
UC San Diego
Technical Reports

Title
Sorting 100 TB on Google Compute Engine

Permalink
https://escholarship.org/uc/item/0fk6869g

Authors
Conley, Michael
Vahdat, Amin
Porter, George

Publication Date
2015-09-25

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0fk6869g
https://escholarship.org
http://www.cdlib.org/

Sorting 100 TB on Google Compute Engine

Michael Conley

University of California, San Diego

mconley@cs.ucsd.edu

Amin Vahdat

Google Inc.

University of California, San Diego

vahdat@cs.ucsd.edu

George Porter

University of California, San Diego

gmporter@cs.ucsd.edu

Abstract

Google Compute Engine offers a high-performance, cost-

effective means for running I/O-intensive applications. This

report details our experience running large-scale, high-

performance sorting jobs on GCE. We run sort applications

up to 100 TB in size on clusters of up to 299 VMs, and find

that we are able to sort data at or near the hardware capabil-

ities of the locally attached SSDs.

In particular, we sort 100 TB on 296 VMs in 915 seconds

at a cost of $154.78. We compare this result to our previ-

ous sorting experience on Amazon Elastic Compute Cloud

and find that Google Compute Engine can deliver similar

levels of performance. Although individual EC2 VMs have

higher levels of performance than GCE VMs, permitting sig-

nificantly smaller cluster sizes on EC2, we find that the total

dollar cost that the user pays on GCE is 48% less than the

cost of running on EC2.

1. Introduction

Recent years have seen a rise in data-driven innovation.

This trend, typically termed “Big Data” is pervasive both

in industries, such as a health, retail, and technology, and

also in sciences such as biology and astronomy. Business

people, engineers, and researchers alike have shown interest

in processing and analyzing large amounts of data.

The sheer volume of data to be processed presents its

own technical challenge. Large workloads require increas-

ingly more powerful clusters of machines to carry out data

analysis in a reasonable period of time. Rather than build-

ing out large data centers of machines, companies and re-

searchers often deploy applications to cloud computing ser-

vices, which rent out large clusters at a fraction of the price

of buying dedicated infrastructure.

Historically, cloud computing services, such as Amazon

Web Services [1], Microsoft Azure [2], and Google Cloud

Platform [6], have catered to web applications requiring the

ability to elastically scale to meet user demands. A typical

web retail application might increase the size of its cloud de-

ployment around holidays to better handle peak loads. These

applications are often latency-sensitive and are engineered to

handle a target number of user queries per second.

In this work, we consider the cost and performance ben-

efits of running a different class of applications, termed I/O-

intensive applications, in the public cloud. These applica-

tions require processing enormous data sets and are geared

more towards backend processing than user-facing frontend

applications. By definition, the throughput of I/O-intensive

applications is often limited by the speed of I/O compo-

nents, including local storage, remote network-attached stor-

age, network devices, fabrics, and topologies.

In particular, we run a sorting application on Google

Compute Engine (GCE) on data sizes of up to 100 TB and

clusters consisting of up to 299 virtual machines. We exam-

ine the performance and cost of these workloads and com-

pare to our earlier experience running on Amazon Elastic

Compute Cloud (EC2) [4, 5].

We find that although the per-VM performance is lower,

requiring larger cluster sizes, GCE is capable of sorting data

at nearly the speeds of EC2, but at much lower cost. In

particular, we sort 100 TB on 296 VMs in 915 seconds at

a cost of $154.78, which is 48% cheaper than on EC2.

2. Application Workload

We now describe our application workload. We first discuss

the data set and problem statement, and then we briefly

describe our sorting application framework.

2.1 Sort Benchmark

We choose to measure the performance and cost of the

Indy 100 TB GraySort benchmark taken from the suite of

Sort Benchmark applications [13]. These benchmarks are

designed to stress test the I/O capabilities of large batch-

processing systems by providing a workload that is larger

than the aggregate memory of most clusters. Sorting is

a well-understood problem, so the benchmark also repre-

sents a canonical workload for I/O-intensive applications.

We have extensive experience with this workload [4, 10, 11],

so it also provides a good way to compare performance and

cost across cloud services and clusters.

The 100 TB data set consists of one trillion records,

where each record is a 100-byte pair consisting of a 10-byte

key and 90-byte value. Keys are uniformly distributed across

the space of 25610 possible byte sequences. A generator

1

Map Input

Records

Shuffle

Map

Output
Input Disks

Intermediate

Disks

Figure 1: The map-and-shuffle phase. Figure reproduced from [5].

Sort Map

Output
Intermediate

Disks

Output

Disks

Reduce

Sorted Map

Output

Figure 2: The sort-and-reduce phase. Figure reproduced from [5].

program distributed on the benchmark website guarantees

the same deterministically “random” data set across runs. A

similarly provided validation program checks that the output

records are in sorted order and checksum to the appropriate

value for any given data size.

The GraySort benchmark measures the absolute perfor-

mance of sorting this 100 TB data set, and takes the form of

an annual contest. Contest entries are permitted to use any

commercially available hardware they can find. Winning en-

tries range from companies running large data centers [7, 8]

to academic research groups running small clusters or cloud

deployments [4, 10, 11].

The Indy variant of the GraySort is a specialized bench-

mark with the fewest requirements on the sorting system.

Systems that are custom built for sorting, or highly tuned for

the particular uniformly distributed data set are permitted.

Data replication is not required, and application failures are

permitted. The benchmark is designed to measure the abso-

lute fastest sorting system possible.

