ is injured at most finitely
many times.

Lemma 2.8. Every strategy on the true path satisfies its requirement.

Proof. Suppose γ = f � i is a strategy on the true path.
If γ is a Pe strategy, then it is successful as long as it manages to keep its witness out of

A until an appropriate time and then manages to put it in. Let s be the last stage at which
γ is injured. The first time γ is visited after stage s, it picks a new witness larger than any
higher priority strategies have. It then forces all lower priority strategies to pick even larger
yet witnesses. Therefore, since γ is never injured again, we can be sure no other strategy
will put n into A. Also, since γ is on the true path, it will succeed in putting n into A as
argued previously.

Now suppose γ is an LΨ,R strategy. The ∞ outcome is the only one that requires any
verification. Suppose therefore that ΨA = R with R total. Let s0 be the last stage at which
γ is injured. We must show that the Φ we built to simulate Ψ satisfies the low for speed
requirement by showing that it is both correct on all inputs and that there is a polynomial
p with t(Φ, σ) ≤ p(t(ΨA, σ) for all σ.

(Correctness) If Φ(σ) ↓= i, it must be because we saw Ψαk(σ) ↓= i at some stage s ≥ s0.
γ then imposed the requirement that no i < k could enter A until R(σ) ↓= i. If γ had seen
R(σ) ↓6= i, it would have diagonalized against it by making αk ≺ A. Since no injury occurred
after s0, this would have been respected and we would have had ΨA 6= R. Therefore, we
must have had R(σ) ↓= i and so Φ(σ) = R(σ) = ΨA(σ).

(Fastness) Φ may take as finite data the state of the construction at stage s0 and therefore
know that γ will not ever be injured again. On input σ, Φ computes by recursion on t:

At stage t, in O(t2) steps compute the αk1 , . . . , αkt being monitored by LΨ,R strategies
at stage t. We can do this by simply running the construction and watching for when Pe
strategies add new threads to the monitored set. Since at most t strategies act at stage t and
each Pe strategy is allowed only t steps, we can do this. Also note that while LΨ,R strategies
take more than t steps to execute (since they are monitoring 2s strings), these strategies
do not affect which threads are being monitored except when they attempt to force the s1

outcome. In that case, they follow the procedure for adding numbers to A which specifically
include a delay that allows Φ to “see” that this is happening before actually doing it.

After identifying the active threads, run Ψαki (σ) for t steps each and if Φαki (σ) ↓= i, set
Φ(σ) = i and halt. Then stage t must run up to t simulations of length t each. Since it took
O(ts) stages to identify the threads to use, stage t is therefore O(t2 + t2) = O(t2). By the
way the construction works, if ΨA(σ) ↓ in s > s0 steps, we will see it at stage s. Therefore,
Φ may need to run up to s stages, which takes time

s∑
i=0

(time to run stage i) ≤
s∑
i=0

Ci2 ≤
s∑
i=0

Cs2 ≤ Cs3 (2.2)

So we get that indeed Φ is no worse than polynomial time slower than ΨA.
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This concludes the proof of theorem 2.5.
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Chapter 3

Connection with Promptly Simple
Degrees

3.1 Background

In this chapter, we will investigate the relationship between promptness and low for speed.
We begin with some background on promptly simple sets and known equivalences.

Recall that a simple set is one which meets every infinite r.e. set. A promptly simple
set is one which not only has at least one element in common with every infinite r.e. set,
but also has the property that these elements enter it “reasonably soon” after entering the
infinite r.e. set. This is made precise as follows:

Definition 3.1 (Promptly Simple [13]). A co-infinite r.e. set A is called promptly simple iff
there is total recursive function f : N→ N such that whenever We is infinite, we have

∃s∃σ
(
σ ∈ ((We)s+1 − (We)s) & σ ∈ Af(s)

)
A degree a is said to be promptly simple if a contains a promptly simple set. An r.e.

set is said to have promptly simple degree if its degree is promptly simple. Ambos-Spies,
Jockush, Shore, and Soare proved the following result:

Theorem 3.1 ([1]). Let A be an r.e. set. The following are equivalent:

1. A has promptly simple degree

2. There is a total recursive function f : N→ N with f(s) ≥ s such that whenever We is
infinite we have

∃σ∃s
(
σ ∈ ((We)s+1 − (We)s) & As � |σ| 6= Af(s) � |σ|

)
3. As in (2), but replace ∃σ with ∃∞σ.
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Sets satisfying condition (2) above are said to be promptly permitting. Perhaps surpris-
ingly, it turns out that there is a deep connection between promptly simple degrees and
minimal pairs (see definition 2.1):

Theorem 3.2 ([1], [14]). An r.e. degree a is promptly simple iff it is not half of a minimal
pair of r.e. degrees.

