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Modeling of Topology Evolutions and Implication

on Proactive Routing Overhead in MANETs

∗Xianren Wu, Hamid R. Sadjadpour and J.J. Garcia-Luna-Aceves

Abstract

We present a mathematical framework for quantifying the impact of node mobility on the overhead of proactive

routing protocols in mobile ad hoc networks (MANETs). We focus on MANETs in which nodes move randomly. The

analytical model we introduce models signaling overhead asa function of stability of topology, and characterizes the

statistical distribution of topology evolutions. Although we could apply our analytical framework to any proactive

routing scheme, we use the OLSR protocol as an example of our model, because it is a leading example of proactive

routing for ad hoc networking. We corroborate the accuracy of the results obtained analytically by means of results

obtained with discrete-event simulations using the same parameters adopted in the analytical model.
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I. I NTRODUCTION

Mobility brings fundamental challenges to the design of protocol stacks for mobile mesh networks

(MANETs). The mobility of nodes implies that the routing protocols of MANETs have to cope with

frequent topology changes while attempting to produce correct routing tables. Proactive routing protocols,

which are the focus of this paper, provide fast response to topology changes by continuously monitoring

topology changes and disseminating the related information as needed over the network. However, the

price they pay is the increase in signaling overhead as the topology changes increase, and this can further

lead into smaller packet-delivery ratios and longer delays. In the worst case, “broadcast-storms” [1] can

result, congesting the entire network. Hence, it is essential to understand the intricate relations between

routing overhead and topology changes for the design of routing protocols in MANETs.

Characterizing the impact of mobility on the performance of proactive routing protocols is a very

complex problem. Consequently, the provision of such characterization has been limited to simulation-

based approaches [2], [3], [4], [5], [6]. Few if any analytical studies have been pursued on this topic.

Zhou et. al [7] gave an analytical view of routing overhead ofreactive protocols, assuming static network

(manhattan grid) with unreliable nodes and concludes the scalability of reactive protocols with localized

traffic pattern. Topology changes resulting from node mobility was not considered in [7]. In [8], an

information theoretic analysis is pursued to bound the memory requirement and overhead incurred by a

hierarchical routing protocol for MANETs based on entropy rate of topology changes.

The previous work does provide a good understanding of the scalability properties of the signaling

of routing schemes. However, to the best of our knowledge, there is no previous analytical work that

establishes an analytical connection between routing overhead and topology changes due to mobility.

Moreover, the past work has not even characterized topologychanges as a function of node mobility,

which is crucial to make the connection we seek.

In this paper, we provide the first analytical framework for the modeling of proactive routing overhead

as a function of node mobility. In so doing, we model topologychanges explicitly as a function of

node mobility. Section II summarizes the network model usedin our anaysis and formulates the problem

to be solved. Section III explains the general framework forthe modeling of proactive-routing overhead.

Section IV discusses properties of the topology of a MANET and factors that affect its stability. Section V

explains our analytical model. Clearly, our results complement previous information theoretic analysis [8]
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by providing entropy rate and a model of topology changes.

Because of its practical importance, Section VI applies our general framework to the analysis of the

optimized link state routing protocol (OLSR) [9]. Our analysis of OLSR provides a better insight on its

operation, and corroborates the effectiveness of our modeling framework. We compare our analytical results

againstQualnetsimulations based on scenarios assuming random node mobility. The results illustrate the

accuracy of our analytical framework. Section VII concludes this paper.

II. SYSTEM MODEL & PROBLEM STATEMENT

We consider a network operating in a square area, which is consistent with several prior analytical

models [10], [11], [12]. The entire network is of sizeL × L and there aren nodes initially randomly

deployed in such a “square network.” Note that, although we consider a square network in the paper, our

analysis can be extended to networks of any shape in a straightforward way.

Nodes are mobile and initially equally distributed over thenetwork. The movement of each node is

independent and unrestricted, i.e, the trajectories of nodes can lead to anywhere in the network. For node

i ∈ V = {1, 2, . . . , N}, let {Ti(t), t ≥ 0} be the random process representing its trajectory and take values

in D, whereD denotes the domain across which the given node moves. To simplify our modeling task,

we make the following assumption on the trajectory processses.

