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Modeling of Topology Evolutions and Implication

on Proactive Routing Overhead in MANETS

*Xianren Wu, Hamid R. Sadjadpour and J.J. Garcia-Luna-Ageve

Abstract

We present a mathematical framework for quantifying thedotf node mobility on the overhead of proactive
routing protocols in mobile ad hoc networks (MANETS). Weds@n MANETSs in which nodes move randomly. The
analytical model we introduce models signaling overheaal fasiction of stability of topology, and characterizes the
statistical distribution of topology evolutions. Althdugve could apply our analytical framework to any proactive
routing scheme, we use the OLSR protocol as an example of odelrbecause it is a leading example of proactive
routing for ad hoc networking. We corroborate the accurddye results obtained analytically by means of results

obtained with discrete-event simulations using the samanpeters adopted in the analytical model.
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. INTRODUCTION

Mobility brings fundamental challenges to the design oftpcol stacks for mobile mesh networks
(MANETS). The mobility of nodes implies that the routing pyools of MANETS have to cope with
frequent topology changes while attempting to produceecbmouting tables. Proactive routing protocols,
which are the focus of this paper, provide fast responsegolégy changes by continuously monitoring
topology changes and disseminating the related informad® needed over the network. However, the
price they pay is the increase in signaling overhead as fhadgy changes increase, and this can further
lead into smaller packet-delivery ratios and longer del&yshe worst case, “broadcast-storms” [1] can
result, congesting the entire network. Hence, it is esaktdi understand the intricate relations between
routing overhead and topology changes for the design ofngudrotocols in MANETS.

Characterizing the impact of mobility on the performance adggtive routing protocols is a very
complex problem. Consequently, the provision of such chiaraation has been limited to simulation-
based approaches [2], [3], [4], [5], [6]. Few if any analgtistudies have been pursued on this topic.
Zhou et. al [7] gave an analytical view of routing overheadezictive protocols, assuming static network
(manhattan grid) with unreliable nodes and concludes th&abiity of reactive protocols with localized
traffic pattern. Topology changes resulting from node niybivas not considered in [7]. In [8], an
information theoretic analysis is pursued to bound the mgmequirement and overhead incurred by a
hierarchical routing protocol for MANETs based on entropyerof topology changes.

The previous work does provide a good understanding of théalsitity properties of the signaling
of routing schemes. However, to the best of our knowledgerethis no previous analytical work that
establishes an analytical connection between routingheast and topology changes due to mobility.
Moreover, the past work has not even characterized topobbgynges as a function of node mobility,
which is crucial to make the connection we seek.

In this paper, we provide the first analytical framework floe imodeling of proactive routing overhead
as a function of node mobility. In so doing, we model topolaganges explicitly as a function of
node mobility. Section Il summarizes the network model usedur anaysis and formulates the problem
to be solved. Section Il explains the general frameworktfigr modeling of proactive-routing overhead.
Section IV discusses properties of the topology of a MANET &actors that affect its stability. Section V

explains our analytical model. Clearly, our results com@atprevious information theoretic analysis [8]



by providing entropy rate and a model of topology changes.

Because of its practical importance, Section VI applies anmegal framework to the analysis of the
optimized link state routing protocol (OLSR) [9]. Our ana$ysf OLSR provides a better insight on its
operation, and corroborates the effectiveness of our nmagifmework. We compare our analytical results
againstQualnetsimulations based on scenarios assuming random node tpobhie results illustrate the

accuracy of our analytical framework. Section VIl conclsdkis paper.

[I. SYSTEM MODEL & PROBLEM STATEMENT

We consider a network operating in a square area, which isistemt with several prior analytical
models [10], [11], [12]. The entire network is of siZze x L and there arex nodes initially randomly
deployed in such a “square network.” Note that, although wmsiler a square network in the paper, our
analysis can be extended to networks of any shape in a dfeigard way.