2.2 Themis MapReduce

We use Themis MapReduce [9] as our data processing

framework to carry out the sort benchmark. Themis is a

highly efficient MapReduce framework that we built for run-

ning I/O-intensive applications and is a good fit for the sort

benchmark workload. Themis is derived from our earlier ex-

perience in high-performance sorting with TritonSort [12],

and together these systems have created a total of ten world

records in the sort benchmark contest [4, 10, 11].

Themis implements MapReduce as a two-pass pipelined

application. The first pass, the map-and-shuffle phase, is

illustrated in Figure 1. In this pass, each cluster node reads

input records from disk, applies a map function, and then

transfers map output records to other nodes in the cluster

based on a partitioning function. These output records are

stored in partition files on the receiving nodes’ disks.

After all nodes complete map-and-shuffle, the sort-and-

reduce phase runs on each node (Figure 2). In this pass,

entire partition files containing map output records with the

same key are loaded into memory. These files are sorted,

and a reduce function is applied to each record before being

written back to disk. The sort-and-reduce phase runs locally

on each node, so no network transfer occurs in this pass.

In order to run the sort benchmark on Themis MapRe-

duce, we simply have to run the full MapReduce job with

identity map and reduce functions, which leave the data

records unchanged. The globally sorted data set can then

be represented as the concatenation of all the reduce out-

put files, so long as an order-preserving, range partitioning

function is used.

Themis MapReduce contains a sampling phase (not

shown) that runs before the map-and-shuffle phase to de-

termine the proper partitioning function. Because the Indy

GraySort benchmark permits us to take advantage of the

uniformly distributed data set, we can disable this sampling

phase and run a custom partitioning function that range-

partitions the data set into uniformly sized partitions. Some

of the evaluations described in this report run with sampling

enabled, and others with it disabled. It will be clearly noted,

for each cluster, whether sampling is enabled or disabled.

3. Data Analysis Tools

We now briefly describe the tools we use to analyze perfor-

mance bottlenecks.

3.1 System Resource Monitoring

We collect logs from the sar, iostat, and vnStat resource

monitoring tools [14, 15]. We measure the CPU and memory

utilization reported by sar every second during each phase

of the sort. The iostat and vnStat tools measure the disk

and network utilizations respectively, and we run each aver-

aging over five second intervals.

3.2 Application Framework Logging

The Themis MapReduce framework logs information about

the processing time, idle times, and blocked times of various

threads and operations on each node. We use these time

breakdowns to compute the fraction of time each thread

spends performing useful work, waiting for new work, or

waiting while blocked on resources or other threads.

The pipelined design employed by Themis makes it rela-

tively easy to assign a root cause to a period of idleness. For

example, a mapper thread may be idle because it runs faster

than a downstream sender thread. In this case, user config-

urable limits prevent the mapper from getting too far ahead,

causing it to block. The same thread might also be idle be-

cause it runs faster than an upstream reader thread. In this

case, the mapper has periods of time with no records to pro-

cess. The Themis logging infrastructure differentiates these

cases, making analysis as straightforward as possible.

From these logs and the data sizes involved, we can com-

pute the throughput of each thread in MB/s and compare

across threads that perform compute-, memory-, disk-, or

network-intensive operations. We can then determine which

component of Themis is running at the slowest rate, and is

therefore the bottleneck.

2

Virtual CPU Cores 32

Memory 120 GB

Persistent Disk None

Cost $1.60 / hr

Local SSDs 4x 375 GB

SSD Cost $0.452 / hr

Total Cost $2.052 / hr

Table 1: The n1-standard-32 VM with four local SSDs.

While resource bottlenecks can change over time, partic-

ularly in the network, we make the simplifying assumption

that resource utilization is relatively constant during each

phase of the sort job. Therefore, when we make claims that

a particular phase is SSD-bound, for example, we mean that

in that phase, the slowest component of Themis is the stor-

age subsystem. This does not necessarily indicate that we are

running at the full throughput of the underlying device. For

example, changes in I/O patterns can cause a storage-bound

system to run at sub-optimal speeds.

4. Cluster Configuration

Next we describe our cluster configurations on Google Com-

pute Engine and the Themis MapReduce configuration for

running on these clusters.

4.1 Google Compute Engine

For the purpose of this evaluation, we use the

n1-standard-32 virtual machine configured with no

persistent disks and four locally attached SSDs (Table 1).

We show the full price without sustained use because this

represents the on-demand price of spinning up a cluster to

run a particular job. In an actual deployment, sustained-use

prices may reduce total costs.

Each cluster is configured with one master VM and a

number of slave VMs. When we refer to a cluster of size

N we mean N slave nodes and one master. The master VM

runs a monitoring script that checks for node liveness. It also

supports a web GUI for operating on the cluster, serves as a

head node for examining logs, and launches jobs on nodes in

the cluster. Slave nodes are responsible for actually carrying

out the MapReduce logic.

Although we run all virtual machines in the

us-central1-f zone, some of the experiments in

this report are run on different days. In particular, we

evaluate two clusters A and B for each cluster size. We run

both A clusters on September 4, 2015, and both B clusters

on September 9, 2015. We therefore have two days worth

of data points, day A and day B, for each cluster size. It

should also be noted that the A clusters run the sampling

step described in Section 2.2.

4.2 Themis MapReduce

We configure Themis MapReduce for the Indy GraySort

benchmark as follows. We allocate two of the four local

SSDs for input and output files, and the remaining two SSDs

for intermediate files. Each SSD is formatted with the ext4

file system and mounted with the noatime, discard, and

data=writeback options.