Assumption 1:[Stationarity] Each of the trajectory processes (Ti(t)) is stationary, i.e., the spacial

node distribution reaches its steady-state distribution irrespective of the initial location. TheN trajectory

processes arejointly stationary, i.e., the whole network eventually reaches the same steadystate from any

initial node placements, within which the statistical spatial nodes’ distribution of the network remains the

same over time.

The above assumption is quite fundamental in the sense that it lays the foundation for the modeling

of node movement. Most existing models, (e.g., random direction mobility models [13], [14], [15], [16],

[17], random waypoint mobility models [18], [19] and randomtrip mobility model [20]) clearly satisfy

our assumption. In other words, our assumption ensures that, on the long run, the network converges to

its steady state and the stationary spatial nodes’ distribution can be used in the performance analysis of

the network.

The availability of communication links (e.g. from nodei to nodej) is governed by the Signal-to-



4

Interference-plus-Noise Ratio (SINR) protocol model as,

Pi(t)gij(t)

N0 +
∑

k∈As(t),k 6=i Pk(t)gkj(t)
≥ β (1)

wherePi(t) denotes the transmitting power of nodei at timet, As(t) is the set of active nodes transmitting

at timet, N0 denotes the thermal noise andβ is the minimum SINR for the receiver to successfully decode

data packets. The channel gain from nodek to nodel at time t is represented bygkl(t), which captures

path loss, fading and shadowing effects in the wireless environment. Eq. (1) simply states the physical

requirement of the existence of a directional link from nodei to nodej at timet. Given that many routing

algorithms require bi-directional links, we expect the SINR law to be satisfied for the reverse link, e.g.,

j → i. We simply call a bi-directional link as a link throughout this paper.

The topology (or connectivity graph)G(t) of the network at timet can be obtained by replacing the

available wireless links with lines connecting the corresponding node pairs. We use the terms topology

and connectivity graph interchangeably.

Given the above terminology and assumptions, we seek answers to the following questions:

• Is there an analytical model to statistically characterizethe distribution of topology chnages in

MANETs? If so, are we able to derive the associated parameters analytically?

• If there is such a model, are we able to apply the model to analyze the effect of mobility on the

control overhead of proactive routing protocols? Or mathematically, could we find the functionF

that projects the control overheadOd in MANETs given that we know the node mobilityV and the

control overheadOs incurred by the protocol in a static topology?

F : Os × V → Od (2)

III. PROACTIVE ROUTING OVERHEAD IN DYNAMIC GRAPHS

A routing protocol operates on the connectivity graph (topology) G of a MANET. Let ~G = {Gi} be the

set of all possible connectivity graphs of the MANET. In steady-state, the connectivity graphG(t) travels

across all such graphs with a stable distribution vector~p = {pi} derived from the stationary spatial nodes’

distribution.

A change that occurs in the connectivity of the MANET inducesthe transition from a connectivity

graph of the MANET to another connectivity graph. For simplicity, in the rest of this paper, we refer to

the transition from one connectivity graph to another as atopology evolution.
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If we look at the connectivity graph from the standpoint of single node, a topology evolution can be

triggered by changes in its immediate neighborhood or by updates received from its neighbors. If we

observe the protocol behavior at a typical active nodek, we can derive from~G the set of all possible

local connectivity graphs~Gk = {Gk
i } with the corresponding distribution vector~pk = {pk

i }.

As Fig. (1) illustrates, we assume that when there is no change in topology, nodes periodically broadcast

topology control (TC) messages at regular intervalTc. For this case, the average TC messages per active

node in static scenariosOs is simply

P (Os) = P (Gk
i ) = 1/Tc,∀i (3)

If we assume that a topology change happens at timeti, KTc < ti ≤ (K +1)Tc, it induces the transition

of the local connectivity graph fromGk
i to Gk

j . The routing protocol reacts to the change by advancing

the TC message broadcast at some timet∗i , KTc < t∗i ≤ (K + 1)Tc, rather than broadcasting at the next

planned time(K + 1)Tc. The subsequent TC message broadcast will perform regularly with graphGk
j .

In this case, compared to the static scenario where no changeoccurs, the increaseγi(t) in generated TC

message associated withGk
i can be computed as follows:

γi(ti) =
(K + 1)

t∗i
/

K + 1

(K + 1)Tc

=
⌈t∗i /Tc⌉

t∗i /Tc

(4)

where⌈·⌉ is the ceiling operator.