Nodes are mobile and initially equally distributed over tietwork. The movement of each node is
independent and unrestricted, i.e, the trajectories oés@an lead to anywhere in the network. For node
ieV={12,...,N}, let{T;(t),t > 0} be the random process representing its trajectory and tlkew
in D, whereD denotes the domain across which the given node moves. Tdifsimpr modeling task,
we make the following assumption on the trajectory pro@sss

Assumption 1:Stationarity] Each of the trajectory processesg;({)) is stationary, i.e., the spacial
node distribution reaches its steady-state distributicespective of the initial location. Thd trajectory
processes angintly stationary i.e., the whole network eventually reaches the same stetatly from any
initial node placements, within which the statistical sgplatodes’ distribution of the network remains the
same over time.

The above assumption is quite fundamental in the sensetthatsi the foundation for the modeling
of node movement. Most existing models, (e.g., random ticmeanobility models [13], [14], [15], [16],
[17], random waypoint mobility models [18], [19] and randdrip mobility model [20]) clearly satisfy
our assumption. In other words, our assumption ensuresdhathe long run, the network converges to
its steady state and the stationary spatial nodes’ disimibican be used in the performance analysis of
the network.

The availability of communication links (e.g. from nodeo nodej) is governed by the Signal-to-



Interference-plus-Noise Ratio (SINR) protocol model as,
Pi(t)gi;(t)
No + Xkeay @) ki Pr(t)gri(t) —
whereP;(t) denotes the transmitting power of nodat timet, A,(t) is the set of active nodes transmitting

(1)

at timet, Ny denotes the thermal noise afds the minimum SINR for the receiver to successfully decode
data packets. The channel gain from ndd® nodel at timet is represented by, (¢), which captures
path loss, fading and shadowing effects in the wirelessrenment. Eq. (1) simply states the physical
requirement of the existence of a directional link from node node; at timet. Given that many routing
algorithms require bi-directional links, we expect the RIlNw to be satisfied for the reverse link, e.g.,
j — i. We simply call a bi-directional link as a link throughouigtpaper.
The topology (or connectivity graphj(¢) of the network at time can be obtained by replacing the
available wireless links with lines connecting the cormgping node pairs. We use the terms topology
and connectivity graph interchangeably.
Given the above terminology and assumptions, we seek asdwéhe following questions:
. Is there an analytical model to statistically characteritee distribution of topology chnages in
MANETS? If so, are we able to derive the associated parametalytically?

« If there is such a model, are we able to apply the model to arallge effect of mobility on the
control overhead of proactive routing protocols? Or matlagically, could we find the functiotF
that projects the control overhea@, in MANETS given that we know the node mobilityand the

control overhead?); incurred by the protocol in a static topology?

F: 0, xV — Oy (2

[Il. PROACTIVE ROUTING OVERHEAD IN DYNAMIC GRAPHS

A routing protocol operates on the connectivity graph (togg) G of a MANET. LetG = {G;} be the
set of all possible connectivity graphs of the MANET. In steatate, the connectivity gragh(t) travels
across all such graphs with a stable distribution vegter{p;} derived from the stationary spatial nodes’
distribution.

A change that occurs in the connectivity of the MANET indudles transition from a connectivity
graph of the MANET to another connectivity graph. For siroipyi in the rest of this paper, we refer to

the transition from one connectivity graph to another daspmlogy evolution



If we look at the connectivity graph from the standpoint aigée node, a topology evolution can be
triggered by changes in its immediate neighborhood or byatgsdreceived from its neighbors. If we
observe the protocol behavior at a typical active nédeve can derive frong the set of all possible
local connectivity graphg* = {GF} with the corresponding distribution vectpt = {pF}.

As Fig. (1) illustrates, we assume that when there is no ahamtppology, nodes periodically broadcast
topology control (TC) messages at regular inteffjalFor this case, the average TC messages per active

node in static scenaria8; is simply
P(O,) = P(GF) = 1/T,, Vi (3)

If we assume that a topology change happens attjm€T,. < ¢; < (K +1)T,, it induces the transition
of the local connectivity graph frorg* to g]’?. The routing protocol reacts to the change by advancing
the TC message broadcast at some titné(7T,. < tf < (K + 1)T,, rather than broadcasting at the next
planned time(K + 1)T.. The subsequent TC message broadcast will perform regukath graphG¥.
In this case, compared to the static scenario where no chac@es, the increasg(¢) in generated TC
message associated wifli can be computed as follows:

B (K+1) K+1 B [t:/T:]
Yi(ti) = t;* /(K+ 0T, ~ /T, (4)

where[-] is the ceiling operator.

