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How many rational points are there on a random
algebraic curve of large genus g over a given finite
field Fq? We propose a heuristic for this question
motivated by a (now proven) conjecture of Mumford
on the cohomology of moduli spaces of curves; this
heuristic suggests a Poisson distribution with mean
q + 1 + 1/(q − 1). We prove a weaker version of this
statement in which g and q tend to infinity, with q
much larger than g.

1. Introduction
The purpose of this paper is to propose a heuristic answer
to the following question: what is the distribution of
the number of rational points on a random algebraic
curve over a fixed finite field Fq as the genus goes
to infinity? This is a question that can be translated
into a question about the number of Fq-points of
the moduli space Mg,n of curves of genus g with n
marked points. Our fundamental heuristic assumption
is that, in the Grothendieck–Lefschetz trace formula to
count Fq-points on Mg,n, only the tautological classes
contribute to the main term in the limit; we prove
that this assumption implies the distribution of points
on a random curve goes to a Poisson distribution
with mean q + 1 + 1/(q − 1). Moreover, one can make
a more precise statement in a certain limit where q
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and g both tend to infinity, but q grows significantly faster than g. These predictions and results
are in the spirit of the work of Ellenberg et al. [1] on the relationship between stable homology
of Hurwitz spaces and Cohen–Lenstra heuristics; they are also in a sense reciprocal to the work
of Faber & Pandharipande [2], in which point counts on Mg,n for small g are used to study the
tautological classes.

Before making these statements more precise, we describe some similar questions which have
been studied and indicate how this question differs somewhat from these. The distribution
of the number of rational points on a random (smooth, projective, geometrically irreducible)
algebraic curve of a given class over a given finite1 field has become a fundamental theme in
the nascent field of arithmetic statistics. Some examples of classes for which this topic has been
studied previously include hyperelliptic curves [4], cyclic trigonal curves [5], non-cyclic trigonal
curves [6], cyclic p-gonal curves [7,8], superelliptic and cyclic m-gonal curves [9], Abelian covers
of the line [10], Artin–Schreier curves [11–13], smooth plane curves [14], complete intersections in
a fixed projective space [15] and curves in a fixed Hirzebruch surface [16]. In each of these cases,
every curve C in the family maps to a fixed base space φ: C → P and the (asymptotic) distribution
of points on a random C is given by a sum of independent bounded random variables associated
to the rational points of the base space. For each p ∈ P(Fq), the associated random variable is the
number of rational points in φ−1(p).

Of course, the most natural and interesting family of smooth, projective curves is the family
of all such curves, but proving a result about the distribution of points in this family seems
currently out of reach. The class of arbitrary curves differs from the previously mentioned classes
in several important ways. One is that the number of rational points on the varying curve is not
a priori bounded. A prior example sharing this property is that of Kurlberg & Wigman [17], who
considered curves lying in a sequence of surfaces with unbounded point counts. In this case, the
average number of points on the curves is unbounded, so one is forced to renormalize to get a
limiting distribution with finite mean, which turns out to be Gaussian.

The second distinctive feature of the class of all curves, which separates it from both [17] and
most of the preceding examples, is that the moduli space is not rational or even unirational. That
is, an arbitrary curve cannot be specified uniformly in terms of a collection of parameters. This
makes even the ‘denominator’ in the question, the total number of curves over Fq of a fixed genus,
extremely difficult to understand. (See de Jong & Katz [18] for an upper bound.)

Finally, the lack of non-trivial maps from curves in the family to a fixed space means there is no
way to make sensible probabilistic models which split the point count into a sum of independent
random variables.

Let us now make things more precise for the class of curves. Let Mg denote the fine moduli
space of curves of genus g in the sense of Deligne & Mumford [19]; it is an object in the category of
algebraic stacks over Spec(Z). The set |Mg(Fq)| of (isomorphism classes of) Fq-rational points of Mg

may then be identified with the set of isomorphism classes of smooth, projective, geometrically
connected curves of genus g over Fq. To simplify notation, let us further identify |Mg(Fq)| with a
set consisting of one curve in each isomorphism class. For C ∈ |Mg(Fq)|, let Aut(C) be the group of
automorphisms of C as a curve over Fq (not over an algebraic closure of Fq). We equip |Mg(Fq)|
with the probability measure in which each point C is weighted proportionally to 1/#Aut(C).
This is well understood to be the most natural way to count objects with automorphisms, and
matches the weighting of points in the Lefschetz trace formula for Deligne–Mumford stacks given
by Behrend [20].

