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Abstract 

c3 
ha. /'() 

Object-oriented programming, due to its encapsulation and message-passing prin
ciples, is a suitable basis for the programming of multicomputers. We present 
mechanisms which allow sequential c++ programs' to be transformed into par
allel programs, executable on an MIMD architecture, such as the Intel iPSC /2 
Hypercube. The basic idea is to prnvide mechanical transformations, which al
low arrays of objects to be distributed over different processors. At run time, a 
master processor may command other processors, considered slaves, to each create 
a different subrange of the original array. ·Subsequently, it may command the 
slave processors to execute any member functions of the remote array elements. 
Parallelism is achieved by segregating the send and receive commands issued by 
the master, which allows the slave processors to operate concurrently. 

Keyworqs: object-priented programming, parallel processing, C++, MIMD ar
chitectures 
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1. Introduction 

There are two basic principles that make object-oriented programming at

tractive for parallel computer systems. The first is encapsulation, which packages 

data and procedures into objects, thus implementing abstract data types [GuT77]. 

Hence, the problems of data-distribution and program-distribution are merged into 

one. Furthermore, there are no side-effects in purely object-oriented programs, 

smce all computations are confined within objects. This greatly simplifies the 

data-dependency analysis necessary to determine possible distribution. 

The second principle is message-driven computation, which is used (at least 

. conceptually) in sequential object-oriented programs. That is, member functions 

are invoked by "receiving a mesage". This point of view translates naturally into 

a distributed environment, where messages are not only conceptual, but actually 

travel between different processors. 

Due to the above principles, a number of projects have been started to im

plement parallel object-oriented languages and systems [AME87, BLL88, BoLA89, 

DACH88, GERo88, PoLE89, YoTo87]. The main thrust of these projects is to 

extend existing object-oriented languages by providing constructs for parallelism, 

or to create new parallel object-oriented languages, again with explicit control 

over parallelism. Our philosophy, on the other hand, is to develop tools to perform 

automatically as much of the parallelization of a program as possible. In [YBU90A, 

YBU90B], we have proposed transformations for automatically distributing C++ 

programs consisting of only static objects, i.e., objects known at compile time. 

The transformations presented in this paper are a first step toward distributing 

dynamic objects, i.e., objects defined using the construct new, or objects defined 

automatically when their scope is entered. 

We concentrate on distributing arrays of objects, rather than individually 

defined ones, as most parallelism typically results from iterating over arrays. The 
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proposed transformations, presented in Section 2, allow a processor to command 

other (slave) processors to create subranges of a given array and to invoke their 

member functions remotely. By segregating the send and receive commands, con

currency among the slave processors is achieved, as will be discussed in Section 3. 

An application example to illustrate the capabilities of the proposed transforma

tions is then given in Section 4, followed by conclusions in Section 5. 

2. Transformations to Achieve Distribution 

This section considers the mechanisms for achieving distribution. For any 

array to be distributed, these mechanisms automatically transform the declaration 

of that array and all references to it such that the array elements are distributed 

over all PEs and the accesses work properly using send and receive primitives. 

2.1. Basic Assumptions 

The distribution works in a master/slave relationship. For simplicity, the 

following assumptions are made: 

• The declaration of the array (A) and all accesses to it will be executed on one 

processing element, say PEO. This becomes the master PE. 

• The array (A) will be distributed equally over the remaining np- 1 PEs, i.e., 

PE1 through PEnp-l · These become the slave PEs. Assuming the size of the 

array is a multiple of np- l, each PE will hold a subrange A[k,2k-1), where 

k is a, multiple of n/(np -1). 