We configure read and write sizes to be 4 MiB and use the

O DIRECT flag to bypass the file buffer cache. We issue all

reads and writes asynchronously using libaio, the native

asynchronous I/O library for Linux. We issue two simulta-

neous asynchronous reads to each of the two reading SSDs

in each phase. In the map-and-shuffle phase, we issue four

simultaneous asynchronous writes to each of the two writing

SSDs. However, in the sort-and-reduce phase, we only issue

two simultaneous asynchronous writes to each of the two

writing SSDs. These values were determined experimentally

based on the I/O patterns of our MapReduce framework and

the properties of the SSDs.

The shuffle component of Themis MapReduce runs an

all-to-all network transfer across the cluster. Each of the N

nodes maintains N sending and N receiving sockets, for a

total of 2N open TCP connections per node. Themis also

supports an option to open multiple parallel connections to

nodes to increase network throughput for high speed net-

works. Using a factor of P parallel connections brings the

total to 2PN open TCP connections per node. At small clus-

ter sizes this is very reasonable even with P as high as 4, but

at larger cluster sizes we can run into problems. We therefore

set P to 1 in most of the clusters evaluated.

We run Themis on a Linux image derived from the De-

bian 7.8 image with backports kernel that is available on

Google Compute Engine and built on August 18, 2015. This

image runs Linux 3.16.0 and is stock except for a set of in-

stalled dependencies necessary to run Themis.

5. Mid-scale Evaluation

We now describe our “mid-scale” evaluation on clusters of

100 VMs, which is approximately one third the size neces-

sary to run the 100 TB sort operation. Prior to running this

evaluation, the largest measured cluster size was 15 VMs.

We chose to evaluate 100 VMs before running the full

100 TB sort in order to incrementally assess the scaling

properties of Google’s cloud infrastructure, as opposed to

making a 20x jump in scale all at once.

5.1 Cluster A-100

Cluster A-100 consists of 100 slave VMs in the

n1-standard-32 configuration described in Table 1. We

use a n1-standard-2 VM as the master with no local

SSDs. This machine type is a much smaller VM that only

has 2 virtual CPU cores and 7.5 GB of memory. As noted in

Section 4, we use the us-central1-f zone.

3

Generate

Synthetic

Data

Shuffle

Data

Delete

Data

Figure 3: The NetBench application-level benchmark measures the

network performance of the entire cluster with an all-to-all shuffle

without involving storage devices. Figure reproduced from [5].

Distribute

PartitionsInput Disks
Output

Disks

Figure 4: The DiskBench application-level benchmark measures

the storage performance of individual cluster VMs locally without

involving network transfer. Figure reproduced from [5].

5.1.1 A-100 Benchmarks

Before running the sort operation, we run the application-

level benchmarks NetBench and DiskBench [5] to assess

the network and storage properties of the cluster. These

benchmarks, illustrated in Figures 3 and 4, give us an idea

of how well Themis MapReduce ought to perform without

actually running the full application logic.

We run NetBench configured with four parallel TCP con-

nections per pair of nodes. The benchmark measures the

network performance of the shuffle component of Themis

MapReduce at a average throughput of 1531.76 MB/s, or

12.26 Gb/s, on cluster A-100. We report a standard deviation

of 16.35 MB/s, although the all-to-all nature of this bench-

mark makes it difficult to tease apart straggler flows, which

can block faster flows if enough data backs up in the bench-

mark pipeline.

Next we run DiskBench to assess the storage performance

of the A-100 VMs. As described in Section 4, we configure

the benchmark to read from two of the SSDs and write to

the other two SSDs to more closely mirror the performance

of Themis MapReduce. We use the same asynchronous I/O

and I/O size configurations used in the map-and-shuffle

phase. DiskBench reports an average read/write through-

put of 810.05 MB/s and a standard deviation of 3.97 MB/s,

indicating that each SSD is capable of writing at approxi-

mately 400 MB/s, and that performance is relatively consis-

tent across VMs.

5.1.2 Sorting on A-100

Next, we run a sort operation over 33.3 TB of data divided

evenly across the 100 VMs in the cluster. While not strictly

necessary given the rules of the Indy GraySort benchmark,

we enable sampling for this sort job to test the throughput

Time (s)

Sampling and Overhead 32

Map and Shuffle 468

Sort and Reduce 430

Total 930

Bottlenecks

Map and Shuffle Mappers

Sort and Reduce SSD Writes

Cost

VM Cost $2.052/hr

Cluster Size 100

Master VM Cost $0.10/hr

Total $53.04

Table 2: Sorting results on the A-100 cluster.

of the default mode of operation for our MapReduce frame-

work.

The sort job completes in 930 seconds. About 468 sec-

onds are spent on map-and-shuffle and 430 seconds on sort-

and-reduce, with the remaining 32 seconds spent on sam-

pling and coordination overhead. Our log analysis tools

show that the map-and-shuffle phase is CPU-bound by the

mapper threads, and the sort-and-reduce phase is SSD-

bound by the writer threads.

In a perfect world, both the map-and-shuffle and sort-

and-reduce phases would be bound by the write speed of

the SSDs, yielding a per-VM throughput of 800 MB/s in

each phase. In this particular sort job, we report per-VM

throughputs of 712 MB/s and 774 MB/s in the map-and-

shuffle and sort-and-reduce phases respectively.