3.2 Prompt Sets are not Low For Speed

We turn our attention now to the connection between promptly simple sets and sets which
are low for speed. In particular, we will show that no prompt r.e. set can be low for speed.

Theorem 3.3. Let A be promptly permitting and r.e. Then there is a recursive R ⊆ 2<ω

and a recursive functional Ψ such that ΨA = R such that for any total recursive functional
Φ with Φ = R and any polynomial p, there is a σ ∈ 2<ω such that t(Φ, σ) > p(t(ΨA, σ)).

Proof. Let f be as in theorem 3.1. Let {(Φs, ps)}s∈ω be an enumeration of all pairs of partial
functionals and polynomials with positive integer coefficients. We will construct R,Ψ in
stages.

At stage s, we will ensure that one of the following holds:

• ∃σΦs(σ) 6= R(σ)

• ∃σ t(Φs, σ) > ps(t(Ψ
A, σ))

In addition we will ensure R is total by defining R(σ) by stage |σ| at the latest. We will
also get ΨA = R by ensuring that anytime we define R(σ) we likewise define a Ψ computation
and also ensure that said computation remains accessible regardless of if more strings enter
A in the future.

The construction at stage s is as follows. If R(σ) has not yet been defined and |σ| < s,
set R(σ) = Ψ(σ) = 0. Also activate a copy of the following strategy to ensure we meet our
requirements for (Φs, ps):

1. Set τ to be the empty string and let W be an initially empty r.e. set we will use to
challenge the promptness of A.

2. Pick some σ such that R(σ) has not yet been defined.

3. Define ΨB(σ) = 0 for every B ⊆ 2<ω with B � l = As � l. Let r be an upper bound
on the time required by any of these computations. Note that because of the B’s
we are using, it is possible that as short strings are later enumerated into A our Ψ
computation will no longer apply. We will deal with this in step 6.

4. If Φs(σ) ↓= 0 in less than ps(r) steps, put τ into W and go to step 5. If not, go to step
6.



CHAPTER 3. CONNECTION WITH PROMPTLY SIMPLE DEGREES 25

5. If A � |τ | promptly permits (that is, if A � |τ | changes by step f(s)), then set R(σ) =
ΨB(σ) = 1 for all B with Af(s) ⊆ B and stop. If not, then append a 1 to τ and go
back to step 2.

6. Monitor the construction from now on and if in the future we see A � |τ | change, then
go back to step 2.

Lemma 3.4. Each strategy reaches its step (2) only finitely many times and is therefore
finite.

Proof. Since A is r.e., A � |τ | can change no more than 2|τ | times for a fixed τ . Therefore,
if we reach step (2) infinitely often, it must be because infinitely often A fails to promptly
permit. However, since we are assuming A is of promptly simple degree, this is not possible.
Therefore, each strategy must be finite.

Lemma 3.5. The strategy for Φs, ps succeeds in ensuring that there is some σ such that
(Φs(σ) 6= R(σ) or t(Φs, σ) ≥ ps(t(Ψ

A, σ)).

Proof. We know the strategy eventually stops reaching step (2), so it must end in either step
(5) or step (6).

If it ends in step 5, then we have ensured that ΨA 6= Φs since we have defined Ψ such
that ΨB(σ) = 1 for any B ⊇ Af(s) and A clearly has this property since it is r.e.

If it ends in step 6, then it must have been because we found a τ and a σ with t(Φs, σ) >
ps(t(Ψ

B, σ)) for all B with B � |τ | = As � |τ |. Because A � |τ | must not change, we get
that the actual ΨA computation matches the last one we enumerated in order to diagonalize
against R.

Therefore, we have successfully diagonalized against all possible Φ, p and conclude that
A must not be low for speed.

Note that the above proof uses the fact that A is r.e. in an essential manner. We leave
it open whether the above result holds for all sets of promptly simple degree.

3.3 Low For Speed Differs From Non-Prompt

In light of theorem 3.2, we might be tempted to think that being low for speed is precisely
the same as being non-prompt. However, the following theorem shows that this is not the
case.

Theorem 3.6. There is a non-recursive r.e. set A ⊆ N which is not promptly simple and
has the property that any B ≡T A is not low for speed.