• The main() function of all slave PEs consists of an infinite loop, which repeat

edly receives a message and, using a switch statement, performs the requested 

action. The general structure is: 
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class c 
{ ... 

type data1; //general form of a data member 
res_type method1(param){ ... } //general form of a method 

} 

c A[n]; //declaration of array of objects of type c somewhere 
//in the program 

res1 = A[i] .method1(param); //method invocation of some A[i] 
//somewhere in the program 

res2 = ... A[j].data1 ... ; //read access to data member of A[j] 
//somewhere in the program 

A[k] .data1 = expression; //write access to data member of A[k] 
//somewhere in the program 

while (1){ 
rev msg; 
switch (command) 

Figure 1 

Sequential program 

//each message carries a string as its first 
//component, which determines what to do 

case "xxx": perform action corresponding to xxx 

} 

• The general program structure before distribution is as shown in Figure 1. It 

contains a class definition, a declaration of an array of objects of that class, 

a method invocation, and a read and a write access to a data member. In 

the method invocation we assume that param is a set of parameters, all of 

whic4 are passed by value. Call by reference (pointer) requires additional 

mechanisms (e.g., sending a copy of the data to the callee, locking it while it 

is being accessed by the callee, receiving the modified version, updating and 

unlocking the the original version). This issue is not dealt with in this paper. 
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2.2. Identifying Remote Objects 

In this paper we are concerned with arrays of objects. Conceptually, each 

array can be viewed as a complex object whose components are individual element 

objects. In a sequential C++ program, each array is uniquely referred to by its 

name or by a pointer. Individual elements are referred to by their index, which 

in a shared memory environment is used to compute the location of the desired 

element. 

In a distributed environment, this is no longer possible, since different array 

elements reside in different address spaces. This means that all references to 

remote elements must be translated into send/receive primitives, and the messages 

must carry information to uniquely establish the relationship between the elements 

belonging to the same array. This must be done dynamically, since objects are 

created and destroyed automatically as code blocks are entered and exited, or 

explicitly, using the "new" and "delete" statements. 

To provide for unique identification of distributed components we take advan

tage of the pointer "this"' which is maintained implicitly by c++ for all objects 

[STR87]. It corresponds to the address of the object in memory and hence is unique 

as long as the object is active. We use this pointer to establish the correspondence 

between the elements constituting the same array. It is interpreted as a long integer 

(i.e., not dereferenced) and is carried on messages between the master and the slave 

PEs when creating or accessing the remote subranges of a distributed array. 

The implementation is as shown in Figure 2. Each slave PE maintains an array 

of pointers, ptr[ ]. Each entry corresponds to a subrange of a distributed array. 

The assignments of the different subranges to entries in ptr[ ] are done dynamically, 

using the pointer value "this". However, since the size of "this" is very large (size 

of memory address), hashing is used to obtain a,n index within the bounds of ptr[ ]. 
I 
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hash( this) 

m PE. 
1 

ptr 

Figure 2 

Identifying remote subarrays 

k 

2k-1 

Hence distributed arrays are accessed by each slave PE using ptr[hash(this)], where 

"this" is carried on each message from the master PE. 

Note that the actual implementation is somewhat more complicated due to 

possible collisions. That is, the ptr[] array must either handle lists of objects whose 

"this" pointer hashes to the same index, or some other overflow mechanism must 

be provided. To simplify the subsequent presentation, the notation ptr[hash(this)] 

will be used to denote the unique pointer to a given array subrange. 

2.3. The Transformations 

The transformation of a sequential c++ program consists of several steps, as 

described next: 

(1) Define New Class for c 

For each class c to be distributed, provide a new class c_d. The suffix "d" 

indicates distribution. The original class c is preserved to also allow the creation 

of centralized instances of c, if desired. 

The new class c_d has the following general structure: 
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class c_d; 
{ ... 

c_d(n) //constructor 
= 1; i < np; ++i) { for (i 

send to PEi: <"create c", this, n>; } 
} 

The new class essentially consists of a constructor, which takes n- the number 

of elements in the original array declaration-as a parameter. It then sends a 

message to each slave PE, which carries the command "create c" (where c is the 

original class name), the pointer "this", and the number n. The command will 

determine the action to be taken by the slave PE. (Note that it is not necessary to 

carry the actual string "create c", but only some internal encoding of it. Here we 

use the string for clarity.) The pointer "this" is used to identify the corresponding 

subranges in the slave PEs. As explained in Section 2.2, its content, which is an 

address in the master PE's memory, is sent to all slave PE, where it is interpreted 

as a long integer and its hash value is used to index the array ptr[ ] . 