From log analysis, we can observe that the throughput

of the mapper threads varies wildly from VM to VM. The

fastest VM fully maps all its data in about 378 seconds,

while the slowest requires 453 seconds. Our logs report that

in both of these cases, the mapper threads are almost never

idle, indicating that they are running as fast as the system

can support, i.e. they are CPU-bound, or perhaps memory-

bound due to caching effects. For reference, the mean map

completion time is about 401 seconds, and the standard

deviation is 13 seconds.

In the sort-and-reduce phase, it is instructive to look at

the observed processing throughput of writers. This metric

is defined to be the throughput in MB/s of the writer threads

from the moment they see the first data buffer to be writ-

ten to the moment they finish writing the last data buffer.

This metric ignores the first several seconds of the sort-and-

reduce phase, while the pipeline is filling up and writers are

idle waiting for their first piece of work. Using this metric,

we see the fastest VM writes at a speed of 814 MB/s and the

slowest at a speed of 787 MB/s. These speeds are in-line with

the maximum SSD write speeds measured by DiskBench, so

we conclude this phase is SSD-bound by the writer threads.

4

The results from the A-100 evaluation are shown in Ta-

ble 2. We report a total cost of about $53 to sort the 33.3 TB

data set. This suggests an approximate cost of $160 for the

full 100 TB sort under the assumption of perfect scalability.

5.2 Cluster B-100

We run the B-100 cluster a few days later on a different set

of 100 slave VMs in the same us-central1-f zone. This

time we use n1-standard-32 as our master VM type, again

with no local disks. We upgrade the master VM in order to

provide faster log access due to CPU limitations accessing

Google Cloud Storage with only 2 cores, as we will describe

in Section 8.1.

Our goal with cluster B-100 is solely to tweak the per-

formance of the map-and-shuffle phase of the sort because

we are already SSD-bound in the sort-and-reduce phase in

cluster A-100. We therefore only run partial sort operations

on this cluster.

5.2.1 B-100 Benchmarks

As before, we run NetBench and DiskBench to assess the

performance of the cluster before running the sort opera-

tion. This time, we configure NetBench to use a single TCP

connection per pair of hosts. We measure an average net-

work bandwidth of 1654.82 MB/s, or 13.2 Gb/s, with a stan-

dard deviation of 7.70 MB/s. DiskBench reports an average

read/write bandwidth of 813.54 MB/s, with a standard devi-

ation of 3.37 MB/s. These measurements peg cluster B-100

at roughly the same storage performance as cluster A-100,

although with slightly more network bandwidth.

5.2.2 Sorting on B-100

As mentioned above, we are interested in tweaking the per-

formance of map-and-shuffle. We therefore do not run sort-

and-reduce on this cluster.

No Sampling We begin by running map-and-shuffle

without sampling on the 33.3 TB data set. Unlike the

map-and-shuffle phase in cluster A-100, this operation uses

a simpler partitioning function that assumes the uniform

data distribution of Indy GraySort. We report an execution

time of 431 seconds for map-and-shuffle, which yields a

per-VM throughput of 774 MB/s. Log analysis shows the

writer threads write to the SSDs at an average speed of

798 MB/s/VM, which is essentially optimal. Further anal-

ysis shows the mapper threads are idle waiting for records

to process approximately 16% of the time, indicating that

mappers are no longer a bottleneck in this configuration.

Sampling We now consider the effect of enabling sam-

pling to create a configuration that is closer to the A-100

cluster. We report a sampling time of 32 seconds and a map-

and-shuffle time of 438 seconds, which is slightly worse than

disabling sampling. Log analysis shows that mapper threads

in this configuration are actually a bottleneck again, causing

writer threads to run at average speed of 778 MB/s/VM. This

speed is slightly slower than optimal, although the difference

is not as pronounced as in the A-100 cluster.

Five Mappers A CPU-intensive thread bottlenecking the

job, such as a mapper thread, can often be remedied by

increasing the number of threads up to the available number

of free CPU cores in the system. We therefore increase the

number of mapper threads from four to five, and re-run the

job. This time we report a sampling time of 33 seconds, and

a map-and-shuffle time of 433 seconds. Log analysis shows

that mappers are no longer a bottleneck, with an average idle

time of about 13%.

A summary of the results of the B-100 evaluation is

shown in Table 3. The results from clusters A-100 and B-

100 show that Themis MapReduce is capable of running a

33.3 TB sort on 100 VMs at full speed, namely approxi-

mately 800 MB/s/VM as dictated by the available SSD write

bandwidth.

6. Large-scale Evaluation

Armed with the knowledge and experience of running mid-

scale clusters of 100 VMs, we now turn our attention to the

main focus of this work, which is running 100 TB sort op-

erations on approximately 300 VMs. As before, we evaluate

two different clusters, A-299 and B-299, which are run on

the same days as the A-100 and B-100 clusters respectively.

6.1 Cluster A-299

We launch cluster A-299 with 299 slave n1-standard-32

VMs and a single n1-standard-2 master VM, again in the

us-central1-f zone.

6.1.1 A-299 Benchmarks

We run NetBench and DiskBench on the cluster to get base-

line bandwidths of the network and storage devices. We

run NetBench with a single TCP connection per pair of

hosts and report an all-to-all average network bandwidth

of 1216.59 MB/s, or 9.7 Gb/s, with a standard deviation

of 4.94 MB/s. DiskBench measures the read/write storage

bandwidth to be 801.84 MB/s on average, with a standard

deviation of 7.81 MB/s.

6.1.2 Sorting on A-299

Four Mappers We run the 100 TB sort operation with sam-

pling and four mapper threads. The job completes in 976

seconds, about 45 of which consist of sampling and frame-

work overheads. The map-and-shuffle phase takes 497 sec-

onds, while the sort-and-reduce takes 434 seconds, yielding

per-VM phase throughputs of 672 MB/s and 771 MB/s re-

spectively.

