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Abstract

Influences in Voting and Growing Networks

by

Miklós Zoltán Rácz

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Elchanan Mossel, Chair

This thesis studies problems in applied probability using combinatorial techniques. The
first part of the thesis focuses on voting, and studies the average-case behavior of voting
systems with respect to manipulation of their outcome by voters. Many results in the field
of voting are negative; in particular, Gibbard and Satterthwaite showed that no reasonable
voting system can be strategyproof (a.k.a. nonmanipulable). We prove a quantitative version
of this result, showing that the probability of manipulation is nonnegligible, unless the voting
system is close to being a dictatorship. We also study manipulation by a coalition of voters,
and show that the transition from being powerless to having absolute power is smooth. These
results suggest that manipulation is easy on average for reasonable voting systems, and thus
computational complexity cannot hide manipulations completely.

The second part of the thesis focuses on statistical inference questions in growing ran-
dom graph models. In particular, we study the influence of the seed in random trees grown
according to preferential attachment and uniform attachment. While the seed has no effect
from a weak local limit point of view in either model, different seeds lead to different distri-
butions of limiting trees from a total variation point of view in both models. These results
open up a host of new statistical inference questions regarding the temporal dynamics of
growing networks.
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Chapter 1

Introduction

Recent advances in technology have given us an unprecedented amount of data in a variety
of disciplines throughout the social and natural sciences. This boom has greatly stimulated
the fields of probability and statistics, bringing both new perspectives to classical problems
and raising entirely new ones. For example, new types of data, such as time series of evolving
networks, are becoming increasingly easier to collect. The availability of such data highlights
the importance of considering the dynamic nature of natural and social processes.

This thesis considers if and how certain properties of a dynamic process influence its
outcome. In particular, it contains contributions to two topics which have seen exciting new
challenges and developments in recent years: voting and networks. The first part focuses
on how easily individual voters, or a coalition of voters, can manipulate the outcome of an
election by changing their votes. The second part studies statistical inference questions in
growing random graphs, particularly how the initial “seed” influences the graph’s structure
when it is very large.

1.1 Quantitative social choice

Collective decision making has been a cornerstone of civilized society since the first democ-
racy was established in ancient Athens. The foundations of the study of voting systems,
termed social choice theory, were not laid out until 18th century France by Borda and Con-
dorcet. In particular, Condorcet noticed the following paradox [18]: when ranking three
candidates, a, b, and c, it may happen that a majority of voters prefer a over b, a majority
prefers b over c, and a majority prefers c over a. This produces an “irrational” circular rank-
ing of the candidates. In the mid-20th century, Arrow’s impossibility theorem [4, 5] showed
that this paradox holds under very natural assumptions, thus marking the basis of modern
social choice theory.

Perhaps frighteningly, many results in the field of voting are negative: if there are three
or more candidates, then it is impossible to design a voting system that satisfies a few
desired properties all at once. For instance, a naturally desirable property of a voting sys-
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tem is strategyproofness (a.k.a. nonmanipulability): no voter should benefit from voting
strategically, i.e., voting not according to her true preferences. However, Gibbard [32] and
Satterthwaite [67] showed that no reasonable voting system can be strategyproof.

This has contributed to the realization that it is unlikely to expect truthfulness in voting,
opening up a host of questions with regard to how voters will behave in a variety of situations.
Strategizing behavior can be very complex and can lead to undesired outcomes; in fact,
even the unanimously least-preferred candidate might end up winning. This problem is
increasingly relevant in the area of artificial intelligence and computer science as well, because
virtual elections are now an established tool in preference aggregation [27], often with a very
large number of candidates, unlike for classical elections. Consequently, there have been
many branches of research devoted to understanding the extent of the manipulability of
voting systems, and to finding ways of circumventing the negative results.

One approach, introduced by Bartholdi, Tovey, and Trick [7], suggests computational
complexity as a barrier against manipulation: if it is computationally hard for a voter to
manipulate, then she would just tell the truth. This approach has been fruitful in the past 25
years, and computer scientists have shown that several voting systems are computationally
resistant to manipulation. However, this is a worst-case approach, and while worst-case
hardness of manipulation is a desirable property for a voting system to have, this does not
tell us anything about typical instances of the problem—is it easy or hard to manipulate on
average?

Understanding the average-case behavior of voting systems is the main goal of quantita-
tive social choice, which is the topic of the first part of this thesis. We first prove a quanti-
tative version of the classical Gibbard-Satterthwaite theorem, showing that the probability
of manipulation is nonnegligible, unless the voting system is close to being a dictatorship.
The main message of this result is that manipulation is easy on average for reasonable vot-
ing systems, and thus computational complexity cannot hide manipulations completely. We
then study the ability of a coalition of voters to manipulate, and show that there is a smooth
transition from being powerless to having absolute power. Since smooth phase transitions
are often found in connection with computationally easy (polynomial) problems, this result
suggests that deciding the coalitional manipulation problem may not be computationally
hard in practice.

1.2 Statistical inference in networks

Data arising from real-world networks open up numerous challenging statistical inference
problems. As complex systems often exhibit strong structural properties, it is natural that
community detection has received a lot of attention. However, stepping away from static
networks and considering out-of-equilibrium systems, such as growing networks, it is apparent
that there are a host of challenging statistical inference problems that have not yet been
considered previously. Indeed, perhaps the most important questions concern the temporal
dynamics of these systems. For instance, given the current state of the network, what can
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we say about a previous state, perhaps far back in time?
A useful theoretical approach is to consider such questions on natural generative models

of randomly growing graphs which capture salient features of real-world networks. Given a
growing sequence of random graphs, perhaps the most basic question of this kind is whether
the initial “seed” graph influences the structure of the graph at large times. If so, then in
what sense? This is the problem that we tackle in the second part of the thesis, where we
study the influence of the seed in two natural models of randomly growing trees: preferential
attachment and uniform attachment.

We first study preferential attachment trees, where at every time step a new node is
added to the tree, together with an edge connecting it to an existing node, chosen randomly
with probability proportional to its degree. We show that the seed tree indeed influences
the growing tree at large times: if S and T are two trees with different degree profiles,
then preferential attachment trees started from these seeds and viewed at any large time
n, PA(n, S) and PA(n, T ), are statistically distinguishable. Subsequently, our work was
extended by Curien et al. [21], who showed that the above holds also when S and T have
the same degree profile but are nonisomorphic.

We then consider uniform attachment trees, where the incoming node connects to an
existing one picked uniformly at random, and show that the same conclusion holds: each
seed leads to a unique limiting distribution of the uniform attachment tree. We also prove, in
both models, that no information can be gained about the seed by using only local statistics
when the system size is large enough, and so global statistics of the tree are needed for
inferring the seed.

These works are just the beginning of a larger investigation into statistical inference
questions in growing networks. An immediate challenge is to understand the influence of the
seed in other models of growing graphs. Another important, but more difficult, question is
that of estimation: can one find the seed in a large random graph? Considering the effect
of noise, extra information, and other variables that are present in real-world networks will
make the picture clearer. Our hope is that the work presented in this thesis serves as a
stepping stone for future investigations into these challenges.

1.3 Overview

Part I of the thesis studies influences in voting. In Chapter 2 we state and prove our quanti-
tative Gibbard-Satterthwaite theorem; this chapter is joint work with Elchanan Mossel [52,
53]. Next, we study coalitional manipulation in Chapter 3, which is joint work with Elchanan
Mossel and Ariel Procaccia [51]. Part II of the thesis studies influences in growing networks.
After formalizing the main questions and results in Chapter 4, we prove our results for
preferential attachment and uniform attachment in Chapters 5 and 6, respectively. These
chapters are joint works with Sébastien Bubeck and Elchanan Mossel [14], and Sébastien
Bubeck, Ronen Eldan, and Elchanan Mossel [15], respectively.
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Part I

Influences in Voting
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Chapter 2

A quantitative Gibbard-Satterthwaite
theorem

2.1 Introduction

As discussed in Chapter 1, Part I of this thesis focuses on problems in quantitative social
choice. In particular, the goal of this chapter is to prove a quantitative version of the classical
Gibbard-Satterthwaite theorem. Let us begin by specifying the problem more formally.

We consider n voters electing a winner among k alternatives. We denote by [k] :=
{1, 2, . . . , k} the set of alternatives, and the voters specify their opinion by giving a strict
ranking of the alternatives, also known as a total order of them. Equivalently, one can
think of a vote as a permutation of the alternatives, from most-preferred to least-preferred.
Accordingly, we denote the set of all possible total orderings of the k alternatives by Sk,
and note that this set has cardinality k!. A collection of rankings by the voters is called a
ranking profile, and is an element of Snk , which is the nth Cartesian power of Sk and which
has cardinality (k!)n. The winner is determined according to some predefined social choice
function (SCF) f : Snk → [k] of all the voters’ rankings. We say that a SCF is manipulable
if there exists a ranking profile where a voter can achieve a more desirable outcome of the
election according to her true preferences by voting in a way that does not reflect her true
preferences (see Definition 2.1 for a more detailed definition).

The Gibbard-Satterthwaite theorem states that any SCF which is not a dictatorship (i.e.,
not a function of a single voter), and which allows at least three alternatives to be elected, is
manipulable. As discussed in Section 1.1, this has led to a lot of effort in trying to understand
how voters will act. We are particularly interested in typical instances of the problem—is it
easy or hard to manipulate on average?

A recent line of research with an average-case algorithmic approach has suggested that
manipulation is indeed easy on average; see, e.g., Kelly [44], Conitzer and Sandholm [19],
Procaccia and Rosenschein [65], and Zuckerman et al. [80] for results on certain restricted
classes of SCFs (see also the survey [27]).
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A different approach was taken by Friedgut, Kalai, Keller and Nisan [29, 30], who looked
at the fraction of ranking profiles that are manipulable. To put it differently: assuming
each voter votes independently and uniformly at random (known as the impartial culture
assumption in the social choice literature), what is the probability that a ranking profile is
manipulable? Is it perhaps exponentially small (in the parameters n and k), or is it non-
negligible? Of course, if the SCF is nonmanipulable then this probability is zero. Similarly,
if the SCF is “close” to being nonmanipulable in some sense, then this probability can be
small. We say that a SCF f is ε-far from the family of nonmanipulable functions, if one
must change the outcome of f on at least an ε-fraction of the ranking profiles in order to
transform f into a nonmanipulable function. Friedgut et al. conjectured that if k ≥ 3 and
the SCF f is ε-far from the family of nonmanipulable functions, then the probability of a
ranking profile being manipulable is bounded from below by a polynomial in 1/n, 1/k, and
ε. Moreover, they conjectured that a random manipulation will succeed with nonnegligible
probability, suggesting that manipulation by computational agents in this setting is easy.

Friedgut et al. proved their conjecture in the case of k = 3 alternatives, showing a lower
bound of Cε6/n in the general setting, and C ′ε2/n in the case when the SCF is neutral
(commutes with changes made to the names of the alternatives), where C,C ′ are constants.
Note that this result does not have any computational consequences, since when there are
only k = 3 alternatives, a computational agent may easily try all possible permutations of
the alternatives to find a manipulation (if one exists). Several follow-up works have since
extended this result. First, Xia and Conitzer [75] used the proof technique of Friedgut et al.
to extend their result to a constant number of alternatives, assuming several additional
technical assumptions. However, this still does not have any computational consequences,
since the result holds only for a constant number of alternatives. Dobzinski and Procaccia [23]
proved the conjecture in the case of two voters under the assumption that the SCF is Pareto
optimal. Finally, the latest work is due to Isaksson, Kindler and Mossel [40, 41], who
proved the conjecture in the case of k ≥ 4 alternatives with only the added assumption of
neutrality. Moreover, they showed that a random manipulation which replaces four adjacent
alternatives in the preference order of the manipulating voter by a random permutation of
them succeeds with nonnegligible probability. Since this result is valid for any number of
(k ≥ 4) alternatives, it does have computational consequences, implying that for neutral
SCFs, manipulation by computational agents is easy on average.

In this chapter we remove the neutrality condition of Isaksson et al. and resolve the
conjecture of Friedgut et al.: if k ≥ 3 and the SCF f is ε-far from the family of nonma-
nipulable functions, then the probability of a ranking profile being manipulable is bounded
from below by a polynomial in 1/n, 1/k, and ε. We continue by first presenting our results,
then discussing their implications, and finally we conclude this section by commenting on
the techniques used in the proof.
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2.1.1 Basic setup

Recall that our basic setup consists of n voters electing a winner among k alternatives via a
SCF f : Snk → [k]. We now define manipulability in more detail:

Definition 2.1 (Manipulation points). Let σ ∈ Snk be a ranking profile. Write a
σi
> b to

denote that alternative a is preferred over b by voter i. A SCF f : Snk → [k] is manipulable
at the ranking profile σ ∈ Snk if there exists a σ′ ∈ Snk and an i ∈ [n] such that σ and σ′ only
differ in the ith coordinate and

f (σ′)
σi
> f (σ) .

In this case we also say that σ is a manipulation point of f , and that (σ, σ′) is a manipulation
pair for f . We say that f is manipulable if it is manipulable at some point σ. We also say
that σ is an r-manipulation point of f if f has a manipulation pair (σ, σ′) such that σ′ is
obtained from σ by permuting (at most) r adjacent alternatives in one of the coordinates of
σ. (We allow r > k—any manipulation point is an r-manipulation point for r > k.)

Let M (f) denote the set of manipulation points of the SCF f , and for a given r, let
Mr (f) denote the set of r-manipulation points of f . When the SCF is obvious from the
context, we write simply M and Mr.

Gibbard and Satterthwaite proved the following theorem.

Theorem 2.1 (Gibbard-Satterthwaite [32, 67]). Any SCF f : Snk → [k] which takes at least
three values and is not a dictator (i.e., not a function of only one voter) is manipulable.

This theorem is tight in the sense that monotone SCFs which are dictators or only have
two possible outcomes are indeed nonmanipulable. A function is nonmonotone, and clearly
manipulable, if for some ranking profile a voter can change the outcome from, say, a to b by
moving a ahead of b in her preference. It is useful to introduce a refined notion of a dictator
before defining the set of nonmanipulable SCFs.

Definition 2.2 (Dictator on a subset). For a subset of alternatives H ⊆ [k], let topH be the
SCF on one voter whose output is always the top ranked alternative among those in H.

Definition 2.3 (Nonmanipulable SCFs). We denote by NONMANIP ≡ NONMANIP (n, k)
the set of nonmanipulable SCFs, which is the following:

NONMANIP (n, k)

= {f : Snk → [k] | f (σ) = topH (σi) for some i ∈ [n] , H ⊆ [k] , H 6= ∅}⋃
{f : Snk → [k] | f is a monotone function taking on exactly two values} .

When the parameters n and k are obvious from the context, we omit them.

Another important class of functions, which is larger than NONMANIP, but which has
a simpler description, is the following.
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Definition 2.4. Define, for parameters n and k that remain implicit (when used the param-
eters will be obvious from the context):

NONMANIP

= {f : Snk → [k] | f only depends on one coordinate or takes at most two values} .

The notation should be thought of as “closure” rather than “complement”. We remark
that in [40, 41] the set NONMANIP is denoted by NONMANIP—but these two sets of
functions should not be confused.

As discussed previously, our goal is to study manipulability from a quantitative viewpoint,
and in order to do so we need to define the distance between SCFs.

Definition 2.5 (Distance between SCFs). Define the distance D (f, g) between two SCFs
f, g : Snk → [k] as the fraction of inputs on which they differ. In other words, D (f, g) =
P (f (σ) 6= g (σ)), where σ ∈ Snk is uniformly selected. For a class G of SCFs, we write
D (f,G) = ming∈G D (f, g).

The concepts of anonymity and neutrality of SCFs will be important to us, so we define
them here.

Definition 2.6 (Anonymity). A SCF is anonymous if it is invariant under changes made
to the names of the voters. More precisely, a SCF f : Snk → [k] is anonymous if for every
σ = (σ1, . . . , σn) ∈ Snk and every π ∈ Sn,

f (σ1, . . . , σn) = f
(
σπ(1), . . . , σπ(n)

)
.

Definition 2.7 (Neutrality). A SCF is neutral if it commutes with changes made to the
names of the alternatives. More precisely, a SCF f : Snk → [k] is neutral if for every
σ = (σ1, . . . , σn) ∈ Snk and every π ∈ Sk,

f (π ◦ σ1, . . . , π ◦ σn) = π (f (σ)) .

2.1.2 Our main result

Our main result, which resolves the conjecture of Friedgut et al. [29, 30], is the following.

Theorem 2.2. Suppose that we have n ≥ 1 voters, k ≥ 3 alternatives, and a SCF f : Snk →
[k] satisfying D (f,NONMANIP) ≥ ε. Then

P (σ ∈M (f)) ≥ P (σ ∈M4 (f)) ≥ p

(
ε,

1

n
,

1

k

)
(2.1)

for some polynomial p, where σ ∈ Snk is selected uniformly. In particular, we show a lower

bound of ε15

1039n67k166
.
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An immediate consequence is that

P ((σ, σ′) is a manipulation pair for f) ≥ q

(
ε,

1

n
,

1

k

)
for some polynomial q, where σ ∈ Snk is uniformly selected, and σ′ is obtained from σ by
uniformly selecting a coordinate i ∈ {1, . . . , n}, uniformly selecting j ∈ {1, . . . , k − 3}, and
then uniformly randomly permuting the following four adjacent alternatives in σi: σi (j),
σi (j + 1), σi (j + 2), and σi (j + 3). In particular, the specific lower bound for P (σ ∈M4 (f))
implies that we can take q

(
ε, 1

n
, 1
k

)
= ε15

1041n68k167
.

2.1.3 Discussion

Our results cover all previous cases for which a quantitative Gibbard-Satterthwaite theo-
rem has been established. In particular, the main novelty is that neutrality of the SCF is
not assumed, and therefore our results hold for nonneutral SCFs as well. This solves the
main open problem of Friedgut, Kalai, Keller and Nisan [29, 30], and Isaksson, Kindler and
Mossel [40, 41]. The main message of our results is that the approach of masking manip-
ulation behind computational hardness cannot hide manipulations completely even in the
nonneutral setting.

Importance of nonneutrality. While neutrality seems like a very natural assumption,
there are multiple reasons why removing this assumption is important:

• Anonymity vs. neutrality. It is known that there is a conflict between anonymity
and neutrality (recall Definitions 2.6 and 2.7). In particular, there are some combina-
tions of n and k when there exists no SCF which is both anonymous and neutral.

Theorem 2.3. [55, Chapter 2.4.] There exists a SCF on n voters and k alternatives
which is both anonymous and neutral if and only if k cannot be written as the sum of
(non-trivial) divisors of n.

The difficulty comes from rules governing tie-breaking. Consider the following example:
suppose that n = k = 2, i.e., we have two voters, voter 1 and voter 2, and two
alternatives, a and b. Suppose further (w.l.o.g.) that when voter 1 prefers a over b
and voter 2 prefers b over a then the outcome is a. What should the outcome be when
voter 1 prefers b over a and voter 2 prefers a over b? By anonymity the outcome should
be a for this configuration as well, but by neutrality the outcome should be b.

Most common voting rules (plurality, Borda count, etc.) break ties in an anonymous
way, and therefore they cannot be neutral as well (or can only be neutral for special
values of n and k). See Moulin [55, Chapter 2.4.] for more on anonymity and neutrality.

• Nonneutrality in virtual elections. As mentioned before, voting manipulation is
a serious issue in artificial intelligence and computer science as well, where virtual
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elections are becoming more and more popular as a tool in preference aggregation
(see the survey [27]). For example, consider web (meta-)search engines (see, e.g.,
Dwork et al. [25]), where one inputs a query and the possible outcomes (“alternatives”)
are the web pages (with the various search engines acting as “voters”). Here, due to
various restrictions, neutrality is not a natural assumption. For example, there can be
language-related restrictions: if one searches in English then the top-ranked webpage
will also be in English; or safety-related restrictions: if one searches in child-safe mode,
then the top-ranked webpage cannot have adult content. These restrictions imply that
the appropriate aggregating function cannot be neutral.

• Nonneutrality in real-life elections. Although not a common occurrence, there
have been cases in real-life elections when a candidate is on the ballot, but is actually
ineligible—she cannot win the election no matter what. In such a case the SCF is
necessarily nonneutral.

In a recent set of local elections in Philadelphia there were actually three such oc-
curences [70]: one of the candidates for the one open Municipal Court slot was not a
lawyer, which is a prerequisite for someone elected to this position; another judicial
candidate received a court order to leave the race; finally, in the race for a district
seat in Philadelphia, one of the candidates had announced that he is abandoning his
candidacy; yet all three of them remained on the respective ballots.

A more curious story is that of the New York State Senate elections in 2010, where
the name of a dead man appeared on the ballot (he received 828 votes) [38].

A quantitative Gibbard-Satterthwaite theorem for one voter. A major part of
the work in proving Theorem 2.2 is devoted to understanding functions of a single voter,
essentially proving a quantitative Gibbard-Satterthwaite theorem for one voter. This can be
formulated as follows.

Theorem 2.4. Suppose that f : Sk → [k] is a SCF on n = 1 voter and k ≥ 3 alternatives
which satisfies D (f,NONMANIP) ≥ ε. Then

P (σ ∈M (f)) ≥ P (σ ∈M3 (f)) ≥ p

(
ε,

1

k

)
, (2.2)

for some polynomial p, where σ ∈ Sk is selected uniformly. In particular, we show a lower
bound of ε3

105k16
.

We note that this is a new result, which has not been studied in the literature before.
Dobzinski and Procaccia [23] proved a quantitative Gibbard-Satterthwaite theorem for

two voters, assuming that the SCF is Pareto optimal, i.e., if all voters rank alternative a
above b, then b is not elected. The assumption of Pareto optimality is natural in the context
of classical social choice, but it is a very strong assumption in the context of quantitative
social choice. For one, it implies that every alternative is elected with probability at least
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1/k2. Second, for one voter, there exists a unique Pareto optimal SCF, while the number of
nonmanipulable SCFs is exponential in k. The assumption also prevents applying the result
of Dobzinski and Procaccia to SCFs obtained from a SCF on many voters when the votes of
all voters but two are fixed (since even if the original SCF is Pareto optimal, the restricted
function may not be so). In our proof we often deal with such restricted SCFs (where the
votes of all but one or two voters are fixed), and this is also what led us to our quantitative
Gibbard-Satterthwaite theorem for one voter.

On NONMANIP versus NONMANIP. The quantitative Gibbard-Satterthwaite theorems
of Friedgut, Kalai, Keller and Nisan [29, 30], and Isaksson, Kindler and Mossel [40, 41] in-
volve the distance of a SCF from NONMANIP. Any SCF that is not in NONMANIP is
manipulable (by the Gibbard-Satterthwaite theorem), but as some SCFs in NONMANIP
are manipulable as well, ideally a quantitative Gibbard-Satterthwaite theorem would involve
the distance of a SCF from the set of (truly) nonmanipulable SCFs, NONMANIP. Theo-
rem 2.2 addresses this concern, as it involves the distance of a SCF from NONMANIP. This
is done via the following reduction theorem that implies that whenever one has a quantita-
tive Gibbard-Satterthwaite theorem involving D

(
f,NONMANIP

)
, it can be turned into a

quantitative Gibbard-Satterthwaite theorem involving D (f,NONMANIP).

Theorem 2.5. Suppose that f is a SCF on n voters and k ≥ 3 alternatives for which
D
(
f,NONMANIP

)
≤ α. Then either

D (f,NONMANIP) < 100n4k8α1/3 (2.3)

or
P (σ ∈M (f)) ≥ P (σ ∈M3 (f)) ≥ α. (2.4)

The proof of this result also uses Theorem 2.4, our quantitative Gibbard-Satterthwaite
theorem for one voter.

A note on our quantitative bounds. The lower bounds on the probability of manipula-
tion derived in Theorems 2.2, 2.4, and various results along the way, are not tight. Moreover,
we do not believe that our techniques allow us to obtain tight bounds. Consequently, we
did not try to optimize these bounds, but rather focused on the qualitative result: obtaining
polynomial bounds.

2.1.4 Proof techniques and ideas

In our proof we combine ideas from both Friedgut, Kalai, Keller and Nisan [29, 30] and
Isaksson, Kindler and Mossel [40, 41]. In addition, we use a reverse hypercontractivity lemma
that was applied in the proof of a quantitative version of Arrow’s theorem by Mossel [50].
(Reverse hypercontractivity was originally proved and discussed by Borell [12], and was first
applied by Mossel, O’Donnell, Regev, Steif, and Sudakov [54].) Our techniques most closely
resemble those of Isaksson et al. [40, 41]; here the authors used a variant of the canonical
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path method to show the existence of a large interface where three bodies touch. Our goal
is also to come to this conclusion, but we do so via different methods.

We first present our techniques that achieve a lower bound for the probability of manip-
ulation that involves factors of 1

k!
(see Theorem 2.9 in Section 2.3), and then describe how a

refined approach leads to a lower bound which has inverse polynomial dependence on k (see
Theorem 2.35 in Section 2.7).

Rankings graph and applying the original Gibbard-Satterthwaite theorem. As in
Isaksson et al. [40, 41], think of the graph G = (V,E) having vertex set V = Snk , the set of all
ranking profiles, and let (σ, σ′) ∈ E if and only if σ and σ′ differ in exactly one coordinate.
The SCF f : Snk → [k] naturally partitions V into k subsets. Since every manipulation point
must be on the boundary between two such subsets, we are interested in the size of such
boundaries.

For two alternatives a and b, and voter i, denote by Ba,b
i the boundary between f−1 (a)

and f−1 (b) in voter i. A lemma from Isaksson et al. [40, 41] tells us that at least two of the
boundaries are large; in the following assume that these are Ba,b

1 and Ba,c
2 . Now if a ranking

profile σ lies on both of these boundaries, then applying the original Gibbard-Satterthwaite
theorem to the restricted SCF on two voters where we fix all coordinates of σ except the first
two, we get that there must exist a manipulation point which agrees with σ in all but the
first two coordinates. Consequently, if we can show that the intersection of the boundaries
Ba,b

1 and Ba,c
2 is large, then we have many manipulation points.

Fibers and reverse hypercontractivity. In order to have more “control” over what is
happening at the boundaries, we partition the graph further—this idea is due to Friedgut
et al. [29, 30]. Given a ranking profile σ and two alternatives a and b, σ induces a vector
of preferences xa,b (σ) ∈ {−1, 1}n between a and b. For a vector za,b ∈ {−1, 1}n we define
the fiber with respect to preferences between a and b, denoted by F

(
za,b
)
, to be the set of

ranking profiles for which the vector of preferences between a and b is za,b. We can then
partition the vertex set V into such fibers, and work inside each fiber separately. Working
inside a specific fiber is advantageous, because it gives us the extra knowledge of the vector
of preferences between a and b.

We distinguish two types of fibers: large and small. We say that a fiber w.r.t. preferences
between a and b is large if almost all of the ranking profiles in this fiber lie on the boundary
Ba,b

1 , and small otherwise. Now since the boundary Ba,b
1 is large, either there is big mass on

the large fibers w.r.t. preferences between a and b or there is big mass on the small fibers.
This holds analogously for the boundary Ba,c

2 and fibers w.r.t. preferences between a and c.
Consider the case when there is big mass on the large fibers of both Ba,b

1 and Ba,c
2 . Notice

that for a ranking profile σ, being in a fiber w.r.t. preferences between a and b only depends
on the vector of preferences between a and b, xa,b (σ), which is a uniform bit vector. Similarly,
being in a fiber w.r.t. preferences between a and c only depends on xa,c (σ). Moreover, we
know the exact correlation between the coordinates of xa,b (σ) and xa,c (σ), and it is in exactly
this setting where reverse hypercontractivity applies (see Lemma 2.8 for a precise statement),
and shows that the intersection of the large fibers of Ba,b

1 and Ba,c
2 is also large. Finally, by



CHAPTER 2. A QUANTITATIVE GIBBARD-SATTERTHWAITE THEOREM 13

the definition of a large fiber it follows that the intersection of the boundaries Ba,b
1 and Ba,c

2

is large as well, and we can finish the argument using the Gibbard-Satterthwaite theorem as
above.

To deal with the case when there is big mass on the small fibers of Ba,b
1 we use various

isoperimetric techniques, including the canonical path method developed for this problem
by Isaksson et al. [40, 41]. In particular, we use the fact that for a small fiber for Ba,b

1 , the
size of the boundary of Ba,b

1 in the small fiber is comparable to the size of Ba,b
1 in the small

fiber itself, up to polynomial factors.

A refined geometry. Using this approach with the rankings graph above, our bound
includes 1

k!
factors (see Theorem 2.9 in Section 2.3). In order to obtain inverse polynomial

dependence on k (as in Theorem 2.35 in Section 2.4), we use a refined approach, similar
to that in Isaksson et al. [40, 41]. Instead of the rankings graph outlined above, we use an
underlying graph with a different edge structure: (σ, σ′) ∈ E if and only if σ and σ′ differ in
exactly one coordinate, and in this coordinate they differ by a single adjacent transposition.
In order to prove the refined result, we need to show that the geometric and combinatorial
quantities such as boundaries and manipulation points are roughly the same in the refined
graph as in the original rankings graph. In particular, this is where we need to analyze
carefully functions of one voter, and ultimately prove a quantitative Gibbard-Satterthwaite
theorem for one voter.

2.1.5 Organization of the chapter

The rest of the chapter is outlined as follows. We introduce necessary preliminaries (defi-
nitions and previous technical results) in Section 2.2. We then proceed by proving Theo-
rem 2.9 in Section 2.3, which is weaker than Theorem 2.2 in two aspects: first, the condition
D (f,NONMANIP) ≥ ε is replaced with the stronger condition D

(
f,NONMANIP

)
≥ ε,

and second, we allow factors of 1
k!

in our lower bounds for P (σ ∈M (f)). We continue by
explaining the necessary modifications we have to make in the refined setting to get inverse
polynomial dependence on k in Section 2.4. Additional preliminaries necessary for the proofs
of Theorems 2.35, 2.4 and 2.5 are in Section 2.5, while the remaining sections contain the
proofs of these theorems. We prove Theorem 2.4 in Section 2.6, Theorem 2.35 in Section 2.7,
and Theorem 2.5 and Theorem 2.2 in Section 2.8. Finally, we conclude with some open
problems in Section 2.9.
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2.2 Preliminaries: definitions and previous technical

results

2.2.1 Boundaries and influences

For a general graph G = (V,E), and a subset of the vertices A ⊆ V , we define the edge
boundary of A as

∂e (A) = {(u, v) ∈ E : u ∈ A, v /∈ A} .

We also define the boundary (or vertex boundary) of a subset of the vertices A ⊆ V to be
the set of vertices in A which have a neighbor that is not in A:

∂ (A) = {u ∈ A : there exists v /∈ A such that (u, v) ∈ E} .

If u ∈ ∂ (A), we also say that u is on the edge boundary of A.
As discussed in Section 2.1.4, we can view the ranking profiles (which are elements of Snk )

as vertices of a graph—the rankings graph—where two vertices are connected by an edge if
they differ in exactly one coordinate. The SCF f naturally partitions the vertices of this
graph into k subsets, depending on the value of f at a given vertex. Clearly, a manipulation
point can only be on the edge boundary of such a subset, and so it is important to study
these boundaries. In this spirit, we introduce the following definitions.

Definition 2.8 (Boundaries). For a given SCF f and a given alternative a ∈ [k], we define

W a (f) = {σ ∈ Snk : f (σ) = a} ,

the set of ranking profiles where the outcome of the vote is a. The edge boundary of this set
is denoted by Ba (f) : Ba (f) = ∂e (W a (f)). This boundary can be partitioned: we say that
the edge boundary of W a (f) in the direction of the ith coordinate is

Ba
i (f) = {(σ, σ′) ∈ Ba (f) : σi 6= σ′i} .

The boundary Ba (f) can be therefore written as Ba (f) = ∪ni=1B
a
i (f). We can also define

the boundary between two alternatives a and b in the direction of the ith coordinate:

Ba,b
i (f) = {(σ, σ′) ∈ Ba

i (f) : f (σ′) = b} .

We also say that σ ∈ Ba
i (f) is on the boundary Ba,b

i (f) if there exists σ′ such that (σ, σ′) ∈
Ba,b
i (f).

Definition 2.9 (Influences). We define the influence of the ith coordinate on f as

Infi (f) = P
(
f (σ) 6= f

(
σ(i)
))

= P
((
σ, σ(i)

)
∈ ∪ka=1B

a
i (f)

)
,
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where σ is uniform on Snk and σ(i) is obtained from σ by rerandomizing the ith coordinate.
Similarly, we define the influence of the ith coordinate with respect to a single alternative
a ∈ [k] or a pair of alternatives a, b ∈ [k] as

Infai (f) = P
(
f (σ) = a, f

(
σ(i)
)
6= a
)

= P
((
σ, σ(i)

)
∈ Ba

i (f)
)
,

and
Infa,bi (f) = P

(
f (σ) = a, f

(
σ(i)
)

= b
)

= P
((
σ, σ(i)

)
∈ Ba,b

i (f)
)
,

respectively.

Clearly

Infi (f) =
k∑
a=1

Infai (f) =
∑

a,b∈[k]:a6=b

Infa,bi (f) .

Most of the time the specific SCF f will be clear from the context, in which case we omit
the dependence on f , and write simply Ba ≡ Ba (f), Ba

i ≡ Ba
i (f), etc.

2.2.2 Large boundaries

The following lemma from Isaksson, Kindler and Mossel [40, 41, Lemma 3.1.] shows that
there are some boundaries which are large (in the sense that they are only inverse polyno-
mially small in n, k and ε−1)—our task is then to find many manipulation points on these
boundaries.

Lemma 2.6. Fix k ≥ 3 and f : Snk → [k] satisfying D(f,NONMANIP) ≥ ε. Then there
exist distinct i, j ∈ [n] and {a, b} , {c, d} ⊆ [k] such that c /∈ {a, b} and

Infa,bi (f) ≥ 2ε

nk2 (k − 1)
and Infc,dj (f) ≥ 2ε

nk2 (k − 1)
. (2.5)

2.2.3 General isoperimetric results

Our rankings graph is the Cartesian product of n complete graphs on k! vertices. We therefore
use isoperimetric results on products of graphs—see [37] for an overview. In particular,
the edge-isoperimetric problem on the product of complete graphs was originally solved by
Lindsey [47], implying the following result.

Corollary 2.7. If A ⊆ K`×· · ·×K` (n copies of the complete graph K`) and |A| ≤
(
1− 1

`

)
`n,

then |∂e (A)| ≥ |A|.



CHAPTER 2. A QUANTITATIVE GIBBARD-SATTERTHWAITE THEOREM 16

2.2.4 Fibers

In our proof we need to partition the graph even further—this idea is due to Friedgut, Kalai,
Keller, and Nisan [29, 30].

Definition 2.10. For a ranking profile σ ∈ Snk define the vector

xa,b ≡ xa,b (σ) =
(
xa,b1 (σ) , . . . , xa,bn (σ)

)
of preferences between a and b, where xa,bi (σ) = 1 if a

σi
> b and xa,bi (σ) = −1 otherwise.

Definition 2.11 (Fibers). For a pair of alternatives a, b ∈ [k] and a vector za,b ∈ {−1, 1}n,
write

F
(
za,b
)

:=
{
σ : xa,b (σ) = za,b

}
.

We call the F
(
za,b
)

fibers with respect to preferences between a and b.

So for any pair of alternatives a, b, we can partition the ranking profiles according to its
fibers:

Snk =
⋃

za,b∈{−1,1}n
F
(
za,b
)
.

Given a SCF f , for any pair of alternatives a, b ∈ [k] and i ∈ [n], we can also partition
the boundary Ba,b

i (f) according to its fibers. There are multiple, slightly different ways of
doing this, but for our purposes the following definition is most useful. Define

Bi

(
za,b
)

:=
{
σ ∈ F

(
za,b
)

: f (σ) = a, and there exists σ′ s.t. (σ, σ′) ∈ Ba,b
i

}
,

where we omit the dependence of Bi

(
za,b
)

on f . So Bi

(
za,b
)
⊆ F

(
za,b
)

is the set of vertices
on the given fiber for which the outcome is a and which lies on the boundary between a and
b in direction i. We call the sets of the form Bi

(
za,b
)

fibers for the boundary Ba,b
i (again

omitting the dependence on f of both sets).
We now distinguish between small and large fibers for the boundary Ba,b

i .

Definition 2.12 (Small and large fibers). We say that the fiber Bi

(
za,b
)

is large if

P
(
σ ∈ Bi

(
za,b
) ∣∣σ ∈ F (za,b)) ≥ 1− ε3

4n3k9
, (2.6)

and small otherwise.
We denote by Lg

(
Ba,b
i

)
the union of large fibers for the boundary Ba,b

i , i.e.,

Lg
(
Ba,b
i

)
:=
{
σ : Bi

(
xa,b (σ)

)
is a large fiber, and σ ∈ Bi

(
xa,b (σ)

)}
and similarly, we denote by Sm

(
Ba,b
i

)
the union of small fibers.
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We remark that what is important is that the fraction appearing on the right hand side
of (2.6) is a polynomial of 1

n
, 1
k

and ε—the specific polynomial in this definition is the end
result of the computation in the proof.

Finally, for a voter i and a pair of alternatives a, b ∈ [k], we define

F a,b
i :=

{
σ : Bi

(
xa,b (σ)

)
is a large fiber

}
.

So this means that

P
(
σ ∈ ∪za,bBi

(
za,b
) ∣∣∣σ ∈ F a,b

i

)
≥ 1− ε3

4n3k9
. (2.7)

2.2.5 Boundaries of boundaries

Finally, we also look at boundaries of boundaries. In particular, for a given vector za,b of
preferences between a and b, we can think of the fiber F

(
za,b
)

as a subgraph of the original
rankings graph. When we write ∂

(
Bi

(
za,b
))

, we mean the boundary of Bi

(
za,b
)

in the
subgraph of the rankings graph induced by the fiber F

(
za,b
)
. That is,

∂
(
Bi

(
za,b
))

= {σ ∈ Bi

(
za,b
)

: ∃ π ∈ F
(
za,b
)
\Bi

(
za,b
)

s.t. σ and π differ in exactly one coord.}.

2.2.6 Reverse hypercontractivity

We use the following lemma about reverse hypercontractivity from Mossel [50].

Lemma 2.8. Suppose that the vectors x and y are distributed uniformly in {−1, 1}n and
that {(xi, yi)}ni=1 are independent. Assume further that |E (xiyi)| ≤ ρ. Let B1, B2 ⊂ {−1, 1}n
be two sets and assume that

P (B1) ≥ e−α
2

, P (B2) ≥ e−β
2

.

Then

P (x ∈ B1, y ∈ B2) ≥ exp

(
−α

2 + β2 + 2ραβ

1− ρ2

)
.

In particular, if P (B1) ≥ ε and P (B2) ≥ ε, then

P (x ∈ B1, y ∈ B2) ≥ ε
2

1−ρ .

2.2.7 Dictators and miscellaneous definitions

For a ranking profile σ = (σ1, . . . , σn) we sometimes write σ−i for the collection of all coor-
dinates except the ith coordinate, i.e., σ = (σi, σ−i). Furthermore, we sometimes distinguish
two coordinates, e.g., we write σ =

(
σ1, σi, σ−{1,i}

)
.
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Definition 2.13 (Induced SCF on one coordinate). Let fσ−i denote the SCF on one voter
induced by f by fixing all voter preferences except the ith one according to σ−i. That is,

fσ−i (·) := f (·, σ−i) .

Recall Definition 2.2 of a dictator on a subset.

Definition 2.14 (Ranking profiles giving dictators on a subset). For a coordinate i and a
subset of alternatives H ⊆ [k], define

DH
i :=

{
σ−i : fσ−i (·) ≡ topH (·)

}
.

Also, for a pair of alternatives a and b, define

Di (a, b) :=
⋃

H:{a,b}⊆H,|H|≥3

DH
i .

2.3 Inverse polynomial manipulability for a fixed

number of alternatives

Our goal in this section is to demonstrate the proof techniques described in Section 2.1.4.
We prove here the following theorem (Theorem 2.9 below), which is weaker than our main
theorem, Theorem 2.2, in two aspects: first, the condition D (f,NONMANIP) ≥ ε is replaced
with the stronger condition D

(
f,NONMANIP

)
≥ ε, and second, we allow factors of 1

k!
in

our lower bounds for P (σ ∈M (f)). The advantage is that the proof of this statement is
relatively simpler. We move on to getting a lower bound with polynomial dependence on k
in the following sections, and finally we replace the condition D

(
f,NONMANIP

)
≥ ε with

D (f,NONMANIP) ≥ ε in Section 2.8.

Theorem 2.9. Suppose that we have n ≥ 2 voters, k ≥ 3 alternatives, and a SCF f : Snk →
[k] satisfying D

(
f,NONMANIP

)
≥ ε. Then

P (σ ∈M (f)) ≥ p

(
ε,

1

n
,

1

k!

)
, (2.8)

for some polynomial p, where σ ∈ Snk is selected uniformly. In particular, we show a lower

bound of ε5

4n7k12(k!)4
.

An immediate consequence is that

P ((σ, σ′) is a manipulation pair for f) ≥ q

(
ε,

1

n
,

1

k!

)
,

for some polynomial q, where σ ∈ Snk is selected uniformly, and σ′ is obtained from σ by
uniformly selecting a coordinate i ∈ {1, . . . , n} and resetting the ith coordinate to a random
preference. In particular, the specific lower bound for P (σ ∈M (f)) implies that we can take
q
(
ε, 1

n
, 1
k!

)
= ε5

4n8k12(k!)5
.
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First we provide an overview of the proof of Theorem 2.9 in Section 2.3.1. In this overview
we use adjectives such as “big”, and “not too small” to describe probabilities—here these
are all synonymous with “has probability at least an inverse polynomial of n, k!, and ε−1”.

2.3.1 Overview of proof

The tactic in proving Theorem 2.9 is roughly the following:

• By Lemma 2.6, we know that there are at least two boundaries which are big. W.l.o.g.
we can assume that these are either Ba,b

1 and Ba,c
2 , or Ba,b

1 and Bc,d
2 with {a, b}∩{c, d} =

∅. Our proof works in both cases, but we continue the outline of the proof assuming
the former case—this is the more interesting case, since the latter case has been solved
already by Isaksson et al. [40, 41].

• We partition Ba,b
1 according to its fibers based on the preferences between a and b of

the n voters, just like as described in Section 2.2. Similarly for Ba,c
2 and preferences

between a and c.

• As in Section 2.2, we can distinguish small and large fibers for these two boundaries.
Now since Ba,b

1 is big, either the mass of small fibers, or the mass of large fibers is big.
Similarly for Ba,c

2 .

• Suppose first that there is big mass on large fibers in both Ba,b
1 and Ba,c

2 . In this case
the probability of our random ranking σ being in F a,b

1 is big, and similarly for F a,c
2 .

Being in F a,b
1 only depends on the vector xa,b (σ) of preferences between a and b, and

similarly being in F a,c
2 only depends on the vector xa,c (σ) of preferences between a

and c. We know the correlation between xa,b (σ) and xa,c (σ) and hence we can apply
reverse hypercontractivity (Lemma 2.8), which tells us that the probability that σ lies
in both F a,b

1 and F a,c
2 is big as well. If σ ∈ F a,b

1 , then voter 1 is pivotal between
alternatives a and b with big probability, and similarly if σ ∈ F a,c

2 , then voter 2 is
pivotal between alternatives a and c with big probability. So now we have that the
probability that both voter 1 is pivotal between a and b and voter 2 is pivotal between
a and c is big, and in this case the Gibbard-Satterthwaite theorem tells us that there
is a manipulation point which agrees with this ranking profile in all except for perhaps
the first two coordinates. So there are many manipulation points.

• Now suppose that the mass of small fibers in Ba,b
1 is big. By isoperimetric the-

ory, the size of the boundary of every small fiber is comparable (same order up to
poly−1 (ε−1, n, k!) factors) to the size of the small fiber. Consequently, the total size of
the boundaries of small fibers is comparable to the total size of small fibers, which in
this case has to be big.