Let Cg be the (random) curve associated to a random x ∈ |Mg(Fq)| drawn according to the
above probability measure. For each g, #Cg(Fq) is a random variable taking values in the non-
negative integers, and we are interested in the limiting behaviour of the distributions of these
random variables as g → ∞. We prove that a heuristic assumption about the cohomology of
Mg,n (heuristic 1.2) implies that these distributions converge to a Poisson distribution with mean

1The corresponding question over a number field is also central in arithmetic statistics, but has a rather different flavour. See
Ho [3] for a comprehensive survey.
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q + 1 + 1/(q − 1) = q + 1 + q−1 + q−2 + · · · ; more precisely, we show that heuristic 1.2 implies the
following predictions.

Conjecture 1.1. Put λ := λ(q) = q + 1 + 1/(q − 1).

(a) For all non-negative integers n,

lim
g→∞ Prob(#C(Fq) = n : C ∈ |Mg(Fq)|) = λne−λ

n!
.

(b) For all positive integers n,

lim
g→∞ E(#C(Fq)n : C ∈ |Mg(Fq))|) =

n∑
i=1

{
n
i

}
λi,

where { n
i } denotes a Stirling number of the second kind (i.e. the number of unordered partitions of

{1, . . . , n} into i disjoint sets).

Note that part (b) implies part (a): the moment sequence of the Poisson distribution has
exponential growth and thus determines the distribution uniquely [21, Theorem 30.1], and for
such a limiting distribution convergence at the level of moments implies convergence at the
level of distributions [21, Theorem 30.2]. If we let (X)n := X(X − 1) · · · (X − n + 1), then the falling
moments

lim
g→∞ E((#C(Fq))n : C ∈ |Mg(Fq)|) = λn (1.1)

(for all positive integers n) are equivalent to the standard moments in (b) above.
Let Mg,n denote the moduli space of curves of genus g with n distinct marked points, again

as an algebraic stack over Spec(Z). Each element of |Mg,n(Fq)| may now be identified (by fixing
a representative of each isomorphism class) with a tuple (C, P1, . . . , Pn) where C is as before and
P1, . . . , Pn are distinct elements of C(Fq). We equip the points of |Mg,n(Fq)| with the weights where
(C, P1, . . . , Pn) has weight 1/#Aut(C, P1, . . . , Pn) (i.e. we only consider automorphisms of C fixing
P1, . . . , Pn). By an easy orbit counting argument

E((#C(Fq))n : C ∈ |Mg(Fq)|) = #|Mg,n(Fq)|
#|Mg(Fq)|

(where # denotes weighted count). Thus, we may rewrite conjecture 1.1 as the statement

lim
g→∞

#|Mg,n(Fq)|
#|Mg(Fq)| = λn. (1.2)

Let us now make explicit how we would like to study #|Mg,n(Fq)|/#|Mg(Fq)| using the
Grothendieck–Lefschetz–Behrend trace formula. For a smooth Deligne–Mumford stack X over
Fq, the trace formula asserts that for any prime � not dividing q,

#|X(Fq)| =
2 dim(X)∑

i=0

(−1)iTrace(Frob, Hi
c,et(XF̄q

, Q�)),

where XF̄q
denotes the base extension of X from Fq to F̄q, Hi

c,et(XF̄q
, Q�) denotes compactly

supported étale cohomology, and Frob is the geometric Frobenius automorphism on XF̄q
. By

Deligne’s proof of the Riemann hypothesis for algebraic varieties, each eigenvalue α of Frob on
Hi

c,et(XF̄q
, Q�) is an algebraic integer with the property that for some w ∈ {0, . . . , i} (called the weight

of α), the conjugates of α in C all have absolute value qw/2.
This suggests that one should be able to estimate #|Mg,n(Fq)|, and hence the ratio

#|Mg,n(Fq)|/#|Mg(Fq)|, by computing the action of geometric Frobenius on the highest degree
cohomology groups of Mg,n,F̄q

and burying the other contributions to the trace formula in an
error term. Moreover, the highest degree cohomology groups with their Frobenius action are
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known exactly (see theorem 3.3): they are spanned by so-called tautological classes (see below).
Unfortunately, this approach does not lead to any provable estimates for fixed q because the Betti
numbers of Mg,n,F̄q

grow superexponentially in g (see Harer & Zagier [22] for the calculation of the

Euler characteristic). Thus, even though terms from lower degree cohomology groups contribute
to the Grothendieck–Lefschetz sum with smaller weight, there are so many of them that they
cannot a priori be treated as negligible compared with the top-degree contributions.