Log analysis shows that the map-and-shuffle phase is, as

in the A-100 case, bound by the speed of the mapper threads.

The average mapper idle time is less than 1%, although there

is significant variability between the speeds of the differ-

ent VMs. We observe a mean mapper completion time of

5

Configuration Map and Shuffle Mapper Idle SSD Write Bottleneck

No Sampling, 4 Mappers 430s 16% 798 MB/s SSD Writes

Sampling, 4 Mappers 438s 1% 778 MB/s Mappers

Sampling, 5 Mappers 433s 13% 793 MB/s SSD Writes

Table 3: Sorting results on the B-100 cluster.

432.8 seconds and a standard deviation of 10.9 seconds. The

fastest VM finishes mapping its data in about 412 seconds,

while the slowest requires 483 seconds. Writer threads re-

main idle approximately 12% of the time, indicating that

there is room for improvement if mapper performance can

be increased.

The sort-and-reduce phase is bound by the write speed

of the SSDs. VMs write to their SSDs at an average of

800.4 MB/s, with a standard deviation of 5.3 MB/s. The

fastest VM writes at 812 MB/s, while the slowest writes

at 785 MB/s. These measurements suggest that the sort-

and-reduce phase is running at the speed of the underlying

hardware, and cannot be improved.

Five Mappers We repeat the sort experiment with five

mapper threads in order to alleviate the bottleneck at the

mappers. This sort job completes in 976 seconds, with 47

seconds for sampling and framework overheads, 484 sec-

onds for map-and-shuffle, and 445 seconds for sort-and-

reduce.

The map-and-shuffle phase is still bound by the speed of

the mapper threads, which have an average idle time of less

than 1%. The average map completion time is 420.9 sec-

onds, with a standard deviation of 16.5 second, minimum

of 384 seconds and maximum of 468 seconds. We observe

that while this is slightly faster than the map time in the first

sort job, the average speed of each individual mapper thread

is about 19% slower, indicating that there is an underlying

resource contention issue, perhaps in the CPU, memory, or

cache.

This time in the sort-and-reduce phase we measure an av-

erage writer throughput of 785.6 MB/s, with a standard de-

viation of 6.8 MB/s, minimum of 769 MB/s, and maximum

of 804 MB/s. Log analysis shows that, although writes are

slower, writers are still the bottleneck.

It is unclear exactly why writes are slower compared to

the first sort operation. Examining logs from iostat shows

a slight difference in the average queue size and begin-to-end

I/O service time between the runs, which could account for

the approximately 2% difference in total write throughput.

The fact that writes are slower across the board for all

VMs suggests that this slowdown might have something to

do with the flash itself. While we do mount the ext4 filesys-

tem with the discard option, the various layers of virtual-

ization do not give us any guarantee as to what exactly is go-

ing on at the physical layer in the flash. Because intermedi-

ate and output files have to be erased and re-written between

runs, repeating the 100 TB sort can alter the performance

Time (s)

Four Mappers Five Mappers

Sampling 45 47

Map and Shuffle 497 484

Sort and Reduce 434 445

Total 976 976

Bottlenecks

Map and Shuffle Mappers Mappers

Sort and Reduce SSD Writes SSD Writes

Cost

VM Cost $2.052/hr $2.052/hr

Cluster Size 299 299

Master VM Cost $0.10/hr $0.10/hr

Total $166.32 $166.32

Table 4: Sorting results on the A-299 cluster.

properties of the underlying flash devices in unpredictable

ways.

We summarize the results of the A-299 sort operations

in Table 4. In particular, both configurations sort 100 TB in

about 976 seconds on 299 VMs, resulting in a total cost of

$166.32.

6.2 Cluster B-299

The B-299 cluster consists of 299 slave n1-standard-32

VMs and a master node, which is also n1-standard-32.

Again, we launch all VMs in the us-central1-f zone.

We run many different sorting configurations on the cluster,

although a large number are omitted for brevity.

6.2.1 B-299 Benchmarks

Again we run NetBench and DiskBench before beginning

our sort operations. NetBench, configured with a single TCP

connection per pair of hosts, reports an average network

bandwidth of 1237.19 MB/s, or 9.9 Gb/s, with a standard

deviation of 11.44 MB/s. DiskBench reports a read/write

storage bandwidth average of 811.01 MB/s, with a standard

deviation of 3.83 MB/s.

6.2.2 Sorting on B-299

Baseline We first measure the performance of the map-and-

shuffle phase of a 100 TB sort without sampling in order to

see if it is mapper-bound or SSD-bound. Map-and-shuffle

completes in 475 seconds and is mapper-bound on at least

some of the VMs. The average map completion time is

6

416.2 seconds with a standard deviation of 7.7 seconds,

minimum of 402 seconds, and maximum of 459 seconds.

From the logs, we find that mappers do not spend any

time waiting on upstream reader threads. While there is a

small amount of time spent waiting on downstream sender

threads, we note that the slower VMs spend very little map-

per time idle. This suggests that improving mapper perfor-

mance will increase overall cluster performance.

Core Offlining We next try turning a CPU core offline

to see if yielding a core to the hypervisor improves per-

formance. This configuration completes the map-and-shuffle

phase in about 520 seconds, which is substantially slower.