The average increasg in generated TC messages in the grgfhcan be computed as

47/ Te]

ti/T.

T = B ) (5)

Statistically, v, measures the normalized transition cost ¢r and ¢; is determined by the; that
captures the stability of the local topology. Summing over all possible topologies, we can estimate the

average number of generated TC message per active node as

P =3 piP(GF) * i (6)
Vi

As we will see in Section V, if we are only concerned with nodabbility and given that nodes
are moving randomly and independently of one another, wddcassume that link changes arrive

independently andt;} are of identical statistical distributions, being a renepracess. We have then



P = yxY prP(Gy) )
-

¢ /T.]
/T,

where(* is decided on, and( is the observed stability of the local connectivity graph getive node.

v = B ) (8)

~ is the penalty factorthat measures the cost in graph transitions for an active aod as we will see
later, it is a function of nodal mobility and stability of thecal connectivity graph. Furthermore, a closer
look at Eq. (7) shows that the increased traffic overhead eaestimated from the average performance
of static graphs, which is exactly the right term in the etprat

In a homogeneous network, every node in the network openatassimilar way. Therefore, we can
expect similar results on the whole network. Hence, we pgemomodel that estimates the control traffic
overhead from the knowledge of the mean overh@adhat occurs in static scenarios. Mathematically,
we can write it as the tentative answer for the question daiseSection Il as

We could have a functioft that projects the control overheall(O,) in MANETSs with the knowledge
of mobility V and control overhead’(O;) of protocol at static scenarios. And the function can be wnitt

as,

F: P(Oa) = (V) P(Os) (9)

However, we need to know the distribution of topology eviolus ¢; in Eq. (4)) for the computation
of mobility effect on proactive routing overhead. To obtairch a model, we will first discuss factors that

affect the stability of topology and then propose analytinadel for topology evolution.

IV. TorPOLOGY. FACTORS FORCHANGES
A. Setup

Due to node mobility and the surrounding parallel transioiss links between nodes are set up and
broken dynamically. We introduce{@, 1}-valued on-off procesg;;(¢),t > 0 to model such link changes
as fi;(t) = 1 (or f;;(t) = 0) if the unidirectional link from node i to node j, is avail@b{or unavailable)

at timet > 0. Clearly, we havef;;(t) = f;;(t) because we only consider bi-directional links.



If we map every active (on) link to an edge in a graph wihvertices where each vertice stands for a
node inV, we can obtain the time-varying graph (topolo@j(¥) with a time-varying setr(¢) of edges

as
E(t) = {{i,j} e Vx V,i#j; fi;(1) = 1} (10)

It should be noted thag(t) is the connectivity graph of the network, which is andirectedgraph,

given that we consider bi-directional links. L&t be the complete set of possible links in the graph, i.e.,
E:={{1,j} €V xV,i#j} (11)
The complementary sdt“(¢) of E(¢) can be computed as
E(t) = E — E(t) (12)

Each link change, such as new link formation or breakage istieg links, results in a change in the
connectivity graph and could further result in a protocadrgvin the network to distribute such change.
Let 7 be the moment that the connectivity gra@ly) changes at time + = from its last change at time
t. Clearly, 7 is the random variable describing the duration of stabiityhe connectivity graplg(¢). In
general, there are two different scenarios responsibletfanges ofj(¢). One is the creation or arrival of
new link. Letr, be the random variable capturing the time duration of suehlmk arrivals or addition of
new edges irG(t). Similarly, we have another random variablecharacterizing the breakage of existing

links or deletions of edges iG(t). We will have
T = min{7,, 77} (13)

Our objective is first to identify the factors that affect tability = of the connectivity grapld(¢) and

then find the analytical model that characterizes the statisdistribution ofr.

