
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Reactors: A Deterministic Model of Concurrent Computation for Reactive Systems

Permalink
https://escholarship.org/uc/item/0fm2m3k1

Author
Lohstroh, Hendrik Marten Frank

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0fm2m3k1
https://escholarship.org
http://www.cdlib.org/

Reactors: A Deterministic Model of Concurrent Computation
for Reactive Systems

by

Hendrik Marten Frank Lohstroh

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Edward A. Lee, Chair
Professor Gul A. Agha

Professor Alberto L. Sangiovanni-Vincentelli
Professor Sanjit A. Seshia

Fall 2020

Reactors: A Deterministic Model of Concurrent Computation
for Reactive Systems

Copyright 2020
by

Hendrik Marten Frank Lohstroh

i

Abstract

Reactors: A Deterministic Model of Concurrent Computation
for Reactive Systems

by

Hendrik Marten Frank Lohstroh

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Edward A. Lee, Chair

Actors have become widespread in programming languages and programming frameworks
focused on parallel and distributed computing. While actors provide a more disciplined
model for concurrency than threads, their interactions, if not constrained, admit nondeter-
minism. As a consequence, actor programs may exhibit unintended behaviors and are less
amenable to rigorous testing. The same problem exists in other dominant concurrency mod-
els, such as threads, shared-memory models, publish-subscribe systems, and service-oriented
architectures.

We propose “reactors,” a new model of concurrent computation that combines synchronous-
reactive principles with a sophisticated model of time to enable determinism while preserving
much of the style and performance of actors. Reactors promote modularity and allow for dis-
tributed execution. The relationship that reactors establish between events across timelines
allows for:

1. the construction of programs that react predictably to unpredictable external events;

2. the formulation of deadlines that grant control over timing; and

3. the preservation of a deterministic distributed execution semantics under quantifiable
assumptions.

We bring the deterministic concurrency and time-based semantics of reactors to the
world of mainstream programming languages through Lingua Franca (LF), a polyglot
coordination language with support (so far) for C, C++, Python, and TypeScript. In LF,
program logic is given in one or more of those target languages, enabling developers to use
familiar languages and integrate extensive libraries and legacy code.

The main contributions of this work consist of a formalization of reactors, the imple-
mentation of an efficient runtime system for the execution of reactors, and the design and
implementation of LF.

i

To Rusi and Luka.

ii

Contents

Contents ii

List of Algorithms iii

List of Figures v

List of Code Listings vii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 4
1.3 Contributions . 11
1.4 Related Work . 12
1.5 Outline . 17

2 Reactors 18
2.1 Ports, Hierarchy, and Actions . 19
2.2 State Variables . 20
2.3 Connections . 20
2.4 Example: Drive-by-wire System . 21
2.5 Formalization . 23
2.6 Dependency Analysis . 40
2.7 Execution Algorithm . 44
2.8 Implementations . 50

3 Lingua Franca 54
3.1 Overview . 54
3.2 Target Declaration . 59
3.3 Import Statement . 60
3.4 Preamble Block . 60
3.5 Reactor Definition . 61

iii

3.6 Reaction Definition . 73
3.7 Banks and Multiports . 74
3.8 Semantics . 78

4 Concurrency and Timing 83
4.1 Physical Actions in Reactive Systems . 84
4.2 Runtime Scheduling and Real-Time Constraints 88
4.3 Exposing More Parallelism . 91
4.4 Further Optimizations . 94
4.5 Subroutines . 97
4.6 Performance Benchmarks . 100

5 Federated Execution 106
5.1 Reasoning About Time . 107
5.2 Decentralized Coordination . 110
5.3 Centralized Coordination . 114
5.4 Support for Federated Programs in LF . 114
5.5 Conclusion . 119

6 Conclusion 121
6.1 Further Work . 121
6.2 Applications . 126
6.3 Final Remarks . 127

Bibliography 128

A Summary of the Reactor Model 147

Index 149

iv

List of Algorithms

1 Set a value on port p and trigger reactions 33
2 Schedule an action a. 34
3 Request execution to come to a halt . 36
4 Create a reactor instance given a reactor class and a container instance . . . 37
5 Start the execution of a reactor . 37
6 Delete a given reactor . 38
7 Connect port p to downstream port p′ . 38
8 Disconnect p from downstream port p′ . 40
9 Return the reaction graph of reactor r . 41
10 Report the dependencies between all ports in reactor r 43
11 Execute top-level reactor r . 45
12 Execute triggered reactions until QR is empty 46
13 Detach and remove defunct reactors from reactor r 48
14 Stop the execution of reactor r . 48
15 Process the next event(s) for a top-level reactor r 49
16 Recursively reset the values of all ports and actions of reactor r to absent . . 49
17 Assign levels to all reactions in a top-level reactor r 89
18 Propagate deadlines between reactions in top-level reactor r 91
19 Assign chain identifiers to reactions in a top-level reactor r 95

v

List of Figures

2.1 A reactor implementation of the introductory example. Reactor X has a startup
reaction that produces an event on output ports dbl and inc. The second reaction
of Y, triggered by input port inc, cannot execute 1) before Relay has reacted; and
2) until after the first reaction of Y has executed in case it was triggered by an
event on dbl. 19

2.2 A reactor that implements a simplified power train control module. 22
2.3 A reactor implementation of a simple “rock, paper, scissors” game. 44
2.4 A causality loop due to reaction priority. 44
2.5 A filtered version of diagram in Figure 2.4. 45

3.1 A flow chart describing the Lingua Franca compiler toolchain. 56
3.2 Graphical rendering of the “Hello World” program in Figure 3.7. 64
3.3 Timers are syntactic sugar for periodically recurring logical actions. 70
3.4 Constructing a strictly contracting function GN that models an LF program. . . 82

4.1 Diagram generated from the LF code in Listing 4.1. 84
4.2 A deadline defines the maximum delay between the logical time of an event and

the physical time of the start of a reaction that it triggers. 86
4.3 A diagram of an LF program realizing a typical scatter/gather pattern. 90
4.4 A diagram of a pipeline pattern in LF; each stage executes in parallel. 90
4.5 An example reaction graph with assigned levels and IDs. 93
4.6 The reactor equivalent of a subroutine. 97
4.7 An alternative implementation of Figure 4.6 using a caller and callee port. . . . 98
4.8 Reaction graphs explaining the dependencies in subroutine-like interactions. . . 99
4.9 A reactor implementation of the Savina PingPong benchmark. 101
4.10 PingPong: a comparison between Akka actors and reactors. 102
4.11 A reactor implementation of the Savina Philosophers benchmark. 103
4.12 A reactor implementation of the Savina Trapezoid benchmark. 103
4.13 Trapezoid: reduced execution time with a larger number of worker threads. . . . 104
4.14 Trapezoid: a comparison between Akka actors and reactors. 105

5.1 A federated reactor that controls an aircraft door. Each reactor runs on a different
host. 106

vi

5.2 Different observers may see events in a different order. An additional logical
timeline allows to establish a global ordering. After a certain safe-to-process
(STP) threshold, Door received all relevant messages and can use the logical
timeline to determine that disarm should be processed before open. 109

5.3 Webserver that receives updates, stores them in a local database, and forwards
them to are remote database. 111

5.4 Webserver that receives queries, forwards them to a local database, and serves a
reply. 112

5.5 A federated LF program with decentralized coordination for a reservation system. 115

vii

List of Code Listings

1.1 Actor network that is deterministic under reasonable assumptions 4
1.2 Modifications of the code in Listing 1.1 yielding a nondeterministic program 5
1.3 A nondeterministic actor network in the syntax of Ray 6
1.4 Modifications of the program in Listing 1.3 to make it deterministic 6
1.5 Variant of X in Listing 1.2 to encode design intent using blocking reads . . . 10
1.6 Modification of actor Relay in Listing 1.2 to filter messages 10
3.1 Using comments . 57
3.2 Using LF lists . 58
3.3 Declaring a static type initializer in verbatim C 58
3.4 Example target statement with target properties 60
3.5 Example import statement . 60
3.6 Using a preamble . 61
3.7 Example of instantiation and parameter overriding 63
3.8 Subclassing a reactor . 65
3.9 SubclassesAndStartup . 65
3.10 Using a timer . 69
3.11 Using logical actions instead of a timer . 69
3.12 Using a state variable . 70
3.13 Printing a timed sequence through a logical connection 72
3.14 TimedSequence with logical connection . 72
3.15 TimedSequence with physical connection . 73
3.16 Using a deadline . 74
3.17 Reactors with multiports . 76
3.18 Connecting multiports . 76
3.19 A multicast connection . 77
3.20 Connecting banks of reactors . 77
3.21 Connecting a multiport to a bank . 78
3.22 Stuttering Zeno behavior exhibited if input disproves Collatz conjecture . . . 80
4.1 Reflex game written in LF . 85

viii

4.2 Bounded end-to-end delay between a sensor and an actuator 87
5.1 Minimal example of a federated LF program under centralized coordination . 116

ix

List of Tables

2.1 A formal model of events. 25
2.2 A formal model of reactors. 27
2.3 A formal model of ports. 28
2.4 A formal model of actions. 30
2.5 A formal model of reactions. 31

x

Acknowledgments

This work was financially supported in part by the National Science Foundation (NSF)
awards #1836601 (Reconciling Safety with the Internet) and #1446619 (Mathematical The-
ory of CPS), and the iCyPhy (Industrial Cyber-Physical Systems) research center supported
by Avast, Camozzi Industries, DENSO International America, Inc., Ford, Siemens, and
Toyota. It was also partly funded by the TerraSwarm Research Center, one of six centers
administered by the STARnet phase of the Focus Center Research Program (FCRP) a Semi-
conductor Research Corporation program sponsored by MARCO and DARPA.

On the personal front, I owe much gratitude to my advisor, Edward A. Lee, who has been
a tremendous source of inspiration and has given me freedom, opportunity, and invaluable
mentorship. Collaborating with him on the design and implementation of Lingua Franca
(LF) has been a true joy. I am humbled by his generosity, and in awe of his work ethic and
the depth of his curiosity and skill. I could not have wished for a better advisor and I am
honored to graduate as his student.

I would also like to thank Gul Agha, Alberto Sangiovanni-Vincentelli, and Sanjit Seshia.
It is a great honor to have them on my dissertation committee. The work in this thesis is
based to a significant degree on Gul Agha’s work on actors. Alberto and Sanjit also influenced
me profoundly with their ideas, and I have always felt encouraged by them throughout
my years at Berkeley. Alberto’s critical questions have been particularly helpful, and his
suggestion to venture away from the well-trodden path of the actor abstract semantics has
proved to be crucial in the development of reactors.

I thank Carl Hewitt, who originated the actor model of concurrent computation, for
showing interest in my work and being supportive despite our differing perspectives on the
role of determinism in concurrent systems.

The sustained work of Soroush Bateni, Hannes Klein, Shaokai Lin, Christian Menard,
Alexander Schulz-Rosengarten, and Matthew Weber has been instrumental in the devel-
opment of the LF language, runtime, and compiler toolchain. I thank Jeronimo Castrillon,
Cong Liu, and Reinhard von Hanxleden for allowing and encouraging their students to devote
their time to this project.

I am thankful to all my co-authors, and would like to give credit Andrés Goens for his
very early involvement in the conception of reactors, and Íñigo Íncer Romeo for the sub-
stantial role he played in the formalization of reactors. The many conversations I have had
with Yvan Vivid (formerly known as Chris Shaver) about models of computation have also
helped set the stage for reactors. Christopher Gill, Martin Schoeberl, and Marjan Sirjani
were part of key conversations that helped shape reactors. Related ideas expressed in the
work on hybrid co-simulation that I collaborated on with David Broman, Fabio Cremona,
Stavros Tripakis, and others, have also influenced this work. Ben Zhang helped me with the
precursor of reactor-ts (when was still written in Flow). I thank Patricia Derler for helping
me understand Ptides. Edward Wang has been assisting a work in progress to get reactors
running on FlexPRET. Others with whom I have had insightful conversations about reactors

xi

are: Ravi Akella, Baihong Jin, Matthew Milano, Mitar Milutinovic, and Mehrdad Niknami.

Shirley Salanio and Jean Nguyen were always helpful and graciously guided me through
the bureaucracy of the EECS department. Christopher Brooks saved my bacon on multiple
occasions and always looked out for me—he even pleaded me out of a citation for a traf-
fic violation one day. I could always turn to Mary Stewart for assistance in logistical and
hardware-related matters. Among the Berkeley faculty that I owe thanks to for their roles
of support are: Edmund Campion, Paul Hilfinger, Chris Hoofnagle, Koushik Sen, and David
Wagner.

The students, visitors, and faculty in the DOP Center, and the many wonderful people
within EECS, but also in other departments, that I had the pleasure of interacting with,
made my time as a grad student all the more interesting. The many conversations with
Babak Ayazifar, Kris Pister, and other frequenters of the DOP kitchen, often brightened
up my day. Even the late-night meetings I attended as a delegate of the Graduate Assem-
bly I will miss. I will always be grateful for the friendships that I owe to Berkeley. I look
back on many good times shared with Ilge Akkaya, Sebastian Conrady, Tommaso Dreossi,
Roel Dobbe, Shromona Ghosh, Hokeun Kim, Stephen Moros, Adam Orford, Dax Ovid,
and Alberto Tempia Bonda; as well as Machiel Blok, Florian Feuser, Kosuke Hata, Anto-
nio Iannopollo, Gil Lederman, Hung Ngo, Stefan Pabst, Aviad Rubinstein, and their families.

As I wrote this thesis during the COVID-19 pandemic (and campus buildings were closed),
I ended up doing most of the work in unusual places. One of them was Tilden Regional Park;
another was “the shed” in the Bancroft Community Garden. Eventually I settled in The
Office, a friendly co-working space in downtown Berkeley that remained accessible and gave
me the peace and quiet I so desperately needed to complete this work.

I thank my parents, Jan and Yolanda Lohstroh, for providing help during challenging
times and being supportive of my endeavors, no matter how far away they took me. My
uncle, Frank Kooistra, deserves credit for having sparked my interest in computer science
at an early age, which he did by putting books and hardware in my hands and telling me
to RTFM. I also want to thank Tjitske Lohstroh, Eric Savelberg, Shamangi Kooistra, and
Marten Kooistra, for their support and encouragement. I thank my dear friend Oscar de
Boer, who stayed close in spite of being half a world away.

Lastly, and above all, I thank my wife Rusi Mchedlishvili, and my son Luka Marten
Lohstroh. I could not have done this work without their love, their patience, and their
unwavering support. I dedicate this work to them.

The purpose of abstraction is not to be vague,
but to create a new semantic level in which one
can be absolutely precise.

Edsger W. Dijkstra

Chapter 1

Introduction

This chapter draws from and expands on previously published work titled “Deterministic
Actors” [142] that was co-authored with Edward A. Lee.

1.1 Motivation

While Alan Turing’s “computing machines” [210] remain the bedrock of modern-day comput-
ing, many of the tasks performed by computers today are not to compute in the Church-
Turing sense i.e., to produce a final result given some input. Rather, their purpose is to
maintain an ongoing interaction with their environment. This is the case for embedded soft-
ware that runs in electronics like modems and television sets, but also for operating systems
that run servers, personal computers, and mobile devices, as well as for control software used
in avionics, aerospace, and automotive applications. This broad class of so-called reactive
systems [154] encompasses a substantial and growing portion of the computing systems we
surround ourselves with.

There are two important aspects of reactive systems that not a part of Turing’s model:

1. Concurrency; and

2. Time.

The work in this thesis incorporates these aspects as first-class concepts in “reactors,” a
deterministic model of concurrent computation for reactive systems. Before examining this
new model, we explore how nondeterminism arises in a strongly related model of concurrent
computation called actors. We also survey existing approaches to curbing nondeterminism
in actor systems, some of which has served as foundations for reactors.

Concurrency

Concurrency has been a central theme in computing ever since the development of operating
systems and computer networks that started in the early 1950s. Major work was done

1

CHAPTER 1. INTRODUCTION 2

in the late 70s by Hoare with his “communicating sequential processes” (CSP) [96] and
in the early 80s by Milner with his “calculus of communicating systems” (CCS) [164] and
Bergstra and Klop with their “algebra of communicating processes” (ACP) [22]. A later
incarnation of CCS (also developed by Milner) called the π-calculus [165] adds expressivity
by allowing configuration changes in the network between concurrent computations. Several
variants of the π-calculus have been developed over the following decades, such as the ambient
calculus [40] and join-calculus [72]. The focus of these process calculi and algebras is to enable
formal reasoning about equivalences between processes (e.g., using bisimulation). What all of
these models have in common is that they interpret concurrency as a matter of interleaving.
That is, a situation where processes take turns.

The idea of “taking turns,” however, presupposes some kind of arbitrator or centralized
controller, and in systems that are composed of a mixture of computational and physical
processes, an interleaving semantics fails to accurately describe the dynamics. After all,
physical processes cannot be paused and may not be atomic. It is for this reason that in
the field that studies cyber-physical systems (CPS) [125] an alternative approach to
modeling concurrency, in which behavior is not necessarily reducible to an interleaving of
processes, is often favored. This kind of model is also referred to as real concurrency [154]
or true concurrency [184]. The actor model, introduced by Hewitt, Bishop, and Steiger [95]
in the early 70s features real concurrency. Actors were given an operational semantics by
Greif [84], a denotational semantics by Clinger [48], and a transition semantics by Agha [1].

Loosely, actors are concurrent objects that communicate by sending each other messages.
Under this loose definition, an enormous number of actor programming languages and models
have been developed, although many are called by other names, including dataflow, process
networks, synchronous-reactive languages, and discrete-event systems, all of which we discuss
in more detail in Section 1.2. A narrower definition, originally developed by Hewitt and his
doctoral students [94, 2], appears in several popular software frameworks such as Scala
actors [87], Akka [185], CAF [45] and Ray [168], and programming languages, like Erlang [9]
and P [59]. Unlike various related dataflow models, the Hewitt actor model, as it is known,
is nondeterministic, meaning that given an initial state and a set of inputs, a program can
exhibit more than one behavior.

Actors are not alone in this. Most common software engineering approaches for express-
ing concurrent programs, including actors, but also threads [128], reactive programming [14],
publish-subscribe systems [160], and even single-threaded event loops [6], make it very dif-
ficult construct deterministic programs. This is in stark contract with Turing model’s of
sequential computation, in which all programs are deterministic. But without a determinis-
tic execution semantics, concurrent software tends to become intractable to rigorously test,
let alone formally verify. We argue, therefore, that loss of determinism is a significant price
to pay.

Actors have much in common with objects—a paradigm focused on reducing code repli-
cation and increasing modularity via data encapsulation—but unlike objects, actors provide
a better model for concurrency than threads [128], the default model for objects. Indeed,
each actor is presumed to operate concurrently alongside other actors with which it may

CHAPTER 1. INTRODUCTION 3

exchange messages. Objects, in contrast, are often designed assuming a single thread of con-
trol, and retrofitting them to be “thread safe” is challenging and error prone. The inherent
concurrency of actors makes them ideal for programming reactive systems. However, the lack
of any guarantees with respect to the ordering of messages and the absence of a notion of
time make this model less useful for specifying systems in which repeatable behavior and/or
timely execution are important.

Extra machinery can be introduced for the formal specification and analysis of systems
composed of Hewitt actors. For instance, Real-time Maude [173], a timed rewriting logic
framework and temporal model checking tool, has been applied to actors [61]. Similarly,
the modeling language Rebeca performs analysis that uses a model checker to ensure that
nondeterminism allowed in the model does not lead to behaviors that violate timing require-
ments [106]. Alternatively, constraints can be placed on actors’ allowable behaviors so that
they adhere to a stricter rule set, satisfying desirable properties (e.g., deadlock freedom,
schedulability, bounded memory usage, and deterministic execution) by construction.

Time

Ren and Agha [183] have proposed giving actors a temporal semantics. As in our work, they
assume a sufficiently well synchronized common physical time base shared by all actors, and
they express timing requirements as constraints on message handling. Their work differs
from ours, however, in that they build off a standard actor language, thereby inheriting its
nondeterministic ordering of message handling, and they rely on separately imposing timing
constraints to control the order when needed. In contrast, we use logical timestamps to
define the order of message handling and ensure determinism.

Dataflow models are also closely related to the actor model. The (untimed) dataflow
model has also been extended with formal contracts [215] that allow guarantees, e.g., for
scheduling. There are timed models of dataflow [199], and even some structured approaches
to use timing semantics in dataflow to execute time-critical applications in cyber-physical
systems [80]. Fredlund et al. proposed timed extension of McErlang as a model checker
of timed Erlang programs [62]. In this extension, a new API is introduced to provide the
definition and manipulation of timestamps.

Even though many software applications are not particularly time sensitive, a semantic
notion of time and the use of measurements of the passing of physical time can be powerful
tools for achieving consistency in distributed systems [117, 223, 124]. Google’s Cloud Span-
ner [50], for example, uses timestamps derived from physical clocks to define the behavior
of a distributed database system; Spanner provides an existence proof that this technique
works at scale. Moreover, logical time, as used in synchronous languages [20], for example,
can provide a foundation for a deterministic semantics in concurrent programs.

CHAPTER 1. INTRODUCTION 4

Listing 1.1: Actor network that is deterministic under reasonable assumptions

1 actor X {

2 count = 1;

3 handler dbl(){

4 count *= 2;

5 }

6 handler inc(arg){

7 count += arg;

8 print count;

9 }

10 }

11 actor Y {

12 handler main {

13 x = new X();

14 x.dbl();

15 x.inc(1);

16 }

17 }

1.2 Background

Let us examine the problem of nondeterminism in the actor model and what can be done
about it. We begin by illustrating the concern with a simple example, given in Listing 1.1.
It uses a pseudo-code syntax that is a mashup of several of the concrete languages mentioned
above. This code defines an actor class X that has a single integer state variable count that
is initialized to 1. It has two message handlers, named dbl() and inc(). When invoked,
these handlers will double and increment count, respectively.

The actor named Y with handler main creates an instance of X and sends it two messages,
dbl and inc. Note that although many actor languages make these look like remote proce-
dure calls, presumably because such syntax is familiar to programmers, they are not remote
procedure calls. Lines 14 and 15 send messages and return immediately. The semantics of
actors is “send and forget,” a key feature that enables parallel and distributed execution.

The program in Listing 1.1 is deterministic under mild assumptions about message deliv-
ery and processing. First, we need to assume that messages are delivered reliably in the same
order that they are sent. Since dbl is sent before inc, actor x will execute handler dbl()

before handler inc(). Second, we need to assume that handlers are mutually exclusive.1

That is, once a handler begins executing, it executes to completion before any other handler
in the same actor begins executing. This assumption prevents a race condition between
Lines 4 and 7. Thus, in this program, Line 4 will execute before Line 7 and the printed
output will be 3.

1This assumption can be relaxed by statically analyzing the code of the handlers and enforcing mutual
exclusion only between handlers that share state variables.

CHAPTER 1. INTRODUCTION 5

Listing 1.2: Modifications of the code in Listing 1.1 yielding a nondeterministic program

1 actor Y {

2 handler main {

3 x = new X();

4 z = new Relay ();

5 z.rly(x);

6 x.inc(1);

7 }

8 }

9 actor Relay {

10 handler rly (x){

11 x.dbl();

12 }

13 }

Consider now the seemingly minor elaboration shown in Listing 1.2. This program in-
troduces a third actor class, Relay, which has a single handler rly that simply relays a
message, in this case dbl, to the actor x passed to it. This is about as close as one can get
to a “no op” in an actor-oriented program. It is an actor that, when it receives a message,
simply passes the message on. However, this innocent change has profound consequences.
The execution is no longer deterministic under any reasonable assumptions about message
delivery. The printed value could be either 2 or 3, depending on whether dbl() or inc() is
invoked first. (The final value of count will be 3 or 4.)

A similar example written in the concrete syntax of Ray [168] is shown in Listing 1.3.
Ray extends the metaphor of remote procedure calls by integrating futures [16] into the
language. In Ray, message handlers can return values. The semantics is still “send and
forget,” so when a message is sent, a “future” is returned. A future is a placeholder data
structure for the returned result. Execution can continue until returned result is actually
needed, at which point the sender of the message can call ray.get() on the future. The
call to ray.get() blocks until the result is actually received. Nevertheless, the program in
Listing 1.3 remains nondeterministic; it is capable of producing either 5 or 6 as a result. You
can easily verify this by inserting sleep() statements from Python’s time module to alter
the timing of the execution.

The blocking behavior of ray.get() provides a mechanism, one not available in any other
actor language that we know of, for controlling the execution of a network of actors. This
mechanism could be used, for example, to make the program in Listing 1.3 deterministic.
The test function could be replaced with the code in Listing 1.4. This code forces the
main actor to block until the result of the invocation of dbl() is received before sending the
inc message. This solution, however, requires a very savvy programmer and largely defeats
the purpose of the futures. We doubt that many Ray programs will be written with such
controls.

CHAPTER 1. INTRODUCTION 6

Listing 1.3: A nondeterministic actor network in the syntax of Ray

1 import ray

2 @ray.remote

3 class X():

4 def __init__(self):

5 self.count = 1

6 def dbl(self):

7 self.count *= 2

8 return self.count

9 def inc(self , arg):

10 self.count += arg

11 return self.count

12 @ray.remote

13 class Relay ():

14 def rly(self , x):

15 return ray.get(x.dbl.remote ())

16

17 def test():

18 x = X.remote ()

19 r = Relay.remote ()

20 f1 = r.rly.remote(x)

21 f2 = x.inc.remote (1)

22 return ray.get(f1) + ray.get(f2)

23

24 ray.init()

25 result = test()

26 print(result)

Listing 1.4: Modifications of the program in Listing 1.3 to make it deterministic

1 def test():

2 x = X.remote ()

3 r = Relay.remote ()

4 f1 = r.rly.remote(x)

5 part = ray.get(f1)

6 f2 = x.inc.remote (1)

7 return part + ray.get(f2)

CHAPTER 1. INTRODUCTION 7

This type of nondeterminism is endemic to the Hewitt actor model. Moreover, without
the blocking futures of Ray, it is difficult to change the program in Listing 1.2 to consistently
print 3. One way would be to modify class X so that it always invokes dbl() before inc(),
but this is a much more restrictive actor that may as well have only one message handler that
doubles the state and then increments it. Alternatively, we could set up another message
handler in X that tells it which handler to invoke first, but we would have to ensure that
messages to that handler are invoked before any other. Moreover, the semantics now becomes
complex. Should a message telling X to invoke dbl() first apply only to the next dbl message
or to all subsequent ones? What if two dbl messages arrive with no intervening inc message?

Since such a simple program results in unfixable nondeterminism, we can only conclude
that the Hewitt actor model should be used only in applications where determinism is not
required. While there are many such applications, even for those, we pay a price. The code
becomes much more difficult to test. Standard testing techniques are based on presenting
input test vectors and checking the behavior of the program against results known to be
good; in the face of nondeterminism, the entire set of known-good results may be difficult
to determine and too vast to enumerate.

To underscore the challenges that nondeterministic software poses to testability, we cite
Toyota’s unintended acceleration case. In the early 2000s, there were a number of serious
car accidents involving Toyota vehicles that appeared to suffer from unintended accelera-
tion. The US Department of Transportation contracted NASA to study Toyota software
to determine whether software was capable of causing unintended acceleration. The NASA
study [171] was unable to find a “smoking gun,” but they concluded that the software was
“untestable” and that it was impossible to rule out the possibility of unintended accelera-
tion [111]. The software used a style of design that tolerates a seemingly innocuous form
of nondeterminism. Specifically, many state variables, representing for example the most
recent readings from a sensor, were accessed unguarded by a multiplicity of threads. We
suspect that this style of design seemed reasonable to the software engineers because one
should always use the “most recent” value of a sensor. But the software becomes untestable
because, given any fixed set of inputs, the number of possible behaviors is vast.

Not all concurrent software is used in such safety-critical scenarios, of course, but all
software benefits from testability. The Toyota software did not use Hewitt actors, but many
Hewitt actor programs share a similar form of nondeterminism. Messages are handled in
order of arrival, so the state of an actor represents the effects of the “most recent” messages.

There exists a large body of prior work that can be framed as extensions of the Hewitt
actor model that yield a deterministic model of computation using any of various techniques,
some of which have a long history. These include various dataflow dialects, process networks,
synchronous-reactive models, and discrete-event models. We will explore these next.

CHAPTER 1. INTRODUCTION 8

Achieving Determinism

A system is deterministic2 if, given an initial state and a set of inputs, it has exactly one
possible behavior. For this definition to be useful, we have to define “state,” “inputs,” and
“behavior.” For example, if we include in our notion of “behavior” the timing of actions,
then no computer program in any modern programming language is deterministic. In our
discussion above, the actor programs have no inputs, the initial state is count = 1 in an
instance of actor X, and the “behavior” is the result printed. Timing is not part of the model
and therefore irrelevant to the definition of determinism.

Determinism is a property of a model, not a property of a physical realization of a
system [134]. A Turing machine, for example, provides a deterministic model of computation
that does not include timing. The “input” is a sequence of bits, and the “behavior” consists of
sequential transformations of that sequence. Any particular physical realization of a Turing
machine will have properties that are absent from Turing’s model, such as timing, but we
could construct a different model that did consider timing part of the “behavior.” Such a
model would be nondeterministic. Newtonian mechanics, to give another example, provides a
deterministic model of mechanical systems. The initial state of a system is the positions of its
parts, the “inputs” are forces, and the “behavior” is motion in a three-dimensional space over
a time continuum. Quantum mechanics, on the other hand, cannot predict the exact location
of a particle in space, only the probability of finding it at different locations [30]. Thus, if
“behavior” is motion (change of position over time), then the quantum mechanical model of
the system is not deterministic. The same physical system, therefore, is deterministic or not
depending on the model.

Determinism for Software

Whether a software system is deterministic, depends on our model of the software. A simple
model of a program defines initial state as the starting values of all variables, the inputs as
a static bit sequence (a binary number) available all at once at the start of execution, and
the output as a bit sequence produced all at once upon termination of the program. This is
the classic Church-Turing view of computation.

This classic model, however, has difficulty with many practical software systems. A web
server, for example, does not have inputs that can be defined as a binary number available
all at once at the start of execution. Nor does it terminate and produce a final output. An
alternative model for a web server defines its inputs as a (potentially unbounded) sequence
of binary numbers, and the “behavior” as sequence of binary numbers produced as outputs.
In this model, whether the web server is deterministic may be an important question.

2Following Milner [166], some use the term determinacy to refer strictly to input/output relations that
are functions in the mathematical sense of the word, and determinism to include some notion of behavior
(such as a particular sequence to computational steps taken to yield a certain result). We use these terms
interchangeably.

CHAPTER 1. INTRODUCTION 9

In a concurrent or distributed software system, however, defining the inputs as a sequence
of binary numbers may be problematic. A distributed database, like Google Spanner [50], for
example, accepts inputs at a globally distributed collection of data centers. It is impossible
to tell whether a query arriving in Dallas arrives before or after a query arriving Seattle.3 In
Google Spanner, however, when a query comes in to a data center, it is assigned a numerical
timestamp. The “inputs” to the global database are defined as an unbounded collection of
timestamped queries, and the “behavior” is the set of responses to those queries. Under
this model, Spanner is deterministic. We emphasize that this is not an assertion about any
physical realization of Spanner, which could exhibit behaviors that deviate from the model
(if, for example, hardware failures undermine the assumptions of the model). It is the model
that is deterministic, not the physical realization.

Consider again the actor programs in Listing 1.2 and 1.3. If we wish for these programs
to be deterministic, we have to somehow constrain the order in which message handlers are
invoked. We have an intuitive expectation that dbl() should be invoked before inc(), but
that is not what the programs say. The programs, as written and as interpreted by modern
actor frameworks, do not specify the order in which these handlers should be invoked. Thus,
it will not be sufficient to simply improve the implementation of the actor framework. We
have to also change the model.

Coordination for Determinism

Let us focus on the actor network sketched in Listing 1.2. Since actor Y first sends a message
that has the eventual effect of doubling count of actor X and then sends a second message to
increment count of X, let us assume that it is the design intent that the doubling occur before
the incrementing. Any technique that ensures this ordering across concurrently executing
actors will require some coordination. There are many ways to accomplish this, many of
which date back several decades. Here, we will outline a few of them.

In 1974, Gilles Kahn showed that networks of asynchronously executing processes could
achieve deterministic computation and provided a mathematical model for such processes
(Scott-continuous functions over sequence domains) [103]. In 1977, Kahn and MacQueen
showed that a very simple execution policy using blocking reads guarantees such determi-
nacy [104]. Using the Kahn-MacQueen principle, actor X in Listing 1.2 could be replaced
with X KPN (for Kahn Process Network), shown in Listing 1.5. Instead of separate message
handlers, a process in a KPN is a single threaded program that performs blocking reads on
inputs. The await calls in Listing 1.5 perform such blocking reads. That code ensures that
doubling count will occur before incrementing it even if actor Y sends its output messages
in opposite order.

This way of encoding the design intent, however, has some disadvantages. Suppose that
the Relay actor, instead of just relaying messages, filters them according to some condition,

3Fundamentally, it is not only difficult to decide which query arrives first, it is impossible to even define
what this means. Under the theory of relativity, the ordering of geographically separated events depends on
the observer.

CHAPTER 1. INTRODUCTION 10

Listing 1.5: Variant of X in Listing 1.2 to encode design intent using blocking reads

1 actor X_KPN {

2 handler main {

3 count = 1;

4 await(dbl);

5 count *= 2;

6 arg = await(inc);

7 count += arg;

8 print count;

9 }

10 }

Listing 1.6: Modification of actor Relay in Listing 1.2 to filter messages

1 actor Relay {

2 handler rly (X x) {

3 if (some condition) { x.dbl(); }

4 }

5 }

as shown in Listing 1.6. Now the X KPN will permanently block awaiting a dbl message. The
filtering logic would have to repeated in the X KPN actor, which would have to surround the
blocking read of dbl with a conditional. Moreover, the condition would have to be available
now to X KPN, making the Relay actor rather superfluous. Indeed, our experience building
KPN models is that conditionals tend to have to be replicated throughout a network of
connected actors, thereby compromising the modularity of the design.

Another family of techniques that are used to coordinate concurrent executions for deter-
minism fall under the heading of dataflow and also date back to the 1970s [57, 170]. Modern
versions use carefully crafted notions of “firing rules” [129], which specify preconditions for
an actor to react to inputs. Actors can dynamically switch between firing rules governed
by some conditions, but once again the conditions need to be shared across components to
maintain coordination. One particularly elegant mechanism for governing such sharing is
scenario-aware dataflow, where a state machine governs the coordinated switching between
firing rules [205]. Although dataflow models are generally untimed, there have been some
efforts to augment them with limited temporal semantics [80]. Kahn process networks and
most dataflow models lack the notion of a message handler, something that appears in most
modern realizations of Hewitt actors. Although message handlers are merely a convenience,
for complex actors, they significantly simplify the design.

Another family of coordination techniques that can deliver deterministic execution uses
the synchronous-reactive (SR) principle [20]. Under this principle, actors (conceptually)
react simultaneously and instantaneously at each tick of a global (conceptual) clock. Like
Kahn networks, the underlying semantics is based on fixed points of monotonic functions on

CHAPTER 1. INTRODUCTION 11

a complete partial order [66] and determinism is assured. Unlike Kahn networks, however,
the global clock provides a form of temporal semantics. This proves valuable when designing
systems where time is important to the behavior of the system, as is the case with many
cyber-physical systems. Some generalizations include multiclock versions [24]. Many projects
have demonstrated that despite the semantic model of simultaneous and instantaneous exe-
cution, it is possible to implement such models in parallel and on distributed machines using
strategies generally called physically asynchronous, logically synchronous (PALS) [195].

A fourth alternative, and the one that is the focus of this thesis, is based on discrete-
event (DE) systems, which have historically been used for simulation [221, 41], but can
also be used as a deterministic execution model for actors. DE is a generalization of SR,
where there is a quantitative measure of time elapsing between ticks of the global clock [132].
In DE models, every message sent between actors has a timestamp, which is a numerical
value, and all messages are processed in timestamp order. The underlying semantics of these
models is based on generalized ultrametric spaces rather than complete partial orders, but
this semantics similarly guarantees determinism [140].