The mapper threads complete with an average time of

439.7 seconds and standard deviation of 31.8 seconds. The

fastest VM completes in 381 seconds and the slowest takes

505 seconds. Log analysis shows that mappers spend almost

no time idle, indicating that the system is mapper-bound on

all VMs, although there is now significant variability be-

tween VMs. Additionally, while some VMs now run faster,

the vast majority run far slower, indicating that core offlining

reduces the performance of sorting with Themis MapReduce

in this particular configuration.

Eight Mapper Threads The experiments on cluster B-

100 and A-299 suggest that increasing the number of mapper

threads can improve performance. While we did not observe

a significant performance boost increasing the number of

mappers from four to five, we did notice a dramatic shift

in cluster performance using eight mapper threads per VM.

Running the map-and-shuffle phase with eight mapper

threads requires 497 seconds, which is still slower than our

baseline measurement with four mapper threads. However,

this configuration exhibits very different mapper properties.

In particular, mappers now spend an average of 38% of their

runtime waiting on downstream stages. This suggests that

we are no longer mapper bound. Further log analysis sug-

gests that we may in fact be network-bound in this particular

configuration, although likely by the speed of our network

processing threads and not by the speed of the underlying

network, which is capable of roughly 10 Gb/s all-to-all as

measured by NetBench.

In fact, further investigation suggests we may not be

running an optimal configuration for a cluster of this size.

Mapper output buffers are configured to be 2 MiB in size,

and mappers are only allowed to get at most 1 GB ahead of

the sender threads, or equivalently 476 map output buffers.

Given that each VM is transferring data buffers to 299 VMs,

it may be the case that some connections do not have data

available when the sender threads need to send data.

Compounding this problem is the fact that each mapper

thread maintains a very large number of buffers that must

fill up before a network transfer can be performed, essen-

tially introducing unnecessary burstiness, which may further

reduce performance.

Better Map Output Memory Utilization To address

these issues, we keep the eight mapper threads, but reconfig-

ure Themis to use 256 KiB map output buffers, rather than

the 2 MiB buffers used above. In addition, we increase the

slack between the mapper threads and sender threads by al-

lowing mappers to get at most 3 GB ahead of senders, as

opposed to 1 GB. We make these changes with the inten-

tion of more evenly spreading the map output data across

the available network connections.

This particular configuration runs the map-and-shuffle

phase in 457 seconds, which is a marked improvement from

the previous attempts. We again find that mappers spend a

significant amount of time waiting for downstream sender

threads, but this time the total time taken to execute the map

is significantly shorter.

In fact, this configuration is storage-bound by the write

speed of the SSDs on at least some of the slower VMs. The

slowest VM takes 455 seconds to write all of its data, and

its writer is never idle, indicating that this VM is writing at

the maximum speed permitted by its SSDs under the given

workload. This particular VM writes at a speed of 747 MB/s,

or 374 MB/s per SSD, which is within about 5% of optimal.

The average VM’s writer threads spend about 3% of their

time idle, indicating that variance in the ability of each VM

to write this particular workload to its SSDs causes some

VMs to perform the task faster, and others slower. We note

that although our benchmarks report very little storage vari-

ance, the benchmark writes a much smaller amount of data

and has no interference from other application threads, such

as the shuffle component of Themis or the map and partition-

ing logic. Further analysis is needed to pin down which of

these factors causes Themis MapReduce to perform slightly

worse than the benchmark applications.

Putting it Together We now have enough information

to run the full 100 TB sort at near-optimal speeds. Before

running the full sort, we remove three VMs from the cluster

due to errors described in in Section 8.2. Therefore we run

the full 100 TB sort on 296 VMs, rather than on all 299 VMs.

The sort completes in 915 seconds, with 469 seconds for

the map-and-shuffle phase, 444 seconds for the sort-and-

reduce phase, and 2 seconds for framework overhead.

As before, we find that the slowest VMs are SSD-bound

by the writer threads in the map-and-shuffle phase, with the

slowest writing at a total speed of 740 MB/s, or 370 MB/s

per SSD.

The sort-and-reduce phase is also SSD-bound by the

writer threads for all VMs. Here too we find some variability

between VM write speeds, with the fastest VM finishing its

write workload in 421 seconds, and the slowest in 444 sec-

onds, which is about 386 MB/s per SSD.

The results of these evaluations are summarized in Ta-

bles 5 and 6. We are able to sort 100 TB of data at a total

cost of $154.78.

7

Configuration Map and Shuffle Bottleneck

Baseline 475s Mappers

Core Offline 520s Mappers

Eight Mappers 497s Network

Better Map Memory 457s SSD Writes

Table 5: Map-and-shuffle performance on the B-299 cluster.

100 TB Sort

Overhead 2s

Map and Shuffle 469s

Sort and Reduce 444s

Total 915s

Bottlenecks

Map and Shuffle SSD Writes

Sort and Reduce SSD Writes

Cost

VM Cost $2.052/hr

Cluster Size 296

Master VM Cost $1.60/hr

Total $154.78

Table 6: Sorting results on the B-299 cluster.

Figure 5: Performance of DiskBench and NetBench on a subset of

EC2 VMs. Figure reproduced from [5].

7. Comparison with Amazon EC2

We now discuss how our experiences on Google Compute

Engine compare to our experiences on Amazon Elastic Com-

pute Cloud, and analyze the cost and performance tradeoffs

of each service.

7.1 Cost and Performance of Sorting on EC2

In previous work, we performed a comprehensive analysis of

the storage and networking properties of VMs on Amazon

Elastic Compute Cloud (EC2) in order to determine time-

and cost-efficient configurations for sorting data on EC2 [5].

We now present some of the highlights of this work.