Despite this imbalance, we can still make a reasonable heuristic about what we expect the
asymptotics of the Grothendieck–Lefschetz sum to be. One can classify the Frobenius eigenvalues
of H∗

c,et of each weight w as ‘causal’ and ‘random’. The causal eigenvalues are the ones whose
presence is compelled by the existence of certain algebraic cycles (in our case, the eigenvalues of
the tautological classes); these eigenvalues must be integral powers of q. It is plausible to model
the random eigenvalues of a given weight w by the eigenvalues of a random unitary2 matrix
times qw/2. Let dg,n be the relative dimension of Mg,n over Spec(Z), which is 3g − 3 + n for g> 1.
Let bk be the number of ‘random’ eigenvalues of weight 2dg,n − k (i.e. of coweight k). We have bk = 0
for k ≤ (2g − 2)/3; see theorem 3.3. For k> (2g − 2)/3, if there are few eigenvalues of coweight k,
e.g. bk = o(qk/2), then the weight k eigenvalues contribute nothing to the Grothendieck–Lefschetz
sum in the limit as g → ∞. On the other hand, if there are many eigenvalues of coweight k, and we
model them with eigenvalues of a large random unitary matrix, we know from a result of [23] that
this matrix has bounded trace with high probability. It is thus a sensible heuristic to neglect the
contribution of all but the causal eigenvalues. Our neglect of the random Frobenius eigenvalues
is also consistent with a commonly held philosophy in the study of moduli spaces, that no natural
geometric questions depend on the non-tautological classes (e.g. Vakil [24]).

That this heuristic is sensible relies crucially on the fact that there are no random eigenvalues
of large weight, which is a deep fact about the cohomology of moduli spaces of curves conjectured
by Mumford and later proved using topological techniques (see §2 for references). The compactly
supported étale cohomology in high degrees (or equivalently by Poincaré duality and a Betti-
étale comparison isomorphism, the Betti cohomology in low degrees; see theorem 3.3) is spanned
by tautological classes, i.e. classes which arise from algebraic cycles produced by canonical
morphisms between moduli spaces. The prototypical example of such a class is the first Chern
class of the relative dualizing sheaf of the morphism Mg,n → Mg,n−1 obtained by forgetting one
marked point.

We may formalize our heuristic as follows. Write R∗
c,et(Mg,n,F̄q

, Q�) for the subspace of

Hi
c,et(Mg,n,F̄q

, Q�) generated by tautological classes, and put B∗
c,et(Mg,n,F̄q

, Q�) := H∗
c,et(Mg,n,F̄q

, Q�)/
R∗

c,et(Mg,n,F̄q
, Q�).

Heuristic 1.2. As g → ∞, only the tautological classes are asymptotically relevant to a Grothendieck–
Lefschetz trace formula computation of #|Mg,n(Fq)|. More precisely,

lim
g→∞

∑2dg,n−(2g−2)/3
i=0 (−1)iTrace(Frob, Bi

c,et(Mg,n,F̄q
, Q�))

qdg,n
= 0.

It is convenient for our heuristic that the tautological classes are stable. This means that for
i ≥ 2dg,n − (2g − 2)/3, the groups Ri

c,et(Mg,n,F̄q
, Q�) (and thus the groups Hi

c,et(Mg,n,F̄q
, Q�)) can

be described in a manner independent of g, making it particularly nice to take the limit in g.
Furthermore, the number of lower degree tautological classes is sufficiently bounded that we can
ignore their contribution to the Grothendieck–Lefschetz sum.

Our first main result is the following theorem.

Theorem 1.3. Heuristic 1.2 implies conjecture 1.1.

Our second main result establishes unconditionally a weaker version of conjecture 1.1 in which
both g and q tend to infinity; this result lends some credence to conjecture 1.1. In particular, since

2In middle cohomology, it is more natural to use a random unitary symplectic matrix or a random Hermitian matrix instead,
but the same discussion applies to these models.
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the error term is smaller than q−m for any fixed m, this result rules out any alternative conjecture
in which each moment is a universal Laurent series in q−1.