1.3 Contributions

The main contributions of this work consist of:

1. a formalization of reactors—a deterministic model of concurrent computation for re-
active systems;

2. the implementation of an efficient runtime system for the execution of reactors; and

3. the design and implementation of Lingua Franca (LF)—a polyglot coordination
language based on reactors.

These contributions are meant to enable a methodology for the design and implementation of
concurrent systems that are deterministic by default. Our approach strives for understand-
able concurrency, improved analyzability, and scalable testing. Central to our programming
model is a semantic notion of time that allows for the existence of multiple timelines and
makes an explicit distinction between logical time and physical time. We leverage this dis-
tinction to allow for the formulation of deadlines, as well as the injection of sporadic events
into a running system such that it is able to provide deterministic responses to external
stimuli. The relationship between logical time and physical time that reactors establish
can also be exploited to implement a fully distributed coordination scheme that preserves
determinacy under quantifiable assumptions.

We show that a runtime environment implemented in a language that support threads
can automatically exploit parallelism in reactor programs. We also demonstrate that it is
possible execute reactors under an earliest-deadline-first scheduling policy. Our preliminary
performance evaluation suggests that the determinism of reactors does not come at the cost
of a performance loss when compared to ordinary actors.

CHAPTER 1. INTRODUCTION 12

The explicit data dependencies of reactors allow for a “black box” coordination approach
which is the key enabler of the polyglot nature of LF Using LF, it is possible to integrate
reactors with legacy software and the extensive libraries that are an important factor in the
popularity of existing programming languages. LF is also capable of generating “federated”
programs which consist of reactors mapped to across hosts that communicate over a network.

1.4 Related Work

Actors

The work in this thesis is closely related to languages and frameworks that evolve around the
actor model [94, 2]. Actor based languages include Erlang [9], Scala actors [87], Salsa [212],
Rebeca [198], and P [58]. Noteworthy actor frameworks are Akka [185], Ray [168], and
CAF [45]. The flexibility of actors allows building systems that are scalable and resilient to
failures, but this comes at the cost of inherent nondeterminism, which poses challenges to
verify the correctness of actor systems. Rebeca provides a formalism and model checking
techniques for analyzing and verifying actor networks. While this can improve confidence
in a correct implementation, the programmer is still responsible for finding this correct
implementation. P goes a step further in that it also has an efficient runtime system and
compiler that generates code with reasonable performance. P now also has a verifier based
on the UCLID5 modeling and verification language [193].

The concept of “reactive isolates” [178] (coincidentally, later also called “reactors”) was
introduced to modularity combine different communication protocols inside the same actor
(realized in the Scala-based Reactors.IO framework [176]). A key difference with Hewitt
actors is that reactive isolates have separate channels for receiving messages from other
actors and internal event streams to compose reactions. Their channels are analogous to
our input ports. They have no analogy to our output ports, however. A channel in reactive
isolates is a direct reference to an isolate that other isolates can send messages to. Like classic
actors, reactive isolates do not feature a semantic notion of time, and their communication
is asynchronous with no guarantees on message arrival order.

Active Objects

Also related are a family of so-called “active object” languages [29], which approach the prob-
lem of concurrent execution by generalizing object-oriented programming with asynchronous
method calls and (sometimes) futures, techniques that allow for parallel and distributed ex-
ecution. Ensuring determinacy, however, is not a priority, and even support for avoiding
the common pitfalls of threads [128] is sparse in some of these languages. Very recent
work by Henrio, Johnson, and Pun [91], studies the problem of active objects with guar-
anteed deterministic behavior, which they relate to the satisfaction of confluence properties
between execution steps. They propose a core language for active objects in which well-

CHAPTER 1. INTRODUCTION 13

typed programs exhibit deterministic behavior. However, there appears to be no concrete
programming language implementation that leverages these ideas yet.

Content-addressable Memory

The “generative communication” paradigm of Linda [81] aims to unify the notion of process
creation and data exchange by encapsulating them in the same operation—the creation of a
tuple—and carrying out the distribution of tasks and delivery of data in an abstract middle-
ware layer. While this approach achieves a nice separation of concerns between computation
and coordination, it places the order in which events are observed beyond the programmer’s
control. As such, a shared memory model provides very little support to the programmer
for achieving determinism. Tuple space may be thought as a form of distributed shared
memory [167].

Synchronous Languages

The use of synchronous-reactive principles to deterministically coordinate concurrent soft-
ware has a long history, with notable contributions like Reactive C [33], SL [34], SyncCha-
rts [7], and ReactiveML [153]. A modern variant of SyncCharts, SCCharts [88], composes
finite state machines under a synchronous semantics. It has been recently augmented with a
semantic notion of time [188] based on the concept of dynamic ticks [213, 189]. Like reactors,
components can inform the scheduler at what logical time to trigger reactions.

Synchronous languages, such as Esterel [26], Lustre [86], and Signal [21], make an
abstract notion of time an essential part of the language. Signal and Multiclock Esterel
[24], explicitly support a multiplicity of abstract timelines. Signal supports asynchronous
actions and nondeterministic merging of signals. Some care is required when comparing our
work to these efforts, however. We use the term “clock” in a more classical way as something
that measures the passage of physical time. In the synchronous language use of the term
“clock,” a sequence of events sent from one reactor to another has an associated “clock,”
which is the sequence of tags associated with those events. Since these clocks can all be
different, LF supports at least the multiplicity of timelines like those in Multiclock Esterel.
A federated execution of LF also has the capability of decoupling logical time advance,
so despite our tags coming from a totally ordered set, LF achieves properties similar to
the polychrony of Signal. LF can even accomplish the nondeterminism of Signal by
using physical connections. Like LF, Signal can be used effectively to design distributed
systems [77]. A major difference, however, is that LF is a coordination language, with the
program logic expressed in a target language (C, C++, Python, or TypeScript), whereas
Signal is a complete standalone programming language.

CHAPTER 1. INTRODUCTION 14

Dataflow and Process Networks

The embedded systems community commonly uses variants of the actor model with deter-
ministic semantics such as dataflow models [57, 27, 120] and process networks [103, 121].
The fixed graph topologies inherent to these models, enable improved static analysis and op-
timization [79], but the static topology also limits flexibility and the application’s capability
to react to external events.

Other works that follow a deterministic-by-construction approach but are more focussed
on parallel computing are LVars [115], FlowPools [177] and isolation types [37]. LVars ensure
determinism by allowing only monotonic writes and “threshold” reads that block until a lower
bound is reached. FlowPools are a data structure for composable deterministic parallel
dataflow computation through the use of functional programming abstractions. Isolation
types let programmers declare what data they wish to share between concurrently executing
tasks, and those tasks fork and join isolated revisions of the shared data.

Reactive Programming

Reactors have an overlap with the reactive programming paradigm. In reactive programming
language runtimes, programs are also internally represented by a dependency graph for the
purpose of automatically (re)computing parts of a program whenever values change. The
reactive programming community is mostly focussed on asynchronous, event-driven, and
interactive applications. Sometimes a framework or language is already called “reactive” if
it implements the observer pattern [78]. A wide range of reactive software technologies is
available [14] including programming frameworks like ReactiveX [161] and Reactors.IO [176]
as well as language-level constructs like event loops [207], futures [16], and promises [73]. All
synchronization in actor and reactive programming frameworks needs to be added explicitly
by the programmer. Futures are commonly used to avoid the explicit use of continuation
messages, which gives the “feel” of imperative code but does not prevent programming errors
due to nondeterminism. Finding such errors in reactive systems is particularly difficult [17,
148]. Even more problems arise if languages, frameworks and libraries do not enforce the
underlying model and invite the programmer to break its semantics [203].

Hardware Description Languages

Another family of languages that are related to LF are hardware description languages
(HDLs) such as Verilog [206] and VHDL [8], which can be used to model a digital system at
many levels of abstraction, ranging from the algorithmic level to the gate level. These concur-
rent programming languages follow both the dataflow and reactive programming paradigm.
They are mostly aimed at electronic design automation to describe digital and mixed-signal
systems such as field-programmable gate arrays and integrated circuits, but they can be used
as a general-purpose parallel programming language as well. Verilog is nondeterministic [64]

CHAPTER 1. INTRODUCTION 15

in ways that VHDL is not4 [150] as it updates its internal state and advances to the next tick
only after having handled all pending requests. Unlike reactors, the outputs of components
in VHDL often have to be manually brought into alignment with “delta cycles” (akin to mi-
crosteps in our superdense time model). This is because outputs are always produced with a
(microstep) delay in VHDL, whereas reactors can produce output logically instantaneously.
Also noteworthy are the guarded atomic actions of another HDL called Bluespec [11], which
bear resemblance to the reactions of reactors.

Frameworks for System-level Modeling

System-level modeling frameworks such as SystemC [135, 202], and the related SpecC [76]
are closely related to hardware description languages. Programs written in these using these
frameworks compile down to executable programs that implement a discrete-event model
much like reactors do. Where LF is intended for the coordination of software components in
deployed systems, the goal of these frameworks is to aid tasks like design space exploration
and performance modeling.

Modeling and Simulation Tools

A lot of valuable lessons learned in the Ptolemy project [179] and from related modeling
and simulation tools such as Simulink [52] and LabVIEW [28] have been reapplied in the
design of and implementation of reactors and LF. The influence that the Ptolemy project has
had on this work is difficult to overstate. There is a significant overlap between the reactor
model and the discrete-event domain in Ptolemy II, but there are important differences.
The most fundamental difference is that reactors are a departure from the actor abstract
semantics [209] that form the blueprint of all models of computation implemented in Ptolemy
II. Where a Ptolemy actor has a single “fire” function, reactors can have multiple reactions,
some, all, or none of which could execute at any given logical time (depending on which
triggers are present). Reactors and Ptolemy actors share the notion of ports, but the notion
of actions (and their physical or logical “origin” that lets their events be linked to either a
physical or logical timeline) are unique to reactors. The focus of reactors is on performance
and interaction with the physical world, whereas Ptolemy is aimed at the modeling and
simulation of cyber-physical systems.

Accessors

Reactors could be viewed as a continuation of the work on accessors [119, 36], which are
actors that interface asynchronous atomic callbacks through a deterministic coordination
layer based on discrete events [145]. Reactors can fulfill the same role as accessors and

4Strict determinism was lost with the ’93 revision of the VHDL standard, which introduced shared global
variables [98].

CHAPTER 1. INTRODUCTION 16

serve as proxies for remote services, sensors, or actuators. The reactor model’s notion of
actions and reactions resolves an awkwardness that exists in accessors due the fact that their
functionality is broken down in a set of distinct handlers even though they still have a single
“fire” function that causes all handlers to be invoked when the component fires, making
it difficult to schedule the execution of a specific handler. Accessors also feature runtime
mutations, but the dynamic substitution mechanism only takes into account whether the port
types match, not whether the modification could introduce causality loops, for example. In
[102], accessors were augmented with labeled logical clock domains (LLCDs), which allow
asynchronous events to be scheduled relative to the last-known time in a particular clock
domain. In reactors, this would be synonymous with asynchronously scheduling an event on
a logical action, which we explicitly prohibit as this could cause logical time to lag arbitrarily
far behind of physical time, or allow attempts to schedule events in the past with respect
to the current logical time. In a federated reactor program such behavior could also lead to
one federate blocking the advancement of logical time in other federates.

Real-Time Languages

Time naturally plays an essential role in application design for real-time systems [201, 112].
Many languages such as Real-Time Euclid [110], Ada [38], or Real-time Java [208, 214] pro-
vide support for modeling temporal as well as behavioral application aspects. Commonly,
such languages focus on time-predictability and are often limited to specifying schedules of
periodic tasks, whereas the primary focus of LF is coordination based deterministic coor-
dination of periodic as well as sporadic tasks. Ada is one of the few languages other than
C that have seen a considerable degree of adoption in avionics, air traffic control, railways,
banking, military and space technology [70]. Another notable exception is the synchronous
language SCADE [23]. Ada’s tasking system is based on an event-driven scheduling model,
but unlike that of reactors, it is nondeterministic [15]. While LF has potential as a language
for designing hard real-time properties, we consider this a secondary goal.

Like LF, Timed C [172] has a logical time that does not elapse during the execution of
a function (except at explicit “timing points”). Moreover, like LF, priorities are inferred
from timing information in the program. The deadlines of LF are all “soft deadlines” in the
terminology of Timed C, meaning that the tasks are run to completion even if they will lead
to a deadline violation. It would be useful further work to realize the “firm deadlines” of
Timed C, but these require the use of low-level C primitives setjmp and longjmp, and it is
not clear that it is possible to provide these in our polyglot approach.

Giotto [92] provides an abstract programming model for the implementation of embed-
ded control systems with hard real-time constraints. In Giotto, platform-independent con-
cerns (functionality and timing) are separated from platform-dependent ones (mapping and
scheduling). Unlike LF, Giotto is a purely task-based model. It is augmented with modes,
which allows for more flexibility, but it is not equipped with the ability to handle sporadic
events, which reactors are able to do via physical actions.

CHAPTER 1. INTRODUCTION 17

The logical execution time (LET) paradigm [108], where logical time delays are used to
“mask” physical delays in the system so that all delays are predictable and exact, is fully
compatible with reactors.

Verification of Timing Properties

One of the distinguishing features of reactors is its model of time. There exist formalisms that
also embrace a multiplicity of time lines in parallel and distributed systems. The MARTE
profile of UML, and its Time Model and CCSL (Clock Constraint Specification Language)
[152] specify constraints among instants in a multiplicity of clocks. TimeSquare analyzes
systems of constraints in CCSL [56]. CCSL can be used for embedded systems with distinct
clocking mechanisms [174]. (such as time-driven combined with crankshaft-rotation driven).
TESL (Tagged Events Specification Language), which is based in part on CCSL, like LF,
uses explicit tags and ensures determinism [31]. Neither TESL nor CCSL is a programming
language, but rather a language for modeling timing relationships. They could prove useful
for analyzing LF programs.

1.5 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 provides a brief introduction of reactors followed by a formalization of re-
actors. This chapter provides all the algorithms that are involved in the execution of
reactors.

• Chapter 3 introduces Lingua Franca by explaining its basic syntax and discussing
examples. At the end of this chapter we show that any reactor can be modeled as
a strictly contracting function. This allows us to conclude that the behavior of any
reactor at any logical time can be expressed in terms of a unique fixed point, and
therefore is deterministic.

• Chapter 4 discusses the use of physical actions, the distinction between physical and
logical actions, and the workings of deadlines and logical time delays. It explains
in more detail how reactors expose parallelism, how earliest-deadline-first scheduling
can be achieved, and what can be done to improve performance. We also show how
reactors can be extended with support for subroutines. This chapter concludes with
a preliminary evaluation that compares our performance against the popular actor
framework Akka over a small subset of the Savina [99] benchmark suite.

• Chapter 5 shows how reactors can execute in a federation that spans multiple hosts.
We discuss a centralized coordination method fashioned after HLA [114] and a decen-
tralized coordination method based on Ptides [223].

• Chapter 6 provides conclusions and discusses avenues for further work.

All problems in computer science can be solved
by another level of indirection.

David Wheeler

Chapter 2

Reactors

This chapter draws from and expands on previously published work titled “Reactors: A deter-
ministic model for composable reactive systems” [144] that was co-authored with Ínigo Íncer
Romeo, Andrés Goens, Patricia Derler, Jeronimo Castrillon, Edward A. Lee, and Alberto
Sangiovanni-Vincentelli.

Reactors, first described in [146], can be thought of as deterministic actors composed of
reactions. Reactions bear resemblance to the message handlers of actors, except rather than
responding to messages, reactions are triggered by discrete events and may also produce
them. An event relates a value to a tag. A tag represents the logical time at which the event
was released into the system. Reactions have access to state shared with other reactions, but
only within the same reactor. Events are the only means by which reactors can communicate
with one another.

Where message handlers in actors are invoked in no particular order, the order in which
reactions in reactors can occur is subject to specific constraints. Events are always observed
in tag order. Events with identical tags are logically simultaneous. An event can trigger
a reaction, but a triggered reaction does not execute before all events with the same tag
that it can observe have been produced. This means that any reactions responsible for
producing such events are forced to execute prior (should they be triggered at that logical
time). Reactors can be classified as a “sparse synchronous model” [63] as the synchronous-
reactive interactions that occur at any particular logical time may be limited to isolated
parts of the system. When a reaction executes, it has exclusive access to the reactor’s state,
and for any two reactions of the same reactor that are triggered by events with the same
tag (or one and the same event), the order in which they execute is predefined. Because of
these constraints, reactors react deterministically to inputs, making it possible to verify the
correctness of their behavior through testing.

18

CHAPTER 2. REACTORS 19

Figure 2.1: A reactor implementation of the introductory example. Reactor X has a startup
reaction that produces an event on output ports dbl and inc. The second reaction of Y,
triggered by input port inc, cannot execute 1) before Relay has reacted; and 2) until after
the first reaction of Y has executed in case it was triggered by an event on dbl.

2.1 Ports, Hierarchy, and Actions

The term “reactors” is a nod to Hewitt and Agha’s actors [95, 1] (actors, revisited), but
also to the synchronous reactive programming paradigm that underpins languages like Es-
terel [26], Signal [21], Lustre [86], and their derivatives. Different from Hewitt actors,
reactors do not directly refer to their peers. Reactors have named (and typed) ports that
allow them to be connected to other reactors (depicted by black triangles in Figure 2.1). An
event produced by one reactor is only observed by other reactors that are connected to the
port on which the event is produced. Events arrive at input ports, and reactions produce
events via output ports.

The extra level of indirection implied by ports enables a hierarchical design where a
reactor that contains other reactors, such as the one named Composite in Figure 2.1, has
access to dependency information that makes it possible to enforce ordering constraints that
preserve determinacy. The Composite reactor in Figure 2.1 contains one instance of each of
the three other reactors and defines how their ports are connected. In this example, there
is only one composite, but composite reactors themselves can also have input and output
ports and can be contained by (and connected to) other composites. There is one exception:
top-level reactors are not allowed to have inputs or outputs. The containment hierarchy of
reactors also serves as a scoping mechanism for ports, imposing constraints on the kinds of
connections that can be drawn. Specifically, connections are not allowed to traverse more
than one level of hierarchy. For instance, it is possible to connect the input port of a container
to the input port of a contained reactor, but not to any input ports embedded deeper in
containment hierarchy.

Reactors also feature a special variant of ports called actions. Unlike ports, actions are
not visible to other reactors and it is not possible to connect to them. Actions are used for
scheduling events that trigger reactions of the same reactor at a future logical time. Actions
are also used as a synchronization mechanism between the logic inside reactions, which
execute at well-defined logical time instants, and asynchronous events originating from the
environment, such as data being reported from a sensor or a message being received through
a network interface. Such sporadic external events get assigned tags in a way that ensures

CHAPTER 2. REACTORS 20

determinacy, in the sense that once a tag has been assigned, the response of the reactor
program is well defined.

In addition to user-defined actions, each reactor has two distinguished triggers: one called
“startup,” (represented by the circle in Figure 2.1) which is present only at the very first
time instant of a reactor’s execution, and another called “shutdown,” which signals the end
of a reactor’s execution.

2.2 State Variables

Reactions may share state variables with other reactions in the same reactor. It is this
capability that is the prime motivator for bundling multiple reactions in a single reactor.
A shared resource may simply be a variable, but it could also be a socket, or a physical
device. To preserve determinacy, reactions within one reactor are invoked in a predefined
order when there are logically simultaneous input messages. Semantically, this approach
follows the sequential constructiveness principle of SCCharts [89], which are an extension of
Harel’s Statecharts [90] that allows arbitrary sequential reads or writes of shared variables
during a synchronous-reactive tick. Because reactors do not share state among one another,
if two distinct reactors receive logically simultaneous messages, then their reactions may be
invoked in parallel unless there exists a connection between the two reactors that requires
the upstream reactor’s reaction to execute first.

2.3 Connections

The usage of ports and connections to establish explicit communication channels between
actors—such as is done in Ptolemy II [179]—readily exposes dependencies that are difficult
to infer in a setting where actors address each other directly. But even such an explicit
communication topology does not reveal all dependency information required to make well-
informed scheduling decisions that honor data dependencies.

Internally, actors may also establish dependencies between ports through their application
logic (i.e., inside their handlers). The most conservative approximation of application logic
induced dependencies would assume that all outputs of an actor depend on all inputs of
that actor, but that may lead to the false flagging of potential problems such as zero-delay
feedback loops or deadlock situations. In Ptolemy II, actors are equipped with causality
interfaces [224] to report dependencies more accurately. Those dependencies, however, need
to be declared by the programmer or inferred on the basis of code analysis. Reactors, on the
other hand, make causality interfaces an integral part of component definitions, by breaking
down their functionality into reactions, each of which is subject to simple lexical scoping
rules that limit access to input and output ports, thereby eliminating dependencies between
ports that are out of scope.

CHAPTER 2. REACTORS 21

A major advantage of this approach is that the causality interface of a reaction is always
complete. If a dependency exists, then it must be reflected in the interface definition. Using
this scheme, a programmer cannot forget to declare a dependency without breaking the
program, and effort associated with declaring dependencies incentivizes the programmer
to only declare dependencies necessitated by the logic in the reaction. This promotes the
goal of imposing the fewest constraints necessary to preserve causal consistency during the
execution of a reactor program while leaving maximum freedom to the runtime scheduler
to exploit parallelism in the program—all while treating the functionality of a reaction as a
black box. This allows a schedule to be devised purely based on dependency information,
although there is a cost. If a reaction declares that it reads an input, for example, then it
may only be executed after that input is known. If it then does not actually read the input,
due to a data dependency in the reaction body, then the constraint was unnecessary.

Statically declaring the dependencies comes at the cost of a slight loss in the accuracy
of the reporting of causal dependencies, but it facilitates the polyglot nature of LF the
reactor-oriented coordination language we discuss in Chapter 3. In LF, the implementations
of reactions are given in verbatim target code that is not even parsed, much less analyzed.
While it would be possible to infer the declared input/output dependencies through static
analysis, whenever the reading of input messages or writing of output messages in a reaction
is data dependent, then whether a declared dependency is actually a real dependency proves
undecidable. Hence, even the most sophisticated analysis will be conservative. Through LF,
a variety of target languages can be supported by the reactor model. For example, using C
as a target language is appropriate for resource constrained, deeply embedded systems, while
Python may be a better choice for AI applications and Java for enterprise-scale distributed
applications. Because target-language code is not analyzed in the LF compiler, comparatively
little effort is required to add support for new target languages.

2.4 Example: Drive-by-wire System

To illustrate how reactors behave, let us return to the “unintended acceleration” problem
mentioned in the introduction and consider a power train of an electric vehicle implemented
using reactors. Our example, illustrated using the diagram in Figure 2.2, implements a
so-called drive-by-wire system. In most modern road vehicles there is still a mechanical
coupling between brake pedal and brakes, but so-called “brake-by-wire” designs have started
to appear in cars in the recent years. These modern designs can improve the braking efficiency
and stability of the vehicle [219]. The six reactors contained in the PowerTrain reactor
jointly coordinate the control of the brakes and the engine. While this example is obviously
oversimplified, it features enough complexity to allow us to highlight some of the most
interesting aspects of our model. Following the “accessor” pattern from [35], each reactor
in the figure (represented by a box with rounded corners) endows a complex subsystem of
the car with a simple interface that allows it to be connected to other reactors. Connections
are shown as solid lines in the diagram; other dependencies (through ports and actions) are

CHAPTER 2. REACTORS 22

represented by dashed lines.

PowerTrain

bp : BrakePedal

2

Output reported angle

1

Setup callback

P

min delay: 0
min spacing: 1msec

policy: replace

angle

applied

a : Accelerator

2

Output reported angle

1

Setup callback

P

min delay: 0
min spacing: 2msec

policy: replace

angle
bc : BrakeControl

angle force

Adjust the force

mc : MotorControl

2

Adjust torque unless car is braking

1

Set torque to zero if car is braking

angle

brkOn torque

b : Brakes

2msec

Reaction with deadline

force

Apply the requested force

m : Motor

3msec

Reaction with deadline

torque

Apply the requested torque

Figure 2.2: A reactor that implements a simplified power train control module.

Consider the bp (brake pedal) reactor, in Figure 2.2, which is used to signal the braking
demand. We assume that updates from the pedal are reported via an interrupt, which
enables an interrupt service routine (ISR) that schedules a physical action (represented by a
small triangle labeled with a P) without further delay. This internal action triggers a reaction
that sets the value of the angle and applied output ports. In order to avoid overwhelming
the system, the physical action specifies a minimum spacing of 1 ms, which means that
subsequent invocations of this reaction are always at least one millisecond apart. The values
angle and applied, if present, are propagated to bc (brake control) and mc (motor control),
respectively. Notice that bp only has to set applied at times that the pedal changes from
being released to pressed and vice versa. This prevents the system from being burdened with
handling insignificant events. This sparsity of events is characteristic of reactor systems and
other “sparse synchronous” models [63]. Eliminating “redundant” events has the advantage
of reducing system load and making execution traces easier to comprehend.

Let us now consider the mc reactor, which has two reactions. We interpret the number
associated with each reaction as its priority; this way, we obtain an execution order in case
both brkOn and angle are present at the same logical time. The first reaction, mc.1, is
triggered by brkOn; it updates the state of the reactor to reflect whether the brake pedal is
currently pressed or released. If the brakes are being applied, then it adjusts the torque to
zero. The second reaction, mc.2, is triggered by the angle input; it checks a state variable to
see whether the brakes are applied, and only if this is not the case, sets the torque output in
correspondence with the requested angle.

The design of a (accelerator) is identical to that of bp except for the larger minimum
spacing of 2 ms, limiting the frequency at which a can produce events to 500 events per
second.

CHAPTER 2. REACTORS 23

The design assures that when the accelerator pedal is stuck or reports faulty readings,
the car will still slow down in response to the break pedal being pressed; the motor is never
allowed to apply torque when the brakes are applied. Note that this approach does not
attempt to artificially eliminate nondeterminism that is intrinsic to the physical realization
of the system; actions can occur sporadically, but the logic constituted by reactions is de-
terministic, and therefore, testable. The behavior of the system is relatively easy to reason
about, and it is straightforward to formulate meaningful test cases to build confidence in the
correctness of the implementation of the reactions.

Finally, reactors can be subjected to deadlines, which are elaborated on in more detail in
Section 4.1. Two deadlines are present in Figure 2.2: a 2 ms deadline marked at the reaction
of b (brakes) and a 3 ms deadline marked at the reaction of m (motor). Conceptually, these
deadlines specify end-to-end physical time delays in the system between the occurrence of
events and reactions triggered by those events. An event may originate from a physical action
that is scheduled in response to the arrival of a sensor reading (e.g., bp in our example), and
the triggered reaction may be driving an actuator (e.g., reactor b). The 2 ms deadline in our
example simply states that reaction in b should start no later than 2 ms past the physical
time at which bp reported a new angle.

2.5 Formalization

In this section we formalize the concept of reactors and specify their behavior as it is guided
algorithmically by the runtime environment that performs their execution. The provided
algorithms ought to be interpreted as an abstract reference implementation, and, as such,
delineate the dynamic semantics of reactors. For readers who prefer to read programming
language syntax and code examples over mathematical notation, it may be advisable to skip
over this material and continue reading at the start of Chapter 3. Specific parts of the
formalization that offer clarification of aspects not fully covered in the remaining chapters
will be referred back to, making it easy to consult them whenever a more formal explanation
is preferable. Appendix A also provides a summary of our model as a quick reference for
looking up the meaning of symbols we use in our notation.

Some central concepts we will introduce are described by lists of elements. In order to
simplify notation, we will use the symbol for the element of a list to also denote a function
that maps the list to the element corresponding to that symbol. For example, if x = (a, b),
we reuse the symbols a and b to be functions that map x to its elements a and b, respectively.
Thus, we will commonly use the notation a(x), where x is a list, and a is the symbol of one
of the elements in that list.

First, we need to introduce some notation. Let Σ be a set. We refer to the elements of Σ
as identifiers. We will use identifiers to uniquely refer to various objects to be introduced.
There is no need to further define the structure of identifiers.

Let V be a set, which we refer to as the set of values. This set represents the data
values exchanged between or within reactors. Similarly, we do not assume any structure in

CHAPTER 2. REACTORS 24

the values, i.e., reactors are untyped. We define one distinguished element in the value set:
ε ∈ V is called the absent value.

Notions of Time

Reactors use a superdense model of time [133, 151]. In this model, a time instant is
represented by a tag [123]. A tag is denoted by a pair, of which the first element is a
time value—an integer representation of time in some predefined unit (e.g., milliseconds or
nanoseconds)—and the second element denotes a microstep index. Formally, the set of tags
G = T × N, where T is order-isomorphic with the natural numbers and N is the set of
non-negative integers. Two tags are equal if and only if both their time value and microstep
index are equal. We define a total order on G lexicographically: if (t,m), (t′,m′) ∈ G, we
say that (t,m) < (t′,m′) if and only if (t < t′) ∨ (t = t′ ∧m < m′) . G has an addition op-
eration that operates element-wise. Using an integer representation for time ensures that
addition is associative [51], which is not normally the case when using floating-point repre-
sentations1. Given a tag g = (t,m), we can extract the time value and the microstep using
the conventional projection operator π, where π1(g) = t and π2(g) = m.

Definition 1 (Logical time). Logical time is a monotonically increasing sequence of tags
of the form g = (t,m), where t is referred to as the time value and to m as the microstep
index.

Remark 1 (Time units). The time values of logical time and physical time must be given
in some unit of measurement. In order to meaningfully relate two time values, their units
must be the same. Whenever we omit units in expressions that relate time values, we simply
assume the units match. Microstep indices, on the other hand, are unitless.

While we use logical time to track the progress our computation, we use physical time
to understand the order of events observed in the physical world and order these events
with respect to events on our logical timeline. We assume a background Newtonian time
τ ∈ R, but in our notation we will only refer to time values T ∈ T that represent imperfect
measurements of it. We use the same set for time values drawn from physical clocks as the
time values that originate from logical clocks because we are interested in cyber-physical
systems, which conjoin the dynamics of the physical world with that of the software. This
allows us to take the current physical time T and place it on our logical timeline by converting
it to a tag g = (T, 0). Likewise, we can take a tag g = (t,m) and compare its time value
π1(g) to T .

Definition 2 (Physical time). Physical time refers to a time value T ∈ T that is obtained
from a clock on the execution platform.

1Recent work by Ahrens, Demmel, and Nguyen [4] describes a method that achieves reproducible summa-
tion independent of summation order using only standard floating-point operations, but at a 7x performance
cost. New floating-point operations described in the IEEE Floating Point Standard-2019 [97] can be used to
reduce the cost of their algorithm.

CHAPTER 2. REACTORS 25

Tagged Events

Definition 3 (Event). An event e is defined as a list e = (a, v, g), where a ∈ Σ is called
the event’s action, v ∈ V its value, and g ∈ G the tag. Events inherit an order from their
tags. If e and e′ are events, we say that e < e′ if and only if g(e) < g(e′). Finally, e and e′

are logically simultaneous if and only if g(e) = g(e′).

Given an action a, we define T (a) to identify the reactions that are triggered by a (see
Table 2.1).

Events

Event instance e = (a, v, g)

Event action a ∈ A
Event value v ∈ V
Event tag g ∈ G
Triggered reactions T (a) = {n ∈ N (C(a)) | a ∈ T (n)}

Table 2.1: A formal model of events.

Reactors

We now proceed to define reactors.

Definition 4 (Reactor). A reactor r is a list r = (I, O,A, S,N ,M,R,P , {•, �}), where

1. I ⊆ Σ is a set of inputs,

2. O ⊆ Σ× V a set of outputs,

3. A× V a set of actions,

4. S ⊆ Σ× V a set of state variables,

5. N a set of reactions,

6. M⊆ N a set of mutations,

7. R a set of contained reactors,

8. P : N → P the priority function, and

9. {•, �} distinguished triggers called startup and shutdown, respectively.

Given two reactors r and r′, the sets I(r), O(r), A(r), S(r), I(r′), O(r′), A(r′), and
S(r′) are all pairwise disjoint. Similarly, the sets R(r) and R(r′) are disjoint, and so are
the sets N (r) and N (r′) and M(r) and M(r′).

CHAPTER 2. REACTORS 26

While input ports, output ports, and state simply bind identifiers to values, actions
are more elaborate because they need to provide the runtime scheduler with additional
information.

The reactor tuple distinguishes between reactions and mutations which are a subset of
reactions that are capable of changing the internal structure (i.e., the contents ofR andN) of
the containing reactor. Because such structural changes have further-reaching consequences
than the mere triggering of reactions, additional dependencies are implied by mutations (see
Section 2.6).

Reactors can contain other reactors, which are listed in reactor set R. We use the
following definition to navigate the hierarchy of a reactor.

Definition 5 (Container function). The container function C maps a reactor r to the
reactor which contains it. The function returns > (pronounced “top”) if no reactor contains
r. Since the sets R(r),R(r′) are disjoint for r 6= r′, C is well-defined. Let r be a reactor. If
C(r) = >, we say that r is top-level. We also define the container function for reactions:
let n be a reaction; then C(n) yields the reactor r such that n ∈ N (r). The same applies to
mutations. Finally, we define the container function for inputs, outputs, and actions: let i,
o, and a be an input, output, and action, respectively, of three reactors r, r′, and r′′. Then
C(i) = r if and only if i ∈ I(r), C(o) = r′ if and only if o ∈ O(r′), and C(a) = r′′ if and
only if a ∈ A(r′′). Similarly, the function C is well-defined here since all the relevant sets
are pairwise disjoint for two distinct reactors.

Remark 2 (Hierarchy). We define an atomic reactor as above, with an empty contained
reactor set R. We call these degree-0 reactors. Then, for n ≥ 1 we define a reactor of degree
n as a reactor with a set R of reactors of degree at most n− 1. Moreover, the reactor set of
a degree-n reactor contains at least one reactor of degree n− 1.

Using P , the reactor imposes an order on its constituent reactions to serialize the execu-
tion of simultaneously triggered reactions. It does this by mapping all contained reactors R
to P, which is defined as follows.

Definition 6 (Priority set). Let Z be the set of integer numbers, Z+ the set of integers larger
than zero, Z− the set of integers smaller than zero, and ∗ a symbol which is not an integer.
The priority set, P, is given by P = Z− ∪ Z+ ∪ {∗}. The set P is a partial order given by
the order in Z extended with ∗ ≤ ∗ and p < ∗ for all p ∈ Z−.

The use of ∗ is to allow particular reactions of the same reactor to be executed in parallel
if is statically known that they do not touch the reactor’s state.

Remark 3 (Connections). Notice that connections are not modeled explicitly in this for-
malization. Instead, we represent connections with reactions whose only purpose is to relay
the value from one port to another. These so-called relay reactions are assigned the prior-
ity ∗, meaning they can execute concurrently with other reactions in the containing reactor.
To preserve determinacy, it must be checked that if there exist two or more reactions that

CHAPTER 2. REACTORS 27

Reactors

Reactor instance r = (I,O,A, S,N ,M,R,P, {•, �}) ∈ R
Set of input ports for r I(r) ⊆ {p ∈ P | C(p) = r}
Set of output ports for r O(r) ⊆ {p ∈ P | C(p) = r}
Set of actions for r A(r) ⊆ {a ∈ A | C(a) = r}
Set of state variables for r S(r) ⊆ Σ× V
Set of reactions contained in r N (r) ⊆ {n ∈ N | C(n) = r}
Set of mutations contained in r M(r) ⊆ N (r)

Set of contained reactors of r R(r) ⊆ {r′ ∈ R | C(r′) = r}
Priority function P(r) : N (r)→ P
Startup trigger for r •(r)
Shutdown trigger for r �(r)
Reactor containing reactor r C(r) ⊆ R

Table 2.2: A formal model of reactors.

share a particular port p among their effects, those reactions must be strictly well-ordered in
P, i.e., ∀n, n′ ∈ D∨(p) . C(n) = C(n′) ∧ n 6= n′ =⇒ P(n) < P(n′) ∨ P(n′) < P(n). It
should be emphasized that this choice was made merely to simplify the formalization. Any
concrete runtime implementation could avoid this level of indirection and set the value of
downstream ports directly.

Finally, each reactor has two reserved triggers: • and � which are used to signal the
starting up or shutting down of the reactor, respectively. While these can be used to trigger
reactions, the reaction code cannot schedule them. They can be seen as “hooks” for executing
code at the beginning or end of a reactor’s life cycle.