We then distinguish two cases: either we are on the boundary of a small fiber in
the first coordinate, or some other coordinate. If σ is on the boundary of a small
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fiber in some coordinate j 6= 1, then the Gibbard-Satterthwaite theorem tells us that
there is a manipulation point which agrees with σ in all coordinates except perhaps
in coordinates 1 and j. If our ranking profile σ is on the boundary of a small fiber in
the first coordinate, then either there exists a manipulation point which agrees with
σ in all coordinates except perhaps the first, or the SCF on one voter that we obtain
from f by fixing the votes of voters 2 through n to be σ−1 must be a dictator on some
subset of the alternatives. So either we get sufficiently many manipulation points this
way, or for many votes of voters 2 through n, the restricted SCF obtained from f by
fixing these votes is a dictator on coordinate 1 on some subset of the alternatives.

Finally, to deal with dictators on the first coordinate, we look at the boundary of the
dictators. Since D

(
f,NONMANIP

)
≥ ε, the boundary is big, and we can also show

that there is a manipulation point near every boundary point.

• If the mass of small fibers in Ba,c
2 is big, then we can do the same thing for this

boundary.

2.3.2 Division into cases

For the remainder of Section 2.3, let us fix the number of voters n ≥ 2, the number of
alternatives k ≥ 3, and the SCF f , which satisfies D

(
f,NONMANIP

)
≥ ε. Accordingly, we

typically omit the dependence of various sets (e.g., boundaries between two alternatives) on
f .

Our starting point is Lemma 2.6. W.l.o.g. we may assume that the two boundaries that
the lemma gives us have i = 1 and j = 2, so the lemma tells us that

P
((
σ, σ(1)

)
∈ Ba,b

1

)
≥ 2ε

nk3
,

where σ is uniform on the ranking profiles, and σ(1) is obtained by rerandomizing the first
coordinate. This also means that

P
(
σ ∈ ∪za,bB1

(
za,b
))
≥ 2ε

nk3
,

and similar inequalities hold for the boundary Bc,d
2 . The following lemma is an immediate

corollary.

Lemma 2.10. Either
P
(
σ ∈ Sm

(
Ba,b

1

))
≥ ε

nk3
(2.9)

or
P
(
σ ∈ Lg

(
Ba,b

1

))
≥ ε

nk3
, (2.10)

and the same can be said for the boundary Bc,d
2 .
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We distinguish cases based upon this: either (2.9) holds, or (2.9) holds for the boundary
Bc,d

2 , or (2.10) holds for both boundaries. We only need one boundary for the small fiber
case, and we need both boundaries only in the large fiber case. So in the large fiber case we
must differentiate between two cases: whether d ∈ {a, b} or d /∈ {a, b}. First of all, in the
d /∈ {a, b} case the problem of finding a manipulation point with not too small (i.e., inverse
polynomial in n, k! and ε−1) probability has already been solved in [40, 41]. But moreover,
we will see that if d /∈ {a, b} then the large fiber case cannot occur—so this method of proof
works as well.

In the rest of the section we first deal with the large fiber case, and then with the small
fiber case.

2.3.3 Big mass on large fibers

We now deal with the case when

P
(
σ ∈ Lg

(
Ba,b

1

))
≥ ε

nk3
(2.11)

and also
P
(
σ ∈ Lg

(
Bc,d

2

))
≥ ε

nk3
. (2.12)

As mentioned before, we must differentiate between two cases: whether d ∈ {a, b} or d /∈
{a, b}.

2.3.3.1 Case 1

Suppose that d ∈ {a, b}, in which case we may assume w.l.o.g. that d = a.

Lemma 2.11. If

P
(
σ ∈ Lg

(
Ba,b

1

))
≥ ε

nk3
and P (σ ∈ Lg (Ba,c

2 )) ≥ ε

nk3
, (2.13)

then

P (σ ∈M) ≥ ε3

2n3k9 (k!)2 . (2.14)

Proof. By (2.13) we have that

P
(
σ ∈ F a,b

1

)
≥ ε

nk3
and P (σ ∈ F a,c

2 ) ≥ ε

nk3
.

We know that
∣∣∣E(xa,bi (σ)xa,ci (σ)

)∣∣∣ = 1/3, and so by reverse hypercontractivity (Lemma 2.8)

we have that

P
(
σ ∈ F a,b

1 ∩ F
a,c
2

)
≥ ε3

n3k9
. (2.15)
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Recall that we say that σ is on the boundary Ba,b
1 if there exists σ′ such that (σ, σ′) ∈ Ba,b

1 .
If σ ∈ F a,b

1 , then with big probability σ is on the boundary Ba,b
1 , and if σ ∈ F a,c

2 , then
with big probability σ is on the boundary Ba,c

2 . Using this and (2.15) we can show that
the probability of σ lying on both the boundary Ba,b

1 and the boundary Ba,c
2 is big. Then

we are done, because if σ lies on both Ba,b
1 and Ba,c

2 , then by the Gibbard-Satterthwaite
theorem there is a σ̂ which agrees with σ on the last n − 2 coordinates, and which is a
manipulation point. Furthermore, there can be at most (k!)2 ranking profiles that give the
same manipulation point. Let us do the computation:

P
(
σ on Ba,b

1 , σ on Ba,c
2

)
≥ P

(
σ on Ba,b

1 , σ on Ba,c
2 , σ ∈ F a,b

1 ∩ F
a,c
2

)
≥ P

(
σ ∈ F a,b

1 ∩ F
a,c
2

)
− P

(
σ ∈ F a,b

1 ∩ F
a,c
2 , σ not on Ba,b

1

)
− P

(
σ ∈ F a,b

1 ∩ F
a,c
2 , σ not on Ba,c

2

)
.

The first term is bounded below via (2.15), while the other two terms can be bounded
using (2.7):

P
(
σ ∈ F a,b

1 ∩ F
a,c
2 , σ not on Ba,b

1

)
≤ P

(
σ ∈ F a,b

1 , σ not on Ba,b
1

)
≤ P

(
σ not on Ba,b

1

∣∣∣σ ∈ F a,b
1

)
≤ ε3

4n3k9
,

and similarly for the other term. Putting everything together gives us

P
(
σ on Ba,b

1 , σ on Ba,c
2

)
≥ ε3

2n3k9
,

which, by the discussion above, implies (2.14).

2.3.3.2 Case 2

Lemma 2.12. If d /∈ {a, b}, then (2.11) and (2.12) cannot hold simultaneously.

Proof. Suppose on the contrary that (2.11) and (2.12) do both hold. Then

P
(
σ ∈ F a,b

1

)
≥ ε

nk3
and P

(
σ ∈ F c,d

2

)
≥ ε

nk3

as before. Since {a, b}∩{c, d} = ∅,
{
σ ∈ F a,b

1

}
and

{
σ ∈ F c,d

2

}
are independent events, and

so

P
(
σ ∈ F a,b

1 ∩ F
c,d
2

)
= P

(
σ ∈ F a,b

1

)
P
(
σ ∈ F c,d

2

)
≥ ε2

n2k6
.

In the same way as before, by the definition of large fibers this implies that

P
(
σ on Ba,b

1 , σ on Bc,d
2

)
≥ ε2

2n2k6
> 0,
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but it is clear that
P
(
σ on Ba,b

1 , σ on Bc,d
2

)
= 0,

since σ on Ba,b
1 and on Bc,d

2 requires f (σ) ∈ {a, b} ∩ {c, d} = ∅. So we have reached a
contradiction.

2.3.4 Big mass on small fibers

We now deal with the case when (2.9) holds, i.e., when we have a big mass on the small
fibers for the boundary Ba,b

1 . We formalize the ideas of the outline described in Section 2.3.1
in a series of statements.

First, we want to formalize that the boundaries of the boundaries are big when we are
on a small fiber.

Lemma 2.13. Fix coordinate 1 and the pair of alternatives a and b. Let za,b be such that
B1

(
za,b
)

is a small fiber for Ba,b
1 . Then, writing B ≡ B1

(
za,b
)
, we have

|∂e (B)| ≥ ε3

4n3k9
|B|

and

P (σ ∈ ∂ (B)) ≥ ε3

2n4k9k!
P (σ ∈ B) , (2.16)

where both the edge boundary ∂e (B) and the boundary ∂ (B) are with respect to the induced
subgraph F

(
za,b
)
, which is isomorphic to Kn

k!/2, the Cartesian product of n complete graphs

of size k!/2.

Proof. We use Corollary 2.7 with ` = k!/2 and the set A being either B or Bc := F
(
za,b
)
\

B. Suppose first that |B| ≤
(
1− 2

k!

)
(k!/2)n. Then |∂e (B)| ≥ |B|. Suppose now that

|B| >
(
1− 2

k!

)
(k!/2)n. Since we are in the case of a small fiber, we also know that |B| ≤(

1− ε3

4n3k9

)
(k!/2)n. Consequently, we get

|∂e (B)| = |∂e (Bc)| ≥ |Bc| ≥ ε3

4n3k9
|B| ,

which proves the first claim.
A ranking profile in F

(
za,b
)

has (k!/2− 1)n ≤ nk!/2 neighbors in F
(
za,b
)
, which then

implies (2.16).

Corollary 2.14. If (2.9) holds, then

P

(
σ ∈

⋃
za,b

∂
(
B1

(
za,b
)))
≥ ε4

2n5k12k!
.
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Proof. Using the previous lemma and (2.9) we have

P

(
σ ∈

⋃
za,b

∂
(
B1

(
za,b
)))

=
∑
za,b

P
(
σ ∈ ∂

(
B1

(
za,b
)))

≥
∑

za,b:B1(za,b)⊆Sm(Ba,b1 )

P
(
σ ∈ ∂

(
B1

(
za,b
)))

≥
∑

za,b:B1(za,b)⊆Sm(Ba,b1 )

ε3

2n4k9k!
P
(
σ ∈ B1

(
za,b
))

=
ε3

2n4k9k!
P
(
σ ∈ Sm

(
Ba,b

1

))
≥ ε4

2n5k12k!
.

Next, we want to find manipulation points on the boundaries of boundaries.

Lemma 2.15. Suppose that the ranking profile σ is on the boundary of a fiber for Ba,b
1 , i.e.,

σ ∈
⋃
za,b

∂
(
B1

(
za,b
))
.

Then either σ−1 ∈ D1 (a, b), or there exists a manipulation point σ̂ which differs from σ in
at most two coordinates, one of them being the first coordinate.

Proof. First of all, by our assumption that σ is on the boundary of a fiber for Ba,b
1 , we know

that σ ∈ B1

(
za,b
)

for some za,b, which means that there exists a ranking profile σ′ = (σ′1, σ−1)

such that (σ, σ′) ∈ Ba,b
1 . We may assume that a

σ1
> b and b

σ′1
> a, or else either σ or σ′ is a

manipulation point.
Now since σ ∈ ∂

(
B1

(
za,b
))

, we also know that there exists a ranking profile π =
(πj, σ−j) ∈ F

(
za,b
)
\ B1

(
za,b
)

for some j ∈ [k]. We distinguish two cases: j 6= 1 and
j = 1.

Case 1: j 6= 1. What does it mean for π = (πj, σ−j) to be on the same fiber as σ, but
for π to not be in B1

(
za,b
)
? First of all, being on the same fiber means that σj and πj both

rank a and b in the same order. Now π /∈ B1

(
za,b
)

means that

• either f (π) 6= a;

• or f (π) = a and f (π′1, π−1) 6= b for every π′1 ∈ Sk.

If f (π) = b, then either σ or π is a manipulation point, since the order of a and b is the
same in both σj and πj (since σ and π are on the same fiber).

Suppose that f (π) = c /∈ {a, b}. Then we can define a SCF function on two coordinates
by fixing all coordinates except coordinates 1 and j to agree with the respective coordinates
of σ—letting coordinates 1 and j vary we get a SCF function on two coordinates which takes
on at least three values (a, b, and c), and does not only depend on one coordinate. Now
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applying the Gibbard-Satterthwaite theorem we get that this SCF on two coordinates has a
manipulation point, which means that our original SCF f has a manipulation point which
agrees with σ in all coordinates except perhaps in coordinates 1 and j.

So the final case is that f (π) = a and f (π′1, π−1) 6= b for every π′1 ∈ Sk. In particular
for π̃ := (σ′1, π−1) =

(
πj, σ

′
−j
)

we have f (π̃) 6= b. Now if f (π̃) = a then either σ′ or π̃ is a
manipulation point, since the order of a and b is the same in both σ′j = σj and πj. Finally,
if f (π̃) = c /∈ {a, b}, then we can apply the Gibbard-Satterthwaite theorem just like in the
previous paragraph.

Case 2: j = 1. We can again ask: what does it mean for π = (π1, σ−1) to be on the
same fiber as σ, but for π to not be in B1

(
za,b
)
? First of all, being on the same fiber means

that σ1 and π1 both rank a and b in the same order (namely, as discussed at the beginning,
ranking a above b, or else we have a manipulation point). Now π /∈ B1

(
za,b
)

means that

• either f (π) 6= a;

• or f (π) = a and f (π′1, π−1) 6= b for every π′1 ∈ Sk.

However, we know that f (σ′) = b and that σ′ is of the form σ′ = (σ′1, σ−1) = (σ′1, π−1), and
so the only way we can have π /∈ B1

(
za,b
)

is if f (π) 6= a.

If f (π) = b, then π is a manipulation point, since a
π1
> b and f (σ) = a.

So the remaining case is if f (π) = c /∈ {a, b}. This means that fσ−1 (see Definition 2.13)
takes on at least three values. Denote by H ⊆ [k] the range of fσ−1 . Now either σ−1 ∈ DH

1 ⊆
D1 (a, b), or there exists a manipulation point σ̂ which agrees with σ in every coordinate
except perhaps the first.

Finally, we need to deal with dictators on the first coordinate.

Lemma 2.16. Assume that D
(
f,NONMANIP

)
≥ ε. We have that either

P (σ−1 ∈ D1 (a, b)) ≤ ε4

4n5k12k!
,

or

P (σ ∈M) ≥ ε5

4n7k12 (k!)4 . (2.17)

Proof. Suppose that P (σ−1 ∈ D1 (a, b)) ≥ ε4

4n5k12k!
, which is the same as

∑
H:{a,b}⊆H,|H|≥3

P
(
σ−1 ∈ DH

1

)
≥ ε4

4n5k12k!
. (2.18)

Note that for every H ⊆ [k] we have

ε ≤ D
(
f,NONMANIP

)
≤ P (f (σ) 6= topH (σ1)) ≤ 1− P

(
DH

1

)
,
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and so
P
(
DH

1

)
≤ 1− ε. (2.19)

The main idea is that (2.19) implies that the size of the boundary of DH
1 is comparable

to the size of DH
1 , and if we are on the boundary of DH

1 , then there is a manipulation point
nearby.

So first let us establish that the size of the boundary of DH
1 is comparable to the size of

DH
1 . This is done along the same lines as the proof of Lemma 2.13.

Notice thatDH
1 ⊆ Sn−1

k , where Sn−1
k should be thought of as the Cartesian product of n−1

copies of the complete graph on Sk. We apply Corollary 2.7 with ` = k! and with n−1 copies,
and we see that if ε ≥ 1

k!
, then

∣∣∂e (DH
1

)∣∣ ≥ ∣∣DH
1

∣∣. If ε < 1
k!

and 1 − 1
k!
≤ P

(
DH

1

)
≤ 1 − ε

then ∣∣∂e (DH
1

)∣∣ =
∣∣∂e ((DH

1

)c)∣∣ ≥ ∣∣(DH
1

)c∣∣ ≥ ε
∣∣DH

1

∣∣ .
So in any case we have

∣∣∂e (DH
1

)∣∣ ≥ ε
∣∣DH

1

∣∣. Since σ−1 has (n− 1) (k!− 1) ≤ nk! neighbors
in Sn−1

k , we have that

P
(
σ−1 ∈ ∂

(
DH

1

))
≥ ε

nk!
P
(
σ−1 ∈ DH

1

)
.

Consequently, by (2.18), we have

P

σ−1 ∈
⋃

H:{a,b}⊆H,|H|≥3

∂
(
DH

1

) =
∑

H:{a,b}⊆H,|H|≥3

P
(
σ−1 ∈ ∂

(
DH

1

))
≥

∑
H:{a,b}⊆H,|H|≥3

ε

nk!
P
(
σ−1 ∈ DH

1

)
≥ ε5

4n6k12 (k!)2 .

Next, suppose that σ−1 ∈ ∂
(
DH

1

)
for some H such that {a, b} ⊆ H, and |H| ≥ 3. We

want to show that then there is a manipulation point “close” to σ−1 in some sense. To be
more precise: for the manipulation point σ̂, σ̂−1 will agree with σ−1 in all except maybe one
coordinate.

If σ−1 ∈ ∂
(
DH

1

)
, then there exist j ∈ {2, . . . , n} and σ′j such that σ′−1 :=

(
σ′j, σ−{1,j}

)
/∈

DH
1 . That is, fσ′−1

(·) 6≡ topH (·). There can be two ways that this can happen—the two
cases are outlined below. Denote by H ′ ⊆ [k] the range of fσ′−1

.
Case 1: H′ = H. In this case we automatically know that there exists a manipulation

point σ̂ such that σ̂−1 = σ′−1, and so σ̂−1 agrees with σ−1 in all coordinates except coordinate
j.

Case 2: H′ 6= H. W.l.o.g. suppose H ′ \ H 6= ∅, and let c ∈ H ′ \ H. (The other
case when H \ H ′ 6= ∅ works in exactly the same way.) First of all, we may assume that
fσ′−1

(·) ≡ topH′ (·), because otherwise we have a manipulation point just like in Case 1.
We can define a SCF on two coordinates by fixing all coordinates except coordinate 1

and j to agree with σ−1, and varying coordinates 1 and j. We know that the outcome takes
on at least three different values, since σ−1 ∈ DH

1 , and |H| ≥ 3.
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Now let us show that this SCF is not a function of the first coordinate. Let σ1 be a
ranking which puts c first, and then a. Then f (σ1, σ−1) = a, but f

(
σ1, σ

′
−1

)
= c, which

shows that this SCF is not a function of the first coordinate (since a change in coordinate j
can change the outcome).

Consequently, the Gibbard-Satterthwaite theorem tells us that this SCF on two coordi-
nates has a manipulation point, and therefore there exists a manipulation point σ̂ for f such
that σ̂−1 agrees with σ−1 in all coordinates except coordinate j.

Putting everything together yields (2.17).

2.3.5 Proof of Theorem 2.9 concluded

Proof of Theorem 2.9. If (2.11) and (2.12) hold, then we are done by Lemmas 2.11 and 2.12.
If not, then either (2.9) holds, or (2.9) holds for the boundary Bc,d

2 ; w.l.o.g. assume
that (2.9) holds.

By Corollary 2.14, we have

P

(
σ ∈

⋃
za,b

∂
(
B1

(
za,b
)))
≥ ε4

2n5k12k!
.

We may assume that P (σ−1 ∈ D1 (a, b)) ≤ ε4

4n5k12k!
, since otherwise we are done by

Lemma 2.16. Consequently, we then have

P

(
σ ∈

⋃
za,b

∂
(
B1

(
za,b
))
, σ−1 /∈ D1 (a, b)

)
≥ ε4

4n5k12k!
.

We can then finish our argument using Lemma 2.15:

P (σ ∈M) ≥ 1

n (k!)2P

(
σ ∈

⋃
za,b

∂
(
B1

(
za,b
))
, σ−1 /∈ D1 (a, b)

)
≥ ε4

4n6k12 (k!)3 .

2.4 An overview of the refined proof

In order to improve on the result of Theorem 2.9—in particular to get rid of the factor
of 1

(k!)4
—we need to refine the methods used in the previous section. We continue the ap-

proach of Isaksson, Kindler and Mossel [40, 41], where the authors first proved a quantitative
Gibbard-Satterthwaite theorem for neutral SCFs with a bound involving factors of 1

k!
, and

then with a refined method were able to remove these factors.
The key to the refined method is to consider the so-called refined rankings graph instead

of the general rankings graph studied in Section 2.3. The vertices of this graph are again
ranking profiles (elements of Snk ), and two vertices are connected by an edge if they differ in
exactly one coordinate, and by an adjacent transposition in that coordinate. Again, the SCF
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f naturally partitions the vertices of this graph into k subsets, depending on the value of f
at a given vertex. Clearly a 2-manipulation point can only be on the edge boundary of such
a subset in the refined rankings graph, and so it is important to study these boundaries.

One of the important steps of the proof in Section 2.3 is creating a configuration where we
fix all but two coordinates, and the SCF f takes on at least three values when we vary these
two coordinates—then we can define another SCF on two voters and k alternatives which
must have a manipulation point by the Gibbard-Satterthwaite theorem. The advantage
of the refined rankings graph is that we can create a configuration where we fix all but
two coordinates, and in these two coordinates we also fix all but constantly many adjacent
alternatives, and the SCF takes on at least three values when we vary these constantly many
adjacent alternatives in the two coordinates. Then we can define another SCF on two voters
and r alternatives, where r is a small constant, which must have a manipulation point by
the Gibbard-Satterthwaite theorem. Since r is a constant, we only lose a constant factor in
our estimates, not factors of 1

k!
.

We state the refined result in Theorem 2.35, which we also prove in Section 2.7. The
proof of Theorem 2.35 follows the outline of the proof of Theorem 2.9: we know that there
are at least two refined boundaries which are big (by Isaksson et al. [40, 41]); we partition
them according to their fibers; we distinguish small and large fibers; and we consider two
cases: the small fiber case and the large fiber case. The ideas in both cases are roughly the
same as in Section 2.3, except the proofs are more involved. There is, however, one major
difference in the small fiber case, which is the following.

The difficulty is dealing with the case when we are on the boundary of a small fiber in
the first coordinate. Suppose σ = (σ1, σ−1) is on such a boundary. We know that there
are k! ranking profiles which agree with σ in coordinates 2 through n. The difficulty comes
from the fact that—in order to obtain a polynomial bound in k—we are only allowed to look
at a polynomial number (in k) of these ranking profiles when searching for a manipulation
point. If there is an r-manipulation point among them for some small constant r, then we
are done. If this is not the case then σ is what we call a local dictator on some subset of the
alternatives in coordinate 1. We say that σ is a local dictator on some subset H ⊆ [k] of the
alternatives in coordinate 1 if the alternatives in H are adjacent in σ1, and permuting the
alternatives in H in every possible way in the first coordinate, the outcome of the SCF f is
always the top-ranked alternative in H.

So instead of dealing with dictators on some subset in coordinate 1, as in Section 2.3,
we have to deal with local dictators on some subset in coordinate 1. This analysis involves
essentially only the first coordinate, in essence proving a quantitative Gibbard-Satterthwaite
theorem for one voter. As discussed in Section 2.1.3, this has not been studied in the
literature before, and, moreover, we were not able to utilize previous quantitative Gibbard-
Satterthwaite theorems to solve this problem easily. Hence we separate this argument from
the rest of the proof of Theorem 2.35 and formulate a quantitative Gibbard-Satterthwaite
theorem for one voter, Theorem 2.4, which is proven in Section 2.6. This proof forms the
backbone for the proof of Theorem 2.35, which is then proven in Section 2.7.



CHAPTER 2. A QUANTITATIVE GIBBARD-SATTERTHWAITE THEOREM 29

2.5 Refined rankings graph—introduction and

preliminaries

2.5.1 Transpositions, boundaries, and influences

Definition 2.15 (Adjacent transpositions). Given two elements a, b ∈ [k], the adjacent
transposition [a : b] between them is defined as follows. If σ ∈ Sk has a and b adjacent, then
[a : b]σ is obtained from σ by exchanging a and b. Otherwise [a : b]σ = σ.

We let T denote the set of all k (k − 1) /2 adjacent transpositions.
For σ ∈ Snk , we let [a : b]i σ denote the ranking profile obtained by applying [a : b] on the

ith coordinate of σ while leaving all other coordinates unchanged.

Definition 2.16 (Boundaries). For a given SCF f and a given alternative a ∈ [k], we define

W a (f) = {σ ∈ Snk : f (σ) = a} ,

the set of ranking profiles where the outcome of the vote is a. The edge boundary of this set
(with respect to the underlying refined rankings graph) is denoted by Ba;T (f) : Ba;T (f) =
∂e (W a (f)). This boundary can be partitioned: we say that the edge boundary of W a (f) in
the direction of the ith coordinate is

Ba;T
i (f) =

{
(σ, σ′) ∈ Ba;T (f) : σi 6= σ′i

}
.

The boundary Ba (f) can be therefore written as Ba;T (f) = ∪ni=1B
a;T
i (f). We can also define

the boundary between two alternatives a and b in the direction of the ith coordinate:

Ba,b;T
i (f) =

{
(σ, σ′) ∈ Ba;T

i (f) : f (σ′) = b
}
.

Moreover, we can define the boundary between two alternatives a and b in the direction of
the ith coordinate with respect to the adjacent transposition z ∈ T :

Ba,b;z
i (f) =

{
(σ, σ′) ∈ Ba;T

i (f) : σ′ = ziσ, f (σ′) = b
}
.

We also say that σ is on the boundary Ba,b;z
i (f) if (σ, ziσ) ∈ Ba,b;z

i (f). Clearly we have

Ba,b;T
i (f) =

⋃
z∈T

Ba,b;z
i (f) .

Definition 2.17 (Influences). Given z ∈ T , we define

Infa,b;zi (f) = P
(
f (σ) = a, f

(
σ(i)
)

= b
)

Infa;z
i (f) = P

(
f (σ) = a, f

(
σ(i)
)
6= a
)

Infa,b;Ti (f) =
∑
z∈T

Infa,b;zi (f) ,
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where σ is uniformly distributed in Snk and σ(i) is obtained from σ by rerandomizing the ith

coordinate σi in the following way: with probability 1/2 we keep it as σi, and otherwise we
replace it by zσi.

Note that for a 6= b,

Infa,b;zi (f) =
1

2
P (f (σ) = a, f (ziσ) = b) =

1

2

∣∣∣Ba,b;z
i (f)

∣∣∣
(k!)n

.

Again, most of the time the specific SCF f will be clear from the context, in which case
we omit the dependence on f .

2.5.2 Manipulation points on refined boundaries

The following two lemmas from Isaksson et al. [40, 41] identify manipulation points on (or
close to) these refined boundaries.

Lemma 2.17. [40, 41, Lemma 7.1.] Fix f : Snk → [k], distinct a, b ∈ [k], and (σ, π) ∈ Ba,b;T
i .

Then either σi = [a : b]πi, or one of σ and π is a 2-manipulation point for f .

Lemma 2.18. [40, 41, Lemma 7.2.] Fix f : Snk → [k] and points σ, π, µ ∈ Snk such that
(σ, π) ∈ Ba,b;T

i , and (µ, π) ∈ Bc,b;T
j , where a, b, and c are distinct and i 6= j. Then there

exists a 3-manipulation point ν ∈ Snk for f such that ν` = π` for ` /∈ {i, j} and νi is equal
to σi or πi except that the position of c may be shifted arbitrarily and νj is equal to µj or πj
except that the position of a may be shifted arbitrarily.

2.5.3 Large refined boundaries

An essential result that will be our starting point in Section 2.7 is the following lemma, again
from Isaksson et al. [40, 41], which shows that there are large refined boundaries (or else we
have a lot of 2-manipulation points automatically).

Lemma 2.19. [40, 41, Lemma 7.3.] Suppose that k ≥ 3 and that the SCF f : Snk → [k]
satisfies D(f,NONMANIP) ≥ ε. Let σ be uniformly selected from Snk . Then either

P (σ ∈M2 (f)) ≥ 4ε

nk7
, (2.20)

or there exist distinct i, j ∈ [n] and {a, b}, {c, d} ⊆ [k] such that c /∈ {a, b} and

Inf
a,b;[a:b]
i (f) ≥ 2ε

nk7
and Inf

c,d;[c:d]
j (f) ≥ 2ε

nk7
. (2.21)
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2.5.4 Fibers

We again use fibers F
(
za,b
)

as defined in Definition 2.11. However, we need more than this.
We note that the following definitions only apply in Section 2.7, i.e., when we have at least
two voters; in Section 2.6, when we have only one voter, things are simpler.

Given the result of Lemma 2.19, our primary interest is in the boundary B
a,b;[a:b]
i . For

ranking profiles on this boundary, we know that the alternatives a and b are adjacent in
coordinate i—so we know more than just the preference between a and b in coordinate i.
Consequently we would like to divide the set of ranking profiles with a and b adjacent in
coordinate i according to the preferences between a and b in all coordinates except coordinate
i. The following definitions make this precise.

As done in Section 2.2.7 for ranking profiles, we can write xa,b−i ≡ xa,b−i (σ) for the vector
of preferences between a and b for all coordinates except coordinate i, i.e., the whole vector

of preferences between a and b is xa,b (σ) =
(
xa,bi (σ) , xa,b−i (σ)

)
.

We can define F
(
za,b−i

)
analogously to F

(
za,b
)
:

F
(
za,b−i

)
:=
{
σ : xa,b−i (σ) = za,b−i

}
.

We also define the subset of F
(
za,b−i

)
where a and b are adjacent in coordinate i, with a

above b:

F̄
(
za,b−i

)
:=
{
σ ∈ F

(
za,b−i

)
: a and b are adjacent in coordinate i, with a above b

}
.

Given a SCF f , for any pair of alternatives a, b ∈ [k] and coordinate i ∈ [n], we can also
partition the boundary Ba,b

i (f) according to its fibers. There are multiple, slightly different
ways of doing this, but for our purposes the following definition is most useful.

Define
Bi

(
za,b−i

)
:=
{
σ ∈ F̄

(
za,b−i

)
: f (σ) = a, f ([a : b]i σ) = b

}
,

where we omit the dependence of Bi

(
za,b−i

)
on f . We call sets of the form Bi

(
za,b−i

)
⊆ F̄

(
za,b−i

)
fibers for the boundary B

a,b;[a:b]
i .

We now distinguish between small and large fibers for the boundary B
a,b;[a:b]
i .

Definition 2.18 (Small and large fibers). We say that the fiber Bi

(
za,b−i

)
⊆ F̄

(
za,b−i

)
is large

if

P
(
σ ∈ Bi

(
za,b−i

) ∣∣∣σ ∈ F̄ (za,b−i)) ≥ 1− γ,

where γ = ε3

103n3k24
, and small otherwise.

As before, we denote by Lg
(
B
a,b;[a:b]
i

)
the union of large fibers for the boundary B

a,b;[a:b]
i ,

i.e.,

Lg
(
B
a,b;[a:b]
i

)
:=

⋃
Bi(za,b−i ) is a large fiber

Bi

(
za,b−i

)
,
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and similarly, we denote by Sm
(
B
a,b;[a:b]
i

)
the union of small fibers.

As in Definition 2.12, we remark that what is important is that γ is a polynomial of 1
n
, 1
k

and ε—the specific polynomial in this definition is the end result of the computation in the
proof.

The following definition is used in Section 2.7.3 in dealing with the large fiber case in the
refined setting.

Definition 2.19. For a coordinate i and a pair of alternatives a and b, define F a,b
i to be the

set of ranking profiles σ such that xa,b (σ) satisfies

P
(
f (σ̃) = top{a,b} (σ̃i)

∣∣∣ σ̃ ∈ F (xa,b−i (σ)
))
≥ 1− 2kγ.

Clearly F a,b
i is the union of fibers of the form F

(
za,b
)
, and also F

((
1, xa,b−i

))
⊆ F a,b

i if

and only if F
((
−1, xa,b−i

))
⊆ F a,b

i .

2.5.5 Boundaries of boundaries

In the refined graph setting, just like in the general rankings graph setting, we also look at
boundaries of boundaries.

For a given vector za,b−i of preferences between a and b, we can think of F̄
(
za,b−i

)
as a

subgraph of the original refined rankings graph Snk , i.e., two ranking profiles in F̄
(
za,b−i

)
are

adjacent if they differ by one adjacent transposition in exactly one coordinate. Since both

of the ranking profiles are in F̄
(
za,b−i

)
, this adjacent transposition keeps the order of a and

b in all coordinates, and moreover it keeps a and b adjacent in coordinate i.

We choose to slightly modify this graph: the vertex set is still F̄
(
za,b−i

)
, but we modify

the edge set by adding new edges. Suppose that σ ∈ F̄
(
za,b−i

)
and

σi =



...
c
a
b
d
...


; σ′i =



...
a
b
c
d
...


; σ′′i =



...
c
d
a
b
...


.

Define in this way σ′ = (σ′i, σ−i) and σ′′ = (σ′′i , σ−i), and add (σ, σ′) and (σ, σ′′) to the edge
set. So basically, we consider the block of a and b in coordinate i as a single element, and

connect two ranking profiles in F̄
(
za,b−i

)
if they differ in an adjacent transposition in a single
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coordinate, allowing this transposition to move the block of a and b in coordinate i. We call

this graph G
(
za,b−i

)
=
(
F̄
(
za,b−i

)
, E
(
za,b−i

))
, where E

(
za,b−i

)
is the edge set.

When we write ∂e

(
Bi

(
za,b−i

))
, we mean the edge boundary of Bi

(
za,b−i

)
in the graph

G
(
za,b−i

)
, and similarly when we write ∂

(
Bi

(
za,b−i

))
, we mean the vertex boundary of

Bi

(
za,b−i

)
in the graph G

(
za,b−i

)
.

2.5.6 Local dictators, conditioning and miscellaneous definitions

In the general rankings graph setting we defined a dictator on a subset of the alternatives,
but in the refined rankings graph setting we need to define so-called local dictators.

Definition 2.20 (Local dictators). For a coordinate i and a subset of alternatives H ⊆ [k],
define LDH

i to be the set of ranking profiles σ such that the alternatives in H form an adjacent
block in σi, and permuting them among themselves in any order, the outcome of the SCF f
is always the top ranked alternative among those in H. If σ ∈ LDH

i , then we call σ a local
dictator on H in coordinate i.

Also, for a pair of alternatives a and b, define

LDi (a, b) :=
⋃

c/∈{a,b}

LD
{a,b,c}
i ,

the set of local dictators on three alternatives, two of which are a and b, in coordinate i.

In dealing with local dictators, we will condition on the top of a particular coordinate
being fixed. We therefore introduce the following notation.

Definition 2.21 (Conditioning). For any coordinate i ∈ [n] and any vector v of alternatives,
we define

Pv
i (·) := P (· | (σi (1) , . . . , σi (|v|)) = v) ,

where |v| denotes the length of the vector v. For example, P(a)
1 (·) = P (· |σ1 (1) = a) and

P(a,b,c)
1 = P (· | (σ1 (1) , σ1 (2) , σ1 (3)) = (a, b, c)) .

We use the following notation in the proof of Theorem 2.5.

Definition 2.22 (Majority function). For a function f whose domain X is finite and whose
range is the set {a, b}, define Maj (f) by

Maj (f) =

{
a if # {x ∈ X : f (x) = a} ≥ # {x ∈ X : f (x) = b} ,
b if # {x ∈ X : f (x) = a} < # {x ∈ X : f (x) = b} .
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2.6 Quantitative Gibbard-Satterthwaite theorem for

one voter

In this section we prove our quantitative Gibbard-Satterthwaite theorem for one voter, The-
orem 2.4. As mentioned before, we present this proof before proving Theorem 2.35, because
the proof of Theorem 2.35 follows the lines of this proof, with slight modifications needed to
deal with having n > 1 coordinates.

For the remainder of this section, let us fix the number of voters to be 1, the number of
alternatives k ≥ 3, and the SCF f , which satisfies D (f,NONMANIP) ≥ ε. Accordingly, we
typically omit the dependence of various sets (e.g., boundaries between two alternatives) on
f .

An additional notational remark: since our SCF is on one voter only, we omit the sub-
scripts that denote the coordinate we are on. For example, we write simply Infa,b instead of
Infa,b1 , etc.

We present the proof in several steps.

2.6.1 Large boundary between two alternatives

The first thing we have to establish is a large boundary between two alternatives. This can
be done just like in Lemma 2.19, except there are two small differences. On the one hand,
the assumption of the lemma, namely that D (f,NONMANIP) ≥ ε, is weaker than that
of the original lemma. On the other hand, here we only need one big boundary, unlike in
Lemma 2.19, where Isaksson et al. [40, 41] showed that there are two big boundaries in two
different coordinates. The following lemma formulates what we need.

Lemma 2.20. Recall that f is a SCF on 1 voter and k ≥ 3 alternatives which satisfies
D (f,NONMANIP) ≥ ε. Let σ ∈ Sk be selected uniformly. Then either

P (σ ∈M2) ≥ 4ε

k6
(2.22)

or there exist alternatives a, b ∈ [k] such that a 6= b and

Infa,b;[a:b] ≥ 2ε

k6
. (2.23)

Proof. The proof is just like the proof of Lemma 2.19. First, suppose that Infa,b;z ≥ 2ε
k6

for
some pair of alternatives a 6= b, and some transposition z 6= [a : b]. Then by Lemma 2.17,
for any point (σ, σ′) ∈ Ba,b;z, at least one of σ or σ′ = zσ is a 2-manipulation point. Then

|M2| ≥
∣∣Ba,b;z

∣∣ = 2 · k! · Infa,b;z ≥ 4ε

k6
k!,

and dividing with k! gives (2.22). So for the remainder of the proof we may assume that
Infa,b;z < 2ε

k6
for every a 6= b and z 6= [a : b].
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For every a ∈ [k], we have D
(
f, top{a}

)
≥ ε, so P (f (σ) = a) ≤ 1−ε. On the other hand,

there exists an alternative, say a ∈ [k], such that P (f (σ) = a) ≥ 1
k
. So for this alternative

we have
Var (1 [f (σ) = a]) ≥ ε

k
,

and consequently using [40, 41, Corollary 6.5] and [40, 41, Proposition 2.3] we have∑
w∈T

∑
b6=a

Infa,b;w =
∑
w∈T

Infa;w ≥ 1

k2
Var (1 [f (σ) = a]) ≥ ε

k3
.

Hence there must exist some w ∈ T and b 6= a such that Infa,b;w ≥ 2ε
k6

, but by our assumption
we must have w = [a : b].

If (2.22) holds, then we are done, so in the following we assume that (2.23) holds.

We know that σ is on Ba,b;[a:b] if f (σ) = a and f ([a : b]σ) = b. We know that if b
σ
> a,

then σ is a 2-manipulation point, so if this happens in more than half of the cases when σ
is on Ba,b;[a:b], then we have

P (σ ∈M2) ≥ 2ε

k6
,

in which case we are again done. So we may assume in the following that

P (σ ∈ B) ≥ 2ε

k6
, (2.24)

where
B :=

{
σ : f (σ) = a, f ([a : b]σ) = b, a

σ
> b
}
.

2.6.2 Division into cases

We again divide into two cases.
We introduce the set F̄ of permutations where a is directly above b:

F̄ :=

{
σ ∈ Sk : a

σ
> b and b

σ′

> a, where σ′ = [a : b]σ

}
.

One of the following two cases must hold.
Case 1: Small fiber case. We have

P
(
σ ∈ B

∣∣σ ∈ F̄) ≤ 1− ε

4k
. (2.25)

Case 2: Large fiber case. We have

P
(
σ ∈ B

∣∣σ ∈ F̄) > 1− ε

4k
. (2.26)
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2.6.3 Small fiber case

In this subsection we assume that (2.25) holds.
We first formalize that the boundary ∂ (B) of B is big (recall the definition of ∂ (B) from

Section 2.5.5). The proof uses the canonical path method, as successfully adapted to this
setting by Isaksson et al. [40, 41].

Lemma 2.21. If (2.25) holds, then

P (σ ∈ ∂ (B)) ≥ ε

2k4
P (σ ∈ B) . (2.27)

Proof. Let Bc = F̄ \B. For every (σ, σ′) ∈ B×Bc, we define a canonical path from σ to σ′,
which has to pass through at least one edge in ∂e (B). Then if we show that every edge in
∂e (B) lies on at most r canonical paths, then it follows that |∂e (B)| ≥ |B| |Bc| /r.

So let (σ, σ′) ∈ B×Bc. We apply the path construction of [40, 41, Proposition 6.4.], but
considering the block formed by a and b as a single element. Since this path goes from σ
(which is in B) to σ′ (which is in Bc), it must pass through at least one edge in ∂e (B).

For a given edge (π, π′) ∈ ∂e (B), at most how many possible (σ, σ′) ∈ B × Bc pairs are
there such that the canonical path between σ and σ′ defined above passes through (π, π′)? We
learn from [40, 41, Proposition 6.4.] that there are at most (k − 1)2 (k − 1)!/2 < k2 (k − 1)!/2
possibilities for the pair (σ, σ′).

Recall that
∣∣F̄ ∣∣ = (k − 1)!. By our assumption we have |B| ≤

(
1− ε

4k

)
(k − 1)!, and so

|Bc| ≥ ε
4k

(k − 1)!. Therefore

|∂e (B)| ≥ |B| |Bc|
k2

2
(k − 1)!

≥ ε

2k3
|B| .

Now in G every ranking profile has k − 2 < k neighbors, which implies (2.27).

Corollary 2.22. If (2.25) holds, then

P (σ ∈ ∂ (B)) ≥ ε2

k10
. (2.28)

Proof. Combine Lemma 2.21 and (2.24).

Next we want to find manipulation points on the boundary ∂ (B). The next lemma tells
us that if we are on the boundary ∂ (B), then either we can find manipulation points easily,
or we are at a local dictator on three alternatives.

Lemma 2.23. Suppose that σ ∈ ∂ (B). Then

• either σ ∈ LD (a, b),

• or there exists σ̂ ∈ M3 such that σ̂ is equal to σ or [a : b]σ except that the position of
a third alternative c might be shifted arbitrarily.
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Proof. Since σ ∈ ∂ (B) ⊆ B, we know that f (σ) = a, and if σ′ = [a : b]σ, then f (σ′) = b.
Let π ∈ Bc denote the ranking profile such that (σ, π) ∈ ∂e (B), and let π′ = [a : b] π. Since
π /∈ B, (f (π) , f (π′)) 6= (a, b). Then, by Lemma 2.17, if f (π) 6= f (π′), then one of π and π′

is a 2-manipulation point. So assume f (π) = f (π′).
There are two cases to consider: either σ and π differ by an adjacent transposition not

involving the block of a and b, or they differ by an adjacent transposition that moves the
block of a and b.

In the former case, it is not hard to see that one of σ, σ′, π, or π′ is a 2-manipulation
point, by Lemma 2.17.

If σ and π differ by an adjacent transposition that involves the block of a and b, then
there are again two cases to consider: either this transposition moves the block of a and b
up in the ranking, or it moves it down.

If the block of a and b is moved up to get from σ to π, then we must have f (π) = a, or
else σ or π is a 3-manipulation point. Then we must have f (π′) = f (π) = a, in which case
π′ is a 3-manipulation point, since f (σ′) = b.

The final case is when the block of a and b is moved down to get from σ to π, and
a third alternative, call it c, is moved up, directly above the block of a and b. Now if
f (π) = d /∈ {a, b, c}, then σ or π is a 3-manipulation point. If f (π) = f (π′) = a, then π′

is a 3-manipulation point, whereas if f (π) = f (π′) = b, then π is a 3-manipulation point.
The remaining case is when f (π) = f (π′) = c. Now if f ([b : c]σ) 6= a or f ([a : c]σ′) 6= b,
then we again have a 3-manipulation point close to σ. Otherwise σ ∈ LD (a, b).

The following corollary then tells us that either we have found many 3-manipulation
points, or we have many local dictators on three alternatives.

Corollary 2.24. If (2.25) holds, then either∑
c/∈{a,b}

P
(
σ ∈ LD{a,b,c}

)
= P (σ ∈ LD (a, b)) ≥ ε2

2k10
(2.29)

or

P (σ ∈M3) ≥ ε2

4k12
.

2.6.3.1 Dealing with local dictators

So the remaining case we have to deal with in this small fiber case is when (2.29) holds, i.e.,
we have many local dictators on three alternatives.

Lemma 2.25. Suppose that σ ∈ LD{a,b,c} for some alternative c /∈ {a, b}. Let σ′ be equal to
σ except that the block of a, b, and c is moved to the top of the coordinate. Then

• either σ′ ∈ LD{a,b,c},
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• or there exists a 3-manipulation point σ̂ which agrees with σ except that the positions
of a, b, and c might be shifted arbitrarily.