Theorem 1.4. For any K> 144, any function q(g)> gK, and any non-negative integer n, for q = q(g)
we have

lim
g→∞

#|Mg,n(Fq)|
#|Mg(Fq)| = λn + O(q−g/6).

The key to proving theorem 1.4 is that, so long as q � g, the unstable homology is negligible in
the Grothendieck–Lefschetz trace computation.

It would be interesting to compute what a heuristic similar to heuristic 1.2 suggests about the
average number of points on a stable curve of genus g, as g → ∞. Our approach fails to directly
yield an answer. In particular, we would seek a computation along the lines of lemma 4.1, but this
is complicated by the fact that the dimensions of the tautological cohomology Ri(M̄g,n) can grow
exponentially in g, as g → ∞.

In §2, we review the topological results showing that the low degree singular cohomology of
Mg,n is tautological and giving a precise description of the cohomology groups. In §3, we translate
these results into compactly supported étale cohomology using comparison isomorphisms and
determine the effect of Frobenius. In §4, we prove theorem 1.3. In §5, we prove theorem 1.4. In §6,
we outline some thoughts and questions about how a random matrix model might give evidence
for or against conjecture 1.1.

2. Stability and tautological classes: singular cohomology
Let Man

g,C and Man
g,n,C be the underlying topological spaces of the stacks Mg,C and Mg,n,C. We begin

by recalling some deep results on the stable singular cohomology of Man
g,n,C. These results are

typically stated without marked points; we must add a bit of extra analysis to deal with the
markings.

Theorem 2.1. For any non-negative integers g, n, i with i ≤ (2g − 2)/3, there exists an isomorphism
Hi(Man

g,n,C, Q) → Hi(Man
g+1,n,C, Q). By the universal coefficient theorem, this gives rise to an isomorphism

Hi(Man
g,n,C, Q) → Hi(Man

g+1,n,C, Q).

Proof. This was first proved with a slightly more restrictive bound on i by Harer [25,26]. The
statement as given includes results of several authors; see Wahl [27, Theorem 1.1]. �

The proof of this result is ultimately topological: by Teichmüller theory, one may identify
Man

g,n,C up to homotopy with a classifying space of the mapping class group Γg,n of a compact
Riemann surface (without boundary) of genus g with n marked points. One may take a homotopy
limit to obtain a group Γ∞,n whose group (co)homology computes the stable (co)homology of
Man

g,n,C.
Let us now momentarily restrict attention to the case n = 0. Following Mumford, we define the

tautological ring to be the graded polynomial ring R := Q[κ1, κ2, . . .] with deg(κj) = 2j. We obtain
a map from R to the Chow ring of Mg as follows: let ψ be the relative dualizing sheaf of the
morphism Mg,1 → Mg which forgets the marked point, then let κj be the push-forward of ψ j+1

along Mg,1 → Mg.

Theorem 2.2. The induced map R → H∗(Man
g,C, Q) of graded rings is an isomorphism in degrees up to

(2g − 2)/3.

Proof. This follows from theorem 2.1 plus a theorem of Madsen and Weiss identifying R with
the stable cohomology ring [28]. �

We now consider the effect of marked points. Define the tautological ring Rn = R[ψ1, . . . ,ψn]
with deg(ψi) = 2. We obtain a map from Rn to the Chow ring of Mg,n as follows: map κj as before,
and map ψi to the relative dualizing sheaf of the morphism Mg,n → Mg,n−1 which forgets the ith
marked point.
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Theorem 2.3. The induced map Rn → H∗(Man
g,n,C, Q) of graded rings is an isomorphism in degrees up

to (2g − 2)/3.

Proof. This follows from the existence of a homotopy equivalence

BΓ∞,n+1 ∼ BΓ∞,n × CP∞,

as constructed in Bödigheimer & Tillmann [29, Corollary 1.2] (see also [30, Theorem 4.3]). �

3. Stability and tautological classes: étale cohomology
We next translate the stability of cohomology from singular cohomology to compactly supported
étale cohomology, and determine the effect of Frobenius on the stable cohomology classes, in
order to use the Grothendieck–Lefschetz–Behrend trace formula.