Ports

Definition 7 (Port). A port is defined as p = (p, v), where

1. p ∈ Σ is the port identifier; and

2. v ∈ V is the port value;

We will find it convenient to have auxiliary functions that return the reactions which have
a given port as one of their sources (which include triggers), and the reactions which have
a given port as their effect. To this end, we define the maps N (i) and N ∨(p), respectively.
Their definition is shown in Table 2.3.

CHAPTER 2. REACTORS 28

Ports

Port instance p = (x, v) ∈ P
Port identifier x ∈ Σ

Port value v ∈ V
Reactions with p as a source N (p) =

{
n ∈

((⋃
r∈R(C(p))N (r)

)
∪N (C(p))

) ∣∣∣ p ∈ D(n)
}

Reactions with p as an effect N∨(p) =
{
n ∈

((⋃
r∈R(C(p))N (r)

)
∪N (C(p))

) ∣∣∣ p ∈ D∨(n)
}

Reactor containing p C(p) ⊆ R

Table 2.3: A formal model of ports.

Actions

Definition 8 (Action). An action is defined as a = (x, v, o, d, s, p), where

1. x ∈ Σ is the action identifier;

2. v ∈ V is the action value;

3. o ∈ O is the action origin, which specifies whether events on this action are to be
scheduled relative to logical time or relative to physical time;

4. d ∈ {t ∈ T | t ≥ 0} is the minimum delay of an event scheduled on this action with
respect to the last-processed tag;

5. s ∈ {t ∈ T | t ≥ 0} ∪ ⊥ is the minimum spacing between any two events that are
subsequently scheduled on this action, or ⊥ if no constraint applies; and

6. p ∈ P is the spacing violation policy of the action, which determines how violations
of the minimum spacing requirement are handled.

Action Origin

When an event is being scheduled on an action, this event will have a tag that is computed
based on the minimum delay d, possibly an additional delay, and the current logical time
or the current physical time, depending on whether the action’s origin is logical or physical,
respectively. An action a for which o(a) = Logical is called a logical action; a physical
action, on the other hand, is an action a for which o(a) = Logical.

Definition 9 (Origins).

O = {Logical,Physical}

CHAPTER 2. REACTORS 29

While this logic is detailed in Algorithm 2 in Section 2.5, the intent behind distinguishing
logical and physical actions is that logical actions must only be scheduled during reactions,
at well-defined logical time instants, whereas physical actions can be scheduled at any time,
asynchronously (from another thread of execution), in response to something happening in
the physical world. After all, there is no well-defined current logical time outside of the
context of a reaction. Hence, for physical actions, not only the value of the event is an input
to the system, but so is be the timestamp that will determine its tag.

The subtle interaction between logical and physical time in the reactor model can be
understood as establishing an interface between inherently asynchronous and nondetermin-
istic concurrent tasks on the one hand (e.g., a sensor that monitors a physical process) and
deterministic computational tasks that benefit from testability and could require precise and
predictable timing on the other (e.g., to drive an actuator to influence said physical process).
Rather than superimposing a deterministic world view on things that are inherently unpre-
dictable, or, rejecting determinism entirely (and fundamentally compromising testability),
reactors provide a model of computation that that reconciles these disparate views.

Event Spacing

In order to prevent overwhelming the runtime environment by inundating with events, actions
can be parameterized with a constraint on the volume of events that can be scheduled per a
given time interval. Having such constraint is critical for enabling schedulability analysis in
the face of sporadic events.

Definition 10 (Minimum event spacing). We define the minimum spacing of an action
a, denoted as s(a), to be the non-negative minimum distance between the tags of any two
subsequently scheduled events on a. If s(a) = 0 then the minimum distance is one microstep.

If a minimum spacing has been specified (i.e., it is not ⊥), then a policy determines how
violations if the spacing requirement are handled. For instance, a broken sensor or unforeseen
circumstance in the physical part of a cyber-physical system could cause a flood of events to
be scheduled. The policy then specifies how the runtime system has to cope with this.

Definition 11 (Spacing violation policies). We define the spacing violation policy of an
action a, p(a) ∈ P, where

P = {Defer,Drop,Replace}.

The exact meaning of these policies is clarified in Algorithm 2, but they can be summa-
rized as follows:

• Drop: Ignore the scheduling request;

• Replace: Attempt to update the previously scheduled event if it has not been handled
yet; defer the event otherwise; and

CHAPTER 2. REACTORS 30

• Defer: Schedule the event, but adjust its tag so that it satisfies the minimum spacing
requirement.

Actions

Action instance a = (x, v, o, d, s, p) ∈ A
Action identifier x ∈ Σ

Action value v ∈ V
Action origin o ∈ {Logical,Physical}
Minimum delay d ∈ {t ∈ T | t ≥ 0}
Minimum spacing s ∈ {t ∈ T | t ≥ 0}∪⊥
Spacing violation policy p ∈ {Defer,Drop,Replace}
Last scheduled event L(a) ⊆ ({a} × V ×G) ∪⊥
Reactor containing a C(a) ⊆ R

Table 2.4: A formal model of actions.

In order to enforce a minimum spacing between scheduled events, some bookkeeping is
required. For this, we introduce the following function that maps a given action to the last
event that has been scheduled on that action, or ⊥ if there is no such event:

L(a) ⊆ ({a} × V ×G) ∪⊥.

Reactions

Definition 12 (Reaction). A reaction n is defined as n = (D, T , B,D∨, H,∆, B∆), where

1. D ⊆ I(C(n))∪
⋃
r∈R(C(n))O(r) is a set of sources, ports whose value the reaction may

read;

2. T ⊆ D∪A(C(n))∪ {•, �} is a set of triggers, whose presence cause the execution of
the reaction;

3. B is the body of the reaction (i.e., the code that runs when the reaction executes);

4. D∨ ⊆ O(C(n)) ∪
⋃
r∈R(C(n)) I(r) is the set of effects, ports whose value the reaction

may write;

5. H ⊆ A(C(n)) is the set of schedulable actions, actions for which n can generate
events;

6. ∆ ∈ {t ∈ T | t ≥ 0}∪⊥ is a deadline that, if not ⊥, imposes a bound on the extent to
which logical time is allowed to lag behind physical time when the reaction is triggered
and ready to execute; and

CHAPTER 2. REACTORS 31

7. B∆ is the body of a deadline miss handler, which is an alternative reaction body to
be executed when the deadline has been violated.

Reactions

Reaction instance n = (D, T , B,D∨, H,∆, B∆) ∈ N
Set of reaction sources D(n) ⊆ I(C(n)) ∪

(⋃
r∈R(C(n))O(r)

)
Set of reaction triggers T (n) ⊆ D(n) ∪A(C(n)) ∪ {•, �}
Reaction body B(n)

Set of reaction effects D∨(n) ⊆ O(C(n)) ∪
(⋃

r∈R(C(n)) I(r)
)

Set of schedulable actions H(n) ⊆ A(C(n))

Reactor containing reaction n C(n) ⊆ R

Reaction priority P(n) ∈

{
Z− if n ∈M(C(n))

Z+ ∪ {∗} otherwise

Priority of unordered reactions ∀p ∈ Z− ∀q ∈ Z+.(p < ∗) ∧ (q ≮ ∗) ∧ (∗ ≮ q) ∧ (∗ ≤ ∗)
Deadline ∆(n) ∈ {t ∈ T | t ≥ 0}∪⊥
Deadline miss handler B∆(n)

Table 2.5: A formal model of reactions.

Remark 4 (Reaction priority). Reaction priority determines the order in which reactions
of the same reactor execute when triggered at the same logical time instant. P maps mutations
to elements that are strictly less than the elements that it maps reactions to (see Table 2.5).
Thus, a reactor’s mutations will always have precedence over its reactions. The priority set
includes a special priority element ∗ which is incomparable with the positive integers. It
can be assigned to reactions that may execute in arbitrary order and therefore may execute
concurrently, but only after all mutations of the reactor have finished executing.

API for Reactions

A reactor program executes in the context of a runtime environment that provides the
following procedures:

• currentTag: Returns tag g = (t,m), the last observed logical time;

• get: Returns the value associated with given port/action at the current tag;

• physicalTime: Returns T , the last observed physical time;

• schedule: Schedules a given action with minimum delay of one microstep; and

• set: Binds a given value to a given port at the current tag;

CHAPTER 2. REACTORS 32

• requestStop: To request the execution of the entire program to halt.

These procedures are the only means provided for code in the body of an ordinary
reaction or deadline miss handler to interact with other reactors. While set and set facilitate
synchronous communication with reactions in other reactors, schedule is intended to trigger
reactions at a later tag within the same reactor, via an action. Actions can have a minimum
delay associated with them, which schedule uses to determine the tag of the resulting event.
Moreover, an action must have a specified origin: logical or physical. When scheduled, an
action with a logical origin (i.e., a logical action) will have an event occur with a tag relative
to the last known logical time. On the other hand, actions with a physical origin (i.e., physical
actions) allow events to be tagged based on a time value obtained from the platform (i.e., a
physical clock).

Data Structures

Definition 13 (Event queue). We define the event queue QE as a set of scheduled events,
to be handled no earlier than the moment at which physical time matches the time value of
their tag.

Definition 14 (Reaction queue). We define the reaction queue QR as a set of triggered
reactions, to be executed in order of precedence at the current logical time.

Definition 15 (Defunct reactor stack). We define the defunct reactor stack SD as a set
of defunct reactors (i.e, reactors that have been marked for deletion and are reacting to � at
the current logical time), to be removed from their container after the last reaction at the
current logical time has concluded.

While we define QE and QR as ordinary sets in this formalization, any concrete imple-
mentation of a reactor runtime environment would use priority queues for these. Likewise,
SD is an ordinary set could conveniently be substituted with a stack to ensure that reactors
are removed in the correct order (i.e., remove contained reactors before removing their con-
tainer). While QE stores events that are to trigger reactions at some future instant, QR only
stores reactions that have been triggered at the current logical time. Events are retrieved
from QE ordered by tag (smallest tag first). Reactions are retrieved from QR ordered by
precedence, which is determined through dependency analysis (see Section 2.6).

Event Generation

We now discuss how events are created. The body of a reaction is a container for application
code. Let n be a reaction. Then the body B(n) of this reaction is allowed to invoke the
following two functions that affect the execution environment: schedule and set.

CHAPTER 2. REACTORS 33

Setting Ports

A reaction can only execute set on its declared effects. The execution of set in the body of
a reaction propagates the set value to downstream ports and adds triggered reactions to QR,
the set of reactions to be executed at the current logical time. set is shown in Algorithm 1.

Algorithm 1 Set a value on port p and trigger reactions

1: procedure set(p, value)
2: v(p)← value
3: reactions← T (p)
4: lock(mutex) . Obtain lock to ensure integrity of the reaction queue
5: QR ← QR ∪ reactions . Queue triggered reactions for execution
6: unlock(mutex) . Release the lock
7: end procedure

The name of this procedure was chosen carefully to reflect its semantics. Its invocation
is analogous to the setting of a variable, not the sending of a message. Of subsequent
invocations of set on the same port at the same logical time only the last value will be
observed by other reactors. Reactions triggered by the setting of a port are queued for
execution at the same logical time instant.

Thread Synchronization

The procedures given as part of this formalization assume a multi-threaded execution plat-
form. While it is not necessary for a reactor runtime environment to execute reactions in
parallel, there are clear circumstances under which it could. The fact that opportunities
for parallelization are statically known for a reactor program makes is a major attraction of
the reactor model. While a non-threaded runtime environment would be somewhat simpler
to explain, the complications introduced by threads are limited. Most importantly, thread
synchronization is required to protect the integrity of concurrently accessed data structures.
Specifically, QE and QR, as well as the variable g that holds the current logical time, must
be protected from data races. We achieve this using a single mutex lock, as shown in
Algorithm 1, Lines 4–6. A major advantage of this design is that the use of a single lock
ensures deadlock-freedom.

Threads do not only enable the parallel execution of independent reactions; they are also
useful for facilitating non-blocking interactions with the (physical) environment—think of
asynchronous callbacks or code in an interrupt service routine. Communication between such
asynchronously executing code and the runtime system designed to occur through physical
actions. Here, too, thread synchronization is necessary to protect the integrity of the event
queue QE and the variable that stores the logical time g.

CHAPTER 2. REACTORS 34

Scheduling Actions

A reaction can only call schedule on its set of schedulable actions. An invocation of
schedule amounts to a request to have an event occur on a given action at some future
instant. The logic used by the runtime environment to handle such request is shown in
Algorithm 2, which is summarized as follows:

Algorithm 2 Schedule an action a.

1: procedure schedule(a, additionalDelay, value)
2: delay ← d(a) + additionalDelay
3: lock(mutex) . Ensure exclusive access to g and QE
4: if o(a) = Logical then
5: if delay = 0 then . Compute tag for logical action
6: tag ← currentTag() . Preserve microsteps if delay is zero
7: else
8: tag ← (π1(currentTag()) + delay, 0) . Ignore microsteps otherwise
9: end if

10: else
11: tag ← (physicalTime() + delay, 0) . Compute tag for physical action
12: end if
13: if s(a) = ⊥ then . Defer to next available microstep
14: conflicts ← {e′ ∈ QE | a(e′) = a ∧ π1(g(e′)) = π1(tag)}
15: tag ← max({tag}∪ {g(e′) | e′ ∈ conflicts}) + (0, 1)
16: else if L(a) 6= ⊥ then . Determine whether tag is “too early”
17: if (tag < g(L(a)) + s(a)) ∨ (tag = g(L(a)) ∧ s(a) = 0) then
18: if p(a) = Drop then
19: unlock(mutex)
20: return . Do not schedule
21: else if p(a) = Replace∧L(a) ∈ QE then
22: v(L(a))← value . Update the value of the last event if still in QE
23: unlock(mutex)
24: return
25: else
26: tag ← max(g(L(a)) + (s(a), 0), g(L(a)) + (0, 1)) . Defer the event
27: end if
28: end if
29: end if
30: e← (a, value, tag)
31: QE ← QE ∪ {e} . Enqueue the event
32: L(a)← e . Record e as the last event for a
33: unlock(mutex)
34: end procedure

CHAPTER 2. REACTORS 35

• L2 Compute the scheduling delay by adding the minimum delay of the given action
d(a) and specified the additional delay.

• L4–12: Compute a preliminary tag. If the action’s origin is Logical, then do this based
on the current logical time g. Microsteps are only preserved if the computed scheduling
delay is zero. If the action’s origin is Physical, then compute the preliminary tag based
on the current physical time.

• If no minimum spacing has been specified, then determine whether there are any events
already queued for the same action that have a tag with a time value that matches the
computed tag. We call these events conflicting.

– L15: If there exist conflicting events, then adjust the timestamp of the computed
tag to have a microstep larger than the greatest tag among the conflicting events.
If there are no conflicts, just add one microstep to the computed tag.

• L16: If a minimum spacing has been specified, enforce it according to the specified
policy. If no policy has been specified, the assumed policy is Defer. Enforcement is
only necessary if a previous event has been scheduled on the same action with a tag
that is closer to the computed tag than is permitted by the minimum spacing, or when
the minimum spacing is zero and the tag of the last-scheduled event matches the time
value of the computed tag.

– L19 If the policy is Drop, simply drop the event and return without having inserted
a new event into the event queue.

– L22 If the policy is Replace and the previously scheduled event L(a) is still on
the event queue, then update its value and return. No new event will be inserted
in the event queue.

– L26: If either the policy is Defer or it is Replace but the previously scheduled
event L(a) has already left the event queue, then recompute the tag to satisfy
the minimum spacing requirement. If the minimum spacing is greater than zero,
then let the new tag be the tag of the previously scheduled event g(L(a)) with
the time value offset by the minimum spacing. If the minimum spacing is zero,
then let the new tag be g(L(a)) plus one microstep.

• L30–L32: Proceed to schedule the event by inserting it into the event queue.

Causality

Logical actions are always scheduled with a minimum delay of one microstep. A microstep
delay is an increment of the index in superdense time [133, 151, 13] with respect to the
current logical time. Actions therefore do not imply causal dependencies and cannot give
rise to causality loops. As such, they are excluded from the dependency analysis described
in Section 2.6.

CHAPTER 2. REACTORS 36

Monotonicity

The additional delay parameter of schedule is useful for specifying “variable” delays, but
it also enables non-monotonic scheduling behavior. That is, an event e can get scheduled
after another event e′ has already been inserted into the event queue and g(e) < g(e′).
One practical implication of this sort of this behavior is that a computationally expensive
search (O(|QE|) for a min-heap) is necessary to determine whether conflicting events already
exist in the event queue (see L14 in Algorithm 2). It should be noted that specifying a
minimum spacing also forces monotonicity, reducing the detection of conflicts to an O(1)
operation. The monotonicity of microsteps is enforced irrespective of the minimum spacing
since microsteps cannot be controlled explicitly by the programmer (the delay parameter
passed to schedule is a time value, not a tag).

Requesting Termination

Finally, reaction code can request termination of the entire program using the procedure
requestStop, shown in Algorithm 3, which only has the side effect of determining the
logical time at which the runtime will perform its last series of reactions. When executing
on a single machine, the delay between the tag of the request and the resulting gstop is one
microstep. The picture is inherently more complex in a distributed execution setting, which
is why we leave δstop unspecified. To see how the runtime responds after gstop has been set,
refer to the doStep procedure in Algorithm 12.

Algorithm 3 Request execution to come to a halt

1: procedure requestStop()
2: gstop ← min(gstop, g + δstop) . δstop is determined by the execution platform
3: end procedure

Mutations

Mutations are reactions that have the capability to structurally change a reactor (specifi-
cally: R and N) during the course of execution. These changes can be carried out using the
following API extension that is available only to mutations:

• create: Creates a new reactor instance given a reference to a reactor class;

• delete: Deletes the reactor identified by a given references from its container;

• connect: Connects the ports of two reactors; and

• disconnect: Disconnects the ports of two reactors.

CHAPTER 2. REACTORS 37

Creating New Reactors

A new reactor can be created using the create procedure (see Algorithm 4), which creates
an instance from a given class and adds it to the set of contained reactors of the instance
serving as the container of the new instance. If create is called at (t,m), then any reaction
of the newly-created reactor and any reactor in its containment hierarchy that is triggered
by • will execute at (t,m) also (see start in Algorithm 5), but not before the last mutation
of the new reactor’s container has finished executing (see Section 2.6).

Algorithm 4 Create a reactor instance given a reactor class and a container instance

1: procedure create(class, container)
2: r ← ν(class, cinst) . Get a new instance
3: cinst ← cinst + 1 . Atomic update of the instantiation counter
4: R(container)← R(container) ∪ {r} . Add instance r to the container
5: start(r) . Trigger startup reactions
6: end procedure

Algorithm 5 Start the execution of a reactor

1: procedure start(r)
2: QR ← QR ∪ T (•(r)) . Stage for execution all reactions triggered by •(r)
3: for each r′ ∈ R(r) do
4: start(r′)
5: end for
6: end procedure

Deleting Existing Reactors

A reactor can also be deleted at runtime. If delete (see Algorithm 6) is called at (t,m),
then the given reactor is marked for deletion, any of its reactions triggered by � are queued
for execution, and delete is called recursively on all reactors that the given reactor contains.
All reactors deleted at (t,m) will have their shutdown reactions triggered at (t,m). When
the runtime has finished executing all reactions triggered at (t,m), all reactors marked for
deletion have any connections that they may still have removed, and the runtime frees any
resources they might occupy (see Algorithm 12). When the next step is executed at (t′,m′)
where t′ ≥ t ∧m > m′, reactors that were deleted at (t,m) no longer exist.

Creating New Connections

Using connect (see Algorithm 7), a mutation m can connect any ports that are in its
sources D(m) or effects D∨(m), or ports of reactors that it created at runtime. Connection
creation is, like reactor creation, logically instantaneous. All mutations of a container are

CHAPTER 2. REACTORS 38

Algorithm 6 Delete a given reactor

1: procedure delete(r)
2: SD ← SD ∪ {r} . Mark r for removal at the end of the current step
3: for each r′ ∈ R(r) do
4: delete(r′)
5: end for
6: QR ← QR ∪ T (�(r)) . Stage for execution all of r’s reactions triggered by �
7: end procedure

Algorithm 7 Connect port p to downstream port p′

1: procedure connect(p, p′)
2: if p ∈ O(C(p)) ∧ p′ ∈ I(C(p′)) then
3: r ← C(C(p)) . Connect output to downstream input
4: else
5: if p ∈ I(C(p)) ∧ p′ ∈ I(C(p′)) then . Connect input to contained input
6: r ← C(p)
7: else if p ∈ O(C(p)) ∧ p′ ∈ O(C(p′)) then . Connect contained output to output
8: r ← C(p′)
9: else

10: error: Cannot connect input to output.
11: end if
12: end if
13: if D∨(p′) 6= ∅ then . Check for conflicts
14: error: Connection would break strict total ordering among reactions that affect p′.
15: end if
16: before← δr . Record causality interface δr before change
17: n← ({p}, {p}, {set(p′,get(p))}, {p′}, ∅,⊥, {})
18: N (r)← N (r) ∪ {n}; P ← P ∪ {(n, ∗)} . Add relay reaction
19: after← δr . Record causality interface δr after change
20: if before 6= after ∨ isCyclic(γN (r)) then . Check for changed δr and causality loops
21: N (r)← N (r) \ {n} . Undo adding relay reaction
22: error: Connection would create direct feedthrough or causality loop.
23: end if
24: if v(p) 6= ε ∧ p ∈ I(r) then
25: lock(mutex)
26: QR ← QR ∪ {n} . Propagate input to contained input
27: unlock(mutex)
28: end if
29: end procedure

CHAPTER 2. REACTORS 39

executed to completion before the start of any reaction of any contained reactor, including
newly created reactors. Every contained reactor, including newly created reactors, will react
to events that are present at the current logical time. If a connection is made between an
upstream port that has a value, that value is also propagated to the downstream port that
it is connected to.

We summarize connect as follows.

• L2–7: Determine the containing reactor to add the connection to, based on whether
this is an output-to-input, input-to-input or output-to-output connection.

• L10: Do not create input-to-output connections.

• L13–15: Do not proceed if the downstream port is already listed as an effect of an
existing reaction.

• L16 Before enacting any changes, record the causality interface of the container.

• L17–L18: As explained in Remark 3, we use relay reactions to realize connections. We
add the relay reaction to the appropriate container and assign it the priority ∗.

• L19 After making the change, again the record the causality interface of the container.

• L20–L23: Verify that the new connection has not altered the causality interface of the
container or introduced cycles in the reaction graph of the container. If either of these
things happened, remove the added relay reaction and report an error. For definitions
of reaction graph γN(r) and causality interface δr, see Section 2.6 (Definitions 16 and
18, respectively).

• L26: Finally, if the upstream port is an input of the containing reactor and it has a
value, propagate the value to the downstream port.

Deleting Existing Connections

A mutation can also disconnect any two ports that it declares as a source or effect. It can also
disconnect any ports of reactors that it has created at runtime (if it stored a reference to those
instances). As with the creation of connections, these changes are reflected instantaneously,
and are not witnessed by any contained reactors until they have been finalized for that time
step. It is not necessary to remove connections to/from or inside a reactor that is deleted,
as this will be taken care of automatically at the end of the time step at which the deletion
happens. However, if the goal is to prevent certain reactions from occurring at the time of
deletion, or to prevent any outputs created at time of a reactor’s destruction from being
witnessed by other reactors, one can remove connections manually to achieve this.

Of course, disconnect essentially performs the inverse operation of connect. For
completeness, disconnect is described in Algorithm 8.

CHAPTER 2. REACTORS 40

Algorithm 8 Disconnect p from downstream port p′

1: procedure disconnect(p, p′)
2: if p ∈ O(C(p)) ∧ p′ ∈ I(C(p′)) then
3: r ← C(C(p)) . Disconnect output from downstream input
4: else
5: if p ∈ I(C(p)) ∧ p′ ∈ I(C(p′)) then . Disconnect input from contained input
6: r ← C(p)
7: else if p ∈ O(C(p)) ∧ p′ ∈ O(C(p′)) then . Disconnect contained output from output
8: r ← C(p′)
9: else

10: return
11: end if
12: n← {n ∈ r | p ∈ D(n) ∧B(n) = {set(p′,get(p))} ∧ p′ ∈ D∨(n)}
13: N (r) \ {n}; P ← P \ {(n,P(n))} . Remove relay reaction
14: end if
15: if v(p) 6= ε ∧ p ∈ I(r) then
16: lock(mutex)
17: QR ← QR \ {n} . Prevent propagation of input to contained input
18: unlock(mutex)
19: end if
20: end procedure

2.6 Dependency Analysis

In the reactor model, each event has a tag. Reactions to events occur at a logical time equal
to the tags of the events that are present, and logical time does not advance during a reaction.
A port or action can have at most one event at any logical time. At any given logical time
g = (t,m), multiple reactions may be triggered. Some care is needed to ensure that triggered
reactions execute in the correct order. Specifically, no reaction is to be executed before the
values of all sources and reactor state that it depends have been determined. If during a
reaction n triggered by an event with some tag g a particular trigger or source is absent,
then it must be guaranteed that no event appears on that port or action with a tag equal to
(or smaller than) g during or after the execution of n.

To determine the necessary constraints on the execution order of reactions, we first ar-
range reactions as vertices in a dependency graph using Algorithm 9, in which edges between
reactions are implied by 1) the sources and effects of reactions; 2) priority with respect to
other reactions within the same reactor; and 3) mutations. We can then use this graph
decide whether a reaction r depends on another reaction r′ and thus weather or it would be
safe to execute r before or during r′. In a concrete implementation, one could assign each
reaction an index based on a topological sort of the dependency graph and simply order
reactions by index. This topic is discussed in more depth in Chapter 4.

CHAPTER 2. REACTORS 41

Definition 16 (Reaction graph). Let r be a reactor. The reaction graph γN(r) is a graph
whose vertices are all reactions contained in the hierarchy of r and whose directed edges
denote dependencies between vertices. It is computed according to Algorithm 9.

Dependencies on Mutations

Before discussing Algorithm 9, let us consider one particular kind of dependency that must
appear in the reaction graph; those between a reaction n and mutations that might affect
the structure of its container C(r). Specifically, we need to ensure that each first reaction
(by priority) of a reactor depends on the last mutation (again, by priority) that exists up the
hierarchy. Without such dependency, reactions could start executing while their upstream
connections are being rerouted or their container is being deleted. We define an auxiliary
function in order to find the nearest mutation:

mut(r) =

{m ∈M | ∀m′ ∈M(C(r)) . P (m′) ≤ P (m)} if C(r) 6= > ∧M(C(r)) 6= ∅,

mut(C(C(r)))
if C(r) 6= >∧ C(C(r)) 6= >
∧M(C(r)) = ∅,

∅ otherwise.

Algorithm 9 Return the reaction graph of reactor r

1: function γN (r)
2: (V,E)←

⋃
r′∈R(r) γN (r′) . Contained reactors

3: V ← V ∪N (r) . Reactions
4: E ← E ∪

⋃
n∈N (r)
p∈D(n)

{n} × N∨(p) . Sources

5: E ← E ∪
⋃

n∈N (r)
p∈D∨(n)

N (p)× {n} . Effects

6: E ← E ∪
⋃

n,n′∈N (r)

{(n, n′) | P(n′) < P(n)} . Reaction priority

7: E ← E ∪ {n ∈ N (r) | ∀n′ ∈ N (r) . P(n) = ∗ ∨ P(n) ≤ P(n′)} ×mut(r) . Mutations
8: return (V,E)
9: end function

The reaction graph is constructed as follows:

• L2. Make the vertices and edges of the dependency graphs of the constituent reactors
of r part of the graph of r. We define the union of graphs to operate element-wise (i.e.,
on the vertex sets and edge sets).

• L3. Make the reactions of r vertices of the graph.

CHAPTER 2. REACTORS 42

• L4-5. Relate each reaction of r to other reactions based on its sources and effects. Note
that the function N , when applied to ports, returns the reactions that list the given
port as a source; N ∨ returns the reactions that list the given port as an effect.

• L6. For all reactions of this reactor, add an edge to the graph between two reactions
when the priority of one is smaller than the priority of the other (i.e., C(n) = C(n′) ∧
(P(n) < P(n′)))

• L7. Make the first reaction of each contained reactor r′ dependent on the last mutation
that can affect the container r (if there is one). This mutation may be located further
up the containment hierarchy. The dependency ensures that no contained reactions
execute before mutations performed on the container are finalized.

After computing the dependency graph G using Algorithm 9, the graph must be checked
for directed cycles. Cyclic dependency graphs must be rejected, as they represent causality
loops; we do not handle them. If G is acyclic, then its reachability relation is a partial
order [49]. It is this partial order that determines the execution order of reactions during
the execution of a reactor.

We define isCyclic : V × (V × V)→ {true, false} as

isCyclic(V,E) =

{
true if ∃v ∈ V.(v, v) ∈ E+,

false otherwise.

Note that while actions may be featured in a reaction’s sources and effects, they excluded
from the dependency analysis because actions are always scheduled at least one microstep
into the future.

Definition 17 (Reaction precedence). Given a top-level reactor r and its reaction graph
γN(r) = (VR, ER), a reaction n is said to be dependent on another reaction n′, or equiv-
alently, n′ precedes n, if and only if n′ is reachable from n, meaning that there exists a
sequence of adjacent vertices in Gr (i.e., a path) which starts in r and ends in r′. In order to
be able to test for the existence of a dependency between two reactions, we define the predicate
≺r: N ×N → {true, false} which we define as follows:

≺r (n′, n) =

{
true if (n, n′) ∈ E+

R

false otherwise

where E+
R denotes the transitive closure of ER.

In a dependency graph, a directed edge denotes a “depends on” relation between two
nodes. A dependency graph can also be encoded as a precedence graph, in which directed
edges denote a “happens before” relation, a term that became famous due to Lamport’s
logical clock algorithm for achieving a causal ordering of events in a distributed system [118].

CHAPTER 2. REACTORS 43

These representations are topologically identical, but the polarity of the edges is inverse.
In the context of concurrency control in databases, precedence graphs are also commonly
referred to as “conflict graphs” or “serializability graphs” [196]. In Definition 17, we chose
to clarify what it means for there to exist a dependency between two reactions in terms of
precedence because it aligns with the flow of information between reactions. Suppose we
have two reactions n and n′ where n depends on n′ we can equally say that n′ precedes n
(i.e, n′ ≺ n) which is equivalent to say that n′ is upstream relative to n, or, alternatively,
n is downstream of n.

Similarly, we can construct a port graph for any given reactor—a dependency graph of
which the vertices are ports (see Algorithm 10). This graph forms the basis of the definition
of a reactor’s causality interface (see Definition 18).

Algorithm 10 Report the dependencies between all ports in reactor r

1: function γP (r)
2: (V,E)←

⋃
r′∈R(r) γP (r′) . Contained reactors

3: V ← V ∪ I(r) ∪O(r) . Ports
4: E ← E ∪

⋃
n∈N (r)

D∨(n)×D(n) . Reactions

5: return (V,E)
6: end function

Definition 18 (Causality Interface). Given a top-level reactor r and its port graph γP (r) =
(VP , EP), a port p is said to be dependent on another port p′ if and only if p′ is reachable
from p. In order to be able to test for the existence of a dependency between two ports, we
use a causality interface, a predicate δr : I(r) × O(r) → {true, false} which we define
(cf. [224]) as follows:

δr(n
′, n) =

{
true if (n, n′) ∈ E+

P

false otherwise

where E+
P denotes the transitive closure of EP .

Causality Loops

The dependencies imposed by reaction priority (i.e., the ordering of reactions within the
same reactor) can have an unexpected side effect of introducing causality loops, which are
cycles in the reaction graph. To explore this problem, let us examine a simple “rock, paper,
scissors” game, illustrated in Figure 2.3. This simultaneous, two-player, zero-sum game,
has only two possible outcomes: a draw, or a win for one player and a loss for the other.
In case of a draw, the game repeats after approximately one second. The game works as
follows. At the same logical time instant, each player picks either a rock, paper, or scissors,

CHAPTER 2. REACTORS 44

and observes the other player’s pick to determine the winner. A rock is defeated by paper.
Paper is defeated by scissors. Scissors are defeated by a rock. The first reaction of each
Player, triggered by either • or its logical action, randomly picks a symbol. The second
reaction, triggered by the observe input, compares the two picks and either claims victory or
scheduled the logical action in case of a draw. Naturally, each player has to pick a symbol
before observing the other player’s pick, or else they would be cheating. Interestingly, this
kind of cheating is actually impossible using reactors.

RockPaperScissors

Player

2 1L

min delay: 1sec
observe reveal

Player

2 1L

min delay: 1sec
observe reveal

Figure 2.3: A reactor implementation of a simple “rock, paper, scissors” game.

If we were to swap the priorities of the two reactions, a causality loop would appear.
While this might not come as a surprise in this particularly simple example, it is often more
difficult to anticipate the emergence of causality loops in reactor programs. For this reason,
a programming environment for reactors has to be equipped with a mechanism to accurately
report these kinds of unanticipated causality loops. In our own IDE (see Section 3.1), we
leverage our diagram synthesis tool to provide such feedback. The automatically synthesized
diagram in Figure 2.4 highlights the direct feedthrough.

RockPaperScissors

Player

21 L

min delay: 1sec
observe reveal

Player

21 L

min delay: 1sec
observe reveal

Figure 2.4: A causality loop due to reaction priority.

The rendering in Figure 2.5 goes a step further by filtering out all elements that are not
part of the causality loop. As these diagrams are interactive, the programmer can simply
click on the involved reactions to quickly navigate to their definition in the code.

2.7 Execution Algorithm

The execution of reactors in a reactor runtime is based on a discrete-event model of
computation that guarantees determinacy, a property that can be proven by showing the
existence of unique fixed points over generalized ultrametric spaces given that the reaction
graph that governs the execution (see Definition 16 in Section 2.6) contains no directed cycles
[140, 157].

CHAPTER 2. REACTORS 45

RockPaperScissors

Player

2

1
observe

reveal

Player

2

1
observe

reveal

Figure 2.5: A filtered version of diagram in Figure 2.4.

The execution environment keeps a notion of a global event queue QE that tracks events
scheduled to occur in the future, and a reaction queue QR for queueing reactions to be
executed at the current logical time, in precedence order.

The execution of a reactor is captured in the execute procedure in Algorithm 11. At
the beginning of execution, logical time starts at a value of g = (T, 0), and it may increase as
execution progresses. Logical time increases step-wise. A step starts when the previous step
has concluded (if there is one) and there is an event in QE with a tag greater than or equal
to the current physical time T . A step ends when QR is empty and all triggered reactions
have finished executing. Execution can be subjected to a timeout by assigning a value gstop
that is offset with respect to (T, 0). If no timeout applies, gstop = (∞, 0).

Algorithm 11 Execute top-level reactor r

1: procedure execute(r)
2: g = (T, 0) . Set logical time equal to physical time
3: start(r) . Trigger startup reactions
4: doStep(r) . Perform the first step
5: while true do
6: next(r) . Handle the subsequent events
7: end while
8: end procedure

Start of Execution

All reactors have a special startup trigger •. It is present only at the logical time instant at
which the reactor is created. It serves as a trigger for reactions that carry out initialization
tasks. The invocation of start will push all reactions triggered by • onto the reaction queue
QR. Before entering the main loop, we call doStep to perform the first step in which the
queued reactions will get executed (as well as any subsequent reactions triggered in effect).
The logic of doStep procedure is described in Algorithm 12 and can be summarized as
follows:

CHAPTER 2. REACTORS 46

Algorithm 12 Execute triggered reactions until QR is empty

1: procedure doStep(r)
2: if g = gstop then
3: shutdown(r) . Trigger all shutdown reactions
4: end if
5: repeat
6: for all n ∈ execSet do
7: if isDone(n) then . Check whether executing element is done
8: doneSet← doneSet ∪ {n}; execSet← execSet \ {n}
9: end if

10: end for
11: if QR 6= ∅ then . Execute something, if possible
12: if threadIsAvailable() then
13: P ← QR ∪ execSet
14: readyForExec ← {p ∈ P | 6 ∃p′ ∈ P . p′ ≺r p)} \ execSet
15: if readyForExec 6= ∅ then
16: n← Select(readyForExec); execSet,QR ← execSet ∪ {n},QR \ {n}
17: if ∆(n) = ⊥ ∨ π1(currentTag()) + ∆(n) < physicalTime() then
18: runInThread(n)
19: else
20: runInThread(B∆(n))
21: end if
22: else
23: waitUntilNumberOfIdleThreadsHasIncreased()
24: end if
25: else
26: waitUntilThreadHasBecomeAvailable()
27: end if
28: else
29: if execSet 6= ∅ then
30: waitUntilNumberOfIdleThreadsHasIncreased()
31: end if
32: end if
33: until QR ∪ execSet = ∅
34: cleanup () . Remove defunct reactors and dangling connections
35: if g = gstop then
36: exit
37: end if
38: end procedure

CHAPTER 2. REACTORS 47

• L5-10. If a reaction that has been under execution is done, move that reaction to
doneSet and remove it from execSet.