As part of the study, we run DiskBench and NetBench

on a variety of VMs on EC2. A subset of those results are

shown in Figure 5.

Observed Network Scalability
Ideal Network Scalability
Infinitely Fast Network

0

200

400

600

800

1000

1200

Observed Network Scalability
Ideal Network Scalability
Infinitely Fast Network

0

200

400

600

800

1000

1200

VM Configuration

C
o

s
t

($
)

i2
.8

x_
P

m
1.

x
i2
.8

x
i2
.x

r3
.8

x

hi
1.

4x

i2
.4

x
i2
.2

x

hs
1.

8x

cc
2.

8x

Figure 6: Predicted dollar cost of sorting 100 TB under various

network assumptions on EC2. Figure reproduced from [5].

Interestingly, we find that on EC2, most VMs have net-

works that are far slower than their storage devices, unlike

the GCE VMs measured in this report thus far. We also find

that the fastest VM, i2.8xlarge, has storage devices capa-

ble of read/write bandwidths in excess of 1700 MB/s, which

is more than twice as fast as the local SSDs on GCE. How-

ever, the network capabilities of this VM limit the maximum

throughput of the map-and-shuffle phase to the slower net-

work speed of almost 1100 MB/s.

Based on these observations, we predict the total dollar

cost of running a 100 TB sort on various EC2 VMs. We make

this prediction under a variety of network assumptions. We

first assume the network is not a bottleneck, meaning that

the performance, and therefore the cost, of the sort is lim-

ited only the available storage bandwidth (infinitely fast net-

work). Next, we update the prediction with NetBench mea-

surements made a small scale, and assume that the network

scales linearly, which is the ideal case. Finally, we update the

prediction again using NetBench measurements observed at

a much larger scale. These cost predictions are shown in Fig-

ure 6.

From the figure, we see that the predicted cost to sort

100 TB on EC2 VMs is under $400 for a handful of VMs,

and is just over $300 for the cheapest VM type. In fact, one

of the evaluations in the EC2 study [5], which was also our

Indy GraySort submission for 2014 [4], pegged the actual

cost of a 100 TB sort on i2.8xlarge at $299.45. This sort

completed in 888 seconds on 178 VMs.

7.2 Cost and Performance of Sorting on GCE

Prior to the evaluations in this report, we performed a similar

measurement of the storage and networking capabilities of

the VMs on Google Compute Engine [3]. While this study

was not as comprehensive as the study on EC2, we still

learned a great deal about the general performance and cost

properties of GCE.

In particular, many of the VMs on GCE have network-

ing bandwidths far greater than the available storage band-

8

Figure 7: Storage and network bandwidths on a subset of GCE

VMs. Figure reproduced from [3].

Figure 8: Predicted cost of a 100 TB sort on a subset of GCE VMs.

Figure reproduced from [3].

width of the local SSDs. Figure 7 shows the measured stor-

age and network bandwidths on a subset of the GCE VMs.

In all cases, local SSD read/write storage bandwidth is ap-

proximately 800 MB/s, but network speeds are far greater

and vary by VM type.

In the referenced study, we also run small-scale sort jobs

on each VM type, and predict the cost of a 100 TB using

data from 1) the benchmarks alone, and 2) the small-scale

1.2 TB sort operation on 10 VMs. These cost predictions are

shown in Figure 8.

In all cases, the predicted cost is less than $180. In par-

ticular, the n1-standard-32 VM evaluated in this report,

which is represented as “32 core medium” in the figure, has

a predicted 100 TB sort cost of $147.64 based on a small-

scale sort job, and $139.33 based on benchmarks alone.

In fact, in Section 6.2, we measure the actual cost of a

100 TB sort operation on n1-standard-32 to be $154.78,

which is $7.14, or 5%, more expensive than the predicted

cost based on the 1.2 TB sort job on 10 VMs.

EC2 GCE

VM Type i2.8xlarge n1-standard-32

Cluster Size 178 296

Sort Time 888s 915s

Sort Cost $299.45 $154.78

Table 7: Comparison of 100 TB Indy GraySort results on EC2 and

GCE.

7.3 Sorting 100 TB on EC2 vs. GCE

Table 7 shows a side-by-side comparison of our Indy

GraySort evaluation on both cloud services. We observe that

EC2 is slightly faster, and permits significantly smaller clus-

ter sizes, but that GCE is about half as expensive in terms of

total dollar cost.

8. Discussion

We now discuss some scalability concerns that cropped up in

the course of this work, and also some issues with the local

SSDs on GCE.

8.1 Scalability and Themis MapReduce

Modern large-scale data processing frameworks, such as

Hadoop [16], are well-suited to handling large cluster sizes.

Themis MapReduce was designed for smaller cluster sizes,

and the evaluations in this report stressed both the MapRe-

duce binary and the cluster infrastructure scripts in unpre-

dictable ways.

We first note that the all-to-all shuffle component of

Themis, which opens TCP connections to every node in the

cluster, experiences performance loss at the scale of a few

hundred VMs. Performance could potentially be improved

by implementing a more complicated shuffle that uses co-

ordination to reduce the number of concurrent TCP connec-

tions, but further evaluation is needed.

Next, we note that the Themis infrastructure is not well

suited for handling clusters of hundreds of nodes. Executing

operations and changing configurations of the entire cluster

requires minutes, so a more efficient coordination mecha-

nism is needed.