Proof. W.l.o.g. we may assume that in σ alternative a is ranked above b, which is ranked
above c. Now move a to the top using a sequence of adjacent transpositions, all involving a;
we call this procedure “bubbling” a to the top. If at any point during this the outcome of
f is not a, then we have found a 2-manipulation point. Now bubble up b to right below a,
and then bubble up c to be right below b. Again, if at any point during this the outcome of
f is not a, then there is a 2-manipulation point. Otherwise we now have a, b, and c at the
top (in this order), with the outcome of f being a. Now permuting alternatives a, b, and c
at the top, we either have a 3-manipulation point, or σ′ ∈ LD{a,b,c}.

Corollary 2.26. If (2.29) holds, then either∑
c/∈{a,b}

P
(
σ ∈ LD{a,b,c}, {σ (1) , σ (2) , σ (3)} = {a, b, c}

)
≥ ε2

4k11
(2.30)

or

P (σ ∈M3) ≥ ε2

4k13
.

Proof. Lemma 2.25 tells us that when we move the block of a, b, and c up to the top, we
either encounter a 3-manipulation point, or we get a local dictator on {a, b, c} at the top.

If we get a 3-manipulation point, by the describtion of this manipulation point in the
lemma, there can be at most k3 ranking profiles that give the same manipulation point.

If we arrive at a local dictator at the top, then there could have been at most k different
places where the block of a, b, and c could have come from.

Now (2.30) is equivalent to∑
c/∈{a,b}

P
(
σ ∈ LD{a,b,c}, (σ (1) , σ (2) , σ (3)) = (a, b, c)

)
≥ ε2

24k11
. (2.31)

We know that

P ((σ (1) , σ (2) , σ (3)) = (a, b, c)) =
1

k (k − 1) (k − 2)
≤ 6

k3
,

and so (2.31) implies (recall Definition 2.21)∑
c/∈{a,b}

P(a,b,c)
(
σ ∈ LD{a,b,c}

)
≥ ε2

144k8
. (2.32)

Now fix an alternative c /∈ {a, b} and define the graph G(a,b,c) =
(
V(a,b,c), E(a,b,c)

)
to have

vertex set
V(a,b,c) := {σ ∈ Sk : (σ (1) , σ (2) , σ (3)) = (a, b, c)}
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and for σ, π ∈ V(a,b,c) let (σ, π) ∈ E(a,b,c) if and only if σ and π differ by an adjacent trans-
position. So G(a,b,c) is the subgraph of the refined rankings graph induced by the vertex set
V(a,b,c). (If k = 3 or k = 4, then this graph consists of only one vertex, and no edges.)

Let
T (a, b, c) := V(a,b,c) ∩ LD{a,b,c},

and let ∂e (T (a, b, c)) and ∂ (T (a, b, c)) denote the edge- and vertex-boundary of T (a, b, c)
in G(a,b,c), respectively.

The next lemma shows that unless T (a, b, c) is almost all of V(a,b,c), the size of the bound-
ary ∂ (T (a, b, c)) is comparable to the size of T (a, b, c). The proof uses a canonical path
argument, just like in Lemma 2.21.

Lemma 2.27. Let c /∈ {a, b} be arbitrary. Write T ≡ T (a, b, c) for simplicity. If

P(a,b,c) (σ ∈ T ) ≤ 1− δ,

then

P(a,b,c) (σ ∈ ∂ (T )) ≥ δ

k3
P(a,b,c) (σ ∈ T ) . (2.33)

Proof. Let T c = V(a,b,c)\T (a, b, c). For every (σ, σ′) ∈ T×T c, we define a canonical path from
σ to σ′, which has to pass through at least one edge in ∂e (T ). Then if we show that every
edge in ∂e (T ) lies on at most r canonical paths, then it follows that |∂e (T )| ≥ |T | |T c| /r.

So let (σ, σ′) ∈ T × T c. We apply the path construction of [40, 41, Proposition 6.4.], but
only to alternatives in [k] \ {a, b, c}.

The analysis of this construction is done in exactly the same way as in Lemma 2.21; in
the end we get that there are at most k2 (k − 3)! paths that pass through a given edge in
∂e (T ).

Recall that
∣∣V(a,b,c)

∣∣ = (k − 3)! and that by our assumption |T | ≤ (1− δ) (k − 3)!, so
|T c| ≥ δ (k − 3)!. Therefore

|∂e (T )| ≥ |T | |T c|
k2 (k − 3)!

≥ δ

k2
|T | .

Now every vertex in V(a,b,c) has k − 4 < k neighbors, which implies (2.33).

The next lemma tells us that if σ is on the boundary of a set of local dictators on {a, b, c}
for some alternative c /∈ {a, b}, then there is a 2-manipulation point σ̂ which is close to σ.

Lemma 2.28. Suppose that σ ∈ ∂ (T (a, b, c)) for some c /∈ {a, b}. Then there exists σ̂ ∈M2

which equals zσ for some adjacent transposition z that does not involve a, b, or c, except
that the order of the block of a, b, and c might be rearranged.

Proof. Let π be the ranking profile such that (σ, π) ∈ ∂e (T (a, b, c)), and let z be the adjacent
transposition in which they differ, i.e., π = zσ. Since π /∈ T (a, b, c), there exists a reordering
of the block of a, b, and c at the top of π such that the outcome of f is not the top ranked
alternative. Call the resulting vector π′. W.l.o.g. let us assume that π′ (1) = a. Let us also
define σ′ := zπ′. Now π′ is a 2-manipulation point, since f (σ′) = a.
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The next corollary puts together Corollary 2.26 and Lemmas 2.27 and 2.28.

Corollary 2.29. Suppose that (2.30) holds. Then if for every c /∈ {a, b} we have

P(a,b,c) (σ ∈ T (a, b, c)) ≤ 1− ε

100k
,

then

P (σ ∈M2) ≥ ε3

105k16
.

Proof. We know that (2.30) implies∑
c/∈{a,b}

Pa,b,c (σ ∈ T (a, b, c)) ≥ ε2

144k8
.

Now using the assumptions, Lemma 2.27 with δ = ε
100k

, and Lemma 2.28, we have

P (σ ∈M2) ≥
∑

c 6={a,b}

1

k3
P(a,b,c) (σ ∈M2) ≥

∑
c/∈{a,b}

1

6k4
P(a,b,c) (σ ∈ ∂ (T (a, b, c)))

≥
∑
c/∈{a,b}

ε

600k8
P(a,b,c) (σ ∈ T (a, b, c)) ≥ ε3

86400k16
≥ ε3

105k16
.

So again we are left with one case to deal with: if there exists an alternative c /∈ {a, b}
such that P(a,b,c) (σ ∈ T (a, b, c)) > 1 − ε

100k
. Define a subset of alternatives K ⊆ [k] in the

following way:

K := {a, b} ∪
{
c ∈ [k] \ {a, b} : P(a,b,c) (σ ∈ T (a, b, c)) > 1− ε

100k

}
.

In addition to a and b, K contains those alternatives that whenever they are at the top with
a and b, they form a local dictator with high probability.

So our assumption now is that |K| ≥ 3.
Our next step is to show that unless we have many manipulation points, for any alterna-

tive c ∈ K, conditioned on c being at the top, the outcome of f is c with probability close
to 1.

Lemma 2.30. Let c ∈ K. Then either

P(c) (f (σ) = c) ≥ 1− ε

50k
, (2.34)

or
P (σ ∈M2) ≥ ε

100k4
. (2.35)
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Proof. First assume that c /∈ {a, b}.
Let σ be uniform according to P(c), i.e., uniform on Sk conditioned on σ (1) = c. Define

σ′, where σ′ is constructed from σ by first bubbling up alternative a to just below c, using
adjacent transpositions, and then bubbling up b to just below a. Clearly σ′ is distributed
according to P(c,a,b), i.e., it is uniform on Sk conditioned on (σ (1) , σ (2) , σ (3)) = (c, a, b).

Since c ∈ K, we know that P(c,a,b)
(
σ ∈ LD{a,b,c}

)
> 1− ε

100k
. This also means that

P(c)
(
σ′ ∈ LD{a,b,c}

)
> 1− ε

100k
.

Now we can partition the ranking profiles into three parts, based on the outcome of the SCF
f at σ and σ′:

I1 = {σ : f (σ) = c, f (σ′) = c} ,
I2 = {σ : f (σ) 6= c, f (σ′) = c} ,
I3 = {σ : f (σ′) 6= c} .

If P(c) (I1) ≥ 1 − ε
50k

, then (2.34) holds. Otherwise we have P(c) (I2 ∪ I3) ≥ ε
50k

, and since
P(c) (I3) ≤ ε

100k
, we have P(c) (I2) ≥ ε

100k
.

Now if σ ∈ I2, then we know that there is a 2-manipulation point along the way as we go
from σ to σ′. That is, to every σ ∈ I2 there exists σ̂ ∈ M2 such that σ̂ is equal to σ except
perhaps a and b are shifted arbitrarily. So there can be at most k2 ranking profiles σ giving
the same 2-manipulation point σ̂, and so we have

P (σ ∈M2) ≥ 1

k
P(c) (σ ∈M2) ≥ 1

k3
P(c) (I2) ≥ ε

100k4
,

showing (2.35).
Now suppose that c ∈ {a, b}, w.l.o.g. assume c = a. We know that |K| ≥ 3 and so there

exists an alternative d ∈ K \ {a, b}. We can then do the same thing as above, but we now
bubble up b and d.

We now deal with alternatives that are not in K: either we have many manipulation
points, or for any alternative d /∈ K, the outcome of f is not d with probability close to 1.

Lemma 2.31. Let d /∈ K. If P (f (σ) = d) ≥ ε
4k

, then

P (σ ∈M2) ≥ ε2

106k9
.

Proof. Let σ be such that f (σ) = d. Bubble up d to the top, and call this ranking profile
σ′. Now if f (σ′) 6= d, then we know that there exists a 2-manipulation point σ̂ along the
way, i.e., a 2-manipulation σ̂ which agrees with σ except perhaps d is shifted arbitrarily.
Consequently, either

P (σ ∈M2) ≥ ε

8k2
,
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in which case we are done, or

P (σ : f (σ) = f (σ′) = d) ≥ ε

8k
.

Next, let us bubble up a to just below d, and then bubble up b to just below d. Denote
this ranking profile by σ(d,b,a), and analogously define σ(d,a,b), σ(a,b,d), σ(a,d,b), σ(b,a,d), and
σ(b,d,a). Either we encounter a 2-manipulation point σ̂ along the way of bubbling up to
σ(d,b,a) (σ̂ agrees with σ except d is at the top, and a and b might be arbitrarily shifted), or
the outcome of the SCF f is d all along. So we have that either

P (σ ∈M2) ≥ ε

16k3
,

in which case we are done, or

P
(
σ : f (σ) = f (σ′) = f

(
σ(d,b,a)

)
= f

(
σ(d,a,b)

)
= d
)
≥ ε

16k
.

Now start from σ(d,a,b). First swap a and d to get σ(a,d,b), then swap d and b to get σ(a,b,d),
and finally bubble d and b down to their original positions in σ, except for the fact that a is
now at the top of the coordinate. Call this profile σ̄. Since σ is uniformly distributed, σ̄ is
distributed according to P(a)

1 , i.e., uniformly conditional on σ̄ (1) = a. Now note that one of
the following three events has to happen. (These events are not mutually exclusive.)

I1 =
{
f
(
σ(a,d,b)

)
= f

(
σ(a,b,d)

)
= a
}
,

I2 = {f (σ̄) 6= a} ,
I3 = {σ : ∃ σ̂ ∈M2 which is equal to σ except a is shifted

to the top, and b and d may be shifted arbitrarily}.

Since a ∈ K, we know by Lemma 2.30 that (unless we already have enough manipulation
points by the lemma) we must have

P (f (σ̄) 6= a) = P(a) (f (σ̄) 6= a) ≤ ε

50k
.

Consequently

P
(
I1 ∪ I3, f (σ) = f (σ′) = f

(
σ(d,b,a)

)
= f

(
σ(d,a,b)

)
= d
)
≥ ε

16k
− ε

50k
=

17ε

400k
,

and so either

P (σ ∈M2) ≥ 17ε

800k3
,

in which case we are done, or

P
(
σ : f

(
σ(d,b,a)

)
= f

(
σ(d,a,b)

)
= d, f

(
σ(a,b,d)

)
= f

(
σ(a,d,b)

)
= a
)
≥ 17ε

800k
.
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Next, we can do the same thing with b on top, and we ultimately get that either

P (σ ∈M2) ≥ ε

1600k3
,

in which case we are done, or

P(a,b,d)
(
σ(a,b,d) ∈ LD{a,b,d}

)
= P

(
σ : σ(a,b,d) ∈ LD{a,b,d}

)
≥ ε

1600k
. (2.36)

Define G(a,b,d) and T(a,b,d) analogously to G(a,b,c) and T(a,b,c), respectively.
Suppose that (2.36) holds. We also know that d /∈ K, so Lemma 2.27 applies, and

then Lemma 2.28 shows us how to find manipulation points. We can put these arguments
together, just like in the proof of Corollary 2.29, to show what we need:

P (σ ∈M2) ≥ 1

k3
P(a,b,d) (σ ∈M2) ≥ 1

6k4
P(a,b,d) (σ ∈ ∂ (T (a, b, d)))

≥ ε

600k8
P(a,b,d) (σ ∈ T (a, b, d)) ≥ ε2

106k9
.

Putting together the results of the previous lemmas, there is only one case to be covered,
which is covered by the following final lemma. Basically, this lemma says that unless there are
enough manipulation points, our function is close to a dictator on the subset of alternatives
K.

Lemma 2.32. Recall that we assume that D (f,NONMANIP) ≥ ε. Furthermore assume
that |K| ≥ 3, that for every c ∈ K we have

P(c) (f (σ) = c) ≥ 1− ε

50k
, (2.37)

and that for every d /∈ K we have

P (f (σ) = d) ≤ ε

4k
.

Then
P (σ ∈M2) ≥ ε

4k2
. (2.38)

Proof. First note that

P (f (σ) 6= topK (σ)) = P (f (σ) /∈ K) + P (f (σ) 6= topK (σ) , f (σ) ∈ K) .

We know that
ε ≤ D (f,NONMANIP) ≤ P (f (σ) 6= topK (σ))

and also that
P (f (σ) /∈ K) ≤ (k − |K|) ε

4k
≤ ε

2
,
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which together imply that

P (f (σ) 6= topK (σ) , f (σ) ∈ K) ≥ ε

2
.

Let σ be such that f (σ) 6= topK (σ) and f (σ) ∈ K. Now bubble topK (σ) up to the top in
σ, call this ranking profile σ̄. Clearly then topK (σ̄) = topK (σ).

There are two cases to consider. If f (σ) 6= f (σ̄), then there is a 2-manipulation point
along the way from σ to σ̄, i.e., a 2-manipulation point σ̂ such that σ̂ agrees with σ except
perhaps some alternative c is arbitrarily shifted. Otherwise f (σ) = f (σ̄), and so f (σ̄) 6=
topK (σ̄).

Consequently we have that either (2.38) holds, or that

P (σ : f (σ̄) 6= topK (σ̄)) ≥ ε

4
. (2.39)

By the construction of σ̄, we know that σ̄ is uniformly distributed conditional on σ̄ (1) ∈ K.
Consequently, by (2.37), we have that

P (σ : f (σ̄) 6= topK (σ̄)) ≤ ε

50k
,

which contradicts with (2.39) since ε
50k

< ε
4
.

This concludes the proof of the small fiber case.

2.6.4 Large fiber case

In this subsection we assume that (2.26) holds. We show that we either have a lot 2-
manipulation points or we have a lot of local dictators on three alternatives.

Our first step towards this is the following lemma.

Lemma 2.33. Suppose that (2.26) holds. Then

P(a,b) (σ ∈ B) ≥ 1− ε

4
. (2.40)

Proof. Let Bc = F̄ \B. Our assumption (2.26) implies that P
(
σ ∈ Bc

∣∣σ ∈ F̄) ≤ ε
4k

, which

means that |Bc| ≤ ε(k−1)!
4k

, and so

P(a,b) (σ /∈ B) ≤ ε (k − 1)!

4k (k − 2)!
<
ε

4
,

which is equivalent to (2.40).

The next lemma (together with Section 2.6.3.1) concludes the proof in the large fiber
case.
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Lemma 2.34. Suppose that (2.26) holds and recall that our SCF f satisfies the condition
D (f,NONMANIP) ≥ ε. Then either

P (σ ∈M2) ≥ ε

4k2
(2.41)

or
P (σ ∈ LD (a, b)) ≥ ε

4k2
. (2.42)

Proof. By Lemma 2.33 we know that (2.40) holds.
Let σ ∈ Sk be uniform. Define σ′ by being the same as σ except alternatives a and b

are moved to the top of the coordinate: σ′ (1) = a and σ′ (2) = b. Clearly σ′ is distributed
according to P(a,b) (·). Also define σ′′ = [a : b]σ′.

We partition the set of ranking profiles Sk into three parts:

I1 :=
{
σ ∈ Sk : f (σ) = top{a,b} (σ) , (f (σ′) , f (σ′′)) = (a, b)

}
,

I2 :=
{
σ ∈ Sk : f (σ) 6= top{a,b} (σ) , (f (σ′) , f (σ′′)) = (a, b)

}
,

I3 := {σ ∈ Sk : (f (σ′) , f (σ′′)) 6= (a, b)} .

By (2.40) we know that P (σ ∈ I3) ≤ ε
4
. We also know that P (σ ∈ I1) ≤ 1 − ε, since

D (f,NONMANIP) ≥ ε. Therefore we must have

P (σ ∈ I2) ≥ 3ε

4
>
ε

2
.

Let us partition I2 further, and write it as I2 = I ′2 ∪
(
∪c/∈{a,b}I2,c

)
, where

I ′2 :=
{
σ ∈ I2 : f (σ) 6= top{a,b} (σ) , f (σ) ∈ {a, b}

}
and for any c /∈ {a, b},

I2,c := {σ ∈ I2 : f (σ) = c} .

Suppose that σ ∈ I ′2. W.l.o.g. let us assume that a is ranked higher than b by σ, and
therefore f (σ) = b, since σ ∈ I ′2. Then we can get from σ to σ′ by first bubbling up a to the
top, and then bubbling up b to just below a. Since f (σ) = b and f (σ′) = a, there must be
a 2-manipulation point σ̂ along the way, which is equal to σ except perhaps the positions of
a and b are arbitrarily shifted.

Now suppose that σ ∈ I2,c for some c /∈ {a, b}. We distinguish two cases: either c is
ranked above both a and b in σ, or it is not.

If not, then say a is ranked above c in σ. Bubble a all the way to the top, and then
bubble b as well, all the way to the top, just below a. Since f (σ) = c and f (σ′) = a, there
must be a 2-manipulation point σ̂ along the way, which is equal to σ except perhaps the
positions of a and b are arbitrarily shifted.

If c is ranked above both a and b in σ, then the argument is similar. First bubble up a and
b to just below c, and denote this ranking profile by σ̃, then permute these three alternatives
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arbitrarily, and then bubble a and b to the top. It is not hard to think through that either
there is a 2-manipulation σ̂ along the way, which is then equal to σ except perhaps the
positions of a and b are arbitrarily shifted, or else σ̃ ∈ LD{a,b,c}.

Combining these cases we see that either (2.41) or (2.42) must hold.

So if (2.41) holds then we are done, and if (2.42) holds, then we refer back to Sec-
tion 2.6.3.1, where we deal with the case of local dictators on three alternatives.

2.6.5 Proof of Theorem 2.4 concluded

Proof of Theorem 2.4. Our starting point is Lemma 2.20, which implies that (2.24) holds
(unless we already have many 2-manipulation points). We then consider two cases, as indi-
cated in Section 2.6.2.

We deal with the small fiber case, when (2.25) holds, in Section 2.6.3. First, we have
that Lemma 2.21, Corollary 2.22, Lemma 2.23 and Corollary 2.24 show that either there are
many 3-manipulation points, or there are many local dictators on three alternatives. We then
deal with the case of many local dictators in Section 2.6.3.1. Lemma 2.25, Corollary 2.26,
Lemmas 2.27 and 2.28, Corollary 2.29, and Lemmas 2.30, 2.31 and 2.32 together show that
there are many 3-manipulation points if there are many local dictators on three alternatives,
and the SCF is ε-far from the family of nonmanipulable functions.

We deal with the large fiber case—when (2.26) holds—in Section 2.6.4. Here Lemma 2.34
shows that either we have many 2-manipulation points, or we have many local dictators
on three alternatives. In this latter case we refer back to Section 2.6.3.1 to conclude the
proof.

2.7 Inverse polynomial manipulability for any

number of alternatives

In this section we prove the theorem below, which is the same as our main theorem, Theo-
rem 2.2, except that the condition of D (f,NONMANIP) ≥ ε from Theorem 2.2 is replaced
with the stronger condition D

(
f,NONMANIP

)
≥ ε.

Theorem 2.35. Suppose that we have n ≥ 2 voters, k ≥ 3 alternatives, and a SCF f :
Snk → [k] satisfying D

(
f,NONMANIP

)
≥ ε. Then

P (σ ∈M (f)) ≥ P (σ ∈M4 (f)) ≥ p

(
ε,

1

n
,

1

k

)
, (2.43)

for some polynomial p, where σ ∈ Snk is selected uniformly. In particular, we show a lower

bound of ε5

109n7k46
.

An immediate consequence is that

P ((σ, σ′) is a manipulation pair for f) ≥ q

(
ε,

1

n
,

1

k

)
,
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for some polynomial q, where σ ∈ Snk is uniformly selected, and σ′ is obtained from σ by
uniformly selecting a coordinate i ∈ {1, . . . , n}, uniformly selecting j ∈ {1, . . . , k − 3}, and
then uniformly randomly permuting the following four adjacent alternatives in σi: σi (j),
σi (j + 1), σi (j + 2), and σi (j + 3). In particular, the specific lower bound for P (σ ∈M4 (f))
implies that we can take q

(
ε, 1

n
, 1
k

)
= ε5

1011n8k47
.

For the remainder of the section, let us fix the number of voters n ≥ 2, the number of
alternatives k ≥ 3, and the SCF f , which satisfies D

(
f,NONMANIP

)
≥ ε. Accordingly, we

typically omit the dependence of various sets (e.g., boundaries between two alternatives) on
f .

2.7.1 Division into cases

Our starting point in proving Theorem 2.35 is Lemma 2.19. Clearly if (2.20) holds then we
are done, so in the rest of Section 2.7 we assume that this is not the case. Then Lemma 2.19
tells us that (2.21) holds, and w.l.o.g. we may assume that the two boundaries that the
lemma gives us have i = 1 and j = 2. That is, we have

P
(
σ on B

a,b;[a:b]
1

)
≥ 4ε

nk7
and P

(
σ on B

c,d;[c:d]
2

)
≥ 4ε

nk7
,

where recall that σ is on B
a,b;[a:b]
1 if f (σ) = a and f ([a : b]1 σ) = b. If σ is on B

a,b;[a:b]
1 and

b
σ1
> a, then σ is a 2-manipulation point, so if this happens in more than half of the cases

when σ is on B
a,b;[a:b]
1 , then we have

P (σ ∈M2) ≥ 2ε

nk7
,

and we are done. Similarly in the case of the boundary between c and d in coordinate 2. So
we may assume from now on that

P
(
σ ∈ ∪za,b−1

B1

(
za,b−1

))
≥ 2ε

nk7
and P

(
σ ∈ ∪zc,d−2

B2

(
zc,d−2

))
≥ 2ε

nk7
.

The following lemma is an immediate corollary.

Lemma 2.36. Either
P
(
σ ∈ Sm

(
B
a,b;[a:b]
1

))
≥ ε

nk7
(2.44)

or
P
(
σ ∈ Lg

(
B
a,b;[a:b]
1

))
≥ ε

nk7
, (2.45)

and the same can be said for the boundary B
c,d;[c:d]
2 .
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We distinguish cases based upon this: either (2.44) holds, or (2.44) holds for the boundary

B
c,d;[c:d]
2 , or (2.45) holds for both boundaries. We only need one boundary for the small fiber

case, and we need both boundaries only in the large fiber case. So in the large fiber case we
must differentiate between two cases: whether d ∈ {a, b} or d /∈ {a, b}. First of all, in the
d /∈ {a, b} case the problem of finding a manipulation point with not too small (i.e., inverse
polynomial in n, k and ε−1) probability has already been solved by Isaksson et al. [40, 41],
so we are primarily interested in the d ∈ {a, b} case. But moreover, we will see that our
method of proof works in both cases.

In the rest of the section we first deal with the small fiber case, and then with the large
fiber case.

2.7.2 Small fiber case

We now deal with the case when (2.44) holds. We formalize the ideas of the outline in a
series of statements.

First, we want to formalize that the boundaries of the boundaries are big in this refined
graph setting as well, when we are on a small fiber. The proof uses the canonical path
method, as successfully adapted to this setting by Isaksson, Kindler and Mossel [40, 41], and
is very similar to the proof of Lemma 2.21, with some necessary modifications due to the
fact that we now have n coordinates.

Lemma 2.37. Fix a coordinate and a pair of alternatives—for simplicity we choose coor-
dinate 1 and alternatives a and b, but we note that this lemma holds in general, we do not

assume anything special about these choices. Let za,b−1 be such that B1

(
za,b−1

)
is a small fiber

for B
a,b;[a:b]
1 . Then, writing B ≡ B1

(
za,b−1

)
for simplicity, we have

P (σ ∈ ∂ (B)) ≥ γ

2nk5
P (σ ∈ B) . (2.46)

Proof. Let Bc = F̄
(
za,b−1

)
\ B. For every (σ, σ′) ∈ B × Bc, we define a canonical path from

σ to σ′, which has to pass through at least one edge in ∂e (B). Then if we show that every
edge in ∂e (B) lies on at most r canonical paths, then it follows that |∂e (B)| ≥ |B| |Bc| /r.

So let (σ, σ′) ∈ B×Bc. We define a path from σ to σ′ by applying a path construction in
each coordinate one by one, and then concatenating these paths: first in the first coordinate
we get from σ1 to σ′1, while leaving all other coordinates unchanged, then in the second
coordinate we get from σ2 to σ′2, while leaving all other coordinates unchanged, and so on,
finally in the last coordinate we get from σn to σ′n. In the first coordinate we apply the path
construction of [40, 41, Proposition 6.4.], but considering the block formed by a and b as a
single element; in all other coordinates we apply the path construction of [40, 41, Proposition
6.6.]. Since this path goes from σ (which is in B) to σ′ (which is in Bc), it must pass through
at least one edge in ∂e (B).
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For a given edge (π, π′) ∈ ∂e (B), at most how many possible (σ, σ′) ∈ B × Bc pairs are
there such that the canonical path between σ and σ′ defined above passes through (π, π′)?
Let us differentiate two cases.

Suppose that π and π′ differ in the first coordinate. Then coordinates 2 through n of σ
must agree with the respective coordinates of π, while coordinates 2 through n of σ′ can be

anything (up to the restriction given by σ′ ∈ Bc ⊆ F̄
(
za,b−1

)
), giving

(
k!
2

)n−1
possibilities.

Now fixing all coordinates except the first, [40, 41, Proposition 6.4.] tells us that there are at
most (k − 1)2 (k − 1)!/2 < k2 (k − 1)! possibilities for the pair (σ1, σ

′
1). So altogether there

are at most k2 (k − 1)!
(
k!
2

)n−1
paths that pass through a given edge in ∂e (B) in this case.

Suppose now that π and π′ differ in the ith coordinate, where i 6= 1. Then the first i− 1
coordinates of σ′ must agree with the first i−1 coordinates of π, while coordinates i+1, . . . , n
of σ must agree with the respective coordinates of π. The first i − 1 coordinates of σ, and

coordinates i+1, . . . , n of σ′ can be anything (up to the restriction given by σ, σ′ ∈ F̄
(
za,b−1

)
),

giving (k − 1)!
(
k!
2

)n−2
possibilities. Now fixing all coordinates except the ith coordinate, [40,

41, Proposition 6.6.] tells us that there are at most k4k! possibilities for the pair (σi, σ
′
i).

So altogether there are at most 2k4 (k − 1)!
(
k!
2

)n−1
paths that pass through a given edge in

∂e (B) in this case.

So in any case, there are at most 2k4 (k − 1)!
(
k!
2

)n−1
paths that pass through a given

edge in ∂e (B).

Recall that
∣∣∣F̄ (za,b−1

)∣∣∣ = (k − 1)!
(
k!
2

)n−1
, and also |Bc| ≥ γ (k − 1)!

(
k!
2

)n−1
since B is a

small fiber. Therefore

|∂e (B)| ≥ |B| |Bc|
2k4 (k − 1)!

(
k!
2

)n−1 ≥
γ

2k4
|B| .

Now in G
(
za,b−1

)
every ranking profile has no more than nk neighbors, which implies (2.46).

Corollary 2.38. If (2.44) holds, then

P

σ ∈⋃
za,b−1

∂
(
B1

(
za,b−1

)) ≥ γε

2n2k12
.

Proof. Using the previous lemma and (2.44) we have

P

σ ∈⋃
za,b−1

∂
(
B1

(
za,b−1

)) =
∑
za,b−1

P
(
σ ∈ ∂

(
B1

(
za,b−1

)))
≥

∑
za,b−1 :B1(za,b−1)⊆Sm

(
B
a,b;[a:b]
1

)P
(
σ ∈ ∂

(
B1

(
za,b−1

)))
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≥
∑

za,b−1 :B1(za,b−1)⊆Sm
(
B
a,b;[a:b]
1

)
γ

2nk5
P
(
σ ∈ B1

(
za,b
))

=
γ

2nk5
P
(
σ ∈ Sm

(
Ba,b

1

))
≥ γε

2n2k12
.

Next, we want to find manipulation points on the boundaries of boundaries.
Before we do this, let us divide the boundaries of the boundaries according to which

direction they are in. If σ ∈ ∂
(
B1

(
za,b−1

))
for some za,b−1, then we know that there exists a

ranking profile π such that (σ, π) ∈ ∂e
(
B1

(
za,b−1

))
. We know that σ and π differ in exactly

one coordinate, say coordinate j; in this case we say that σ is on the boundary of B1

(
za,b−1

)
in direction j, and we write σ ∈ ∂j

(
B1

(
za,b−1

))
. (This notation should not be confused with

that of the edge boundary.)

We can write the boundary of B1

(
za,b−1

)
as a union of boundaries in the different direc-

tions:
∂
(
B1

(
za,b−1

))
= ∪nj=1∂j

(
B1

(
za,b−1

))
,

but note that this is not (necessarily) a disjoint union, as a ranking profile σ for which

σ ∈ ∂
(
B1

(
za,b−1

))
might lie on the boundary in multiple directions.

In particular, we differentiate between the boundary in direction 1 and the boundary in
all other directions. To this end we introduce the notation

∂−1

(
B1

(
xa,b−1

))
:= ∪nj=2∂j

(
B1

(
xa,b−1

))
.

With this notation we have the following corollary of Corollary 2.38.

Corollary 2.39. If (2.44) holds, then either

P
(
σ ∈ ∪za,b−1

∂−1

(
B1

(
za,b−1

)))
≥ γε

4n2k12
(2.47)

or
P
(
σ ∈ ∪za,b−1

∂1

(
B1

(
za,b−1

)))
≥ γε

4n2k12
. (2.48)

Lemma 2.40. Suppose that the ranking profile σ is on the boundary of a fiber for B
a,b;[a:b]
1

in direction j 6= 1, i.e.,

σ ∈ ∪za,b−1
∂−1

(
B1

(
za,b−1

))
.

Then there exists a 3-manipulation point σ̂ which agrees with σ in all coordinates except
perhaps coordinate 1 and some coordinate j 6= 1; furthermore σ̂1 is equal to σ1 or [a : b]σ1,
except that the position of a third alternative c might be shifted arbitrarily, and σ̂j is equal
to σj or zσj for some adjacent transposition z ∈ T , except the position of b might be shifted
arbitrarily.
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Proof. Suppose that xa,b−1 (σ) = za,b−1. Since σ ∈ ∂
(
B1

(
za,b−1

))
⊆ B1

(
za,b−1

)
, we know that

f (σ) = a, and if σ′ = [a : b]1 σ, then f (σ′) = b.

Let π = (πj, σ−j) denote the ranking profile such that (σ, π) ∈ ∂e

(
B1

(
za,b−1

))
. Let

π′ := [a : b]1 π. Since π /∈ B1

(
za,b−1

)
, (f (π) , f (π′)) 6= (a, b). Then, by Lemma 2.17, if

f (π) 6= f (π′), then one of π and π′ is a 2-manipulation point.
So let us suppose that f (π) = f (π′). If f (π′) = a, then one of σ′ and π′ is a 2-

manipulation point by Lemma 2.17, since π′ = zjσ
′ for some adjacent transposition z 6=

[a : b]. If f (π) = b, then similarly one of σ and π is a 2-manipulation point.
Finally, let us suppose that f (π) = c for some c /∈ {a, b}. In this case Lemma 2.18 tells

us that there exists an appropriate 3-manipulation point σ̂.

Corollary 2.41. If (2.47) holds, then

P (σ ∈M3) ≥ γε

8n3k16
. (2.49)

Proof. Lemma 2.40 tells us that for every ranking profile σ which is on the boundary of a
fiber for B

a,b;[a:b]
1 in some direction j 6= 1, there is a 3-manipulation point σ̂ “nearby”; the

lemma specifies what “nearby” means.
How many ranking profiles σ may give the same σ̂? At most 2nk4, which comes from

the following: σ and σ̂ agree in all coordinates except maybe two, one of which is the first
coordinate; there are n− 1 < n possibilities for the other coordinate; in the first coordinate,
σ̂1 is either σ1 or [a : b]σ1 (giving 2 possibilities), while some alternative c (k − 2 < k
possibilities) might be shifted arbitrarily (at most k possibilities); in the other coordinate
j 6= 1, σ̂j is equal to σj or zσj for some adjacent transposition z ∈ T (at most k possibilities),
except b might be shifted arbitrarily (k possibilities).

So putting this result from Lemma 2.40 together with (2.47) yields (2.49).

The remaining case we have to deal with is when (2.48) holds.

Lemma 2.42. Suppose that the ranking profile σ is on the boundary of a fiber for B
a,b;[a:b]
1

in direction 1, i.e.,

σ ∈ ∪za,b−1
∂1

(
B1

(
za,b−1

))
.

Then either σ ∈ LD1 (a, b), or there exists a 3-manipulation point σ̂ which agrees with σ
in all coordinates except perhaps in coordinate 1; furthermore σ̂1 is equal to σ1, or [a : b]σ1

except that the position of a third alternative c might be shifted arbitrarily.

Proof. Just like the proof of Lemma 2.23.

The following corollary then tells us that either we have found many 3-manipulation
points, or we have many local dictators on three alternatives in coordinate 1.
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Corollary 2.43. Suppose that (2.48) holds. Then either∑
c/∈{a,b}

P
(
σ ∈ LD

{a,b,c}
1

)
= P (σ ∈ LD1 (a, b)) ≥ γε

8n2k12
(2.50)

or
P (σ ∈M3) ≥ γε

16n2k14
.

2.7.2.1 Dealing with local dictators

So the remaining case we have to deal with in this small fiber case is when (2.50) holds, i.e.,
we have many local dictators in coordinate 1.

Lemma 2.44. Suppose that σ ∈ LD
{a,b,c}
1 for some alternative c /∈ {a, b}. Define σ′ :=

(σ′1, σ−1) by letting σ′1 be equal to σ1 except that the block of a, b, and c is moved to the top
of the coordinate. Then

• either σ′ ∈ LD
{a,b,c}
1 ,

• or there exists a 3-manipulation point σ̂ which agrees with σ in all coordinates except
perhaps in coordinate 1; furthermore σ̂1 is equal to σ1 except that the position of a, b,
and c might be shifted arbitrarily.

Proof. Just like the proof of Lemma 2.25.

Corollary 2.45. If (2.50) holds, then either∑
c/∈{a,b}

P
(
σ ∈ LD{a,b,c}1 , {σ1 (1) , σ1 (2) , σ1 (3)} = {a, b, c}

)
≥ γε

16n2k13
(2.51)

or
P (σ ∈M3) ≥ γε

16n2k15
.

Proof. Just like the proof of Corollary 2.26.

Now (2.51) is equivalent to∑
c/∈{a,b}

P
(
σ ∈ LD{a,b,c}1 , (σ1 (1) , σ1 (2) , σ1 (3)) = (a, b, c)

)
≥ γε

96n2k13
. (2.52)

We know that

P ((σ1 (1) , σ1 (2) , σ1 (3)) = (a, b, c)) =
1

k (k − 1) (k − 2)
≤ 6

k3
,
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and so (2.52) implies (recall Definition 2.21)∑
c/∈{a,b}

P(a,b,c)
1

(
σ ∈ LD{a,b,c}1

)
≥ γε

576n2k10
. (2.53)

Now fix an alternative c /∈ {a, b} and define the graph G(a,b,c) =
(
V(a,b,c), E(a,b,c)

)
to have

vertex set
V(a,b,c) := {σ ∈ Snk : (σ1 (1) , σ1 (2) , σ1 (3)) = (a, b, c)}

and for σ, π ∈ V(a,b,c) let (σ, π) ∈ E(a,b,c) if and only if σ and π differ in exactly one coordinate,
and by an adjacent transposition in this coordinate. So G(a,b,c) is the subgraph of the refined
rankings graph induced by the vertex set V(a,b,c).

Let
T1 (a, b, c) := V(a,b,c) ∩ LD{a,b,c}1 ,

and let ∂e (T1 (a, b, c)) and ∂ (T1 (a, b, c)) denote the edge and vertex boundary of T1 (a, b, c)
in G(a,b,c), respectively.

The next lemma shows that unless T1 (a, b, c) is almost all of V(a,b,c), the size of the
boundary ∂ (T1 (a, b, c)) is comparable to the size of T1 (a, b, c).

Lemma 2.46. Let c /∈ {a, b} be arbitrary. Write T ≡ T1 (a, b, c) for simplicity. If

P(a,b,c)
1 (σ ∈ T ) ≤ 1− δ,

then

P(a,b,c)
1 (σ ∈ ∂ (T )) ≥ δ

nk3
P(a,b,c)

1 (σ ∈ T ) . (2.54)

Proof. The proof is essentially the same as the proof of Lemma 2.27, with a slight modifica-
tion to deal with n coordinates. Let T c = V(a,b,c) \ T (a, b, c). For every (σ, σ′) ∈ T × T c we
define a canonical path from σ to σ′ by applying a path construction in each coordinate one
by one, and then concatenating these paths. In all coordinates we apply the path construc-
tion of [40, 41, Proposition 6.4.], but in the first coordinate we only apply it to alternatives
in [k] \ {a, b, c}.

The analysis of this construction is done in exactly the same way as in Lemma 2.37;
in the end we get that |∂e (T )| ≥ δ

k2
|T |. Now every vertex in V(a,b,c) has no more than nk

neighbors, which implies (2.54).

The next lemma tells us that if σ is on the boundary of a set of local dictators on {a, b, c}
for some alternative c /∈ {a, b} in coordinate 1, then there is a 4-manipulation point σ̂ which
is close to σ. The proof is similar to that of Lemma 2.28, but we have to take care of all n
coordinates.

Lemma 2.47. Suppose that σ ∈ ∂ (T1 (a, b, c)) for some c /∈ {a, b}. We distinguish two
cases, based on the number of alternatives.
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If k = 3, then there exists a (3-)manipulation point σ̂ which differs from σ in at most
two coordinates, one of them being the first coordinate.

If k ≥ 4, then there exists a 4-manipulation point σ̂ which differs from σ in at most two
coordinates, one of them being the first coordinate; furthermore, σ̂1 is equal to σ1 except that
the order of the block of a, b, and c might be rearranged and an additional alternative d might
be shifted arbitrarily; and in the other coordinate, call it j, σ̂j is equal to σj except perhaps
a, b, and c are shifted arbitrarily.

Proof. Let π be the ranking profile such that (σ, π) ∈ ∂e (T1 (a, b, c)), let j be the coordinate
in which they differ, and let z be the adjacent transposition in which they differ, i.e., π = zjσ.
Since π /∈ T1 (a, b, c), there exists a reordering of the block of a, b, and c at the top of π1 such
that the outcome of f is not the top ranked alternative in coordinate 1. Call the resulting
vector π′1, and let π′ := (π′1, π−1). W.l.o.g. let us assume that π′1 (1) = a. Let us also define
σ′ := zjπ

′. We distinguish two cases: j = 1 or j 6= 1.
If j = 1 (in which case we must have k ≥ 5), π′ is a 2-manipulation point, since f (σ′) = a.
If j 6= 1, then there are various cases to consider. If the adjacent transposition z does

not move a, then either π′ or σ′ is a 2-manipulation point. So let us suppose that z = [a : d]
for some d 6= a.

Clearly we must have f (π′) = d, or else π′ or σ′ is a 2-manipulation point. Suppose first
that d ∈ {b, c}. W.l.o.g. suppose that d = b.

Then take alternative c in coordinate j of both σ′ and π′, and bubble it to the block of a
and b simultaneously in the two ranking profiles. If along the way the value of the outcome
of the SCF f changes from a or b, respectively, then we have a 2-manipulation point by
Lemma 2.17. Otherwise, we now have a, b, and c adjacent in both coordinates 1 and j. Now
rearranging the order of the blocks of a, b, and c in these two coordinates (which can be
done using adjacent transpositions), we either get a 2-manipulation point by Lemma 2.17,
or we can define a new SCF on two voters and three alternatives, a, b, and c. This SCF
takes on three values and it is also not hard to see that the outcome is not only a function
of the first coordinate, so by the Gibbard-Satterthwaite theorem we know that this SCF has
a manipulation point, which is a 3-manipulation point of the original SCF f .

Now let us look at the case when d /∈ {b, c}. In this case we do something similar to
what we just did in the previous paragraph. In both σ′ and π′, first bubble up alternative
d in coordinate 1 up to the block of a, b, and c, and then bubble b and c in coordinate j to
the block of a and d. All of this using adjacent transpositions. If the value of the outcome
of the SCF f changes from a or d, respectively, at any time along the way, then we have a
2-manipulation point by Lemma 2.17. Otherwise, we now have a, b, c, and d adjacent in
both coordinates 1 and j, and we can apply the same trick to find a 4-manipulation point,
using the Gibbard-Satterthwaite theorem.

The next corollary puts together Corollary 2.45 and Lemmas 2.46 and 2.47.
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Corollary 2.48. Suppose that (2.51) holds. Then if for every c /∈ {a, b} we have

P(a,b,c)
1 (σ ∈ T1 (a, b, c)) ≤ 1− ε

100k
,

then

P (σ ∈M4) ≥ γε2

345600n4k22
.

Proof. We know that (2.51) implies∑
c/∈{a,b}

Pa,b,c1 (σ ∈ T1 (a, b, c)) ≥ γε

576n2k10
.

Now then using the assumptions, Lemma 2.46 with δ = ε
100k

and Lemma 2.47, we have

P (σ ∈M4) ≥
∑

c 6={a,b}

1

k3
P(a,b,c)

1 (σ ∈M4) ≥
∑
c/∈{a,b}

1

6nk8
P(a,b,c)

1 (σ ∈ ∂ (T1 (a, b, c)))

≥
∑
c/∈{a,b}

ε

600n2k12
P(a,b,c)

1 (σ ∈ T1 (a, b, c)) ≥ γε2

345600n4k22
.

So again we are left with one case to deal with: if there exists an alternative c /∈ {a, b}
such that P(a,b,c)

1 (σ ∈ T1 (a, b, c)) > 1 − ε
100k

. Define a subset of alternatives K ⊆ [k] in the
following way:

K := {a, b} ∪
{
c ∈ [k] \ {a, b} : P(a,b,c)

1 (σ ∈ T1 (a, b, c)) > 1− ε

100k

}
.

In addition to a and b, K contains those alternatives that whenever they are at the top of
coordinate 1 with a and b, they form a local dictator with high probability.

So our assumption now is that |K| ≥ 3.
Our next step is to show that unless we have many manipulation points, for any alter-

native c ∈ K, conditioned on c being at the top of the first coordinate, the outcome of f is
c with probability close to 1.