The average increaseγi in generated TC messages in the graphGk
i can be computed as

γi = Eti(
⌈t∗i /Tc⌉

t∗i /Tc

) (5)

Statistically, γi measures the normalized transition cost forGk
i and t∗i is determined by theti that

captures the stability of the local topologyGk
i . Summing over all possible topologies, we can estimate the

average number of generated TC message per active node as

P =
∑

∀i

pk
i P (Gk

i ) ∗ γi (6)

As we will see in Section V, if we are only concerned with nodalmobility and given that nodes

are moving randomly and independently of one another, we could assume that link changes arrive

independently and{ti} are of identical statistical distributions, being a renewal process. We have then
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P = γ ×
∑

∀i

pk
i P (Gk

i ) (7)

γ = E(
⌈ζ∗/Tc⌉

ζ∗/Tc

) (8)

whereζ∗ is decided onζ and ζ is the observed stability of the local connectivity graph per active node.

γ is the penalty factorthat measures the cost in graph transitions for an active node and as we will see

later, it is a function of nodal mobility and stability of thelocal connectivity graph. Furthermore, a closer

look at Eq. (7) shows that the increased traffic overhead can be estimated from the average performance

of static graphs, which is exactly the right term in the equation.

In a homogeneous network, every node in the network operatesin a similar way. Therefore, we can

expect similar results on the whole network. Hence, we propose a model that estimates the control traffic

overhead from the knowledge of the mean overheadOs that occurs in static scenarios. Mathematically,

we can write it as the tentative answer for the question raised in Section II as

We could have a functionF that projects the control overheadP (Od) in MANETs with the knowledge

of mobilityV and control overheadP (Os) of protocol at static scenarios. And the function can be written

as,

F : P (Od) = γ(V) ∗ P (Os) (9)

However, we need to know the distribution of topology evolutions (ti in Eq. (4)) for the computation

of mobility effect on proactive routing overhead. To obtainsuch a model, we will first discuss factors that

affect the stability of topology and then propose analytical model for topology evolution.

IV. TOPOLOGY: FACTORS FORCHANGES

A. Setup

Due to node mobility and the surrounding parallel transmissions, links between nodes are set up and

broken dynamically. We introduce a{0, 1}-valued on-off processfij(t), t ≥ 0 to model such link changes

asfij(t) = 1 (or fij(t) = 0) if the unidirectional link from node i to node j, is available (or unavailable)

at time t ≥ 0. Clearly, we havefij(t) = fji(t) because we only consider bi-directional links.
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If we map every active (on) link to an edge in a graph withN vertices where each vertice stands for a

node inV , we can obtain the time-varying graph (topology)G(t) with a time-varying setE(t) of edges

as

E(t) := {{i, j} ∈ V × V, i 6= j; fij(t) = 1} (10)

It should be noted thatG(t) is the connectivity graph of the network, which is anundirectedgraph,

given that we consider bi-directional links. LetE be the complete set of possible links in the graph, i.e.,

E := {{i, j} ∈ V × V, i 6= j} (11)

The complementary setEc(t) of E(t) can be computed as

Ec(t) = E − E(t) (12)

Each link change, such as new link formation or breakage of existing links, results in a change in the

connectivity graph and could further result in a protocol event in the network to distribute such change.

Let τ be the moment that the connectivity graphG(t) changes at timet + τ from its last change at time

t. Clearly,τ is the random variable describing the duration of stabilityof the connectivity graphG(t). In

general, there are two different scenarios responsible forchanges ofG(t). One is the creation or arrival of

new link. Letτo be the random variable capturing the time duration of such new link arrivals or addition of

new edges inG(t). Similarly, we have another random variableτf characterizing the breakage of existing

links or deletions of edges inG(t). We will have

τ = min{τo, τf} (13)

Our objective is first to identify the factors that affect thestability τ of the connectivity graphG(t) and

then find the analytical model that characterizes the statistical distribution ofτ .

B. Factors in Connectivity Graph

It is apparent from Eq. (1) that the availability of links depends on the wireless environment (captured

in channel gaingkl(t)) and also on the traffic and MAC schemes, which together decide the active set

of transmitting nodesAs(t). If we do not explicitly model the shadowing effect and short-term channel
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variations such as channel fading between nodes, it is reasonable to assume that the channel gain can be

computed according to the exponential attenuation model, that is,

g = r−α (14)

where r denotes the Euclidean distance between two communicating nodes andα is the exponential

attenuation coefficient, normally ranging from2 to 5 with various wireless environments.