(2) Extend Switch Statement in Slave PEs 

In each slave PE, the switch statement is extended by the following new case: 

while (1){ 
rev msg; 
switch command; 

case "create c": ptr[hash(this)] = new c[n/(np-1)]; 

} 

This causes the creation of a new array of objects of type c but the range of 

this new array is a fraction of the original range, n/(np-1), where n is the original 

range and np is the number of PEs. The pointer to this new array is stored in an 

array ptr[·], at the index derived from "this". 

(3) Transform Array Declarations 

Each declaration of the original array, i.e., 
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c A[n]; 

which is to be distributed, is replaced with 

c_d A(n); 

Note the different parenthesis around n. This new declaration now creates a single 

object, A, of type c_d, and passes n to its constructor. This then causes the creation 

of the subarrays of type c in the slave PEs, as discussed above. 

( 4) Provide New Methods for Data Members of Class c 

For each data member d in the original class c provide two new methods, · 

"puLd" and "geLd" in c. The new methods have the form: 

res_type get_d() 
{ return d; } 

void put_d(val) 
{ d = val; } 

This allows us to refer to all members uniformly using a functional notation, 

m(), regardless of whether mis a method or data. That is, read references to data 

members may be replaced by the call geLdata(), while write references are replaced 

by puLd(). (The need for this extension will become apparent in Step 8 below.) 

(5) Provide Methods for Class c_d 

For each method m of the original class c (including the new methods get_d 

and puLd) provide two corresponding method m_s and m....r in c_d. The extensions s 

and r stand for "send" and "receive". The reason for creating two separate methods 

is to achieve concurrency during execution, as will be explained in Section 3. 

Assuming that the original method is of the form: 

res_type m(param) { ... } 

then the new methods have the form 

void m_s(i, param) 
{send to PE holding i: <"m", i, this, param>} 

7 



res_type m_r(i) { 
receive res; 
return res 

} 

The new parameter i results from replacing references to the original array 

elements A[i] by references to the single (distributed) object A (see Step 7). 

Note that either param or res could be void. If param is void, the function 

m_s has the form: 

void m_s(i) 
{ send to PE holding i: <"m", i, this> } 

If res is void, the function m...r has the form: 

void m_r(i) 
{ receive ack; } 

where ack represents an acknowledgement. This may or may not be necessary to 

preserve the original semantics of the program. Depending on the data depen-

dencies in the program, subsequent calls could interfere with m's operation if no 

acknowledgement is requested. 

(6) Extend Switch Statement in Slave PEs 

The switch statement in all slave PE is extended as follows. For each method 

m of c, including geLd and put_d methods, provide a new case statement of the 

form: 

} 

switch command; 

case "m": 
res= ptr[hash(this)][i % (np-1)] .m(param); 
send res to master; 

The command "m" specifies that the method m is to be invoked. The array 

subrange is located by using the hash value of tpe received "this" pointer as index 
I 
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into ptr[ ] . The array element for which m is invoked is given by i modulo the 

number of slave PEs. This is because each subrange created by a slave PE starts 

with the index 0 (this is a general limitation of C/C++ ). The original parameters, 

if any, are passed to m unchanged and the result (or acknowledgment) is returned 

to the master PE. 

(7) Transform References to Methods 

References to methods cannot occur on the left-hand side of assignment state

ments. (This is due to the assumption that return results are not references but 

only values). Hence all references to methods have the form 

res= A[i] .m(param); 

where res could be an implicit variable (invocation withing an expression). Each 

such reference is replaced with the following two calls: 

A.m_s(i, param); 
res= A.m_r(i); 

The first statement invokes the method m..s in the new object A, which sends 

the request to the corresponding PE holding A[i] to execute the original method m 

on that element. The second statement then invokes the method m_r of A, which 

receives and returns the result. 