• L12–21. The routine threadIsAvailable reports whether the runtime system has
a thread available for executing the selected reaction of mutation. If this is the case,
on L16, select one reaction from the set of ready-to-execute reactions. None of these
reactions have any dependencies on other reactions that have been triggered but have
yet to execute or finish executing at this logical time instant. For a definition of the
predicate ≺r, see Definition 17. If the selected reaction is on time (L18), then execute
it in the available thread. If the reaction is late (L20), then execute the reaction’s
deadline miss handler instead.

• L23. If all pending tasks have dependencies on currently-executing tasks, wait until one
of the currently-executing tasks concludes, freeing up a thread. With POSIX threads,
waitUntilNumberOfIdleThreadsHasIncreased could be implemented using
pthread cond wait.

• L26. If there are pending tasks, but the runtime system does not have resources to ac-
cept a new task, then wait until it can accept a new task. Again, pthread cond wait

could be used to implement the wait.

• L30. If there are no pending tasks, but there are tasks currently in execution, then
wait until at least one of the tasks under execution finishes.

• L33. We iterate the loop L5-33 until there remain no reactions to be executed, and
there are none currently under execution.

• L34: At the end of every step, remove all defunct reactors without leaving any dangling
connections.

The cleanup procedure invoked on Line 34 of doStep is shown in Algorithm 13. The
order in which reactors are removed guarantees that no reactor gets removed before its
contained reactors are removed first.

End of Execution

The logical time that marks the last step performed in the execution of a reactor is determined
by gstop, which is∞ by default. This variable can either be set prior to execution as a means
to enforce a timeout, or it can be set during execution through a call to requestStop.
Before doStep starts executing reactions, it first checks whether the current logical time g
is equal to gstop (Lines 2–4) of doStep, in which case it invokes shutdown which puts all
reactions triggered by � on the reaction queue. If gstop is found to be equal to the start time
(T, 0), then doStep will execute exactly once and both • and � will be present for each
reactor during this step. If g = gstop, doStep will exit the program rather than return (see
Lines 35–37).

CHAPTER 2. REACTORS 48

Algorithm 13 Detach and remove defunct reactors from reactor r

1: procedure cleanup(r)
2: while SD 6= ∅ do
3: F ← {r ∈ SD | @r′ ∈ SD . r′ ∈ R(r)}
4: b← {set(p′,get(p))} . Relay reaction body
5: D← ∅ . Build set of dangling connections
6: D← D∪ {n ∈ N (C(r)) | p ∈ I(C(r)) ∧ p′ ∈ I(r) ∧B(n) = b}
7: D← D∪ {n ∈ N (C(r)) | p ∈ O(r) ∧ p′ ∈ O(C(r)) ∧B(n) = b}
8: D← D∪

{
n ∈ N (C(r))

∣∣∣ p ∈ (⋃r∈R(C(r))O(r)
)
∧ p′ ∈ I(r) ∧B(n) = b

}
9: D← D∪

{
n ∈ N (C(r))

∣∣∣ p ∈ O(r) ∧ p′ ∈
(⋃

r∈R(C(r)) I(r)
)
∧B(n) = b

}
10: N (C(r)) \D . Remove dangling connections
11: for all r ∈ F do
12: free(r); SD ← SD \ {r}
13: end for
14: end while
15: end procedure

Algorithm 14 Stop the execution of reactor r

1: procedure shutdown(r)
2: QR ← QR ∪ T (�(r)) . Enqueue all reactions triggered by �(r)
3: for each r′ ∈ R(r) do
4: shutdown(r′)
5: end for
6: end procedure

Processing Events

Once the first invocation of doStep has concluded and execution has not terminated, the
main event loop is entered (Algorithm 11, Lines 5–7), which consists of repeatedly invoking
next. The next procedure (Algorithm 15) is summarized as follows:

• L9-17. Determine what the next logical time should be, based on the event in QE that
has the smallest tag, and wait for physical time to match its time value. The proce-
dure timedWaitForEventQueueChange blocks until either the event queue was
modified or the specified physical time was reached, whichever comes first. Upon being
called, timedWaitForEventQueueChange is expected to release the mutex and
reacquire it after receiving a signal that an event has been added to QE. This allows
concurrent invocations of schedule to proceed while next is waiting. In an imple-
mentation based on POSIX threads, pthread cond timedwait could be used for this.
In a single-threaded runtime a routine like nanosleep (POSIX) or clock nanosleep

(Linux) could be used. A bare-iron runtime will have to implement its own timer
routine.

CHAPTER 2. REACTORS 49

Algorithm 15 Process the next event(s) for a top-level reactor r

1: procedure next(r)
2: lock(mutex) . Mutual exclusivity with concurrent schedule
3: if (QE = ∅ ∧ ¬keepAlive) then
4: g ← g + (0, 1) . Increment the microstep
5: gstop ← g . End execution after completing a last step
6: unlock(mutex)
7: doStep(r) . Execute final step
8: end if
9: while true do

10: T ←physicalTime()
11: gnext ← min(g(peek(QE), gstop)) . Obtain the tag of the first-in-line event
12: if (T, 0) ≥ gnext then
13: break
14: else . Wait until QE changes or physical time matches tag
15: timedWaitForEventQueueChange(π1(gnext))
16: end if
17: end while
18: g ← gnext; QR, doneSet, execSet← ∅, ∅, ∅ . Advance logical time
19: E ← {e ∈ QE | g(e) = g}; QE ← QE \ E . Gather events for current time t
20: unlock(mutex) . Release mutex
21: clearAll() . Clear all inputs, outputs, actions
22: for all e ∈ E do
23: v(a(e))← v(e) . Set the value of the associated action a(e)
24: end for
25: QR ←

⋃
e∈E T (a(e)) . Enqueue reactions triggered by events

26: doStep(r)
27: end procedure

Algorithm 16 Recursively reset the values of all ports and actions of reactor r to absent

1: procedure clearAll(r)
2: for all p ∈ I(r) ∪O(r) do
3: v(p) = ε
4: end for
5: for all a ∈ A(r) do
6: v(p) = ε
7: end for
8: for all r′ ∈ R(r) do
9: clearAll(r′)

10: end for
11: end procedure

CHAPTER 2. REACTORS 50

• L18. Advance logical time to match the smallest tag currently in QE.

• L21. Set the values of all ports and actions to ε.

• L19. Obtain events to process at the current logical time.

• L20. Release the mutex, allowing concurrent calls to schedule to proceed.

• L22-24. Set triggers according to the value of the events pulled from QE.

• L25. Obtain all reactions triggered by any of the events with a tag equal to the current
logical time and insert them into QR.

• L26: Perform another step.

The clearAll procedure invoked on Line 34 of next is given in Algorithm 16. It simply
ensures that any values that were set during a previous step are cleared.

2.8 Implementations

At the time of writing, there are several implementations of reactor runtimes in existence.

Reactor-C

Implemented by Edward A. Lee, Marten Lohstroh, and Soroush Bateni.

Because C is a rather low-level language, lacking a strong type system, memory man-
agement, and support for object-oriented design, it presents a number of challenges. On the
other hand, C is the most universally supported language for embedded system design, and
it runs efficiently on processors ranging from the smallest 8-bit microcontrollers to sophisti-
cated 64-bit multi-core processors. A major goal of developing a C target is to quantify the
minimal cost of supporting the deterministic concurrency model of reactors, a goal for which
C is a suitable choice. Since the C runtime is designed purely as a target for code generation
(not for standalone usage), it is developed as part of LF which we describe in Chapter 3.

Two implementations of the C runtime library exist. The first is suitable for very low-
level embedded controllers, even those lacking an operating system. It relies on a subset of
the C standard library. Any embedded platform with a C compiler and an implementation
of this library can run the code generated by the LF compiler. For a bare-metal platform,
we use newlib, a C standard library optimized for embedded systems. This implementation
is suitable for embedded applications where most activities are periodic. The second imple-
mentation requires additionally a POSIX thread library. The addition of this library enables
multi-core execution and integration of asynchronous external events (e.g., those generated
by an interrupt request).

CHAPTER 2. REACTORS 51

The C runtime provides utilities for dynamic memory allocation for non-primitive values
(i.e., arrays and structs) created during reactions. After those values are passed along to
other reactors, the burden of freeing the allocated memory is on the runtime. We use
reference counting to determine when the memory occupied by such values can be freed.

The single-threaded C runtime consists of about 2,000 lines of extensively commented
code; the threaded runtime has about 3,000 lines. A minimal application only occupies tens of
kilobytes of memory, making it suitable for deeply embedded platforms. We have tested it on
Linux, Windows, and Mac platforms, as well as on a bare-iron platform called Patmos [187].
On platforms that support pthreads (POSIX threads), it transparently exploits multiple cores
while preserving determinism. A POSIX implementation for Patmos recently developed by
Tórur Biskopstø Strøm has allowed us to successfully run our multi-threaded regression
tests on Patmos as well. The runtime system includes features for real-time execution and
is particularly well suited to take advantage of platforms with predictable execution times,
such as Patmos and PRET machines [65, 225, 130].

Reactor-Cpp

Implemented by Christian Menard.

The C++ runtime is based on the reactor-cpp framework2 which implements the reactor
model. The framework provides mechanisms for specifying reactors and composing them,
as well as the scheduler that is required for executing reactor programs. Similar to the C
implementation, the scheduler transparently maps reactions to multiple threads for parallel
execution while preserving determinism. The framework only depends on the standard
template library (STL) of C++ and therefore executes on any platform that provides an STL
implementation. It has also been shown that the framework integrates well with existing
software frameworks. In particular, reactor-ccp has been used to augment the Adaptive
Platform software stack that is part of the AUTOSAR automotive standard [162].

In contrast to C, C++ provides advanced support for object orientation, generic pro-
gramming, and functional programming paradigms that allow for stricter enforcement of the
reactor principles. Naturally, the concept of a reactor translates to the concept of a class in
C++. In reactor-cpp, each reactor is represented as a specialized class that inherits basic
reactor functionality from a common base class. The specialized class encapsulates all pa-
rameters, state, ports, actions, and reactions of the reactor while only exposing ports on its
public interface. Ports and actions are implemented by generic classes and carry values of
a fixed type. Only ports of the same type can be connected with each other. This enforces
type-safety within the reactor network.

Each reactor program consists of multiple files: a header and a source file for each Reactor
definition, a main file (main.cc) that controls the program execution, and a CMakeLists.txt

file containing directives for an automatic build of the target. While the C++ code generator

2https://github.com/tud-ccc/reactor-cpp

https://github.com/tud-ccc/reactor-cpp

CHAPTER 2. REACTORS 52

enforces a more strict realization of the reactor principles than the C target, these principles
can still be violated by reactions that are not well behaved. For instance, a reaction of
reactor A could send a reference to the inner state of A to reactor B. Also, reactions of
different reactors could have shared state, e.g., by using a common library that uses global
variables. Strictly enforcing the reactor principles in C++ would only be possible by code
inspection. Instead, reactor-cpp aims to prevent common mistakes and accidental violations
of the reactor principles.

Another essential difference between the C and the C++ code generator is that the C++
implementation uses the ownership semantics of smart pointers to implement references to
mutable and immutable values that are passed between reactors. When a reactor sends data
to multiple downstream reactors, it is important that one of those reactors not be able to
modify the data before it is seen by the other reactors. In this case, the downstream reactors
will see immutable values. If one of those downstream reactors wishes to modify the data,
it may request a unique pointer to a mutable version of the value. In most cases, this would
create a copy of the original value and return a unique pointer to the mutable copy. If
the reaction writes this mutable value to an output port, then the semantics of the unique
pointer requires that the reaction transfers value ownership to the port. In other words, as
soon as a mutable value leaves the scope of a single reaction, this reaction loses the capability
to modify the value. In the special case where there is only one downstream reaction, the
copying of the data can be avoided by passing a unique pointer in the first place, thereby
enabling the downstream reactor to modify the data without compromising determinacy.

Reactor-TS

Implemented by Marten Lohstroh and Matt Weber.

Like reactor-ccp, the reactor-ts3 framework that implements a TypeScript runtime was
designed with standalone use in mind. Extra care has gone into ensuring type safety for pro-
grams written using reactor-ts. Reactions are modeled as instances of a Reaction<T> class
where, type parameter T denotes the type of the argument list of the reaction function of type
(...args: ArgList<T>) => void that implements the reaction body, which is passed into
the constructor of Reaction<T> as an anonymous function. The type ArgList<T> is actually
a conditional type [5] that is assignable only if all list elements are subtypes of Variable,
an interface shared by all ports, actions, state variables, and parameters. The assigned type
will be an inferred tuple type (essentially a list of types corresponding to the individual argu-
ments), or, if the arguments have among them elements that do not subclass Variable, the
assigned type will be never. We make use of TypeScript’s strictBindCallApply compiler
option to ensure that the actual argument list, which is also passed into the constructor of
Reaction<T> matches the type signature of the reaction function that it is applied to.

3https://ts.lf-lang.org/

https://ts.lf-lang.org/

CHAPTER 2. REACTORS 53

The runtime implementation depends on Node.js [207]. Of course, Node.js has its own
event loop implementation, and does not provide access to threads. Because of this, the logic
described in Algorithm 15 does not apply. Specifically, we must avoid blocking the event
loop and use a timer to wake up when events in QE are due to be released. For this, we
have a custom timer implementation that makes use of Node’s process.hrtime with which
we reach higher precision than is possible with the standard setTimeout routine.

Reactor-Py

Implemented by Soroush Bateni and Edward A. Lee.
The Python target developed for LF reuses the core of the C runtime through the use of
Python C Extensions. It does not implement an independent runtime system.

One thing [a language designer] should not do is
to include untried ideas of [their] own. [Their]
task is consolidation, not innovation.

C.A.R. Hoare

Chapter 3

Lingua Franca

3.1 Overview

The goal of the reactor model is to provide effective means for building concurrent systems
that can maintain an ongoing and interaction with their environment through a series of
deterministic responses to external stimuli. The property of determinism makes rigorous
testing much more feasible, but also allows for a more compositional approach to the design
and implementation these kinds of systems. Indeed, the reactor model gives an unambiguous
meaning to the composition of two reactors. But in order to be able to define reactors, specify
their reactions, and compose them, we need a concrete software framework or programming
language. To this end, we have developed Lingua Franca (LF).

As the name suggests, LF is intended as a “bridge language.” One of the key advantages
of reactors is that they can be coordinated as black boxes, without any knowledge about the
specifics of the implementation of their reactions. LF capitalizes on this by concerning itself
only with the definition and composition of reactors, and leaving the implementation of their
reactions to some target language. LF is perhaps best described as a polyglot coordination
language. The static semantics of an LF program can be understood in terms of mathemat-
ical objects discussed in Section 2.5; its dynamic semantics in terms of the algorithms that
describe the reactor runtime system. We also discuss a formal semantics of LF based on
fixed points in generalized ultrametric spaces in Section 3.8. LF currently supports C, C++,
TypeScript, and Python. Rather than compete with immensely popular, feature-rich, and
well-supported languages, LF is positioned to augment them with a deterministic coordina-
tion layer. This approach lets LF programs to leverage whatever libraries and compilers or
interpreters the target language is equipped with.

Architecture

The general architecture of the Lingua Franca approach is outlined in Figure 3.1. An LF
program, written in LF syntax, has to first be parsed and validated. Aside from straight-
forward syntax errors, there are less obvious problems that can render the program invalid.

54

CHAPTER 3. LINGUA FRANCA 55

For instance, the validator implements a static check for instantiation cycles (i.e., a reactor
A instantiates reactor B which, in turn, instantiates A). It also makes sure that there
exist no cyclic dependencies between reactions (i.e., the reaction graph as constructed in
Algorithm 9 is acyclic). These are semantic checks that need to be performed to ensure
that constructiveness of the program (see Section 3.8). It is also checked that all references
to parameters, ports, and actions, are resolvable given the scoping rules enforced by LF.
As a byproduct of the validation process, there is also the option of rendering the program
graphically as an interactive diagram. These diagrams have proven to be very helpful for
explaining the structure of the program. They also play a key role in error reporting as they
can highlight the cause of aforementioned cycles, which are at times difficult to glean from
the source code (see Section 2.6).

If no structural problems exist in the program, then the next step is to transpile the
LF code to target code. While the structure of the resulting program is determined by the
LF code, the implementation of reactions is given is verbatim target code, which is spliced
directly into the generated code. In order to yield an executable program, the generated
code has to be combined with a runtime implementation that is capable of coordinating the
execution of reactors. If the target is a compiled language, the generated code has to first
run through the target compiler, which is another point in the process where errors might
occur. In order to relate compilation problems back to particular locations in the LF code,
target-specific means are leveraged (e.g., the #line directive in C).

As a coordination language, LF governs the interactions and concurrent execution of
chunks of target code. We make no attempt to limit what those chunks of code can do,
and instead assume that they conform to the principles of reactors. The extent to which
these principles can be enforced (such one reactor not sharing state with another reactor)
varies between target languages. For example, in C there is little that can be enforced,
and enforcement would likely add significant overhead. Hence, we assume that the chunks
of target code are well-behaved. Better safety properties could be achieved by either code
generating the chunks of C code from a safer language or using LF with a different target
language, such as Java or Rust. Our C++ implementation, discussed in Section 2.8, already
puts in place some guardrails to prevent target code from violating the reactor semantics.

Development Environment

Lingua Franca comes with a standalone command-line compiler called lfc and an Eclipse1-
based IDE. The backbone of the compiler is the language implementation built using the
Xtext [68] framework. Xtext applies a model-based approach to create an abstract syntax
tree (AST) for a program. The grammar for a language is defined in extended Backus-Naur
form from which Xtext derives a meta-model in the Eclipse Modeling Framework [200].
Xtext then provides extensions to populate data structures and set up cross-references in
parsed AST models, for example, between the usage of a variable and its declaration. The

1https://www.eclipse.org/

https://www.eclipse.org/

CHAPTER 3. LINGUA FRANCA 56

LF program
Parse and

Validate

Valid LF

code?

Generate

target code

Invoke target

compiler

Report

errors

Synthesized

diagram

Runtime

code

Compilation

errors

Valid target

code?
Executable

no

yes

no

yes

Figure 3.1: A flow chart describing the Lingua Franca compiler toolchain.

parser for a language is generated from the grammar, as well as skeleton code for handling
scoping, performing code validation (semantic checks on the AST), and code generation.

Furthermore, Xtext can automatically create editor support for syntax highlighting,
content-assist, folding, jump-to-declaration, and reverse-reference lookup across multiple
files. It can do this for the Eclipse-based editor, but (some of) these features are also
available through a language server, extending the support to any editor that implements
the language server protocol. This includes popular ones like VIM, Emacs, and Visual Studio
Code. At the moment, a standalone Eclipse IDE for LF development with editor and com-
piler support is available and can be built and run from the LF repository.2 In the future, we
plan to additionally distribute a pre-built Eclipse application, editor plugins for integration
into existing Eclipse installations, and a language server. Our goal is for Lingua Franca
IDE functionality to be easily integrated into existing development setups of (future) LF
users.

Diagram Synthesis

The Eclipse-based Lingua Franca IDE also provides automatically synthesized diagram
representations for LF programs. They are based on the idea of transient views [186]
that are created on-demand and usually focus on certain aspects of the program. This
fits especially well with textual languages, such as LF, where a diagram allows for a fast
and intuitive understanding of the general structure and important aspects of a program
while the textual representation enables comfortable editing of every detail. A key enabler
of this approach is the automatic layout [190]. It removes the tedious task of manually
arranging elements in a diagram, which is especially undesirable when you are not even

2https://repo.lf-lang.org/

https://repo.lf-lang.org/

CHAPTER 3. LINGUA FRANCA 57

editing graphically in the first place. We implemented the diagram synthesis3 for LF with
the KIELER4 Lightweight Diagrams framework [186]. Automatically generated diagrams
are used throughout this thesis for illustrational purposes.

Syntactic Quirks in LF

Semicolons

Semicolons are optional in LF, but we do not feature them in our grammar definitions to
avoid clutter. While some programmers may be used to write code without semicolons,
others might have the habit to end every statement with a semicolon. While they are not
technically necessary, it fits the spirit of a true “lingua franca” to allow both styles and
provide a more fluid experience for the programmer who writes target code in a language
like C that requires a semicolon at the end of each statement.

Comments

The LF syntax permits C/C++/Java-style comments and/or Python-style comments. All
of the following are valid comments:

Listing 3.1: Using comments

1 // Single -line C-style comment.

2 /*

3 Multi -line C-style comment.

4 */

5 # Single -line Python -style comment.

6 ’’’

7 Multi -line Python -style comment.

8 ’’’

Target Code

Verbatim target code can appear in several places in LF programs, such as in types and the
body of a reaction. The {= =} delimiters are used to demarcate where target begins and
ends. These target code delimiters consist of character sequences obscure enough that
we have yet to encounter them in actual target code. As such, we have not yet seen the need
to introduce an escape mechanism.

The time Type

LF generally does not do any type checking. If the target language has a static type checker,
then the target compiler will fulfill this role. The common denominator among all target

3The diagram synthesis capability was contributed by Alexander Schulz-Rosengarten.
4https://rtsys.informatik.uni-kiel.de/kieler

https://rtsys.informatik.uni-kiel.de/kieler

CHAPTER 3. LINGUA FRANCA 58

languages we have considered thus far, however, is that they all lack a type for time values.
Hence, LF fills in this gap with a time type. Time values are used in LF to specify behavior,
and in order to be able to interpret such them correctly, they need to be accompanied by
units. The LF validator checks this and reports it when units are missing, except when the
value is zero. A time value has the following syntax:

〈time〉 ::= 〈INT 〉〈unit〉 | 0

〈unit〉 ::= 〈ns〉 | 〈us〉 | 〈ms〉 | 〈s〉 | 〈m〉 | 〈h〉 | 〈w〉
〈ns〉 ::= ‘nsec’ | ‘nsecs’
〈us〉 ::= ‘usec’ | ‘usecs’
〈ms〉 ::= ‘msec’ | ‘msecs’
〈s〉 ::= ‘sec’ | ‘secs’
〈m〉 ::= ‘min’ | ‘mins’
〈h〉 ::= ‘hour’ | ‘hours’
〈w〉 ::= ‘week’ | ‘weeks’

Lists

Lingua Franca also provides a convenient syntax for initializing arrays and lists. If the type
in the target language is an array, vector, or list of some sort, then its initial value can be
given as a list of values. For example, in the C target, you can initialize an array parameter
as follows:

Listing 3.2: Using LF lists

1 reactor Foo(my_array:int[](1, 2, 3)) {

2 ...

3 }

Equivalently, one could use target code delimiters, but this looks less elegant.

Listing 3.3: Declaring a static type initializer in verbatim C

1 reactor Foo(my_array:int[]({={1 , 2, 3}=})) {

2 ...

3 }

CHAPTER 3. LINGUA FRANCA 59

3.2 Target Declaration

Each LF program has to specify a target, which clarifies as to how the contents of reaction
bodies are to be interpreted. The syntax is as follows:

〈target〉 ::= 〈ID〉(‘{’〈property〉*‘}’)?

〈property〉 ::= 〈ID〉‘:’〈value〉

A target specification may have optional parameters, called target properties, the
names and values of which depend on the specified target. The syntax for specifying target
properties is a simplified YAML [19] format limited to key-value pairs. Target parameters
that are supported by all target languages are:

• compiler : A string giving the name of the target language compiler to use.

• fast : A boolean which, if true, specifies to execute as fast as possible without waiting
for physical time to match logical time.

• files : A list of files to be copied to the directory that contains the generated sources.

• flags : A string giving options to be passed to the target compiler.

• keepalive : A boolean value to indicate whether to keep executing even if the event
queue is empty. It is particularly useful to set this to true the execution is driven by
sporadic physical actions (i.e, events scheduled in response to sensor input or network
packet). By default, a program will exit once there are no more events to process.

• no-compile : If true, then do not invoke a target language compiler.

• timeout : A time value (with units) specifying the logical stop time of execution.

Sidebar: Metasyntax Notation
We define the LF syntax using a notation similar to Extended Backus-Naur Form
(EBNF) notation used in Xtexta. The ‘?’ as used in the 〈target〉 production denotes
“zero or one” repetitions. The ‘*’ and ‘+’ operators denote “zero or more” and “one or
more” repetitions, respectively. The binary ‘&’ operator in the grammar joins elements
into an “unordered group,” where elements can occur in any order but each element
may only appear once.

Bracketed terms written in capitals such as the 〈ID〉 represent termi-
nals that are captured using some regular expression that is omitted for
brevity. For instance, 〈ID〉 is specified as: ’^’?(’a’..’z’|’A’..’Z’|’_’)

(’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*

ahttps://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html#syntax

https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html#syntax

CHAPTER 3. LINGUA FRANCA 60

Example The target statement:

Listing 3.4: Example target statement with target properties

1 target C {compiler: "cc", flags: "-O3", fast: true , timeout: 10 secs}

specifies to use compiler cc instead of the default gcc, to use optimization level 3, to execute
as fast as possible, and to exit execution when logical execution time has reached 10 seconds.
The timeout effectively specifies gstop = gstart + 10 s. During the very last execution step at
gstop, all shutdown reactions will be triggered in addition to the reactions triggered by pending
events with tag gstop. Events on the event queue with a tag greater than gstop will be not be
handled.

3.3 Import Statement

It is also possible to import reactor definitions from other files. The import statement has
the form:

〈import〉 ::= ‘import’〈reactors〉‘from’〈file〉
〈reactors〉 ::= 〈rename〉(‘,’〈rename〉)*
〈rename〉 ::= 〈ID〉(‘as’〈ID〉)?
〈file〉 ::= ‘"’〈STRING〉‘"’

where 〈file〉 specifies another LF file in the search path, which currently only includes the
location of the current file, but could be expanded in the future to include other locations,
such as those listed in a project or package manifest. LF does not have a package system
yet.

Example The following statement:

Listing 3.5: Example import statement

1 import Foo , Bar as Baz from "foobar.lf"

imports reactors Foo and Bar from ”Foobar.lf”, but it renames Bar to Baz, presumably to
avoid a name collision with a local reactor named Bar. The renaming mechanism of imports
obviates the need for so-called “fully qualified names” for disambiguation.

3.4 Preamble Block

Reactions may contain arbitrary target code, but often it is convenient for that code to
invoke external libraries or to share function definitions. For either purpose, a reactor may

CHAPTER 3. LINGUA FRANCA 61

include a preamble. Notice that 〈code〉 can be anything, as long as it is delimited by an
opening {= and closing =} (and does not include occurrences of either delimiter).

〈preamble〉 ::= 〈visibility〉?‘preamble’〈code〉
〈code〉 ::= ‘{=’.*‘=}’

〈visibility〉 ::= ‘public’ | ‘private’

The preamble can also be used to include local source files. In order for the files to be found,
the files files target property can be used to automatically copy them into the output
directory of the generated code.

The 〈visibility〉 modifier is not supported by all targets, hence it is not required. Its
intent is to limit the scope in which the preamble code is visible. A preamble can occur in
at the outer-most lexical scope of an LF file, or as part of the definition of a reactor. When
a reactor is imported in another file, its private preamble is meant to not be visible in that
file, whereas its public preamble is.

Example The following reactor uses the common stdlib C library to convert a string to
an integer:

Listing 3.6: Using a preamble

1 target C;

2 main reactor StringToInt {

3 preamble {=

4 #include <stdlib.h>

5 =}

6 reaction(startup) {=

7 char* s = "42";

8 int i = atoi(s);

9 printf("Converted string %s to int %d.\n", s, i);

10 =}

11 }

When executed, this will print: Converted string 42 to int 42.

3.5 Reactor Definition

A reactor class definition is similar to a class definition in an object-oriented programming
language like Java. It is structured as follows:

CHAPTER 3. LINGUA FRANCA 62

〈reactor〉 ::= 〈modifiers〉‘reactor’〈ID〉〈parameters〉〈host〉?〈parents〉?〈body〉
〈modifiers〉 ::= (‘federated’ | ‘main’)? &‘realtime’?

〈parameters〉 ::= (‘(’〈parameter〉(‘,’〈parameter〉)*‘)’)?

〈host〉 ::= ‘at’〈URI 〉
〈body〉 ::= ‘{’(〈configuration〉 | 〈interface〉)*‘}’

〈configuration〉 ::= 〈preamble〉 | 〈var〉 | 〈instance〉 | 〈connection〉 | 〈reaction〉
〈interface〉 ::= 〈input〉 | 〈output〉 | 〈action〉 | 〈timer〉

Modifiers

Each file can only have only a single main keyword. It denotes the top-level reactor (see
Definition 5 in Chapter 2) that is to execute when the program runs. When instead of main
the federated keyword is used, this indicates that the program shall execute as a federation,
where each reactor instance in the top-level reactor runs as a separate process, potentially
at a distinct location. Federated execution is discussed in more detail in Section 5. That
section also explains the purpose of the at clause in 〈host〉.

The realtime keyword is used to indicate so-called realtime reactors, which are com-
mitted to never run ahead of physical time because they interact with a sensor, actuator
or some other source of sporadic events, such as a network interface. This is necessary to
prevent a situation where a new event enters the system with a tag that is in the past rela-
tive to the current logical time. Any reactor that features physical actions is automatically
considered a realtime reactor. The formalization of reactors in Section 2.5 makes no mention
of this realtime property because the execution algorithm is conservative and considers all
reactors to be realtime. Relaxation of the constraint that no event is handled before its tag
has been surpassed by physical time, however, offers more scheduling flexibility and could
increase the amount of exploitable parallelism during execution.

Parameters

Reactors can be given parameters, which can be overridden during initialization but are
immutable after their initial assignment. The syntax for a parameter declaration is as follows:

〈parameter〉 ::= 〈ID〉‘:’〈TYPE 〉?〈initializer〉
〈initializer〉 ::= ‘(’〈value〉(‘,’〈value〉)*‘)’
〈value〉 ::= 〈ID〉 | 〈time〉 | 〈literal〉 | 〈code〉
〈literal〉 ::= 〈INT 〉 | 〈STRING〉 | 〈FLOAT 〉 | 〈BOOL〉

CHAPTER 3. LINGUA FRANCA 63

Depending on whether the target language is statically typed, a type must be declared. For
〈TYPE 〉 we allow common expressions for types, such as identifiers, rectangular brackets for
arrays, stars for pointers, etc., but it is always possible to use 〈code〉 if the required syntax
is not natively supported by LF.

Reactors do not have constructors, so each parameter has to be initialized with a default
value. LF has native support for static list initializers as they are common in target lan-
guages; an 〈initializer〉 can either be a singleton value or a list of values. A 〈value〉 can either
be a 〈time〉, 〈code〉, or an ordinary 〈literal〉. Because reactor definitions are not allowed to
be nested, there are no parameters in scope that a 〈ID〉 can point to. But, as we will see,
during instantiation of the reactor a parameter can be overridden with a value that refers to
a parameter of the containing reactor.

Reactor Instantiation

Unlike objects classes, reactors classes do not have a constructor. Therefore, all contained
reactor instances (analogue to class members in object orientation) must be statically ini-
tialized as part of their declaration. An instantiation looks as follows:

〈instance〉 ::= 〈ID〉‘=’‘new’〈width〉?〈ID〉〈assignments〉〈host〉?
〈assignments〉 ::= ‘(’〈assignment〉(‘,’〈assignment〉)*)?‘)’

〈assignment〉 ::= 〈ID〉‘=’〈value〉

This syntax features the familiar new keyword commonly used in most object-oriented
languages, and the kind of optional that one might recognize from class instantiation in
Python. The optional 〈width〉 relates to LF’s capability to create multiple instances at once.
This feature is explained in more detail in Section 3.7. The optional 〈host〉 declaration
can only be used for instances that part of the definition of a federated reactor, a concept
explained in Chapter 5.

Example The following example prints Hello World! because "Stranger", the default
value of parameter who, is overridden with the string "World".

Listing 3.7: Example of instantiation and parameter overriding

1 target TypeScript;

2 main reactor HelloWorld {

3 print = new Hello(who="World");

4 }

5 reactor Hello(who:string("Stranger")) {

6 reaction(startup) {=

7 console.log("Hello " + who + "!")

8 =}

9 }

CHAPTER 3. LINGUA FRANCA 64

Reactor instantiation gives rise to a containment hierarchy that is perhaps most apparent
when an LF program is rendered as a diagram, as shown in Figure 3.2. Each instance is placed
within a container instance, represented by a box with rounded corners. The outermost box
denotes the main reactor. In the IDE, each reactor can be expanded or collapsed by double-
clicking on it to show or hide its contents. The shown figure is fully expanded. The innermost
reactor, which corresponds to the Hello reactor in Listing 3.7 only shows one reaction that
is triggered by startup, which is represented by a circle (echoing the • notation used in
Section 2.5).

Figure 3.2: Graphical rendering of the “Hello World” program in Figure 3.7.

Inheritance

Reactors have their own inheritance mechanism that is fully independent of any inheritance
mechanisms that may be featured in the target language. A reactor definition can declare
which other reactors it extends using the following syntax:

〈parents〉 ::= ‘extends’〈ID〉(‘,’〈ID〉)*

All the 〈parameters〉, 〈configuration〉, and 〈interface〉 AST nodes are inherited from a reactor
that gets extended. A reactor can only be extended successfully if all locally declared and
inherited class members are of the same sort (e.g., if the extension has an 〈input〉 and any
of the 〈parents〉 has an identically named member, it has to also be an 〈input〉) and their
〈TYPE 〉 has to match. A reactor can extend multiple reactor classes. Special attention must
be paid to the order in which they are listed in the 〈parents〉 clause; reactions, which are
unnamed but ordered entities (see Remark 4 in Chapter 2) are inherited in the same order
as their containing reactors appear in 〈parents〉.

Example Consider the code in Listing 3.8. The main reactor SubclassesAndStartup has
an instance of SubA and an instance of SubB. Both SubA and SubB extend Super, so they
each inherit the startup reaction from Super, and it has to execute before their own startup
reaction. When executed, the output will show the output in Listing 3.9.

Note that when the target property threads is set to a value greater than 1, then
the order in which these print statements appear will permute across runs, but never will
‘SubB started’ appear before ‘SubB(Super) started’ or ‘SubA started’ appear before
‘SubA(Super) started’.

CHAPTER 3. LINGUA FRANCA 65

Listing 3.8: Subclassing a reactor

1 target C;

2 reactor Super {

3 reaction (startup) {=

4 printf("%s(Super) started\n", self ->name);

5 =}

6 }

7 reactor SubA(name:string("SubA")) extends Super {

8 reaction (startup) {=

9 printf("%s started\n", self ->name);

10 =}

11 }

12 reactor SubB(name:string("SubB")) extends Super {

13 reaction (startup) {=

14 printf("%s started\n", self ->name);

15 =}

16 }

17 main reactor SubclassesAndStartup {

18 a = new SubA();

19 b = new SubB();

20 }

Output 3.9: SubclassesAndStartup

SubA(Super) started

SubB(Super) started

SubB started

SubA started

Ports

Port declarations have the form:

〈input〉 ::= ‘mutable’?‘input’〈width〉?〈ID〉‘:’〈TYPE 〉?
〈output〉 ::= ‘output’〈width〉?〈ID〉‘:’〈TYPE 〉?

The mutable keyword in 〈input〉 is a directive to the code generator indicating that reactions
that read this input will also modify the value of the input. Without this modifier, inputs
are considered immutable; modifying them is disallowed. The precise mechanism for making
use of mutable inputs is target-language specific, and the extent to which immutability can
be enforced varies from target to target.

The optional 〈width〉 relates to the notion of multiports that LF provides, which is
described in more detail in Section 3.7. In a nutshell, this allows a single port to represent

CHAPTER 3. LINGUA FRANCA 66

not one, but multiple channels, each of which can receive data simultaneously from a
different source. An ordinary port can only observe data coming from a single source.