CHAPTER 3. CONNECTION WITH PROMPTLY SIMPLE DEGREES 26

Proof. We will give another 0′′-priority argument; this will be our final such priority argu-
ment.

Requirements
Our requirements will be as follows:

• For each e, Pe: A 6= Φe.

• For each partial recursive g, Ng : If g is total, then there is some infinite r.e. U such
that whenever σ enters U at stage s, As � |σ| = Ag(s) � |σ|.

• For every pair of functionals Φ,Γ, LΦ,Γ : If ΦA is total and is some set B such that
ΓB = A (ie, if B ≡T A), then there is some Ψ and some total R such that ΨB = R
and each of the following sub-requirements holds:

– For each functional Θ and each polynomial p, SΦ,Γ,Θ,p : There is some σ such that
Θ(σ) does not converge to ΨA(σ) in less than p(t(ΨA, σ)) steps.

Note that the Ψ referenced by the sub-requirements must be shared between all the
sub-requirements of the same L requirement.

Strategies

Strategy for Pe
We will use the same basic strategy as we used for theorems 2.5 and 2.1. Namely,

1. Pick some σ not yet in A and larger than anything mentioned in the construction so
far.

2. Keep σ out of A until Φe(σ) ↓= 0.

3. Put σ into A and stop.

As usual, these strategies are injured iff σ enters A and we haven’t seen Φe(σ) ↓= 0.

Strategy for Ng

At stage s, if this strategy is not waiting for g(s′) to converge for some s′ < s and if
s > g(s′) for all the g(s′) this strategy has previously calculated, then put 1s into U and do
not allow A � s to change until we have seen g(i) converge for all i ≤ s and have reached
stage g(s).

There are two possible outcomes for these strategies:

• ∞ : g(s) always converges.

• w: We find some stage where we restrain A � s, but we wait forever for g(i) to converge
for some i ≤ s.
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Such a strategy is injured iff some higher priority puts some σ with |σ| ≤ s into A before
stage g(s).

Strategy for LΦ,Γ

We will not actually do anything directly for these requirements, and will instead take care
of them via a sub-strategies for each of the sub-requirements. However, each strategy will
keep track of its own individual Ψ, R (as described in the description of these requirements)
and share these with all its sub-strategies.

Strategy for SΦ,Γ,Θ,p

1. Pick some σ not yet in A and longer than anything seen so far and keep σ out of A.

2. Wait until a stage s when we can find an l and an m such that

a) |σ| < m < s and |σ| < l < s

b) B = ΦAs(τ) ↓ whenever |τ | ≤ l and ΓB�l(τ) ↓= As(τ) when |τ | ≤ m and the use
of any such Γ computations does not exceed l and no computations take more
than s steps.

3. Pick some τ such that R(τ) is not yet defined. Here, R is shared between all the
sub-strategies of the same LΦ,Γ requirement.

4. Set ΨB�l(τ) = 0. Let t0 be the number of steps required by this computation. Like R,
Ψ is shared between all the sub-strategies for the same LΦ,Γ requirement.

5. If Θ(τ) ↓= 0 in no more than p(t0) steps, put σ into A. Set ΨB′
(τ) = 1 for all B′ with

B′ � l 6= B � l and set R(τ) = 1.

6. Otherwise, set R(τ) = 0 and prohibit any strings of length less than or equal to s from
entering A.

The setup described in step (2) captures that idea that A computes B � l and that B � l
computes A � m. This can be pictured visually as in figure 3.1.

A

|σ|

B

m

Γ

l

Φ

Figure 3.1: A graphical representation of the important setup showing A ≡T B
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There are two possible outcomes for an L strategy based on what happens with its S
sub-strategies:

• w: We could wait forever to find a setup as in figure 3.1.

• ∞ : We always find such setups.

Note that once a sub-strategy has found its setup, the remainder of its actions are finite.
An S strategy is injured if either the σ it picks in step 1 is put into A without its consent,
or if A changes on short strings after reaching step 6.

Tree of strategies and the construction
Order the N,P, and S requirements in some effective way, but do not include the L

requirements in this list.
We now build our tree in the usual way (see theorems 2.1 or 2.5). At a level corresponding

to an Ng requirement, we add branches labeled∞ and w, and at levels corresponding to P or
S requirements, we add a single successor labeled o. We order the outcomes as ∞ < w < o.

Our notion of priority will be the same as it has been in previous proofs. Namely, a
strategy γ has higher priority than δ iff it lies above or to the left of δ.