(8) Transform References to Data Members 

References to data members may occur on either side of an assignment state-

ment. They are transformed as follows: 

Each read reference to d, i.e., 

= A[i] .d ... 

is replaced by 

A.get_d_s(i); 
... = ... A.get_d_r() 
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Similarly, each write reference to d, i.e., 

A[i] .d = exp 

is replaced by 

A.put_d_s(i, exp); 
ack = A.put_d_r(); 

Figure 3 shows the complete program resulting from applying the above trans

formations to the original program of Figure 1. The slave PEs execute the code 

shown in Figure 4. 

Note that the transformations as presented so far implement a form of Remote 

Procedure Calls, where the master invokes the methods of other objects, located on 

other PEs. A crucial point of this implementation is that the call is split into two 

separate procedures - one to invoke the remote method and to send it the necessary 

parameters, and the second to receive the results. This split-phase implementation 

is the basis for achieving concurrency, as will be discussed in Section 3. 

2.4. Nested Objects 

The above mechanisms for distributing arrays of objects work also for arrays 

nested within other objects. The transformations shown in Figue 5 would be 

applied if the array were nested within another class, called "outer". 

3. Concurrency 

The main goal of distributing objects is to achieve concurrency and thus reduce 

overall computation time. The transformations as presented so far, achieve this 

goal only to a very limited extent. They permit us to distribute objects. However, 

since all method invocations (and data member references) are translated into m....s() 

immediately followed by m..r(), only one slave ~E could be active at any one time. 
! 
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class c 
{ ... 

type1 data1; 
res_type1 method1(param){ ... } 

//general form of a data member 
//general form of a method 

res_type2 get_data1() //new get method for data1 
{ return data1; } 
void put_data1(val) //new put method for data1 
{ data1 = val; } 

} 

class c_d; 
{ ... 

} 

c_d(n) //constructor 
{ for (i = 1; i < np; ++i) 

send to PEi: <"create c", this, n>; } 

void method1_s(i, param) //new send method for original method1 
{send to PE holding i: <"method1", i, this, param>} 

res_type1 method1_r(i) { 
receive res; 
return res 

} 

//new receive method for original method1 

void get_data1_s(i) //new send method for get_data1 
{send to PE holding i: <"get_data1", i, this>} 

res_type2 get_data1_r(i) { //new receive method for get_data1 
receive res; 
return res 

} 

void put_data1_s(i, param) //new send method for put_data1 
{ send to PE holding i: <"put_data1", i, this, param>} 

void put_data1_r(i) { 
receive ack; 

//new receive method for put_data1 

} 

c_d A(n); //new declaration 

res1 = A.method1(i, param); 

res2 = ... A.get_data1(j) ... ; 

A.put_data1(k, expression); 

//new method invocation 

//new read reference to A[j] 

//new write reference to A[k] 

Figure 3 

Transformed program 
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vhile (1){ 
rev msg; 
switch command; 

case "create c": ptr[hash(this)] =new c[n/(np-1)]; 

case "method1": 
res= ptr[hash(this)] [i 'l. (np-1)] .method1(param); 
send res to master; 

case "get_data1": 
res= ptr[hash(this)] [i 'l. (np-1)] .get_data1(); 
send res to master; 

case "put_data1": 
ptr[hash(this)][i 'l. (np-1)] .put_data1(param); 
send ack to master; 

} 

before 

class outer 
{cA[n]; 

} 

outer O; 

A[i].m( ... ); 

O.A[i] .m(. .. ); 

Figure 4 

Code for slave PEs 

after 

class outer 
{ c_d A(n); 