Whether a 〈type〉 must be provided, is dependent on the target language. Unlike param-
eters, ports cannot be initialized with some value; they are always absent by default. If it is
required, the LF validator will enforce it.

Actions

An action, like an input, can cause reactions to be invoked. Whereas inputs are provided
by other reactors, actions are scheduled by this reactor itself, either in response to some
observed external event or as a delayed response to some input event. The action can be
scheduled by a reactor by invoking a schedule procedure provided by the runtime system.

An action declaration is structured as follows:

〈action〉 ::= 〈origin〉‘action’〈ID〉〈timing〉?‘:’〈TYPE 〉?
〈origin〉 ::= ‘logical’ | ‘physical’
〈timing〉 ::= ‘(’〈value〉(′,′ 〈value〉(′,′ 〈STRING〉)?)?‘)’

Like ports, actions carry values. If the target language is statically typed, then a 〈TYPE 〉
must be provided.

Origin

An action always has to specify its 〈origin〉, which is either logical keyword or physical
keyword. We refer to an action with a physical origin as a physical action and an action
with a logical origin as a logical action. As laid out in Algorithm 2, the origin of the action
passed to schedule determines whether the tag of the resulting event will be based on
the time value of the current tag π1(g), or T , the current physical time. In either case, let
us refer to this time value as the time basis for computing the tag of the resulting event.
Additional parameters that affect the behavior of schedule are specified in the optional
〈timing〉 clause of the action. It is possible to specify 〈timing〉 parameters with references
to parameters of the reactor (hence the use of 〈value〉 instead of 〈time〉). Of course, the
LF validator will check whether parameters referenced in 〈timing〉 are of the time type and
report an error if they are not.

CHAPTER 3. LINGUA FRANCA 67

Sidebar: Physical vs. Logical Actions
Physical actions are typically used to assign timestamps to external events, such as
the arrival of a network message or the acquisition of sensor data, where the physical
time at which these external events occurs is of interest. A typical use case for a
physical action is to turn sensor readings into action events or to react to incoming
messages received via a network. This can be achieved by invoking schedule in an
asynchronous callback function or directly in an interrupt service routine (ISR).

Note that physical actions make it possible to inject into an executing program
tagged events that result from asynchronous physical events outside the program.
This goes considerably further than, for example, the timed extension of Esterel in [32],
which provides mechanisms for controlling the timing of the execution of the program
and hence for controlling the timing of its effects on the physical world. Physical
actions enable more reactive programs; the program can react in predictable ways to
unpredictable external events. As we will explain below in section 3.8, this may seem
to undermine the determinacy of the Lingua Franca, but if one considers the tag
assigned to these external events as part of the input to the program, then the program
remains deterministic. This is the key property that enhances testability; test vectors
that include the timing of external events yield exactly one correct response.

Logical actions, on the other hand, can be used to achieve irregular (not periodic)
events where the tag is under program control. Just like physical actions, logical
actions can have an offset of zero. However, this does not result in an event at the
same logical time that schedule is called because this could lead to nondeterminism.
Instead, reactors adopt a superdense model of time [42, 151], in which each timestamp
is replaced by a pair (t,m) that we call a tag, where t is a time value, and n a microstep
index. This allows for the existence of events that have the same time value but are
nonetheless ordered. Also see Section 5.1 for a discussion of our model of time. An
event that was scheduled at tag (t,m) with zero delay will have a tag (t′,m′) such that
t′ = t but m′ > m.

Minimum Delay

The first 〈value〉 in 〈timing〉 denotes the minimum delay, which specifies the minimum
distance between the tag of the resulting event and the time basis. It can be thought of
as a minimum scheduling offset. Calling schedule on an action a with minimum delay
d(a) and additional delay dextra communicates the intent of scheduling an event at tintended =
B + d(a) + dextra, where B is the time basis, which is π1(g) if the origin o(a) = Logical,
and physical time T otherwise. This combination of a minimum delay, which is static and
statically analyzable, and an additional delay, which can be computed at runtime, offers a
balance that enables writing programs with strong guarantees that require static analysis,
but also enables programs that require more flexibility.

CHAPTER 3. LINGUA FRANCA 68

Minimum Spacing

The second 〈value〉 in 〈timing〉 denotes the minimum spacing that has to be observed. It
specifies the minimum distance between the tags of any two subsequently scheduled events
on that same action. Setting a minimum spacing limits the extent to which invocations of
schedule can overwhelm the runtime. It is particularly useful for physical actions, because
the runtime cannot exercise any control over their scheduling. Without a minimum spacing
requirement, physical actions would make schedulability analysis impossible. At runtime,
spacing enforcement can also be used as a mechanism to implement back pressure such as is
done in Reactive Streams [54].

If no minimum spacing is specified, then no minimum spacing is enforced.

Spacing Violation Policy

The third and last argument of 〈timing〉 is a 〈STRING〉 that denotes the spacing viola-
tion policy that shall be applied when the required minimum spacing between subsequently
scheduled is violated. In other words, it determines is done when tintended is too close to the
tag of the last event that was scheduled on this action. The precise meaning of these policies
is specified in Algorithm 2 in Section 2.5. We summarize them as follows:

• “drop”: Do not insert a new event;

• “replace”: Replace the last event; and

• “defer” (default): Insert a new event, but adjust its timestamp so that the minimum
spacing requirement is satisfied.

Timers

Timers are a convenient means for specifying periodic tasks, which are very common in
embedded computing. For this reason, timers are offered as a language primitive in LF. The
syntax of a timer declaration is as follows:

〈timer〉 ::= 〈ID〉(‘(’〈value〉(‘,’〈value〉)?‘)’)?

A 〈value〉 in 〈timer〉 may again refer either to a parameter or a time value. The first 〈value〉
specifies the offset. The second 〈value〉 specifies the period. A timer triggers once at the
start time plus the given offset, which is zero if it is left unspecified. If a period is given, then
the action will continue to trigger repeatedly at regular intervals equal to the given period.

CHAPTER 3. LINGUA FRANCA 69

Listing 3.10: Using a timer

1 target C;

2 main reactor Periodic(

3 offset:time (0),

4 period:time (500 msec)) {

5 timer t(offset , period);

6 reaction(t) {=

7 printf("%lld\n", get_elapsed_logical_time ());

8 =}

9 }

Listing 3.11: Using logical actions instead of a timer

1 target C;

2 main reactor Periodic(

3 offset:time (0),

4 period:time (500 msec)) {

5 logical action init(offset);

6 logical action recur(period);

7

8 reaction(startup) -> init , recur {=

9 if (self ->offset == 0) {

10 printf("%lld\n", get_elapsed_logical_time ());

11 schedule(recur , 0, NULL);

12 } else {

13 schedule(init , 0, NULL);

14 }

15 =}

16

17 reaction(init , recur) -> recur {=

18 printf("%lld\n", get_elapsed_logical_time ());

19 schedule(recur , 0, NULL);

20 =}

21 }

CHAPTER 3. LINGUA FRANCA 70

Example The timer on line 5 will trigger the reaction of the Periodic with a zero offset and
period of 500 ms, which will print the elapsed logical time in nanoseconds (i.e., 0, 500000000,
1000000000, . . .). Timers are syntactic sugar. As shown in Listing 3.11, the exact same can
be achieved using logical actions.

Diagrams of Listings 3.10 and 3.11 are shown in Figures 3.3a and 3.3a, respectively.

(a) Graphical rendering of Listing 3.10 (b) Graphical rendering of Listing 3.11

Figure 3.3: Timers are syntactic sugar for periodically recurring logical actions.

State Variables

A reactor may declare state variables, which are class members just like ports, timers, and
actions; each reactor instance will have their own independent instances of these entities.
State variables allow for reactions share information with other reactions within the same
reactor and carry over information from one logical time to the next. A state variable is
declared using the following syntax:

〈var〉 ::= ‘state’〈ID〉‘:’〈TYPE 〉?〈initializer〉?

Example The following reactor will produce the output sequence 1, 2, 3, . . . by increment-
ing the state variable count every time it reacts to timer t:

Listing 3.12: Using a state variable

1 target TypeScript;

2 main reactor Count {

3 state count:number (0);

4 timer t(0, 100 msec);

5 reaction(t) {=

6 count ++;

7 console.log(count);

8 =}

9 }

While it may be tempting to use a preamble block for specifying shared state, doing so
would lead to a very different behavior and, most likely, nondeterministic results. Unlike a
state variable whose scope is limited to a single reactor instance, a global variable declared

CHAPTER 3. LINGUA FRANCA 71

in a in a preamble is shared among all reactor instances, which obviously leads to data races
under multi-threaded execution. But even in purely sequential execution models, global
variables have long been flagged as problematic. It was only a few years after Dijkstra’s
famous letter condemning the “goto” statement as harmful [60], that Wulf and Shaw argued
for the abolishment of “non-local variables” [218]. The same reasons that applied then still
apply now. Reactors formally do not feature global variables, and their usage in LF is
strongly discouraged.

Connections

A reactor definition can specify connections between the ports of reactors it contains. It
can also draw connections between the ports of contained reactors and its own ports. The
syntax for specifying a connection is as follows:

〈connection〉 ::= (〈ref 〉 | 〈refList〉)(‘->’ | ‘∼>’)(〈ref 〉 | 〈refList〉)
〈ref 〉 ::= 〈ID〉(‘.’〈ID〉)?

The dotted notation in 〈ref 〉 is used to refer to ports of contained reactors, where the first
〈ID〉 is the name of the port and the second 〈ID〉 refers to the name of the contained reactor.
If no dot is used, then it is implied that the 〈ID〉 refers to a port of the containing reactor
(i.e., a port of the reactor class in whose lexical scope the connection is defined). It is
also reference multiple ports at once using a 〈refList〉, the details of which we discuss in
Section 3.7.

Logical Connections versus Physical Connections

We distinguish two types of connections: logical connections, denoted by a straight arrow
->, and physical connections, denoted by a squiggly arrow ∼>. Whereas the logical
connection is synonymous with an ordinary connection in the reactor model (see Section 2.3),
physical connections are syntactic sugar for a reaction that gets triggered by the upstream
port, schedules a physical action, at some later tag gets triggered by the resulting event,
and then sets the port of the downstream port. The net effect of this level of indirection
is that data gets transferred between the upstream and downstream port without implying
a dependency between those ports. This can be useful if no synchronization is necessary
between the produced output and downstream reactions that observe it. One can compare
this sort of interaction with the handling of events in JavaScript [149]; when an event occurs,
it will be pushed onto a queue and handled later, in some arbitrary order. In other words,
physical connections are a mechanism for intentionally introducing nondeterminism in places
where no strict ordering of events is required.

Example We can show the difference in timing behavior between using a physical con-
nection and using a logical connection using the code in Listing 3.13 by simply changing

CHAPTER 3. LINGUA FRANCA 72

Listing 3.13: Printing a timed sequence through a logical connection

1 target C {timeout: 599 msec};

2 main reactor TimedSequence {

3 ramp = new Ramp();

4 print = new Print();

5 ramp.y -> print.x;

6 }

7 reactor Ramp {

8 timer t(0, 100 msec);

9 output y:int;

10 state count:int(0);

11 reaction(t) -> y {=

12 SET(y, self ->count);

13 self ->count ++;

14 =}

15 }

16 reactor Print {

17 input x:int;

18 reaction(x) {=

19 printf("Logical time: %lld , Physical time: %lld"

20 ", Value: %d\n",

21 get_elapsed_logical_time (),

22 get_elapsed_physical_time (), x->value);

23 =}

24 }

Output 3.14: TimedSequence with logical connection

Logical time: 0, Physical time 442124 , Value: 0

Logical time: 100000000 , Physical time 100146322 , Value: 1

Logical time: 200000000 , Physical time 200140962 , Value: 2

Logical time: 300000000 , Physical time 300146657 , Value: 3

Logical time: 400000000 , Physical time 400092148 , Value: 4

Logical time: 500000000 , Physical time 500142916 , Value: 5

Line 5 from ramp.y -> print.x to ramp.y ∼> print.x. When we compare the output in
Output 3.14 to Output 3.15, we see that the logical times are no longer exact when the
physical connection is used. Note that extra slack was added to the timeout target property
to account for the time delay incurred by the physical connection (also see the discussion
in Section 5.4 about coordinating the end of execution). The logical time of the last event
in Output 3.15 is 500 153 069 ns (rather than 500 000 000 ns), meaning that only four events
would show if the timeout was chosen to be exactly 500 ms.

CHAPTER 3. LINGUA FRANCA 73

Output 3.15: TimedSequence with physical connection

Logical time: 103524 , Physical time 160233 , Value: 0

Logical time: 100075065 , Physical time 100130927 , Value: 1

Logical time: 200130178 , Physical time 200202198 , Value: 2

Logical time: 300101395 , Physical time 300168437 , Value: 3

Logical time: 400025707 , Physical time 400079239 , Value: 4

Logical time: 500087864 , Physical time 500153069 , Value: 5

3.6 Reaction Definition

A reaction definition is somewhat similar to that of a class method or function. A reaction
consists of 〈code〉, a block of code surrounded by target code delimiters, and a signature.
Whereas the signature of a function usually consists of parameters and their types, a return
type, and possibly extra annotations such as visibility modifiers and exception declarations,
a reaction signature consists of a list of 〈triggers〉, 〈sources〉, and 〈effects〉, and an optional
〈deadline〉. The syntax is as follows:

〈reaction〉 ::= ‘reaction’〈triggers〉〈sources〉〈effects〉?〈code〉〈deadline〉
〈triggers〉 ::= ‘(’〈io〉‘)’
〈sources〉 ::= 〈io〉?
〈effects〉 ::= ‘->’〈io〉
〈io〉 ::= 〈ref 〉(‘,’〈ref 〉)*

〈deadline〉 ::= ‘deadline’‘(’〈time〉‘)’〈code〉

An entry in 〈triggers〉, 〈sources〉5, or 〈effects〉 may refer to a port or action of the containing
reactor, or a port of a contained reactor. A reaction has to have at least one trigger (or else
it would never execute). There are two additional triggers that may be used: startup for
triggering the reaction at the very first logical time instant of the containing reactor’s life
cycle, and shutdown for triggering the reaction at the very last logical time instant of the
container’s existence. Ports or actions that should not trigger the reaction, but whose value
might be read in the reaction’s 〈code〉, must be listed among the reaction’s 〈sources〉. Failure
to do so will cause a compilation error. Ports whose value might be set in the reaction’s
〈code〉 and actions that might be scheduled in the reaction’s 〈code〉 must be listed among
the 〈effects〉, i.e., after the ->. Again, if a reaction sets a port or schedules an action that is
not among its 〈effects〉, the compilation error will result.

While actions do not imply dependencies, making them part of the reaction signature
allows their effects to be considered as part the static analysis of the program. For instance,
if a reaction n schedules an action a that has a minimum delay d(a), then a will not trigger

5In the formalization, sources include triggers, but in LF we separate them to avoid verbosity.

CHAPTER 3. LINGUA FRANCA 74

any reactions until T > π1(g) + d(a), in which T denotes physical time and g is the tag at
which a was scheduled. Facts like these determine whether a program is schedulable or
not (i.e., whether timing constraints can always be met) [159].

Timing constraints can be specified using a 〈deadline〉. A 〈deadline〉 is a property of a
〈reaction〉 that stipulates that whenever the reaction gets triggered, its 〈code〉 is to execute
before T > g + ∆, where T denotes the current physical time, g denotes the current logical
time, and ∆ is specified by the 〈time〉 parameter of the 〈deadline〉. Should a deadline miss
occur at runtime, the 〈code〉 of the 〈deadline〉 will be invoked rather than the 〈code〉 of the
〈reaction〉. This behavior is codified in Algorithm 12 in Section 2.7.

Example The example discussed in Section 2.4 has an implementation that is available
in the LF repository. Instead of interacting with physical pedals, brakes, and a motor, this
demo receives input from a keyboard and prints a log of the performed control to stdout.
The LF code for the Brake reactor is sketched in Listing 3.16. When the deadline is brought
down sufficiently, say to 100 microseconds, deadline misses will start to occur. When this
happens, the alternative reaction body on Line 8 is invoked instead of the reaction body on
Line 6. While in a braking system even late application of the brakes is probably better
than none at all, there exist scenarios in which late actuation can do substantial harm.
For instance, imagine an automatic lane switching system that has to query a number of
sensors and process their data in order to determine whether it is safe to switch lanes. Any
conclusion that such system reaches that is not confined to a very limited time window would
be dangerous to act upon.

Listing 3.16: Using a deadline

1 reactor Brakes {

2 input force:int;

3

4 // @label Reaction with deadline

5 reaction(force) {=

6 // On time

7 =} deadline (2 msec) {=

8 // Too late

9 =}

10 }

3.7 Banks and Multiports

In programs that require a “dense” connection topology, i.e., where some reactors have to
interact with a significant number of peers, it can quickly become tedious to allocate ports,
draw each individual connection, and specify reaction signatures. To avoid this, LF features
ports that can send or receive over multiple channels, called multiports, and bundles of
instances of a reactor class, called banks of reactors.

CHAPTER 3. LINGUA FRANCA 75

To declare an input or output port to be a multiport, or instantiate a bank of reactors
instead of a single one, the optional width parameter must be used, which can be a positive
integer constant 〈INT 〉 or a parameter name 〈ID〉.

〈width〉 ::= ‘[’〈INT 〉 | 〈ID〉‘]’

Connecting Equal-width Multiports

Example Consider the code in Listing 3.17. This example features two multiports that are
connected using an ordinary 〈connection〉 on Line 23, which connects each channel of a.out
to b.in. In this case, the width of the ports match. If the widths do not match, then a
warning is issued. The data of unconnected output channels gets discarded and unconnected
input channels are always absent. This statement is legal because the widths of a.out and
b.in match. The 〈width〉 of a.out is determined by the parameter width, which has a
default value of 1 but is overridden during the instantiation of a, whereas Destination.in
has a fixed width of 4. Downstream reactor b simply adds up the values 0, 1, 2, and 3 that
it collects from the four channels of b.in and it prints:

Sum of received: 6.

A reaction triggered by a multiport will be triggered when any of the multiport’s channels
have a value. Hence, when using multiports, it is important to test for presence of the input
on each channel, as done in Listing 3.17 on Line 15

When a 〈reaction〉 declares a multiport as a 〈trigger〉 (Line 12), 〈source〉, or 〈effect〉
(Line 4), then this brings into scope of the reaction body a way to access the width of the
port and a way to write to each channel of the port. It is also possible to test whether a
previous reaction has set an output value and to read what that value is (values are not
actually cleared in between steps, only the indicator of their presence is reset). The exact
syntax for this depends on the target language. In the C target, the width of a port name
out is accessed with the variable out width, and x[i] references the output channel to
write to using the SET macro, as shown on Line 6.

Connecting Different-width Multiports

It is also possible to connect different-width ports using a 〈refList〉 on either side of the
arrow in a 〈connection〉. The 〈refList〉 production is defined as follows:

〈refList〉 ::= ‘(’〈ref 〉(‘,’〈ref 〉)*‘)’‘+’?

Instead of referencing a single port, this construct allows one to reference lists of ports. The
channels of ports on the left of the arrow are connected to channels of ports on the right, in
the order they are listed (from left to right), until there are no more available channels on
the right. If the total width on the left does not match the total width on the right, then a
warning is issued. If the left side is wider than the right, then output data will be discarded.
If the right side is wider than the left, then inputs channels will be absent.

CHAPTER 3. LINGUA FRANCA 76

Listing 3.17: Reactors with multiports

1 target C;

2 reactor Source(width:int(1)) {

3 output[width] out:int;

4 reaction(startup) -> out {=

5 for(int i = 0; i < out_width; i++) {

6 SET(out[i], i);

7 }

8 =}

9 }

10 reactor Sink(width:int(1)) {

11 input[width] in:int;

12 reaction(in) {=

13 int sum = 0;

14 for (int i = 0; i < in_width; i++) {

15 if (in[i]->is_present) sum += in[i]->value;

16 }

17 printf("Sum of received: %d.\n", sum);

18 =}

19 }

20 main reactor MultiportToMultiport {

21 a = new Source(width = 4);

22 b = new Sink(width = 4);

23 a.out -> b.in;

24 }

Listing 3.18: Connecting multiports

1 target C;

2 import Source , Sink from ’MultiportToMultiport.lf ’ // See Listing 3.17.

3 main reactor MultiportToMultiport2 {

4 a1 = new Source(width = 3);

5 a2 = new Source(width = 2);

6 b = new Sink(width = 5);

7 a1.out , a2.out -> b.in;

8 }

Example Consider the code in Listing 3.18, which has a main reactor with two Source

instances: a1 that has width=3 and a2 that has width=2. It also has a Sink b with width=5.
On Line 7, the first three channels of b are connected to the outputs of a1 and the last two
channels of b are connected to a2.

CHAPTER 3. LINGUA FRANCA 77

Listing 3.19: A multicast connection

1 target C;

2 import Source , Sink from ’MultiportToMultiport.lf ’ // See Listing 3.17.

3 main reactor Multicast(width:int(4)) {

4 a = new Source(width = 1);

5 d = new[width] Destination(width = 1);

6 (a.out)+ -> d.in;

7 }

Multicast Connections

It is also possible to have fewer ports on the left of a connection and have their channels
multicast to ones on the right. To signal this intent, the optional parentheses and ‘+’ in
the 〈refList〉 must be used. The content inside the parentheses can be a comma-separated
list of ports, the ports inside can be ordinary ports or multiports, and the ports be can
members of ordinary reactors or banks of reactors. In all cases, the number of ports inside
the parentheses on the left must divide the number of ports on the right.

Example The statement (a.out)+ in Line 6 of Listing 3.19 means “repeat the output
port a.out one or more times as needed to supply all the input ports of d.in.”

Using Banks of Reactors

Like an 〈input〉 or 〈output〉, an 〈instance〉 can be parameterized with a 〈width〉. This syntax
allows for the creation of a bank of reactors where 〈width〉 specifies the number of reactors
in the bank. Banks and multiports can be combined; a 〈ref 〉 in a 〈connection〉 can refer to
a port in a single instance, to a multiport in a single instance, to a regular port in a bank
of reactors, or to a multiport in a bank of reactors. Whenever the total number of channels
on left side of a 〈connection〉 does not match the total number of channels on the right, a
warning will be issued. To distinguish the instances in a bank of reactors, the reactor will
automatically have a parameter called bank index of type int. This will be assigned a
number between 0 and n− 1, where n is the number of reactor instances in the bank.

Example The connection between a.out and b.in in Listing 3.20 is balanced.

Listing 3.20: Connecting banks of reactors

1 target C;

2 import Source , Sink from ’MultiportToMultiport.lf ’ // See Listing 3.17.

3 main reactor BankToBankMultiport {

4 a = new[3] Source(width = 4); b = new[4] Sink(width = 3);

5 a.out -> b.in; // 3 * 4 = 12 channels

6 }

CHAPTER 3. LINGUA FRANCA 78

Example In Listing 3.21, we connect a Source with a multiport of width 3 to a bank of
three Sink reactors. Because each Sink instance has an input of width 1, the connection is
balanced.

Listing 3.21: Connecting a multiport to a bank

1 target C;

2 import Source , Sink from ’MultiportToMultiport.lf ’ // See Listing 3.17.

3 main reactor MultiportToBank {

4 a = new Source(width =3); b = new[3] Sink();

5 a.out -> b.in;

6 }

3.8 Semantics

Lingua Franca, with its timestamped events, is rooted in a discrete-event model of com-
putation. We can leverage prior work with the semantics of discrete-event systems [182, 220,
127, 222, 42, 139, 156, 158] to prove determinism. A program is deterministic if it exhibits
exactly one behavior for each set of inputs. Some care is needed, however, because this
statement requires defining precisely what we mean by “behavior” and “input.”

First, LF cannot be fully dealt with by the DEVS formalism of [222] because there is no
requirement for a nonzero logical time delay from inputs to outputs of reactors. Outputs are
simultaneous (in logical time) with inputs, much like the synchronous languages [20].

Second, LF uses a superdense model of time [151, 155], where there is no requirement for
a delta-causal component in feedback loops. As a consequence, the metric-space semantics of
[182, 220, 127], which uses the Cantor metric and the Banach fixed point theorem, cannot be
used unmodified. We can choose a semantics based on complete partial orders (CPOs)
[139] or on a generalized ultrametric space [42, 156, 158]. Here we choose the latter.
We will not give the full formalism here, since it is well documented in the literature, but
instead will only explain how to map LF onto this formalism. A full understanding will
require reading the prior work.

We use the concept of a signal to represent the sequence of timestamped messages that
flow from output ports to input ports in LF. Formally, a signal is a partial function s : T ⇀ V ,
where T is the tag set and V is the set of possible message values. A signal is defined for
tags where there is an event (a message is sent) and is undefined for other tags. For the
purposes of proving determinism, we take “behavior” to be the set of signals produced by a
program execution.

The prior work with ultrametric space semantics assumes a superdense time tag set
T = R × N, but the theory applies for any totally ordered set. There are no real numbers
in LF, so the tag set can be accurately modeled by T = N × N, where N is the set of
natural numbers. The set is ordered lexicographically. Dispensing with real numbers means
that some of the corner cases that arise in a generalized ultrametric semantics do not arise
in LF. One subtlety that we do not escape, however, is the possibility of Zeno systems,

CHAPTER 3. LINGUA FRANCA 79

where one part of the system fails to advance time past a certain finite point while another
part of the system proceeds beyond that point. Consider a program where one portion
advances time only by microsteps and another by metric time. It can be shown that whether
a given program is Zeno is undecidable; a clever demonstration of this has been given by
Ben Lickly [126] who gives an example discrete-event program that is Zeno if the Collatz
conjecture is false and non-Zeno if it is true. This example can also be easily be implemented
in LF, as shown in Listing 3.22. Since Zeno systems are probably not useful, we will simply
assume that our semantics does not include Zeno systems. The only thing remaining to do
is prove that a program is modeled by a strictly contracting endofunction in the generalized
ultrametric space. Determinism will then follow from the existence and uniqueness of a fixed
point for this function.

First, we have to show that each reactor is indeed modeled by a function. This function
has the form

F : (T ⇀ V)N → (T ⇀ V)M ,

where (T ⇀ V) is the set of all signals, N is the number of input ports, and M is the
number of output ports. Some care is need here because a reaction contains arbitrary code
in a target language, code that LF is not concerned with. If that code is nondeterministic,
e.g., by invoking a random number generator seeded by the current time, then it is far from
obvious how to model the reactor as such a function. But recognizing that our goal is to
show the LF is deterministic (it does not introduce nondeterminism), not that the target
language is deterministic, for each execution of the program, we can take the function to
be the one determined by the particular outcome of every nondeterministic choice in the
target language. This is analogous to the way the prior DE semantic models handle external
inputs. For each execution, the function realized by each component is determined, in part,
by the particular external inputs provided to that execution. For the example of the random
number generator, we can consider the seed to be an external input. The function will be
different for each execution of the program because the input will be different, but it will be
a function nonetheless.

A similar strategy can be used to handle physical actions, which gets assigned a tag
based on the current physical clock of the executing platform. The function realized by a
reactor will depend on that tag, so that function will be different for every execution, but it is
nevertheless a function, rendering the theory applicable. Hence, the tag, not just the value, of
a physical action is considered an external input to the program. Given the inputs, including
the tags assigned to physical actions, the behavior of the program will prove deterministic,
an extremely valuable property (consider that it enables regression testing, for example).

A final subtlety is that LF allows reactions to overwrite an output produced by a previous
reaction. Since these two output values have the same tag, this would seem to make it
impossible to model an output signal as a function whose domain is the set of tags. However,
because of the dependency analysis, which constrains the execution order of reactions, no
other reactor will see the first value. Every other reactor sees only the final value at any
tag, and hence there is no contradiction. That final value is the output from the function

CHAPTER 3. LINGUA FRANCA 80

Listing 3.22: Stuttering Zeno behavior exhibited if input disproves Collatz conjecture

1 target TypeScript {keepalive: true};

2 main reactor Collatz {

3 logical action check:bigint

4 physical action response:string

5 preamble {=

6 const readline = require(’readline ’)

7 const rl = readline.createInterface ({

8 input: process.stdin ,

9 output: process.stdout

10 })

11 =}

12 reaction(startup) -> response {=

13 rl.question("Enter an integer :\n", (answer:string) => {

14 actions.response.schedule(0, answer)

15 rl.close()

16 })

17 =}

18 reaction(response) -> check {=

19 actions.check.schedule(0, BigInt(response))

20 =}

21 reaction(check) -> check {=

22 let n = check

23 if (n !== undefined) {

24 console.log(n)

25 if (n <= 1n) {

26 util.requestShutdown ()

27 } else {

28 actions.check.schedule(0,

29 (n % 2n == 0n) ? n/2n : 3n*n +1n)

30 }

31 }

32 =}

33 }

CHAPTER 3. LINGUA FRANCA 81

F (this also explains why we model reactors, not reactions as functions). We next need to
show that for every execution, the F function for each reactor is contracting in a generalized
ultrametric space. Following [42, 139, 156], we define the generalized ultrametric over the
set (T ⇀ V)N of N -tuples of signals to be a function

d : (T ⇀ V)N × (T ⇀ V)N → Γ

where Γ is the set of down sets of the tag set T , and N is a positive integer. For a particular
pair of tuples of signals s1, s2, d(s1, s2) is the largest down set of T where the restrictions of
s1 and s2 to this down set are equal. In other words, d(s1, s2) is the tag set of the largest
common prefix of s1 and s2.

The set Γ is totally ordered by reverse set containment. Thus, for γ1, γ2 ∈ Γ, we write
γ1 ≤ γ2 if and only if γ1 ⊇ γ2. A function F modeling a reactor is a contraction if for all
N -tuples s1, s2 ∈ (T ⇀ V)N ,

d(F (s1), F (s2)) ≤ d(s1, s2).

In words, the tag set of the common prefix of two possible outputs from the function is at
least as big as the tag set of the common prefix of the two possible inputs that produce
these outputs. This property is trivially satisfied by all LF reactors because outputs cannot
depend on events with tags larger than that of the output. In other words, every reactor is
causal (no output event depends on a future input event, one with a larger tag).

One final step is needed. Using the connections between ports to guide function com-
position, the individual functions Fr for each reactor r can be systematically composed to
construct a function

G : (T ⇀ V)P → (T ⇀ V)P ,

where P is the total number of signals in the program and G describes the entire program.
The procedure for constructing this function G is systematic (see [131], chapter 6).

An example fashioned after Figure 6.1 of [131] is given in Figure 3.4. Figure 3.4a shows a
cyclic composition of four reactors producing four signals (P = 4). Each reactor is modeled
by a function F1 through F4. These functions are assembled in parallel in Figure 3.4b to
define an endofunction G that has the four signals as inputs and outputs. Four feedback
connections then route each output to the corresponding input. The constraints of LF ensure
that the graph of reactions (not reactors) is acyclic (any feedback loop in the dependency
graph between reactions must include at least one microstep delay), and hence there always
exists a finite unrolling (the function G applied to its own outputs some number N times)
such that there is no path through the resulting graph of reactions from any input to the
first G to any output of the last G. Since there is no such path, at each logical time, each
output from GN at each logical tag does not depend on any input at that logical tag. In the
example, N = 3 is sufficient (see Figure 3.4c). In general, it is easy to show that N is no
larger than the total number of reactions in the program.

Since any parallel composition of contracting functions is contracting, G is a contracting
function. The function GN , however, is strictly contracting because of the lack of direct

CHAPTER 3. LINGUA FRANCA 82

(a) Normal composition (b) Feedback composition
(c) Unrolled feed-
back

Figure 3.4: Constructing a strictly contracting function GN that models an LF program.

paths from any input to any output. Hence, every LF program can be modeled as a feedback
loop with a strictly contracting function GN mapping all signals to all signals. A classic
fixed point theorem [175] tells us that such a function has exactly one fixed point, and
hence there can be only one set of signals that satisfy the program. Hence, the program is
deterministic. That fixed point theorem, however, is not constructive (it gives no way to find
the fixed point). In [42], the classic Banach fixed point theorem, which applies to ordinary
metric spaces, is generalized to apply to generalized ultrametric spaces. That theorem is
constructive. The constructive procedure for finding the fixed point offers an operational
semantics for LF. At the same time,the existence and uniqueness of the fixed point gives a
denotational semantics. These two semantics match and hence are “fully abstract.”

For completeness, one final observation is in order. LF permits the structure of programs
to change at runtime through a mechanism called mutations (see Section 2.5). Logically,
these mutations can be modeled as occurring between logical time steps because, at each
time step, the mutations always precede any reaction that may be affected by the mutation.
Semantically, this is termination of the execution of one deterministic program at the con-
clusion of a logical time step and starting a new deterministic program at the next logical
time step. Two or more distinct functions G participate in determining the behavior of the
program. As long as the time step is chosen deterministically and the mutation itself is a
function of the inputs, the result is still a deterministic program.

We have to fight chaos, and the most effective
way of doing that is to prevent its emergence.

Edsger W. Dijkstra

Chapter 4

Concurrency and Timing

Precise timing plays an important role in cyber-physical systems [124]. With their increasing
computational demand, so is efficient exploitation of parallelism [12]. In order to effectively
program these systems, there is a need for models with semantics that includes time, and
we need runtime systems that are capable of harnessing the computing power of modern
multi-core systems. The Reactor model and its Lingua Franca implementation is aimed
at meeting these demands. Our approach is in contrast with today’s general-purpose hard-
ware and programming languages, where timing properties of software are emergent rather
than specified, and exploiting concurrency is tedious due to the intrinsic difficulties dealing
with threads [128] or endemic nondeterminism in coordination models like actors or service-
oriented architectures [162]. The state-of-the-art in engineering realtime systems (which
has not changed much since the early 2000s) relies heavily on overly detailed modeling and
analysis or testing for the verification of timing properties [138, 47], but effectively testing
software in the face of nondeterminism is challenging and sometimes infeasible.

Our goal is to chart a path toward a practice where timed behavior can be specified
explicitly and its feasibility assessed statically, at compile-time. We are not there yet, but
we see LF with its ability to specify timing behavior using first-class language constructs
as an important step toward that goal. The key feature of the reactor model that en-
ables this is its multiplicity of timelines and the relationship is establishes between them.
Reactors leverage logical time, following classical synchronous-reactive principles, to cater
deterministic responses to external stimuli that register as events with a tag derived from
physical time (i.e., wall-clock time). This allows for the formulation of deadlines, which are
bounds on the physical time permitted to elapse while reacting to events. While the LF
toolchain currently performs no static WCET-analysis [180] or schedulability analysis [69,
18]—capabilities worth developing in the future—reactors are equipped with a fault handling
mechanism for handling runtime violations of timing constraints. As faults can never be ruled
out completely, we consider static analysis and fault handling complementary approaches to
achieving robustness in time-critical systems.

The deterministic concurrency model of reactors is useful not only for systems that are
time-critical. Any application that seeks to utilize multi-core architectures—even if it does

83

CHAPTER 4. CONCURRENCY AND TIMING 84

not care about timing at all—could benefit from the way reactors transparently exploit
concurrency and help achieve reproducible program behavior.

4.1 Physical Actions in Reactive Systems

The use of physical actions and the distinction between physical and logical actions is suf-
ficiently subtle that we feel compelled to offer an example illustrating the use of both. The
example in Listing 4.1, which can be found in the Lingua Franca GitHub repository1,
implements a “reflex game” (a similar example was used by Berry and Gonthier [25]), where
a user is presented with a prompt at a random time and asked to respond to the prompt by
typing Return or Enter on the keyboard. The game then reports the number of milliseconds
that elapsed between the prompt and the Return. If the user attempts to cheat by hitting
return before seeing the prompt, the program detects it.

ReflexGame

RandomSource

3

21 L

2secs

another

out
GetUserInput

3

21 P

prompt

another

Figure 4.1: Diagram generated from the LF code in Listing 4.1.

The program consists of two reactors. RandomSource is responsible for generating a
prompt at a random time. On Line 6, in response to startup, it uses the logical action
named prompt to schedule a prompt to occur after two seconds plus an additional random
delay specified by the function rnd time. When that action occurs, it will print a prompt
(Line 9). When an input event another occurs, it will schedule another instance of the
prompt action (line 13). Using a logical action in this reactor makes sense because the
reactor itself, not its physical environment, controls the timing of events.