Lemma 3.1. Choose an embedding of Q̄p into C. Let Ȳ be a smooth proper scheme over Spec(Zp). Let Z
be a relative normal crossings divisor on Ȳ. Let G be a finite group acting on both Ȳ and Z. Put Y = Ȳ − Z
and let X be the stack-theoretic quotient [Y/G]. Then there are functorial isomorphisms

Hi
et(XF̄q

, Q�) ∼= Hi
et(XC, Q�) ∼= Hi(Xan

C , Q�).

Proof. In the case where G is trivial, the first isomorphism follows from [31, Proposition 4.3]
and the second isomorphism follows from [32, Theorem I.11.6] (for more details, see [1,
Proposition 7.5]). The general case follows from this special case by applying the Hochschild–
Serre spectral sequence [33, Theorem 2.20] to write

Hi
et(XC, Q�) ∼= Hi

et(YC, Q�)G, Hi(Xan
C , Q�) ∼= Hi(Yan

C , Q�)G. �

Lemma 3.2. There exist a smooth projective scheme Ȳ over Spec(Zp), a relative normal crossings divisor
Z on Ȳ, and a finite group G acting on both Ȳ and Z such that for Y = Ȳ − Z, the stack-theoretic quotient
[Y/G] is isomorphic to Mg,n,Zp .

Proof. This is a consequence of the construction of [34, §7.5], in which a suitable Ȳ is realized
as the moduli space of n-pointed genus g curves with a certain non-Abelian level structure, i.e. a
suitable finite Galois cover with fixed Galois group H. Note that the group H has exponent equal
to the product of two arbitrary primes, and so may be forced to be coprime to p; this ensures that
H-covers are tamely ramified, which allows the construction to go through over Spec(Zp). (By
contrast, the group G may have order divisible by p.) �

Put

Rn,� := Rn ⊗Q Q� = Q�[ψ1, . . . ,ψn, κ1, κ2, . . .],

again graded by deg(ψi) = 2 and deg(κj) = 2j. Equip Rn,� with a Q�-linear endomorphism Frob as
follows:

Frob ψi = qψi

and

Frob κj = qjκj.

Let Ri
n,� denote the ith graded piece of the ring. For each g, n, we have a homomorphism of graded

rings (with Frob action)

Ri
n,� → H∗

et(Mg,n,F̄q
, Q�), (3.1)

again factoring through the Chow ring.
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Theorem 3.3. For 0 ≤ i ≤ (2g − 2)/3, the homomorphism in equation (3.1) gives an isomorphism of
Frobenius modules

Ri
n,�

∼= Hi
et(Mg,n,F̄q

, Q�).

Proof. Let 0 ≤ i ≤ (2g − 2)/3. Since the tautological classes arise from the Chow ring, they are of
Tate type, so the map (3.1) is Frobenius-equivariant. By lemmas 3.1 and 3.2, given the choice of an
embedding of Q̄p into C, there is a chain of functorial isomorphisms

Ri
n,� → Hi

et(Mg,n,F̄q
, Q�) ∼= Hi

et(Mg,n,C, Q�) ∼= Hi(Man
g,n,C, Q�). (3.2)

Each step in the formation of the tautological classes involves either pushing forward or pulling
back cohomology classes, or formation of Chern classes (which by [33, Theorem 10.3] are
characterized entirely by certain maps on cohomology). Since each map in equation (3.2) is
functorial, the tautological classes thus map to tautological classes. The composition is thus the
isomorphism obtained from theorem 2.2 by extending scalars from Q to Q�; in particular, it does
not depend on the embedding of Q̄p into C. This means that in (3.2), the composition and all but
one of the maps are isomorphisms, so the remaining one is also an isomorphism and the claim
follows. �

Corollary 3.4. For 0 ≤ i ≤ (2g − 2)/3, the following is true.

(a) If i is odd, then H
2dg,n−i
c,et (Mg,n,F̄q

, Q�) = 0.

(b) If i is even, then H
2dg,n−i
c,et (Mg,n,F̄q

, Q�) has Q�-dimension equal to that of Ri
n,�, and Frob acts on it

by multiplication by qdg,n−i/2.