} 

outer O; //declaration 

A.m(i, ... ); //reference within 0 

O.A.m(i, ... ); //reference outside of 0 

Figure 5 

Transformation for nested objects 

This is because m..r() contains a blocking receive statement. Hence a sequence of 

references to different objects, e.g. a loop of the form 

for (i = 1; i < np; i++) { 
A[i].m( ... ); 
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} 

PEO PEl PE2 PE3 PEO PEl PE2 PE3 

(a) 

m 

(b) 

PEO PEl PE2 PE3 
m 

Figure 6 

Possible concurrency 

m 

( c) 

would result in a sequential execution (with additional communication overhead) 

as shown graphically in Figure 6(a). 

In cases where no return result is expected, we could eliminate the call to 

m..r(), which would allow the next m_s() to proceed immediately. The resulting 

behavior is depicted in Figure 6(b). This, however, does not result in a very useful 

environment, since operations that do not return any results are limited essentially 

to initializations. 
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To achieve concurrency in general, it is necessary to segregate the send and 

receive statements, so that all slaves can first be commanded to start some com-

putation and only then the master blocks to await the results. The transformation 

described in Section 2.3 have been designed with this objective in mind. In par-

ticular, each reference to a remote method or data member is transformed into 

two calls - one that performs the send and the other to perform the receive. This 

allows us to perform an additional transformation on the program which essentially 

changes the order of invocation of the two methods. 

With straight-line code, all references occur explicitly and may simply be 

reordered to segregate the send and receive calls. For example, the sequence 

r1 = A[1] .m( ... ); 
r2 = A[2].m( ... ); 
r3 = A[3] .m( ... ); 

is first transformed into the following calls: 

A . m_ s ( 1 , . . . ) ; 
r1 = A.m_r(1); 
A . m_ s ( 2 , ... ) ; 
r2 = A.m_r(2); 
A • m_ s ( 3 , ••• ) ; 
r3 = A.m_r(3); 

The segregation transformation then yields: 

A . m_ s ( 1 , . . • ) ; 
A.m_s(2, ... ) ; 
A.m_s(3, ... ) ; 
r1 = A.m_r(1); 
r2 = A.m_r(2); 
r3 =·A.m_r(3); 

which results in the execution profile shown in Figure 6( c). The result is a pipeline 

which overlaps the execution of the different slave PE. 
f 
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With loops, the transformation is more complicated. The original loop must 

be divided into two loops, one performing the sends and the other the receives. 

Consider for example the following loop: 

for (i = ... ) 
{ res[i] = A[i].m( ... ); } 

The original transformation yields: 

for (i = ... ) { 
A • m_ s ( i , ... ) ; 
res[i] = A.m_r(i); } 

The segregation transformation yields: 

for (i = ... ) 
{ A • m_ s ( i , ... ) ; } 

for (i = ... ) 
{ res[i] = A.m_r(i); } 

which has the desired behavior shown in Figure 6( c). 

With the additional transformation, concurrency is obviously achievable. The 

main problem, however, is to guarantee that the resulting program still conforms 

to the original semantics of the sequential program. If that is not the case, the 

transformation cannot be performed. 

In general, this requires an interprocedural analysis to be carried out to deter

mine whether the execution of one method depends in any way on the execution 

of another within the sequence to be transformed. Due to encapsulation in purely 

object-oriented programs, this analysis is considerably simpler than with conven

tional programming languages. In particular, in the absence of any global data it 

is much easier to determine the read and write sets of each object and to determine 

whether there is any possible interaction between them. In addition, there are a 

number of spacial cases, which are verified relatively easily. Below, we consider 

two such cases that occur frequently in c++. i 
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Case 1: 

Two consecutive statements of the form: 

A1.mi(y1); 
A2.m2(y2); 

are independent and thus may be interchanged if the following conditions hold: 

1. Al and A2 are distinct objects. This is true when Al and A2 are different 

explicit names (i.e., not pointers), or when Al and A2 are array elements and 

Al and A2 are distinct names or their respective indices have different values. 