B. Factors in Connectivity Graph

It is apparent from Eq. (1) that the availability of links @jls on the wireless environment (captured
in channel gaing;(t)) and also on the traffic and MAC schemes, which together dettid active set

of transmitting nodesA(¢). If we do not explicitly model the shadowing effect and skertn channel



variations such as channel fading between nodes, it is mab#®to assume that the channel gain can be

computed according to the exponential attenuation mobat, is,
g=r" (14)

where r denotes the Euclidean distance between two communicatiigsnanda is the exponential
attenuation coefficient, normally ranging frodnto 5 with various wireless environments.

By introducing a dynamic and sometimes intractable actite4Asél), the involvement of traffic and
MAC schemes significantly complicates the problem with aatgit varying interference term. We call
such a termenvironmental mobilitywhich results from surrounding traffics and parallel trarssions.

When the MAC protocol schedules transmissions perfectlyfiphel access interference is negligible
compared to the noise and can be considered zero, i.e., nmmmental mobility. In such case, the
deciding factors for link availability lies in the transreisn power and radio propagation loss and it can

be expressed as

PO 5 5 ana DO (15)

If all nodes transmit with a uniform power, given Eq. (14 tink between two nodes becomes available
as soon as they are within communication range of each datbertheir Euclidean distance is smaller
than the maximum radio coveragefor a transmitting node. Under these assumptions, theadorkiy of
links is purely a function of the relative distances betweedes, which in turn are determined by nodal
mobility.

Thus far, we have identified two factors affecting the comimgg graph, environmental mobilityand
nodal mobility However, the defining feature of MANETsm®dal mobility which is a natural result from
nodal movements. Accordingly, given that no analytical eisdexist for topology evolutions resulting

from nodal mobilityin MANETS, this is the focus of the model we describe next.

V. MODELING NODAL MOBILITY

Nodal motion changes the distances among nodes, and treerekults in the dynamic establishment
and termination of links. Compared to the SINR law in Eq. (Ijkd defined by Eq. (15) are longer and
exist for the maximum possible duration of link availalyilit only the effects of mobility are considered.

In practice, the offered traffic and the scheduling of paskmbvided by the MAC protocol renders a



smaller utilization of links. Hence, the link utilizatiomder a real MAC protocol is smaller than the one
predicted by Eq. (15).

For each link in sett(t), let Tj(¢) denote theresidual lifetime of the link after timet, i.e., T/ (¢) is
the amount of the time that elapses from timentil link is unavailable. Correspondingly, for each link
in set £(t), 7}];-(75) be theresidual silence time of link after time, i.e., 7}’;(75) is the amount of time
elapsed from time until a link is available. Due to the underlying stationgrimplied from the joint

stationarity of trajectory processes, it suffices to comshly the case = 0 and we can simply drop the

time parametet. Hence, T}, = T (t). Clearly, we have

7, = min{T}; of link {ij} ,v{i,j} € E(t)} (16)

7r = min{T} of link {i,j} ,v{i,j} € E°()} (17)

For each link{i, j}, the associated link availability procegs(¢), wheret > 0, is simply an on-off
process with successive up and down states with associateddtirations, denoted by random variables
fij(k);k = 1,2,... and f;;(k); k = 1,2,..., respectively. Such a processes can also be obtained from
nodes’ relative trajectories. When only nodal mobility isismlered as the variable of interest, according
to Eq. (15), a link between nodésand j in V' is available at timg > 0 if and only if their distance is

smaller thanR. As a result, the link availability is given by
fii () = 1{|T:(t) = T;0)[| < R];t = 0, (18)

where|| - || denotes the Euclidean operator to compute the distance.

Let Z(t) = Yy fi5(t) and itis clear tha¥ (t) is a renewal process comprised from a total number of
| E| on-off link availability processes, whefe is the cardinality operator. Clearly,describes the refreshing
interval, 7, specifies the interval between upward renewals gndenotes the interval between downward
renewals of the renewal proce&4t). By applying the well-known results from renewal processed a
independent on-off processes in equilibrium [21], we haM®wing theorem onr.