Lemma 2.49. Let c ∈ K. Then either

P(c)
1 (f (σ) = c) ≥ 1− ε

50k
, (2.55)

or
P (σ ∈M2) ≥ ε

100k4
. (2.56)

Proof. Just like the proof of Lemma 2.30.

We now deal with alternatives that are not in K: either we have many manipulation
points, or for any alternative d /∈ K, the outcome of f is not d with probability close to 1.
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Lemma 2.50. Let d /∈ K. If P (f (σ) = d) ≥ ε
4k

, then

P (σ ∈M4) ≥ ε2

106n2k13
.

Proof. The proof is very similar to that of Lemma 2.31: we do the same steps in the first
coordinate as done in the proof of Lemma 2.31, and the fact that we have n coordinates only
matters at the very end.

Let σ be such that f (σ) = d. We will keep coordinates 2 through n to be fixed as σ−1

throughout the proof. By bubbling alternatives d, a, and b in the first coordinate, we can
define σ′, σ(d,b,a), σ(d,a,b), σ(a,b,d), σ(a,d,b), σ(b,a,d), and σ(b,d,a) just as in the proof of Lemma 2.31.
Again, we can show that either

P (σ ∈M2) ≥ ε

1600k3
,

in which case we are done, or

P(a,b,d)
1

(
σ(a,b,d) ∈ LD{a,b,d}1

)
= P

(
σ : σ(a,b,d) ∈ LD{a,b,d}1

)
≥ ε

1600k
. (2.57)

Define G(a,b,d) and T(a,b,d) analogously to G(a,b,c) and T(a,b,c), respectively.
Suppose that (2.57) holds. We also know that d /∈ K, so Lemma 2.46 applies, and

then Lemma 2.47 shows us how to find manipulation points. We can put these arguments
together, just like in the proof of Corollary 2.48, to show what we need:

P (σ ∈M4) ≥ 1

k3
P(a,b,d)

1 (σ ∈M4) ≥ 1

6nk8
P(a,b,d)

1 (σ ∈ ∂ (T1 (a, b, d)))

≥ ε

600n2k12
P(a,b,d)

1 (σ ∈ T1 (a, b, d)) ≥ ε2

106n2k13
.

Putting together the results of the previous lemmas, there is only one case to be covered,
which is covered by the following final lemma. Basically, this lemma says that unless there
are enough manipulation points, our function is close to a dictator in the first coordinate,
on the subset of alternatives K.

Lemma 2.51. Recall that we assume that D
(
f,NONMANIP

)
≥ ε. Furthermore assume

that |K| ≥ 3, that for every c ∈ K we have

P(c)
1 (f (σ) = c) ≥ 1− ε

50k
, (2.58)

and that for every d /∈ K we have

P (f (σ) = d) ≤ ε

4k
.

Then
P (σ ∈M2) ≥ ε

4k2
. (2.59)

Proof. Just like the proof of Lemma 2.32.

To conclude the proof in the small fiber case, inspect all the lower bounds for P (σ ∈M4)
obtained in Section 2.7.2, and recall that γ = ε3

103n3k24
.
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2.7.3 Large fiber case

We now deal with the large fiber case, when (2.45) holds for both boundaries, i.e., when

P
(
σ ∈ Lg

(
B
a,b;[a:b]
1

))
≥ ε

nk7

and
P
(
σ ∈ Lg

(
B
c,d;[c:d]
2

))
≥ ε

nk7
.

We differentiate between two cases: whether d ∈ {a, b} or d /∈ {a, b}.

2.7.3.1 Case 1

Suppose that d ∈ {a, b}, in which case w.l.o.g. we may assume that d = a. That is, in the
rest of this case we may assume that

P
(
σ ∈ Lg

(
B
a,b;[a:b]
1

))
≥ ε

nk7
(2.60)

and
P
(
σ ∈ Lg

(
B
a,c;[a:c]
2

))
≥ ε

nk7
. (2.61)

First, let us look at only the boundary between a and b in direction 1. Let us fix a vector

za,b−1 which gives a large fiber B1

(
za,b−1

)
for the boundary B

a,b;[a:b]
1 , i.e., we know that

P
(
σ ∈ B1

(
za,b−1

) ∣∣∣σ ∈ F̄ (za,b−1

))
≥ 1− γ. (2.62)

Our basic goal in the following will be to show that conditional on the ranking profile

σ being in the fiber F
(
za,b−1

)
(but not necessarily in F̄

(
za,b−1

)
), with high probability the

outcome of the vote is top{a,b} (σ1), or else we have a lot of 2-manipulation points or local
dictators on three alternatives in coordinate 1.

Our first step towards this is the following.

Lemma 2.52. Suppose that za,b−1 gives a large fiber B1

(
za,b−1

)
for the boundary B

a,b;[a:b]
1 . Then

P(a,b)
1

(
σ ∈ B1

(
za,b−1

) ∣∣∣σ ∈ F (za,b−1

))
≥ 1− kγ. (2.63)

Proof. We know that

P
(

(σ1 (1) , σ1 (2)) = (a, b)
∣∣∣σ ∈ F̄ (za,b−1

))
=

1

k − 1
,

and so

P(a,b)
1

(
σ /∈ B1

(
za,b−1

) ∣∣∣σ ∈ F (za,b−1

))
= P(a,b)

1

(
σ /∈ B1

(
za,b−1

) ∣∣∣σ ∈ F̄ (za,b−1

))
= (k − 1)P

(
σ /∈ B1

(
za,b−1

)
, (σ1 (1) , σ1 (2)) = (a, b)

∣∣∣σ ∈ F̄ (za,b−1

))
≤ (k − 1) γ < kγ.
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The next lemma formalizes our goal mentioned above.

Lemma 2.53. Suppose that za,b−1 gives a large fiber B1

(
za,b−1

)
for the boundary B

a,b;[a:b]
1 . Then

either
P
(
f (σ) = top{a,b} (σ1)

∣∣∣σ ∈ F (za,b−1

))
≥ 1− 2kγ (2.64)

or
P
(
σ ∈M2

∣∣∣σ ∈ F (za,b−1

))
≥ γ

2k
(2.65)

or
P
(
σ ∈ LD1 (a, b)

∣∣∣σ ∈ F (za,b−1

))
≥ γ

2k
. (2.66)

Proof. The proof of this lemma is essentially the same as that of Lemma 2.34, there are
only two slight differences. First, we use Lemma 2.52 to know that (2.63) holds. Second, we

take σ ∈ F
(
za,b−1

)
to be uniform, and we stay on the fiber F

(
za,b−1

)
throughout the proof:

we modify only the first coordinate throughout the proof, in the same way as we did for
Lemma 2.34. We omit the details.

Now this lemma holds for all vectors za,b−1 which give a large fiber B1

(
za,b−1

)
for the bound-

ary B
a,b;[a:b]
1 . By (2.60) we know that

P
(
σ : B1

(
xa,b−1 (σ)

)
is a large fiber

)
≥ ε

nk7
.

Now if (2.65) holds for at least a third of the vectors za,b−1 that give a large fiber B1

(
za,b−1

)
,

then it follows that
P (σ ∈M2) ≥ γε

6nk8

and we are done. If (2.66) holds for at least a third of the vectors za,b−1 that give a large fiber

B1

(
za,b−1

)
, then similarly we have

P (σ ∈ LD1 (a, b)) ≥ γε

6nk8
,

which means that (2.50) also holds, and so we are done by the argument in Section 2.7.2.1.
So the remaining case to consider is when (2.64) holds for at least a third of the vectors

za,b−1 that give a large fiber B1

(
za,b−1

)
.

We can go through this same argument for the boundary between a and c in direction 2
as well, and either we are done because

P (σ ∈M2) ≥ γε

6nk8

or
P (σ ∈ LD2 (a, c)) ≥ γε

6nk8
,
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or for at least a third of the vectors za,c−2 that give a large fiber B2

(
za,c−2

)
we have

P
(
f (σ) = top{a,c} (σ2)

∣∣σ ∈ F (za,c−2

))
≥ 1− 2kγ.

So basically our final case is if

P
(
σ ∈ F a,b

1

)
≥ ε

3nk7
(2.67)

and also
P (σ ∈ F a,c

2 ) ≥ ε

3nk7
. (2.68)

Notice that being in the set F a,b
1 only depends on the vector xa,b (σ) of preferences between

a and b, and similarly being in the set F a,c
2 only depends on the vector xa,c (σ) of preferences

between a and c. We know that
{(
xa,bi (σ) , xa,ci (σ)

)}n
i=1

are independent, and for any given

i we know that
∣∣∣E(xa,bi (σ)xa,ci (σ)

)∣∣∣ = 1
3
. Hence we can apply reverse hypercontractivity

(Lemma 2.8) to get the following result.

Lemma 2.54. If (2.67) and (2.68) hold, then also

P
(
σ ∈ F a,b

1 ∩ F
a,c
2

)
≥ ε3

27n3k21
. (2.69)

Proof. See above.

The next and final lemma then concludes that we have lots of manipulation points.

Lemma 2.55. Suppose that (2.69) holds. Then

P (σ ∈M3) ≥ ε3

54n3k27
− 9γ

k3
. (2.70)

Proof. First let us define two events:

I1 :=
{
σ : f (σ) = top{a,b} (σ1)

}
,

I2 :=
{
σ : f (σ) = top{a,c} (σ2)

}
.

Using similar estimates as previously in Lemma 2.11, we have

P
(
σ ∈ I1 ∩ I2 ∩ F a,b

1 ∩ F
a,c
2

)
≥ P

(
σ ∈ F a,b

1 ∩ F
a,c
2

)
− P

(
σ /∈ I1, σ ∈ F a,b

1 ∩ F
a,c
2

)
− P

(
σ /∈ I2, σ ∈ F a,b

1 ∩ F
a,c
2

)
.

The first term is bounded below via (2.69), while the other two terms can be bounded using
the definition of F a,b

1 and F a,c
2 , respectively:

P
(
σ /∈ I1, σ ∈ F a,b

1 ∩ F
a,c
2

)
≤ P

(
σ /∈ I1, σ ∈ F a,b

1

)
≤ P

(
σ /∈ I1

∣∣∣σ ∈ F a,b
1

)
≤ 2kγ,
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and similarly for the other term. Putting everything together gives us

P
(
σ ∈ I1 ∩ I2 ∩ F a,b

1 ∩ F
a,c
2

)
≥ ε3

27n3k21
− 4kγ.

If σ ∈ I1 ∩ I2 ∩ F a,b
1 ∩ F

a,c
2 , then clearly we must have f (σ) = a, and therefore xa,b1 (σ) = 1

and xa,c2 (σ) = 1. Now define σ′ from σ by bubbling up b in coordinate 1 to just below a, and
bubbling up c in coordinate 2 to just below a. Either we encounter a 2-manipulation point
along the way, or the outcome is still a: f (σ′) = a. If we encounter a 2-manipulation point
along the way for at least half of such ranking profiles, then we are done:

P (σ ∈M2) ≥ 1

k2

(
ε3

54n3k21
− 2kγ

)
=

ε3

54n3k23
− 2γ

k
.

Otherwise, we may assume that

P
(
σ ∈ I1 ∩ I2 ∩ F a,b

1 ∩ F
a,c
2 , f (σ′) = a

)
≥ ε3

54n3k21
− 2kγ.

In this case define σ̃′ := [a : b]1 σ
′ and σ̃′′ := [a : c]2 σ

′. If f (σ̃′) /∈ {a, b} or f (σ̃′′) /∈ {a, c},
then we automatically have that one of σ′, σ̃′, or σ̃′′ is a 2-manipulation point. If f (σ̃′) = b
and f (σ̃′′) = c, then by Lemma 2.18 we know that there exists a 3-manipulation point σ̂
which agrees with σ except perhaps a, b, and c could be arbitrarily shifted in the first two
coordinates. The final case is when a ∈ {f (σ̃′) , f (σ̃′′)}. But we now show that this has
small probability, and therefore (2.70) follows.

First let us look at the case of f (σ̃′) = a. We have

P
(
σ ∈ I1 ∩ I2 ∩ F a,b

1 ∩ F
a,c
2 , f (σ′) = a, f (σ̃′) = a

)
=

∑
za,b−1 :F(za,b−1)⊆F

a,b
1

P
(
σ ∈ I1 ∩ I2 ∩ F

((
1, za,b−1

))
∩ F a,c

2 , f (σ′) = a, f (σ̃′) = a
)

=
∑

za,b−1 :F(za,b−1)⊆F
a,b
1

P
(
σ ∈ I1 ∩ I2 ∩ F a,c

2 , f (σ′) = a, f (σ̃′) = a
∣∣∣σ ∈ F ((1, za,b−1

)))
×

× P
(
σ ∈ F

((
1, za,b−1

)))
≤

∑
za,b−1 :F(za,b−1)⊆F

a,b
1

P
(
σ : f (σ̃′) = a

∣∣∣σ ∈ F ((1, za,b−1

)))
P
(
σ ∈ F

((
1, za,b−1

)))
.

Now we know that σ̃′ ∈ F
((
−1, za,b−1

))
⊆ F a,b

1 , and we also know that

P
(
f (σ) 6= b

∣∣∣σ ∈ F ((−1, za,b−1

)))
≤ 4kγ.
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The number of σ’s that give the same σ̃′ is at most k2, and so we can conclude that

P
(
σ ∈ I1 ∩ I2 ∩ F a,b

1 ∩ F
a,c
2 , f (σ′) = a, f (σ̃′) = a

)
≤ 4k3γ,

and similarly

P
(
σ ∈ I1 ∩ I2 ∩ F a,b

1 ∩ F
a,c
2 , f (σ′) = a, f (σ̃′′) = a

)
≤ 4k3γ,

which shows that

P (σ ∈M3) ≥ 1

k6

(
ε3

54n3k21
− 2kγ − 8k3γ

)
≥ ε3

54n3k27
− 9γ

k3
.

To conclude the proof in this case, recall that we have chosen γ = ε3

103n3k24
.

2.7.3.2 Case 2

First, as in the previous case, we can look at simply the boundary between a and b in
direction 1, and conclude that either there are many manipulation points, or there are many
local dictators, or (2.67) holds. This holds similarly for the boundary between c and d in
direction 2. Finally, just as in Section 2.3.3.2, we can show that (2.67) and (2.68) cannot
hold at the same time. We omit the details.

2.7.4 Proof of Theorem 2.35 concluded

Proof of Theorem 2.35. The starting point for the proof is Lemma 2.19, which directly im-
plies Lemma 2.36 (unless there are many 2-manipulation points, in which case we are done).
We then consider two cases, as indicated in Section 2.7.1.

We deal with the small fiber case in Section 2.7.2. First, Lemmas 2.37, 2.40, and 2.42,
and Corollaries 2.38, 2.39, 2.41, and 2.43 imply that either there are many 3-manipulation
points, or there are many local dictators on three alternatives in coordinate 1. We then
deal with the case of many local dictators in Section 2.7.2.1. Lemma 2.44, Corollary 2.45,
Lemmas 2.46 amd 2.47, Corollary 2.48, and Lemmas 2.49, 2.50, and 2.51 together show that
there are many 4-manipulation points if there are many local dictators on three alternatives,
and the SCF is ε-far from the family of nonmanipulable functions.

We deal with the large fiber case in Section 2.7.3. Here Lemmas 2.52, 2.53, 2.54, and 2.55
show that if there are not many local dictators on three alternatives, then there are many
3-manipulation points. In the case when there are many local dictators, we refer back to
Section 2.7.2.1 to conclude the proof.
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2.8 Reduction to distance from truly nonmanipulable

SCFs

Proof of Theorem 2.5. Our assumption means that there exists a SCF g ∈ NONMANIP
such that D (f, g) ≤ α. We distinguish two cases: either g is a function of one coordinate,
or g takes on at most two values.

Case 1. g is a function of one coordinate. In this case we can assume w.l.o.g. that
g is a function of the first coordinate, i.e., there exists a SCF h : Sk → [k] on one coordinate
such that for every ranking profile σ, we have g (σ) = h (σ1).

We know from the quantitative Gibbard-Satterthwaite theorem for one voter that for any
β either D (h,NONMANIP (1, k)) ≤ β, or P (σ ∈M3 (h)) ≥ β3

105k16
.

In the former case, we have that

D (g,NONMANIP (n, k)) ≤ D (h,NONMANIP (1, k)) ≤ β,

and so consequently
D (f,NONMANIP (n, k)) ≤ α + β.

In the latter case, we have that

P (σ ∈M3 (g)) = P (σ ∈M3 (h)) ≥ β3

105k16
,

and so consequently

P (σ ∈M3 (f)) ≥ β3

105k16
− 6nkα,

since changing the outcome of a SCF at one ranking profile can change the number of 3-
manipulation points by at most 6nk. Now choosing β = 100nk6α1/3 shows that either (2.3)
or (2.4) holds.

Case 2. g is a function which takes on at most two values. W.l.o.g. we may
assume that the range of g is {a, b} ⊂ [k], i.e., for every ranking profile σ ∈ Snk we have
g (σ) ∈ {a, b}.

There is one thing we have to be careful about: even though g takes on at most two
values, it is not necessarily a Boolean function, since the value of g (σ) does not necessarily
depend only on the Boolean vector xa,b (σ).

We now define a function h : Snk → {a, b} that is close in some sense to g and which
can be viewed as a Boolean function h : {a, b}n → {a, b} because h (σ) depends on σ only
through xa,b (σ). (The vector xa,b (σ) ∈ {−1, 1}n encodes which of a and b is preferred in
each coordinate, and a vector in {a, b}n can encode the same information.) For a given
ranking profile σ, let us consider the fiber on which it is on, F

(
xa,b (σ)

)
, and let us define

g|F(xa,b(σ)) to be the restriction of g to ranking profiles in the fiber F
(
xa,b (σ)

)
. Then define

(see Definition 2.22)

h (σ) := Maj
(
g|F(xa,b(σ))

)
.
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By definition, h (σ) depends on σ only through xa,b (σ), so we may also view h as a Boolean
function h : {a, b}n → {a, b}.

For any given 0 < δ < 1, we either have D (g, h) ≤ δ, in which case D (f, h) ≤ α + δ, or
if D (g, h) > δ, then we show presently that

P (σ ∈M2 (f)) ≥ δ

4nk5
− nkα. (2.71)

Choosing δ = 8n2k6α then shows that either (2.4) holds, or D (f, h) ≤ 9n2k6α.
Let us now show (2.71). We use a canonical path argument again, but first we divide the

ranking profiles according to the fibers with respect to preference between a and b.
Let us consider an arbitrary fiber F

(
za,b
)
, and divide it into two disjoint sets: into those

ranking profiles for which the outcome of g and h agree, and those for which these outcomes
are different. That is,

F
(
za,b
)

= Fmaj
(
za,b
)
∪ Fmin

(
za,b
)
,

where

Fmaj
(
za,b
)

=
{
σ ∈ F

(
za,b
)

: g (σ) = h (σ)
}
,

Fmin
(
za,b
)

=
{
σ ∈ F

(
za,b
)

: g (σ) 6= h (σ)
}
.

By construction, we know that∣∣Fmin
(
za,b
)∣∣ ≤ 1

2

∣∣F (za,b)∣∣ =
1

2

(
k!

2

)n
.

Now for every pair of profiles (σ, σ′) ∈ Fmin
(
za,b
)
×Fmaj

(
za,b
)

define a canonical path from σ
to σ′ by applying a path construction in each coordinate one by one, and then concatenating
these paths. In each coordinate we apply the path construction of [40, 41, Proposition 6.6.]:
we bubble up everything except a and b, and then finally bubble up the last two alternatives
as well.

For a given edge (π, π′) ∈ Fmin
(
za,b
)
× Fmaj

(
za,b
)

there are at most 2k4
(
k!
2

)n
possible

pairs (σ, σ′) ∈ Fmin
(
za,b
)
× Fmaj

(
za,b
)

such that the canonical path between σ and σ′

defined above passes through (π, π′). (This can be shown just like in the previous lemmas,
e.g., Lemma 2.37.) Consequently we have

∣∣∂e (Fmin
(
za,b
))∣∣ ≥ ∣∣Fmin

(
za,b
)∣∣ ∣∣Fmaj

(
za,b
)∣∣

2k4
(
k!
2

)n ≥
∣∣Fmin

(
za,b
)∣∣

4k4
,

where the edge boundary ∂e
(
Fmin

(
za,b
))

is defined via the refined rankings graph restricted
to the fiber F

(
za,b
)
. Summing this over all fibers we have that

∑
za,b

∣∣∂e (Fmin
(
za,b
))∣∣ ≥∑

za,b

∣∣Fmin
(
za,b
)∣∣

4k4
≥ δ

4k4
(k!)n , (2.72)
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using the fact that D (g, h) > δ.
Now it is easy to see that if (σ, σ′) ∈ ∂e

(
Fmin

(
za,b
))

for some za,b, then either σ or σ′ is a
2-manipulation point for g. In the refined rankings graph every vertex (ranking profile) has
n (k − 1) < nk neighbors, so each 2-manipulation point can be counted at most nk times in
the sum on the left hand side of (2.72), showing that

P (σ ∈M2 (g)) ≥ δ

4nk5
,

from which (2.71) follows immediately, since changing the outcome of a SCF at one ranking
profile can change the number of 2-manipulation points by at most nk.

So either we are done because (2.4) holds, or D (f, h) ≤ 9n2k6α; suppose the latter
case. Our final step is to look at h as a Boolean function, and use a result on testing
monotonicity [33].

Denote by D̃ the distance of h when viewed as a Boolean function from the set of
monotone Boolean functions. Let 0 < ε < 1 be arbitrary. Then either D̃ ≤ ε, in which case
D (h,NONMANIP) ≤ D̃ ≤ ε and therefore D (f,NONMANIP) ≤ 9n2k6α+ ε, or D̃ > ε. In
the latter case we show that then

P (σ ∈M2 (f)) ≥ 2ε

nk
− 9n3k7α. (2.73)

Choosing ε = 5n4k8α then shows that either (2.3) or (2.4) holds.
Let us now show (2.73). Let us view h as a Boolean function, and denote by p (h)

the fraction of pairs of strings, differing on one coordinate, that violate the monotonicity
condition. Goldreich, Goldwasser, Lehman, Ron, and Samorodnitsky showed in [33, Theorem

2] that p (h) ≥ D̃
n

.
Now going back to viewing h as a SCF on k alternatives, this tells us that there are

at least ε
2
2n pairs of fibers, which differ on one coordinate, that violate monotonicity. For

each such pair of fibers, whenever a and b are adjacent in the coordinate where the two
fibers differ, we get a 2-manipulation point. Such a 2-manipulation point can be counted
at most n times in this way (since there are n coordinates where a and b can be adjacent).
Consequently, we have

|M2 (h)| ≥ ε

2
· 2n · 2 (k − 1)!

(
k!

2

)n−1

· 1

n
=

2ε

nk
(k!)n ,

i.e.,

P (σ ∈M2 (h)) ≥ 2ε

nk
,

from which (2.73) follows immediately, since changing the outcome of a SCF at one ranking
profile can change the number of 2-manipulation points by at most nk.

Proof of Theorem 2.2. First we argue without specific bounds. Suppose on the contrary
that our SCF f does not have many 4-manipulation points. Then f is close to NONMANIP
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by Theorem 2.35. Consequently, by Theorem 2.5, f is close to NONMANIP, which is a
contradiction.

Now we argue with specific bounds. Assume on the contrary that

P (σ ∈M4 (f)) <
ε15

1039n67k166
.

Then by Theorem 2.35 we have that D
(
f,NONMANIP

)
< ε3

106n12k24
, and consequently by

Theorem 2.5 we have D (f,NONMANIP) < ε, which is a contradiction.

2.9 Open problems

We conclude with a few open problems that arise naturally, some of which have already been
asked by Isaksson et al. [40, 41].

• In Section 2.1.3 we mentioned that our techniques do not lead to tight bounds. It
would be interesting to find the correct tight bounds. When discussing tight bounds
there are various different ways to measure the manipulability of a function: in terms
of the probability of having manipulating voters, in terms of the expected number
of manipulating voters, in terms of the number of manipulative edges (either in the
refined or non-refined graph), etc.

• A related question is to find, in some natural subsets of functions, the one that mini-
mizes manipulation. For example, among anonymous SCFs, which function minimizes
the expected number of manipulating voters? For example, for plurality, the proba-
bility that a ranking profile is manipulable is Θ (1/

√
n), and if it is manipulable, then

Θ (n) voters can manipulate, so consequently the expected value of the number of vot-
ers who can manipulate individually is Θ (

√
n). Is it true that for all anonymous SCFs,

this expectation is Ω (
√
n)?

• What if the distribution over rankings is not i.i.d. uniform? It would be interesting to
consider a quantitative Gibbard-Satterthwaite theorem, and also the questions asked
above, in this setting.



66

Chapter 3

Coalitional manipulation:
a smooth transition
from powerlessness to absolute power

3.1 Introduction

While in the previous chapter we focused on a single voter manipulating the outcome of the
election, in this chapter we are interested in the coalitional manipulation problem, where a
group of voters can change their votes in unison, with the goal of making a given candidate
win. Various variations of this problem are known to beNP-hard under many of the common
SCFs [20, 78, 10].

Crucially, this line of work focuses on worst-case complexity, but, as mentioned before,
a recent line of research on average-case manipulability has been questioning the relevance
of such worst-case complexity results. The goal of this alternative line of work is to show
that there are no “reasonable” voting rules that are computationally hard to manipulate
on average. Specifically, the goal is to rule out the following informal statement: there are
“good” voting rules that are hard to manipulate on average under any “sufficiently rich”
distribution over votes.

Taking this point of view, showing easiness of manipulation under a restricted class of
distributions—such as i.i.d. votes or even uniform votes (the impartial culture assumption)—
is interesting, even if these do not necessarily capture all possible real-world elections. Specif-
ically, if we show that manipulation is easy under such distributions, then any average-case
hardness result would necessarily have to make some unnatural technical assumptions to
avoid these distributions. Studying such restricted distributions over votes is indeed exactly
what some recent papers have done.

For the coalitional manipulation problem, Procaccia and Rosenschein [64] first suggested
that it is trivial to determine whether manipulation is possible for most coalitional manip-
ulation instances, from a typical-case computational point of view; one can make a highly
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informed guess purely based on the number of manipulators. Specifically, they studied a
setting where there is a distribution over votes (which satisfies some conditions), and con-
centrated on a family of SCFs known as positional scoring rules. They showed that if the
size of the coalition is o (

√
n), then with probability converging to 1 as n→∞, the coalition

is powerless, i.e., it cannot change the outcome of the election. In contrast, if the size of the
coalition is ω (

√
n) (and o (n)), then with probability converging to 1 as n→∞, the coalition

is all-powerful, i.e., it can elect any candidate. Later Xia and Conitzer [77] proved an analo-
gous result for so-called generalized scoring rules, a family that contains almost all common
voting rules. See also related work by Peleg [61], Slinko [69], Pritchard and Slinko [62], and
Pritchard and Wilson [63]. We discuss additional related work in Section 3.1.2.

Our primary interest in this chapter is to understand the critical window that these
papers leave open, when the size of the coalition is Θ (

√
n). Specifically, we are interested

in the phase transition in the probability of coalitional manipulation, when the size of the
coalition is c

√
n and c varies from zero to infinity, i.e., the transition from powerlessness to

absolute power.
In the past few decades there has been much research on the connection between phase

transitions and computationally hard problems (see, e.g., [31, 17, 3]). In particular, it is
often the case that the computationally hardest problems can be found at critical values of
a sharp phase transition (see, e.g., [34] for an overview). On the other hand, smooth phase
transitions are often found in connection with computationally easy (polynomial) problems,
such as 2-coloring [2] and 1-in-2 SAT [71]. Thus understanding the phase transition in this
critical window may shed light on where the computationally hardest problems lie.

Recently, Walsh [72] empirically analyzed two well-known voting rules—veto and single
transferable vote (STV)—and found that there is a smooth phase transition between the
two regimes. Specifically, Walsh studied coalitional manipulation with unweighted votes
for STV and weighted votes for veto, and sampled from a number of distributions in his
experiments, including i.i.d. distributions, correlated distributions, and votes sampled from
real-world elections. Our main result complements and improves upon Walsh’s analysis in
two ways; while Walsh’s results show how the phase transition looks like concretely for veto
and STV, we analytically show that the phase transition is indeed smooth for any generalized
scoring rule (including veto and STV) when the votes are i.i.d. This suggests that deciding
the coalitional manipulation problem may not be computationally hard in practice.

3.1.1 Our results

Before presenting our results, we first formally specify the setup of the problem. Again
we consider n voters electing a winner among k alternatives via a SCF f : Snk → [k]. We
denote a ranking profile by σ = (σ1, . . . , σn) ∈ Snk , and for a candidate a, define Wa =
{σ ∈ Snk | f (σ) = a}, the set of ranking profiles where the outcome of f is a. Our setup and
assumptions are the following.

Assumption 3.1. We assume that the number of candidates, k, is constant.
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Assumption 3.2. We assume that the SCF f is anonymous, i.e., that it treats each voter
equally.

Assumption 3.3. We assume that the votes of voters are i.i.d., according to some distri-
bution p on Sk. Furthermore, we assume that there exists δ > 0 such that for every π ∈ Sk,
we have p (π) ≥ δ (necessarily δ ≤ 1/k!).

If we were to assume only these, then our setup would include uninteresting cases, such
as when f is a constant—i.e., no matter what the votes are, a specific candidate wins.
Another less interesting case is when the probability of a given candidate winning vanishes
as n→∞—we can then essentially forget about this candidate for large n (in the sense that
a coalition of size Ω (n) would be necessary to make this candidate win). To exclude these
and focus on the interesting cases, we make an additional assumption which concerns both
the SCF and the distribution of votes.

Assumption 3.4. We assume that there exists ε > 0 such that for every n and for every
candidate a ∈ [k], the probability of a being elected is at least ε > 0, i.e., P (Wa) ≥ ε
(necessarily ε ≤ 1/k).

All four assumptions are satisfied when the distribution is uniform (i.e., under the im-
partial culture assumption) and the SCF is close to being neutral (i.e., neutral up to some
tie-breaking rules); in particular, they hold for all commonly used SCFs. The assumptions
are somewhat more general than this, although the i.i.d. assumption remains a restrictive
one. However, as discussed earlier, even showing easiness of manipulation under such a
restricted class of distributions is interesting.

As mentioned before, we are interested in the case when the coalition has size c
√
n for

some constant c. Define the probabilities

q
n

(c) := P
(

some coalition of size c
√
n can elect any candidate

)
,

qn (c) := P
(

some coalition of size c
√
n can change the outcome of the election

)
,

rn (c) := P
(

a specific coalition of size c
√
n can elect any candidate

)
,

rn (c) := P
(

a specific coalition of size c
√
n can change the outcome of the election

)
,

and let

q (c) := lim
n→∞

q
n

(c) , q (c) := lim
n→∞

qn (c) , r (c) := lim
n→∞

rn (c) , r (c) := lim
n→∞

rn (c) ,

provided these limits exist. Clearly q
n

(c) ≤ qn (c), rn (c) ≤ rn (c), rn (c) ≤ q
n

(c), and
rn (c) ≤ qn (c).

Before we describe our results, which deal with these quantities, we first explain how
these relate to the various variants of the coalitional manipulation problem. In the coalitional
manipulation problem the coalition is fixed, and thus the relevant quantities are rn (c) and
rn (c). Closely related is the problem of determining the margin of victory, which is the
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minimum number of voters who need to change their votes to change the outcome of the
election. Also related is the problem of bribery, the minimum number of voters who need
to change their votes to make a given candidate win. The main difference between these
problems is that in coalitional manipulation the coalition is fixed, whereas in the latter two
problems the coalition is not fixed. Hence the relevant quantities for studying the latter two
are q

n
(c) and qn (c). Our tools also allow us to deal with other related quantities (such as

microbribery [28]), but we focus our attention on the four quantities described above.
Our first result analyzes the case when the size of the coalition is c

√
n for large c. We

show that if c is large enough, then with probability close to 1, a specific coalition of size c
√
n

can elect any candidate. This holds for any SCF that satisfies the above (mild) restrictions.

Theorem 3.1. Assume that Assumptions 3.1, 3.2, 3.3, and 3.4 hold. For any η > 0 there
exists a constant c = c (η, δ, ε, k) such that rn (c) ≥ 1− η for every n. In particular, we can
choose

c = (4/δ) log (2k!/η)
[√

log (2k/η) +
√

log (2/ε)
]
.

It follows that
lim
c→∞

lim inf
n→∞

rn (c) = 1.

This result extends previous theorems of Procaccia and Rosenschein [64], and Xia and
Conitzer [77], from scoring rules and generalized scoring rules, respectively, to anonymous
SCFs.

Our second result deals with the case when the size of the coalition is c
√
n for small c,

and the transition as c goes from 0 to∞. Here we assume additionally that f is a generalized
scoring rule (to be defined in Section 3.3.1.1); this is needed because there exist (pathological)
anonymous SCFs for which the result below does not hold (see the beginning of Section 3.3
for an example).

Theorem 3.2. Assume that Assumptions 3.1, 3.2, 3.3, and 3.4 hold, and furthermore that
f is a generalized scoring rule. Then:

(1) The limits q (c), q (c), r (c), and r (c) exist.

(2) There exists a constant K = K (f, δ) <∞ such that q (c) ≤ Kc; in particular,

lim
c→0

q (c) = 0.

(3) For all 0 < c <∞, we have 0 < q (c) ≤ q (c) < 1 and 0 < r (c) ≤ r (c) < 1. Furthermore,
the functions q (·), q (·), r (·), and r (·) are all continuously differentiable with bounded
derivative.

In words, Part 2 means that if c is small enough then with probability close to 1 no
coalition of size c

√
n can change the outcome of the election, and the statements about

r and r in Part 3 mean that the coalitional manipulation problem has a smooth phase
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transition: as the number of manipulators increases, the probabilities that a coalition has
some power, and that it has absolute power, increase smoothly. Parts 1 and 2 of the theorem
simply make a result of Xia and Conitzer [77] more precise, by extending the analysis to
the Θ(

√
n) regime. More importantly, in the proofs of these statements we introduce the

machinery needed to establish Part 3, which is our main result.
Since the coalitional manipulation problem does not have a sharp phase transition, The-

orem 3.2 can be interpreted as suggesting that realistic distributions over votes are likely to
yield coalitional manipulation instances that are tractable in practice, even if the size of the
coalition concentrates on the previously elusive Θ(

√
n) regime; this is true for any generalized

scoring rule, and in particular for almost all common social choice functions (an exception
is Dodgson’s rule). This interpretation has a negative flavor in further strengthening the
conclusion that worst-case complexity is a poor barrier to manipulation.

However, the complexity glass is in fact only half empty. The probability that the margin
of victory is at most c

√
n is captured by the quantity qn, hence Part 3 of Theorem 3.2 also

implies that the margin of victory problem has a smooth phase transition. As recently
pointed out by Xia [73], efficiently solving the margin of victory problem could help in post-
election audits—used to determine whether electronic elections have resulted in an incorrect
outcome due to software or hardware bugs—and its tractability is in fact desirable.

The methods we use are flexible, and can be extended to various setups of interest
that do not directly satisfy our assumptions above, for instance single-peaked preferences.
Consider a one-dimensional political spectrum represented by the interval [0, 1], and fix the
location of the candidates. Assume that voters are uniformly distributed on the interval,
independently of each other. For technical reasons, this distribution does not satisfy our
assumptions, since there will be rankings π ∈ Sk such that p (π) = 0; however, our tools
allow us to deal with this setting as well. For instance, if the locations of the k candidates
are

{
1
2k
, 3

2k
, . . . , 2k−1

2k

}
, then our results hold (with appropriate quantitative modifications).

Similarly, if the locations were something else, then there would exist a subset of candidates
who have an asymptotically nonvanishing probability of winning, and the same results hold
restricted to this subset of candidates.

Finally, we discuss the role of tie-breaking in our setup, since this is often an important
issue when studying manipulation. However, since we consider manipulation by coalitions
of size c

√
n, ties where there exist a constant number of voters such that if their votes are

changed appropriately there is no longer a tie, are not relevant. Indeed, our tools allow us
to extend the results of Theorem 3.2 to a class of SCFs slightly beyond generalized scoring
rules, and, in particular, these allow for arbitrary tie-breaking rules (see Section 3.3.2.1 for
details).

3.1.2 Additional related work

As discussed at the beginning of Chapter 2, there is a recent line of research with an average-
case algorithmic flavor that suggests that manipulation is indeed typically easy. A different
approach, initiated by Friedgut, Kalai, Keller and Nisan [29, 30], and culminating in the work
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presented in Chapter 2, studies the fraction of ranking profiles that are manipulable, and
also suggests that manipulation is easy on average. We refer to the survey by Faliszewski and
Procaccia [27] for a detailed history of the surrounding literature. See also related literature
in economics, e.g., the work of [35, 16, 56].

Recent work by Xia [73] is independent from, and closely related to, our work. As
mentioned above, Xia’s paper is concerned with computing the margin of victory in elections.
He focuses on computational complexity questions and approximation algorithms, but one
of his results is similar to Parts 1 and 2 of Theorem 3.2. However, our analysis is completely
different; our approach facilitates the proof of Part 3 of the theorem, which is our main
contribution. An even more recent (and also independent) manuscript by Xia [74] considers
similar questions for generalized scoring rules and captures additional types of strategic
behavior (such as control), but again, crucially, this work does not attempt to understand
the phase transition (nor does it subsume our Theorem 3.1).

3.2 Large coalitions

Without further ado, we prove Theorem 3.1. The main idea is to observe that for i.i.d. dis-
tributions, the Hamming distance of a random ranking profile from a fixed subset of ranking
profiles concentrates around its mean. The theorem follows from standard concentration
inequalities.

Proof of Theorem 3.1. For σ, σ′ ∈ Snk , define

d (σ, σ′) =
1

n

n∑
i=1

1 [σi 6= σ′i] ,

i.e., d (σ, σ′) is 1/n times the Hamming distance of σ and σ′. If U is a subset of ranking profiles
and σ is a specific ranking profile then define dU (σ) = minσ′∈U d (σ, σ′). The function dU is
Lipschitz with constant 1/n, and therefore by McDiarmid’s inequality we have the following
concentration inequality:

P (|dU (σ)− EdU | ≥ c) ≤ 2 exp
(
−2c2n

)
(3.1)

for any c > 0 and U ⊆ Snk . Suppose U ⊆ Snk has measure at least ε, i.e., U is such
that P (σ ∈ U) ≥ ε, and take γ such that 2 exp (−2γ2n) < ε, e.g., let γ =

√
log (2/ε)/

√
n.

Then (3.1) implies that there exists σ ∈ U such that |dU (σ)− EdU | ≤ γ, but since dU (σ) = 0,
this means that EdU ≤ γ. So for such a set U , we have

P (dU (σ) > γ + c) ≤ exp
(
−2c2n

)
for any c > 0. Choosing c = B/

√
n and defining B′ = B +

√
log (2/ε) we get that

P
(
dU (σ) > B′/

√
n
)
≤ exp

(
−2B2

)
. (3.2)
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In the language of the usual Hamming distance, this means that the probability that the
ranking profile needs to be changed in at least B′

√
n coordinates to be in U is at most

exp (−2B2), which can be made arbitrarily small by choosing B large enough.
By our assumption, P (σ ∈ Wa) ≥ ε for every a, and therefore by (3.2) and a union bound

we get
P
(
∃a : dWa (σ) > B′/

√
n
)
≤ k exp

(
−2B2

)
.

By choosing B =
√

log (2k/η), this probability is at most η/2.
Consider a specific coalition of size DB′

√
n, where D = D (δ, k) will be chosen later.

Using Chernoff’s bound and a union bound, with probability close to one, for every possible
ranking π the coalition has at least B′

√
n voters with the ranking π:

P
(
∃π ∈ Sk : coalition of size DB′

√
n has less than B′

√
n voters with ranking π

)
≤ k!P

(
Bin

(
DB′
√
n, δ
)
< B′

√
n
)
≤ k! exp

(
− (1− 1/Dδ)2DB′

√
nδ/2

)
≤ k! exp

(
− (1− 1/Dδ)2Dδ/2

)
,

where Bin (DB′
√
n, δ) denotes a binomial random variable with parameters DB′

√
n and δ,

and where we used our assumption that for every voter the probability for every ranking is
at least δ > 0. Choosing D = (4/δ) log (2k!/η), this probability is at most η/2.

By the anonymity of f , the outcome only depends on the number of voters voting ac-
cording to each ranking. Consequently, if σ is such that it is at a distance of at most B′/

√
n

away from each Wa, and where for each ranking π there are at least B′
√
n voters in the

coalition with ranking π, then the coalition is able to achieve any outcome. Using the above
and a union bound this happens with probability at least 1− η.

3.3 Small coalitions and the phase transition

This section is almost entirely devoted to the proof of Theorem 3.2, but it also includes some
helpful definitions, examples, and intuitions.

Consider the following example of a SCF. For a ∈ [k] let na (σ) denote the number
of voters who ranked candidate a on top in the ranking profile σ. Define the SCF f by
f (σ) =

∑k
a=1 ana (σ) mod k. This SCF is clearly anonymous (since it only depends on the

number of voters voting according to specific rankings), and moreover it is easy to see that
any single voter can always elect any candidate.

This example shows that, in general, we cannot have a matching lower bound for the size
of the manipulating coalition on the order of

√
n. However, this is an artificial example (one

would not consider such a voting system in real life), and we expect that a matching lower
bound holds for most reasonable SCFs.

Xia and Conitzer [77] introduced a large class of SCFs called generalized scoring rules,
which include most commonly occurring SCFs. In the following we introduce this class of
SCFs, provide an alternative way of looking at them (as so-called “hyperplane rules”), and
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show that for this class of SCFs if the coalition has size c
√
n for small enough c, then the

probability of being able to change the outcome of the election can be arbitrarily close to
zero. At the end of the section we then prove the smooth transition as stated in Part 3 of
Theorem 3.2.

3.3.1 Generalized scoring rules, hyperplane rules, and their
equivalence

In this subsection we introduce generalized scoring rules and hyperplane rules, and show
their equivalence.

3.3.1.1 Generalized scoring rules

We now define generalized scoring rules.

Definition 3.1. For any y, z ∈ Rm, we say that y and z are equivalent, denoted by y ∼ z,
if for every i, j ∈ [m], we have yi ≥ yj if and only if zi ≥ zj.

Definition 3.2. A function g : Rm → [k] is compatible if for any y ∼ z, we have g (y) =
g (z).

That is, for any function g that is compatible, g (y) is completely determined by the total
preorder of {y1, . . . , ym} (a total preorder is an ordering in which ties are allowed).

Definition 3.3 (Generalized scoring rules). Let m ∈ N be a natural number, let f : Sk → Rm

be a function mapping a ranking to an m-tuple of real numbers (called a generalized scoring
function), and let g : Rm → [k] be a function mapping an m-tuple of reals to an integer in
[k], where g is compatible (g is called a decision function). The functions f and g determine
the generalized scoring rule GS (f, g) as follows: for σ ∈ Snk , let

GS (f, g) (σ) := g

(
n∑
i=1

f (σi)

)
.

From the definition it is clear that every generalized scoring rule (GSR) is anonymous.

3.3.1.2 Hyperplane rules

Preliminaries and notation. In the following, for a SCF let us write f ≡ fn, i.e., let us
explicitly note that f is a function on n voters; also let us write σ ≡ σn. Since the SCF
fn is anonymous, the outcome only depends on the numbers of voters who vote according
to particular rankings. Let Dn denote the set of points in the probability simplex ∆k!

for which all coordinates are integer multiples of 1/n. Let us denote a typical element of
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the probability simplex ∆k! by x = {xπ}π∈Sk . For a ranking profile σn, let us denote the
corresponding element of the probability simplex by x (σn), i.e., for all π ∈ Sk, we have

x (σn)π =
1

n

n∑
i=1

1 [σi = π] .

By our assumptions the outcome of fn only depends on x (σn), so by abuse of notation we
may write that fn : ∆k!|Dn → [k] with fn (σn) = fn (x (σn)).