2. Al.ml or A2.m2 does not reference any object global to Al or A2. Referencing 

a global object can only be done by explicitly naming that object, and thus is 

easily checked. 

3. All parameters are passed by value (including those passed to Al and A2 at 

the time of creation). This is easily checked by examining the source code. 

Condition 1 guarantees that any local data accessed by ml and m2 belongs 

to physically disjoint sets. Condition 2 guarantees that ml and m2 do not access 

any common object. Condition 3 guarantees that any data passed to ml and m2 

as parameters at the time of invocation, or to Al and A2 at the time of creation, 

cannot be shared. 

Together the three conditions guarantee that there is no possible interaction 

among the two statements and hence their execution can be interleaved by first 

invoking the sending methods ( A.m_s() ) followed by the receiving methods ( 

A.m..r() ). 

Case 2: 

Two consecutive statements of the form: 

xi= Ai.mi(yi); 
x2 = A2.m2(y2); 
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are independent and thus may be interchanged if, in addition to the same three 

conditions of Case 1 above, the following fourth condition holds: 

4. There is no data dependence between the parameters xl, x2, yl, and y2. 

This is true if the parameters are simple variables Vi or elements of explicitly 

declared arrays, ri[kj], and the following holds: for any pair of simple variables 

the names Vi are distinct; for any pair of array elements the names ri are 

distinct or the indices kj have different values. 

This condition guarantees that the reading of the parameters yl and y2 does. 

not depend on the writing of the output values xl and x2. 

Similar to Case 1, the four conditions guarantee that there is no possible 

interaction among the two statements and hence their execution can be interleaved. 

4. An Application Example 

The Compute-Aggregate-Broadcast (CAB) paradigm [NESN87] is a well know 

structuring techniques for solving problems on multicomputers. The basic idea is to 

partition a problem into subproblems to be partially solved on individual PEs of the 

multicomputer. During the compute phase, each PE works on its own subproblem, 

producing some partial result. In the aggregate phase, these results are combined 

into a result for the overall problem. If this results satisfies some given criterion, the 

computation stops. Otherwise, the broadcast phase is entered, which distributes 

the data necessary for the next compute phase to individual PEs. The compute

aggregate-broadcast cycle is repeated until the desired result is obtained. The CAB 

paradigm generally operates in a master-slave fashion, where the master evaluates 

the termination condition and commands the slave to continue, as appropriate. 

There are different forms of the CAB paradigm, depending on how the data 

is distributed and exchanged among individual PE. In its simplest form, data is 

17 



class c 
{ local variables; 

void initialize(p) //method 
{ store p in local variables; } 

res_type compute(p) //method 
{ compute partial result using p and local data; 

return result; 
}; 

main() 
{ ... 

} 

c A [n]; 
for (i = O; i < n; i++) 

{ A[i] .initialize(p);} 
while (result not satisfactory) { 

for (i = O; i < n; i++) { 
res[i] = A[i].compute(p); 

} 

} 

p = init; 
for (i = O; i < n; i++) { 

p = aggregate(p, res[i]); 

Figure 7 

Sequential CAB program 

exchanged directly only between the master and the slave PEs. That is, the master 

aggregates all partial results produced by slave PEs, evaluates the termination 

condition, and, if another iteration is to be performed, it broadcasts the aggregated 

data to all slave PE. Hence slave PEs only perform the compute phase. 

The program skeleton in Figure 7 is a sequential C++ program that mimics 

the behavior of a CAB program. For simplicity, we assume that n = np-1, i.e., the 

size of the array is equal to the number of slave PEs. Hence, after transformation, 

each slave will hold exactly one object A[i]. 