By introducing a dynamic and sometimes intractable active set As(t), the involvement of traffic and

MAC schemes significantly complicates the problem with a dynamic varying interference term. We call

such a termenvironmental mobility, which results from surrounding traffics and parallel transmissions.

When the MAC protocol schedules transmissions perfectly, multiple access interference is negligible

compared to the noise and can be considered zero, i.e., no environmental mobility. In such case, the

deciding factors for link availability lies in the transmission power and radio propagation loss and it can

be expressed as

Pi(t)gij(t)

N0

≥ β and
Pj(t)gji(t)

N0

≥ β (15)

If all nodes transmit with a uniform power, given Eq. (14), the link between two nodes becomes available

as soon as they are within communication range of each other,i.e., their Euclidean distance is smaller

than the maximum radio coverageR for a transmitting node. Under these assumptions, the availability of

links is purely a function of the relative distances betweennodes, which in turn are determined by nodal

mobility.

Thus far, we have identified two factors affecting the connectivity graph, environmental mobilityand

nodal mobility. However, the defining feature of MANETs isnodal mobility, which is a natural result from

nodal movements. Accordingly, given that no analytical models exist for topology evolutions resulting

from nodal mobility in MANETs, this is the focus of the model we describe next.

V. M ODELING NODAL MOBILITY

Nodal motion changes the distances among nodes, and therefore results in the dynamic establishment

and termination of links. Compared to the SINR law in Eq. (1), links defined by Eq. (15) are longer and

exist for the maximum possible duration of link availability if only the effects of mobility are considered.

In practice, the offered traffic and the scheduling of packets provided by the MAC protocol renders a
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smaller utilization of links. Hence, the link utilization under a real MAC protocol is smaller than the one

predicted by Eq. (15).

For each link in setE(t), let T o
ij(t) denote theresidual lifetime of the link after timet, i.e., T o

ij(t) is

the amount of the time that elapses from timet until link is unavailable. Correspondingly, for each link

in set Ec(t), T f
ij(t) be theresidual silence time of link after timet, i.e., T f

ij(t) is the amount of time

elapsed from timet until a link is available. Due to the underlying stationarity implied from the joint

stationarity of trajectory processes, it suffices to consider only the caset = 0 and we can simply drop the

time parametert. Hence,T o
ij = T o

ij(t). Clearly, we have

τo = min{T o
ij of link {i,j} ,∀{i, j} ∈ E(t)} (16)

τf = min{T f
ij of link {i,j} ,∀{i, j} ∈ Ec(t)} (17)

For each link{i, j}, the associated link availability processfij(t), where t ≥ 0, is simply an on-off

process with successive up and down states with associated time durations, denoted by random variables

fij(k); k = 1, 2, . . . and fji(k); k = 1, 2, . . ., respectively. Such a processes can also be obtained from

nodes’ relative trajectories. When only nodal mobility is considered as the variable of interest, according

to Eq. (15), a link between nodesi and j in V is available at timet ≥ 0 if and only if their distance is

smaller thanR. As a result, the link availability is given by

fij(t) := 1[‖Ti(t) − Tj(t)‖ ≤ R]; t ≥ 0, (18)

where‖ · ‖ denotes the Euclidean operator to compute the distance.

Let Z(t) =
∑

∀{i,j} fij(t) and it is clear thatZ(t) is a renewal process comprised from a total number of

|E| on-off link availability processes, where|·| is the cardinality operator. Clearly,τ describes the refreshing

interval,τo specifies the interval between upward renewals andτf denotes the interval between downward

renewals of the renewal processZ(t). By applying the well-known results from renewal processes and

independent on-off processes in equilibrium [21], we have following theorem onτ .

Theorem 1:[Stability Model]

When setsE(t) and Ec(t) involve a sufficient number of links and all such links are assumed to

be independent, the distribution ofτo and τf can be approximated by the exponential distribution with

parameterλo and λf . And the distribution of stabilityτ of the connectivity graph is also exponentially
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distributed with parameterλ = λo + λf . Therefore,

P (τo ≤ t) = 1 − e−λot (19)

P (τf ≤ t) = 1 − e−λf t (20)

P (τ ≤ t) = 1 − eλt = 1 − e−(λo+λf )t (21)

The above result is also known as Palm’s theorem [21]. It states that the distribution of a superposition

of Nr i.i.d random variables converges to the exponential distribution asNr approaches infinity. This

result can be generalized to incorporate cases of independent but non-homogeneous motions, where some

nodes may follow different mobility models from others.