We are now ready to define hyperplane rules.

Definition 3.4 (Hyperplane rules). Fix a finite set of affine hyperplanes of the simplex
∆k!: H1, . . . , H`. Each affine hyperplane partitions the simplex into three parts: the affine
hyperplane itself and two open halfspaces on either side of the affine hyperplane. Thus the
affine hyperplanes H1, . . . , H` partition the simplex into finitely many (at most 3`) regions.
Let F : ∆k! → [k] be a function which is constant on each such region. Then the sequence of
SCFs {fn}n≥1, fn : Snk → [k], defined by

fn (σn) = F (x (σn))

is called a hyperplane rule induced by the affine hyperplanes H1, . . . , H` and the function F .

A function F : ∆k! → [k] naturally partitions the simplex ∆k! into k parts based on
the outcome of F . (For hyperplane rules this partition is coarser than the partition of ∆k!

induced by the affine hyperplanes H1, . . . , H`.) We abuse notation and denote these parts
by {Wa}a∈[k]. The following definition will be useful for us.

Definition 3.5 (Interior and boundaries of a partition induced by F ). We say that x ∈ ∆k!

is an interior point of the partition {Wa}a∈[k] induced by F if there exists α > 0 such that for

all y ∈ ∆k! for which |x− y| ≤ α, we have F (x) = F (y). Otherwise, we say that x ∈ ∆k! is
on the boundary of the partition, which we denote by B.

For a hyperplane rule the boundary B is contained in the union of the corresponding
affine hyperplanes. Conversely, suppose F : ∆k! → [k] is an arbitrary function and the
sequence of (anonymous) SCFs {fn}n≥1, fn : Snk → [k] is defined by fn (σn) = F (x (σn)). If

the boundary B of F is contained in the union of finitely many affine hyperplanes of ∆k!,
then F is not necessarily a hyperplane rule, but there exists a hyperplane rule F̂ such that F
and F̂ agree everywhere except perhaps on the union of the finitely many affine hyperplanes.

3.3.1.3 Equivalence

Xia and Conitzer [76] gave a characterization of generalized scoring rules: a SCF is a gen-
eralized scoring rule if and only if it is anonymous and finitely locally consistent (see Xia
and Conitzer [76, Definition 5]). This characterization is related to saying that generalized
scoring rules are the same as hyperplane rules, yet we believe that spelling this out explicitly
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is important, because the geometric viewpoint of hyperplane rules is somewhat different, and
in this probabilistic context it is also more flexible.

Lemma 3.3. The class of generalized scoring rules coincides with the class of hyperplane
rules.

Proof. First, let us show that every hyperplane rule is a generalized scoring rule. Let us
consider the hyperplane rule induced by affine hyperplanes H1, . . . , H` of the simplex ∆k!, and
the function F : ∆k! → [k]. The affine hyperplanes of ∆k! can be thought of as hyperplanes
of Rk! that go through the origin—abusing notation we also denote these by H1, . . . , H`. Let
u1, . . . , u` denote unit normal vectors of these hyperplanes.

We need to define functions f and g such that for every ranking profile σn ∈ Snk ,
GS (f, g) (σn) = F (x (σn)). We will have f : Sk → R`+1 and g : R`+1 → [k]. Coordi-
nates 1, . . . , ` of f correspond to hyperplanes H1, . . . , H`, while the last coordinate of f will
always be 0 (this is a technical necessity to make sure that the function g is compatible).
Let us look at the coordinate corresponding to hyperplane Hj with normal vector uj. For
π ∈ Sk define

(f (π))j ≡ (f (π))Hj ≡ (f (π))uj := (uj)π ,

where the coordinates of Rk! are indexed by elements of Sk. Then

(f (σn))j :=
n∑
i=1

(f (σi))j =
n∑
i=1

(uj)σi = n (uj · x (σn)) .

The sign of (f (σn))j thus tells us which side of the hyperplane Hj the point x (σn) lies

on. We define g (y) for all y ∈ R`+1 such that y`+1 = 0; then the requirement that g be
compatible defines g for all y ∈ R`+1. For x ∈ R, define sgn (x) to be 1 if x > 0, −1 if x < 0,
and 0 if x = 0.

To define g (y1, . . . , y`, 0), look at the vector (sgn (y1) , . . . , sgn (y`)). This vector deter-
mines a region in ∆k! in the following way: if sgn (yj) = 1, then the region lies in the
same open halfspace as uj, if sgn (yj) = −1, then the region lies in the open halfspace
which does not contain uj, and finally, if yj = 0, then the region lies in the hyperplane
Hj. Now we define g (y1, . . . , y`, 0) to be the value of F on the region of ∆k! defined by
(sgn (y1) , . . . , sgn (y`)). The value of g (y1, . . . , y`, 0) is well-defined, since F is constant in
each such region. Moreover, if we take y ∼ z with y`+1 = z`+1 = 0, then necessarily
(sgn (y1) , . . . , sgn (y`)) = (sgn (z1) , . . . , sgn (z`)), and thus g (y) = g (z): so g is compatible
(this is where we used the extra coordinate).

Now let us show that every generalized scoring rule is a hyperplane rule. Suppose a
generalized scoring rule is given by functions f : Sk → Rm and g : Rm → [k]. For a ranking
profile σn ∈ Snk , define f (σn) :=

∑n
i=1 f (σi) = n

∑
π∈Sk f (π) (x (σn))π; in this way we can

view f as a function mapping Nk!
≥0 \ {0} to Rm (and hence can also view GS (f, g) as a

function mapping Nk!
≥0 \ {0} to [k]). Since this mapping is homogeneous, we may extend the

domain of f (and hence that of GS (f, g)) to Qk!
≥0 \ {0} in the natural way.
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For a total preorder O, let RO =
{
x ∈ Qk!

≥0 \ {0} : f (x) ∼ O
}

. By definition, if x, y ∈ RO
then g (f (x)) = g (f (y)), i.e., GS (f, g) is constant in each region RO. Each region RO is a Q-
convex cone, i.e., if x, y ∈ RO and λ ∈ Q∩ [0, 1], then λx+ (1− λ) y ∈ RO, and furthermore
if µ ∈ Q>0, then µx ∈ RO (both of these properties follow immediately from Definition 3.1).
Thus we can write Qk!

≥0 \ {0} as the disjoint union of the Q-convex cones {RO}O. The only

way to do this is by taking finitely many hyperplanes of Rk! and cutting Qk!
≥0 \ {0} using

these hyperplanes; a precise statement of this can be found in Section 3.4. This essentially
follows from a result by Kemperman [45, Theorem 2]—to keep the chapter self-contained we
reproduce in Section 3.4 his results and proof, and show how the statement above follows
from his results. Since our function is homogeneous, we need only look at the values of
GS (f, g) on the simplex ∆k!. By the above, the simplex is divided into regions

{
RO ∩∆k!

}
O

via affine hyperplanes of ∆k!, and the function GS (f, g) is constant on RO ∩ ∆k! for each
total preorder O, so GS (f, g) is indeed a hyperplane rule.

3.3.1.4 Examples

Most commonly used SCFs are generalized scoring rules / hyperplane rules, including all po-
sitional scoring rules, instant-runoff voting, Coombs’ method, contingent vote, the Kemény-
Young method, Bucklin voting, Nanson’s method, Baldwin’s method, Copeland’s method,
maximin, and ranked pairs. Some of these examples were already shown by Xia and
Conitzer [77, 76], but nevertheless in Section 3.5 we detail explanations of many of these
examples. The main reason for this is that the perspective of a hyperplane rule arguably
makes these explanations simpler and clearer. A rule that does not fit into this framework is
Dodgson’s rule, which is not homogeneous (see, e.g., [13]), and therefore it is not a hyperplane
rule.

3.3.2 Small coalitions for generalized scoring rules

We now show that for generalized scoring rules, a coalition of size c
√
n for small enough

c can only change the outcome of the election with small probability. By the equivalence
above, we can work in the framework of hyperplane rules.

We consider two metrics on ∆k!: the L1 metric, denoted by d1 or ‖·‖1, and the L2 metric,
denoted by d2 or ‖·‖2. The L1 metric is important in this setting, since changing the votes
of voters corresponds to moving in the L1 metric on ∆k!; this connection is formalized in the
following lemma.

Lemma 3.4. Let σn, τn ∈ Snk . Then d1 (x (σn) , x (τn)) ≤ 2
n
dH (σn, τn), where dH denotes

Hamming distance, i.e., dH (σn, τn) =
∑n

i=1 1 [σi 6= τi]. Furthermore, if y ∈ Dn, then there
exists τ̂n ∈ Snk such that x (τ̂n) = y and d1 (x (σn) , y) = 2

n
dH (σn, τ̂n).

Proof. Let π0 = σn, and for i = 1, . . . , n, define the ranking profile πi as

πi = (τ1, . . . , τi, σi+1, . . . , σn) .
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By definition, πn = τn. The desired inequality then follows from the triangle inequality:

d1 (x (σn) , x (τn)) = d1

(
x
(
π0
)
, x (πn)

)
≤

n∑
i=1

d1

(
x
(
πi−1

)
, x
(
πi
))

=
n∑
i=1

2

n
1 [σi 6= τi] =

2

n
dH (σn, τn) .

For the second part of the lemma, construct τ̂n as follows. For each π ∈ Sk, let Iπ :=
{i ∈ [n] : σi = π}. If x (σn)π ≤ yπ, then for every i ∈ Iπ, let τ̂i = π. If x (σn)π > yπ, then
choose a subset of indices I ′π ⊂ Iπ of size |I ′π| = nyπ, and for every i ∈ I ′π, let τ̂i = π. Finally,
define the rest of the coordinates of τ̂n so that x (τ̂n) = y. The construction guarantees that
then d1 (x (σn) , y) = 2

n
dH (σn, τ̂n).

It is therefore natural to define distances from the boundary B using the L1 metric:

Definition 3.6 (Blowup of boundary). For α > 0, we define the blowup of the boundary B
by α to be

B+α =
{
y ∈ ∆k! : ∃x ∈ B such that ‖x− y‖1 ≤ α

}
.

In order for some coalition to be able to change the outcome of the election at a given
ranking profile, the point on the simplex corresponding to this ranking profile needs to be
sufficiently close to the boundary B; this is formulated in the following lemma.

Lemma 3.5. Suppose we have n voters, a coalition of size m, and the ranking profile is
σn ∈ Snk , which corresponds to the point x (σn) ∈ ∆k! on the probability simplex. A necessary
condition for the coalition to be able to change the outcome of the election from this position
is that x (σn) ∈ B+2m/n. Conversely, if x (σn) ∈ B+(2m−k!)/n, then there exists a coalition of
size m that can change the outcome of the election.

Proof. For any ranking profile τn that the coalition can reach, we have dH (σn, τn) ≤ m,
and so by Lemma 3.4 we have d1 (x (σn) , x (τn)) ≤ 2m

n
. If x (σn) /∈ B+2m/n, then for every

ranking profile τn which the coalition can reach, x (σn) and x (τn) are in the same region
determined by the hyperplanes, and so F (x (τn)) = F (x (σn)), i.e., the coalition cannot
change the outcome of the election.

Now suppose that x (σn) ∈ B+(2m−k!)/n. Then there exists y ∈ B such that we have
d1 (x (σn) , y) ≤ 2m−k!

n
. Since y ∈ B, there exists ŷ ∈ Dn such that d1 (y, ŷ) ≤ k!

n
and

F (ŷ) 6= F (x (σn)). By the triangle inequality, d1 (x (σn) , ŷ) ≤ 2m
n

, and then by the second
part of Lemma 3.4 there exists τ̂n ∈ Snk such that x (τ̂n) = ŷ and dH (σn, τ̂n) ≤ m. The
coalition consisting of voters with indices in I := {i ∈ [n] : σi 6= τ̂i} can thus change the
outcome of the election.

Corollary 3.6. If we have n voters, the probability that some coalition of size m can change
the outcome of the election is bounded from below by P

(
x (σn) ∈ B+(2m−k!)/n

)
and from above

by P
(
x (σn) ∈ B+2m/n

)
, where σn is drawn according to the probability distribution satisfying

the conditions of the setup.
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Gaussian limit. Due to the i.i.d.-ness of the votes, the multinomial random variable x (σn)
concentrates around its expectation, and the rescaled random variable

x̃ (σn) :=
√
n (x (σn)− E (x (σn)))

converges to a normal distribution, with zero mean and specific covariance structure. For our
analysis it is better to use this Gaussian picture, and thus we reformulate the preliminaries
above in this limiting setting. First, let us determine the limiting distribution.

Lemma 3.7. We have x̃ (σn) ⇒n N (0,Σ), where the covariance structure is given by Σ =
diag (p)− ppT , where recall that p is the distribution of a vote.

Proof. It is clear that E (x̃ (σn)) = 0. Computing the covariance structure, we first have that

E
(
x2
π

)
=

1

n2

n∑
i,j=1

P (σi = π, σj = π) =

(
1− 1

n

)
p (π)2 +

1

n
p (π) ,

from which we have Var (xπ) = 1
n

(
p (π)− p (π)2) and thus Var (x̃π) = p (π) − p (π)2. Then

similarly for π 6= π′ we have

E (xπxπ′) =
1

n2

n∑
i,j=1

P (σi = π, σj = π′) =
1

n2

∑
i 6=j

p (π) p (π′) =

(
1− 1

n

)
p (π) p (π′) ,

from which we have that Cov (xπ, xπ′) = − 1
n
p (π) p (π′) and thus Cov (x̃π, x̃π′) = −p (π) p (π′).

Note that, because of the concentration of x (σn) around its mean, and our assumption
that for every n and for every candidate a ∈ [k], we have P (f (σn) = a) ≥ ε, it is neces-
sary that for every α > 0 and for every candidate a ∈ [k] there exists y ∈ ∆k! such that
‖y − E (x (σ1))‖1 ≤ α and F (y) = a.

Denote by µ the distribution of N (0,Σ) and let X̃ denote a random variable distributed
according to µ. Note that µ is a degenerate multivariate normal distribution, as the support
of µ concentrates on the hyperplane H0 where the coordinates sum to zero. (This is because∑

π∈Sk x̃ (σn)π = 0.)

The underlying function F : ∆k! → [k] corresponds to a function F̃ : Rk! |H0 → [k] in the
Gaussian limit, and this function F̃ partitions Rk! |H0 into k parts based on the outcome of

F̃ . We denote these parts by
{
W̃a

}
a∈[k]

. We need the following definitions and properties

of boundaries, analogous to those above.

Definition 3.7 (Interior and boundaries of a partition). We say that x̃ ∈ Rk! |H0 is an

interior point of the partition
{
W̃a

}
a∈[k]

induced by F̃ if there exists α > 0 such that for

all ỹ ∈ Rk! |H0 for which ‖x̃− ỹ‖1 ≤ α, we have F̃ (x̃) = F̃ (ỹ). Otherwise, we say that
x̃ ∈ Rk! |H0 is on the boundary of the partition, which we denote by B̃.
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Lemma 3.8. If the boundary B comes from a hyperplane rule, i.e., B is contained in the
union of ` affine hyperplanes in ∆k!, then B̃ is contained in the union of ˜̀ hyperplanes of
Rk! |H0, where ˜̀≤ `.

Proof. Two things can happen to an affine hyperplane H of ∆k! when we take the Gaussian
limit: (1) if E (x (π)) ∈ H, then translation by E (x (π)) takes H into a hyperplane H̃ of
Rk! |H0 , and since H̃ goes through the origin, scaling (in particular by

√
n) does not move

this hyperplane; (2) if E (x (π)) /∈ H, then translation by E (x (π)) takes H into an affine
hyperplane H̃ of Rk! |H0 that does not go through the origin, and then scaling by

√
n moves

H̃ to an affine hyperplane of Rk! |H0 whose L2 distance from the origin is proportional to
√
n,

so in the n→∞ limit this affine hyperplane “vanishes”.

Definition 3.8 (Blowup of boundary). For α > 0, we define the blowup of the boundary B̃
by α to be

B̃+α =
{
ỹ ∈ Rk! |H0 : ∃x̃ ∈ B̃ such that ‖x̃− ỹ‖1 ≤ α

}
.

Let us focus specifically on a coalition of size c
√
n for some (small) constant c. Corol-

lary 3.6 implies the following.

Corollary 3.9. For hyperplane rules the limit of the probability that in an election with n

voters some coalition of size c
√
n can change the outcome of the election is µ

(
X̃ ∈ B̃+2c

)
.

The following claim, together with Corollary 3.9, tells us that for hyperplane rules a
coalition of size c

√
n can change the outcome of the election with only small probability,

given that c is sufficiently small, proving Part 2 of Theorem 3.2.

Claim 3.10. Suppose that our SCF is a hyperplane rule, and in particular let
{
H̃i

}M
i=1

be a

collection of hyperplanes in Rk! |H0 such that B̃ ⊆
⋃M
i=1 H̃i. Then

µ
(
X̃ ∈ B̃+c

)
≤
√

2

π

Mc√
δ
.

Proof. By our condition and a union bound we have

µ
(
X̃ ∈ B̃+c

)
≤

M∑
i=1

µ
(
X̃ ∈ H̃+c

i

)
.

For a hyperplane H̃ in Rk! |H0 , denote (one of) the corresponding unit normal vector(s) (in
the hyperplane H0) by u. Then

H̃ =
{
x̃ ∈ Rk! |H0 : u · x̃ = 0

}
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and since L1 distance is always greater than L2 distance, we have

H̃+c ⊆
{
x̃ ∈ Rk! |H0 : ∃ỹ ∈ H̃ such that ‖x̃− ỹ‖2 ≤ c

}
=
{
x̃ ∈ Rk! |H0 : |u · x̃| ≤ c

}
.

Since X̃ is a multidimensional Gaussian r.v., u · X̃ is a one-dimensional Gaussian r.v. (which
is centered). Therefore

µ
(
X̃ ∈ H̃+c

)
≤ µ

(
u · X̃ ∈ [−c, c]

)
≤ 2c√

2πVar
(
u · X̃

) .
We have that

Var
(
u · X̃

)
= E

(
u · X̃

)2

= E
(
uT X̃X̃Tu

)
= uTΣu,

and so all that remains to show is that

min
u:‖u‖=1,u⊥1

uTΣu ≥ δ,

where 1 is the k!-dimensional vector having 1 in every coordinate.
Let λ1 (Σ) ≥ λ2 (Σ) ≥ · · · ≥ λk! (Σ) denote the eigenvalues of Σ. Since Σ is positive

semidefinite, all eigenvalues are nonnegative. We know that 0 is an eigenvalue of Σ (the
corresponding eigenvector is 1), so λk! (Σ) = 0. By the variational characterization of eigen-
values we have

min
u:‖u‖=1,u⊥1

uTΣu = λk!−1 (Σ) ,

and so we need to show that λk!−1 (Σ) ≥ δ. To do this we use Weyl’s inequalities.

Lemma 3.11 (Weyl’s inequalities). For an m×m matrix M , let λ1 (M) ≥ λ2 (M) ≥ · · · ≥
λm (M) denote its eigenvalues. If A and C are m×m symmetric matrices then

λj (A+ C) ≤ λi (A) + λj−i+1 (C) if i ≤ j,

λj (A+ C) ≥ λi (A) + λj−i+m (C) if i ≥ j.

We use Weyl’s inequality for A = diag (p) and C = −ppT . The eigenvalues of A are
{p (π)}π∈Sk , all of which are no less than δ. Since C has rank 1, all its eigenvalues but one are

zero, and the single nonzero eigenvalue is λk! (C) = −pTp. Since Σ = diag (p)−ppT = A+C,
Weyl’s inequality tells us that

λk!−1 (Σ) ≥ λk! (diag (p)) + λk!−1

(
−ppT

)
≥ δ + 0 = δ.

This implies that we have a lower bound of Ω (
√
n) for the size of the coalition needed in

order to change the outcome of the election for hyperplane rules. As mentioned before, most
commonly occurring SCFs are in this class of rules: see Section 3.5 for many examples.
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3.3.2.1 “Almost” hyperplane rules

Furthermore, the Gaussian limiting setting above is not sensitive to small changes to the
voting rule for finite n. Consequently, for SCFs that are “almost” hyperplane rules (in a
sense we make precise below), the same conclusion holds: a coalition of size Ω (

√
n) is needed

in order to be able to change the outcome of the election with non-negligible probability.
In particular, the same result holds for SCFs with arbitrary tie-breaking rules for ranking
profiles which lie on one of the hyperplanes (e.g., the tie-breaking rule can depend on the
number of voters n).

Definition 3.9 (“Almost” hyperplane rules). Fix a finite set of affine hyperplanes of the
simplex ∆k!: H1, . . . , H`. These partition the simplex into finitely many regions. Let F :
∆k! → [k] be a function which is constant on each such region, and let B denote the in-
duced boundary. Then the sequence of SCFs {fn}n≥1, fn : Snk → [k], is called an “almost”

hyperplane rule if for every σn such that x (σn) /∈ B+o(1/
√
n), we have

fn (σn) = F (x (σn)) .

This SCF is called an “almost” hyperplane rule induced by the affine hyperplanes H1, . . . , H`

and the function F .

Lemma 3.12. Suppose that the sequence of SCFs {fn}n≥1, fn : Snk → [k], is an “almost”
hyperplane rule defined by ` hyperplanes. Then in the Gaussian limiting setting the boundary
B̃ is contained in the union of ˜̀ hyperplanes of Rk! |H0, where ˜̀≤ `.

Proof. For finite n, the induced boundary of fn in the simplex ∆k! is contained in B+o(1/
√
n),

by definition. Since in the Gaussian limit we scale by
√
n, the blowup by o (1/

√
n) of the

boundary B disappears in the limit, and hence we are back to the situation of Lemma 3.8.
Consequently, the affine hyperplanes corresponding to our “almost” hyperplane rule either
“disappear to infinity” or become hyperplanes of Rk! |H0 .

Corollary 3.13. Corollary 3.9 and Claim 3.10 hold for “almost” hyperplane rules as well.

3.3.3 Smoothness of the phase transition

In this final subsection our goal is to show Parts 1 and 3 of Theorem 3.2. The existence of
the limits in Part 1 follows immediately from the Gaussian limit described above; we do not
detail this, but rather give formulas for these limiting probabilities. These then imply the
properties described in Part 3 of the theorem.

In the following let the hyperplane rule be given by affine hyperplanes H1, . . . , H` of ∆k!

and the function F : ∆k! → [k]; in the limiting setting denote by H̃1, . . . , H̃˜̀ the correspond-
ing hyperplanes of Rk! |H0 and denote by F̃ : Rk! |H0 → [k] the corresponding function.
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3.3.3.1 The quantities q and q

For x̃ ∈ Rk! |H0 define

α (x̃) := inf
ỹ:F̃ (ỹ)6=F̃ (x̃)

d1 (x̃, ỹ) , β (x̃) := max
a∈[k]

inf
ỹ:F̃ (ỹ)=a

d1 (x̃, ỹ) .

From the previous subsection it is then immediate that we can write

q (c) = µ
(
X̃ : α

(
X̃
)
≤ 2c

)
,

q (c) = µ
(
X̃ : β

(
X̃
)
≤ 2c

)
.

It is important to note that the boundary B̃ is contained in the union of finitely many
hyperplanes, H̃1, . . . , H̃˜̀, and thus the regions where F̃ is constant are convex cones which
are the intersection of finitely many halfspaces. Consequently α (x̃) is either d1 (x̃, 0), where

0 denotes the origin of Rk!, or it is d1

(
x̃, H̃j

)
for some 1 ≤ j ≤ ˜̀, where d1

(
x̃, H̃j

)
=

inf ỹ∈H̃j d1 (x̃, ỹ). If we scale x̃ by some positive constant λ, then the distance from the origin

and from every hyperplane scales as well (i.e., d1 (λx̃, 0) = λd1 (x̃, 0) and d1

(
λx̃, H̃j

)
=

λd1

(
x̃, H̃j

)
), and thus for every λ > 0, we have α (λx̃) = λα (x̃). Consequently, if we write

x̃ = ‖x̃‖2 s̃, where s̃ ∈ Sk!−1, and Sk!−1 denotes the (k!− 1)-sphere (not to be confused with
Snk , the set of ranking profiles on n voters and k candidates), then we have α (x̃) = ‖x̃‖2 α (s̃).

The same scaling property holds for β as well, and hence we have

q (c) = µ
(
X̃ :

∥∥∥X̃∥∥∥
2
α
(
S̃
)
≤ 2c

)
, (3.3)

q (c) = µ
(
X̃ :

∥∥∥X̃∥∥∥
2
β
(
S̃
)
≤ 2c

)
. (3.4)

Recall that our condition that for every a ∈ [k], we have P (f (σ) = a) ≥ ε, implies that for
every η > 0 and for every a ∈ [k] there exists x̃ ∈ Rk! |H0 such that ‖x̃‖2 ≤ η and F̃ (x̃) = a.
Consequently for every x̃ ∈ Rk! |H0 we must have α (x̃) ≤ d1 (x̃, 0) and β (x̃) ≤ d1 (x̃, 0). In
particular, for s̃ ∈ Sk!−1 we have d1 (s̃, 0) ≤

√
k!d2 (s̃, 0) =

√
k! and so α (s̃) , β (s̃) ≤

√
k!.

This immediately implies that for every c > 0 we have

q (c) ≥ µ

(
X̃ :

∥∥∥X̃∥∥∥
2
≤ 2c√

k!

)
> 0.

To show that q (c) < 1, note that since the boundary is contained in the union of finitely
many hyperplanes, there exists s̃∗ ∈ Sk!−1 such that α (s̃∗) > 0. By continuity of α, there
exists a neighborhood U ⊆ Sk!−1 of s̃∗ such that for every s̃ ∈ U , α (s̃) ≥ α (s̃∗) /2. For any
x̃ such that x̃/ ‖x̃‖2 ∈ U and ‖x̃‖2 >

4c
α(s̃∗)

, we have

α (x̃) = ‖x̃‖2 α (x̃/ ‖x̃‖2) >
4c

α (s̃∗)

α (s̃∗)

2
= 2c.
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So consequently

q (c) ≤ 1− µ
(
X̃ : X̃/

∥∥∥X̃∥∥∥
2
∈ U,

∥∥∥X̃∥∥∥
2
>

4c

α (s̃∗)

)
< 1.

Finally, the fact that q (c) and q (c) are continuously differentiable follows from the formu-
las (3.3) and (3.4), since q (c) and q (c) are both written as the Gaussian volume of a subset

of Rk! |H0 , and in both cases this subset grows continuously as c increases. The derivative of
both q (c) and q (c) is bounded at zero (by Corollary 3.9 and Claim 3.10), while as c → ∞
the derivative approaches zero, and since the derivative is continuous, it must be bounded
by a constant for the whole half-line.

3.3.3.2 The quantities r and r

In the previous setup when the coalition of size c
√
n was not specified, the ranking profile

could be changed arbitrarily within a Hamming ball of radius c
√
n. On the probability

simplex ∆k! this corresponded to an L1 ball of radius 2c/
√
n, and in the rescaled limiting

setting it corresponded to an L1 ball in Rk! |H0 of radius 2c. When the coalition of size
c
√
n is specified, things are slightly different. In particular, when we look at the probability

distribution on the probability simplex ∆k! induced by the distribution on ranking profiles
(or, in the limiting setting, the Gaussian distribution on Rk! |H0), then we have lost track of
the votes of any specific coalition. Nonetheless, the Gaussian limiting setting still provides
formulas for the limiting probabilities r (c) and r (c).

We can first draw a random ranking profile for the other n − c
√
n voters not in the

coalition, σn−c
√
n, and then the voters in the coalition can set their votes arbitrarily. The

question is, how can the coalition affect the outcome of the vote? In particular, (a) can they
change the outcome of the election, and (b) can they elect any candidate?

The ranking profile σn−c
√
n corresponds to a point x

(
σn−c

√
n
)

on the probability simplex
∆k!, and by setting their votes the coalition can move this point on the probability simplex
in some neighborhood of x

(
σn−c

√
n
)
. We omit the calculation for finite n and only present

the result in the limiting setting.
Suppose that the limiting ranking profile of the voters other than the coalition corresponds

to the point x̃ ∈ Rk! |H0 . Then the set of points the coalition can reach is the following:

Rc (x̃) :=
{
ỹ ∈ Rk! |H0 : ∀π ∈ Sk : ỹπ − x̃π + cp (π) ≥ 0

}
.

We can then define

ϕ (x̃) := inf
{
γ : ∃ỹ ∈ Rγ (x̃) such that F̃ (ỹ) 6= F̃ (x̃)

}
,

ψ (x̃) := inf
{
γ : ∀a ∈ [k]∃ỹ ∈ Rγ (x̃) such that F̃ (ỹ) = a

}
,
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and it follows immediately that we can then write

r (c) = µ
(
X̃ : ϕ

(
X̃
)
≤ c
)
,

r (c) = µ
(
X̃ : ψ

(
X̃
)
≤ c
)
.

In the same way as in Section 3.3.3.1 one can argue that ϕ and ψ scale: if λ > 0 then
ϕ (λx̃) = λϕ (x̃) and ψ (λx̃) = λψ (x̃). Hence we have

r (c) = µ
(
X̃ :

∥∥∥X̃∥∥∥
2
ϕ
(
S̃
)
≤ c
)
, (3.5)

r (c) = µ
(
X̃ :

∥∥∥X̃∥∥∥
2
ψ
(
S̃
)
≤ c
)
. (3.6)

For every 0 < c <∞ we have r (c) ≤ q (c) < 1 (using Section 3.3.3.1). Let us now show that
also r (c) > 0. We claim that for all s̃ ∈ Sk!−1|H0 , we have ψ (s̃) ≤ 2

δ
. This follows from the

fact that if s̃ ∈ Sk!−1|H0 then Sk!−1|H0 ⊆ R 2
δ

(s̃), which is true because if ỹ ∈ Sk!−1|H0 then

for all π ∈ Sk, we have ỹπ − s̃π + 2
δ
p (π) ≥ −1− 1 + 2

δ
δ = 0. Thus we have

r (c) ≥ µ

(
X̃ :

∥∥∥X̃∥∥∥
2
≤ cδ

2

)
> 0

as claimed.
Finally, the fact that r (c) and r (c) are continuously differentiable follows from the for-

mulas (3.5) and (3.6) using an argument given above: r (c) and r (c) are written as the
Gaussian volume of subsets of Rk! |H0 , and these subsets grow continuously as c increases.
The derivative of both r (c) and r (c) is bounded at zero (by Corollary 3.9 and Claim 3.10),
while as c → ∞ the derivative approaches zero, and since the derivative is continuous, it
must be bounded by a constant for the whole half-line.

3.4 Decomposing Rd as the disjoint union of finitely

many convex cones: only via hyperplanes

For self-containment, we reproduce here the main definitions and results of Kemperman [45]
that make precise the claim used in the proof of Lemma 3.3 that the only way to decompose
Qd
≥0 \ {0} into the disjoint union of finitely many Q-convex cones is via hyperplanes. Kem-

perman’s paper deals with convex sets in general, but here we summarize the results about
convex cones that are relevant to us. Kemperman’s results pertain to finite dimensional
linear spaces and we will state them in this form; in the end we show how results for Rd

≥0

follow immediately from these, and as a consequence we also obtain the claim used in the
proof of Lemma 3.3.

Let us start with the main definitions. In the following, all linear spaces are over the reals
and are finite dimensional. Let X be a linear space. A convex cone is a subset K ⊆ X such



CHAPTER 3. COALITIONAL MANIPULATION 85

that x, y ∈ K and λ > 0 imply x + y ∈ K and λx ∈ K. (We do not require that 0 ∈ K.)
For a set A ⊆ X, denote its affine hull by aff (A), its convex hull by cvx (A), and its closure
by cl (A). Note that if K ⊆ X is a convex cone, then aff (K) is a linear subspace of X.

We define two special types of convex cones: basic convex cones and elementary convex
cones.

Definition 3.10 (Basic convex cone). Let K be a convex cone in a finite dimensional linear
space X. We say that K is a basic convex cone (in X) if K is a member K = K0 of some
partition

X = K0∪̇K1∪̇ . . . ∪̇Kr

of X into finitely many disjoint convex cones {Ki}ri=0.

Note that any linear subspace Y of X is a basic convex cone, from which it immediately
follows that K is a basic convex cone in X if and only if it is a basic convex cone in aff (K).

In order to define elementary convex cones, we need a few more definitions.

Definition 3.11 (Open polyhedral convex cone). Let K be a convex cone in a finite dimen-
sional linear space X. We say that K is an open polyhedral convex cone relative to X if K
can be expressed as the intersection of finitely many open halfspaces H1, . . . , H` of X, each
of which has the origin on its boundary. The whole linear space X is an open polyhedral
convex cone with ` = 0.

Definition 3.12 (Relatively open polyhedral convex cone). Let K be a convex cone in a
finite dimensional linear space X. Then K is a relatively open polyhedral convex cone if
either K = ∅ or K is an open polyhedral convex cone relative to aff (K).

Definition 3.13 (Elementary convex cone). Let K be a convex cone in a finite dimensional
linear space X. We say that K is an elementary convex cone if K can be represented as a
disjoint union of finitely many relatively open polyhedral convex cones.

To understand these definitions better, let us consider an example. We can write R =
(−∞, 0) ∪̇[0,∞), and so it is immediate that both (−∞, 0) and [0,∞) are basic convex cones.
Clearly (−∞, 0) and (0,∞) are open polyhedral convex cones, and therefore elementary
convex cones too. While {0} is not an open polyhedral convex cone in R, it is a relatively
open polyhedral convex cone. Consequently [0,∞) is an elementary convex cone as well,
since we can write [0,∞) = {0} ∪̇ (0,∞). In particular, elementary convex cones are not
necessarily open.

The main result of Kemperman concerning convex cones is the following [45, Theorem 2].

Theorem 3.14. Let K be a convex cone in Rd. Then K is a basic convex cone if and only
if it is an elementary convex cone.

In Lemma 3.3 we only use the “only if” direction, and we thus leave the proof of the “if”
direction as an exercise for the reader.
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Proof of “only if” direction. Let X be a finite dimensional linear space and let K be a basic
convex cone in X of dimension d = dim (K) = dim (Y ), where Y = aff (K). We prove by
induction on d the following:

(i) The relative interior of K, denoted by K0, is a relatively open polyhedral convex cone.

(ii) If K0 6= Y , then denote by F1, . . . , F` the (d− 1)-dimensional hyperplanes in Y cor-
responding to the finitely many faces of the polyhedron cl (K) = cl (K0). Then the
convex cones Fi ∩K, where i = 1, . . . , `, are elementary convex cones of dimension at
most d− 1 (but they need not be disjoint).

(iii) The convex cone K is also an elementary convex cone.

If K = ∅, then properties (i) - (iii) hold. If d = 0, then necessarily K = {0}, since K is
a convex cone, and again K satisfies properties (i) - (iii) above.

So we may assume that d ≥ 1 and that each basic convex cone of dimension at most d−1
satisfies properties (i) - (iii) above. Since K is a basic convex cone, there exists a partition

Y = K0∪̇K1∪̇ . . . ∪̇Kr (3.7)

of Y into finitely many disjoint convex cones {Kj}rj=0, with K0 = K. We may assume that

r ≥ 0 is minimal, and hence the Kj are non-empty. Note that K0 is also non-empty since
dim (K) = dim (Y ).

If r = 0 then K = K0 = Y and the properties (i) - (iii) above are immediately satisfied,
so we may assume that r ≥ 1. For j = 1, . . . , r, let Hj be a hyperplane in Y which separates
the convex cone K = K0 with non-empty interior K0 from the non-empty convex cone Kj.
(Such hyperplanes exist by the hyperplane separation theorem, and, moreover, each such
hyperplane goes through the origin, because each Kj contains at least one point from every
open ball around the origin, since each Kj is a cone.) Let H0

j be the associated open half
space in Y which contains the interior K0 of K. Let

L0 = H0
1 ∩ · · · ∩H0

r .

Then L0 is a polyhedral convex cone, which is open relative to Y , and contains the interior
K0 of K.

We claim that L0 = K0. It is enough to show that L0 ⊆ K, because then L0 ⊆ K0

follows from the definition of K0. Suppose on the contrary that there exists x ∈ L0 such
that x /∈ K. Then from the partition (3.7) there must exist an index 1 ≤ j ≤ r with x ∈ Kj.
This implies that x /∈ H0

j and thus x /∈ L0, which is a contradiction. This proves (i).
Now let us show (ii). By (3.7), we can write the linear space Fi as the disjoint union of

the convex cones Fi ∩ Kj, where j = 0, . . . , r, and thus Fi ∩ K is a basic convex cone and
hence, by induction, an elementary convex cone.

Finally, let us show that K is an elementary convex cone. Since K0 is a polyhedral convex
cone which is open relative to Y , it only remains to show that K \K0 can be written as a
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finite disjoint union of relatively open polyhedral convex cones. By (ii), we can write K \K0

as the finite union of elementary convex cones:

K \K0 = ∪`i=1 (Fi ∩K) ,

so what remains is to show that we can write this as a finite disjoint union of relatively
open polyhedral convex cones. We may assume w.l.o.g. that Fi ∩K 6= ∅ for all i and that
(Fi ∩K) * (Fj ∩K) for all i 6= j (otherwise we can leave out Fi ∩K from the union).

We claim that then for every i,

rel int (Fi ∩K) ⊆ (Fi ∩K) \
⋃
j 6=i

(Fj ∩ Fi ∩K) , (3.8)

from which it immediately follows that rel int (Fi ∩K) ∩ rel int (Fj ∩K) = ∅ for i 6= j. To
show (3.8), let the two open halfspaces on either side of the hyperplane Fj be denoted by
F+
j and F−j . W.l.o.g. assume that K ∩ F−j = ∅. Since (Fi ∩K) * (Fj ∩K), we must have

(Fi ∩K)∩ F+
j 6= ∅. Let x ∈ (Fi ∩K)∩ F+

j and let y ∈ Fj ∩ Fi ∩K. Since Fi ∩K is convex,
the interval from x to y is contained in Fi ∩K, but because (Fi ∩K) ∩ F−j = ∅, no points
on this line past the point y can be in Fi ∩K; hence y /∈ rel int (Fi ∩K).

Since Fi∩K is a basic convex cone, rel int (Fi ∩K) is a relatively open polyhedral convex
cone by induction. If Fi ∩ K = aff (Fi ∩K) then rel int (Fi ∩K) = Fi ∩ K. If not, then
denote by Fi,1, . . . , Fi,`i the hyperplanes in aff (Fi ∩K) corresponding to the finitely many
faces of the polyhedron cl (Fi ∩K). By induction, the convex cones Fi,j ∩ Fi ∩ K, where
j = 1, . . . , `i, are elementary convex cones, and we can write

K \K0 =
(
∪̇`i=1 rel int (Fi ∩K)

)⋃̇ (
∪`i=1 ∪

`i
j=1 (Fi,j ∩ Fi ∩K)

)
.

What remains to be shown is that ∪`i=1∪
`i
j=1 (Fi,j ∩ Fi ∩K) can be written as a finite disjoint

union of relatively open polyhedral convex cones; this follows by iterating the previous
argument.

Let us now show that Rd
≥0 is a basic convex cone in Rd. For i = 1, . . . , d, define the closed

halfspace H≥0
i =

{
x ∈ Rd : xi ≥ 0

}
and its complement H<0

i =
{
x ∈ Rd : xi < 0

}
, and from

these define the convex cones

Ki = H≥0
1 ∩ · · · ∩H

≥0
i−1 ∩H<0

i , i = 1, . . . , d.

Then we can write Rd as the disjoint union of the convex cones Rd
≥0 and K1, . . . , Kd, showing

that indeed Rd
≥0 is a basic convex cone. This implies that if we can write Rd

≥0 as the disjoint
union of the convex cones C1, . . . , Cr, then each Ci is a basic convex cone, and hence, by
Theorem 3.14, an elementary convex cone.

Now let us turn to the claim in the proof of Lemma 3.3. In Lemma 3.3, we write Qk!
≥0 \ {0}

as the disjoint union of finitely many Q-convex cones: Qk!
≥0 \ {0} = C0∪̇C1∪̇ . . . ∪̇Cr. For
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i = 0, . . . , r, let C̃i = cvx (Ci). It is known (see, e.g., [79]) that Ci = Qk! ∩C̃i. The C̃i are
therefore disjoint convex cones which satisfy

C̃0∪̇C̃1∪̇ . . . ∪̇C̃r ⊆ Rk!
≥0 (3.9)

and
cl
(
C̃0

)
∪ cl

(
C̃1

)
∪ · · · ∪ cl

(
C̃r

)
= Rk!

≥0 . (3.10)

Our goal is to show that each C̃i is an elementary convex cone. Conditions (3.10) and (3.9)
are very similar to the definition of a basic convex cone; in this spirit let us introduce the
following definition.

Definition 3.14 (Basic convex cone up to closure). Let K0 be a convex cone in a finite
dimensional linear space X. We say that K0 is a basic convex cone up to closure (in X) if
there exist disjoint convex cones K1, . . . , Kr such that

K0∪̇K1∪̇ . . . ∪̇Kr ⊆ X

and
cl (K0) ∪ cl (K1) ∪ · · · ∪ cl (Kr) = X.

Since Rd
≥0 is a basic convex cone, the C̃i above are basic convex cones up to closure.

In fact, every basic convex cone up to closure is an elementary convex cone; the proof is
exactly the same as the one shown above for the “only if” direction of Theorem 3.14, one just
needs to replace “basic convex cone” with “basic convex cone up to closure” everywhere in
the proof, and make the appropriate changes. Moreover, the other direction of Theorem 3.14
implies that actually every basic convex cone up to closure is a basic convex cone.

Hence the C̃i are elementary convex cones, which is what we need in Lemma 3.3.

3.5 Most voting rules are hyperplane rules: examples

In the following we show that the following voting rules are all hyperplane rules: positional
scoring rules, instant-runoff voting, Coombs’ method, contingent vote, the Kemény-Young
method, Bucklin voting, Nanson’s method, Baldwin’s method, and Copeland’s method.

• Positional scoring rules. Let w ∈ Rk be a weight vector. Given a ranking profile
vector σ, the (normalized) score of candidate a ∈ [k] is sa = 1

n

∑n
i=1 w

(
σ−1
i (a)

)
. The

positional scoring rule associated to the weight vector w elects the candidate who has
the highest score. (In case of a tie, there is some tie-breaking rule, but we do not
care about this here.) We denote such a SCF on n voters by fwn . Examples include
plurality (with weight vector w = (1, 0, 0, . . . , 0)), Borda count (with weight vector
w = (k − 1, k − 2, . . . , 0)) and veto (with weight vector w = (1, 1, . . . , 1, 0)).
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To a sequence of SCFs {fwn }n≥1 we can associate a function Fw : ∆k! → [k] in the

following way. For a candidate a ∈ [k] and x ∈ ∆k!, define the (normalized) score
sa (x) =

∑
π∈Sk xπw (π−1 (a)), and let

Fw (x) := arg max
a∈[k]

sa (x) ,

if this arg max is unique, and if it is not unique, then there is some tie-breaking rule.
This construction guarantees that fwn = Fw|Dn . For candidates a 6= b, define

Ha,b :=
{
x ∈ ∆k! : sa (x) = sb (x)

}
,

which is an affine hyperplane of the probability simplex ∆k!. Clearly the boundary Bw

is contained in the union of
(
k
2

)
such affine hyperplanes:

Bw ⊆
⋃

a6=b∈[k]

Ha,b.

• Instant-runoff voting. If a candidate receives absolute majority of first preference
votes, then that candidate wins. If no candidate receives an absolute majority, then
the candidate with fewest top votes is eliminated. In the next round the votes are
counted again, with each ballot counted as one vote for the advancing candidate who
is ranked highest on that ballot. This is repeated until the winning candidate receives
a majority of the vote against the remaining candidates.