The main() function plays the role of the master. After initializing all A[i] 

elements by sending them the data p, it invokes the compute() function of each 
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object A[i]. This corresponds to the broadcast phase, which distributes a copy of 

the parameter p to each object. The results produced by the individual objects are 

collected in the array res[] and are subsequently combined into a new value for p 

using the function aggregate(). This is then broadcast to all slaves during the next 

iteration of the while loop. 

The slave objects, A[i], are instances of the class c, which contains the methods 

initialize() and compute(). The latter produces the partial solution using the 

parameter p and its local data. This solution is returned to the master. 

In the following, we demonstrate that by applying the transformations pre-

sented in Section 2.3 to the above "CAB" program, a computation that actually 

displays the desirable characteristics of the parallel programming paradigm is au

tomatically derived. 

Figure 8 shows the new program after transformation. It comprises the new 

class c_d with the corresponding methods initialize_s(), initialize..r(), compute....s, 

and compute_.r, derived by following the algorithm of Section 2.3. In the main() 

function, the declaration of the array has been changed to c_d A(n) and the refer

ences to A[i].initialize( ... ) and A[i].compute( ... ) have been replaced by the pairs of 

calls A.initialize_s(i, ... ), A.initialize..r(i, ... ),and A.compute_s(i, ... ), A.compute..r(i, 

... ), respectively. The send calls and receive calls have been segregated into sepa

rate loops to achieve parallelism. The segregation of the initialization calls is legal 

according to Special Case 1, described in Section 3. Any two successive calls 

A[i] .initialize(p); 
A[i+~].initialize(p); 

satisfy the following conditions and thus do not depend on each other: 

1. Each calls a different object 

2. initialize() does not reference any global object 
I 
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class c { ... } //contains new methods of the form get_d and put_d 
//for all its data members 

class c_d 
{ 

c_d(n) //constructor 
{for (i = 1; i < np-1; i++) { 

send to PE holding i: <"create c", this, n> 
} 

} 

void initialize_s(p) 
{send to PE holding i: <"initialize", i, this, p>} 

void initialize_r() 
{ receive ack; } 

void compute_s(p) 
{send to PE holding i: <"compute", i, this, p>} 

res compute_r() 
{ receive res; 

return res 
} 

} 

main() 
{ 

} 

c_d A(n); 

for (i = O; i < n; i++) { 
A.initialize_s(i, p); 

} 

for (i = O; i < n; i++) { 
A.initialize_r(i); 

} 

//transformed initialization loop 

while (result not satisfactory) { 

} 

for (i = O; i < n; i++) { //transformed computation loop 
A.cornpute_s(i, p); 

} 

for (i = O; i < n; i++) { 
res[i] = A.cornpute_r(i); 

} 

p = init; 
for (i = O; i < n; i++) { 

p = aggregate(p, res[i]); 

Figure 8 ; 

Parallel CAB prqgram 
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3. pis passed by value and no parameters were passed to A at the time of creation 

Similarly, the segregation of the computation calls is legal according to Special 

Case 2. Any two successive calls 

res[i] = A[i].compute(p); 
res[i+1] = A[i+1] .compute(p); 

satisfy the first three conditions in the same way as the initialization calls. The 

fourth condition is also satisfied, assuming that p is a simple variable or an element 

of an array different from r. Then there is no data dependence between p and res[i] 

for any i. 

5. Conclusions 

With the mechanisms described in this paper it is possible to create and 

operate on distributed arrays in C++. The transformation from a centralized 

to a distrubuted array is fully automatic. At run time, the master PE commands 

the slave PEs to define subranges of the original array and to apply the methods 

stated in the original program to their respective subranges. 

Concurrency is achieved if the sends to the slaves may be segregated from 

the receives. For example, a loop that invokes A[i] .m( ... ) for a different i in each 

iteration could be divided into two loops; one performing the sends and the next 

performing the receives, thus achieving a pipelining effect. This is possible if there 

is no interaction between the different elements A[i]. This, in general, must be 

determined by an interprocedural analysis. However, there are many special cases 

where this is very simple to do. Two such common cases were identified in this 

paper. 
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The ability to distribute computation by automatic transformations of the 

source programs does not, of course, guarantee improved performance; the commu

nication time of the underlying architecture is critical. When it is large compared 

to the time of executing an instruction, the scope of possible applications becomes 

limited to those where relatively few messages are exchanged among large granules 

of computation. For the time being, we allow the programmer to designate which 

arrays should be distributed. The development of heuristics to determine when a 

distribution would be beneficial is subject to current research. 