The second reactor, GetUserInput, uses the pthreads library to start a thread that listens
for keyboard inputs. The thread is started on Line 28 in response to startup. The new
thread will, upon detecting that the user has typed Return, schedule the physical action
rspns (Line 21). That action will be assigned a tag based on the current physical time
as reported by the operating system or other time service on the execution platform. The
reaction to rspns (Line 30) checks to see whether the user cheated and, if not, reports the
response time. It then issues a request for another prompt (Line 38).

1https://repo.lf-lang.org/

https://repo.lf-lang.org/

CHAPTER 4. CONCURRENCY AND TIMING 85

Listing 4.1: Reflex game written in LF

1 target C;

2 reactor RandomSource {

3 input another:bool; output out:bool;

4 logical action prompt (2 secs);

5 reaction(startup) -> prompt {=

6 schedule(prompt , rnd_time (), NULL);

7 =}

8 reaction(prompt) -> out , prompt {=

9 printf("Hit Return!");

10 set(out , true);

11 =}

12 reaction(another) -> prompt {=

13 schedule(prompt , rnd_time (), NULL);

14 =}

15 }

16 reactor GetUserInput {

17 preamble {=

18 void* read(void* rspns) {

19 while (1) {

20 ... wait for Return key ...

21 schedule(rspns , 0, NULL);

22 }

23 }

24 =}

25 input prompt:bool; output another:bool;

26 physical action rspns; state prompt_time:time (0);

27 reaction(startup) -> rspns {=

28 pthread_create (..., &read , rspns);

29 =}

30 reaction(rspns) -> another {=

31 if (self ->prompt == 0LL) {

32 printf("YOU CHEATED !\n");

33 } else {

34 int t = (get_logical_time () - self ->prompt) / MSEC (1);

35 printf("Time in ms: %d\n", t);

36 self ->prompt_time = 0LL;

37 }

38 set(another , true);

39 =}

40 reaction(prompt) {=

41 self ->prompt = get_physical_time ();

42 =}

43 }

44 main reactor ReflexGame {

45 p = new RandomSource (); g = new GetUserInput ();

46 p.out -> g.prompt; g.another -> p.another;

47 }

CHAPTER 4. CONCURRENCY AND TIMING 86

Using a physical action for the second reactor makes sense because the timing of the
events of this action are determined by the physical environment, not by the reactor itself.
LF ensures that the tags assigned to these events will not appear “in the past.” In other
words, it ensures that all reactors see events in timestamp order. The precision with which
these logical timestamps match physical time, of course, will depend on the properties of the
real-time clock on the execution platform.

Deadlines

The GetUserInput reactor in Listing 4.1, which turns keystrokes into tagged events through
a physical action, is an example of a reactor that wraps a sensor. A typical use case for such
a component would be to integrate it into a control system such that it triggers some compu-
tation, the result of which ultimately drives an actuator. In our reflex game, the “actuator”
just prints to stdout. (Line 35). Such control systems are prevalent in automotive appli-
cations, fly-by-wire systems in aircraft, and really any kind of cyber-physical system. What
these applications typically have in common is that they are subject to a specification that
imposes bounds on the maximum latency between sensing and actuation. In an automotive
brake system, for instance, the physical time that elapses between the moment of pressing
the brake pedal and the brakes being applied has to be bounded in order to guarantee a
braking distance that is considered safe (see Section 2.4).

logical time

physical time

sensor

ISR Controller c Actuator a
deadline

(max. 100 msec)

Figure 4.2: A deadline defines the maximum delay between the logical time of an event and
the physical time of the start of a reaction that it triggers.

We call these bounds deadlines. A deadline ∆ specifies a time interval such that the
reaction to the input in with tag g = (t,m) is required to be invoked before physical time,
as measured on the local platform, exceeds t+∆. In other words, before invoking the reaction
to input in at a logical time g, the LF runtime system checks the local physical time T ; if
T ≤ t+ ∆, then it invokes the reaction as usual (Line 13). Otherwise, it invokes the code at
Line 15 that handles a deadline miss. That code could, for example, raise an alarm and/or
change the system to operate in some sort of safe degraded mode.

The program in Listing 4.2 illustrates how the end-to-end latency between a sensor and
an actuator can be bounded by a deadline. The program instantiates two reactors c and a,
instances of Controller and Actuator respectively. The physical action sensor on Line 2
will be triggered by an asynchronous call to the schedule procedure, for example, within
an interrupt service routine (ISR) handling the sensor (that code is not shown). The action
will be assigned a tag based on what the physical clock indicates when the ISR is invoked.

CHAPTER 4. CONCURRENCY AND TIMING 87

Listing 4.2: Bounded end-to-end delay between a sensor and an actuator

1 reactor Controller {

2 physical action sensor:int;

3 output y:int;

4 // ...

5 reaction(sensor) -> y {=

6 int control = calculate(sensor_value);

7 set(y, control);

8 =}

9 }

10 reactor Actuator {

11 input x:int;

12 reaction(x) {=

13 // Time -sensitive code

14 =} deadline (100 msec) {=

15 printf("*** Deadline miss detected .\n");

16 =}

17 }

18 main reactor Composite {

19 c = new Controller ();

20 a = new Actuator ();

21 c.y -> a.x;

22 }

That tag, therefore, is a measure of the physical time at which the sensor triggered. The
reaction to sensor, on Line 6, performs some calculation and sends a control messages to
its output port. Line 21 connects that output to the input x of the actuator.

The actuator’s reaction to the input x declares a deadline of 100 ms on Line 14 followed
by a deadline violation handler. If this reaction is not invoked within 100 ms of the tag of the
input, as measured by the local physical clock, then rather than executing the time-sensitive
code in the reaction, the deadline violation is handled. The deadline, therefore, is expressing
a requirement that the calculation on Line 6 (plus any overhead) not take more than 100 ms
(in physical time). This relation across timelines is illustrated in Fig. 4.2.

A deadline in an LF program has two roles. First, it provides a hint to the scheduler. Our
multi-core scheduler for the C target implements an earliest-deadline-first (EDF) scheduling
strategy [39], where every reaction upstream of a reaction with a deadline inherits its deadline
(or an earlier deadline if there are more than one downstream reactions with deadlines).
Second, it provides a mechanism for providing a fault handler, a body of target code to invoke
if the deadline is violated. Note that the deadline construct in LF admits nondeterminism.
The program will be deterministic only if the deadlines are not violated. Whether the
deadline is violated or not depends on factors outside the semantics of LF.

If the tag g for the event presented to input in was ultimately derived from a physical
action, then the deadline in Listing 4.2 specifies an end-to-end deadline between sensing

CHAPTER 4. CONCURRENCY AND TIMING 88

and actuation. The deadline may be violated, for example, by excessive execution times of
reactions in the path to in, or by poor scheduling decisions that failed to take into account
the deadline. To provide assurance that deadlines are not violated requires estimates of
worst-case execution time (WCET) of code fragments. LF’s architecture naturally breaks
down code into fragments, the reactions, that may prove more amenable to WCET analysis
than arbitrary programs. An excellent survey of the state of the art in WCET analysis is
provided by Wilhelm et al. [216]. We have not implemented such analysis, but see adding
WCET estimation tools to our compiler toolchain as potential future work.

Logical Time Delays

A logical time delay between two reactions can be implemented using a logical action. As
a convenience, LF allows for connections to be annotated with an after-clause that specifies
a time delay. Such delay effectively shifts a produced output along the logical time line. As
such, this mechanism can be used to reduce the amount by which logical time lags physical
time, and account for the execution time of reactions. By choosing the logical delay between
two reactions connected to one another via ports—a producer and a consumer—such that
the logical delay exceeds the worst-case execution time (WCET) of the producer, the tags
of the events are always greater than the physical time at which they are produced. This
effectively assigns a logical execution time (LET) [93] to the producer, allowing the execution
of the consumer to be timed more precisely with respect to physical time.

4.2 Runtime Scheduling and Real-Time Constraints

The execution algorithm for reactors explained in Section 2.7 honors the data dependencies
that exist between reactions, but it leaves room for scheduling decisions that may affect
the system’s performance, both in terms of latency, throughput, and its ability to meet
deadlines. Specifically, on Line 16 of Algorithm 12 (the doStep procedure), the select
procedure that picks the next reaction to be executed from the pool of “ready” reactions
remains unspecified.

More generally, several key implementation details of the runtime algorithms discussed
in Section 2.7 are intentionally abstracted with mathematical notation. To get a better
understanding of some trade-offs an actual runtime scheduler is able to make, a bit more
detail is needed. Let us first assume that event queue QE and reaction queue QR are
implemented as a priority queue Using priority queues allows us to efficiently ordering
events and reactions, without having to perform expensive graph searches at runtime, for
instance. While QE simply has to order events by their tag, it is less clear how the priority
of reactions in QR should be encoded. There are several options. The most straightforward
way to prioritize reactions is to assign them a numerical value based on their position in
what is called a topological sort. A topological sort of the reaction graph γN(r) of some
top-level reactor r consists of a linear ordering of the graph’s vertices such that for every

CHAPTER 4. CONCURRENCY AND TIMING 89

directed edge (n′, n) from reaction n′ to reaction n, n comes before n′ in the ordering. There
is often more than one ordering possible that satisfies this topological sorting constraint.

Algorithm 17 Assign levels to all reactions in a top-level reactor r

1: procedure assignLevels(r)
2: (V,E)← γN (r) . Reaction graph; vertices are reactions and edges denote dependencies
3: for each n ∈ V do
4: l(n)← 0 . Initialize the level of all nodes to zero
5: end for
6: S ← list({n ∈ V | @n′ ∈ V . (n, n′) ∈ E}) . Create list of start nodes
7: while |S| > 0 do
8: n← pop(S) . Remove one element from the list of start nodes
9: for each n′ ∈ V . (n′, n) ∈ E do . Iterate over reactions that depend on n

10: l(n′)← max(l(n′), l(n) + 1)) . Assign level one higher than upstream neighbor
11: E ← E \ {(n′, n)} . Remove visited edge from the graph
12: if @n′ ∈ V . (n, n′) ∈ E then . Check whether unvisited upstream neighbors exist
13: push(S, n) . If not, add the node to the start list
14: end if
15: end for
16: end while
17: if |E| > 0 then . If edges remain in the graph, there must be a cycle
18: error: Cycle in graph.
19: end if
20: end procedure

Since we are interested in executing reactions in parallel whenever the absence of data
dependencies allows us to do so, we are more interested in establishing a partial order than the
total order that we would obtain from an ordinary topological sort. With a slight adjustment
of any ordinary topological sort algorithm, we can assign levels instead of positions in a list.
This increases parallelism because any two reactions of equal depth can now execute in
parallel. In the LF compiler, we use an adapted variant of Kahn’s algorithm, shown in
Algorithm 17, to assign levels to reactions. This is still a conservative approximation of
the dependencies in our reaction graph, however. If there exists a dependency between n′

and n, then the level of n must be less than the level of n′, denoted as l(n) < l(n′), but
if l(n) < l(n′), then this does not imply that there must exist a dependency (n′, n) in the
reaction graph. More parallelism can be exposed through a more advanced encoding, which
we discuss in Section 4.3.

Levels alone, however, are already sufficient to exploit parallelism in common patterns
such as fork-join parallelism and pipelines. Figure 4.3 shows a typical scatter/gather pattern,
where all the Computation reactors can be executed in parallel provided there is a sufficient
number of worker threads to do so. In Fig. 4.4, a chain of reactions is triggered by a
timer with a specified period. Each reaction produces an output event that is logically
simultaneous with its input, but each stage of the pipeline is broken up by a delay specified

CHAPTER 4. CONCURRENCY AND TIMING 90

Figure 4.3: A diagram of an LF program realizing a typical scatter/gather pattern.

by the parameter period. This effectively breaks up the reaction graph into disconnected
subgraphs. At each tag, there is no dependency between any two reactions in the pipeline,
so they can all be executed in parallel.

Figure 4.4: A diagram of a pipeline pattern in LF; each stage executes in parallel.

Earliest-deadline-first Scheduling

While ordering reactions by level accounts for their dependencies, it does not account for
deadlines. If there is no risk of violating any dependencies, then it would pay off it execute a
reaction with an earlier deadline, because this would make it more likely for the deadline to
be met. This strategy was formalized by Liu and Layland [136] in 1973 and is since known
as Earliest Deadline First (EDF) scheduling, probably the most common dynamic priority
scheduling algorithm for real-time systems.

We have implemented a non-preemptive version of EDF scheduling in our C-based run-
time by changing the sorting criterion of QR to take into account deadlines. To do this, a
preprocessing step is carried out in the compiler to ensure that each reaction inherits the ear-
liest deadline among all of its downstream reactions in the reaction graph. The propagation
algorithm used for this is provided in Algorithm 18. Reactions without a specified deadline
and no downstream deadlines will have a deadline of ∞ (which in any practical realization
is the maximum value that can be expressed with the used data type).

For efficiency, we pack the deadline and the level in a single unsigned 64-bit integer. The
most significant 48 bits are reserved for the deadline and the remaining 16 bits are used for
the level. All time values in the C runtime have a nanosecond precision, meaning that with
48 bits a deadline can range from 10−9s to roughly 2.8× 105s (almost half a week). With 16
bits to encode the level, we allow a maximum of 65536 levels.

CHAPTER 4. CONCURRENCY AND TIMING 91

Algorithm 18 Propagate deadlines between reactions in top-level reactor r

1: global variables
2: (V,E)← γN (r) . Reaction graph; vertices are reactions and edges denote dependencies
3: end global variables
4: procedure assignDeadlines(r)
5: for each n ∈ V . ∆(n) = ⊥ do
6: ∆(n)←∞ . Assign default deadline to reactions without a deadline
7: end for
8: for each n ∈ V . ∆(n) 6=∞ do
9: propagateDeadline(n) . Propagate specified deadlines upstream

10: end for
11: end procedure
12: procedure propagateDeadline(n)
13: for each n′ ∈ V . (n, n′) do
14: if ∆(n) = ⊥ then
15: ∆(n′)← min(∆(n′),∆(n)) . Inherit deadline if smaller than the current
16: end if
17: propagateDeadline(n′) . Continue to propagate upstream
18: end for
19: end procedure

Preemption

The scheduler in the C runtime is currently non-preemptive, meaning that once started,
each reaction runs to completion without any interruptions from other reactions. This can
negatively impact the feasibility of schedules (i.e., the ability to meet deadlines). Specifically,
without preemption, there is no possibility to suspend the execution of reactions with a later
deadline in favor of ones with an earlier deadline that may be released while all worker
threads are occupied by less urgent reactions. When combined with a preemptive thread
scheduler (and a number of worker threads that exceeds the number of cores), the runtime
could dynamically change thread priorities to achieve preemption.

4.3 Exposing More Parallelism

It would be prohibitively expensive to walk the reaction graph at runtime to discover depen-
dencies between any two reactions that are ready to execute, and ordering reactions by their
level (i.e., a reaction with no dependencies has level 0, it’s immediate downstream neighbors
have level 1, etc.) does not expose all parallelism. For instance, could add a parallel path
from the Source to Destination reactor that has not one but two reactions (n1 and n2) in
sequence, which jointly would take about as much compute time as the single reaction in
each Computation reactor. In that case, level l(n1) = 1 and thus would be allowed to execute
in parallel with the other reactions from Computation, but l(n2) = 2, meaning the second

CHAPTER 4. CONCURRENCY AND TIMING 92

reaction would be forced to wait for all parallel reactions to conclude, even though there
clearly is no dependency that would require this.

We can improve on this with a scheme similar in spirit as the fast dynamic casting
algorithm by Gibbs and Stroustrup [83]. Where the correctness of dynamic casting depends
on the existence a certain inheritance relationship, the correctness of selecting a next reaction
to execute hinges on the absence of certain data dependencies. Rather than walking the
inheritance tree, Gibbs and Stroustrup assign cleverly chosen IDs (prime numbers) to each
class, and use the modulo operator at runtime to figure out whether a cast is legal or not,
which is obviously much cheaper. Similarly, we assign IDs to reactions at compile time in
our scheme. But instead of primes, we use carefully chosen binary numbers, and instead
of the modulo operator, we use a bitwise AND to determine whether two reactions have a
directed path between each other; if they do, we say they are part of the same chain. We
denote the chain ID of a reaction n as i(n). A reaction n′ only truly depends on another
reaction n if the following predicate is true:

l(n) < l(n′) ∧ (i(n) & i(n′)) 6= 0,

where & denotes bitwise AND. The cost of evaluating this predicate at runtime is extremely
low, and it can be evaluated lazily, meaning that the right-hand side only has to be evaluated
when the left-hand size evaluates to true.

Whereas the algorithm for assigning levels works from the roots of the dependency tree
toward its leaves, the traversal that assigns chain IDs (see Algorithm 19) works in the opposite
direction. The goal is to compute a path cover that consists of all paths between any pair of
vertices in the reaction graph consisting of a leaf node (a reaction that no reaction depends
on) and a root node (a reaction with no dependencies), and to assign a unique ID to each
such path. First, we assume some value for w, the width of the bitstring that encodes the
chain ID. We use 64 bits in our C runtime. Furthermore, we maintain a counter, c, that
we increment with each new leaf node that we visit. For each leaf, we create a fresh chain
ID that is simply 2c mod w, or, using binary operators: 1 << c % w. We then recursively
propagate that ID in a depth-first fashion. During that process, a mask gets constructed for
every visited node based on a bitwise OR of the masks constructed by subsequently visited
nodes. For any dependency that a node has beyond one, a new chain ID is allocated (i.e., c is
incremented), and then that new chain ID gets propagated. No new chain IDs are allocated
during the traversal unless branching occurs. When all the masks have returned after visiting
a node’s dependencies, its current ID is combined with the constructed mask, again using a
bitwise OR. This step ensures that each reaction has at least one bit in common with the
ID of reactions that it depends on.

Let us consider the dependency graph depicted in Figure 4.5. Assuming we have already
assigned a level to each node in the graph using Algorithm 17, we now need to assign IDs.
We start out with c = 1, and first visit H, because l(H) is greater than the level of any other
leaf node in the graph. We then proceed to visit F , E, C, and B. Once we reach B, we stop
the traversal and start backtracking. The reason for this is that there are other paths from

CHAPTER 4. CONCURRENCY AND TIMING 93

A

l = 0
i = 11001b

X

l = 0
i = 10b

C

l = 2
i = 11b

I

l = 0
i = 100b

E

l = 3
i = 111b

F

l = 4
i = 1111b

B

l = 1
i = 11001b

D

l = 2
i = 11000b

G

l = 3
i = 10000b

H

l = 5
i = 11111b

Figure 4.5: An example reaction graph with assigned levels and IDs.

H that lead to B—these paths have to be explored first. Before doing that, we temporarily
assign i(B)← 1b.

Arriving back in C, we explore a new branch, meaning we increment c, visit X, and assign
i(X)← 10b. We return 10b back to C and assign i(C)← 11b. We then further backtrack to
E, visit I to which we assign i(i)← 100b after having incremented c. Then 100b is returned,
so we assign i(E) ← 111b. Arriving back at F , we have another branch to explore, hence
we increment c and visit D. But D has a remaining visit count of 1, so we temporarily set
i(D)← 1000b. We return, backtrack to F , and assign i(F)← 1111b.

Finally, we backtrack to H, after which we explore the last path. We increment c once
more, and we visit G, and then D. All paths to D have now been covered, so we continue
to visit B, which now also has a visit count of zero, meaning we proceed to A and assign
i(A) ← 11001b, which is a combination of 1b that was stored in F , 1000b that was stored
in G, and 10000b the identifier associated with the current path. As we backtrack, the
last assignments to be made are i(B) ← 11001b, i(D) ← 11000b, i(G) ← 10000b, and
i(H)← 11111b. The longest chain in graph in Figure 4.5 consists of the shaded nodes H, F ,
E, C, B, and A. We have four more chains: (H,G,D,B,A), (H,F,D,B,A) (H,F,E,C,X),
and (H,F,E, I).

For a reaction graph that has more than w chains in it, the modulo operator used on
Lines 15 and 37 facilitates the reuse of chain IDs, which could limit the amount of exposed
parallelism. In a less conservative approach, one could simply use a larger w, which would
come at the cost of having to do multiple bitwise ANDs at runtime if w exceeds the word
size of the architecture. Heuristics could also be used to find with a more economical assign-

CHAPTER 4. CONCURRENCY AND TIMING 94

ment than the one achieved with Algorithm 19. Specifically, our algorithm would naively
assign different IDs to each chain in the reaction graph of the example in Figure 4.3, which
is unnecessary because the reactions of each Computation reaction can already execute in
parallel by virtue of them all having the same level. We leave the implementation of such
improvements for further work.

Note that we avoid visiting chains more than once by breaking off the recursion when
there are still other paths left that need to be visited in order to determine all bits in the
chain ID that is to be propagated to upstream reactions. Each leaf node is visited once,
and every other node will be visited once for each path from a leaf node that reaches it.
Only after all dependent reactions have been visited will the propagation of chain IDs to
upstream reactions continue. Since the number of nodes to visit is bounded by the number
dependencies that each node has (and in the worst case each node depends on every other
node), the worst-case complexity of Algorithm 19 is O(|V |2).

4.4 Further Optimizations

There are more opportunities for runtime optimizations. We discuss some of them.

Immediate Reactions

When a reaction sets a value on a port, any reactions that are triggered as a consequence
are added to the reaction queue QR. Once the reaction concludes, QR is checked to find
out which reaction to execute next. Sometimes the next reaction is precisely the reaction
that was pushed onto QR a moment earlier by the preceding reaction. If the preceding
reaction triggered exactly one reaction, then the overhead associated with interacting with
QR can be avoided by executing the triggered immediately, bypassing QR altogether. In
the multi-threaded runtime, this avoids acquiring a mutex lock—if there are no deadlines in
the program. If there are deadlines, then the queue still must be checked to determine the
earliest deadline in QR (or else this optimization could violate the EDF scheduling policy).
This optimization has been implemented in the C runtime.

Reacting Ahead of Physical Time

Generally, an event should not trigger any reaction before physical time has surpassed the
time value of its tag. This prevents a scenario where an event gets scheduled with a tag
smaller than the tag of an event that has already been released into the runtime system. This,
however, is a conservative rule that can be relaxed under certain circumstances. For instance,
if there are no physical actions in the program, then this scenario will simply never occur.
But even if there are physical actions, their minimum spacing might present opportunities
for safely moving ahead of physical time for limited time intervals. For example, if a physical
action a has a minimum spacing s(a) of 20 ms, and the last event L(a) = g, then we know

CHAPTER 4. CONCURRENCY AND TIMING 95

Algorithm 19 Assign chain identifiers to reactions in a top-level reactor r

1: global variables
2: (V,E)← γN (r) . Reaction graph; vertices are reactions and edges denote dependencies
3: c← 0 . Global branch count; increases during graph traversal
4: const w ← 64 . Word size; 64 bits by default
5: end global variables
6:

7: procedure assignChainIDs(r)
8: for each n ∈ V do
9: visitCount(n)← |{n′ ∈ V | (n′, n) ∈ E} | . Initialize visit count

10: end for
11: leafs ← {n ∈ V | @(n′, n) ∈ E}
12: while leafs 6= ∅ do
13: highest ← {n ∈ leafs | ∀n′ ∈ leafs . l(n) ≥ l(n′)} . Next nodes to visit
14: for each n ∈ highest do . Visit leaf nodes, highest level first
15: propagateID(n, 2 c mod w) . Propagate ID based on branch count
16: end for
17: leafs ← leafs \ highest
18: end while
19: end procedure
20: procedure propagateID(current, chainID)
21: c← c+ 1 . Increment branch count
22: mask ← chainID . Bitmask to be adjusted based on upstream chainIDs
23: upstream ← {n ∈ V | (n, current) ∈ E} . Find upstream neighboring nodes
24: first ← true
25: id ← i(current) | chainID . Bitmask to be passed as chainID to upstream nodes
26: visitCount(n)← visitCount(n)− 1
27: if visitCount(n) > 0 then
28: i(current)← id . Update node and return
29: return chainID
30: end if
31: while upstream 6= ∅ do
32: nearest ← {n ∈ upstream | ∀n′ ∈ upstream . l(n) ≥ l(n′)} . Next nodes to visit
33: for each node ∈ nearest do . Visit upstream neighbors, highest level first
34: if first then
35: first ← false
36: else
37: id← 2 c mod w . Recalculate chainID passed to upstream neighbors
38: end if
39: mask ← mask | propagateID(node, id) . Update mask (bitwise OR)
40: end for
41: upstream ← upstream \ nearest
42: end while
43: i(current)← i(current) | mask . Update chainID of current node (bitwise OR)
44: return mask
45: end procedure

CHAPTER 4. CONCURRENCY AND TIMING 96

that no event will appear on a with a tag earlier than g′ = g + (20 ms, 0), meaning it would
be safe to handle an event with a tag g′′ provided that g′′ < g. When this optimization is
applied, triggered reactions of realtime reactors (see Section 3.5) would simply have to wait
in the reaction queue until T > π1(g′′), also blocking progress of any triggered reactions that
depend on them. This would still allow for an amount of “precomputation” upstream of
realtime reactors, thereby tightening the realtime reactors’ synchronization to physical time.

Relaxing the Barrier Synchronization

Another aspect of the default execution algorithm for reactors that limits the amount of
work that can be done in parallel is the barrier synchronization that occurs after each
synchronous-reactive step. While effective, this is relatively crude measure to ensure that
each reactor observes events in tag order and has its reactions triggered accordingly. For
instance, a reaction with no dependencies (e.g., driven by a timer) could, in principle, ignore
the barrier and precompute future output values as long as it would not present those to
downstream receivers ahead of time. And by “ahead of time” we mean “before its reactions
to events with earlier tags have concluded.” What events with earlier tags may appear (and
whether these, too, can be precomputed) depends on information that can be gleaned from
the structure of the program. Again, the minimum spacing property of actions can open up
a time window during which it is known that particular events will be absent. A reaction
could safely bypass the barrier if all its dependencies are either precomputed or known to be
absent.

It remains an open question how opportunities for precomputation can be exploited effi-
ciently. To an extent, the decentralized coordination scheme for federated reactors described
in Section 5.2 already realizes some of these optimizations. Under decentralized coordination,
federates advance time independently (albeit subject to constraints), but all reactors within
each federate are still synchronized using a barrier. Of course, federated execution also comes
at the cost of serialized communication through sockets instead of communication through
shared memory. Thus, if this kind of approach were to be leveraged for performance gain,
then the amount of extra parallel computation would have to outweigh the communication
overhead of federated execution.

Static Scheduling

For programs that are limited to a restricted subset of behaviors, such as synchronous
dataflow [120], an optimized static schedule could substitute the dynamic runtime sched-
uler. This could be done automatically in the LF compiler directed by some target property.
We leave this for future work.

CHAPTER 4. CONCURRENCY AND TIMING 97

4.5 Subroutines

Subroutines among some of the most rudimentary and powerful programming constructs
that exist. Virtually every programming language features them in some shape or form.
Sometimes they are called routines, subprograms, functions, methods, or procedures, but
they are all meant to do the same thing: decompose a complex programming task into
smaller, simpler steps. When used properly, they also reduce code duplication and improve
code readability. Implementing an interaction between reactors that resembles the invocation
of a subroutine is possible, but it comes with a certain amount of awkwardness. Let us
consider the example in Figure 4.6 that is inspired by a situation that is commonly found in
control logic; the need to check for some safety condition before carrying out some requested
operation. This pattern could be applied, for example, in a stall a prevention mechanism
of a fixed-wing aircraft, where Caller instance foo receives input from the control wheel and
Callee instance bar reports the angle of attack. In an airlock aboard a spacecraft, foo could be
responding to a button press requesting the door to open, and bar would report the pressure
inside the pressure vessel. The basic idea is that foo needs to momentarily gain access to
the state of bar before it can continue. This is the reactor equivalent of a subroutine.

As shown in Figure 4.6, the response to the physical action in foo has to be split into
two reactions, and whatever state computed in the first reaction that is necessary in the
second reaction needs to be stored in a state variable (this is a problem also referred to as
stack ripping). The response from the bar is fed back to foo via an input port, establishing a
feedback loop between the two reactors. In a situation like this, it would be more attractive
if foo could get a response from bar without this level of indirection, like one would achieve
with an ordinary subroutine.

Subroutine

bar : Callee

3

21 P

args ret

foo : Caller

3

21 P

ret

args

Figure 4.6: The reactor equivalent of a subroutine.

It is possible to extend reactors with such a mechanism. We have implemented this ex-
tension in our TypeScript runtime, and it works as follows. In addition to ordinary input
and output ports, we distinguish a caller port and a callee port. Unlike inputs and out-
puts, these new ports are bidirectional and thus have a type associated with each direction.
In our implementation, the classes CallerPort<A,R> and CalleePort<A,R> each have two
type variables of which A stands for “arguments” and R stands for “return value.” A caller
can be connected to a callee if and only if Acaller � Acallee and Rcallee � Rcaller, following
the usual contravariant subtyping rule for functions. Instead of invoking set, a reaction
calls invoke on a caller port to directly execute the reaction triggered by the callee port

CHAPTER 4. CONCURRENCY AND TIMING 98

that the caller port happens to be connected to. This pattern is much closer to an ordinary
subroutine. It does not involve cycles in the connection topology and there is no necessity
for stack ripping. We do preserve our composition mechanism based on ports, so the com-
plete separation of implementation and composition is kept; reactors remain fully agnostic
the counterparts they may be composed with, even though they may invoke their reactions
directly. Figure 4.7 shows a version of our example that uses caller and callee ports.

Subroutine

3

21 P

21 P

foo : Caller

bar : Callee

Figure 4.7: An alternative implementation of Figure 4.6 using a caller and callee port.

Of course, connections between callers and callees imply dependencies, which are nec-
essary to preserve determinism. These dependencies are different from the dependencies
implied by connections between regular input/output ports. While ports are used as an
intermediary, let us use the term “caller reaction” for the reaction that calls invoke and
“callee reaction” for the reaction that is executed in turn to produce the return value. A
callee reaction is triggered by a single callee port has no effects (i.e., it produces no outputs).
The callee reaction provides its return value to the caller by calling answer on its trigger.
Control returns to the caller when the callee reaction is done executing.

Connections between caller ports and callee ports imply the following dependencies:

1. Any caller reaction must depend on their corresponding callee reaction. This ensures
that any reactions that have precedence over the callee reaction due to reaction priority
will execute first. This is necessary because the state of the reactor that contains the
callee reaction must have settled before the callee reaction is invoked, or else a race
condition would arise.

2. All concurrent caller reactions that invoke the same callee must have dependencies
between them. This ensures that they enjoy mutual exclusivity and execute in a
deterministic order.

3. If there exists a reaction over which the callee has precedence due to reaction priority,
then that reaction has to have a dependency on the last caller reaction that invokes
the preceding callee, again to avoid a race condition.

Figures 4.8a and 4.8b show the reaction graphs of Figures 4.6 and 4.7, respectively. The
direct invocation of bar.3 by foo.2 leads to a dependency inversion; bar.3 in Figure 4.8a
depends on foo.2 whereas in Figure 4.8b foo.2 depends on bar.3. This particular dependency
prevents foo.2 from executing before the state of bar has settled. If we add an extra reaction,

CHAPTER 4. CONCURRENCY AND TIMING 99

foo bar
1 2

3 3

2 1

(a) Reaction graph of Figure 4.6

foo bar
1 2

3

2 1

(b) Reaction graph of Figure 4.7

foo bar
1 2

3

2 1

4

(c) Reaction graph in Figure 4.8b with one
extra reaction in the Callee

foo

baz

bar
1 2

1 2 3

2 1

4

(d) Reaction graph in Figure 4.8c with one
extra Caller

Figure 4.8: Reaction graphs explaining the dependencies in subroutine-like interactions.

bar.4 that depends on bar.3, then that reaction will also have to depend on foo.2, as shown in
Figure 4.8c. Finally, in Figure 4.8d, we see that if we add more callers that invoke bar.3, then
their calling reactions will have to be arranged in dependency chain, with bar.4 depending
on the last node in that chain. Support for caller and callee ports will require adaptations
to connect and disconnect to account for these type of changes to the reaction graph.

Deadlock Freedom

Causality loops will prohibit certain configurations, but a configuration without causal-
ity loops is also deadlock-free, generally a non-trivial property in concurrent systems with
blocking procedures [10, 43, 169].

Performance

The avoidance of stack ripping and the inlining of the callee reaction (it bypasses the reaction
queue), can also lead to formidable performance improvements. We found that using caller

CHAPTER 4. CONCURRENCY AND TIMING 100

and callee ports in the PingPong benchmark of the Savina actor benchmark suite [99] lead
to a 6× speedup, measured in our TypeScript runtime.

4.6 Performance Benchmarks

It is too early for a full-fledged performance analysis of LF. We have a reasonably well-
developed suite of regression tests, replicated for each target language to the extent that the
tested features are implemented in the respective targets, but the tests are concerned with
correctness, not performance. So far, our most mature targets are C and C++. Part of our
motivation to focus on these relatively low-level languages is to achieve a runtime imple-
mentation with minimum overhead. We will discuss a preliminary performance evaluation
that is performed on a Dell® PowerEdge R730 equipped with 6-core Intel® Xeon® CPU
E5-2643 v3 @ 3.40GHz and 96GB of memory. The operating system is Arch Linux.

Our most rudimentary performance indicator is a regression test that also provides a
measure of runtime overhead. This test has one reactor with single output connected to
another reactor with a single input. Each of these reactors has a state variable count; the
upstream reactor has it initialized to 0 and the downstream reactor has it initialized to 1. The
upstream reactor has a reaction triggered by a timer, which increments the reactor’s count

and assigns its value to its output port. The downstream reactor has a reaction, triggered
by its input port, that compares the input against its own count and increments that count
if it matches. The program exits when the downstream reactor’s count has reached 1× 108,
i.e., after 2× 108 reactions have executed. When executed on our evaluation system, this
program executes in 793 ms (averaged over ten runs), which translates into 40 ns per reaction
invocation.

Because reactors are a new programming paradigm, it is not immediately obvious what
would be an appropriate baseline to compare against. Since actors are strongly related and
known for their performance and widespread use, it would be interesting to compare against
those. The asynchronous message passing of actors is very different from the synchronous
communication between reactors, and it would be tempting to assume that the synchro-
nization of reactors would impose a considerable performance cost compared to the much
less constrained communication patterns between actors. Perhaps somewhat surprisingly,
we found that this is not necessarily the case. We have started to evaluate the performance
of our C runtime by implementing a subset of the Savina actor benchmark suite, which is a
widely cited set of benchmarks developed by Imam and Sarkar [99]. The Savina suite features
three categories: micro benchmarks, concurrency benchmarks, and parallelism benchmarks.
In this preliminary evaluation we discuss one benchmark from each of these categories. A
more comprehensive evaluation of the performance of the C++ runtime has been conducted
by Hannes Klein in his Bachelor thesis [109], which covers a much larger subset of the Savina
suite than the small sampling we discuss here. Thus far, no serious effort has been made
to optimize our reactor runtime implementations, so we expect the benchmarking results
reported in [109] and this thesis to leave significant room for performance improvements.

CHAPTER 4. CONCURRENCY AND TIMING 101

One of the most popular actor implementations is Akka [185]. Akka is intended for
building highly concurrent, distributed, and resilient message-driven applications in Java
and Scala. It is widely considered the implementation of the actor model on the JVM. Akka
is said to handle up to 50 million messages per second and cites a memory footprint of 2.5
million actors per GB of heap2. We examine how reactors in C and C++—our most mature
targets—stack up against Akka actors. All obvious differences aside (reactors vs. actors,
compiled languages vs. JVM-based), the point of this comparison is to see whether reactors
and actors can play in the same league. The question is whether the cost of synchronization
in reactors is acceptable or prohibitive compared to state-of-the-art frameworks for building
concurrent software. Can we realistically have performance and determinism, too?

The default Akka configuration that we compare against automatically chooses an opti-
mal number of worker threads based on Runtime.getRuntime().availableProcessors(),
let us call it N . On our evaluation system, N = 24. In both the C and C++ runtime,
we have found no advantage to using a number of threads greater than N . The number of
worker threads in an LF program can be specified using a target property (see Section 3.2).

PingPong

ping : Ping

2 1L
receive send

pong : Pong

2

1
receive send

Figure 4.9: A reactor implementation of the Savina PingPong benchmark.