Before describing the actions of the individual strategies, we will describe how a strategy
can put a string into A. Suppose some strategy wants to put some σ into A at stage s.
It can safely ignore any restraints imposed by lower-priority strategies, but it must respect
those from higher-priority strategies. With the way we pick strings to consider putting into
A, we know that |σ| will be larger than any restraint imposed by a strategy to the left of
γ. Therefore, we need only consider restraints imposed by strategies above γ. Restraints
imposed by any S or P strategies must be respected indefinitely, so γ must pick a new, longer
σ whenever these strategies impose restraints. Similarly, restraints imposed by Ng strategies
that γ believes have outcome w must be respected indefinitely; again, γ must therefore ensure
to pick a long enough σ so that these restraints will not interfere. This leaves only the case
where a restraint is imposed by an Ng strategy that γ believes has outcome∞. In this case,
γ can wait until that strategy drops its restraint and then put σ into A. We will need to
organize the Ng strategies so that this strategy will not impose a new restraint until all other
∞-outcome Ng strategies above it also drop their restraints. γ therefore will eventually see
a window in which to put σ into A before new restraints are imposed.

As usual, our construction will be in stages. At stage s, we traverse the tree up to a
depth of s. Let γ0 be the root of our tree. Now suppose we are currently at strategy γi. As
usual, we take action based on what type of strategy this is:

(γi is a Pe-strategy) If we have not yet picked some σ or have been injured since the last
time this strategy was visited, choose a σ longer than anything referenced by the construction
so far. With priority γi, keep σ out of A. Regardless of whether we have a σ from before
or just picked one, run s steps of Φe(σ). If it converges and gives 0, put σ into A and stop
considering this strategy. Set γi+1 = γi ˆ o.
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(γi is an Ng-strategy) If we are not currently waiting on g(m) to converge for some m < s
that we picked at a previous stage, then put 1s into U and with priority γi do not allow A
to change on strings of length less than or equal to s. Set m = s.

Run up to s steps of g(i) for i ≤ m. If they all converge, then set γi+1 = γi ˆ∞ and
release the restraint on A � m at stage g(m). Until such stage, take no action when this
strategy is visited (other than maintaining the restraint on A � m). Also, for each δ ≺ γi
that is a Ng′ strategy, if γi believes δ has outcome ∞, do not pick a new m until δ has also
converged and dropped its restraint. In this way, we ensure that any strategies below γi will
have a “window” through which to put strings into A before γi imposes a new restraint.

If g(i) does not converge in s steps for some i ≤ m, then set γi+1 = γi ˆ w and maintain
the restraint on A.

(γi is an SΦ,Γ,Θ,p strategy) If this sub-strategy has not yet been satisfied and has not been
visited since its last injury, pick some σ longer than anything mentioned in the construction so
far. If this sub-strategy finds its setup as described in step (2) of the sub-strategy description
above, allow it to act as described previously, mark it as satisfied. Otherwise, continue to
hold σ out of A until a stage where we do find such a setup. In either case, set γi+1 = γi ˆ o.

Repeat the above until we have built γs.

Verification
We must now verify that the A built via this construction is as needed for our theorem.

Let fs be the path built at stage s, and as usual let f = lim inf fs be the leftmost path visited
infinitely often.

Lemma 3.7. f is correct about the outcome of all Ng strategies along it.

Proof. Let γ = f � i be an Ng strategy on f . Then f(i) =∞ iff there are infinitely many m
such that g(i) converges for all i ≤ m. That is, iff g is total.

We will therefore call f the true path since all other strategies have only one outcome.

Lemma 3.8. Every strategy on the true path is injured only finitely many times.

Proof. Let γ be a strategy on f . As in previous proofs, we need only be worried about other
strategies on f since those the left of γ are visited only finitely many times and those to the
right all have lower priority and therefore cannot injure γ. Note that each strategy puts at
most one string into A after the last time it is injured. Therefore, by induction on the depth
of the strategies on f , each one causes only finitely many injuries to those below it and so
each strategy is in fact injured only finitely many times.

Lemma 3.9. Every strategy on the true path satisfies its (sub-)requirement.

Proof. Let γ = f � i be a strategy on the true path and let s0 be the last stage at which it
is injured.

(γ is a Pe strategy) Since γ is not injured again, it will succeed in keeping σ out of A until
it sees Φe(σ) ↓= 0. Therefore, if we never see Φe(σ) ↓= 0, we have ensured Φe(σ) 6= A(σ).
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If at some later stage we do see Φ(σ) ↓= 0, then this strategy will succeed in putting σ into
A as described previously.