The independence assumption for links, and the applicationof Palm’s theorem, can be questioned in

MANETs, because of the broadcast nature of their links. However, if the movement of nodes satisfies some

mixing condistionsknown asm-dependence[22], the statement in Theorem (1) still holds. Such relaxed

conditions introduce a form of asymptotic independence as the hop distance between links increases, while

allowing dependence in neighborhoods. Specifically,m-dependencemeans that the correlation between

links decreases as the hop-distance between links increases and links can be assumed to be independent

when the hop distance between links is greater than a given value m. Fortunately, most mobility models

used to study MANETs fall in this category (e.g., the random waypoint mobility model, random direction

mobility model and random trip mobility model) and our results can be applied to a wide-variety of

scenarios.

A. Relations betweenλo and λf

We have observed that the new link formation process and linkbreakage process can be approximated

by Poisson process with parametersλf andλo, respectively. For the new link formation process (or the link

breakage process),λf (or λo) characterizes the average number of new link arrivals (or link breakages).

Let us consider a time windowT that is sufficiently large. The number of new link arrivalsNa and link

breakagesNb within the time window can be approximated by

Na = λf ∗ T (22)

Nb = λo ∗ T (23)
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For a network with a finite number of nodes that is observed foran infinite length of time, the difference

of the number of new link arrivals and link breakages can be denoted by

lim
T→∞

(Na − Nb) = lim
T→∞

T ∗ (λf − λo). (24)

Clearly, the only choice is

λf = λo. (25)

This indicates that, on the long run, the new link arrival process should be balanced off by the link

breakage process. Otherwise, it contradicts the fact that the network only involves a finite number of

nodes.

B. Analytical Evaluation ofλf or λo

If we know the parameter for the link breakage or link creation process, we can infer the other one.

The link breakage process is characterized by the distribution of residual link life time, a direct evaluation

of which requires exact knowledge of the underlying mobility characteristics. However, we can make

general statements on the underlying new link formation process, resorting to the exponential modeling

with parameterλl of point-to-point link formation in [23], as described in Appendix.

For a particular connectivity graphGi with associated setsEi andEc
i , there is a total number of|Ec

i |

potential point-to-point links that can be created. Becausethe time distribution of new link formation can

be modeled as exponentially distributed with parameterλl, the stability for this particular connectivity

graph can be measured with parameter

λf (Gi) = |Ec
i | ∗ λl (26)

When a network is running in steady-state and inferring from the joint stationarity assumption of

underlying trajectory processes,G(t) is a stationary and ergodic process that will experience allpossible

connectivity graphs with an associated probability vectorderived from the steady-state nodes’ distribution.

By averaging all possible graphs, we can compute the parameter λf as

λf = E(|Ec
i |) ∗ λl (27)
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whereE(·) stands for expected value.

A general model of MANETs in steady-state exists and is knownas arandom geometric graph[24].

This model has been widely adopted in analytical works of MANETs and considered as an improvement

over the model ofrandom graphin static networks. Using the model ofrandom geometric graph, we can

computeλf as

λf = N̄f ∗ λl (28)

whereN̄f is the average number of potential link pairs and it can be computed as

N̄f =
N ∗ (N − 1)

2
∗ (1 −

πR2

L2
) (29)

We thus arrive to the following theorem on the distribution of the stabilityτ of the connectivity graph.

Theorem 2:[Analytical Stability Model] The distribution of stabilityτ of the connectivity graph in

MANETs can be approximated as exponentially distributed with parameterλ and the parameterλ is given

by

λ = N ∗ (N − 1) ∗ (1 −
πR2

L2
)

∗ 2E[V∗]R
∫ L

0

∫ L

0
π2(x, y)dxdy

︸ ︷︷ ︸

λl

. (30)

whereπ(x, y) denotes the steady-state spatial nodes’ distribution andE[V∗] is the average relative velocity.