Micro Benchmark: Ping Pong

The first benchmark we discuss is the “Hello World” equivalent of an actor program. One
actor sends a message to a receiving actor that simply returns the message to the sender.
This sequence gets repeated many times, and the faster the program completes, the more
efficient the runtime system is. In other words, this benchmark provides an indication of
the overhead induced by the runtime system. A diagram of the reactor implementation of
the PingPong benchmark is shown in Figure 4.9 and the benchmark results are shown in
Figure 4.10.

Because there is no exploitable parallelism in this benchmark, we gain no benefit from
using more than one thread. Our single-threaded runtime, which has no dependency on
pthreads and is therefore more suitable for bare-metal embedded platforms, runs this bench-
mark a bit faster than our multi-threaded run times—it has less overhead. Our single-
threaded C runtime is consistently more than 25× faster than Akka for this benchmark, but
even the multi-threaded reactor runtimes beat Akka by an order of magnitude.

2https://akka.io/

https://akka.io/

CHAPTER 4. CONCURRENCY AND TIMING 102

40× 103 80× 103 120× 103 160× 103 200× 103
0

200

400

600

131

242

370

501

628

11 21 31 42 53
10 17 25 29 33

4 9 15 19 24

Pings

E
x
ec

u
ti

on
T

im
e

(m
s)

PingPong (Increasing Number of Pings)

Akka C++ (24 threads) C (24 threads) C (single-threaded)

Figure 4.10: PingPong: a comparison between Akka actors and reactors.

Concurrency Benchmark: Dining Philosophers

This benchmark is based on the classic concurrency problem where a group of monks, sitting
around a round table, alternate between thinking and eating noodles. In order to eat, each
monk needs two chopsticks. Each adjacent pair of philosophers shares access to a single
chopstick that they can acquire or release. This problem was originally formulated in 1965
by Edsger Dijkstra and was given its present formulation by Tony Hoare [96]. The problem
captures the basic principle of mutual exclusion and cleverly illustrates the problems of
deadlock and starvation. The solution implemented in this benchmark uses an arbitrator
that instructs philosophers what to do.

Our implementation of this benchmark revealed a deficiency in our threaded runtime that
we are still in the process of addressing. The root of the issue is that when new reactions
are pushed onto the reaction queue, worker threads are notified and compete for the work,
which leads to a lot of contention and no meaningful exploitation of parallelism because
the reactions of the philosophers take very few cycles. Initial results show that reducing
the amount of signalling or letting idle workers poll the reaction queue after a timed wait
significantly reduces contention and leads to performance comparable to Akka when it comes
to this particular benchmark. However, to understand the ramifications of such change for
other types of workloads, more investigation (and the implementation of more benchmarks)
is necessary.

CHAPTER 4. CONCURRENCY AND TIMING 103

Philosophers

arbitrator : Arbitrator

5

4

3

2

1
done

hungry

philosopher_finished

philosopher_start

eat

denied

philosophers : Philosopher

5

4

3

2

1

L

L

[num_philosophers]

denied

eat

start
finished

hungry

done

Figure 4.11: A reactor implementation of the Savina Philosophers benchmark.

Parallelism Benchmark: Trapezoidal Approximation

The third and last benchmark we discuss concerns a typical master-worker pattern in which a
master process divides a problem into several sub-problems and tasks workers to solve them.
The task at hand in this particular benchmark is to approximate the area of a trapezoid.
The reactor implementation of this benchmark is depicted in Figure 4.12.

Trapezoid

master : Master

3

21 L

inWorkers

outWorkers

workers : Worker

[numWorkers]

inMaster outMaster

Figure 4.12: A reactor implementation of the Savina Trapezoid benchmark.

Let us first examine the ability of the reactor runtime to exploit parallelism among the
workers. For that to occur, multiple threads are needed. We expect the execution time of the
program to scale down with the number of threads, as long as there are independent cores to
map those threads to. Our evaluation system has 6 physical cores and 24 hardware threads.
As shown in Figure 4.13, we see a close-to-linear speedup with the number of threads up to
6 threads. Beyond that point, adding more threads still reduces execution time. Overall, we
see logarithmic curve that clearly flattens out around 24 threads. The performance between
C and C++ is similar.

CHAPTER 4. CONCURRENCY AND TIMING 104

1 2 4 8 16 32
0

2

4

6
6.2

3.12

1.58

0.86
0.53 0.42

5.17

2.59

1.3
0.67 0.41 0.35

Threads

E
x
ec

u
ti

on
T

im
e

(s
)

Trapezoid, 50× 106 Pieces (Increasing Number of Threads)

C C++

Figure 4.13: Trapezoid: reduced execution time with a larger number of worker threads.

CHAPTER 4. CONCURRENCY AND TIMING 105

When comparing against Akka (see Figure 4.14), reactors again come out on top. The
difference is less dramatic with this benchmark, but the C runtime outperforms Akka by a
factor 2.3, and C++ is 2.85× faster. While a case can be made that the PingPong benchmark
is not representative of a useful program or meaningful workload, the master-worker pattern
certainly is, and the performance of reactors does not disappoint. While it is premature to
say that reactors can compete with actors on all fronts, we have established that reactors
are at the very least competitive on some fronts. More work is needed to fully understand
the strengths and weaknesses of reactors, but their ability to outperform a state-of-the-art
actor framework like Akka, is promising.

10× 106 20× 106 30× 106 40× 106 50× 106
0

200

400

600

800

1,000

1,200

212

424

621

830

1,025

93
182

267
351

433

74
148

223
290

356

Pieces

E
x
ec

u
ti

on
T

im
e

(m
s)

Trapezoid (Increasing Problem Size)

Akka C (24 threads) C++ (24 threads)

Figure 4.14: Trapezoid: a comparison between Akka actors and reactors.

The distinction between the past, present and
future is only a stubbornly persistent illusion.

Albert Einstein

Chapter 5

Federated Execution

This chapter draws from and expands on previously published work titled “A Language for De-
terministic Coordination Across Multiple Timelines” [143] that was co-authored with Chris-
tian Menard, Alexander Schulz-Rosengarten, Matthew Weber, Jeronimo Castrillon, and Ed-
ward A. Lee.

Actors [94, 2], as realized in Erlang [9], Akka [185], and Ray [168], are commonly used
for building distributed software, where each actor could potentially reside on a different
node and exchange messages with other actors via a network. Reactors are also suitable for
this. We refer to a reactor of which contained reactors are mapped to individual process that
exchange messages as a federated reactor, or simply a federation. We call each reactor
in a federation that gets maps to its own process a federate.

Aircraft

c : Cockpit

3

21 P

P

disarm

open

r : Camera

doCheck checkOK

d : Door

2

1

open

disarm

Figure 5.1: A federated reactor that controls an aircraft door. Each reactor runs on a
different host.

Let us consider a federated version of the nondeterministic actor program discussed in
Chapter 1, depicted in Figure 5.1. In this application, we suppose that a commercial aircraft
manufacturer wishes to automate the opening of an aircraft door. The Cockpit reactor
responds to a button press in the cockpit and sets its two outputs disarm and open. The
Camera reactor performs a visual check to confirm whether a ramp is present outside the
aircraft. Only if a ramp is present, the Camera sets its checkOK output to true, causing the
disarm input of the Door to be present. The Door reactor, hosted on a networked software
component residing in the aircraft door, has two inputs: disarm and open. An event on the

106

CHAPTER 5. FEDERATED EXECUTION 107

disarm input triggers a reaction that disables deployment of emergency escape slides if the
door is armed. A second reaction in the Door, triggered by the open input, opens the door.
If the door is opened when it is armed, then the slides will deploy.

In a federated execution, assigning a value to a port translates into a message being
sent over the network. Using a protocol with reliable in-order message delivery (e.g., TCP),
we can assume that messages sent between any of the reactors arrive in the correct order
with respect to other messages originating from the same sender, but for the Door reactor
it is critical that messages from different senders (i.e., the Cockpit and Camera reactor) are
observed in the correct order. A failure to satisfy this constraint could lead to an unintended
emergency slide deployment, which is both dangerous and costly.

To ensure determinism in a federated program, it is essential to preserve tags across
networked communication. For this, it is necessary to transmit tags along with the messages.
A more subtle issue is that a federate must avoid advancing logical time ahead of the tags
of messages it has not yet seen. This problem has many possible solutions, many of them
realized in simulation tools [75]. However, LF is not a simulation but an implementation
language, which introduces unique problems. In this chapter we discuss how federated
execution is realized in LF.

5.1 Reasoning About Time

It is impossible, from first principles in physics, to determine the order in which two geo-
graphically separated events occur. There is no such thing in physics as the “true” order in
which separated events occur. There is only the order seen by an observer, and two observers
may see different orders. Hence, it would be an unrealistic goal to require that if a disarm
message is “truly” sent before an open message, then the door will be disarmed before it is
opened. To use such a requirement, we would have to identify the observer that determines
the outcome of the predicate “before.”

One choice of observer, of course, is the receiver of the messages, the microprocessor in
the door that performs the disarm and open services. This is the choice made in an actor
model, (as well as publish-and-subscribe and service-oriented models), but as we have shown,
it leads to clearly undesirable outcomes. Even if the disarm and open messages originate from
the same source, they may arrive out of order. The originator sees a different order from the
recipient, as shown in Figure 5.2.

Only if, instead of relying on a physical notion of time, we define a logical or semantic
notion of time, does it become possible to ensure that every observer sees events in the same
order. This will require a careful definition of “time” as a semantic property of programs.
We will also have to stop pretending that our logical notion of time is physical time, and
instead accept a multiplicity of observers and understand the relationships between their
timelines.

CHAPTER 5. FEDERATED EXECUTION 108

Sidebar: Distributed Discrete Event Models
Discrete-event models of computation, where time-stamped events are processed in
timestamp order, have been used for simulation for a long time [221, 41]. There is also a
long history of executing such simulations on parallel and distributed platforms, where
the primary challenge is maintaining the timestamp ordering without a centralized
event queue. The classic Chandy and Misra approach [44] assumes reliable eventual
in-order delivery of messages and requires that before any actor with two or more
input ports process any timestamped input message, that every input have at least
one pending input message. It is then safe to process the message with the least
timestamp. To avoid starvation, the Chandy and Misra approach requires that null
messages be sent periodically on every channel so that no actor is blocked indefinitely
waiting for messages that will never arrive.

The Chandy and Misra approach is the centerpiece of a family of so-called “con-
servative” distributed simulation techniques. An alternative, first described by Jeffer-
son [101], is to use speculative execution. Jefferson’s so-called “time warp” approach
relies on checkpointing the state of all actors and the event queue and then handling
time-stamped messages as they become available. As messages are handled, the local
notion of “current time” is updated to match the timestamp of the message. If a
message later becomes available that has a timestamp earlier than current time, then
the simulation is rolled back to a suitable checkpoint and redone from that point.

While both of these techniques are effective for simulation, they have serious dis-
advantages for reactors, which are intended to be used as system implementations,
not as simulations. In addition to the overhead of null messages, the Chandy and
Misra approach suffers the more serious disadvantage that every node in a distributed
system becomes a single point of failure. If any node stops sending messages, all other
nodes will eventually grind to a halt, unable to proceed while they wait for null or real
messages. In addition to the overhead of redoing execution, the time warp approach
suffers the more serious disadvantage that in a system deployment, unlike a simulation,
some actions cannot be rolled back.

A third approach is High Level Architecture (HLA), which is a standard for dis-
tributed simulation in which several simulations can interact through a message-
oriented middleware layer called a Run-time Infrastructure (RTI). This middleware
provides services for message exchange, synchronization, and federation management.
The standard was developed in the 90s under the leadership of the US Department of
Defense [53] and was later transitioned to become an open international IEEE stan-
dard. Some of the terminology we use to describe entities in the distributed execution
of reactors is borrowed from HLA, including the notion of “federates” and an entity
called RTI.

CHAPTER 5. FEDERATED EXECUTION 109

Cockpit physical time

Door physical time

Camera physical time

logical time

disarm

open

disarm

STP threshold

Figure 5.2: Different observers may see events in a different order. An additional logical
timeline allows to establish a global ordering. After a certain safe-to-process (STP) threshold,
Door received all relevant messages and can use the logical timeline to determine that disarm
should be processed before open.

One way to provide a semantic notion of time is to use numerical timestamps [118].
If messages carry timestamps, then our requirement can be that every federate processes
messages in timestamp order. If we further require that messages with identical timestamps
be processed in a predefined deterministic order—as reactors do—then our semantics will
ensure that any two reactors with access to the same messages will agree on their order.
We know from experience with distributed discrete-event simulators, however, that it is
challenging in a distributed system to preserve timestamp order [75]. Moreover, here, we are
not interested in simulation. We are interested in cyber-physical execution, where physical
time and (imperfect) measurements of physical time play an important role. The methods
used for distributed simulation will have to be adapted, as we do here.

The use of timestamps superimposes on our distributed system a logical timeline that
must coexist with a multiplicity of timelines, measurements of physical time, and with actual
physical time. Timestamps must originate somewhere. In reactors, the scheduling of phys-
ical actions facilitates the creation of events with tags based on physical clocks, and those
same physical clocks lend a rigorous meaning to deadlines with respect to the processing of
events with a certain tag. As we will see, these building blocks can be used to preserve the
deterministic execution semantics of reactors also in federated reactor programs. Unlike in
untimed systems, it is detectable when determinism is lost; soon as a situation occurs where
a federate has moved its execution beyond the tag of an incoming message, it is clear a fault
must have occurred. This detectability enables the design of fault-tolerant systems.

The logical timeline together with the requirement that messages be processed in times-
tamp order provides a model of our system. Of course, no physical realization of a system can
be assured of always behaving like its models. Even the most carefully designed silicon chip,
for example, may violate the behavior of the logic diagram that defines its design. Every
engineered system will behave correctly only under some assumptions. The assumptions for
a silicon chip, for example, may include a temperature range. The approach we give here
has the distinct advantage that our assumptions are explicit and quantified.

In the aircraft door example, we can employ a decentralized coordination scheme to
ensure a system behavior that is repeatable, in that, given the same timestamped inputs,

CHAPTER 5. FEDERATED EXECUTION 110

the response will always be the same. This solution requires that when the Door federate
receives a open message with tag g, it waits until its local physical clock hits a precomputed
threshold before acting on that message (cf. Figure 5.2). This will allows Door to continue
listing for other messages with a tag that is earlier or equal g and handle those prior or
simultaneously with the open message that it received. This guarantees that the open message
will be handled in timestamp order relative to other messages, including any disarm messages
that may originate anywhere in the system. The assumptions will include a bound E on
the clock synchronization error, a bound L on the network latency, and a bound X on
the execution time of certain pieces of code. What bounds are acceptable is application
dependent. Existing technologies can let us tighten bounds on E [100], L [113], and X [225,
187].

In reality, any reasonable handling of an open message has to make these same assump-
tions. If there really is no bound on network latency, how can we possibly reason about the
order in which messages are handled? If clocks differ wildly across a distributed system,
how can we expect any coherent notion of “before”? In LF, these assumptions can be made
explicit, quantified, and their violation detectable.

5.2 Decentralized Coordination

In a coordination approach based on Ptides [223], which we call decentralized coordi-
nation, it is a requirement that the physical clocks on all federates be synchronized with
some bounded error, using for example NTP [163], IEEE 1588 [67], or HUYGENS [82]. Syn-
chronizing physical clocks enables decentralized, fault-tolerant, and bottleneck-free federated
execution while preserving the semantics of logical time. Ptides also requires being able to
bound network latencies and (certain) execution times. These three bounds (clock synchro-
nization error, network latencies, and certain execution times) have to be made explicit. The
technique used by Ptides has been shown to scale to very large systems; it is used in Google
Spanner, a global database system that coordinates thousands of servers [50].

Ptides and Spanner make two key assumptions about the execution platform. First, they
assume that each node in the distributed system has a physical clock that is synchronized
with that of all other nodes, and that there is a bound E on the clock synchronization error.
That is, if you simultaneously ask two nodes what time it is, they will not disagree by more
than E. Second, they assume that every network connection between nodes has a bound L
on the latency for message delivery. This assumption is necessary anyway for many realtime
applications.

These two assumptions, E and L, may, of course, be violated in any physical deployment
of a physical system. Hardware failures or malicious attacks, for example, could cause viola-
tions. One interesting property of reactors is that such violations are detectable. They result
in out-of-order timestamps. This condition can be detected at run time as a fault condition,
enabling fault-tolerant system designs that adjust themselves to such fault conditions. More-
over, the assumptions E and L are explicit and quantified. Many practical system designs

CHAPTER 5. FEDERATED EXECUTION 111

make such assumptions implicitly and without quantification, making detection of violations
difficult.

Example: A Distributed Database

We can use Spanner’s database application to explain how these two assumptions enable
efficient and deterministic federated execution. Consider a distributed database for a reser-
vation system, where the data is replicated on two different platforms, PlatformA, depicted
in Figure 5.3 and PlatformB, depicted in Figure 5.4. Assume that the two copies of the
database are initially identical and that an update query arrives through WebServerA on
PlatformA that makes a change to a record in the database. Queries to the database will be
tagged, and the correct response of the database will be defined by the numerical order of
these tags.

At the logical start time of the execution, the first reaction of WebServerA sets up the
server to listen for incoming messages, and then starts the server, providing a callback
function to invoke when there is an incoming query. When an incoming query arrives, say
an update to a record to make a reservation, the schedule procedure is invoked to schedule
an event for its physical action, which is a trigger for the second reaction of WebServerA.
The tag gu of the scheduled event is obtained from the local physical clock, and the second
reaction will execute at a logical time equal to gu. The second reaction will forward the
tagged message to DatabaseA, which then publishes via NetworkSender the update to all
other replicas of the database, including DatabaseB. The dissemination of the update incurs

PlatformA

DatabaseA

2

1

update publish

WebServerA

2

1

P
update

NetworkSender

2
D

1

in

Figure 5.3: Webserver that receives updates, stores them in a local database, and forwards
them to are remote database.

network latency that is assumed to not exceed some quantity L. Furthermore, we know that
the physical time at which the update arrives at NetworkSender cannot exceed D due to a
deadline that is attached to it, indicated by the small red clock symbol the second reaction of
NetworkSender. Hence, the event will arrive at PlatformB before physical time on PlatformA
exceeds π1(gu) + D + L. Because of clock synchronization error, this event will arrive at
PlatformB before physical time as measured on PlatformB exceeds π1(gu) +D + L+ E.

At around that same time that PlatformA receives the update query, suppose that Plat-
formB receives a query for the value of the same record being updated at PlatformA. How
should the system respond? In Spanner (and Ptides), this query at PlatformB will also be

CHAPTER 5. FEDERATED EXECUTION 112

PlatformB

DatabaseB

3

2

1

query

update

reply

WebServerB

3

2

1

P

reply

query

NetworkReceiver

321 P L
out

30msec

Figure 5.4: Webserver that receives queries, forwards them to a local database, and serves a
reply.

tagged using the local physical clock, and the semantics of the system defines the correct
response to depend on the numerical order of the tags of the two queries. If the query at
PlatformA has an earlier or equal tag to that at PlatformB, then the correct response is the
updated record value. Otherwise, the correct response is the value before the update.

Suppose that DatabaseB has a query with tag gq coming from WebServerB. Can it safely
respond to that query? To be safe, it has to be sure that it will not receive an event via its
NetworkReceiver with a tag smaller than or equal to gq after having started processing the
event with tagged gq. How can it be sure?

Such a distributed system could use the Chandy and Misra approach, which would require
PlatformA to periodically send tagged null messages to PlatformB. Then, DatabaseB will
repeatedly receive null messages on its update port with steadily increasing tags. As soon
as one of those tags exceeds gq, it can handle the event on its query port that has tag gq and
send a reply back to WebServer. However, as we have pointed out, the Chandy and Misra
approach has high overhead and is vulnerable to node failures.

In Ptides and Spanner, the approach instead is to watch the local clock, and to hold off
processing the query message until its measurement of physical time exceeds the safe-to-
process (STP) threshold equal to π1(gq) + D + L + E. As we previously pointed out, if
an update to the database is occurring at PlatformA with tag gu, that update will be seen
on PlatformB by physical time π1(gu) + D + L + E. Hence, when the local physical clock
exceeds π1(gq) +D + L+ E, the event with tag gq can be safely processed.

Implementing this mechanism with reactors is straightforward. Upon message receipt
of the remote event with tag gu, NetworkReceiver schedules an event with tag gr using its
physical action. Assuming all the assumptions are met, π1(gr) ≤ π1(gu)+D+L+E. Hence,
the second reaction of the NetworkReceiver can use a logical action to schedule an event to
occur at π1(gu)+D+L+E, triggering the third reaction of NetworkReceiver which will deliver
the update to the local copy of the database. In our example we assume D+L+E = 30 ms.
To ensure that queries are processed in order, PlatformB asserts a logical delay of 30 ms

CHAPTER 5. FEDERATED EXECUTION 113

on the connection from WebserverB.query to DatabaseB.query. Such a logical delay can be
specified in an LF program using the after keyword, which increments the tag. Hence, to
determine whether to process the update first or the query first, DatabaseB is effectively
comparing tags π1(gu) + 30 ms and π1(tq) + 30 ms.

This 30 ms logical delay will translate into a physical delay that is noticeable by a person
interacting with WebserverB. The physical time that the system will wait before it starts
processing a read query at PlatformB is bounded above by 30 ms. If a faster response is
needed a thus a smaller wait time of, say, 20 ms is necessary, then this translates into an
engineering requirement that D + L + E ≤ 20 ms. This provides guidance for selection of
processing and networking technology and provides a clear criterion for determining what
hardware can correctly execute this system with the timing requirements.

Another clear advantage of this approach is that reads to the database generate no
network traffic. Only writes that update records generate network traffic.

If any of the assumptions D (the sum of the worst-case execution times of two reactions),
L (the network latency bound), or E (the bound on the clock synchronization error) is
violated, then the NetworkReceiver may find that π1(gr) > π1(gu) + D + L + E. At that
point, the NetworkReceiver can raise an alarm indicating a fault condition. For a database
system, a reasonable reaction to such a fault condition is to reject a transaction. Standard
techniques for distributed consensus can be used to accomplish this, but then the overhead
incurred by such techniques is rarely incurred. Moreover, the rarity of the occurrence can
be controlled by standard engineering methods. But, of course, faults cannot be made
impossible.

In this example, we force a federate to observe an STP threshold by inserting logical delays
along connections. To achieve the desired behavior, the delay on the connection between
WebserverB.query and DatabaseB.query has to match the STP = D + L + E that is used in
NetworkReceiver to adjust the timestamps of the events coming from PlatformA. Alternatively,
we could also choose to parameterize each federate f with a threshold STPf that it then
uses to adjust the release time of all events it handles. Specifically, on Line 15 of next (see
Section 2.7) each f would not wait until T ≥ π1(gnext), but until T ≥ π1(gnext) + STPf . This
would let us preserve the original timestamp of the events coming from PlatformA, but it
would also force the reactions to events on PlatformB to be delayed with respect to physical
time, potentially causing a noticeable delay in the handling of physical actions in PlatformB.

A trade-off can be made where a portion of the safe-to-process time is absorbed by logical
time delays along connections between federates, and the remainder translates into federates
imposing extra lag on their handling of events. These choices are ultimately application
dependent. Conceptually, Ptides achieves determinism by making the latency in the entire
system uniform. This comes at the cost of added latency along paths through the system
that are faster than the slowest one. The only way to bring down this cost is to reduce D,
L, and E.

CHAPTER 5. FEDERATED EXECUTION 114

Example: The Aircraft Door

Decentralized coordination can also be used in the aircraft door control system in Figure 5.1.
In that example, the messages are all logically simultaneous (they bear the same tag), even
though the three federates are distributed across different hosts. When the Door federate
d receives a message with tag gm destined for its open port, then it should not invoke the
reaction triggered by open until the local clock exceeds π1(gm) + max(D1, D2) + E + L,
where D1 and D2 are the deadlines associated with the two network interfaces that send
messages from the Cockpit and Camera federate. The use of hierarchy ensures that there
is a software entity, the container for the three reactors, that “knows” the topology, and
the use of ports with causality interfaces ensures that the dependency analysis required to
derive this threshold can be performed. If bounds on execution times are derivable from
the code [216], then D1 and D2 can also be derived automatically. Or the system could be
realized using PRET machines [130], in which case extremely high confidence in the bounds
on the execution times becomes achievable.

5.3 Centralized Coordination

It is not always feasible to obtain (or successfully estimate) reasonable bounds on execution
time, network latency, and clock synchronization error. A simpler coordination approach that
can be employed that uses a centralized controller called an RTI (Run Time Infrastructure).
This approach, which we call centralized coordination, is similar to several tools that
implement the HLA standard (High Level Architecture) [114]. In this approach, each federate
has two key responsibilities:

1. it must consult with the RTI before advancing logical time; and

2. it must inform the RTI of the earliest logical time at which it may send a message over
the network.

This centralized approach, however, has three key disadvantages. First, the RTI can become
a bottleneck for performance since all messages (except for those that travel through physical
connections), must flow through it. Second, the RTI is a single point of failure. Third, if a
physical action can trigger an outgoing network message, then the earliest next event time
is never larger than the time of the physical clock. This can lead to slow advancement of
logical time with many messages exchanged with the RTI.

5.4 Support for Federated Programs in LF

It is possible to convert an ordinary LF program into a federated program simply by substi-
tuting the main modifier with the federated keyword. This effectively turns each reactor
instance in the top-level reactor into a federate. Each federate can be mapped to particular

CHAPTER 5. FEDERATED EXECUTION 115

host. In a federated LF program, some parts of the orchestration discussed in the distributed
database example are automated. Connections between federates (reactor instances directly
contained by a federated reactor) are automatically transformed into entities similar to the
NetworkSender and NetworkReceiver reactors in Figures 5.3 and 5.4. A federated version
version of the distributed database example is shown in Figure 5.5.

ReservationSystem

PlatformA

DatabaseA

2

1

update publish

WebServerA

2

1

P
update publish

PlatformB

DatabaseB

3

2

1

query

update

reply

WebServerB

3

2

1

P

reply

query
30msec

update
30msec

Figure 5.5: A federated LF program with decentralized coordination for a reservation system.

In a federated execution, each federate runs in a separate process, potentially on a
different machine. If there are n federates in a program, then the code generator will generate
n+ 1 separate programs; one for each federate and one for the RTI. Each of these programs
is transferred to and compiled on its designated host. A federated program is started by
starting the RTI along with all of its constituent federates.

Example Consider the federated program in Listing 5.1. This is a particularly simple
form of a federation in which a Print federate receives timestamped messages from a Count

federate. The federated keyword tells the code generator that the program is to be split
into several distinct programs, one for each top level reactor, and one for the RTI. If the
filename that contains the code of Listing 5.1 is named DistributedCount.lf, then the
following three programs will appear in the bin directory:

• DistributedCount RTI;

• DistributedCount count; and

• DistributedCount print.

The root name, DistributedCount, is the name of the .lf file from which these are gen-
erated. The suffixes count and print come from the names of the top-level instances.
There will always be one federate for each top-level reactor instance.

In addition, one or two bash shell scripts will be generated:

• DistributedCount; and

CHAPTER 5. FEDERATED EXECUTION 116

• DistributedCount distributor.sh.

The first of these is a shell script that launches the RTI and each federate program. The
second script, DistributedCount distributor.sh, will be generated if any of the three
programs are specified to be run on a remote machine. That script will copy each source
file to its prescribed location using scp and compile it there (via ssh). The program in
Listing 5.1 specifies that the RTI shall compile and execute at rti.lf-lang.org, whereas
federate count shall be mapped to fed.lf-lang.org, and federate print is to compile and
run on localhost. A prerequisite is that user is an existing user on rti.lf-lang.org and
the system on which the LF program is compiled has to be in possession of a valid private
key in order to authenticate. Since no user is specified for fed.lf-lang.org the remote
username defaults to the name of the local user.

Listing 5.1: Minimal example of a federated LF program under centralized coordination

1 target C {coordination: centralized };

2 import Count from "Count.lf";

3 import Print from "Print.lf";

4 federated reactor DistributedCount at user@rti.lf -lang.org {

5 count = new Count () at fed.lf-lang.org;

6 print = new Print () at localhost;

7 count.out -> print.in;

8 }

The coordination strategies discussed in Sections 5.3 and 5.3 are both supported in
LF. The target property coordination can be used to specify which strategy to use;
centralized is the default. It should be noted that support for federated reactors is cur-
rently experimental and still a work in progress.1

While it might be possible to carry out a fully distributed start and end of execution, our
current implementation of decentralized coordination still uses a central coordinator for that.
The issues surrounding the start and end of execution of a federation of reactors covered in
Sections 5.4 and 5.4 are identical for both mechanisms. In a federation with decentralized
coordination, no communication with the RTI is necessary during execution; each federate
independently advances time and reorders incoming messages according to their tags.

Coordinating the Start of Execution

At the start of a federated program, each federate registers with the RTI. When all expected
federates have registered, the RTI broadcasts to the federates gstart, the logical time at which
they should start execution. Hence, all federates start at the same logical time, which is
determined as follows. When each federate starts executing, it sends its current physical
time (drawn from its real-time clock) to the RTI. When the RTI has heard from all the

1Soroush Bateni and Edward A. Lee have been the main developers of the runtime support for federated
execution currently present in LF.

CHAPTER 5. FEDERATED EXECUTION 117

federates, it chooses the largest of these physical times, adds a fixed offset (currently one
second), and broadcasts the resulting time to each federate.

When a federate receives the starting time from the RTI, unless it is running in fast

mode (see Section 3.2), it will wait until its local physical clock matches or exceeds that
starting time. Thus, to the extent that the machines have synchronized clocks, the federates
will all start executing at roughly the same physical time, a physical time close to gstart. If
any one of the hosts has a physical clock that is far ahead or far behind the others, then
unexpected stalls at startup could result. Hence, a federation should be run only on machines
that have some level of clock synchronization, at least, for example, using NTP [163].

Coordination During Execution

When one federate sends data to another, by default, the tag at the receiver will match the
tag at the sender. We can also modify the tag by imposing a logical delay on the connection
using an after clause. For connections between federates that are marked physical (using
the ∼> syntax), the received events are tagged based on a reading of the physical clock of
the receiving federate. Even in a centralized federation, the data transmission for physical
connections can be done directly between federates instead of through the RTI.

The preservation of tags for events that are conveyed via logical connections between fed-
erates implies some constraints—even under centralized coordination. We already know that
the presence of a realtime reactor (see Section 3.5) in a federate precludes the federate from
advancing its logical time past the current reading of its physical clock. Let us conservatively
assume that this constraint applies to all federates. This means that an event with tag (t,m)
cannot be injected into the network for transport from some federate A to another federate
B until TA ≥ t. Consequently, the message from A reaches B after a physical time delay
bounded by L, the maximum time it takes the message to traverse the network, and E, the
clock synchronization error between A and B. In a centrally coordinated federation, the RTI
will deny any requests from B to advance time beyond (t,m), for the entire duration that
the message from A is in flight. Just like in the distributed database example we discussed in
Section 5.2, this can lead to a physical time delay in handling of events that originate from
physical actions in B. The cure to this problem is the same we saw in Section 5.2: if the
lag induced in B is not acceptable, then a logical delay D can be added to the connection
between A and B. Provided that D > L+E, this means that B will no longer be forced to
lag behind its physical clock due to messages coming from A.

Related to this issue, but more problematic, is the following. Suppose federates A and B
are put in a feedback loop, where A receives messages from B, and B receives messages from
A. This configuration does not only let messages from A to induce lag in B; it also allows
messages from B to induce lag in A. This type of interaction could lead to a divergence
of the amount by which A and B each lag behind their physical clock. Specifically, this is
possible when 2(L + E) − (DBA + DAB) > 0, where DAB denotes the logical delay on the
connection from A to B and DBA is the logical delay on the connection from B to A. In
other words, unless the logical delays in the federated program mask the physical delays

CHAPTER 5. FEDERATED EXECUTION 118

in its realization, the approximate synchronization to physical time may be lost. This is
not a very surprising observation for those familiar with the LET paradigm [108], but it is
a phenomenon not ordinarily observed distributed systems, which tend to either rely on a
purely logical notion of time (e.g., Lamport clocks [118]), or only consider physical time.

Coordinating the End of Execution

A federated execution can come to a halt for several reasons:

• Starvation: there are no more events on the event queue;

• Timeout: there is a predefined gend, an upper bound on the tag of the last event;

• Requested stop: reaction code has requested a stop (see Algorithm 3); or

• External signal: Execution is terminated externally with Control+C or kill.

These situations are covered in Section 2.7 for non-federated reactors, but in a federated
context there are a number of subtleties that are worth discussing.

Starvation

When a federate has an empty event queue (and target property keepalive is not set to
true), then the federate cannot simply invoke the shutdown procedure (see Algorithm 14),
because other federates might supply it with future work. Only when all federates are
starved, the federated execution can conclude. While there are many possible solutions for
solving this distributed consensus problem, we currently solve it by letting each starving
federate report to the RTI the total number of messages it has sent or received on each
direct connection it has to another federate. When the RTI has received such a message
from all federates, and the number of messages sent and received on each direct connection
matches, RTI broadcast a shutdown message.

Timeout

The target property timeout specifies gstop, the last logical time at which reactions should
be triggered, computed relative to gstart. Just like in an ordinary non-federated program,
shutdown reactions will execute at gstop, along with whatever reactions might be triggered
by events that are scheduled to happen at gstop. One noteworthy subtlety is that events
conveyed through a physical connection are likely to get lost if they occur near gstop. This
is simply because those events get (re)tagged based on physical time. If the assigned tag is
greater than gstop, then the event will not be handled (just like any other events with a tag
greater than gstop that might be present in the reaction queue).

CHAPTER 5. FEDERATED EXECUTION 119

Requested Stop

When a reaction inside a federate invokes requestStop (see Algorithm 3 in Section 2.5),
then all federates have to come to agreement as to what the last tag gstop should be—a similar
consensus problem as the determination of gstart. Upon receiving a shutdown request, the
RTI asks each federate to report the earliest future tag at which it can execute the normal
shutdown sequence during which all reactions triggered by � are executed. The RTI then
picks the largest tag and tells all federates to set their gstop accordingly.

External Signal

Each federate and the RTI should catch external signals to shut down in an orderly fashion.
When a federate gets such an external signal (e.g., control-C), it should inform the RTI
that it is resigning and write an EOF (end of file) to each of its socket connections to
other federates. The RTI and all other federates should continue running until some other
termination condition occurs. When the RTI gets an external signal, then it should act as if
a stop was requested by one of the federates. This means finding the first possible gstop and
executing the normal shutdown sequence.

5.5 Conclusion

We have shown that the deterministic semantics of reactors can be preserved even when reac-
tors are mapped to separate processes and distributed across hosts, either using a centralized
coordination scheme modeled after HLA [114], or a decentralized coordination scheme based
on Ptides [223]. In either of these schemes, time-related subtleties arise. In the decentral-
ized case, determinism can only be preserved under well-stated assumptions about bounded
execution times, network latency, and clock synchronization error. While centralized co-
ordination does not require explicit bounds on physical time delays in order to guarantee
a deterministic ordering of events, ignoring physical time delays can still lead to adverse
(and unexpected) system behavior. In either scheme, physical time delays due to processing,
message transport, or clock skew, can cause one federate to prevent another federate from
advancing time and handling local events in a timely manner. Under centralized coordina-
tion, circumstances exist where feedback between federates can even lead to a divergence
between logical time and physical time.

We argue that these kinds of problems are structural, quantifiable, easy to diagnose, and
straightforward to address. One solution is to add logical delays in the software to accom-
modate physical delays in the realization; another is to make the physical realization faster
and more time-predictable. If the cost of determinism in terms of the required latency is
too high—or the application simply does not require determinism—physical connections can
be used to remove message-ordering guarantees (and the scheduling constraints imposed by
them). One can think of the receiving end of a physical connection as a simpler version of the
NetworkReceiver in Figure 5.4 that makes received messages available directly (using a phys-

CHAPTER 5. FEDERATED EXECUTION 120

ical action) rather than by means of a logical action in observance of some safe-to-process
threshold. The principle we advocate is that the system designer should choose to make the
system nondeterministic, rather than having this decision forced by the framework. More-
over, once a tag is assigned, the behavior of the system is deterministic. As a consequence,
even a nondeterministic design becomes testable because input test vectors can include the
assigned tags as part of the test vector.