It is important to note that the transformation are performed on the source 

program. The resulting code does not contain any extensions beyond the scope of 

c++ as implemented on a multiprocessor, such as the Intel iPSC /2 hypercube 

[INT89]. Hence no modifications to the compiler are necessary; the transformations 

can be implemented as a preprocessor for the regular compiler. 

One of the main limitations of the transformations as described in this paper 

is the inability of slave objects to exchange data with one another directly. This 

is because only the master PE knows about the distribution and thus can invoke 

the methods of slave objects. Hence all data must pass through the master PE. 

The obvious solution is to create for each slave a class similar to c_d, which knows 

about the distribution of other objects. This, however, would lead to deadlocks 

when slaves attempted to invoke each other's methods. To solve this problem in 

general would require that each object be capable of receiving and processing new 

method invocation messages while waiting for a reply from some other object. A 

possible s9lution, which involves invoking each method as a separate thread (light

weight process) is currently under investigation. 

The ability to invoke methods of a given object as separate threads would 

also allow for multiple levels of distribution by ,applying the proposed distribution 
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mechanisms recursively. Assume, for example, that some method of A[i], where 

A[n] is distributed, declares another (local) array of objects, B[m]. B[m] could also 

be distributed to all PEs in the same way as A[n]. Here the PE holding A[i] would 

serve as the master for this array and other PEs would be the slaves. In other 

words, the master/ slave assignment would only be virtual, since each PE could be 

a master and also serve as a slave to different masters. 

To avoid deadlock, however, each method would have to be invoked as a 

separate thread, thus allowing each PE to be suspended on more than one receive 

statement. This again requires a light-weight process facility in order to tolerate 

the context switching overhead. With only heavy-weight (Unix) processes, the 

distribution must be limited to a single level, performed out of a single master 

PE. This PE then runs the coordinating thread of computation, which may "farm 

out" subranges of an array of objects and then command the slaves to perform the 

operations on its behalf. All object declared in a slave PE remain local to that PE. 

In addition to the above limitations, the following issues are also subject to 

current research. 

Combining message to the same PE. Typically, a loop iterating over a dis

tributed array will access all or most element of each subrange. In an environment 

where communication is very costly, combining messages destined to the same PE 

would be very beneficial. This could be achieved at the source level by providing 

additional methods, that would apply a given operation to (e.g., invoke a method 

of) all elements of the subrange held by a slave PE. 

Distribution to a subset of PEs. When the array size is small, it may be 

necessary to distribute it to only some of the slave PE. The necessary mechanisms 

to achieve the transformation are relatively simple modifications of the transfor

mations presented here. The main problem, however, is to devise heuristics to 
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determine how many and which of the possible slave PEs should be employed. 

Related to this is the problem of distributing individual (non-array) objects to 

slave PEs. 

Finally, the problem of remote parameter passing and remote function execu

tion must be addressed. That is, the caller of a method should be able to specify 

an object as a parameter, which could be remote to the caller, remote to the callee, 

or remote to both. With this capability, data could be passed directly among slave 

PEs, rather than forcing it to fl.ow through the master PE. Furthermore, functions 

that use remote objects as parameters and produce results used by other remote 

methods should execute remotely, at the site where their results will be needed. 

Consider for example the statement A.m( f(B) ), where the result of the function f 

is used as a parameter for the method m. If both A and Bare remote to the caller, 

the function f should execute at the site of A (or B), thus eliminating the fl.ow of 

data through the caller. 
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