(γ is an Ng strategy) Suppose g is total and s0 is the last stage at which γ is injured.
Then since γ is visited infinitely often, it must pick infinitely many m such that γ puts 1m

into U at stage s > s0 and since it is not injured it must in fact succeed in ensuring that
As � m = Ag(s) � m. Therefore, g is not a promptness function for A.

(γ is an SΦ,Γ,Θ,p strategy) Suppose Φ, Γ are functionals describing some B ≡T A. That

is, ΦA is total and ΓΦA
= A. Then at some stage s > s0, γ will succeed in finding its setup

as described by figure 3.1. If this strategy ends in case (5), then since |σ| < m, we have
that A � m changed when σ went into A. Therefore, we must also have the B � l changes
as well or else we would not have ΓB = A. Therefore, we would have ΨB(σ) = R(σ) = 1
but Θ(σ) = 0. If we end in case (6), then we have ensured that Θ(σ) is slower than ΨB(σ)
by more than p. Since A � s does not change after this point, we also have that B cannot
change below the use of ΨB(σ) and so the computation we found remains. In either case,
we have diagonalized against Θ, p and therefore satisfied the sub-requirement.

Since there is a strategy for each requirement and sub-requirement on f , we conclude
that all requirements are satisfied and therefore A is as desired.
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Chapter 4

Generics and P vs NP

4.1 Background on generics and forcing

The notion of generics and forcing was originally introduced by Cohen in [3] in order to prove
the independence of the continuum of hypothesis from ZF. However, as Cohen’s notion works
for the full generality of set theory, it is far more powerful than we need. The simplification
of forcing to first order arithmetic is due to Feferman in [5]. The definitions and results in
this section are due to Cohen and Feferman.

At a high level, the general idea is that any fact about a generic is determined by some
finite initial segment of G; that is, the truth of that fact is forced by some finite piece of G.
These finite pieces of information are called conditions.

For the remainder of this chapter, conditions will consist of pairs (g, ng) such that g ⊆ 2<ω

is finite, ng ∈ N and for all σ ∈ g |σ| ≤ ng. Let P be the set of all such pairs, and note that
P is recursive. We will write (h, nh) ≤P (g, ng) and say (h, nh) extends (g, ng) iff g ⊆ h and
σ ∈ h − g → |σ| > ng. Note that ≤P is a recursive relation. Intuitively, a condition (g, ng)
specifies precisely which strings of length ≤ ng will be in the generic G.

Remark. The above definition of conditions is not the one usually encountered when dis-
cussing forcing in arithmetic. Instead, we usually consider conditions to be finite σ ∈ 2<ω

and say σ ≤P τ iff τ � σ (note the reversal here). A generic then is some G ⊆ N and
conditions specify initial segments of G in the obvious way. Because we will be concerned
with algorithmic complexity, we will want G ⊆ 2<ω, not G ⊆ N, in order to avoid excessive
use of logarithms in our formulas. Our notion is equivalent to the standard one, and having
conditions as above also simplifies some formulas versus using conditions ρ ∈ 2<2<ω

which
would be the other natural way to do it.

The reader familiar with forcing in arithmetic can safely skip ahead to section 4.2 at this
point.

We are now ready to discuss the forcing relation. We want to capture the idea that any
G which has (g, ng) as an initial segment must have some property. We first define this
syntactically and then show that our definition does in fact accomplish our goal.
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Definition 4.1. Let p = (g, ng) be a condition and let ϕ be a closed formula in the first order
language consisting of a set constant X, constant symbols pσq for each σ ∈ 2<ω, a relation
∈ that can only be used in formulas of the form x ∈ X, and for each recursive relation R a
relation symbol ϕR. We define the relation p  ϕ, pronounced p forces ϕ, inductively on ϕ:

p  ϕR(pσ1q, . . . , pσ2q) ⇔ R(σ1, . . . , σ2

p  ψ1 ∨ ψ2 ⇔ p  ψ1 ∨ p  ψ2

p  ∃σψ(σ) ⇔ ∃σ (p  ψ(pσq))
p  pσq ∈ X ⇔ σ ∈ g
p  ¬ψ ⇔ ∀q ≤P p ¬(q  ψ)

From this definition, it is clear that if p  ϕ and q ≤P p, then q  ϕ. We turn our
attention now to sets of strings.

Definition 4.2. If A ⊆ 2<ω, then we say

• A forces ϕ (A  ϕ) iff there is some i such that (A � i, i)  ϕ.

• A decides ϕ iff A  ϕ or A  ¬ϕ

• ϕ is true of A and write A |= ϕ iff ϕ holds when we replace X by A and pσq by σ.