The boundary corresponds to two kinds of situations: either (1) there is a tie at the
top at the end, when only two candidates remain; or (2) there is a tie for eliminating a
candidate at the end of one of the rounds. Technically situation (1) is also contained in
situation (2), since at the very end one can view choosing a winner as eliminating the
second placed candidate. One can see that if candidates a and b are tied for elimination
after candidates C ⊆ [k] \ {a, b} (where C = ∅ is allowed) have been eliminated, then
necessarily ∑

C′⊆C

∑
{π(1),...,π(|C′|)}=C′,

π(|C′|+1)=a

xπ =
∑
C′⊆C

∑
{π(1),...,π(|C′|)}=C′,

π(|C′|+1)=b

xπ. (3.11)

Consequently, denoting by sa,C (x) the quantity on the left hand side of (3.11), the
boundary B is contained in the union of at most k22k affine hyperplanes:

B ⊆
⋃
a6=b

⋃
C⊆[k]\{a,b}

{
x ∈ ∆k! : sa,C (x) = sb,C (x)

}
.

• Coombs’ method. This is similar to IRV, but the elimination rule is different. If
a candidate receives absolute majority of first preference votes, then that candidate
wins. If no candidate receives an absolute majority, then the candidate who is ranked
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last by the most voters is eliminated. In the next round the votes are counted again,
with each ballot counted as one vote for the advancing candidate who is ranked highest
on that ballot. This is repeated until the winning candidate receives a majority of the
vote against the remaining candidates.

The boundary corresponds to two kinds of situations: either (1) there is a tie at the
top at the end, when only two candidates remain; or (2) there is a tie for eliminating a
candidate at the end of one of the rounds. Technically situation (1) is also contained in
situation (2), since at the very end one can view choosing a winner as eliminating the
second placed candidate. One can see that if candidates a and b are tied for elimination
after candidates C ⊆ [k] \ {a, b} (where C = ∅ is allowed) have been eliminated, then
necessarily ∑

C′⊆C

∑
{π(k),...,π(k−|C′|+1)}=C′,

π(k−|C′|)=a

xπ =
∑
C′⊆C

∑
{π(k),...,π(k−|C′|+1)}=C′,

π(k−|C′|)=b

xπ. (3.12)

Consequently, denoting by sa,C (x) the quantity on the left hand side of (3.12), the
boundary B is contained in the union of at most k22k affine hyperplanes:

B ⊆
⋃
a6=b

⋃
C⊆[k]\{a,b}

{
x ∈ ∆k! : sa,C (x) = sb,C (x)

}
.

• Contingent vote. This is also similar to IRV, except here all but two candidates
get eliminated after the first round. If a candidate receives absolute majority of first
preference votes, then he/she wins. If no candidate receives an absolute majority, then
all but the top two leading candidates are eliminated and there is a second count, where
the votes of those who supported an eliminated candidate are redistributed among the
two remaining candidates. The candidate who then achieves absolute majority wins.

Here the boundary B corresponds to two kinds of situations: either (1) there are two
distinct top candidates, and when the votes of the voters who voted for other candidates
are redistributed, then the two top candidates are in a dead heat; or (2) there are two
or more candidates who receive an equal number of votes in the first round. Both of
these situations can be described as subsets of affine hyperplanes, and so B is contained
in the union of at most k (k − 1) affine hyperplanes:

B ⊆
⋃
a6=b

x ∈ ∆k! :
∑

π:π(1)=a

xπ +
∑

π:π(1)/∈{a,b},a
π
>b

xπ =
∑

π:π(1)=b

xπ +
∑

π:π(1)/∈{a,b},b
π
>a

xπ


∪
⋃
a6=b

x ∈ ∆k! :
∑

π:π(1)=a

xπ =
∑

π:π(1)=b

xπ

 .
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• Kemény-Young method. Denote by K the Kendall tau distance, which is a metric
on permutations which counts the number of pairwise disagreements between the two
permutations, i.e.,

K (τ1, τ2) =
∑
{a,b}

1 [a and b are in the opposite order in τ1 and τ2] ,

where the sum is over all unordered pairs of distinct candidates. Given a ranking
profile σn, the Kemény-Young method selects the ranking which minimizes the sum of
Kendall tau distances from the votes:

τ ∗ = arg min
τ

n∑
i=1

K (σi, τ) ,

and then the winner of the election is declared to be τ ∗ (1). For us it will be convenient
to write τ ∗ as

τ ∗ = arg min
τ

∑
π

xπ (σn)K (π, τ) .

Here if we are on the boundary B then there must exist two rankings τ1 and τ2 such
that τ1 (1) 6= τ2 (1) and

∑
π xπK (π, τ1) =

∑
π xπK (π, τ2). Thus B is contained in the

union of at most (k!)2 affine hyperplanes:

B ⊆
⋃
τ1 6=τ2

{
x ∈ ∆k! :

∑
π

xπK (π, τ1) =
∑
π

xπK (π, τ2)

}
.

• Bucklin voting. First, every candidate gets a point from all the voters who ranked
them at the top. If there is a candidate who has a majority (i.e., more than n/2 points),
then that candidate wins. If not, then every candidate gets a point from all the voters
who ranked them second. If there is a candidate who has more than n/2 points after
this, then the candidate with the most points wins (there might be multiple candidates
with more than n/2 points after a given round). This process is iterated until there is
a candidate with more than n/2 points.

Here a point on the boundary B corresponds to a situation where some pair of can-
didates have the same number of points after some number of rounds. Therefore B is
contained in the union of at most k2 (k − 1) /2 affine hyperplanes:

B ⊆
⋃
a6=b

k⋃
m=1

x ∈ ∆k! :
m∑
i=1

∑
π:π(i)=a

xπ =
m∑
i=1

∑
π:π(i)=b

xπ

 .

• Nanson’s method. This is Borda count combined with a variation of the instant-
runoff voting procedure. First, the Borda scores of all candidates are computed, and
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then those candidates with Borda score no greater than the average Borda score are
eliminated. Then the Borda scores of each remaining candidate are recomputed, as if
the eliminated candidates were not on the ballot. This is repeated until there is a final
candidate left.

The boundary corresponds to situations when a candidate’s Borda score exactly equals
the average score after some candidates have been eliminated. For C ⊆ [k], denote by
sa,C (x) the score of candidate a after exactly the candidates in C have been eliminated
(sa,C (x) is a linear function of {xπ}π∈Sk), and denote by s̄C (x) the average score of
remaining candidates after exactly the candidates in C have been eliminated. The
boundary B is contained in the union of at most k2k affine hyperplanes:

B ⊆
⋃
a∈[k]

⋃
C⊆[k]\{a}

{
x ∈ ∆k! : sa,C (x) = s̄C (x)

}
.

• Baldwin’s method. This is essentially Borda count combined with the instant-runoff
voting procedure. First, the Borda scores of all candidates are computed, and then the
candidate with the lowest score is eliminated. Then the Borda scores of each remaining
candidate are recomputed, as if the eliminated candidate were not on the ballot. This
is repeated until there is a final candidate left.

The boundary corresponds to ties for eliminating a candidate at the end of one of the
rounds. Borrow the notation sa,C (x) from the previous example. The boundary B is
thus contained in the union of at most k22k affine hyperplanes:

B ⊆
⋃
a6=b

⋃
C⊆[k]\{a,b}

{
x ∈ ∆k! : sa,C (x) = sb,C (x)

}
.

• Copeland’s method. This is a pairwise aggregation method: every candidate gets
1 point for each other candidate it beats in a pairwise majority election, and 1/2 a
point for each candidate it ties with in a pairwise majority election. The winner is
the candidate who receives the most points. This method corresponds to cutting the
simplex ∆k! up into finitely many regions via

(
k
2

)
affine hyperplanes, and in each region

the winner is the candidate with the most points.

While in the previous examples tie-breaking rules were not an issue, here it does become
important. We do not care about tie-breaking rules when we are on an affine hyperplane
where two candidates tie each other in a pairwise majority election. However, there are
open regions in the intersection of halfspaces defined by the affine hyperplanes where
candidates are tied at the top with having the same scores. In this case, in order for
Copeland to be a hyperplane rule, we need to break ties in favor of the same candidate
for the whole region. (This is also how Xia and Conitzer break ties for Copeland’s
method in [77].)
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Using this tie-breaking rule Copeland’s method is indeed a hyperplane rule, since the
boundary is contained in the union of at most

(
k
2

)
affine hyperplanes:

B ⊆
⋃
a6=b

x ∈ ∆k! :
∑
π:a

π
>b

xπ =
∑
π:b

π
>a

xπ

 .
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Part II

Influences in Growing Networks
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Chapter 4

The influence of the seed in growing
networks

4.1 Introduction

In Part II of the thesis we study statistical inference questions in growing networks, and in
particular we are interested in the following question. Suppose we generate a large graph
according to some model of randomly growing graphs—can we say anything about the initial
(seed) graph? A precise answer to this question could lead to new insights for the diverse
applications of randomly growing graphs, for instance in the area of control. There have
been several heuristic approaches to this question, and experimental evidence of the seed’s
influence already exists in the literature, see, e.g., [39, 57, 68]. In this chapter we initiate
the theoretical study of the seed’s influence. For sake of simplicity we focus on trees, in
particular those grown according to linear preferential attachment and uniform attachment,
though the questions we study are of interest more broadly.

In general, one can define a sequence of randomly growing graphs as follows. For n ≥
k ≥ 2 and a graph T on k vertices, define the random graph G(n, T ) by induction. First,
set G(k, T ) = T . Then, given G(n, T ), G(n+ 1, T ) is formed from G(n, T ) by adding a new
vertex and some new edges according to some adaptive rule. We focus on randomly growing
trees, where at each time step a single edge is added connecting the new vertex to an existing
one. In particular, we study preferential attachment and uniform attachment trees, which
we now define.

For a tree T denote by dT (u) the degree of vertex u in T , ∆(T ) the maximum degree

in T , and ~d(T ) ∈ NN the vector of degrees arranged in decreasing order.1 We refer to ~d(T )
as the degree profile of T . For n ≥ k ≥ 2 and a tree T on k vertices we define the random
tree PA(n, T ) by induction. First, let PA(k, T ) = T . Then, given PA(n, T ), PA(n+ 1, T ) is
formed from PA(n, T ) by adding a new vertex u and a new edge uv where v is selected at

1We artificially continue the vector of degrees with zeros after the |T |th coordinate to put all degree
profiles on the same space.
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random among vertices in PA(n, T ) according to the following probability distribution:

P (v = i |PA(n, T )) =
dPA(n,T )(i)

2 (n− 1)
.

This model was introduced in [48] under the name Random Plane-Oriented Recursive Trees
but we use here the modern terminology of Preferential Attachment graphs, see [6, 11].

Uniform attachment trees are even more simply defined. For n ≥ k ≥ 2 and a tree
T on k vertices, we define the random tree UA (n, T ) by induction as follows. First, let
UA (k, T ) = T . Then, given UA (n, T ), UA (n+ 1, T ) is formed from UA (n, T ) by adding a
new vertex u and adding a new edge uv where the vertex v is chosen uniformly at random
among vertices of UA (n, T ), independently of all past choices.

We want to understand whether there is a relation between T and G(n, T ) when n
becomes very large. We investigate three ways to make this question more formal, which
correspond to three different points of view on the limiting graph obtained by letting n go
to infinity.

4.2 Notions of influence and main results

The least refined point of view is to consider the graph G(∞, T ) defined on a countable set
of vertices that one obtains by continuing the graph growing process indefinitely. In the case
of preferential attachment trees, Kleinberg and Kleinberg [46] observed that the seed does
not have any influence in this sense: indeed, for any tree T , almost surely, PA(∞, T ) will be
the unique isomorphism type of tree with countably many vertices and in which each vertex
has infinite degree. In fact, this statement holds for any model where the degree of each
fixed vertex diverges to infinity as the tree grows; this is the case for uniform attachment
trees as well.

Next we consider the much more subtle and fine-grained notion of a weak local limit
introduced in [8]. This notion of graph limits contains information about local neighborhoods
of a typical vertex (see Section 5.4 for a precise definition), and is more powerful than the
one considered in the previous paragraph as it can, e.g., distinguish between models having
different limiting degree distributions. The question is thus whether we can say anything
about T using only local statistics of G(n, T ).

The weak local limit of the preferential attachment graph was first studied in the case of
trees in [66] using branching process techniques, and then later in general in [9] using Pólya
urn representations. These papers show that PA(n, S2) tends to the so-called Pólya-point
graph in the weak local limit sense, where S2 is the 2-vertex star, i.e., two vertices connected
by a single edge. Our first theorem utilizes this result to obtain the same for an arbitrary
seed:

Theorem 4.1. For any tree T the weak local limit of PA(n, T ) is the Pólya-point graph
described in [9] with m = 1.
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This result says that “locally” (in the Benjamini-Schramm sense) the seed has no effect.
The intuitive reason for this result is that in the preferential attachment model most nodes
are far from the seed graph and therefore it is expected that their neighborhoods will not
reveal any information about it.

In the case of uniform attachment trees it is even simpler to see that the seed has no
effect locally. This follows from the fact that with high probability all vertices in UA(n, T )
have degree at most logarithmic in n, so any finite neighborhood of a vertex has size at most
polylogarithmic in n.

Finally, we consider the most refined point of view, which we believe to be the most
natural one for this problem as well as the richest one (both mathematically and in terms
of insights for potential applications). First, we rephrase our main question in the termi-
nology of hypothesis testing. Given two potential seed graphs S and T , and an observation
R which is a graph on n vertices, one wishes to test whether R ∼ G(n, S) or R ∼ G(n, T ).
Our original question then boils down to whether one can design a test with asymptoti-
cally (in n) nonnegligible power. This is equivalent to studying the total variation distance
between G(n, S) and G(n, T ), where recall that the total variation distance between two
random variables X and Y taking values in a finite space X with laws µ and ν is defined as
TV (X, Y ) = 1

2

∑
x∈X |µ (x)− ν (x)|. Thus we naturally define

δ(S, T ) := lim
n→∞

TV(G(n, S), G(n, T )), (4.1)

where G(n, S) and G(n, T ) are random elements in the finite space of unlabeled graphs with
n vertices. This limit is well-defined because TV(G(n, S), G(n, T )) is nonincreasing in n
(since if G(n, S) = G(n, T ), then the evolution of the random graphs can be coupled such
that G(n′, S) = G(n′, T ) for all n′ ≥ n) and always nonnegative.

One can propose a test with asymptotically nonnegligible power (i.e., a nontrivial test)
if and only if δ(S, T ) > 0. We believe that in fact this is the case for natural models
of randomly growing graphs (except in trivial situations). In particular, due to the work
presented in this thesis, and also the paper by Curien et al. [21], we now know that this is
true for preferential attachment and uniform attachment trees. Let δPA and δUA, respectively,
denote the limiting total variation distance as in (4.1) in the case of preferential attachment
and uniform attachment trees, respectively.

Theorem 4.2. For any trees S and T that are nonisomorphic and have at least 3 vertices,
we have that δPA(S, T ) > 0.

Theorem 4.3. For any trees S and T that are nonisomorphic and have at least 3 vertices,
we have that δUA(S, T ) > 0.

In some cases our methods can say more. As a proof of concept we show the following
results, which state that the limiting total variation distance between a fixed tree and a star
can be arbitrarily close to 1 if the star is large enough. Let Sk denote the k-vertex star, i.e.,
the tree where a central vertex is connected to all k − 1 other vertices.



CHAPTER 4. THE INFLUENCE OF THE SEED IN GROWING NETWORKS 98

Theorem 4.4. For any fixed tree T one has

lim
k→∞

δPA (Sk, T ) = 1.

Theorem 4.5. For any fixed tree T one has

lim
k→∞

δUA (Sk, T ) = 1.

4.3 Discussion

4.3.1 Chronological history of main results

In joint work with Sébastien Bubeck and Elchanan Mossel [14], which forms Chapter 5 of
this thesis, we initiated the theoretical study of the influence of the seed in preferential
attachment trees. We conjectured that Theorem 4.2 holds, and showed that it indeed does
provided that the seed trees S and T have different degree profiles.

Theorem 4.6. Let S and T be two finite trees on at least 3 vertices. If ~d(S) 6= ~d(T ), then
δPA (S, T ) > 0.

We prove this theorem in Chapter 5, and in fact our proof shows a stronger statement,
namely that different degree profiles lead to different limiting distributions for the (appro-
priately normalized) maximum degree. The smallest pair of trees that our method cannot
as of yet distinguish is depicted in Figure 4.1.

S T

Figure 4.1: Two trees with six vertices and ~d(S) = ~d(T ).

Following the posting of our results and conjectures on the preprint server arXiv, in
a beautiful work, Curien et al. [21] proved that our conjecture is indeed true, i.e., that
Theorem 4.2 holds. Their proof utilizes some of the ideas presented in Chapter 5, in particular
by using statistics which are very similar to those we consider in Section 5.3.2. The proof
approach of [21] is much more abstract than ours. By constructing and analyzing a large
family of martingales, they are able to show that the limiting distribution of these martingales
must differ when starting from two different trees. One of the advantages of the more
computational proof presented in Chapter 5 is that it allows to more easily derive quantitative
bounds for the limiting total variation distance in cases where our results show that the
distance is nonzero.

Building on both of these previous works, we then studied the influence of the seed in
uniform attachment trees, showing that the seed does indeed have an influence, as described
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in Theorem 4.3 (see also Theorem 4.5). This is joint work with Sébastien Bubeck, Ronen
Eldan, and Elchanan Mossel [15], and forms Chapter 6 of this thesis. We next describe how
preferential attachment and uniform attachment are related.

4.3.2 Comparison of preferential attachment and uniform
attachment

The main idea in both works on preferential attachment trees (Chapter 5 and [21]), mo-
tivated by the rich-get-richer property of the preferential attachment model, is to consider
various statistics based on large degree nodes, and to show that the initial seed influences
the distribution of these statistics.

Consider, for instance, the problem of differentiating between the two seed trees in Fig-
ure 4.2. On the one hand, in S the degree of v` is greater than that of vr, and this unbalanced-
ness in the degrees likely remains as the tree grows according to preferential attachment. On
the other hand, in T the degrees of v` and vr are the same, so they will have the same
distribution at larger times as well. This difference in the balancedness vs. unbalancedness
of the degrees of v` and vr is at the root of why the seed trees S and T are distinguishable in
the preferential attachment model. A precise understanding of the balancedness properties
of the degrees relies on the classical theory of Pólya urns.

In the uniform attachment model the degrees of vertices do not play a special role. In
particular, in the example of Figure 4.2, v` and vr will have approximately similar degrees in
a large tree grown according to the uniform attachment model, irrespective of whether the
seed tree is S or T . Nonetheless, we are able to distinguish the seed trees S and T , but the
statistics we use to do this are based on more global balancedness properties of these trees.

An edge of a tree partitions the tree into two parts on either side of the edge. For most
edges in a tree, this partition has very unbalanced sizes; for instance, if an edge is adjacent
to a leaf, then one part contains only a single vertex. On the other hand, for edges that
are in some sense “central” the partition is more balanced, in the sense that the sizes of the
two parts are comparable. Intuitively, the edges of the seed tree will be among the “most
central” edges of the uniform attachment tree at large times, and so we expect that the seed
should influence the global balancedness properties of such trees.

Consider again the example of the two seed trees S and T in Figure 4.2. The edge e0

partitions the tree into two parts: a subtree under v` and a subtree under vr. In S these
subtree sizes are unbalanced, and this likely remains the case as the tree grows according
to uniform attachment. On the other hand, in T the subtree sizes are equal, and they will
likely remain balanced as the tree grows. Again, Pólya urns play an important role, since
the subtree sizes evolve according to a classical Pólya urn initialized by the subtree sizes
in the seed tree. The difference in the balancedness vs. unbalancedness of the subtree sizes
is at the root of why S and T are distinguishable in the uniform attachment model. To
prove Theorem 4.3 we need to analyze statistics based on more general global balancedness
properties of such trees, but the underlying intuition is what is described in the preceding
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Preferential attachment. The degrees of v` and vr are unbalanced in S but balanced in T ,
and this likely remains the case as the trees grow according to preferential attachment. This
is at the root of why S and T are distinguishable as seed trees in the preferential attachment
model.

Uniform attachment. The sizes of the subtrees under v` and vr are unbalanced in S
but balanced in T , and this likely remains the case as the trees grow according to uniform
attachment. This is at the root of why S and T are distinguishable as seed trees in the uniform
attachment model.

Figure 4.2: Distinguishing between two trees requires different approaches for the uniform
and the preferential attachment models.

paragraphs.
To formalize this intuition we essentially follow the proof scheme developed in [21]. How-

ever, the devil is in the details: since the underlying statistics are markedly different—in
particular, statistics based on degrees are local, whereas those based on balancedness prop-
erties of subtree sizes are global—some of the essential steps of the proof become different.
We provide a more detailed comparison to the work of [21] in Section 6.4, after we present
our proof.

4.3.3 Further related work

A tree with node set [n] := {1, . . . , n} is called recursive if the node numbers along the unique
path from 1 to j increase for every j ∈ {2, . . . , n}. A stochastic process of random growing
trees where nodes are labeled according to the time they are born is thus a sequence of
random recursive trees. If we choose a recursive tree with node set [n] uniformly at random,
then the resulting tree has the same distribution as UA (n). A random tree grown according
to the preferential attachment process starting from a single node is also known as a random
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plane-oriented recursive tree, see [48].
There is a large literature on random recursive trees and their various statistics; we refer

the reader to the book by Drmota [24]. Of particular interest to the question we study here
are recent works on a boundary theory approach to the convergence of random recursive trees
in the limit as the tree size goes to infinity, see [26] and [36]. The main difference between
these and the current work is that they consider labeled and rooted trees, whereas we are
interested in what can be said about the seed given an unlabeled and unrooted copy of the
tree.

4.4 Future directions and open problems

We conclude this chapter with suggestions for future directions and a collection of open
problems.

1. Our results so far are essentially about the testing version of the problem. Can anything
be said about the estimation version? Perhaps a first step would be to understand the
multiple hypothesis testing problem where one is interested in testing whether the seed
belongs to the family of trees T1 or to the family T2.

2. Starting from two seeds S and T with different spectrum, is it always possible to
distinguish (with nontrivial probability) between PA(n, S) and PA(n, T ) with spectral
techniques? What about for uniform attachment and other models? More generally, it
would be interesting to understand what properties are invariant under modifications
of the seed.

3. Is it possible to give a combinatorial description of the metrics δPA and δUA?

4. Under what conditions on two tree sequences (Tk), (Rk) do we have limk→∞ δ(Tk, Rk) =
1? In Theorems 4.4 and 4.5 we showed that a sufficient condition for δPA and δUA is
to have Tk = T and Rk = Sk. If Tk and Rk are independent (uniformly) random trees
on k vertices, do we have limk→∞ Eδ(Tk, Rk) = 1 for δ = δPA and δ = δUA?

5. What can be said about the general preferential attachment and uniform attachment
models, when multiple edges are added at each step? What about other models of
randomly growing graphs?

6. A simple variant on the model studied in this paper is to consider probabilities of
connection proportional to the degree of the vertex raised to some power α. For α = 1
and α = 0 the results of this thesis and those of [21] show that different seeds are
distinguishable. What about for other α? Is δα (S, T ) > 0 whenever S and T are
nonisomorphic and have at least three vertices? (Here δα is defined analogously to δPA

and δUA for general α.) What can be said about δα (S, T ) as a function of α? Is it
monotone in α? Is it convex?
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When α > 1, i.e., in the case of superlinear preferential attachment, we expect the
seed to have an influence in the strongest sense, i.e., that if S and T are nonisomorphic
trees on at least three vertices, then

TV (PAα (∞, S) ,PAα (∞, T )) > 0. (4.2)

When α > 1, Oliveira and Spencer [58] give a precise description of the infinite tree
PAα (∞, S2), which contains exactly one vertex of infinite degree, with all other vertices
having finite degree. From this it is possible to give a similar description of the infinite
tree PAα (∞, S) for any seed tree S. We believe that from this description it is possible
to deduce that (4.2) holds for α > 1, but have not pursued this question further.
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Chapter 5

Preferential attachment trees

5.1 Overview

This chapter is devoted to proving the results described in the previous chapter on the
influence of the seed in preferential attachment trees. To simplify notation, in this chapter
we let δ ≡ δPA.

In the next section we derive results on the limiting distribution of the maximum de-
gree ∆(PA(n, T )) that are useful in proving Theorems 4.6 and 4.4, which we then prove in
Section 5.3.1. In Section 5.3.2 we describe a particular way of generalizing the notion of
maximum degree which we believe should provide an alternative way to prove Theorem 4.2.
At present we are missing a technical result which we state separately as Conjecture 5.1 in
the same section. The proof of Theorem 4.1 is in Section 5.4, while the proof of a key lemma
described in Section 5.2 is presented in Section 5.5.

5.2 Useful results on the maximum degree

We first recall several results that describe the limiting degree distributions of preferential
attachment graphs (Section 5.2.1), and from these we determine the tail behavior of the
maximum degree in Section 5.2.2, which we then use in the proofs of Theorems 4.6 and 4.4.
Throughout the chapter we label the vertices of PA(n, T ) by {1, 2, . . . , n} in the order in
which they are added to the graph, with the vertices of the initial tree labeled in decreasing
order of degree, i.e., satisfying dT (1) ≥ dT (2) ≥ · · · ≥ dT (|T |) (with ties broken arbitrarily).
We also define the constant

c (a, b) =
Γ (2a− 2)

2b−1Γ (a− 1/2) Γ (b)
, (5.1)

which will occur multiple times.
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5.2.1 Previous results

5.2.1.1 Starting from an edge

Móri [49] used martingale techniques to study the maximum degree of the preferential at-
tachment tree starting from an edge, and showed that ∆(PA(n, S2))/

√
n converges almost

surely to a random variable which we denote by Dmax (S2). He also showed that for each
fixed i ≥ 1, dPA(n,S2) (i) /

√
n converges almost surely to a random variable which we denote

by Di (S2), and furthermore that Dmax (S2) = maxi≥1Di (S2) almost surely. In light of this,
in order to understand Dmax (S2), it is useful to study {Di (S2)}i≥1. Móri [49] computes the
joint moments of {Di (S2)}i≥1; in particular, we have (see [49, eq. (2.4)]) that for i ≥ 2,

EDi (S2)r =
Γ (i− 1) Γ (1 + r)

Γ
(
i− 1 + r

2

) . (5.2)

Using different methods and slightly different normalization, Peköz et al. [59] also study
the limiting distribution of dPA(n,S2) (i); in particular, they give an explicit expression for the
limiting density. Fix s ≥ 1/2 and define

κs (x) = Γ (s)

√
2

sπ
exp

(
−x

2

2s

)
U

(
s− 1,

1

2
,
x2

2s

)
1{x>0},

where U (a, b, z) denotes the confluent hypergeometric function of the second kind, also
known as the Kummer U function (see [1, Chapter 13]); it can be shown that this is a
density function. Peköz et al. [59] show that for i ≥ 2 the distributional limit of

dPA(n,S2) (i) /
(
EdPA(n,S2) (i)2)1/2

has density κi−1 (they also give rates of convergence to this limit in the Kolmogorov metric).
Let Ws denote a random variable with density κs. The moments of Ws (see [59, Section 2])
are given by

EW r
s =

(s
2

)r/2 Γ (s) Γ (1 + r)

Γ
(
s+ r

2

) , (5.3)

and thus comparing (5.2) and (5.3) we see that Di (S2)
d
=
√

2/ (i− 1)Wi−1 for i ≥ 2.

5.2.1.2 Starting from an arbitrary seed graph

Since we are interested in the effect of the seed graph, we desire similar results for PA(n, T )
for an arbitrary tree T . One way of viewing PA(n, T ) is to start growing a preferential
attachment tree from a single edge and condition on it being T after reaching |T | vertices;
PA(n, T ) has the same distribution as PA(n, S2) conditioned on PA (|T | , S2) = T . Due to
this, the almost sure convergence results of [49] carry over to the setting of an arbitrary
seed tree. Thus for every fixed i ≥ 1, dPA(n,T ) (i) /

√
n converges almost surely to a random
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variable which we denote by Di (T ), ∆ (PA (n, T )) /
√
n converges almost surely to a random

variable which we denote by Dmax (T ), and furthermore Dmax (T ) = maxi≥1Di (T ) almost
surely.

In order to understand these limiting distributions, the basic observation is that for
any i such that 1 ≤ i ≤ |T |, the pair

(
2 (n− 1)− dPA(n,T ) (i) , dPA(n,T ) (i)

)
evolves accord-

ing to a Pólya urn with replacement matrix ( 2 0
1 1 ) starting from (2 (|T | − 1)− dT (i) , dT (i)).

Indeed, when a new vertex is added to the tree, either it attaches to vertex i, with prob-
ability dPA(n,T ) (i) / (2n− 2), in which case both dPA(n,T ) (i) and 2 (n− 1) − dPA(n,T ) (i) in-
crease by one (and hence why the second row of the replacement matrix is (1 1)), or oth-
erwise it attaches to some other vertex, in which case dPA(n,T ) (i) does not increase but
2 (n− 1) − dPA(n,T ) (i) increases by two (and hence why the first row of the replacement
matrix is (2 0)). Janson [42] gives limit theorems for triangular Pólya urns, and also pro-
vides information about the limiting distributions; for instance [42, Theorem 1.7] gives a
formula for the moments of Di (T ), extending (5.2) for arbitrary trees T : for every i such
that 1 ≤ i ≤ |T |, we have

EDi (T )r =
Γ (|T | − 1) Γ (dT (i) + r)

Γ (dT (i)) Γ
(
|T | − 1 + r

2

) , (5.4)

and for i > |T | we have EDi (T )r = Γ (i− 1) Γ (1 + r) /Γ (i− 1 + r/2), just like in (5.2).
The joint distribution of the limiting degrees in the seed graph,

(
D1 (T ) , . . . , D|T | (T )

)
,

can be understood by viewing the evolution of
(
dPA(n,T ) (1) , . . . , dPA(n,T ) (|T |)

)
in the follow-

ing way. When adding a new vertex, first decide whether it attaches to one of the initial |T |
vertices (with probability

∑|T |
i=1 dPA(n,T ) (i) / (2n− 2)) or not (with the remaining probabil-

ity); if it does, then independently pick one of them to attach to with probability proportional
to their degrees. In other words, if viewed at times when a new vertex attaches to one of the
initial |T | vertices, the joint degree counts of the initial vertices evolve like a standard Pólya
urn with |T | colors and identity replacement matrix.

Let Beta (a, b) denote the beta distribution with parameters a and b (with density propor-
tional to xa−1(1 − x)b−11{x∈[0,1]}), let Dir (α1, . . . αs) denote the Dirichlet distribution with
density proportional to xα1−1

1 · · ·xαs−1
s 1{x∈[0,1]s,

∑s
i=1 xi=1}, and write X ∼ GGa (a, b) for a

random variable X having the generalized gamma distribution with density proportional to

xa−1e−x
b
1{x>0}. On the one hand, the pair

(
2 (n− 1)−

∑|T |
i=1 dPA(n,T ) (i) ,

∑|T |
i=1 dPA(n,T ) (i)

)
evolves according to a Pólya urn with replacement matrix ( 2 0

1 1 ) starting from (0, 2(|T | − 1)).

Janson [42] gives the limiting distribution of
∑|T |

i=1 dPA(n,T ) (i) /
√
n (see Theorem 1.8 and Ex-

ample 3.1):
∑|T |

i=1Di (T )
d
= 2Z|T |, where Z|T | ∼ GGa (2 |T | − 1, 2). On the other hand, it is

known that in a standard Pólya urn with identity replacement matrix the vector of propor-
tions of each color converges almost surely to a random variable with a Dirichlet distribution
with parameters given by the initial counts. These facts, together with the observation in
the previous paragraph, lead to the following representation: if X and Z|T | are independent,
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X ∼ Dir (dT (1) , . . . , dT (|T |)), and Z|T | ∼ GGa (2 |T | − 1, 2), then(
D1 (T ) , . . . , D|T | (T )

) d
= 2Z|T |X. (5.5)

Recently, Peköz et al. [60] gave useful representations for (D1 (T ) , . . . , Dr (T )) for general r,
and the representation above appears as a special case (see [60, Remark 1.9]).

5.2.2 Tail behavior

In order to prove Theorem 4.6 our main tool is to study the tail of the limiting degree
distributions. In particular, we use the following key lemma.

Lemma 5.1. Let T be a finite tree.

(a) Let U ⊆ {1, 2, . . . , |T |} be a nonempty subset of the vertices of T , and let d =
∑

i∈U dT (i).
Then

P

(∑
i∈U

Di (T ) > t

)
∼ c (|T | , d) t1−2|T |+2d exp

(
−t2/4

)
(5.6)

as t→∞, where the constant c is as in (5.1).1

(b) For every L > |T | there exists a constant C (L) <∞ such that for every t ≥ 1 we have

∞∑
i=L

P (Di (T ) > t) ≤ C (L) t3−2L exp
(
−t2/4

)
. (5.7)

We postpone the proof of Lemma 5.1 to Section 5.5, as it results from a lengthy compu-
tation. As an immediate corollary we get the asymptotic tail behavior of Dmax (T ).

Corollary 5.2. Let T be a finite tree and let m := |{i ∈ {1, . . . , |T |} : dT (i) = ∆ (T )}|,
where recall that ∆ (T ) is the maximum degree in T . Then

P (Dmax (T ) > t) ∼ m× c (|T | ,∆ (T )) t1−2|T |+2∆(T ) exp
(
−t2/4

)
(5.8)

as t→∞, where the constant c is as in (5.1).

Proof. Recall the fact that Dmax (T ) = maxi≥1Di (T ) almost surely. First, a union bound
gives us that

P (Dmax (T ) > t) ≤
m∑
i=1

P (Di (T ) > t) +

|T |∑
i=m+1

P (Di (T ) > t) +
∞∑

i=|T |+1

P (Di (T ) > t) .

1Throughout the paper we use standard asymptotic notation; for instance, f (t) ∼ g (t) as t → ∞ if
limt→∞ f (t) /g (t) = 1.
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Then using Lemma 5.1 we get the upper bound required for (5.8): the first sum gives the
right hand side of (5.8), while the other two sums are of smaller order. For the lower bound
we first have that

P (Dmax (T ) > t) ≥
m∑
i=1

P (Di (T ) > t)−
m∑
i=1

m∑
j=i+1

P (Di (T ) > t,Dj (T ) > t) . (5.9)

Lemma 5.1(a) with U = {i, j} implies that for any 1 ≤ i < j ≤ m, we have

P (Di (T ) > t,Dj (T ) > t) ≤ P (Di (T ) +Dj (T ) > 2t) ≤ Ci,j (T ) t1−2|T |+4∆(T ) exp
(
−t2
)

(5.10)
for some constant Ci,j (T ) and all t large enough. The exponent −t2, appearing on the right
hand side of (5.10), is smaller by a constant factor than the exponent −t2/4, appearing
in the asymptotic expression for P (Di (T ) > t) (see (5.6)). Consequently the second sum
on the right hand side of (5.9) is of smaller order than the first sum, and so we have that
P (Dmax (T ) > t) ≥ (1− o (1))

∑m
i=1 P (Di (T ) > t) as t→∞. We conclude using Lemma 5.1.

5.3 Distinguishing trees using the maximum degree

In this section we first prove Theorems 4.6 and 4.4, both using Corollary 5.2 (see Sec-
tion 5.3.1). Then in Section 5.3.2 we describe a particular way of generalizing the notion of
maximum degree which we believe should provide an alternative way to prove Theorem 4.2.
At present we are missing a technical result, see Conjecture 5.1 below, and we prove Theo-
rem 4.2 assuming that this holds. Although Curien et al. [21] have now proven Theorem 4.2,
we believe this alternative approach could be of interest by itself due to its simplicity, and
it may also lead to better bounds. Moreover, as described at the end of the section, the
statistics used by [21] are very similar to the ones we considered, and it would be interesting
to understand this connection better.

5.3.1 Proofs

Proof of Theorem 4.6. We first provide a simple proof of distinguishing two trees of the same
size but with different maximum degree, and then show how to extend this argument to the
other cases.

Case 1: |S| − ∆ (S) 6= |T | − ∆ (T ). W.l.o.g. suppose that |S| − ∆ (S) < |T | − ∆ (T ).
Clearly for any t > 0 and n ≥ max {|S| , |T |} one has

TV (PA (n, S) ,PA (n, T )) ≥ TV (∆ (PA (n, S)) ,∆ (PA (n, T )))

≥ P
(
∆ (PA (n, S)) > t

√
n
)
− P

(
∆ (PA (n, T )) > t

√
n
)
.

Taking the limit as n→∞ this implies that

δ (S, T ) ≥ sup
t>0

[P (Dmax (S) > t)− P (Dmax (T ) > t)] . (5.11)
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By Corollary 5.2 and the fact that |S|−∆ (S) < |T |−∆ (T ) we have that P (Dmax (S) > t) >
P (Dmax (T ) > t) for large enough t, which concludes the proof in this case.

Case 2: |S| 6= |T |. W.l.o.g. suppose that |S| < |T |. If |S| −∆ (S) 6= |T | −∆ (T ) then
by Case 1 we have that δ (S, T ) > 0, so we may assume that |S|−∆ (S) = |T |−∆ (T ). Just
as in the proof of Case 1 we have that

δ (S, T ) ≥ sup
t>0

[P (Dmax (T ) > t)− P (Dmax (S) > t)] . (5.12)

Corollary 5.2 provides the asymptotic behavior for P (Dmax (T ) > t) in the form of (5.8),
where m ≥ 1.

To find an upper bound for P (Dmax (S) > t), first notice that ∆ (PA (|T | , S)) ≤ ∆ (T ),
with equality holding if and only if all of the |T | − |S| vertices of PA (|T | , S) that were
added to S connect to the same vertex i ∈ {1, 2, . . . , |S|} and dS (i) = ∆ (S). Consequently,
if ∆ (PA (|T | , S)) = ∆ (T ), then there is exactly one vertex j ∈ {1, 2, . . . , |T |} such that
dPA(|T |,S) (j) = ∆ (T ). This, together with Corollary 5.2, shows that on the one hand

P (Dmax (S) > t |∆ (PA (|T | , S)) < ∆ (T )) = o
(
t1−2|T |+2∆(T ) exp

(
−t2/4

))
,

as t→∞, and on the other hand

P (Dmax (S) > t |∆ (PA (|T | , S)) = ∆ (T ))

≤ (1 + o (1)) c (|T | ,∆ (T )) t1−2|T |+2∆(T ) exp
(
−t2/4

)
as t→∞. Consequently we have that

P (Dmax (S) > t)

≤ (1 + o (1))P (∆ (PA (|T | , S)) = ∆ (T )) c (|T | ,∆ (T )) t1−2|T |+2∆(T ) exp
(
−t2/4

)
as t→∞, which combined with the tail behavior of Dmax (T ) gives that

P (Dmax (T ) > t)− P (Dmax (S) > t)

≥ (1− o (1))P (∆ (PA (|T | , S)) < ∆ (T )) c (|T | ,∆ (T )) t1−2|T |+2∆(T ) exp
(
−t2/4

)
as t→∞. To conclude the proof, notice that P (∆ (PA (|T | , S)) < ∆ (T )) is at least as great
as the probability that vertex |S|+ 1 connects to a leaf of S, which has probability at least
1/ (2 |S| − 2).

Case 3: |S| = |T |, different degree profiles. Let z ∈ {1, . . . , |T |} be the first index
such that dS(z) 6= dT (z) and assume w.l.o.g. that dS(z) < dT (z). First we have that

P (Dmax (T ) > t) ≥ P (∃i ∈ [z − 1] : Di (T ) > t) + P (Dz (T ) > t)

−
z−1∑
i=1

P (Dz (T ) > t,Di (T ) > t)
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and

P (Dmax (S) > t) ≤ P (∃i ∈ [z − 1] : Di (S) > t) +
∞∑
i=z

P (Di (S) > t) .

Now observe that one can couple the evolution of PA(n, T ) and PA(n, S) in such a way that
the degrees of vertices 1, . . . , z − 1 stay the same in both trees. Thus one clearly has

P (∃i ∈ [z − 1] : Di (T ) > t) = P (∃i ∈ [z − 1] : Di (S) > t) .

Putting the three above displays together one obtains

P (Dmax (T ) > t)− P (Dmax (S) > t)

≥ P (Dz (T ) > t)−
z−1∑
i=1

P (Dz (T ) > t,Di (T ) > t)−
∞∑
i=z

P (Di (S) > t) .

Now using Lemma 5.1 one easily gets (for some constant C > 0) that

P (Dz (T ) > t) ∼ c (|T | , dT (z)) t1−2|T |+2dT (z) exp
(
−t2/4

)
,

z−1∑
i=1

P (Dz (T ) > t,Di (T ) > t) ≤
z−1∑
i=1

P (Dz (T ) +Di (T ) > 2t)

≤
z−1∑
i=1

(1 + o (1)) c (|T | , dT (z) + dT (i)) (2t)1−2|T |+2(dT (z)+dT (i)) exp
(
−t2
)
,

∞∑
i=z

P (Di (S) > t) ≤ Ct1−2|T |+2dS(z) exp
(
−t2/4

)
.

In particular, since dS(z) < dT (z) and tα exp(−t2) = o(exp(−t2/4)) for any α, this shows
that

P (Dmax (T ) > t)− P (Dmax (S) > t) ≥ (1− o (1)) c (|T | , dT (z)) t1−2|T |+2dT (z) exp
(
−t2/4

)
,

which, together with (5.12), concludes the proof.

Proof of Theorem 4.4. As before we have that

δ (Sk, T ) ≥ sup
t≥0

[P (Dmax (Sk) > t)− P (Dmax (T ) > t)]

≥ P
(
Dmax (Sk) >

√
k/2
)
− P

(
Dmax (T ) >

√
k/2
)
. (5.13)

By Corollary 5.2, we know that the second term in (5.13) goes to zero as k → ∞ for

any fixed T . We can lower bound the first term in (5.13) by P
(
D1 (Sk) >

√
k/2
)

=

1 − P
(
D1 (Sk) ≤

√
k/2
)

. From (5.4) we have that the first two moments of D1 (Sk) are
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ED1 (Sk) = Γ (k) /Γ (k − 1/2) and ED1 (Sk)
2 = Γ (k + 1) /Γ (k) = k. From standard facts

about the Γ function and Stirling series one has that 0 ≤ ED1 (Sk)−
√
k − 1 ≤

(
6
√
k − 1

)−1

and then also

Var (D1 (Sk)) = ED1 (Sk)
2 − (ED1 (Sk))

2 ≤ k − (k − 1) = 1.

Therefore Chebyshev’s inequality implies that limk→∞ P
(
D1 (Sk) ≤

√
k/2
)

= 0.

5.3.2 Towards an alternative proof of Theorem 4.2

Our proof of Theorem 4.6 above relied on the precise asymptotic tail behavior of Dmax (T ),
as described in Corollary 5.2. In order to distinguish two trees with the same degree profile
(such as the pair of trees in Figure 4.1), it is necessary to incorporate information about
the graph structure. Indeed, if S and T have the same degree profiles, then it is possible to
couple PA (n, S) and PA (n, T ) such that they have the same degree profiles for every n.

Thus a possible way to prove Theorem 4.2 is to generalize the notion of maximum degree
in a way that incorporates information about the graph structure, and then use similar
arguments as in the proofs above. A candidate is the following.

Definition 5.1. Given a tree U , define the U -maximum degree of a tree T , denoted by
∆U (T ), as

∆U (T ) = max
ϕ

∑
u∈V (U)

dT (ϕ (u)) ,

where V (U) denotes the vertex set of U , and the maximum is taken over all injective graph
homomorphisms from U to T . That is, ϕ ranges over all injective maps from V (U) to V (T )
such that {u, v} ∈ E (U) implies that {ϕ (u) , ϕ (v)} ∈ E (T ), where E (U) denotes the edge
set of U , and E (T ) is defined similarly.

When U is a single vertex, then ∆U ≡ ∆, so this indeed generalizes the notion of maxi-
mum degree.

Intuitively, the main contributor to the tail of ∆T (PA (n, T )) should be the homomor-
phism that maps T to the vertices making up the initial seed. In other words, the tail should
behave like the tail of the sum of the degrees of the initial vertices. On the other hand, if S
is not isomorphic to T (and assume for simplicity that |S| = |T |), then any homomorphism
from T to PA (n, S) must use a vertex that is not part of the seed. Because of this, one ex-
pects that the tail of ∆T (PA (n, S)) is lighter than the tail of ∆T (PA (n, T )). In particular,
we conjecture the following.