Theorem 1:[Stability Model]

When setsE(t) and E<(t) involve a sufficient number of links and all such links areumssd to
be independent, the distribution of and 7, can be approximated by the exponential distribution with

parameter\, and A;. And the distribution of stabilityr of the connectivity graph is also exponentially
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distributed with parametek = A\, + A;. Therefore,

P(r,<t) = 1—e! (19)
P(rp<t) = 1—e M (20)
P(r<t) = 1—eM=1-—¢ QM) (21)

The above result is also known as Palm’s theorem [21]. lestHtat the distribution of a superposition
of N, ii.d random variables converges to the exponential distion as/V, approaches infinity. This
result can be generalized to incorporate cases of indepebdénon-homogeneous motions, where some
nodes may follow different mobility models from others.

The independence assumption for links, and the applicatfdalm’s theorem, can be questioned in
MANETS, because of the broadcast nature of their links. Heweaf the movement of nodes satisfies some
mixing condistionknown asm-dependencf?2], the statement in Theorem (1) still holds. Such relaxed
conditions introduce a form of asymptotic independenc&ahop distance between links increases, while
allowing dependence in neighborhoods. Specificattydependenceneans that the correlation between
links decreases as the hop-distance between links increagklinks can be assumed to be independent
when the hop distance between links is greater than a giviele wa. Fortunately, most mobility models
used to study MANETS fall in this category (e.g., the randoaymoint mobility model, random direction
mobility model and random trip mobility model) and our rédsutan be applied to a wide-variety of

scenarios.

A. Relations betweeh, and )\,

We have observed that the new link formation process andbiekkage process can be approximated
by Poisson process with parametgrsand),, respectively. For the new link formation process (or th& i
breakage process), (or \,) characterizes the average number of new link arrivalsi(dr breakages).
Let us consider a time windoW that is sufficiently large. The number of new link arrivalg and link

breakagesV, within the time window can be approximated by

Ny=A+T (22)

Ny= M\ T (23)
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For a network with a finite number of nodes that is observedioinfinite length of time, the difference

of the number of new link arrivals and link breakages can beotkl by

lim (N, — N,) = Tlim T s (Af—Ao). (24)

T—o00

Clearly, the only choice is
Ar = Ao (25)

This indicates that, on the long run, the new link arrivalgass should be balanced off by the link
breakage process. Otherwise, it contradicts the fact tietnetwork only involves a finite number of

nodes.

B. Analytical Evaluation of\; or A,

If we know the parameter for the link breakage or link creatpocess, we can infer the other one.
The link breakage process is characterized by the distobatf residual link life time, a direct evaluation
of which requires exact knowledge of the underlying mopiliharacteristics. However, we can make
general statements on the underlying new link formatiorc@ss, resorting to the exponential modeling
with parameter\; of point-to-point link formation in [23], as described in pendix.

For a particular connectivity grapfi; with associated setg; and E¢, there is a total number 9|
potential point-to-point links that can be created. Becahseime distribution of new link formation can
be modeled as exponentially distributed with paramegerthe stability for this particular connectivity

graph can be measured with parameter

Ap(Gi) = |Ef[* M (26)

When a network is running in steady-state and inferring frdv joint stationarity assumption of
underlying trajectory processe$(t) is a stationary and ergodic process that will experienceasdkible
connectivity graphs with an associated probability vedinived from the steady-state nodes’ distribution.

By averaging all possible graphs, we can compute the parametas

A= E(E7]) * A (27)
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where E(-) stands for expected value.

A general model of MANETS in steady-state exists and is knewrarandom geometric grapf24].
This model has been widely adopted in analytical works of MAN and considered as an improvement
over the model ofandom graphin static networks. Using the model cindom geometric graptwe can

compute); as

Ar = Ny N (28)

where N; is the average number of potential link pairs and it can bepuded as

N_N*(N—l) TR?

= 5 * (1 — ?) (29)

We thus arrive to the following theorem on the distributidrtiee stability~ of the connectivity graph.
Theorem 2:[Analytical Stability Model] The distribution of stabilityr of the connectivity graph in

MANETSs can be approximated as exponentially distributetth warameten and the parametex is given

by
A = N*(N—l)*(l—f)
R 2E[V*]R/OL /OL 72z, y)dady . (30)

wherer(z,y) denotes the steady-state spatial nodes’ distribution/hd is the average relative velocity.