• A is n-generic iff A decides every Σ0
n sentence.

For generics, forcing is the same as truth, as shown by the following theorem.

Theorem 4.1 ([3], [5], [8]). Let G be n-generic and let ϕ be a Σn
0 formula. Then G  ϕ⇔

G |= ϕ.

Proof. Let G be n-generic and ϕ be Σ0
n. We will go by induction on the structure of ϕ. The

definitions for  and |= coincide in all cases except negation. Therefore, we need only verify
that one case:

G |= ¬ψ ⇔ ¬(G |= ψ)

⇔ ¬(G  ψ)

⇔ G  ¬ψ ( since G is n-generic and must force either ϕ or ¬ϕ)

Definition 4.3. We say A ⊆ P is dense iff ∀p ∈ P∃q ∈ P (q ≤P p).

Definition 4.4. If A ⊆ P and G ⊆ 2<ω, we say G meets A if there is some n such that
(G � n, n) ∈ A.

Theorem 4.2. Let G ⊆ 2<ω be n-generic. Then G meets every dense Σ0
n set D.
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Proof. Let ϕD be a Σ0
n formula for D. Then the formula ϕ = ∃i ϕD(X � i, i) is Σ0

n, and so
G decides it. If G  ϕ, then by theorem 4.1, we have the desired result. G  ¬ϕ is not
possible by the fact that D is dense, since given some p  ¬ϕ, there is some q ≤P p such
that q ∈ D and thus q  ϕ.

In fact, the above theorem reverses and provides an alternative definition of G being
n-generic ([15]).

Remark. For the reader familiar only with forcing from set theory, one can note that these
definitions are in fact the same as the more general ones used in that field. Namely, given
any G ⊆ 2<ω, it is easy to see that the set {(G � i, i) : i ∈ N} forms a filter and, conversely,
that any infinite filter on P must be of this form.

For more background on generics and forcing, see Chapter XII of [15] or Feferman’s
original paper [5].

4.2 Connection with P vs NP

Theorem 4.3. If P = NP, then every 2-generic is low for speed.

Proof. Suppose P = NP and let G be generic. Suppose also that Ψ, R are such that ΨG = R
and R is total. Since G is 2-generic, and the statement ΨG = R is Π2(G), there is some
condition (g, ng) such that (g, ng)  ΨG = R. We must exhibit a Φ such that Φ = ΨG and
t(Φ, σ) ≤ q(t(ΨG, σ)). Let A be defined as follows:

A = {〈σ, s, i〉 : s > ng & ∃(h, nh) ≤P (g, ng)
(
nh < s & Ψh(σ) ↓= i in ≤ s steps

)
} (4.1)

Lemma 4.4. A ∈ NP when we consider |〈σ, s, i〉| to be |σ|+ s+ 1.

Proof. We will build a verifier machine V and a polynomial p such that:

1. Whenever 〈σ, s, i〉 ∈ A, there is some τ with |τ | < p(|〈σ, s, i〉|) and V (〈σ, s, i〉, τ) ↓= 1
in time ≤ p(|〈σ, s, i〉|)

2. Whenever 〈σ, s, i〉 6∈ A, there is no τ such that V (〈σ, s, i〉, τ) ↓= 1

Our verifier V (〈σ, s, i〉, τ) will interpret τ as a witness (h, nh) satisfying the definition of
A from equation 4.1. It must then check that the encoded condition does in fact work:

After we have verified that ng ≤ nh < s, checking that |h| < nh and that all α ∈ h have
|α| < nh takes O(s2) steps since in the worst case we must check s strings each of length s.
To check that g ⊆ h also takes time polynomial in s since for each of the constantly many
α ∈ g, we need only verify whether α is one of the ≤ s strings in h, each of which has length
at most s.



CHAPTER 4. GENERICS AND P VS NP 34

Checking whether Ψh(σ) ↓= i in s steps also takes poly(s) many steps since anytime Ψ
queries whether α ∈ h, we can answer in no more than O(s2) time by iterating through all
≤ s strings in h, each of which has length at most s.

V accepts and outputs 1 iff τ satisfies all the requirements of a witness for the definition
of A.

Note that V will not accept any τ that does not encode a correct h, and that V will,
in polynomial time, accept any that do. V therefore satisfies the requirements of an NP
verification machine and so A ∈ NP .