C. Model Validations

We validated our analytical model of the stability of topologies by comparing its results against

simulations. In the scenario used for comparison, there area total of 100 nodes randomly placed for

each1000m × 1000m square cell. Each node has the same transmit power and the radio transmission

range considered is250m, that is the nominal coverage of IEEE 802.11 PHY layer. Four different speeds

{5m/s, 10m/s, 15m/s, 20m/s} are simulated for both the random waypoint mobility model (RWMM) and

random direction mobility model (RDMM). Nodes are randomly activated to randomly choose destination

node for data transmission. The traffic of activated nodes are supplied from a CBR source with a packet

rate0.5p/s.
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Figs. (2) and (3) present the results on complementary cumulative distribution function (CCDF) of the

distribution of topology evolutions for RWMM and RDMM, respectively. It can be observed that for both

cases, the exponential distribution model match pretty well with the simulation results and the analytical

evaluation of the parameter also exhibits quite good approximation to the simulations.

VI. A NALYZING CONTROL TRAFFIC OVERHEAD IN OLSR

From the previous sections, we already know that the distribution of stability of the connectivity graph

can be approximated as exponentially distributed with parameterλ given in Theorem 2. We apply our

model to project the control traffic overhead of the OLSR protocol.

A. Brief Overview of OLSR

In OLSR, nodes periodically send out HELLO messages to keep track of their neighbors. A HELLO

message contains the one-hop neighbors of a node and status of adjacent links. Upon receiving and

analyzing HELLO messages, nodes can compute their multipoint relays (MPR). The MPR set of a node

is a subset of its neighbor nodes that are connected (i.e., cover) all their two-hop neighbors. The node

making the selection of MPRs is calledMPR Selector. Every node could have multiple nodes to select

itself as a MPR node, i.e., have multiple MPR selectors. Topology control (TC) messages are generated

periodically by nodes with non-empty sets ofMPR selectorsto disseminate{MPR selector, MPR} link

information to the whole network. In case of nodes detectingchanges in the set ofMPR selector, TC

message could be initiated earlier than the regular interval to respond to the change. Node keep track of

the TC messages and use such link information for path selection and traffic routing.

The purpose of using MPRs in OLSR is to reduce the flooding of broadcast packets. For every node,

its TC packets are retransmitted only by its MPR neighbor nodes and thus results in a saving of duplicate

transmissions but still maintains satisfactory packet delivery. Clearly, the smaller the MPR set is, the more

saving in the protocol.

A link breakage in OLSR is detected when a node fails to receive several consecutive HELLO messages

from one of its neighbor node. A link addition is detected when a node starts to receive HELLO messages

from a node not in its current one-hope neighbor set. Every change in the two-hop neighborhood link set

will result in a protocol event of the node reacting to the change by recomputing its MPR set and could
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further result in MPR set. Therefore, it could lead to earlier TC message broadcast and the increase in

the control traffic.

B. Parameterizing The MPR Selection Algorithm

By employing MPRs in OLSR, link changes need not result in a protocol event. However, the changes

that happen atcritical links (i.e., {MPR selector, MPR} pairs) surely trigger a protocol event. For the

reason, we need to find a parameter that characterizes the performance of the MPR selection algorithm in

OLSR, and further utilize it to derive the distribution of theconnectivity graph. Before proceeding with

choosing the appropriate performance metric, we need to first review the MPR selection algorithm. The

MPR selection algorithm works as follows:

1) Select the node within the set of one-hop neighbor nodes asMPR node, if among the two-hop

neighbor nodes, there are one or more than one nodes that are only covered by the node.

2) Choose a one-hop neighbor node as MPR node, if it covers the most of remaining two-hop neighbor

nodes that are not covered by nodes in the MPR set. Repeat the step until all two-hop neighbor

nodes are covered by the MPR set.

The MPR selection algorithm is a greedy algorithm and its performance varies depending on the graphs

on which it operates. Its heuristic nature, edge effects, and its graph-dependent performance significantly

complicates the modeling problem and prevents an analytical modeling (if feasible) of the algorithm. For

this reason, the parameter that we are looking for should reflect the statistical performance of the MPR

algorithm and an evaluation of such parameter could be obtained by statistical evaluation with random

geometric graph model.