Proof. Since Mg,n,F̄q
is smooth, we may apply Poincaré duality for étale cohomology to deduce

the claim from theorem 3.3. (As in the proof of theorem 3.3, we may deduce duality for Mg,n,F̄q

from duality for smooth schemes via the Hochschild–Serre spectral sequence.) �

In our Grothendieck–Lefschetz trace computation, we will handle different parts of the
cohomology of Mg,n,F̄q

in different ways. We thus define

Tstable
g,n,q :=

∑
0≤i≤�(2g−2)/3�

(−1)iTr(Frob, H
2dg,n−i
c,et (Mg,n,F̄q

, Q�)),

Tunstable
g,n,q :=

∑
�(2g−2)/3�<i≤2dg,n

(−1)iTr(Frob, R
2dg,n−i
c,et (Mg,n,F̄q

, Q�))

and Ng,n,q :=
∑

�(2g−2)/3�<i≤2dg,n

(−1)iTr(Frob, B
2dg,n−i
c,et (Mg,n,F̄q

, Q�)).

Note that, since these account for all of the cohomology of Mg,n,F̄q
, we have

#|Mg,n(Fq)| = Tstable
g,n,q + Tunstable

g,n,q + Ng,n,q. (3.3)

4. Heuristic 1.2 yields conjecture 1.1
In this section, we prove theorem 1.3. We first note that heuristic 1.2 is equivalent to the assertion
that

lim
g→∞ q−dg,n Ng,n,q = 0. (4.1)

Thus, to prove theorem 1.3, we need to understand the limiting behaviour of Tstable
g,n,q and Tunstable

g,n,q .
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Let Rn be the tautological ring as defined in §2. Note that the Hilbert series (or Poincaré series)
HSRn (z) :=∑∞

i=0 dim R2i
n · z2i may be rewritten as

HSRn (z) =
n∏

i=1

1
1 − z2

∞∏
j=1

1
1 − z2j

.

Lemma 4.1. We have the following:

(a) limg→∞ q−dg,n Tstable
g,n,q = HSRn (q−1/2)

(b) limg→∞ q−dg,n Tunstable
g,n,q = 0.

Proof. For the first statement, we compute

lim
g→∞ q−dg,n Tstable

g,n,q = lim
g→∞ q−dg,n

�(2g−2)/3�∑
i=0

(−1)iTr(Frob, R
2dg,n−i
c,et (Mg,n,F̄q

, Q�))

= lim
g→∞

�(g−1)/3�∑
j=0

q−j · dim R2j
n

=
∞∑

j=0

q−j · dim R2j
n .

Using the Hilbert series of Rn, we may then rewrite the above sum as

= HSRn (q−1/2)

=
n∏

i=1

1
1 − q−1

∞∏
j=1

1
1 − q−j

.

Note that we use the fact (from theorem 3.3) that for 0 ≤ i ≤ (2g − 2)/3, we have

Ri
n,� = Ri

n ⊗Q Q�
∼= R

2dg,n−i
c,et (Mg,n,F̄q

, Q�).

For the second part, we let P(z) be the generating function for the partition numbers p(j), and
let Qn(z) :=∑(n+j−1

j

)
zj be the generating function whose jth coefficient is the number of multisets

of size j on n elements. Then

HSRn (z) = Qn(z2)P(z2).

In particular

dim R2i
n =

i∑
j=0

(
n + j − i

j − 1

)
p(i − j) ≤ exp

(
cn

√
i
)

. (4.2)

Since R∗
c,et(Mg,n,F̄q

, Q�) is defined in terms of the image of a map from Rn to cohomology, we
further obtain

dim R
2dg,n−2i
c,et (Mg,n,F̄q

, Q�) ≤ exp
(

cn
√

i
)

. (4.3)

Of course, when i is odd this group is zero-dimensional.
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We compute

lim
g→∞ q−dg,n Tunstable

g,n,q = lim
g→∞ q−dg,n

2dg,n∑
i=�(2g−2)/3�+1

(−1)iTr(Frob, R
2dg,n−i
c,et (Mg,n,F̄q

, Q�))

≤ lim
g→∞

2dg,n∑
i=�(2g−2)/3�+1

(−1)iq−(i/2) dim R2i
n

≤ lim
g→∞

2dg,n∑
i=�(2g−2)/3�+1

(−1)iq−(i/2) exp
(

cn
√

i
)

= 0. �

Proof of theorem 1.3. By combining equations (3.3) and (4.1) and lemma 4.1 we get

lim
g→∞

#|Mg,n(Fq)|
#|Mg(Fq)| = lim

g→∞
Tstable

g,n,q + Tunstable
g,n,q + Ng,n,q

Tstable
g,0,q + Tunstable

g,0,q + Ng,0,q

= qn HSRn (q−1/2) + 0 + 0
HSR(q−1/2) + 0 + 0

= qn
n∏

i=1

1
1 − q−1

= λn. �

5. Proof of theorem 1.4
In contrast to the previous sections, where q was fixed, in this section we consider a case where q
and g both go to infinity. We show that, so long as q goes to infinity much faster than g, then we
obtain an unconditional version of conjecture 1.1.