Since A ∈ NP and we are assuming P = NP , we can find a functional Θ and a
polynomial p witnessing the fact that A ∈ P . By our convention that t(Ψh, σ) ≥ |σ|, we
note that 〈σ, s, i〉 6∈ A unless |σ| < s and therefore we can take p to be a function of s alone.
Namely, for all σ, s, i, we may assume t(Φ, 〈σ, s, i〉) ≤ p(s).

We now define our simulator Φ such that Φ = ΨG. We take as finite data the value of
ΨG(σ) for all σ with |σ| ≤ ng.

On input σ with |σ| > ng, define Φ(σ) by induction on s. At stage s, use Θ to check
whether 〈σ, s, i〉 ∈ A for i = 0, 1. This takes time ≤ 2p(s). If so, output Φ(σ) = i for the
correct i. Otherwise, set s = s+ 1 and try again.

We must verify that this algorithm terminates sufficiently quickly and gives the correct
answer. If ΨG(σ) ↓= i, in s0 steps and |σ| > ng (so also s0 > ng), then 〈σ, s0, i〉 ∈ A
since the h consisting of g together with the elements of G that are actually queried in this
computation satisfies the requirements for membership in A. Therefore, Φ(σ) terminates no
later than stage s0. There is some constant C such that stage i takes ≤ Cp(i) steps, so we
have:

t(Φ, σ) ≤
s0∑
i=0

Cp(i) ≤
s0∑
i=0

Cp(s0) ≤ C · (s0 + 1)p(s0) (4.2)

which is polynomial in s0 = t(ΨG, σ). It only remains to verify that Φ gives the correct
value.

Suppose we set Φ(σ) = i because we saw 〈σ, s, i〉 ∈ A. Then there is some (h, nh) ≤ (g, ng)
such that Ψh(σ) ↓= i. Since (g, ng)  ΨG = R, we also have (h, nh)  ΨG = R. Therefore,
we must also have Ψh(σ) = R(σ) = ΨG(σ).

Φ therefore satisfies the low for speed requirements in regards to an arbitrary Ψ, R and
so we conclude G must be low for speed.

If a set G meets every dense recursive set, we will say it is recursively generic.

Theorem 4.5. If P 6= NP, then every recursively generic set is not low for speed.

Proof. Suppose P 6= NP and G is generic. We must build a Ψ and a recursive R such that
ΨG = R but for all functionals Φ and all polynomials p, either Φ 6= R or there is some σ
such that t(Φ, σ) ≥ p(t(ΨG, σ)).
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Let R be some recursive set in NP −P . For concreteness, one could use SAT ([4], [12])
or any other NP-complete problem. Let V be a verifier machine for R with polynomial time
bound pV . We therefore have the following:

• If σ ∈ R, then ∃τ with |τ | < pV (|σ|) and V (σ, τ) ↓= 1 in no more than pV (|σ) steps.

• If σ 6∈ R, then ∀τ , V (σ, τ) 6= 1.

Our goal will be to encode arbitrarily long σ ∈ R into G in a way so that machines with
access to G can determine that σ ∈ R quickly. We will do this by encoding a V -witness τ
into G as well. Note that we cannot simply put σ ˆ τ into G since there are exponentially
many extensions of σ of the correct length and so G cannot simply search for one without
its running time becoming too long. However, if we ensure that no other strings of length
between |σ| and |σ ˆ τ | are in G and that σ ˆ (τ � i) is in G for all i, then we can find τ by
searching bit-by-bit for extensions of σ in G.

Even though G is a fixed given set, the fact that it is generic allows us to “encode” things
in it by showing that our encoding forms a dense set. For every functional Φ and every
polynomial q, let Dq

Φ be a set of conditions such that (g, ng) ∈ Dq
Φ iff there are σ, τ such that

1. σ ∈ g, |τ | ≤ pV (|σ|)

2. ∀α ∈ 2<ω (|σ| < |α| ≤ |σ ˆ τ | → (α ∈ g ↔ ∃i ≤ |τ | (α = σ ˆ (τ � i))))

3. V (σ, τ) ↓= 1 in no more than pV (|σ|) steps

4. t(Φ, σ) > q(|σ|) or Φ(σ) 6= 1

Lemma 4.6. Dq
Φ is a recursive, dense subset of P.