Conjecture 5.1. Suppose that S and T are two nonisomorphic trees of the same size. Then

lim sup
n→∞

P
(
∆T (PA (n, S)) > t

√
n
)

= o
(
t2|T |−3 exp

(
−t2/4

))
as t→∞.
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If this conjecture were true, then Theorem 4.2 also follows, as we now show.

Proof of Theorem 4.2 assuming Conjecture 5.1 holds. Assume that |S| = |T |; if |S| 6= |T |
then we already know from Theorem 4.6 that δ (S, T ) > 0. As in the proof of Theorem 4.6,
for any t > 0 and n ≥ max {|S| , |T |} we have that

TV (PA (n, S) ,PA (n, T )) ≥ TV (∆T (PA (n, S)) ,∆T (PA (n, T )))

≥ P
(
∆T (PA (n, T )) > t

√
n
)
− P

(
∆T (PA (n, S)) > t

√
n
)
,

and consequently

δ (S, T ) ≥ sup
t>0

{
lim inf
n→∞

P
(
∆T (PA (n, T )) > t

√
n
)
− lim sup

n→∞
P
(
∆T (PA (n, S)) > t

√
n
)}

.

(5.14)
Since ϕ (i) = i for 1 ≤ i ≤ |T | is an injective graph homomorphism from T to PA (n, T ), we
have that

lim inf
n→∞

P
(
∆T (PA (n, T )) > t

√
n
)
≥ lim inf

n→∞
P

 |T |∑
i=1

dPA(n,T ) (i) > t
√
n


= P

 |T |∑
i=1

Di (T ) > t

 .

By Lemma 5.1 we know that

P

 |T |∑
i=1

Di (T ) > t

 ∼ c (|T | , 2 |T | − 2) t2|T |−3 exp
(
−t2/4

)
as t→∞, which together with (5.14) and Conjecture 5.1 shows that δ (S, T ) > 0.

We note that the statistics considered by [21] are very similar to the ones considered
above based on the U -maximum degree. More precisely, instead of taking a maximum over
homomorphisms, they take a sum over them, and instead of taking a sum over vertices,
they take a product over them. (They also consider decorated trees, which essentially means
raising the degrees appearing in the statistic to appropriate powers.) Furthermore, while we
considered the tail behavior of statistics based on the U -maximum degree, they constructed
appropriate martingales, for which they needed to estimate the first two moments of these
statistics. Understanding the connection between these two related approaches would be
interesting.
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5.4 The weak limit of PA(n, T )

In this section we prove Theorem 4.1. For two graphs G and H we write G = H if G and
H are isomorphic, and we use the same notation for rooted graphs. Recalling the definition
of the Benjamini-Schramm limit and the Pólya-point graph (see [8] and [9, Section 2.3 and
Definition 2.1]), we want to prove that

lim
n→∞

P (Br (PA (n, T ) , kn (T )) = (H, y)) = P (Br (T , (0)) = (H, y)) ,

where Br(G, v) is the rooted ball of radius r around vertex v in the graph G, kn(T ) is
a uniformly random vertex in PA(n, T ), (H, y) is a finite rooted tree, and (T , (0)) is the
Pólya-point graph (with m = 1).

We construct a forest F based on T as follows. To each vertex v in T we associate dT (v)
isolated nodes with self loops, that is, F consists of 2(|T | − 1) isolated vertices with self
loops. Our convention here is that a node with k regular edges and one self loop has degree
k + 1. The graph evolution process PA(n, F ) for forests is defined in the same way as for
trees, and we couple the processes PA(n, T ) and PA(n+ |T |−2, F ) in the natural way: when
an edge is added to vertex v of T in PA(n, T ) then an edge is also added to one of the dT (v)
corresponding vertices of F in PA(n+ |T | − 2, F ), and furthermore newly added vertices are
always coupled. We first observe that, clearly, the weak limit of PA(n + |T | − 2, F ) is the
Pólya-point graph, that is,

lim
n→∞

P (Br (PA (n+ |T | − 2, F ) , kn (F )) = (H, y)) = P (Br (T , (0)) = (H, y)) ,

where kn(F ) is a uniformly random vertex in PA(n+ |T |−2, F ). We couple kn(F ) and kn(T )
in the natural way, that is, if kn(F ) is the tth newly created vertex in PA(n+ |T |−2, F ), then
kn(T ) is the tth newly created vertex in PA(n, T ). To conclude the proof it is now sufficient
to show that

lim
n→∞

P (Br (PA (n+ |T | − 2, F ) , kn (F )) 6= Br (PA (n, T ) , kn (T ))) = 0.

The following inequalities hold true (with a slight—but clear—abuse of notation when we
write v ∈ F ) for any u > 0,

P (Br (PA (n+ |T | − 2, F ) , kn (F )) 6= Br (PA (n, T ) , kn (T )))

≤ P (∃v ∈ F s.t. v ∈ Br (PA (n+ |T | − 2, F ) , kn (F )))

≤ P
(
∃v ∈ F, dPA(n+|T |−2,F ) (v) < u

)
+ P

(
∃v ∈ Br (PA (n+ |T | − 2, F ) , kn (F )) s.t. dPA(n+|T |−2,F ) (v) ≥ u

)
.

It is easy to verify that for any u > 0, we have

lim
n→∞

P
(
∃v ∈ F, dPA(n+|T |−2,F ) (v) < u

)
= 0.
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Furthermore since Br (PA (n+ |T | − 2, F ) , kn (F )) tends to the Pólya-point graph we also
have

lim
n→∞

P
(
∃v ∈ Br (PA (n+ |T | − 2, F ) , kn (F )) s.t. dPA(n+|T |−2,F ) (v) ≥ u

)
= P (∃v ∈ Br (T , (0)) s.t. dT (v) ≥ u) .

By looking at the definition of (T , (0)) given in [9] one can easily show that

lim
u→∞

P (∃v ∈ Br (T , (0)) s.t. dT (v) ≥ u) = 0,

which concludes the proof.

5.5 Proof of Lemma 5.1

In this section we prove Lemma 5.1. In light of the representation (5.5) in Section 5.2.1.2,
part (a) of Lemma 5.1 follows from a lengthy computation, the result of which we state
separately.

Lemma 5.3. Fix positive integers a and b. Let B and Z be independent random variables
such that B ∼ Beta (a, b) and Z ∼ GGa (a+ b+ 1, 2), and let V = 2BZ. Then

P (V > t) ∼ c

(
a+ b+ 2

2
, a

)
t−1+a−b exp

(
−t2/4

)
(5.15)

as t→∞, where the constant c is as in (5.1).

Proof. By definition we have for t > 0 that

P (V > t) = P (2BZ > t) =

∫ ∞
t/2

∫ 1

t/(2z)

Γ(a+ b)

Γ(a)Γ(b)
xa−1 (1− x)b−1 dx

2

Γ
(
a+b+1

2

)za+be−z
2

dz

=

∫ ∞
t/2

[
1− It/(2z)(a, b)

] 2

Γ
(
a+b+1

2

)za+be−z
2

dz,

where Ix(a, b) = Γ(a+b)
Γ(a)Γ(b)

∫ x
0
ya−1(1− y)b−1dy is the regularized incomplete Beta function. For

positive integers a and b, integration by parts and induction gives that

Ix(a, b) = 1−
a−1∑
j=0

(
a+ b− 1

j

)
xj (1− x)a+b−1−j .

Plugging this back in to the integral and doing a change of variables y = 2z, we get that

P(V > t) =
2−(a+b)

Γ
(
a+b+1

2

) a−1∑
j=0

(
a+ b− 1

j

)∫ ∞
t

tj (y − t)a+b−1−j y exp
(
−y2/4

)
dy.
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Expanding (y − t)a+b−1−j we arrive at the alternating sum formula

P (V > t) =
2−(a+b)

Γ
(
a+b+1

2

) a−1∑
j=0

a+b−1−j∑
k=0

(
a+ b− 1

j

)(
a+ b− 1− j

k

)
(−1)a+b−1−j−k ta+b−1−kAk+1,

(5.16)
where for m ≥ 0 let

Am :=

∫ ∞
t

ym exp
(
−y2/4

)
dy.

Thus in order to show (5.15) it is enough to show that for every j such that 0 ≤ j ≤ a− 1
we have

a+b−1−j∑
k=0

(
a+ b− 1− j

k

)
(−1)a+b−1−j−k ta+b−1−kAk+1 ∼

2a+b−j(a+ b− 1− j)!
ta+b−1−2j

exp
(
−t2/4

)
.

(5.17)
To do this, we need to evaluate the integrals {Am}m≥0. Recall that the complementary

error function is defined as erfc (z) = 1− erf (z) = (2/
√
π)
∫∞
z

exp (−u2) du, and thus A0 =√
π erfc (t/2); also A1 = 2 exp (−t2/4). Integration by parts gives that for m ≥ 2 we have

Am = 2tm−1 exp (−t2/4) + 2 (m− 1)Am−2. Iterating this, and using the values for A0 and
A1, gives us that for m odd we have

Am = 2tm−1 exp
(
−t2/4

) m−1
2∑
`=0

(m− 1)!!

(m− 2`− 1)!!

(
2

t2

)`
, (5.18)

and for m even we have

Am = 2tm−1 exp
(
−t2/4

) m
2
−1∑

`=0

(m− 1)!!

(m− 2`− 1)!!

(
2

t2

)`
+ 2

m
2 × (m− 1)!!×

√
π erfc (t/2) . (5.19)

In the following we fix j such that 0 ≤ j ≤ a− 1 and a + b− 1− j is odd—showing (5.17)
when a+ b− 1− j is even can be done in the same way. In order to abbreviate notation we
let r = (a+ b− 2− j)/2. Plugging in the formulas (5.18) and (5.19) into the left hand side
of (5.17) we get that

a+b−1−j∑
k=0

(
a+ b− 1− j

k

)
(−1)a+b−1−j−k ta+b−1−kAk+1

=
2r+1∑
k=0

(
2r + 1

k

)
(−1)2r+1−k t2r+1+j−kAk+1

= −
r∑
`=0

(
2r + 1

2`

)
t2r+1+j−2`A2`+1 +

r∑
`=0

(
2r + 1

2`+ 1

)
t2r+1+j−(2`+1)A2`+2
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= −
r∑
`=0

(
2r + 1

2`

)
t2r+1+j−2`2 exp

(
−t2/4

)∑̀
u=0

2u
(2`)!!

(2`− 2u)!!
t2`−2u

+
r∑
`=0

(
2r + 1

2`+ 1

)
t2r+1+j−(2`+1)2 exp

(
−t2/4

)∑̀
u=0

2u
(2`+ 1)!!

(2`+ 1− 2u)!!
t2`+1−2u

+
r∑
`=0

(
2r + 1

2`+ 1

)
t2r+1+j−(2`+1)2`+1 (2`+ 1)!!

√
π erfc (t/2)

= 2 exp
(
−t2/4

) r∑
u=0

t2r+1+j−2u2u
2r+1∑
k=2u

(
2r + 1

k

)
(−1)k+1 k!!

(k − 2u)!!
(5.20)

+
√
π erfc (t/2)

r∑
`=0

(
2r + 1

2`+ 1

)
t2r+1+j−(2`+1)2`+1 (2`+ 1)!!. (5.21)

An important fact that we will use is that for every polynomial P with degree less than n
we have

n∑
k=0

(
n

k

)
(−1)k P (k) = 0. (5.22)

Consequently, applying this to the polynomial P (k) = k (k − 2) · · · (k − 2 (u− 1)) we get
that

2r+1∑
k=2u

(
2r + 1

k

)
(−1)k+1 k (k − 2) · · · (k − 2 (u− 1))

=
2u−1∑
k=0

(
2r + 1

k

)
(−1)k k (k − 2) · · · (k − 2 (u− 1))

= −
u−1∑
`=0

(
2r + 1

2`+ 1

)
(2`+ 1) (2`− 1) · · · (2`+ 1− 2 (u− 1))

= −
u−1∑
`=0

(
2r + 1

2`+ 1

)
(2`+ 1)!! (2 (u− 1− `)− 1)!! (−1)u−1−` . (5.23)

Thus we see that in the sum (5.20) the cofficient of the term involving t2r+1+j is zero, while
the coefficient of the term involving t2r+1+j−2u for 1 ≤ u ≤ r is 2u+1 exp (−t2/4) times the
expression in (5.23). These are cancelled by terms coming from the sum in (5.21) as we will
see shortly; to see this we need the asymptotic expansion of erfc to high enough order. In
particular we have (see [1, equations 7.1.13 and 7.1.24]) that

√
π erfc (t/2) = 2 exp

(
−t2/4

) 2r∑
n=0

(−1)n 2n (2n− 1)!!t−2n−1 +R (t) , (5.24)
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where the approximation error R (t) satisfies

|R (t)| ≤ 22r+2 (4r + 1)!!t−(4r+3) exp
(
−t2/4

)
.

Plugging (5.24) back into (5.21), we first see that the error term satisfies

|R (t)|
r∑
`=0

(
2r + 1

2`+ 1

)
t2r+1+j−(2`+1)2`+1 (2`+ 1)!! = O

(
t2j−1−(a+b) exp

(
−t2/4

))
(5.25)

as t→∞. The main term of (5.21) becomes the sum

2 exp
(
−t2/4

) r∑
`=0

2r∑
n=0

(
2r + 1

2`+ 1

)
2`+n+1 (2`+ 1)!! (2n− 1)!! (−1)n t2r+1+j−2(`+n+1).

For u such that 1 ≤ u ≤ r, the coefficient of the term involving t2r+1+j−2u is 2u+1 exp (−t2/4)
times

u−1∑
`=0

(
2r + 1

2`+ 1

)
(2`+ 1)!! (2 (u− 1− `)− 1)!! (−1)u−1−` ,

which cancels out the coefficient of the same term coming from the other sum (5.20),
see (5.23). For u such that r < u ≤ 2r, the coefficient of the term involving t2r+1+j−2u

is 2u+1 exp (−t2/4) times

r∑
`=0

(
2r + 1

2`+ 1

)
(2`+ 1)!! (2 (u− 1− `)− 1)!! (−1)u−1−`

=
r∑
`=0

(
2r + 1

2`+ 1

)
(2`+ 1) (2`− 1) . . . ((2`+ 1)− 2 (u− 1))

= −
2r+1∑
k=0

(
2r + 1

k

)
(−1)k k (k − 2) . . . (k − 2 (u− 1)) = 0,

where we again used (5.22), together with the fact that u ≤ 2r. Finally, the coefficient of
the term involving t2j+1−(a+b) is 22r+2 exp (−t2/4) times

r∑
`=0

(
2r + 1

2`+ 1

)
(2`+ 1)!! (2 (2r − `)− 1)!! (−1)2r−`

= −
2r+1∑
k=0

(
2r + 1

k

)
(−1)k k (k − 2) . . . (k − 4r)

= −
2r+1∑
k=0

(
2r + 1

k

)
(−1)k k2r+1 = − (−1)2r+1 (2r + 1)! = (2r + 1)!,

where we used (5.22) in the second equality. Since all other terms are of lower order
(see (5.25)), this concludes the proof.
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Proof of Lemma 5.1. (a) If U 6= T , then d =
∑

i∈U dT (i) ∈ {1, . . . , 2 |T | − 3}. Similarly
to the third paragraph in Section 5.2.1.2, we can view the evolution of

∑
i∈U dPA(n,T ) (i)

in the following way. When adding a new vertex, first decide whether it attaches to
one of the initial |T | vertices (with probability

∑|T |
i=1 dPA(n,T ) (i) / (2n− 2)) or not (with

the remaining probability); if it does, then independently pick one of them to attach to
with probability proportional to their degree—a vertex in U is chosen with probability∑

i∈U dPA(n,T ) (i) /
∑|T |

i=1 dPA(n,T ) (i). This implies the following representation: we have that∑
i∈U Di (T )

d
= 2BZ, where B and Z are independent, B ∼ Beta (d, 2 |T | − 2− d), and

Z ∼ GGa (2 |T | − 1, 2). This also follows directly from the representation (5.5). Thus (5.6)
is a direct consequence of Lemma 5.3.

If U = T , then
∑

i∈U Di (T )
d
= 2Z, where Z ∼ GGa (2 |T | − 1, 2) (see Section 5.2.1.2),

and then (5.6) follows from a calculation that is contained in the proof of Lemma 5.3.
(b) To show (5.7) we use the results of [59] as described in Section 5.2.1.1. In addition

we use the following tail bound of [59, Lemma 2.6], which says that for x > 0 and s ≥ 1 we
have

∫∞
x
κs (y) dy ≤ s

x
κs (x). Consequently, for any i > |T | we have the following tail bound:

P (Di (T ) > t) = P

(
Wi−1 >

√
i− 1

2
t

)
=

∫ ∞
√

i−1
2
t

κi−1 (y) dy

≤
√

2i− 2

t
κi−1

(√
i− 1

2
t

)
=

2√
πt

exp
(
−t2/4

)
(i− 2)!U

(
i− 2,

1

2
,
t2

4

)
.

The following integral representation is useful for us [1, eq. 13.2.5]:

Γ (a)U (a, b, z) =

∫ ∞
0

e−zwwa−1 (1 + w)b−a−1 dw.

Consequently, we have

∞∑
i=3

(i− 2)!U

(
i− 2,

1

2
,
t2

4

)
=
∞∑
i=3

(i− 2)

∫ ∞
0

e−
t2

4
w 1

w
√

1 + w

(
w

1 + w

)i−2

dw

=

∫ ∞
0

e−
t2

4
w 1

w
√

1 + w

∞∑
i=3

(i− 2)

(
w

1 + w

)i−2

dw

=

∫ ∞
0

e−
t2

4
w 1

w
√

1 + w
w (1 + w) dw

≤
∫ ∞

0

e−
t2

4
w (1 + w) dw =

4

t2
+

16

t4
,



CHAPTER 5. PREFERENTIAL ATTACHMENT TREES 118

which shows (5.7) for L = 3. Similarly, for L ≥ 4 we have

∞∑
i=L

(i− 2)!U

(
i− 2,

1

2
,
t2

4

)
=

∫ ∞
0

e−
t2

4
w 1

w
√

1 + w

∞∑
i=L

(i− 2)

(
w

1 + w

)i−2

dw

=

∫ ∞
0

e−
t2

4
w 1

w
√

1 + w

(L− 2)
(

w
1+w

)L−2
+ (3− L)

(
w

1+w

)L−1

1/ (1 + w)2 dw

≤
∫ ∞

0

e−
t2

4
w (L− 2)

(
w

1 + w

)L−3√
1 + wdw

≤
∫ ∞

0

e−
t2

4
w (L− 2)wL−3dw =

4L−2 × (L− 2)!

t2L−4
,

where the first inequality follows from dropping the nonpositive term (3− L)
(

w
1+w

)L−1
, and

the second one follows because L ≥ 4. This shows (5.7) for L ≥ 4 and thus concludes the
proof.
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Chapter 6

Uniform attachment trees

6.1 Overview

This chapter is devoted to proving the results described in Chapter 4 on the influence of
the seed in uniform attachment trees. We begin in Section 6.2 by providing some simple
examples that formalize the intuition described in Section 4.3.2. We also prove Theorem 4.5
along the way. Section 6.3 is entirely devoted to the proof of Theorem 4.3, although a few
technical estimates are deferred until Section 6.5. We conclude with a detailed comparison
of our proof to the work of Curien et al. [21] in Section 6.4. To simplify notation, in this
chapter we let δ ≡ δUA.

6.2 Partitions and their balancedness: simple

examples

In this section we show on a simple example how to formalize the intuition described in
Section 4.3.2. We define a simple statistic based on this intuition, and after collecting some
preliminary facts in Section 6.2.1, we show in Section 6.2.2 that δ (P4, S4) > 0, where P4

and S4 are the path and the star on four vertices, respectively. We conclude the section by
proving Theorem 4.5 in Section 6.2.3. The goal of this section is thus to provide a gentle
introduction into the methods and statistics used to distinguish different seed trees, before
analyzing more general statistics in the proof of Theorem 4.3 in Section 6.3.

For a tree T and an edge e ∈ E(T ), let T1 and T2 be the two connected components of
T \ {e}. Define

g(T, e) = |T1|2|T2|2/|T |4,

where |T | denotes the number of vertices of T . Clearly, 0 ≤ g (T, e) ≤ 1/16, and for
“peripheral” edges e, g (T, e) is closer to 0, while for more “central” edges e, g (T, e) is closer
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to 1/16. Define the following statistic:

G(T ) =
∑

e∈E(T )

g(T, e).

The statistic G (T ) thus measures in a particular way the global balancedness properties of
the tree T , and “central” edges contribute the most to this statistic.

6.2.1 Preliminary facts

For all α, β, n ∈ N, let Bα,β,n be a random variable such that Bα,β,n−α has the beta-binomial
distribution with parameters (α, β, n), i.e., it is a random variable satisfying

P (Bα,β,n = α + k) =
(k + α− 1)!(n− k + β − 1)!(α + β − 1)!

(n+ α + β − 1)!(α− 1)!(β − 1)!

(
n

k

)
, ∀k ∈ {0, 1, . . . , n} .

The key to understanding the statistic G is the following distributional identity:

g (UA(n, S), e)
d
=

1

n4
B2
|T1|,|T2|,n−|S|(n−B|T1|,|T2|,n−|S|)

2, ∀e ∈ E (S) , (6.1)

where T1 and T2 are defined, given e, as above, and
d
= denotes equality in distribution. This

is an immediate consequence of the characterization of (Bα,β,n, n+ (α + β)−Bα,β,n) as the
distribution after n draws of a classical Pólya urn with replacement matrix ( 1 0

0 1 ) and starting
state (α, β). Similarly, for edges not in the seed S we have

g (UA(n, S), ej)
d
=

1

n4
B2

1,j,n−j−1

(
n−B1,j,n−j−1

)2
, (6.2)

where ej ∈ E (UA (j + 1, S)) \ E (UA (j, S)) and j ∈ {|S| , . . . , n− 1}.
We use the following elementary facts about the beta-binomial distribution, which we

prove in Section 6.5.1:

Fact 6.1. For every p ≥ 1 there exists a constant C(p) such that for all α, β, and n such
that n ≥ α + β, we have (

E[Bp
α,β,n−α−β]

)1/p ≤ C(p)n
α

α + β
. (6.3)

Fact 6.2. There exists a universal constant C > 0 such that whenever α, β ≥ 1, n ≥ α+ β,
and t ≥ 0, we have

P
(
Bα,β,n−α−β < tn

α

α + β

)
≤ Ct. (6.4)
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6.2.2 A simple example

After these preliminaries we are now ready to show that δ (P4, S4) > 0. To abbreviate
notation, in the following we write simply P ≡ P4 and S ≡ S4. In order to show that
δ (P, S) > 0, it is enough to show two things:

lim inf
n→∞

|E [G (UA (n, P ))]− E [G (UA (n, S))]| > 0, (6.5)

and
lim sup
n→∞

(Var [G (UA (n, P ))] + Var [G (UA (n, S))]) <∞. (6.6)

The proof can then be concluded using the Cauchy-Schwarz inequality (for more detail on
this point, see the proof of Theorem 4.3 in Section 6.3.2).

For j ≥ 4, let ePj denote the edge in UA (j + 1, P ) \ UA (j, P ), and define eSj similarly.
Towards (6.5), we first observe that

g
(
UA (n, P ) , ePj

) d
= g

(
UA (n, S) , eSj

)
, ∀j ∈ {4, . . . , n− 1} .

Consequently, we have

E [G (UA (n, P ))]− E [G (UA (n, S))] =
∑
e∈P

E [g (UA (n, P ) , e)]−
∑
e∈S

E [g (UA (n, S) , e)] .

Moreover, note that P has two edges, e1 and e2, such that P \ {ei} has two connected
components of sizes 1 and 3 for i = 1, 2. Since this is true for all edges of the star S, we
conclude that

E [G (UA (n, P ))]− E [G (UA (n, S))] = E [g (UA (n, P ) , e3)]− E [g (UA (n, S) , e1)] ,

where e3 is the remaining edge of P (i.e., the middle edge of the path). Using (6.1), we thus
have

E [G (UA (n, P ))]− E [G (UA (n, S))]

=
1

n4

(
E
[
B2

2,2,n−4 (n−B2,2,n−4)2]− E
[
B2

1,3,n−4 (n−B1,3,n−4)2])
=

2n3 + 5n2 + 8n+ 5

140n3
,

where the last equality is attained via a straightforward calculation using explicit formulae
for the first four moments of the beta-binomial distribution. We see that

lim
n→∞

(E [G (UA (n, P ))]− E [G (UA (n, S))]) =
1

70
6= 0,

which establishes (6.5).
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It remains to prove (6.6). We show now that lim supn→∞Var [G (UA (n, P ))] < ∞; the
proof that lim supn→∞Var [G (UA (n, S))] < ∞ is identical. To abbreviate notation, write
Tn for UA (n, P ). Similarly as above, for j ≥ 4 let ej be the edge in Tj+1 \ Tj, and let e1, e2,
and e3 be the edges of P in some arbitrary order. Using Cauchy-Schwarz we have that

Var [G (Tn)] ≤

(
n−1∑
j=1

√
Var [g (Tn, ej)]

)2

. (6.7)

For any edge ei we clearly have 0 ≤ g(Tn, ei) ≤ 1, and so

3∑
j=1

√
Var [g (Tn, ej)] ≤ 3. (6.8)

Next, fix j such that 4 ≤ j ≤ n− 1. Using formula (6.2) we know that

g (Tn, ej)
d
=

1

n4
B2

1,j,n−j−1(n−B1,j,n−j−1)2.

The estimate (6.3) yields that E
[
B4

1,j,n−j−1

]
≤ Cn4/j4, where C > 0 is a universal constant.

Consequently, we have

E
[
g (Tn, ej)

2] ≤ C/j4, ∀j ∈ {4, . . . , n− 1} ,

which, in turn, implies that √
Var [g (Tn, ej)] ≤ C/j2.

Plugging this inequality and (6.8) into (6.7) establishes (6.6). This completes the proof of
δ (P4, S4) > 0.

The statistic G (·) cannot distinguish between all pairs of nonisomorphic trees; however,
appropriate generalizations of it can. An alternative description of G (·) is as follows. Let
τ be a tree consisting of two vertices connected by a single edge. Up to normalization, the
quantity G (T ) is equal to the sum over all embeddings φ : τ → T of the product of the
squares of the sizes of the connected components of T \φ (τ). A natural generalization of this
definition is to take τ to be an arbitrary finite tree. Moreover, we can assign natural numbers
to each vertex of τ , which determines the power to which we raise the size of the respective
connected components. In this way we obtain a family of statistics associated with so-called
decorated trees. It turns out that this generalized family of statistics can indeed distinguish
between any pair of nonisomorphic trees; for details see Section 6.3.

6.2.3 Distinguishing large stars: a proof of Theorem 4.5

In the following we first give an upper bound on the probability that G (UA (n, T )) is small,
and then we give an upper bound on the probability that G (UA (n, Sk)) is not too small.
The two together will prove Theorem 4.5.
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First, fix a tree T and choose an arbitrary edge e1 ∈ E (T ). Let T ′n and T ′′n be the two
connected components of UA(n, T ) \ {e1}, defined consistently such that T ′j ⊂ T ′j+1 and
T ′′j ⊂ T ′′j+1 (and otherwise the order is chosen arbitrarily). We have

g (UA (n, T ) , e1) =
1

n4
|T ′n|

2 |T ′′n |
2

=
1

n4
|T ′n|

2
(n− |T ′n|)

2
.

By equation (6.1) we have

|T ′n|
d
= B2

a,|T |−a,n−|T |,

where a :=
∣∣∣T ′|T |∣∣∣ ≥ 1. Using Fact 6.2 we then have that for all t > 0,

P

(
|T ′n|

2

n2
< t

1

|T |2

)
≤ P

(
|T ′n|

2

n2
< t

a2

|T |2

)
= P

(
B2
a,|T |−a,n−|T |

n2
< t

a2

|T |2

)
≤ C
√
t. (6.9)

Consider the event En = {|T ′n| ≤ n/2} and note that if En holds then g (UA (n, T ) , e1) ≥
|T ′n|

2 / (4n2). This, together with (6.9), gives

P
(
En ∩

{
g (UA (n, T ) , e1) < t

1

4 |T |2

})
≤ C
√
t, ∀t > 0.

By repeating the above argument with T ′′n instead of T ′n, we also have

P
(
EC
n ∩

{
g (UA (n, T ) , e1) < t

1

4 |T |2

})
≤ C
√
t, ∀t > 0,

and thus we conclude that

P
(
g (UA (n, T ) , e1) < t

1

4 |T |2

)
≤ 2C

√
t, ∀t > 0.

Now since G (UA (n, T )) ≥ g (UA (n, T ) , e1), and by setting z = t/
(
4 |T |2

)
, we finally get

that
P (G (UA (n, T )) < z) ≤ 4C

√
z |T | , ∀z > 0. (6.10)

In order to understand the distribution of G (UA (n, Sk)) we first estimate its mean:

E [G (UA (n, Sk))]

=
k − 1

n4
E
[
B2

1,k−1,n−k (n−B1,k−1,n−k)
2]+

n−1∑
j=k

1

n4
E
[
B2

1,j,n−j−1 (n−B1,j,n−j−1)2]
≤ k − 1

n2
E
[
B2

1,k−1,n−k
]

+
1

n2

n−1∑
j=k

E
[
B2

1,j,n−j−1

] (6.3)

≤ C ′

k
+

n−1∑
j=k

C ′

j2
≤ 3C ′

k
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for some absolute constant C ′. Now using Markov’s inequality with this estimate, and also
taking z = 3C ′/

√
k in the inequality (6.10), we get that

P
(
G (UA (n, Sk)) ≥ 3C ′/

√
k
)
≤ 1√

k
and P

(
G (UA (n, T )) < 3C ′/

√
k
)
≤ C ′′

k1/4

for some absolute constant C ′′. This then immediately implies that δ (Sk, T )→ 1 as k →∞.

6.3 Proof of Theorem 4.3

After the intuition and simple examples provided in Section 6.2, in this section we fully prove
Theorem 4.3. As mentioned in Section 4.3.2, the proof shares some features with the proof
in [21] for preferential attachment, but is different in several ways. These differences are
discussed in detail after the proof, in Section 6.4.

Notation. For a graph G, denote by V (G) the set of its vertices, by E (G) the set of its
edges, and by diam (G) its diameter. For brevity, we often write v ∈ G instead of v ∈ V (G).
For integers k, j ≥ 1, define the descending factorial [k]j = k (k − 1) . . . (k − j + 1), and also

let [k]0 = 1. For two sequences of real numbers {an}n≥0 and {bn}n≥0, we write an <
∼ bn (to

be read as an is less than bn up to log factors) if there exist constants c > 0, γ ∈ R, and
n0 such that |an| ≤ c (log (n))γ |bn| for all n ≥ n0. For a sequence {an}n≥0 of real numbers,
define ∆na = an+1 − an for n ≥ 0.

6.3.1 Decorated trees

A decorated tree is a pair τ = (τ, `) consisting of a tree τ and a family of nonnegative integers
(` (v) ; v ∈ τ), called labels, associated with its vertices; see Figure 6.1 for an illustration. Let
D denote the set of all decorated trees, D+ the set of all decorated trees where every label is
positive, D0 the set of all decorated trees where there exists a zero label, and finally let D∗0
denote the set of all decorated trees where there exists a leaf which has label zero.

Define |τ | to be the number of vertices of τ , and let w (τ) :=
∑

v∈τ ` (v) denote the total
weight of τ . For τ , τ ′ ∈ D, let τ ≺ τ ′ if |τ | < |τ ′| and w (τ) ≤ w (τ ′) or |τ | ≤ |τ ′| and
w (τ) < w (τ ′). This defines a strict partial order ≺, and let 4 denote the associated partial
order, i.e., τ 4 τ ′ if and only if τ ≺ τ ′ or τ = τ ′.

For τ ∈ D, let L (τ) denote the set of leaves of τ , let L0 (τ) := {v ∈ L (τ) : ` (v) = 0},
L1 (τ) := {v ∈ L (τ) : ` (v) = 1}, and L0,1 (τ) := L0 (τ) ∪ L1 (τ). For τ ∈ D and v ∈ L (τ),
define τ v to be the same as τ except the leaf v and its label are removed. For τ ∈ D and
a vertex v ∈ τ such that ` (v) ≥ 2, define τ ′v to be the same as τ except the label of v is
decreased by one, i.e., `τ ′v (v) = `τ (v)− 1.

6.3.2 Statistics and distinguishing martingales

Given two trees τ and T , a map φ : τ → T is called an embedding if φ is an injective graph
homomorphism. That is, φ is an injective map from V (τ) to V (T ) such that {u, v} ∈ E (τ)
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Figure 6.1: A decorated tree and a decorated embedding. On the left is a decorated
tree τ = (τ, `) with four vertices, two of them having label 1, and two of them having label 2.
On the right is a larger tree T , and an embedding φ : τ → T depicted in bold. The connected
components of the forest T̂ (T, τ, φ) are circled with dashed lines, with the component sizes
being fφ(u) (T ) = 5, fφ(v) (T ) = 3, fφ(w) (T ) = 6, and fφ(x) (T ) = 4. A decorated embedding φ
is also depicted, which consists of the embedding φ together with the mapping of w (τ) = 6
arrows to vertices of T . The arrows in each subtree are distinguishable, which is why they
are depicted using different colors.

implies that {φ (u) , φ (v)} ∈ E (T ).

For two trees τ and T , and an embedding φ : τ → T , denote by T̂ = T̂ (T, τ, φ) the
forest obtained from T by removing the images of the edges of τ under the embedding φ;
see Figure 6.1 for an illustration. Note that the forest T̂ consists of exactly |τ | trees, and
each tree contains exactly one vertex which is the image of a vertex of τ under φ. For v ∈ τ ,
denote by fφ(v) (T ) the number of vertices of the tree in T̂ which contains the vertex φ (v).
Using this notation, for a decorated tree τ ∈ D define

Fτ (T ) =
∑
φ

∏
v∈τ

[
fφ(v) (T )

]
`(v)

, (6.11)

where the sum is over all embeddings φ : τ → T . If there are no such embeddings then
Fτ (T ) = 0 by definition. Note that if τ consists of a single vertex with label k ≥ 0, then
Fτ (T ) = |T | × [|T |]k.

The quantity Fτ (T ) has a combinatorial interpretation which is useful: it is the number
of decorated embeddings of τ in T , defined as follows. Imagine that for each vertex v ∈ τ
there are ` (v) distinguishable (i.e., ordered) arrows pointing to v. A decorated embedding φ
is an embedding φ of τ in T , together with a mapping of the arrows to vertices of T in such
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a way that each arrow pointing to v ∈ τ is mapped to a vertex in the tree of T̂ that contains
φ (v), with distinct arrows mapped to distinct vertices. See Figure 6.1 for an illustration.

The quantities Fτ are also more amenable to analysis than other statistics, because their
expectations satisfy recurrence relations, as described in Section 6.3.3. Using the statistics
Fτ it is possible to create martingales that distinguish between different seeds.

Proposition 6.3. Let τ ∈ D+. There exists a family of constants

{cn (τ , τ ′) : τ ′ ∈ D+, τ
′ 4 τ , n ≥ 2}

with cn (τ , τ) > 0 such that for every seed tree S, the process
{
M

(S)
τ (n)

}
n≥|S|

defined by

M (S)
τ (n) =

∑
τ ′∈D+:τ ′4τ

cn (τ , τ ′)Fτ ′ (UA (n, S))

is a martingale with respect to the natural filtration Fn = σ {UA (|S|, S) , . . . ,UA (n, S)},
and is bounded in L2.

Note that in the construction of these martingales we only use decorated trees where
every label is positive. As we shall see, we analyze decorated trees having a zero label in
order to show that the martingales above are bounded in L2. See Sections 6.3.4 and 6.4 for
more details and discussion on this point.

We now prove Theorem 4.3 using Proposition 6.3, which we then prove in the following
subsections.

Proof of Theorem 4.3. Let S and T be two nonisomorphic trees with at least three vertices,
and let n0 := max {|S| , |T |}. First we show that there exists τ ∈ D+ such that

E [Fτ (UA (n0, S))] 6= E [Fτ (UA (n0, T ))] . (6.12)

Assume without loss of generality that |S| ≤ |T |, and let τ be equal to T with labels ` (v) = 1
for all v ∈ T . Then for every tree T ′ with |T ′| = |T | we have Fτ (T ′) = Fτ (T ) × 1{T ′=T},
since if T ′ and T are nonisomorphic then there is no embedding of T in T ′. Note also that
Fτ (T ) is the number of automorphisms of T , which is positive. Consequently we have

E [Fτ (UA (n0, S))] = Fτ (T )× P [UA (n0, S) = T ] .

When |S| = |T |, we have P [UA (n0, S) = T ] = 0. When |S| < |T |, it is easy to see that the
isomorphism class of UA (n0, S) is nondeterministic (here we use the fact that |S| ≥ 3), and
so P [UA (n0, S) = T ] < 1. In both cases we have that (6.12) holds.

Now let τ ∈ D+ be a minimal (for the partial order 4 on D+) decorated tree for
which (6.12) holds. By definition we then have that E [Fτ ′ (UA (n0, S))] = E [Fτ ′ (UA (n0, T ))]
for every τ ′ ∈ D+ such that τ ′ ≺ τ . By the construction of the martingales in Proposition 6.3
we then have that

E
[
M (S)

τ (n0)
]
6= E

[
M (T )

τ (n0)
]
.
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Clearly for any n ≥ n0 we have that TV (UA (n, S) ,UA (n, T )) ≥ TV
(
M

(S)
τ (n) ,M

(T )
τ (n)

)
.

Now let (X, Y ) be a coupling of
(
M

(S)
τ (n) ,M

(T )
τ (n)

)
. We need to bound from below

P (X 6= Y ) in order to obtain a lower bound on TV
(
M

(S)
τ (n) ,M

(T )
τ (n)

)
. Using the Cauchy-

Schwarz inequality we have

P (X 6= Y ) ≥ (E [|X − Y |])2

E
[
(X − Y )2] .

By Jensen’s inequality we have that (E [|X − Y |])2 ≥ (E [X]− E [Y ])2, and furthermore

E
[
(X − Y )2] = E

[
(X − E [X] + E [X]− E [Y ] + E [Y ]− Y )2]

= Var (X) + Var (Y ) + (E [X]− E [Y ])2 + 2E [(X − E [X]) (E [Y ]− Y )]

≤ 2 Var (X) + 2 Var (Y ) + (E [X]− E [Y ])2 .

Thus we have shown that

TV (UA (n, S) ,UA (n, T ))

≥

(
E
[
M

(S)
τ (n)

]
− E

[
M

(T )
τ (n)

])2

2 Var
(
M

(S)
τ (n)

)
+ 2 Var

(
M

(T )
τ (n)

)
+
(
E
[
M

(S)
τ (n)

]
− E

[
M

(T )
τ (n)

])2 .

Since M
(S)
τ and M

(T )
τ are martingales, for every n ≥ n0 we have that E

[
M

(S)
τ (n)

]
−

E
[
M

(T )
τ (n)

]
= E

[
M

(S)
τ (n0)

]
− E

[
M

(T )
τ (n0)

]
6= 0. Also, since the two martingales are

bounded in L2, we have that Var
(
M

(S)
τ (n)

)
+ Var

(
M

(T )
τ (n)

)
is bounded as n → ∞. We

conclude that δ (S, T ) > 0.

6.3.3 Recurrence relation

The following recurrence relation for the conditional expectations of Fτ (UA (n, S)) is key to
estimating the moments of Fτ (UA (n, S)).

Lemma 6.4. Let τ ∈ D be such that |τ | ≥ 2. Then for every seed tree S and for every
n ≥ |S| we have

E [Fτ (UA (n+ 1, S)) | Fn] =

(
1 +

w (τ)

n

)
Fτ (UA (n, S))

+
1

n

 ∑
v∈τ :`(v)≥2

` (v) (` (v)− 1)Fτ ′v (UA (n, S)) +
∑

v∈L0,1(τ)

Fτv (UA (n, S))

 . (6.13)



CHAPTER 6. UNIFORM ATTACHMENT TREES 128

Proof. Fix τ ∈ D with |τ | ≥ 2, fix a seed tree S, and let n ≥ |S|. To simplify notation we omit
the dependence on S and write Tn instead of UA (n, S). When evaluating E [Fτ (Tn+1) | Fn]
we work conditionally on Fn, so we may consider Tn as being fixed.

Let un+1 denote the vertex present in Tn+1 but not in Tn, and let un denote its neighbor
in Tn+1. Let En+1 denote the set of all embeddings φ : τ → Tn+1; we can write En+1 as
the disjoint union of the set of those using only vertices of Tn, denoted by En, and the
set of those using the new vertex un+1, denoted by En+1 \ En. To simplify notation, if
τ ∈ D, T is a tree, and φ : τ → T is an embedding, write Wφ (T ) =

∏
v∈τ
[
fφ(v) (T )

]
`(v)

for the number of decorated embeddings of τ in T that use the embedding φ. We then
have Fτ (Tn+1) =

∑
φ∈EnWφ (Tn+1) +

∑
φ∈En+1\EnWφ (Tn+1) and we deal with the two sums

separately.
First let φ ∈ En. For v ∈ τ , denote by Ev the event that un is in the same tree of T̂n

as φ (v) (recall the definition of T̂n from Section 6.3.2). Clearly P (Ev | Fn) = fφ(v) (Tn) /n.
Under the event Ev we have that fφ(v) (Tn+1) = fφ(v) (Tn) + 1, while for every v′ ∈ τ \ {v}
we have fφ(v′) (Tn+1) = fφ(v′) (Tn). Now using the identities [d+ 1]` = [d]` + ` × [d]`−1 and
d× [d]`−1 = [d]`+(`− 1)× [d]`−1, which hold for every d, ` ≥ 1, and also using [d+ 1]0 = [d]0,
we have that

E [Wφ (Tn+1) | Fn]

=
∑
v∈τ

fφ(v) (Tn)

n

[
fφ(v) (Tn) + 1

]
`(v)

∏
v′∈τ\{v}

[
fφ(v′) (Tn)

]
`(v′)

=Wφ (Tn) +
1

n

∑
v∈τ :`(v)≥1

` (v) fφ(v) (Tn)
[
fφ(v) (Tn)

]
`(v)−1

∏
v′∈τ\{v}

[
fφ(v′) (Tn)

]
`(v′)

=

(
1 +

w (τ)

n

)
Wφ (Tn)

+
1

n

∑
v∈τ :`(v)≥2

` (v) (` (v)− 1)
[
fφ(v) (Tn)

]
`(v)−1

∏
v′∈τ\{v}

[
fφ(v′) (Tn)

]
`(v′)

=

(
1 +

w (τ)

n

)
Wφ (Tn) +

1

n

∑
v∈τ :`(v)≥2

` (v) (` (v)− 1)Wφ′v (Tn) ,

where φ′v is the embedding equal to φ of the decorated tree τ ′v. Now as φ runs through the
embeddings of τ in Tn, φ′v runs exactly through the embeddings of τ ′v. So we have that∑
φ∈En

E [Wφ (Tn+1) | Fn] =

(
1 +

w (τ)

n

)
Fτ (Tn)+

1

n

∑
v∈τ :`(v)≥2

` (v) (` (v)− 1)Fτ ′v (Tn) . (6.14)

Now fix Tn+1 and consider φ ∈ En+1 \ En. Let w ∈ τ be such that φ (w) = un+1. Since φ
is an embedding, we must have w ∈ L (τ). Note that if w /∈ L0,1 (τ) then Wφ (Tn+1) = 0. If
w ∈ L0,1 (τ) then denote by Ew the set of all embeddings φ ∈ En+1\En such that φ (w) = un+1.
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Now fix w ∈ L0,1 (τ) and φ ∈ Ew. Note that φ restricted to τ \ {w} is an embedding of τw in
Tn; call this φw. Let x be the neighbor of w in τ . We then must have φ (x) = un, and also[
fφ(w) (Tn+1)

]
`(w)

= 1 (irrespective of whether w ∈ L0 (τ) or w ∈ L1 (τ)). Furthermore, for

every w′ ∈ τ \ {w} we have fφ(w′) (Tn+1) = fφ(w′) (Tn). Thus we have

Wφ (Tn+1) =Wφw (Tn) 1{φ(w)=un+1}.