C. Model Validations

We validated our analytical model of the stability of topgies by comparing its results against
simulations. In the scenario used for comparison, thereaatetal of 100 nodes randomly placed for
each1000m x 1000m square cell. Each node has the same transmit power and tietradsmission
range considered &50m, that is the nominal coverage of IEEE 802.11 PHY layer. Fofierént speeds
{5m/s,10m/s,15m/s,20m/s} are simulated for both the random waypoint mobility moda&MRM) and
random direction mobility model (RDMM). Nodes are randoméyiated to randomly choose destination
node for data transmission. The traffic of activated nodessapplied from a CBR source with a packet

rate 0.5p/s.
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Figs. (2) and (3) present the results on complementary aatiwmeldistribution function (CCDF) of the
distribution of topology evolutions for RWMM and RDMM, respeely. It can be observed that for both
cases, the exponential distribution model match pretty wigh the simulation results and the analytical

evaluation of the parameter also exhibits quite good appration to the simulations.

VI. ANALYZING CONTROL TRAFFIC OVERHEAD IN OLSR

From the previous sections, we already know that the digioh of stability of the connectivity graph
can be approximated as exponentially distributed with ipatar A\ given in Theorem 2. We apply our

model to project the control traffic overhead of the OLSR qcot.

A. Brief Overview of OLSR

In OLSR, nodes periodically send out HELLO messages to kesgk tof their neighbors. A HELLO
message contains the one-hop neighbors of a node and sfatdjacent links. Upon receiving and
analyzing HELLO messages, nodes can compute their muitipelays (MPR). The MPR set of a node
is a subset of its neighbor nodes that are connected (i.eer)call their two-hop neighbors. The node
making the selection of MPRs is callédPR SelectarEvery node could have multiple nodes to select
itself as a MPR node, i.e., have multiple MPR selectors. Tagocontrol (TC) messages are generated
periodically by nodes with non-empty sets PR selectordo disseminatg MPR selector, MPR link
information to the whole network. In case of nodes detectihgnges in the set dfiPR selector TC
message could be initiated earlier than the regular intéoveespond to the change. Node keep track of
the TC messages and use such link information for path sateand traffic routing.

The purpose of using MPRs in OLSR is to reduce the flooding oadicast packets. For every node,
its TC packets are retransmitted only by its MPR neighboresaahd thus results in a saving of duplicate
transmissions but still maintains satisfactory packeitvdg}. Clearly, the smaller the MPR set is, the more
saving in the protocol.

A link breakage in OLSR is detected when a node fails to rece@weral consecutive HELLO messages
from one of its neighbor node. A link addition is detected wiaenode starts to receive HELLO messages
from a node not in its current one-hope neighbor set. Eveangé in the two-hop neighborhood link set

will result in a protocol event of the node reacting to therg@by recomputing its MPR set and could
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further result in MPR set. Therefore, it could lead to earli€ message broadcast and the increase in

the control traffic.

B. Parameterizing The MPR Selection Algorithm

By employing MPRs in OLSR, link changes need not result in a paltevent. However, the changes
that happen atritical links (i.e., {MPR selector, MPR pairs) surely trigger a protocol event. For the
reason, we need to find a parameter that characterizes ttoerpance of the MPR selection algorithm in
OLSR, and further utilize it to derive the distribution of thennectivity graph. Before proceeding with
choosing the appropriate performance metric, we need torévéew the MPR selection algorithm. The

MPR selection algorithm works as follows:

1) Select the node within the set of one-hop neighbor nodeSIRR node, if among the two-hop
neighbor nodes, there are one or more than one nodes thablgreavered by the node.

2) Choose a one-hop neighbor node as MPR node, if it covers disé ahremaining two-hop neighbor
nodes that are not covered by nodes in the MPR set. Repeateiheaustil all two-hop neighbor

nodes are covered by the MPR set.