Proof. Dq
Φ is recursive: Since |σ ˆ τ | ≤ ng, all string quantifiers are bounded. Each clause

is also clearly recursive since we only need to run boundedly many steps of any computation.
Therefore, Dq

Φ is recursive.
Dq

Φ is dense: Suppose (g, ng) ∈ P is given. We must find (h, nh) ≤P (g, ng) in Dq
Φ. Since

R 6∈ P , there is some σ ∈ R with |σ| > ng and Φs(σ) does not output 1 after q(|σ|) steps.
Let τ be a V -witness to σ ∈ R, so |τ | < pV (|σ|) and V (σ, τ) = 1 in less than pV (|σ|)

steps. Let nh = |σ| + |τ | and let g = h ∪ {σ ˆ (τ � i) : 0 ≤ i ≤ |τ |}. Then (h, nh) is as
required.

We are now ready to describe our algorithm ΨG.

1. On input σ, check if σ ∈ G. If so, go to step 2. If not, go to step 3.

2. Attempt to build a V -witness by recursion on i. Let τi be our guess at stage i. Start
at i = 0, set τ0 to be the empty string and do the following:



CHAPTER 4. GENERICS AND P VS NP 36

a) Check if V (σ, τi) ↓= 1 in no more than pV (|σ|) steps. If so, accept σ and terminate.

b) Check if τi ˆ 0 ∈ G or τi ˆ 1 ∈ G. If neither or both are in G, give up and go to
step 3. If exactly one is in G, set τi+1 = τi ˆ j for the correct j and increment i.

c) If i > pV (|σ|), give up and go to step 3. Otherwise, go back to step 2a.

3. Run R(σ) and output the result.

Since R is recursive and V is a verifier machine for R, we are guaranteed that ΨG is
total and that ΨG = R. We now analyze the complexity of our algorithm. Step 1 takes
O(|σ|) steps. Step 2a takes O(pV (|σ|)) steps, 2b takes O(|σ| + i) steps, and 2c takes O(1)
steps. Since i ≤ pV (|σ|), the entirety of step 2 takes time polynomial in |σ|. Step 3 cold take
arbitrarily long. Let q0 be a polynomial such t(ΨG, σ) ≤ q0(|σ|) for any σ whenever Ψ ends
in step 2a.

We are now ready to show that G is not low for speed. Let Φ, p be any functional and
polynomial. Let q = p ◦ q0. Then Dq

Φ is dense, so there is some (g, ng) ∈ Dq
Φ such that

G � ng = g. Let σ, τ be the witness to the fact that (g, ng) ∈ Dq
Φ. Then by construction,

ΨG(σ) will terminate in step 2a once it has found τ . By the definition of Dq
Φ, either Φ(σ) is

wrong, or we have

t(Φ, σ) > q(|σ|)) = p(q0(|σ|)) ≥ p(t(ΨG, σ)) (4.3)

As Φ, p was arbitrary, we conclude G is not low for speed.

Note that the right side of theorem 4.5 is a strengthening of the negation of the right
side of theorem 4.3, so we have:

Corollary 4.7. P = NP iff every 2-generic is low for speed

As shown in [2], there are recursive sets A,B such that PA = NPA and PB 6= NPB.
Note that the proofs of theorems 4.3 and 4.5 both relativize, thus giving the following:

Corollary 4.8. There are recursive sets A,B such that for every 2-generic G, G ∈ LFSA

and G 6∈ LFSB.

Proof. If C is recursive, then being 2-generic is equivalent to being 2-generic relative to
C.
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Chapter 5

Conclusions

We have now seen that low for speed provides a robust and interesting notion of lowness. A
number of directions for further research present themselves.

First, we could ask what other properties can be combined with low for speed. For
example, is it possible to build a measure one set of reals all of which are low for speed?
That is, can we combine randomness with low for speed? Alternatively, one could ask if
answers to these questions are equivalent to solving classical complexity theoretic questions
such as P = RP or P = BPP . This is especially interesting in light of Corollary 4.7
where we saw that asking whether generics can be low for speed is equivalent to determining
whether P = NP .

Second, one could ask various degree-theoretic questions about where low for speed sets
can and can not be found. We already saw that every degree contains a set which is not
low for speed, and that there is a degree which contains only non-low-for-speed sets. While
the notion of being low for speed is clearly not downward closed, one could ask if being
non-low-for-speed is in some sense upwards closed; that is, if A has the property that every
B ≡T A is not low for speed and C ≥T A, is it necessarily true that C is also not low for
speed?

Third, nearly any traditional degree-structure question could be rephrased to ask about
sets which are low for speed. As an example, are there sets A and B, both low for speed,
such that A⊕B is not low for speed?

Finally, instead of considering speed of computation, one could also consider defining
lowness notions for other complexity measures. For example, the study of space bounds has
a long and rich history, and one could easily define a notion of low for space and investigate
its properties.
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