A natural choice of the parameter should be the performance metric that answers the questions how

much savings the MPR selection algorithm brings in reducingthe duplicate flooding packet. Let’s define

Neighbor{i} as the set of one-hop neighbor nodes and letMPR{i} be the MPR set for nodei. It is

obvious that,MPR{i} ⊆ Neighbor{i} Then the one-hop savingβi from MPR selection can be evaluated

as

βi =
|MPR{i}|

|Neighbor{i}|
(31)
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Clearly,0 < βi ≤ 1. Eventually, we define a parameterβ termed asbroadcast efficiencyto characterize

the statistical performance of MPR selection algorithm. And it can be obtained through the statistical

averaging over all possible nodes and graphs of the one-hop saving computed in Eq. (31).

β = EG,i(βi), 0 < β ≤ 1 (32)

The smallerβ is, the more saving the MPR algorithm brings.β is also a statistical measure of the

percentage of critical links ({MPR selector, MPR} pairs) out of total links in OLSR. From Section V, we

can infer that the distribution of link breakages of such links can also be approximated as exponentially

distributed with parameterλc = β ∗ λo
1.

C. Computation of Penalty Factor

The only remaining problem is to computeγ as a function of nodal mobility or the stabilityζ of the

local connectivity graph. First, we need to look at howζ∗ is determined fromζ, i.e., to understand how

OLSR reacts to an effective change. Effective change means that the node detect a change in the set of

MPR selectors, since OLSR operates on the sub-graph from critical links.

Fig. (4) illustrates how OLSR reacts to an effective change.Suppose that a change arrives atKTc <

ζ ≤ (K +1)Tc, then the next scheduled TC message is advanced to be broadcasted at timeζ∗, the choice

of which depends on when the change actually happened. IfKTc < ζ ≤ KTc + ∆, then the TC message

will be broadcasted atζ∗ = KTc + ∆. For other casesKTc + ∆ < ζ ≤ (K + 1)Tc, TC message will

be broadcasted immediately (ζ∗ = ζ) when change is detected. The purpose of having∆ in OLSR is to

avoid the case in which changes arrive too often and result intoo much flooding from broadcasting TC

messages. By aggregating such changes during∆ period in one TC message, the protocol can limit the

maximum TC message broadcast rate but still achieve satisfactory performance. Summarizing the above

analysis, one has

ζ∗ =







KTc + ∆, KTc < ζ ≤ KTc + ∆

ζ, KTc + ∆ < ζ ≤ (K + 1)Tc

(33)

1It can be derived from the fact that parameters of exponential distribution of topology evolutions are linearly proportional to the number

of links evaluated andβ denotes the percentage of the number of MPR links out of total links.
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An effective change is the change that results in a change in the set of MPR selectors. Such changes

depend on the stability of the local connectivity graph. Anychanges in the local connectivity graph could

lead to a re-computation of MPR set and further results in an effective change. We have the following

itemized discussions on changes,

• A new link is detected in the local connectivity graph of nodek. It will result in a MPR set

recomputation of neighbors within two hop distance of the new link. Such link may or may not

lead to a change in MPR selectors of nodek.

• A link breakage is detected in the local connectivity graph but not in the critical links of nodek.

For such cases, it still leads to a recomputation of MPR set but not necessarily affect the operation

of nodek.

• A link breakage in critical links of nodek is detected and as a result, nodek will detect a change

in the set of MPR selectors. Such change is surely an effective change on nodek and nodek needs

to react to the change by earlier TC message broadcast.

Due to the heuristic characteristic of MPR selection algorithm, an analysis of the first two scenarios

could be significantly complicated (if feasible at all). Taking a conservative approach, we only consider

the last scenario, where link breakage is detected in critical links. Because we know that the stability

of overall critical links can be approximated by an exponential distribution with parameterλc, we can

approximate the single-node stabilityζ of critical links as also exponentially distributed with parameter

λs = N ∗λc. Note that such approximation becomes closer as node density increases, i.e., nodes associated

with more critical links.

We can then compute the penalty factorγ as a funciton mobilityV as

γ(V) = E(
⌈ζ∗/Tc⌉

ζ∗/Tc

) = f(λs) (34)

wheref(·) denotes mapping function and can be numerically computed after knowing the parameterλs

of ζ (or ζ∗). It is also worthy of noting that the penalty factor is a direct function of local connectivity

graph and suggests that the stability of connectivity graphcan greatly affect the protocol performance.