The MPR selection algorithm is a greedy algorithm and it$guarance varies depending on the graphs
on which it operates. Its heuristic nature, edge effectd,itangraph-dependent performance significantly
complicates the modeling problem and prevents an analyticdeling (if feasible) of the algorithm. For
this reason, the parameter that we are looking for shouldatethe statistical performance of the MPR
algorithm and an evaluation of such parameter could be mddaby statistical evaluation with random
geometric graph model.

A natural choice of the parameter should be the performanegiarnthat answers the questions how
much savings the MPR selection algorithm brings in redutiregduplicate flooding packet. Let's define
Neighbor{i} as the set of one-hop neighbor nodes andMePR{:} be the MPR set for nodé It is
obvious thatM PR{i} C Neighbor{i} Then the one-hop saving from MPR selection can be evaluated

as

5 IMPRE)

| Neighbor{i}| (31)
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Clearly,0 < g; < 1. Eventually, we define a parametertermed asroadcast efficiencyo characterize
the statistical performance of MPR selection algorithmdAncan be obtained through the statistical

averaging over all possible nodes and graphs of the onednpgscomputed in Eq. (31).

B=Eg(6),0<p<1 (32)

The smallers is, the more saving the MPR algorithm brings.is also a statistical measure of the
percentage of critical links{(MPR selector, MPR pairs) out of total links in OLSR. From Section V, we
can infer that the distribution of link breakages of suclkdirtan also be approximated as exponentially

distributed with parametex, = 3 * \,*.

C. Computation of Penalty Factor

The only remaining problem is to computeas a function of nodal mobility or the stability of the
local connectivity graph. First, we need to look at howis determined front, i.e., to understand how
OLSR reacts to an effective change. Effective change mdwaighie node detect a change in the set of
MPR selectors, since OLSR operates on the sub-graph frdioatiinks.

Fig. (4) illustrates how OLSR reacts to an effective char§gppose that a change arrivesil, <
¢ < (K+1)T,, then the next scheduled TC message is advanced to be bstedled time*, the choice
of which depends on when the change actually happenddllf< ( < KT, + A, then the TC message
will be broadcasted af* = KT, + A. For other case&7T. + A < ¢ < (K + 1)T,, TC message will
be broadcasted immediately*(= () when change is detected. The purpose of havingp OLSR is to
avoid the case in which changes arrive too often and resuttarmuch flooding from broadcasting TC
messages. By aggregating such changes dukingeriod in one TC message, the protocol can limit the
maximum TC message broadcast rate but still achieve satsyjaperformance. Summarizing the above

analysis, one has

) KT,+A, KT,<(<KT,+A
¢ = (33)

¢, KT, +A < (< (K+1T.

It can be derived from the fact that parameters of exponential disitib of topology evolutions are linearly proportional to the number

of links evaluated an@ denotes the percentage of the number of MPR links out of total links.
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An effective change is the change that results in a changkeirsét of MPR selectors. Such changes
depend on the stability of the local connectivity graph. Aimanges in the local connectivity graph could
lead to a re-computation of MPR set and further results inféect®ve change. We have the following
itemized discussions on changes,

« A new link is detected in the local connectivity graph of noklelt will result in a MPR set
recomputation of neighbors within two hop distance of thev riek. Such link may or may not
lead to a change in MPR selectors of ndde

. A link breakage is detected in the local connectivity grapit mot in the critical links of nodé:.
For such cases, it still leads to a recomputation of MPR sehbtinecessarily affect the operation
of nodek.

« A link breakage in critical links of nodé is detected and as a result, notdevill detect a change
in the set of MPR selectors. Such change is surely an eféectrange on node and nodek needs
to react to the change by earlier TC message broadcast.

Due to the heuristic characteristic of MPR selection akhponi an analysis of the first two scenarios
could be significantly complicated (if feasible at all). @k a conservative approach, we only consider
the last scenario, where link breakage is detected in alitioks. Because we know that the stability
of overall critical links can be approximated by an exporardistribution with parametei., we can
approximate the single-node stabilifyof critical links as also exponentially distributed withrpeeter
As = Nx\.. Note that such approximation becomes closer as node gemsieases, i.e., nodes associated
with more critical links.