Finally, we observe significant performance loss access-

ing Google Cloud Storage at a large scale. Themis stores

configuration and log files locally on each VM, but the

infrastructure supports permanently saving these files on

cloud-based storage services. Uploading or downloading a

large number of large log files from these services can

take minutes. In particular, we observed the performance

of the gsutil rsync command on Google Cloud Stor-

age to be very slow on lower power VMs, such as the

n1-standard-2 master VM in some of our earlier evalu-

ations. For this reason, we switched to n1-standard-32 as

the master VM in the later evaluations.

9

8.2 Local SSD Errors

We encountered several errors with the local SSDs during

our evaluations and the work that preceded them. We now

briefly describe the issues we encountered and how we dealt

each.

4K Zero Blocks Initial evaluation of GCE revealed a

bug with the local SSDs where a particular write configu-

ration would cause 4 KiB blocks of data towards the end

of certain files to be written as all 0’s with high proba-

bility. The particular configuration that triggered this issue

was writing 4 MiB chunks of data with O DIRECT using the

libaio asynchronous I/O library to files pre-allocated with

fallocate() on the XFS files system.

An initial solution was disabling the fallocate() call,

which caused all data to be written properly. However, we

later found that switching from XFS to ext4 also solved the

issue, so we decided to use ext4 in the evaluations in this

report.

Capacity Errors When preparing for the 100 TB sort

evaluation, we noticed that the SSDs would sometimes re-

port device-out-of-capacity errors under our write workload

when the SSDs reached 60%-80% capacity. While the SSD

documentation suggests that some space needs to be set

aside as reserved, we felt that this much waste was unnec-

essary, and made large-scale evaluation difficult due to re-

source allocation issues and user quotas.

We found that switching from the XFS file system to ext4

resolved the issue, and permitted filling the devices up to

99% capacity without errors. However, DiskBench reports

lower read/write storage throughput on ext4 than on XFS

with an otherwise identical configuration. We found that

enabling fallocate() resolved this performance issue, and

did not cause the zero block issue described above to occur

on ext4.

Device I/O Errors While running the B-299 cluster we

encountered two VMs that returned a device I/O error when

reading intermediate files in the sort-and-reduce phase. We

also encountered a third VM that had its disks unmounted

during the course of the sort. These three faulty VMs were

removed from the cluster before running the final 100 TB

sort on B-299, which used the remaining 296 VMs.

9. Conclusion

Google Compute Engine provides a cheap and efficient way

to run large-scale I/O-intensive applications, such as sorting.

In this report, we evaluate several mid- and large-scale clus-

ters on GCE, and sort 100 TB of data in 915 seconds at a

cost of $154.78 on 296 VMs, which is 48% cheaper than our

previous experience sorting 100 TB on Amazon EC2.

We further show that, with significant application tuning,

it is possible to run the sort job in a way that is storage-bound

by the write speeds of local SSDs on GCE, meaning that we

are running at or near the maximum available speeds of the

underlying server hardware.

Acknowledgments

We wish to thank David Wetherall, Tony Voellm, Paul

Newson, Ivan Filho, Kirill Tropin, Dave Hiniker-Roosa,

Scott Trump, Tino Tereshko, Henry Robertson, Scott Van

Woudenberg, Sophia Yang, Al Hamel, Stanley Feng, and

Mohsin Imam from Google for their help in running the eval-

uations presented in this work.

This work was supported in part by UCSD’s Center

for Networked Systems, the AWS Educational Grant pro-

gram, National Science Foundation (CNS-1116079, CNS-

1314921), and a Google Focused Research Award.

References

[1] Amazon Web Services. http://aws.amazon.com/.

[2] Microsoft Azure. http://azure.microsoft.com/.

[3] M. Conley. Achieving efficient I/O with high-performance

data center technologies, 2015. ProQuest Dissertations and

Theses. Order no. 3712210.

[4] M. Conley, A. Vahdat, and G. Porter. TritonSort 2014.

http://sortbenchmark.org/TritonSort2014.pdf.

[5] M. Conley, A. Vahdat, and G. Porter. Achieving cost-efficient,

data-intensive computing in the cloud. In ACM SoCC, 2015.

[6] Google Cloud Platform. http://cloud.google.com/.

[7] T. Graves. GraySort and MinuteSort at Yahoo on Hadoop

0.23. http://sortbenchmark.org/Yahoo2013Sort.pdf.

[8] D. Jiang. Indy Gray Sort and Indy Minute Sort.

http://sortbenchmark.org/BaiduSort2014.pdf.

[9] A. Rasmussen, M. Conley, R. Kapoor, V. T. Lam, G. Porter,

and A. Vahdat. Themis: An I/O efficient MapReduce. In ACM

SoCC, 2012.

[10] A. Rasmussen, M. Conley, G. Porter, and A. Vahdat. Tri-

tonSort 2011. http://sortbenchmark.org/2011 06 tri

tonsort.pdf.

[11] A. Rasmussen, H. V. Madhyastha, R. N. Mysore, M. Conley,

A. Pucher, G. Porter, and A. Vahdat. TritonSort.

http://sortbenchmark.org/tritonsort 2010 May

15.pdf.

[12] A. Rasmussen, G. Porter, M. Conley, H. V. Madhyastha, R. N.

Mysore, A. Pucher, and A. Vahdat. TritonSort: A balanced

large-scale sorting system. In NSDI, 2011.

[13] Sort Benchmark. http://sortbenchmark.org/.

[14] SYSSTAT. http://sebastien.godard.pagesperso-ora

nge.fr/.

[15] vnStat - a network traffic monitor for Linux and BSD.

http://humdi.net/vnstat/.

[16] Apache Hadoop. http://hadoop.apache.org/.

10