D. Simulation Results

In the simulation, the area of the network is a1000m × 1000m square cell. Each node has the same

transmit power and the radio transmission range consideredis 250m. The number of nodes changes in
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the set{40, 60, 80, 100} to simulate various node densities. The implementation of OLSR is the default

implementation inQualnet 3.9.5. Nodes are randomly activated to randomly choose destination node for

data transmission. The traffic of activated nodes are supplied from a CBR source with a packet rate0.5p/s.

And the movement follows the random waypoint model as the default setting inQualnet. The maximum

speeds considered are{0m/s, 5m/s, 10m/s, 15m/5, 20m/s}, ranging from static topologies, pedestrian

speed to normal vehicle speed. The MAC layer is set as the 802.11 MAC. Overall, we simulate a total of

20 different network configurations. For each configuration,50 simulations with random generated seeds

are conducted to capture the statistical performance.

To study the effect of nodal mobility, we modified theQualnetsimulator to eliminate packet losses due

to collisions in the channel. We call this caseperfect MAC. Figs. (5) to (8) demonstrate the performance

of the analytical model versus simulated performance whennodal mobilityis the only performance factor.

It can be observed that the analytical model provides a very good estimate compared to the simulations.

Because we take a conservative approach in Section VI-C, the analytical model usually underestimates

the overhead. As expected, the difference between the modeland simulations decreases as node density

increases, as critical links become more dominance in the local connectivity graph or link changes at

non-critical links brings less effect on the sub-graph fromcritical links.

To evaluate the model in practical scenarios, we used the original setting ofQaulnet in interference

computation. In this case, the real 802.11 MAC works under collisions and back-offs. The simulation

results are then illustrated in Figs. (9) to (12). In general, the model still provides a good approximation;

however, the difference between the model and simulations are more pronounced due to additional effect

from environmental mobility. Overall, we believe that our model provides satisfactory performance in

estimating the routing overhead and brings deeper insight on how mobility affect the routing overhead.

VII. CONCLUSION

We evaluated analytically the interdependence between routing overhead and the stability of the network

topology by characterizing the statistical distribution of topology evolutions. The stability of topology

can be modeled as exponentially distributed with a parameter computed from network configurations.

Utilizing the proposed model, the routing overhead of OLSR was analyzed and the results showed that

the proposed model gives good estimate of routing overhead and meanwhile provides good insight on

how nodal mobility affects the routing overhead.
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APPENDIX

Theorem 3: Let two nodes move independently of each other in a square of sizeL×L with speedsV1

andV2. Let E[V∗] be the average relative speed between the two nodes, and letπ(x, y) be the distribution

of the node location in steady-state. If the transmission rangeR ≪ L and the location of a node at time

t is independent of its location at timet + ∆t, for some small∆t, then the distributionF of new link

arrivals for the two node is approximately exponentially distributed with parameterλl, whereλl is given

by

λl ≈ 2E[V∗]R
∫ L

0

∫ L

0
π2(x, y)dxdy. (35)

The average time for the new link arrival is

E[F ] =
1

λl

=
1

2E[V∗]R
∫ L
0

∫ L
0 π2(x, y)dxdy

(36)

In particular, for random direction mobility model and random waypoint mobility model, it has following

corollary.

Corollary 1: The distribution of new link arrival between two nodes for the random direction mobility

model forR ≪ L is approximately exponentially (λRD) distributed, whereλRD is

λRD ≈=
2E[V∗]R

L2
(37)

The expected time for the new link arrival is given by

E[FRD] ≈
L2

2E[V∗]R
. (38)

Likewise, for the random waypoint mobility model we have

λRW ≈
2ωE[V∗]R

L2
, (39)

E[FRW ] ≈
L2

2ωE[V∗]R
, (40)
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whereω is the Waypoint constant.

It is worthy of noting that such a point-to-point exponential modeling of new link formation has also been

extended to MANETs with restricted mobility [25].
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Fig. 1. Protocol behaviors with local connectivity graphs.
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Fig. 4. Graphical Illustration on Change Response
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Fig. 5. perfectMac: N40
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Fig. 6. perfectMac: N60
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Fig. 7. perfectMac: N80
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Fig. 9. Real Mac: N40
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Fig. 10. Real Mac: N60
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Fig. 11. Real Mac: N80
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