We can then compute the penalty factoas a funciton mobility) as

[¢/Te]
¢*/Te

where f(-) denotes mapping function and can be numerically computied mfiowing the parametex;

(V) = E( ) = f(As) (34)

of ¢ (or ¢*). It is also worthy of noting that the penalty factor is a diréunction of local connectivity

graph and suggests that the stability of connectivity gregu greatly affect the protocol performance.

D. Simulation Results

In the simulation, the area of the network isl@0m x 1000m square cell. Each node has the same

transmit power and the radio transmission range considered0m. The number of nodes changes in
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the set{40, 60,80, 100} to simulate various node densities. The implementation l08® is the default
implementation inQualnet 3.9.5Nodes are randomly activated to randomly choose desimatde for
data transmission. The traffic of activated nodes are seghjlom a CBR source with a packet rétép/ s.
And the movement follows the random waypoint model as thawegetting inQualnet The maximum
speeds considered af@m/s,5m/s,10m/s, 15m/5,20m/s}, ranging from static topologies, pedestrian
speed to normal vehicle speed. The MAC layer is set as thet BORAC. Overall, we simulate a total of
20 different network configurations. For each configuratioi simulations with random generated seeds
are conducted to capture the statistical performance.

To study the effect of nodal mobility, we modified tialnetsimulator to eliminate packet losses due
to collisions in the channel. We call this cagerfect MAC Figs. (5) to (8) demonstrate the performance
of the analytical model versus simulated performance wiatal mobilityis the only performance factor.
It can be observed that the analytical model provides a veodgestimate compared to the simulations.
Because we take a conservative approach in Section VI-C, rthlytecal model usually underestimates
the overhead. As expected, the difference between the namdkesimulations decreases as node density
increases, as critical links become more dominance in thal loonnectivity graph or link changes at
non-critical links brings less effect on the sub-graph fromtical links.

To evaluate the model in practical scenarios, we used tlggnati setting ofQaulnetin interference
computation. In this case, the real 802.11 MAC works unddiiscans and back-offs. The simulation
results are then illustrated in Figs. (9) to (12). In genetfa¢ model still provides a good approximation;
however, the difference between the model and simulatiomsm®re pronounced due to additional effect
from environmental mobility Overall, we believe that our model provides satisfactogyfgrmance in

estimating the routing overhead and brings deeper insightaawv mobility affect the routing overhead.

VIlI. CONCLUSION

We evaluated analytically the interdependence betwedmgpbaverhead and the stability of the network
topology by characterizing the statistical distributiohtopology evolutions. The stability of topology
can be modeled as exponentially distributed with a paranm=imputed from network configurations.
Utilizing the proposed model, the routing overhead of OLS&swanalyzed and the results showed that
the proposed model gives good estimate of routing overheddnzeanwhile provides good insight on

how nodal mobility affects the routing overhead.
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APPENDIX

Theorem 3: Let two nodes move independently of each other guares of sizel. x L with speedd/;
andV;. Let E[V,] be the average relative speed between the two nodes, antigj) be the distribution
of the node location in steady-state. If the transmissiamgyeak < L and the location of a node at time
t is independent of its location at time+ A,, for some smalld;, then the distributionf’ of new link

arrivals for the two node is approximately exponentiallytdisited with parameter\;, where )\, is given
by
L rL
N~ 2E[V.]R / / 72(z,y)dzdy. (35)
0 0

The average time for the new link arrival is

1 1
AN 2EVi|R foL foL m3(z,y)dzdy
In particular, for random direction mobility model and ramna waypoint mobility model, it has following

E[F]

(36)

corollary.
Corollary 1: The distribution of new link arrival between twodes for the random direction mobility

model for R < L is approximately exponentially\gp) distributed, where\gp is

2E[V.]R
)\RD ~= T (37)
The expected time for the new link arrival is given by
L2
E[Fpp| ~ ———. 38
Likewise, for the random waypoint mobility model we have
2WEV,|R
ARW ~ [FQ]> (39)
L2

2WE[V,|R’
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wherew is the Waypoint constant.
It is worthy of noting that such a point-to-point exponehtradeling of new link formation has also been

extended to MANETSs with restricted mobility [25].
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