The following lemma is the key result for this section, as it essentially shows that if q � g,
then the main terms in the Grothendieck–Lefschetz trace computation will come from the stable
cohomology range.

Lemma 5.1. For any K> 144 and any non-negative integer n, there exists a constant K′ = K′(n)> 0
such that if g>K′(n + 1) and q> gK, then

|Tunstable
g,n,q + Ng,n,q|< qdg,n−g/6.

Proof. We bound the total cohomology of Mg,n,F̄q
by

∑
i

dim Hi
c,et(Mg,n,F̄q

, Q�) ≤ (2 + 2g)n(12g)!

For n = 0, see [18, Lemma 5.1]. For general n, the bound follows from n = 0 by iteratively applying
the Serre spectral sequence for Mg,i+1,F̄q

over Mg,i,F̄q
.

In addition, we note that each cohomology group which arises in the calculation of Tunstable
g,n,q

and Ng,n,q is mixed of weight less than 2dg,n − �(2g − 2)/3�. We thus have

|Tunstable
g,n,q + Ng,n,q|< qdg,n−�(g−1)/3�(2g + 2)n(12g)!

To ensure that this is at most qdg,n−g/6, it suffices to take q satisfying(⌊
g − 1

3

⌋
− g

6

)
log(q)> n log(2g + 2) + 12g log(12g),
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which would in turn follow from

1
2

(⌊
g − 1

3

⌋
− g

6

)
log(q)>max{n log(2g + 2), 12g log(12g)}.

Since K> 144, for any sufficiently small ε > 0 we can choose K′ such that for g>K′(n + 1) and
q> gK, (⌊

g − 1
3

⌋
− g

6

)
log(q)> (1 − ε)

g
6

and

log(q)>
144

1 − ε
log(12g).

This proves the claim. �

Proof of theorem 1.4. We combine equation (3.3) and lemmas 4.1 and 5.1 to compute

lim
g→∞

#|Mg,n(Fq)|
#|Mg(Fq)| = lim

g→∞
Tstable

g,n,q + Tunstable
g,n,q + Ng,n,q

Tstable
g,0,q + Tunstable

g,0,q + Ng,0,q

= qn HSRn (q−1/2) + O(q−g/6)
HSR(q−1/2) + O(q−g/6)

= λn + O(q−g/6). �

6. Connections to randommatrix models
Since much previous intuition about the behaviour of random curves has come from the world
of random matrix models, we would like to close with an invitation to the random matrix theory
community to come up with evidence in favour of or opposed to conjecture 1.1. Let us say a few
words about how this might be possible.

When q is large compared with g, one typically models the behaviour of the zeta function
of a random curve C of genus g over Fq by positing that the normalized characteristic
polynomial of Frobenius behaves like that of a random matrix M in the unitary symplectic group
USp(2g). Equivalently, the sequence of point counts {#C(Fqn )}∞n=1 has the same distribution as
{qn + 1 − qn/2Tr(Mn)}∞n=1.

This model fails to apply in the case of fixed q for three different reasons.

— Discreteness. For n a positive integer, because #C(Fqn ) ∈ Z, one must insist that Tr(Mn) ∈
q−n/2Z.

— Positivity. Because #C(Fq) ≥ 0, one must insist that q + 1 − q1/2Tr(M) ≥ 0.
— More positivity. For n1, n2 two positive integers, because #C(Fqn1n2 ) ≥ #C(Fqn1 ), one must

insist that qn1n2 + 1 − qn1n2/2Tr(Mn1n2 ) ≥ qn1 + 1 − qn1/2Tr(Mn1 ).

It seems unlikely that the statistics for such restricted random matrices can be computed
in closed form, even in the limit as g → ∞. However, it may be feasible to make numerical
experiments for particular values of q and g to see how they compare to the predictions made
by conjecture 1.1.
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