For fixed w ∈ L0,1 (τ), as φ runs through Ew, φw runs through all the embeddings of τw in
Tn. So summing over w ∈ L we obtain∑

φ∈En+1\En

Wφ (Tn+1) =
∑

w∈L0,1(τ)

∑
φw:τw→Tn

Wφw (Tn) 1{φ(w)=un+1}

=
∑

w∈L0,1(τ)

Fτw (Tn) 1{φ(w)=un+1}.

Now taking conditional expectation given Fn, we get that

E

 ∑
φ∈En+1\En

Wφ (Tn+1)

∣∣∣∣∣∣Fn
 =

1

n

∑
w∈L0,1(τ)

Fτw (Tn) . (6.15)

Summing (6.14) and (6.15) we obtain (6.13).

6.3.4 Moment estimates

Using the recurrence relation of Lemma 6.4 proved in the previous subsection, we now
establish moment estimates on the number of decorated embeddings Fτ (UA (n, S)). These
are then used in the next subsection to show that the martingales of Proposition 6.3 are
bounded in L2.

The first moment estimates are a direct corollary of Lemma 6.4.

Corollary 6.5. Let τ ∈ D be a decorated tree and let S be a seed tree.

(a) We have that nw(τ) <∼ E [Fτ (UA (n, S))].

(b) If |τ | ≥ 2 and τ ∈ D \ D∗0, then we have that E [Fτ (UA (n, S))]<∼ nw(τ).

(c) If |τ | = 1 or τ ∈ D∗0, then we have that E [Fτ (UA (n, S))]<∼ nw(τ)+1.

Proof. Fix a seed tree S and, as before, write Tn instead of UA (n, S) in order to simplify
notation. First, recall that if |τ | = 1, then Fτ (Tn) = n × [n]w(τ), so the statements of part
(a) and (c) hold in this case. In the following we can therefore assume that |τ | ≥ 2.

Lemma 6.4 then implies that for every n ≥ |S| we have

E [Fτ (Tn+1)] ≥
(

1 +
w (τ)

n

)
E [Fτ (Tn)] .
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Since there exists n0 such that E [Fτ (Tn0)] > 0 (one can take, e.g., n0 = |S| + |τ |), this
immediately implies part (a) (see Section 6.5.2 for further details).

We prove parts (b) and (c) by induction on τ for the partial order 4. We have already
checked that the statement holds when |τ | = 1, so the base case of the induction holds. Now
fix τ such that |τ | ≥ 2, and assume that (b) and (c) hold for all τ ′ such that τ ′ ≺ τ . There
are two cases to consider: either τ ∈ D \ D∗0 or τ ∈ D∗0.

If τ ∈ D \D∗0 then L0 (τ) = ∅. Note that for every v ∈ L1 (τ) we have w (τ v) = w (τ)− 1,
and also for every v ∈ τ such that ` (v) ≥ 2 we have w (τ ′v) = w (τ) − 1. Therefore by
induction for every v ∈ L1 (τ) we have E

[
Fτv (Tn)

]
<∼ nw(τ) and also for every v ∈ τ such

that ` (v) ≥ 2 we have E
[
Fτ ′v (Tn)

]
<∼ nw(τ). So by Lemma 6.4 there exist constants C, γ > 0

such that

E [Fτ (Tn+1)] ≤
(

1 +
w (τ)

n

)
E [Fτ (Tn)] + C (log (n))γ nw(τ)−1. (6.16)

This then implies that E [Fτ (Tn)]<∼ nw(τ); see Section 6.5.2 for details.
If τ ∈ D∗0 then L0 (τ) 6= ∅ and note that for every v ∈ L0 (τ) we have w (τ v) = w (τ). If for

every v ∈ L0 (τ) we have τ v ∈ D \D∗0, then the same argument as in the previous paragraph
goes through, and we have that E [Fτ (Tn)]<∼ nw(τ). However, if there exists v ∈ L0 (τ) such
that τ v ∈ D∗0, then (6.16) does not hold in this case; instead we have from Lemma 6.4 that
there exist constants C, γ > 0 such that

E [Fτ (Tn+1)] ≤
(

1 +
w (τ)

n

)
E [Fτ (Tn)] + C (log (n))γ nw(τ).

Similarly as before, this then implies that E [Fτ (Tn)]<∼ nw(τ)+1; see Section 6.5.2 for details.

The second moment estimates require additional work. First, recall again that if |τ | = 1,
then Fτ (UA (n, S)) = n × [n]w(τ). Consequently, we have that Fτ (UA (n, S))2 <∼ n2w(τ)+2

and also that (Fτ (UA (n+ 1, S))− Fτ (UA (n, S)))2 <∼ n2w(τ).

Lemma 6.6. Let τ ∈ D+ with |τ | ≥ 2 and let S be a seed tree.

(a) We have that E
[
Fτ (UA (n, S))2]<∼ n2w(τ).

(b) We have that E
[
(Fτ (UA (n+ 1, S))− Fτ (UA (n, S)))2]<∼ n2w(τ)−2.

We note that part (a) of the lemma follows in a short and simple way once part (b) is
proven. However, for expository reasons, we first prove part (a) directly, and then prove part
(b), whose proof is similar to, and builds upon, the proof of part (a).

Proof. Fix τ ∈ D+ with |τ | ≥ 2 and a seed tree S. Define

K ≡ K (τ) := max {4 (|τ |+ w (τ)) , 20} .
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We always have Fτ (UA (n, S)) ≤ nK/4, since the number of embeddings of τ in UA (n, S)
is at most n|τ |, and the product of the subtree sizes raised to appropriate powers is at most
nw(τ). By Lemma 6.8 in Section 6.5.3 there exists a constant C (S) such that

P (diam (UA (n, S)) > K log (n)) ≤ C (S)n−K/2.

Therefore we have

E
[
Fτ (UA (n, S))2 1{diam(UA(n,S))>K log(n)}

]
≤ C (S) ,

and similarly

E
[
(Fτ (UA (n+ 1, S))− Fτ (UA (n, S)))2 1{diam(UA(n,S))>K log(n)}

]
<∼ 1.

Therefore in the remainder of the proof we may, roughly speaking, assume that

diam (UA (n, S)) ≤ K log (n) ;

this will be made precise later.
To simplify notation, write simply Tn instead of UA (n, S). Our proof is combinatorial

and uses the notion of decorated embeddings as described in Section 6.3.2. We start with
the proof of (a) which is simpler. We say that φ = φ

1
× φ

2
is a decorated map if it is a

map such that both φ
1

and φ
2

are decorated embeddings from τ to Tn. Note that φ is not
necessarily injective. If φ is a decorated embedding or a decorated map, we denote by φ the
map of the tree without the choices of vertices associated with the arrows.

Now observe that Fτ (Tn)2 is exactly the number of decorated maps φ = φ
1
× φ

2
. We

partition the set of such decorated maps into two parts: let E1
τ (Tn) denote the set of all such

decorated maps where φ1 (τ)∩φ2 (τ) 6= ∅, and let E2
τ (Tn) denote the set of all such decorated

maps where φ1 (τ) ∩ φ2 (τ) = ∅. Clearly Fτ (Tn)2 =
∣∣E1
τ (Tn)

∣∣ +
∣∣E2
τ (Tn)

∣∣. This partition is
not necessary for the proof, but it is helpful for exposition.

We first estimate
∣∣E1
τ (Tn)

∣∣. To do this, we associate to each decorated map φ ∈ E1
τ (Tn)

a decorated tree σ and a decorated embedding ψ of it in Tn, in the following way; see also
Figure 6.2 for an illustration. We take simply the union of the images of the decorated
embeddings φ

1
and φ

2
, and if these share any vertices, edges, or arrows, then we identify

them (i.e., we take only a single copy). The resulting union is the image of a decorated tree σ
under a decorated embedding ψ; note that σ is uniquely defined, and ψ is uniquely defined up
to the ordering of the arrows associated with σ. To define ψ uniquely, we arbitrarily define the
ordering of the arrows associated with σ to be the concatenation of the orderings associated
with φ

1
and φ

2
. Here we used the fact that φ ∈ E1

τ (Tn), since when φ1 (τ) ∩ φ2 (τ) = ∅, the
union of the two decorated embeddings cannot be the image of a single decorated tree under
a decorated embedding.

Note that when taking the union of the decorated embeddings we do not introduce any
new arrows, so we must have w (σ) ≤ 2w (τ). Note also that, due to the nonlocality of
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Figure 6.2: A decorated map and an associated decorated embedding. The top row
depicts a decorated tree τ and two decorated embeddings, φ

1
and φ

2
, of it into a larger tree

T . The bottom row depicts the associated decorated tree σ, and the decorated embedding
ψ of it into T .

the decorations, σ might have vertices having a zero label, see, e.g., Figure 6.2. However,
importantly, the construction implies that all leaves of σ have positive labels, i.e., σ ∈ D\D∗0.

Let U (τ) denote the set of all decorated trees σ that can be obtained in this way. The
cardinality of U (τ) is bounded above by a constant depending only on τ , as we now argue.
The number of ways that two copies of τ can be overlapped clearly depends only on τ . Once
the union σ of the two copies of τ is fixed, only the arrows need to be associated with vertices
of σ. There are at most 2w (τ) arrows, and σ has at most 2 |τ | vertices, so there are at most

(2 |τ |)2w(τ) ways to associate arrows to vertices.
The function φ 7→

(
σ, ψ

)
is not necessarily one-to-one. However, there exists a constant

c (τ) depending only on τ such that any pair
(
σ, ψ

)
is associated with at most c (τ) decorated

maps φ. To see this, note that given
(
σ, ψ

)
, in order to recover φ, it is sufficient to know

the following: (i) for every edge of ψ (σ), whether it is a part of φ1 (τ), a part of φ2 (τ), or
a part of both, (ii) for every arrow of ψ (σ), whether it is a part of φ

1
(τ), a part of φ

2
(τ),

or a part of both, and (iii) the ordering of the arrows for φ
1

and φ
2
. Since |σ| ≤ 2 |τ | and

w (σ) ≤ 2w (τ), we can take c (τ) = 32|τ |+2w(τ) (w (τ)!)2.
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We have thus shown that ∣∣E1
τ (Tn)

∣∣ ≤ c (τ)
∑
σ∈U(τ)

Fσ (Tn) .

For every σ ∈ U (τ) we have that σ ∈ D \ D∗0, |σ| ≥ |τ | ≥ 2, and w (σ) ≤ 2w (τ), and so by
Corollary 6.5 we have that E [Fσ (Tn)]<∼ n2w(τ). Since the cardinality of U (τ) depends only
on τ , this implies that E

[∣∣E1
τ (Tn)

∣∣]<∼ n2w(τ).

Now we turn to estimating
∣∣E2
τ (Tn)

∣∣. Again, we associate to each decorated map φ ∈
E2
τ (Tn) a decorated tree σ and a decorated embedding ψ of it in Tn. This is done by first,

just as before, taking the union of the images of the decorated embeddings φ
1

and φ
2
, and if

these share any arrows, identifying them (i.e., we take only a single copy). (Note that, since
φ1 (τ) ∩ φ2 (τ) = ∅, the decorated embeddings do not share any vertices or edges; however,
due to the nonlocality of decorations they might share arrows.) We then take the union of
this with the unique path in Tn that connects φ1 (τ) and φ2 (τ). The result of this is a tree
in Tn, together with a set of at most 2w (τ) arrows associated with vertices of Tn; this is thus
the image of a decorated tree σ under a decorated embedding ψ, and this is how we define(
σ, ψ

)
. See Figure 6.3 for an illustration.

Figure 6.3: Another decorated map and an associated decorated embedding. The
top row depicts a decorated tree τ and two decorated embeddings, φ

1
and φ

2
, of it into

a larger tree T , where now φ1 (τ) ∩ φ2 (τ) = ∅. The bottom row depicts the associated
decorated tree σ, and the decorated embedding ψ of it into T . The path connecting φ1 (τ)
and φ2 (τ) is depicted in blue.
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Again we have that any such σ must satisfy w (σ) ≤ 2w (τ) and σ ∈ D \ D∗0. The
important difference now is that a priori we have no bound on |σ|. This is where we use that
diam (Tn) ≤ K log (n) with high probability.

Let U (n)
2 (τ) denote the set of all decorated trees σ of diameter at most K log (n) that can

be obtained in this way. The cardinality of U (n)
2 (τ) cannot be bounded above by a constant

depending only on τ , but it is at most polylogarithmic in n, as we now argue. There are
at most |τ |2 ways to choose which vertices of φ1 (τ) and φ2 (τ) are closest to each other,
and the path connecting them has length at most K log (n). So the number of trees σ that
can be obtained is at most |τ |2K log (n). Once the tree σ is fixed, only the arrows need
to be associated with vertices of σ. There are at most 2w (τ) arrows, and σ has at most
K log (n) + 2 |τ | vertices, which shows that∣∣∣U (n)

2 (τ)
∣∣∣ ≤ |τ |2K log (n) (K log (n) + 2 |τ |)2w(τ) <∼ 1.

The function φ 7→
(
σ, ψ

)
is not one-to-one. However, there exists a constant c2 (τ)

depending only on τ such that any pair
(
σ, ψ

)
is associated with at most c2 (τ) decorated

maps φ, as we now show. First, given
(
σ, ψ

)
, we know that φ1 (τ) and φ2 (τ) are at the two

“ends” of ψ (σ). The two “ends” of ψ (σ) are well-defined: an edge e of ψ (σ) is part of the
path connecting φ1 (τ) and φ2 (τ) (and hence not part of an “end”) if and only if there are at
least |τ | vertices on both sides of the cut defined by e. In order to recover φ, we also need to
know for each arrow of ψ (σ), whether it is a part of φ

1
(τ), a part of φ

2
(τ), or a part of both.

Finally, we need to know the ordering of the arrows for φ
1

and φ
2
. Since w (σ) ≤ 2w (τ), we

can thus take c2 (τ) = 2× 32w(τ) (w (τ)!)2.
We have thus shown that∣∣E2

τ (Tn)
∣∣1{diam(Tn)≤K log(n)} ≤ c2 (τ)

∑
σ∈U(n)

2 (τ)

Fσ (Tn) .

For every σ ∈ U (n)
2 (τ) we have that σ ∈ D\D∗0, |σ| ≥ |τ | ≥ 2, and w (σ) ≤ 2w (τ), and so by

Corollary 6.5 we have that E [Fσ (Tn)]<∼ n2w(τ). Since we have
∣∣∣U (n)

2 (τ)
∣∣∣<∼ 1, we thus have

E
[∣∣E2

τ (Tn)
∣∣1{diam(Tn)≤K log(n)}

]
<∼ n2w(τ).

This concludes the proof of (a).
For the proof of (b) we work conditionally on Fn. As in the proof of Lemma 6.4, let

un+1 denote the vertex present in Tn+1 but not in Tn, and let un denote its neighbor in
Tn+1. Observe that Fτ (Tn+1) − Fτ (Tn) is equal to the number of decorated embeddings of
τ in Tn+1 that use the new vertex un+1. There are two ways that this may happen, and we
call such decorated embeddings “type A” and “type B” accordingly (see Figure 6.4 for an
illustration):
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• Type A. The decorated embedding maps a vertex v ∈ τ to un+1. Since τ ∈ D+ and
the arrows are mapped to different vertices, we must then have ` (v) = 1, and the
arrow pointing to v in τ must be mapped to un+1.

• Type B. The decorated embedding maps τ in Tn, but there exists an arrow of τ which
it maps to un+1.

Figure 6.4: Type A and type B decorated embeddings. The top row depicts a deco-
rated tree τ and two decorated embeddings, φ

1
and φ

2
, of it into a larger tree Tn+1. Here

φ
1

is of type A, and φ
2

is of type B. In the bottom left is the associated decorated tree σ,
together with the decorated embedding ψ of it into Tn+1. In the bottom right is the pair(
σ′, ψ′

)
.

Consequently (Fτ (Tn+1)− Fτ (Tn))2 is equal to the number of decorated maps φ = φ
1
×

φ
2

such that φ
1

is either of type A or of type B, and the same holds for φ
2
. We de-

note by Ẽ1
τ (Tn+1) the set of all such decorated maps where φ1 (τ) ∩ φ2 (τ) 6= ∅, and let

Ẽ2
τ (Tn+1) denote the set of all such decorated maps where φ1 (τ)∩ φ2 (τ) = ∅. Thus we have

(Fτ (Tn+1)− Fτ (Tn))2 =
∣∣∣Ẽ1
τ (Tn+1)

∣∣∣+
∣∣∣Ẽ2
τ (Tn+1)

∣∣∣. Again, this partition is not necessary for

the proof, but it helps the exposition.

We first estimate
∣∣∣Ẽ1
τ (Tn+1)

∣∣∣. In the same way as in part (a), we associate to each

decorated map φ ∈ Ẽ1
τ (Tn+1) a pair

(
σ, ψ

)
. Note that both φ

1
and φ

2
map an arrow to un+1,

so w (σ) ≤ 2w (τ)−1, and also there exists an arrow a∗ ∈ σ that is mapped to un+1, denoted
by ψ (a∗) = un+1. We again have σ ∈ D \ D∗0. As before, the set Ũ (τ) of all decorated trees
σ that can be obtained in this way has cardinality bounded above by a constant depending
only on τ . Furthermore, there exists a constant c̃ (τ) depending only on τ such that any pair(
σ, ψ

)
is associated with at most c̃ (τ) decorated maps φ.
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We partition Ẽ1
τ (Tn+1) further into two parts. Let Ẽ1,A

τ (Tn+1) denote the set of decorated

maps φ ∈ Ẽ1
τ (Tn+1) such that at least one of φ

1
and φ

2
is of type A, and let Ẽ1,B

τ (Tn+1) :=

Ẽ1
τ (Tn+1) \ Ẽ1,A

τ (Tn+1). That is, Ẽ1,B
τ (Tn+1) consists of those decorated maps φ ∈ Ẽ1

τ (Tn+1)
such that both φ

1
and φ

2
is of type B.

We first estimate
∣∣∣Ẽ1,A
τ (Tn+1)

∣∣∣. We associate to each φ ∈ Ẽ1,A
τ (Tn+1) a pair

(
σ, ψ

)
as

above. Let v ∈ σ denote the vertex such that ψ (v) = un+1, and let v′ ∈ σ denote the vertex
such that ψ (v′) = un (these vertices exist because φ ∈ Ẽ1,A

τ (Tn+1)). Define the decorated
tree σ′ from σ by removing the vertex v from σ, as well as the arrow a∗ pointing to it.
Define also the decorated embedding ψ′ : σ′ → Tn to be equal to ψ on σ′, i.e., ψ′ = ψ|σ′ ;
see Figure 6.4 for an illustration. We have that w (σ′) = w (σ) − 1 ≤ 2w (τ) − 2, it can be
checked that σ′ ∈ D \ D∗0, and we also have ψ′ (v′) = un. Let Ũ ′ (τ) denote the set of all
decorated trees σ′ that can be obtained in this way, and note that the cardinality of Ũ ′ (τ) is
bounded from above by a constant depending only on τ . Since the map

(
σ, ψ

)
7→
(
σ′, ψ′, v′

)
is one-to-one, we have obtained that∣∣∣Ẽ1,A

τ (Tn+1)
∣∣∣ ≤ ∑

σ′∈Ũ ′(τ)

∑
v′∈σ′

∑
ψ′:σ′→Tn

c̃ (τ) 1{ψ′(v′)=un}.

Since un is uniform, we obtain

E
[∣∣∣Ẽ1,A

τ (Tn+1)
∣∣∣] = E

[
E
[∣∣∣Ẽ1,A

τ (Tn+1)
∣∣∣ ∣∣∣Fn]] ≤ ∑

σ′∈Ũ ′(τ)

∑
v′∈σ′

c̃ (τ)

n
E [Fσ′ (Tn)]<∼ n2w(τ)−3,

where in the last inequality we used that for every σ′ ∈ Ũ ′ (τ) we have w (σ′) ≤ 2w (τ) − 2
and σ′ ∈ D \ D∗0, and so by Corollary 6.5 we have that E [Fσ′ (Tn)]<∼ n2w(τ)−2.

We now turn to estimating
∣∣∣Ẽ1,B
τ (Tn+1)

∣∣∣. Let

v∗ := arg min
v∈σ

distTn+1 (ψ (v) , un+1) = arg min
v∈σ

distTn (ψ (v) , un) ,

where distG denotes graph distance in a graph G. Note that the arrow a∗ ∈ σ is associated
with v∗ in σ. Define the decorated map σ∗ from σ by removing the arrow a∗ from σ. We
have that w (σ∗) = w (σ) − 1 ≤ 2w (τ) − 2. Furthermore, either σ∗ ∈ D \ D∗0 or v∗ is the
only leaf of σ that has label zero. Let Ũ∗ (τ) denote the set of all decorated trees σ∗ that
can be obtained in this way, and note that the cardinality of Ũ∗ (τ) is bounded from above
by a constant depending only on τ . Define also the decorated embedding ψ∗ : σ∗ → Tn to be
equal to ψ on σ∗, i.e., ψ∗ = ψ|σ∗ . Define furthermore z∗ to be the neighbor of ψ (a∗) in Tn+1;

we thus have z∗ = un. Due to the ordering of the arrows, the map
(
σ, ψ

)
7→
(
σ∗, ψ∗, z∗

)
is

not necessarily one-to-one, but any triple
(
σ∗, ψ∗, z∗

)
is associated with at most w (τ) pairs
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(
σ, ψ

)
. Thus, defining c̃′ (τ) := c̃ (τ)w (τ), we have that∣∣∣Ẽ1,B

τ (Tn+1)
∣∣∣

≤
∑

σ∗∈Ũ∗(τ)

∑
ψ∗:σ∗→Tn

∑
z∗∈Tn

c̃′ (τ) 1{z∗=un}1{σ∗∈D\D∗0}∪{σ∗∈D∗0 ,arg minv∈σ∗ distTn (ψ(v),z∗)∈L0(σ∗)}

≤ c̃′ (τ)
∑

σ∗∈Ũ∗(τ)

∑
ψ∗:σ∗→Tn

1{σ∗∈D\D∗0}∪{σ∗∈D∗0 ,arg minv∈σ∗ distTn (ψ(v),un)∈L0(σ∗)}.

Now if σ∗ ∈ Ũ∗ (τ) ∩ (D \ D∗0), then the sum over embeddings ψ∗ : σ∗ → Tn becomes

Fσ∗ (Tn), and by Corollary 6.5 we have that E [Fσ∗ (Tn)]<∼n2w(τ)−2. If σ∗ ∈ Ũ∗ (τ)∩D∗0, then,
as mentioned above, L0 (σ∗) = {v∗}, and we have

P
(

arg min
v∈σ∗

distTn (ψ (v) , un) = v∗
∣∣∣∣Fn) =

fψ(v∗) (Tn)

n
.

So by summing over ψ∗ : σ∗ → Tn, if σ∗ ∈ Ũ∗ (τ) ∩ D∗0, then

E

 ∑
ψ∗:σ∗→Tn

1{σ∗∈D∗0 ,arg minv∈σ∗ distTn (ψ(v),un)∈L0(σ∗)}

∣∣∣∣∣∣Fn
 =

1

n
Fσ (Tn) .

Since σ ∈ D\D∗0 and w (σ) ≤ 2w (τ)−1, by Corollary 6.5 we have that E [Fσ (Tn)]<∼n2w(τ)−1

and thus E [n−1Fσ (Tn)]<∼ n2w(τ)−2. Putting everything together we thus obtain that

E
[∣∣∣Ẽ1,B

τ (Tn+1)
∣∣∣]<∼ n2w(τ)−2.

To estimate
∣∣∣Ẽ2
τ (Tn+1)

∣∣∣ we can do the same thing as in part (a), and we obtain the same

bound as for
∣∣∣Ẽ1
τ (Tn+1)

∣∣∣ up to polylogarithmic factors in n. We omit the details. This

concludes the proof of part (b).

6.3.5 Constructing the martingales

We now construct the martingales of Proposition 6.3 with the help of the recurrence relation
of Lemma 6.4. In order to show that these martingales are bounded in L2, we use the
moment estimates of Section 6.3.4.

Proof of Proposition 6.3. Fix a seed tree S with |S| = n0 ≥ 2. For a decorated tree τ ∈ D+

and n ≥ 2, define

βn (τ) :=
n−1∏
j=2

(
1 +

w (τ)

j

)−1

, when |τ | ≥ 2;

and βn (τ) :=
(
n× [n]w(τ)

)−1

, when |τ | = 1.
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Note that when |τ | ≥ 2, we have n−w(τ) <∼ βn (τ)<∼ n−w(τ).
We now construct, by induction on the order 4 on decorated trees, coefficients

{an (τ , τ ′) : τ , τ ′ ∈ D+, τ
′ ≺ τ , n ≥ n0}

such that
an (τ , τ ′)<∼ 1, ∆na (τ , τ ′)<∼ 1/n, (6.17)

and

M (S)
τ (n) = βn (τ)

Fτ (UA (n, S))−
∑

τ ′∈D+:τ ′≺τ

an (τ , τ ′)Fτ ′ (UA (n, S))

 (6.18)

is a martingale. Importantly, we shall see that the coefficients an (τ , τ ′) do not depend on
S. To simplify notation, in the following we omit dependence on S and write Mτ (n) for

M
(S)
τ (n). Also, as before, we write Tn for UA (n, S).
First, when |τ | = 1, we have Mτ (n) = βn (τ)Fτ (Tn) = 1, which is a martingale. Now

fix τ ∈ D+ with |τ | ≥ 2. Assume that the coefficients an (σ, σ′) have been constructed for
every σ, σ′ ∈ D+ such that σ′ ≺ σ ≺ τ and every n ≥ n0, and that they have the desired
properties. We first claim that there exist constants {bn (σ, σ′) : σ′ ≺ σ ≺ τ , n ≥ n0} such
that bn (σ, σ′)<∼ 1 and

Fσ (Tn) =
1

βn (σ)
Mσ (n) +

∑
σ′∈D+:σ′≺σ

bn (σ, σ′)

βn (σ′)
Mσ′ (n) (6.19)

for n ≥ n0. To see this, define the matrix An = (An (σ, σ′))σ,σ′≺τ by An (σ, σ′) = −an (σ, σ′)
if σ′ ≺ σ, An (σ, σ′) = 1 if σ = σ′, and An (σ, σ′) = 0 otherwise. Then, using (6.18), we have
for every n ≥ n0 the following equality of vectors indexed by σ ∈ D+ such that σ ≺ τ :(

1

βn (σ)
Mσ (n)

)
σ≺τ

= An · (Fσ (Tn))
σ≺τ . (6.20)

We can write {σ ∈ D+ : σ ≺ τ} = {σ1, . . . , σK} in such a way that σi ≺ σj implies i < j.
With this convention, An is a lower triangular matrix with all diagonal entries equal to 1 and
all entries satisfying An (σ, σ′) <∼ 1. Therefore An is invertible, and its inverse also satisfies
these properties. That is, if we write A−1

n = (bn (σ, σ′))σ,σ′≺τ , then A−1
n is a lower triangular

matrix that satisfies bn (σ, σ) = 1 for all σ ≺ τ , and bn (σ, σ′)<∼ 1 for all σ, σ′ ≺ τ . So (6.19)
follows directly from (6.20).

Note that we can write equation (6.13) of Lemma 6.4 more compactly as follows:

E [Fτ (UA (n+ 1, S)) | Fn] =

(
1 +

w (τ)

n

)
Fτ (UA (n, S))

+
1

n

∑
τ ′∈D:τ ′≺τ

c (τ , τ ′)Fτ ′ (UA (n, S)) ,
(6.21)
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for appropriately defined constants {c (τ , τ ′) : τ , τ ′ ∈ D, τ ′ ≺ τ}, and note that since τ ∈ D+,
we have c (τ , τ ′) = 0 if τ ′ /∈ D+. Therefore, using (6.21) and (6.19), together with the
identities βn+1 (τ) (1 + w (τ) /n) = βn (τ) and βn+1 (τ)n−1 = βn (τ) (n+ w (τ))−1, we have
for n ≥ n0 that

E [βn+1 (τ)Fτ (Tn+1) | Fn]

= βn (τ)Fτ (Tn) +
βn (τ)

n+ w (τ)

∑
τ ′∈D+:τ ′≺τ

c (τ , τ ′)Fτ ′ (Tn)

= βn (τ)Fτ (Tn) +
1

n+ w (τ)
×

×
∑

σ∈D+:σ≺τ

c (τ , σ) +
∑

τ ′∈D+:σ≺τ ′≺τ

c (τ , τ ′) bn (τ ′, σ)

 βn (τ)

βn (σ)
Mσ (n) .

For n ≥ n0 define

an (τ , σ) =
n−1∑
j=n0

1

j + w (τ)

c (τ , σ) +
∑

τ ′∈D+:σ≺τ ′≺τ

c (τ , τ ′) bj (τ ′, σ)

 βj (τ)

βj (σ)
.

We thus have

E [βn+1 (τ)Fτ (Tn+1) | Fn] = βn (τ)Fτ (Tn) +
∑

σ∈D+:σ≺τ

(an+1 (τ , σ)− an (τ , σ))Mσ (n) .

By our induction hypothesis, {Mσ (n)}
n≥n0

is an (Fn)-martingale for every σ ≺ τ , and
consequently

βn (τ)Fτ (Tn)−
∑

σ∈D+:σ≺τ

an (τ , σ)Mσ (n)

is also an (Fn)-martingale. By (6.18) we have

βn (τ)Fτ (Tn)−
∑

σ∈D+:σ≺τ

an (τ , σ)Mσ (n)

= βn (τ)Fτ (Tn)−
∑

σ∈D+:σ≺τ

an (τ , σ) βn (σ)

Fσ (Tn)−
∑

τ ′∈D+:τ ′≺σ

an (σ, τ ′)Fτ ′ (Tn)


= βn (τ)Fτ (Tn)

− βn (τ)
∑

σ∈D+:σ≺τ

an (τ , σ)
βn (σ)

βn (τ)
−

∑
τ ′∈D+:σ≺τ ′≺τ

an (τ , τ ′) an (τ ′, σ)
βn (τ ′)

βn (τ)

Fσ (Tn) .



CHAPTER 6. UNIFORM ATTACHMENT TREES 140

So if we set

an (τ , σ) := an (τ , σ)
βn (σ)

βn (τ)
−

∑
τ ′∈D+:σ≺τ ′≺τ

an (τ , τ ′) an (τ ′, σ)
βn (τ ′)

βn (τ)
,

then it is clear that {Mτ (n)}
n≥n0

defined as in (6.18) is a martingale.
Now let us establish that the coefficients are of the correct order, i.e., let us show (6.17).

First note that (n+ w (τ))−1 <∼ 1/n, and that when |τ | ≥ 2, βn (τ)nw(τ) has a positive and
finite limit as n → ∞. Therefore a simple computation shows that for σ, σ′ ∈ D+ with
|σ| , |σ′| ≥ 2, we have

βn (σ)

βn (σ′)
<∼ nw(σ′)−w(σ) and ∆n

β (σ)

β (σ′)
<∼ nw(σ′)−w(σ)−1.

Furthermore, by the induction hypothesis we have that bn (σ, σ′) <∼ 1 for every σ, σ′ ≺ τ .
From the definition of an (τ , σ) we then immediately get that ∆na (τ , σ)<∼ nw(σ)−w(τ)−1, and
consequently also an (τ , σ) <∼ nw(σ)−w(τ), for every σ ∈ D+ such that σ ≺ τ and |σ| ≥ 2. So
for every σ ∈ D+ such that σ ≺ τ and |σ| ≥ 2, we have that

an (τ , σ)
βn (σ)

βn (τ)
<∼ 1 and ∆n

(
a (τ , σ)

β (σ)

β (τ)

)
<∼

1

n
. (6.22)

One can easily check that (6.22) holds also when |σ| = 1. Now combining all of these
estimates with the definition of an (τ , σ), we get that (6.17) holds. This completes the
induction.

Finally, what remains to show is that the martingales Mτ are bounded in L2. Since Mτ

is a martingale, its increments are orthogonal in L2, and so

E
[
Mτ (n)2] =

n−1∑
j=n0

E
[
(Mτ (j + 1)−Mτ (j))2]+ E

[
Mτ (n0)2] .

Clearly E
[
Mτ (n0)2] <∞ and so it suffices to show that

∞∑
n=n0

E
[
(Mτ (n+ 1)−Mτ (n))2] <∞.

Recalling the definition of Mτ from (6.18) we have

E
[
(∆n (Mτ ))

2] = E

∆n (β· (τ)Fτ (T·))−
∑

τ∈D+:τ ′≺τ

∆n (β· (τ) a· (τ , τ
′)Fτ ′ (T·))

2 ,
where the dots in the subscripts denote dependence on n, on which the difference operator
∆n acts. By the Cauchy-Schwarz inequality, there exists a positive and finite constant c that
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depends only on τ such that for every n ≥ n0, the quantity c × E
[
(∆n (Mτ ))

2] is bounded
from above by

E
[
(∆n (β· (τ)Fτ (T·)))

2]+
∑

τ∈D+:τ ′≺τ

E
[
(∆n (β· (τ) a· (τ , τ

′)Fτ ′ (T·)))
2
]
. (6.23)

Since
∆n (β· (τ)Fτ (T·)) = βn+1 (τ) ∆n (Fτ (T·)) + (∆n (β· (τ)))Fτ (Tn) ,

we have that

E
[
(∆n (β· (τ)Fτ (T·)))

2] ≤ 2 (βn+1 (τ))2 E
[
(∆n (Fτ (T·)))

2]+ 2 (∆n (β· (τ)))2 E
[
Fτ (Tn)2] .

We have seen that (βn+1 (τ))2 <∼ n−2w(τ) and (∆n (β· (τ)))2 <∼ n−2w(τ)−2, and by Lemma 6.6
we have that E

[
Fτ (Tn)2]<∼n2w(τ) and E

[
(∆n (Fτ (T·)))

2]<∼n2w(τ)−2. Putting these together

we thus have that E
[
(∆n (β· (τ)Fτ (T·)))

2]<∼ n−2. For the other terms in (6.23) we similarly
have

E
[
(∆n (β· (τ) a· (τ , τ

′)Fτ ′ (T·)))
2
]
≤ 2 (an+1 (τ , τ ′))

2 E
[
(∆n (β· (τ)Fτ ′ (T·)))

2]
+ 2 (∆n (a· (τ , τ

′)))
2 E
[
(βn (τ)Fτ ′ (Tn))2] .

We have seen that (an+1 (τ , τ ′))2<∼1 and (∆n (a· (τ , τ
′)))2<∼n−2. Furthermore, by Lemma 6.6

we have that E
[
(βn (τ)Fτ ′ (Tn))2]<∼n2w(τ ′)−2w(τ) ≤ 1, and similarly to the computation above

we have that E
[
(∆n (β· (τ)Fτ ′ (T·)))

2]<∼ n2w(τ ′)−2w(τ)−2 ≤ n−2. Putting everything together
we get that

E
[
(Mτ (n+ 1)−Mτ (n))2]<∼ n−2,

which is summable, so Mτ is indeed bounded in L2.

6.4 Comparison to the work of Curien et al.

As discussed in Section 4.3.2, the key difference in our proof for uniform attachment compared
to the proof of [21] for preferential attachment is the underlying family of statistics. For
preferential attachment these are based on the degrees of the nodes, whereas for uniform
attachment they are based on partition sizes when embedding a given tree, i.e., they are
based on global balancedness properties of the tree.

The statistics Fτ (T ) are defined in this specific way in order to make the analysis simpler.
In particular, it is useful that Fτ (T ) has a combinatorial interpretation as the number of
decorated embeddings of τ in T , similarly to the statistics of [21]. However, the notion of
a decorated embedding is different in the two settings. In [21], arrows associated with the
decorated tree τ are mapped by φ to corners around the vertices of φ (τ), or in other words,
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the decorations are local. In contrast, in the notion of a decorated embedding as defined in
this chapter, arrows associated with a decorated tree τ can be mapped to any vertex in the
graph T , or in other words, the decorations are nonlocal/global.

While the general structure of our proof is identical to that of [21], this local vs. global
difference in the underlying statistics manifests itself in the details. In particular, the main
challenge is the second moment estimate provided in Lemma 6.6. Here, we associate to each
decorated map φ = φ

1
×φ

2
a decorated tree σ and a decorated embedding ψ of it in UA (n, S).

In the case of preferential attachment, the decorated tree σ necessarily has all labels positive,
due to the decorations being local. However, in the case of uniform attachment, it might
happen that a vertex of σ has a zero label, due to the global nature of decorations. This
is the reason why we need to deal with decorated trees having zero labels, in contrast with
the preferential attachment model, where it suffices to consider decorated trees with positive
labels. The recurrence relation and the subsequent moment estimates show that there is a
subtlety in dealing with decorated trees having zero labels, as it matters whether the vertices
with label zero are leaves or not.

Finally, in our proof of the second moment estimate we also use the fact that the diameter
of UA (n, S) is on the order of log (n) with high probability (see Lemma 6.8). This is again
due to the global nature of decorations, and such an estimate is not necessary in the case of
preferential attachment.

6.5 Technical results used in the proofs

6.5.1 Facts about the beta-binomial distribution

We prove here Facts 6.1 and 6.2 stated in Section 6.2.1. Let {Mk}, where k = α+β, α+β+
1, ..., be the martingale associated with the standard Pólya urn process with starting state
(α, β). In other words, the martingale Mk is defined by Mα+β = α

α+β
and

(k + 1)Mk+1 =

{
kMk + 1 with probability Mk

kMk with probability 1−Mk

independently for different values of k. Note that for n ≥ α + β, nMn
d
= Bα,β,n−α−β, so all

results for the martingale Mn transfer to results for Bα,β,n−α−β. Define M∞ = limk→∞Mk,
and note that this limit exists almost surely by the martingale convergence theorem. It is a
well-known fact about Pólya urns that M∞ has a beta distribution with parameters α and
β, i.e., the density of M∞ with respect to the Lebesgue measure is

h (x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−11{x∈[0,1]}.
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By the formula for the moments of M∞ (see, e.g., [43, Chapter 21]), we have

E [Mp
∞] =

p−1∏
j=0

α + j

α + β + j
≤
(
α + p

α + β

)p
≤ (p+ 1)p

(
α

α + β

)p
, ∀p ∈ N.

Moreover, since Mn is a martingale, Mp
n is a submartingale for all p ≥ 1, and thus E [Mp

n] ≤
E [Mp

∞]. So we have that

E [(nMn)p] ≤ np(p+ 1)p
(

α

α + β

)p
,

which establishes Fact 6.1 with C (p) = p+ 1.
Next, in order to prove Fact 6.2, we first use the formula for the negative first moment of

M∞ (see, e.g., [43, Chapter 21]): for every α > 1 we have E [M−1
∞ ] = (α + β − 1) / (α− 1).

Thus by Markov’s inequality we have that P (M∞ < z) ≤ z (α + β − 1) / (α− 1) for every
z > 0, and thus

P
(
M∞ < t

α

α + β

)
≤ 2t. (6.24)

In the case that α = 1, we have h (x) ≤ β which implies that
∫ t
β+1

0 h(x)dx ≤ t. We conclude
that (6.24) holds for any α, β ≥ 1. Since Mk is a positive martingale, we have

P (M∞ ≤ 2z |Mn ≤ z) ≥ 1/2, ∀z ∈ (0, 1) .

Combining this inequality with (6.24) gives

P
(
Mn ≤ t

α

α + β

)
≤ 8t,

and formula (6.4) then follows with C = 8.

6.5.2 Estimates on sequences

Lemma 6.7. Suppose that {an}n≥1 is a sequence of nonnegative real numbers and that there
exists n0 such that an0 > 0. Let α be a positive integer.

(a) If there exists N such that an+1 ≥ (1 + α/n) an for every n ≥ N , then

lim inf
n→∞

an/n
α > 0.

(b) If there exist constants c, γ, and N such that for every n ≥ N ,

an+1 ≤ (1 + α/n) an + c (log (n))γ nα−1,

then an <
∼ nα.
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(c) If there exist constants c, γ, and N such that for every n ≥ N ,

an+1 ≤ (1 + α/n) an + c (log (n))γ nα,

then an <
∼ nα+1.

Proof. (a) By the assumption we have that an ≥ an0 exp
(∑n−1

j=n0
log (1 + α/j)

)
, where an0 >

0. For 0 ≤ x ≤ 1 we have that log (1 + x) ≥ x−x2, and so using the fact that
∑∞

j=1 1/j2 <∞,

we have that there exists c > 0 such that an ≥ c exp
(
α
∑n−1

j=n0∨α 1/j
)

. To conclude, recall

that
∑n−1

j=1 1/j > log (n).
(b) Let bn := an/n

α. We then have that bn+1 ≤ (1 + α/n) (n/ (n+ 1))α bn+c (log (n))γ /n.
There exists a constant c′′ = c′′ (α) such that (n/ (n+ 1))α ≤ 1−α/n+c′′/n2 for every n ≥ 1.
Therefore there exists a constant c′ = c′ (α) such that (1 + α/n) (n/ (n+ 1))α ≤ 1 + c′/n2

for every n ≥ 1. Thus we have that bn+1 ≤ (1 + c′/n2) bn + c (log (n))γ /n, and iterating this
we get that

bn ≤ b1

n−1∏
j=1

(
1 + c′/j2

)
+

n−1∑
j=1

(
n−1∏
i=j+1

(
1 + c′/i2

))
c (log (j))γ /j.

Since
∏∞

j=1 (1 + c′/j2) <∞, we immediately get that bn <
∼ 1, and so an <

∼ nα.
(c) This is similar to (b) so we do not repeat the argument.

6.5.3 Tail behavior of the diameter

We reproduce a simple argument of [22] to obtain a tail bound for the diameter of a uniform
attachment tree.

Lemma 6.8. For every seed tree S there exists a constant C = C (S) such that for every
K > 20 we have

P (diam (UA (n, S)) > K log (n)) ≤ C (S)

nK/2
.

Proof. First, if we set C (S) := (P (UA (|S| , S2) = S))−1, then we have

P (diam (UA (n, S)) > K log (n)) = P (diam (UA (n, S2)) > K log (n) |UA (|S| , S2) = S)

≤ C (S)P (diam (UA (n, S2)) > K log (n)) ,

so it remains to bound the tail of diam (UA (n, S2)).
For notational convenience, shift the names of the vertices so that they consist of the set

{0, 1, . . . , n− 1} (instead of {1, 2, . . . , n}), and call vertex 0 the root. With this convention,
the label of the parent of vertex j is distributed as bjUc where U is uniform on [0, 1].
Similarly, an ancestor ` generations back has a label distributed like b. . . bbjU1cU2c . . . U`c,
where the Ui’s are i.i.d. uniform on [0, 1].
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Define Rj to be the distance from vertex j to the root. By the triangle inequality we
have that diam (UA (n, S)) ≤ 2 max1≤j≤n−1Rj, so it suffices to bound the tail of this latter
quantity. Using a union bound, it then suffices to bound the tail of Rj for each j. Now
notice that Rj ≤ min {t : jU1 . . . Ut < 1}. Consequently, for any λ > 0 we have

P (Rj > t) ≤ P (jU1 . . . Ut ≥ 1) ≤ E
[
(jU1 . . . Ut)

λ
]

= jλ (λ+ 1)−t .

This is optimized by choosing λ = t/ log (j)− 1 (provided t > log (j)) to obtain

P (Rj > t) ≤ exp

(
t− log (j)− t log

(
t

log (j)

))
≤ exp

(
t− t log

(
t

log (n)

))
,

when j ≤ n. Putting everything together we get that

P (diam (UA (n, S2)) > K log (n)) ≤ P
(

max
1≤j≤n−1

Rj >
K

2
log (n)

)
≤

n−1∑
j=1

P
(
Rj >

K

2
log (n)

)
≤ n−

K
2

log(K2 )+K
2

+1 ≤ n−K/2,

where the last inequality holds when K > 20.
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Powerlessness to Absolute Power”. In: Journal of Artificial Intelligence Research 48
(2013), pp. 923–951.
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