Adopting this approach to engineering distributed systems, however, requires a reckon-
ing with the fact that we can no longer dismiss time as a mere metric for performance. It
will require a paradigm shift in the thinking of engineers, and an investment in technolo-
gies that can drive down the cost of determinism in terms of the latency that it requires.
This includes low-latency and high-bandwidth networking technology, clock synchronization
mechanisms [141], and processors for which tight bounds on execution time of reactions can
be computed [122].

We can only see a short distance ahead, but we
can see plenty there that needs to be done.

Alan M. Turing

Chapter 6

Conclusion

6.1 Further Work

This work opens up a many avenues for further work. Let us discuss some of them.

Performance Analysis

The preliminary benchmarking efforts discussed in Section 4.5 show promising results, but
more work is needed to fully understand the strengths and weaknesses of reactors when
compared to actors. We expect that implementing the remaining benchmarks from the
Savina suite [99] will provide a fuller picture, as well as opportunities for improving LF and
its runtime implementations. We have only recently started to develop tracing capabilities
for our C and C++ runtime implementations, which will certainly be an important aid
in diagnosing performance bottlenecks. It has already revealed that scheduling policies
great affect performance. Further work could focus on exploring trade-offs in the scheduling
of reactions, and finding methods for tuning the runtime scheduler to different types of
workloads.

The runtime support for federated execution of reactors (Chapter 5) is still in a rel-
atively early stage of development and has not yet been subjected to any performance
evaluations. It would be interesting to see how federated reactors would stack up against
well-established message passing frameworks like MPI [85] or actor-based frameworks like
CAF [45], Ray [168], Akka [185], or (Scalable) Distributed Erlang [46].

While benchmarks are important indicators, they seldom serve as predictors of how
well a language or framework fares in practice. The implementation of good demonstrator
applications would certainly help prove the viability of the concepts discussed in this thesis.
In pursuit of such proofs of concept, future work could be aimed at augmenting the Robot
Operating System (ROS) [181] with a deterministic coordination layer based on LF Currently,
ROS relies on a publish-subscribe mechanism for communication between nodes. Another
potential ecosystem in which to leverage reactors is Autoware [105]. Robotics and vehicular
software aside, demonstrator applications that appeal to the imagination could be sought

121

CHAPTER 6. CONCLUSION 122

in the areas of Virtual Reality (VR) or computer music, which are also reactive and time-
sensitive by nature.

Formal Verification

Existing work around verifying actor-based programs has focused on constructing labelled
transition systems (LTS) and performing model checking to find execution traces that violate
system specifications (e.g., [198]). Dynamic partial-order reduction (DPOR) techniques have
also been successfully leveraged for the verification of actor systems [204]. The verification
of reactor programs presents a new and open problem. Reactors are intended to operate
in cyber-physical systems, which pose a unique challenge to the formulation of verification
problems; the idea of “state” that is central to the concept of model checking, has no well-
defined meaning in physical reality without involving the notion of an observer [197]. This
issue aside, one way to furnish support for verifying properties about reactor programs would
be to create an LF target based on a modeling and verification language like UCLID5 [193].
The verification machinery of the target language could then be used to prove or disprove
properties about LF programs.

Runtime Improvements

Support for Mutations

Support for mutations in our runtime implementations is still under development. Our
TypeScript runtime has (so far) made the most progress toward implementing mutations,
and beginnings toward this goal have been made in the C target as well. Several of the Savina
benchmarks (such as the Sieve of Erathosthenes) actually require runtime mutations. While
we have a working C implementation of some of those benchmarks, they currently require
reaching deep into the internals of the runtime library to carry out dynamic reconfiguration
tasks. These procedures need to be abstracted and made available through the low-level API
that we outline in Section 2.5. In addition to that, it would be desirable to have higher-level
API functions for creating common patterns such as fork-join configurations and pipelines.

Preemptive EDF Scheduling

The EDF-based scheduling policy in our C runtime is nonpreemptive, which can lead to
deadline misses that are preventable under a policy in which running reactions could be
paused in order to free up resources to reactions with earlier deadlines. There are various
ways of accomplishing preemption—some being more portable than others. Under a default
round-robin time-sharing policy that is common on most existing Linux and Unix platforms,
“nice values” can be used to increase the priority of a thread. How exactly those thread
priorities affect the scheduling of threads is in the hands of the kernel. It would be interesting
to investigate whether dynamically changing nice values (using the pthreads setpriority

function) could help improve the likelihood of meeting deadlines.

CHAPTER 6. CONCLUSION 123

Lock-free Data Structures

The C and C++ runtime implementations rely on mutual exclusion locks to protect shared
data structures such as the event queue and reaction queue. Contention on locks can be
detrimental to performance, and there may be ways to reduce the reliance on locks by
leveraging lock-free data structures [211] that rely on atomic hardware instructions.

Exposing Even More Parallelism

As mentioned in Section 4.4, there are still unexplored opportunities for exploiting more
parallelism in the runtime system. These opportunities range from optimizations in the
assignment of chain IDs to the relaxation of the barrier synchronization that normally oc-
curs before logical time advances. Aside from the dependencies that are readily exposed in
LF programs, timing information (such as offsets and periods of timers, minimum delays
and minimum spacing for actions) can also be used to inform optimizations in the runtime
scheduler.

Language Improvements

Syntax for Common Patterns

While the explicit connections between reactors enable the dependency analysis required for
the execution of reactors, drawing connections between ports on a one-by-one basis can be
a tedious programming task. The syntactic constructs for multiports and banks of reactors
greatly simplify this task, but only for a subset of useful connection patterns. Matrix-
like arrangements, fully-connected connection topologies, or pipelines, for example, are still
difficult to express. Similar problems exist in hardware description languages. In VHDL,
the generate statement allows the digital designer to iteratively replicate and expand logic.
A similar mechanism might be suitable for LF.

Finite state machines (FSMs) are commonly used to model control logic. A reactor
can implement an FSM using state variables; the concept of modes, transitions, and the
behaviors associated with them would be encoded in the bodies of reactions. From a software
engineering perspective, it would be helpful to make these concepts visible at the LF level—in
the code, and, perhaps even more importantly, in the diagram synthesis. Leading examples
of such functionality are SCCharts [89] and the modal models in Ptolemy II [71].

Import and Package System

LF has a simple import system that requires imported classes to be listed explicitly. Name
disambiguation must be performed through an aliasing mechanism in the import statement
itself; there is no use of fully qualified names. The files in which to locate reactor classes are
identified by a (relative) path in the import statement. Whereas imported files are currently
looked up relative to the current location of the source file that is being compiled, we plan

CHAPTER 6. CONCLUSION 124

to develop a package system that will allow the classpath to be augmented using file-based
package descriptions similar to those used in language like Rust and Python.

WCET Analysis in the Compiler

Central to the reactor model is a semantic notion of time that is used to enforce a well-defined
ordering of events. LF is suitable for targeting anything from small bare-iron embedded
controllers to multi-core shared-memory systems and distributed systems. Having time as
a first-class citizen in the language, LF also holds promise as an excellent programming
model for real-time systems. But to fully realize this potential, the LF compiler has to be
augmented with worst-case execution time analysis capabilities. Inspiration for this could
be drawn from Fuhrmann et al. [74]. Given these tools, it should be possible to write LF
programs with hard timing guarantees.

Static Schedule Synthesis

The dynamic scheduling of reactors is very flexible. For programs that do not need this
flexibility, it might be more appropriate the generate a static schedule. For instance, if a
reactor program consists of a network of reactors that abide by the principles of synchronous
dataflow [120], then the execution can be performed according to a static SDF schedule
synthesized by the compiler instead of the generic reactor runtime scheduler.

Targeting Time-predictable Hardware

In order to realize reactor programs with ironclad timing guarantees [147], reactions must be
amenable to WCET analysis, which is necessary to perform schedulability analysis [69, 18].
Platforms that are optimized for predictable timing allow for tighter bounds on WCET and
more accurate release times, allowing for better utilization and tighter synchronization to
physical time, respectively. GameTime [192, 194], a tool for the timing analysis of software,
would be able to achieve much higher accuracy using time-predictable hardware. Two such
predictable-time platforms are Patmos [187] and FlexPRET [225].

Patmos is an architecture that is specifically designed to simplify WCET analysis and is
supported by several WCET analysis tools. At this time we have already successfully run
LF programs on Patmos and have computed WCET for reactions. The multi-threaded C
runtime has also been confirmed to run successfully on Patmos with its recently acquired
support for pthreads 1. A closer integration between the LF and Patmos compiler is planned.

The FlexPRET microarchitecture is a realization of a PRET machine [137, 122], which
achieves repeatable timing by using a thread-interleaved pipeline, scratchpad memory in-
stead of caches, and a specialized DRAM controller that ensures time-predictable memory
access. FlexPRET [225] distinguishes between soft and hard real-time threads, and supports

1Thanks to Tórur Biskopstø Strøm at Technical University of Denmark.

CHAPTER 6. CONCLUSION 125

an arbitrary interleaving of threads for better utilization given workloads with limited par-
allelism. We expect that reactors with their explicit timing constraints provide a suitable
programming model for PRET machines, which far have been lacking good software sup-
port. LF programs specify deadlines, periodic activities driven by timers, and asynchronous
external events with constraints on their spacing. The question is how to map reactions onto
hardware threads and synthesize the schedules for hard real-time threads so that deadlines
are met.

Improving Robustness of Federated Execution

Clock Synchronization

Hardware support for synchronizing clocks (IEEE 1588-2008) [67] is becoming more preva-
lent, but the effort (and required administrative privileges) involved in setting up Time
Sensitive Networking (TSN) could form a barrier to the adoption of federated coordination.
Integrating software-based clock synchronization capability (such as HUYGENS [82]) into
the federated runtime system, could alleviate this problem.

TSN, on the other hand, offers clock synchronization, flow control, and prioritized routing—
capabilities that federated LF programs can take advantage of. Beyond working assumptions
about the network into LF code, an interaction between the LF runtime system and TSN
configuration could potentially be established.

Handling Late Messages

A message that arrives at a federate bearing a timestamp that is earlier than the federate’s
current logical time, exposes a fault condition that can occur in a decentralized federation
when the assumptions about timing are not met. It means that the chosen STP threshold
was too small. An exception like this should probably be handled in an application-specific
way, much like deadline misses are. Adding language support for handling these kinds of
exceptions would be very useful. A sensible response to receiving late messages could be to
increase the STP threshold to reduce the likelihood of receiving late messages in the future.

Detecting Failures

Under decentralized coordination, it is not always detectable when a federate crashes. If an
upstream federate stops sending messages this could either be because it has no events, but
it could also be because message are getting lost, or because the federate itself could have
stopped working. Heartbeat messages [3] could help detect such problems.

Security

Currently, our federated runtime uses a rudimentary form of access control to prevent fed-
erates from joining the wrong federation. This should be enhanced to create an encrypted

CHAPTER 6. CONCLUSION 126

virtual private network for each federation. This could leverage recent work on distributed
authentication and authorization [107].

Dynamically Joining or Leaving A Federation

Mutations could also prove useful in a federated context, where it might be desirable for
the number of federates in a federation to change dynamically. To leverage the semantics of
mutations for this, it seems necessary to let the RTI be synonymous with top-level reactor
rather than act as an external entity that only coordinates the execution. A redesign along
these lines would allow a federated reactor to have reactions and mutations (besides contained
reactors), which it currently cannot.

Load Balancing

Federates are currently mapped to hosts manually. It would be useful to have runtime
support for the automatic distribution of reactors and common parallel computing patterns
like MapReduce [55].

6.2 Applications

The work by Menard et al. [162] shows how the federated use of reactors (as explained in
Chapter 5) can be used to correct nondeterminism in a real-world application, namely a
brake assistant demonstrator application that is provided by the AUTOSAR consortium for
their new AUTOSAR AP framework2. AUTOSAR AP is an attempt to accommodate the
integration of computationally demanding AI-driven control algorithms that are necessary
to achieve autonomous driving. While there has been a lot of attention for the robustness
of AI components themselves (e.g., the vulnerability of image classifiers to adversarial in-
put [116]), how to confidently integrate such components into safety-critical systems remains
a formidable research question. We think that the balance that reactors strike between rigor
and flexibility provides a better match for these kinds of complex integration problems than
established models like actors, publish-subscribe systems, or shared memory architectures,
in which determinism is virtually unattainable, and testing is notoriously hard [204].

Other recent work [217] suggests that there could be a role for reactors in the software
for mobile communication systems such as 5G. The challenges in those kinds of system are
similar to the AI-based automotive applications in the sense that they are computationally
demanding, time sensitive, and highly dynamic.

Another application area in which reactors could prove useful is the realm of Pro-
grammable Logical Controllers (PLCs) [191], an old but tenacious technology that has seen
little innovation since the late 1980s. While technology trends towards more sophisticated
networks, multi-core architectures, and increasingly complex microprocessor architectures,

2https://www.autosar.org/working-groups/adaptive-platform/

https://www.autosar.org/working-groups/adaptive-platform/

CHAPTER 6. CONCLUSION 127

the specialized programming model used in PLCs makes it difficult to accommodate and
take advantage of these technological advances. Reactors could help bridge this gap and
drive a new wave of innovation toward increased flexibility that does not compromise the
safety guarantees that PLCs are known and praised for.

6.3 Final Remarks

The results of this thesis comprise a formal model of reactors; a description of a polyglot
coordination language, compiler toolchain, and runtime system that is capable of deliver-
ing determinism in potentially complex and highly concurrent and potentially distributed
reactive systems; and a preliminary evaluation that suggests that the deterministic concur-
rency of reactors does not come at a prohibitive loss in performance. This is a remarkable
result because asynchronous and nondeterministic models of concurrent computation (e.g.,
actors [95], publish-subscribe [160], distributed shared memory [167]) have been pursued and
implemented in large part for their efficiency and performance in multi-core and distributed
software. The sacrifice of determinacy in these type of systems appears to be commonly
accepted as a necessary cost.

The work in this thesis charts a path forward toward testable and understandable concur-
rency that is also highly performant. While more work is necessary to draw a final conclusion
on this matter, we have started to lift the veil on what seems to be a false dichotomy between
determinism and the ability to effectively exploit parallelism. We have shown, however, that
preserving determinism imposes a cost in terms of latency, a trade-off that is brought to the
forefront by the relationship that reactors establish between logical time and physical time.

While the emphasis of reactors is on determinacy, asynchrony and nondeterminism can
be realized, through the use of physical actions. Our philosophy is that the interactions
between software components should be deterministic by default. In the reactor model, any
deviation from that default must either constitute an intentional behavior that is allowed
explicitly by the programmer, or it must be due to a fault condition that is to be addressed
at runtime.

128

Bibliography

[1] Gul Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems.
The MIT Press Series in Artificial Intelligence. Cambridge, MA: MIT Press, 1986.

[2] Gul A. Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. “A foundation
for actor computation”. In: Journal of Functional Programming 7.1 (1997), pp. 1–72.

[3] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. “Heartbeat: A timeout-free
failure detector for quiescent reliable communication”. In: International Workshop on
Distributed Algorithms. Springer. 1997, pp. 126–140.

[4] Peter Ahrens, James Demmel, and Hong Diep Nguyen. “Algorithms for Efficient
Reproducible Floating Point Summation”. In: ACM Trans. Math. Softw. 46.3 (July
2020). issn: 0098-3500. doi: 10.1145/3389360. url: https://doi.org/10.1145/
3389360.

[5] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. “Soft Typing with
Conditional Types”. In: Proceedings of the 21st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. POPL ’94. Portland, Oregon, USA:
Association for Computing Machinery, 1994, pp. 163–173. isbn: 0897916360. doi:
10.1145/174675.177847. url: https://doi.org/10.1145/174675.177847.

[6] S. Alimadadi, A. Mesbah, and K. Pattabiraman. “Understanding Asynchronous Inter-
actions in Full-Stack JavaScript”. In: 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). May 2016, pp. 1169–1180. doi: 10.1145/2884781.
2884864.

[7] Charles André. SyncCharts: A Visual Representation of Reactive Behaviors. Report
RR 95–52. University of Sophia-Antipolis, Apr. 1996.

[8] James R. Armstrong and F. Gail Gray. VHDL Design Representation and Synthesis.
Second. Prentice-Hall, 2000.

[9] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent
programming in Erlang. Second. Prentice Hall, 1996. isbn: ISBN 0-13-508301-X.

https://doi.org/10.1145/3389360
https://doi.org/10.1145/3389360
https://doi.org/10.1145/3389360
https://doi.org/10.1145/174675.177847
https://doi.org/10.1145/174675.177847
https://doi.org/10.1145/2884781.2884864
https://doi.org/10.1145/2884781.2884864

BIBLIOGRAPHY 129

[10] Cyrille Artho and Armin Biere. “Applying static analysis to large-scale, multi-threaded
Java programs”. In: Proceedings 2001 Australian Software Engineering Conference.
IEEE. 2001, pp. 68–75.

[11] Arvind, Rishiyur S. Nikhil, Daniel Rosenband, and Nirav Dave. “High-Level Synthe-
sis: An Essential Ingredient for Designing Complex ASICs”. In: International Con-
ference on Computer Aided Design (ICCAD). 2004.

[12] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, and Katherine A. Yelick. “The landscape of parallel comput-
ing research: A view from Berkeley”. In: (2006).

[13] Y. Bai. “Desynchronization: From Macro-step to Micro-step”. In: 2018 16th ACM/IEEE
International Conference on Formal Methods and Models for System Design (MEM-
OCODE). Oct. 2018, pp. 1–10.

[14] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn Mostinckx,
and Wolfgang Meuter. “A Survey on Reactive Programming”. In: ACM Comput. Surv.
45.4 (Aug. 2013), 52:1–52:34. issn: 0360-0300. doi: 10.1145/2501654.2501666.

[15] Theodore P Baker and Alan Shaw. “The cyclic executive model and Ada”. In: Real-
Time Systems 1.1 (1989), pp. 7–25.

[16] Henry C Baker Jr and Carl Hewitt. “The incremental garbage collection of processes”.
In: ACM Sigplan Notices 12.8 (1977), pp. 55–59.

[17] Herman Banken, Erik Meijer, and Georgios Gousios. “Debugging data flows in re-
active programs”. In: 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). IEEE. 2018, pp. 752–763.

[18] S. Baruah. “Schedulability analysis of mixed-criticality systems with multiple fre-
quency specifications”. In: 2016 International Conference on Embedded Software (EM-
SOFT). 2016, pp. 1–10. doi: 10.1145/2968478.2968488.

[19] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. YAML Ain’t Markup Language
(YAML™) Version 1.2. Oct. 2009.

[20] Albert Benveniste and Gérard Berry. “The Synchronous Approach to Reactive and
Real-Time Systems”. In: Proceedings of the IEEE 79.9 (1991), pp. 1270–1282.

[21] Albert Benveniste and Paul Le Guernic. “Hybrid Dynamical Systems Theory and the
SIGNAL Language”. In: IEEE Tr. on Automatic Control 35.5 (1990), pp. 525–546.

[22] Jan A Bergstra and Jan Willem Klop. “ACPτ a universal axiom system for process
specification”. In: Workshop on Algebraic Methods. Springer. 1987, pp. 445–463.

[23] Gérard Berry. “SCADE: Synchronous design and validation of embedded control
software”. In: Next Generation Design and Verification Methodologies for Distributed
Embedded Control Systems. Springer, 2007, pp. 19–33.

https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/2968478.2968488

BIBLIOGRAPHY 130

[24] Gerard Berry and Ellen Sentovich. “Multiclock Esterel”. In: Correct Hardware Design
and Verification Methods (CHARME). Vol. LNCS 2144. Springer-Verlag, 2001.

[25] Gérard Berry and Georges Gonthier. “The ESTEREL synchronous programming lan-
guage: design, semantics, implementation”. In: Science of Computer Programming
19.2 (Nov. 1992), pp. 87–152. doi: 10.1016/0167-6423(92)90005-V.

[26] Gérard Berry and Georges Gonthier. “The Esterel synchronous programming lan-
guage: Design, semantics, implementation”. In: Science of Computer Programming
19.2 (1992), pp. 87–152.

[27] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. “Static Scheduling of
Multi-rate and Cyclo-Static DSP Applications”. In: Workshop on VLSI Signal Pro-
cessing. IEEE Press, 1994.

[28] Rick Bitter, Taqi Mohiuddin, and Matt Nawrocki. LabVIEW: Advanced programming
techniques. CRC press, 2017.

[29] Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas,
Crystal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah, Kiko
Fernandez-Reyes, and Albert Mingkun Yang. “A Survey of Active Object Languages”.
In: ACM Computing Surveys 50.5 (2017), 76:1–76:39.

[30] Max Born. “Quantenmechanik der stoßvorgänge”. In: Zeitschrift für Physik 38.11-12
(1926), pp. 803–827.

[31] Frédéric Boulanger, Christophe Jacquet, Cécile Hardebolle, and Iuliana Prodan. “TESL:
A Language for Reconciling Heterogeneous Execution Traces”. In: ACM/IEEE Con-
ference on Formal Methods and Models for Codesign (MEMOCODE). Oct. 2014. doi:
10.1109/MEMCOD.2014.6961849.

[32] Timothy Bourke and A. Sowmya. “Delays in Esterel”. In: SYNCHRON. Vol. Seminar
09481. Nov. 2009.

[33] Frédéric Boussinot. “Reactive C: An Extension to C to Program Reactive Systems”.
In: Software Practice and Experience 21.4 (Apr. 1991), pp. 401–428. doi: 10.1002/
spe.4380210406.

[34] Frédéric Boussinot and Robert de Simone. “The SL synchronous language”. In: IEEE
Tr. on Software Engineering 22.4 (Apr. 1996), pp. 256–266. doi: 10.1109/32.491649.

[35] C. Brooks, C. Jerad, H. Kim, E. A. Lee, M. Lohstroh, V. Nouvellet, B. Osyk, and M.
Weber. “A Component Architecture for the Internet of Things”. In: Proceedings of
the IEEE 106.9 (Sept. 2018), pp. 1527–1542. issn: 0018-9219. doi: 10.1109/JPROC.
2018.2812598.

[36] Christopher Brooks, Chadlia Jerad, Hokeun Kim, Edward A. Lee, Marten Lohstroh,
Victor Nouvellet, Beth Osyk, and Matt Weber. “A Component Architecture for the
Internet of Things”. In: Proceedings of the IEEE 106.9 (Sept. 2018), pp. 1527–1542.
doi: 10.1109/JPROC.2018.2812598.

https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1109/MEMCOD.2014.6961849
https://doi.org/10.1002/spe.4380210406
https://doi.org/10.1002/spe.4380210406
https://doi.org/10.1109/32.491649
https://doi.org/10.1109/JPROC.2018.2812598
https://doi.org/10.1109/JPROC.2018.2812598
https://doi.org/10.1109/JPROC.2018.2812598

BIBLIOGRAPHY 131

[37] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. “Concurrent program-
ming with revisions and isolation types”. In: Proceedings of the ACM international
conference on Object oriented programming systems languages and applications. 2010,
pp. 691–707.

[38] Alan Burns and Andy Wellings. Concurrent and real-time programming in Ada. Cam-
bridge University Press, 2007.

[39] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications. second. Springer, 2005.

[40] Luca Cardelli and Andrew D Gordon. “Mobile ambients”. In: International Confer-
ence on Foundations of Software Science and Computation Structure. Springer. 1998,
pp. 140–155.

[41] C. G. Cassandras. Discrete Event Systems, Modeling and Performance Analysis. Ir-
win, 1993.

[42] Adam Cataldo, Edward A. Lee, Xiaojun Liu, Eleftherios Matsikoudis, and Haiyang
Zheng. “A Constructive Fixed-Point Theorem and the Feedback Semantics of Timed
Systems”. In: Workshop on Discrete Event Systems (WODES). 2006. url: http:

//ptolemy.eecs.berkeley.edu/publications/papers/06/constructive/.

[43] Sagar Chaki, Edmund Clarke, Joël Ouaknine, Natasha Sharygina, and Nishant Sinha.
“Concurrent software verification with states, events, and deadlocks”. In: Formal
Aspects of Computing 17.4 (2005), pp. 461–483.

[44] K. Mani Chandy and Jayadev Misra. “Distributed simulation: A case study in design
and verification of distributed programs”. In: IEEE Trans. on Software Engineering
5.5 (1979), pp. 440–452.

[45] Dominik Charousset, Raphael Hiesgen, and Thomas C Schmidt. “CAF - The C++
Actor Framework for Scalable and Resource-efficient Applications”. In: Proceedings
of the 4th International Workshop on Programming based on Actors Agents & Decen-
tralized Control. 2014, pp. 15–28.

[46] Natalia Chechina, Kenneth MacKenzie, Simon Thompson, Phil Trinder, Olivier Bou-
deville, Viktória Fördős, Csaba Hoch, Amir Ghaffari, and Mario Moro Hernandez.
“Evaluating scalable distributed Erlang for scalability and reliability”. In: IEEE
Transactions on Parallel and Distributed Systems 28.8 (2017), pp. 2244–2257.

[47] Albert MK Cheng. Real-time systems: scheduling, analysis, and verification. John
Wiley & Sons, 2003.

[48] William Douglas Clinger. “Foundations of actor semantics”. In: AITR-633 (1981).

[49] Paul Moritz Cohn. Basic algebra: groups, rings and fields. Springer Science & Business
Media, 2012, p. 17.

http://ptolemy.eecs.berkeley.edu/publications/papers/06/constructive/
http://ptolemy.eecs.berkeley.edu/publications/papers/06/constructive/

BIBLIOGRAPHY 132

[50] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild,
Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey
Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-
sushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford.
“Spanner: Google’s Globally-Distributed Database”. In: ACM Transactions on Com-
puter Systems (TOCS) 31.8 (2013). doi: 10.1145/2491245.

[51] Fabio Cremona, Marten Lohstroh, David Broman, Edward A. Lee, Michael Masin,
and Stavros Tripakis. “Hybrid co-simulation: it’s about time”. In: Software & Systems
Modeling (Nov. 2017). issn: 1619-1374. doi: 10.1007/s10270-017-0633-6.

[52] James B Dabney and Thomas L Harman. Mastering Simulink. Pearson, 2004.

[53] Judith S Dahmann, Richard M Fujimoto, and Richard M Weatherly. “The Depart-
ment of Defense High Level Architecture”. In: Proceedings of the 29th conference on
Winter simulation. 1997, pp. 142–149.

[54] Adam L Davis. “Introduction to Reactive Streams”. In: Reactive Streams in Java.
Springer, 2019, pp. 1–3.

[55] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters”. In: Sixth Symposium on Operating System Design and Implementa-
tion (OSDI). USENIX Association, 2004, pp. 137–150.

[56] Julien Deantoni, Frédéric Mallet, and Charles André. “On the Formal Execution of
UML and DSL Models”. In: WIP of the 4th International School on Model-Driven
Development for Distributed, Realtime, Embedded Systems. Apr. 2009.

[57] Jack B. Dennis. First Version Data Flow Procedure Language. Report MAC TM61.
MIT Laboratory for Computer Science, 1974.

[58] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and
Damien Zufferey. P: Safe Asynchronous Event-Driven Programming. Report. Mi-
crosoft Research, Nov. 2012.

[59] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and
Damien Zufferey. “P: safe asynchronous event-driven programming”. In: ACM SIG-
PLAN Notices 48.6 (2013), pp. 321–332.

[60] Edsger W Dijkstra. “Letters to the editor: go to statement considered harmful”. In:
Communications of the ACM 11.3 (1968), pp. 147–148.

[61] Hui Ding, Can Zheng, Gul Agha, and Lui Sha. “Automated Verification of the De-
pendability of Object-Oriented Real-Time Systems”. In: 2003 The Ninth IEEE In-
ternational Workshop on Object-Oriented Real-Time Dependable Systems. Oct. 2003,
pp. 171–171. doi: 10.1109/WORDS.2003.1267505.

https://doi.org/10.1145/2491245
https://doi.org/10.1007/s10270-017-0633-6
https://doi.org/10.1109/WORDS.2003.1267505

BIBLIOGRAPHY 133

[62] Clara Benac Earle and Lars-Åke Fredlund. “Verification of Timed Erlang Programs
Using McErlang”. In: Formal Techniques for Distributed Systems - Joint 14th IFIP
WG 6.1 International Conference, FMOODS 2012 and 32nd IFIP WG 6.1 Interna-
tional Conference, FORTE 2012, Stockholm, Sweden, June 13-16, 2012. Proceedings.
2012, pp. 251–267.

[63] Stephen Edwards and John Hui. “The Sparse Synchronous Model”. In: 2020 Forum
for Specification and Design Languages, FDL 2020, Kiel, Germany, September 15-17,
2020. IEEE, 2020, pp. 1–8.

[64] Stephen A. Edwards. “Verilog”. In: Languages for Digital Embedded Systems. Boston,
MA: Springer US, 2000, pp. 31–54. isbn: 978-1-4615-4325-1. doi: 10.1007/978-1-
4615-4325-1_3. url: https://doi.org/10.1007/978-1-4615-4325-1_3.

[65] Stephen A. Edwards and Edward A. Lee. “The case for the precision timed (PRET)
machine”. In: DAC ’07: Proceedings of the 44th annual conference on Design automa-
tion. San Diego, California: ACM, 2007, pp. 264–265. isbn: 978-1-59593-627-1. doi:
http://doi.acm.org/10.1145/1278480.1278545.

[66] Stephen A. Edwards and Edward A. Lee. “The Semantics and Execution of a Syn-
chronous Block-Diagram Language”. In: Science of Computer Programming 48.1
(2003), pp. 21–42. doi: 10.1016/S0167-6423(02)00096-5.

[67] John C. Eidson. Measurement, Control, and Communication Using IEEE 1588. Spring-
er, 2006.

[68] Moritz Eysholdt and Heiko Behrens. “Xtext: implement your language faster than the
quick and dirty way”. In: Proceedings of the ACM international conference compan-
ion on Object oriented programming systems languages and applications companion.
ACM. 2010, pp. 307–309.

[69] Timo Feld, Alessandro Biondi, Robert I. Davis, Giorgio Buttazzo, and Frank Slomka.
“A survey of schedulability analysis techniques for rate-dependent tasks”. In: Journal
of Systems and Software 138 (2018), pp. 100–107. issn: 0164-1212. doi: https://
doi.org/10.1016/j.jss.2017.12.033. url: http://www.sciencedirect.com/
science/article/pii/S0164121217303102.

[70] Michael Feldman. Who is using Ada? SIGAda Education Grop. url: https://www2.
seas.gwu.edu/~mfeldman/ada-project-summary.html#Banking_and_Financial_

Systems.

[71] Thomas Huining Feng, Edward A. Lee, Xiaojun Liu, Stavros Tripakis, Haiyang Zheng,
and Ye Zhou. “Modal Models”. In: System Design, Modeling, and Simulation using
Ptolemy II. Ed. by Claudius Ptolemaeus. Berkeley, CA: Ptolemy.org, 2014. isbn: 978-
1-304-42106-7. url: http://ptolemy.org/books/Systems.

[72] Cédric Fournet and Georges Gonthier. “The reflexive CHAM and the join-calculus”.
In: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 1996, pp. 372–385.

https://doi.org/10.1007/978-1-4615-4325-1_3
https://doi.org/10.1007/978-1-4615-4325-1_3
https://doi.org/10.1007/978-1-4615-4325-1_3
https://doi.org/http://doi.acm.org/10.1145/1278480.1278545
https://doi.org/10.1016/S0167-6423(02)00096-5
https://doi.org/https://doi.org/10.1016/j.jss.2017.12.033
https://doi.org/https://doi.org/10.1016/j.jss.2017.12.033
http://www.sciencedirect.com/science/article/pii/S0164121217303102
http://www.sciencedirect.com/science/article/pii/S0164121217303102
https://www2.seas.gwu.edu/~mfeldman/ada-project-summary.html#Banking_and_Financial_Systems
https://www2.seas.gwu.edu/~mfeldman/ada-project-summary.html#Banking_and_Financial_Systems
https://www2.seas.gwu.edu/~mfeldman/ada-project-summary.html#Banking_and_Financial_Systems
http://ptolemy.org/books/Systems

BIBLIOGRAPHY 134

[73] Daniel P Friedman and David Stephen Wise. The Impact of Applicative Programming
on Multiprocessing. Indiana University, Computer Science Department, 1976.

[74] Insa Fuhrmann, David Broman, Reinhard von Hanxleden, and Alexander Schulz-
Rosengarten. “Time for Reactive System Modeling: Interactive Timing Analysis with
Hotspot Highlighting”. In: Proceedings of the 24th International Conference on Real-
Time Networks and Systems. RTNS ’16. Brest, France: Association for Comput-
ing Machinery, 2016, pp. 289–298. isbn: 9781450347877. doi: 10.1145/2997465.
2997467. url: https://doi.org/10.1145/2997465.2997467.

[75] Richard Fujimoto. Parallel and Distributed Simulation Systems. Hoboken, NJ, USA:
John Wiley and Sons, 2000.

[76] Dan Gajski. SpecC: Specification Language and Methodology. Norwell, MA: Kluwer
Academic Publishers, 2000.

[77] Abdoulaye Gamatie and Thierry Gautier. “The Signal Synchronous Multiclock Ap-
proach to the Design of Distributed Embedded Systems”. In: IEEE Transactions on
Parallel and Distributed Systems 21.5 (2010), pp. 641–657.

[78] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and Design Patterns.
“Elements of reusable object-oriented software”. In: Reading: Addison-Wesley (1995).

[79] Marc Geilen, Twan Basten, and Sander Stuijk. “Minimising Buffer Requirements of
Synchronous Dataflow Graphs with Model Checking”. In: Design Automation Con-
ference (DAC). ACM, 2005, pp. 819–824. doi: 10.1145/1065579.1065796.

[80] Marc Geilen, Sander Stuijk, and Twan Basten. “Predictable Dynamic Embedded
Data Processing”. In: International Conference on Embedded Computer Systems: Ar-
chitectures, Modeling, and Simulation (SAMOS). IEEE, 2012.

[81] David Gelernter. “Generative communication in Linda”. In: ACM Transactions on
Programming Languages and Systems (TOPLAS) 7.1 (1985), pp. 80–112.

[82] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosenblum,
and Amin Vahdat. “Exploiting a natural network effect for scalable, fine-grained
clock synchronization”. In: 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’18). 2018, pp. 81–94.

[83] Michael Gibbs and Bjarne Stroustrup. “Fast dynamic casting”. In: Software: Practice
and Experience 36.2 (2006), pp. 139–156.

[84] Irene Greif. “Semantics of communicating parallel processes.” PhD thesis. Massachu-
setts Institute of Technology, 1975.

[85] William Gropp, William D Gropp, Ewing Lusk, Anthony Skjellum, and Argonne
Distinguished Fellow Emeritus Ewing Lusk. Using MPI: portable parallel programming
with the message-passing interface. Vol. 1. MIT press, 1999.

https://doi.org/10.1145/2997465.2997467
https://doi.org/10.1145/2997465.2997467
https://doi.org/10.1145/2997465.2997467
https://doi.org/10.1145/1065579.1065796

BIBLIOGRAPHY 135

[86] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. “The Synchronous Data Flow
Programming Language LUSTRE”. In: Proceedings of the IEEE 79.9 (1991), pp. 1305–
1319.

[87] Philipp Haller and Martin Odersky. “Scala actors: Unifying thread-based and event-
based programming”. In: Theoretical Computer Science 410.2-3 (2009), pp. 202–220.

[88] Reinhard von Hanxleden. SyncCharts in C. Technical Report Bericht Nr. 0910. De-
partment of Computer Science, Christian-Albrechts-Universitaet Kiel, May 2009.

[89] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael
Mendler, Joaqúın Aguado, Stephen Mercer, and Owen O’Brien. “SCCharts: Sequen-
tially Constructive Statecharts for Safety-critical Applications”. In: ACM SIGPLAN
Conf. on Programming Language Design and Implementation. PLDI ’14. Edinburgh,
United Kingdom: ACM, 2014, pp. 372–383. isbn: 978-1-4503-2784-8. doi: 10.1145/
2594291.2594310.

[90] David Harel. “Statecharts: A Visual Formalism for Complex Systems”. In: Science of
Computer Programming 8.3 (1987), pp. 231–274.

[91] Ludovic Henrio, Einar Broch Johnsen, and Violet Ka I Pun. “Active Objects with De-
terministic Behaviour”. In: International Conference on Integrated Formal Methods.
Springer. 2020, pp. 181–198.

[92] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. “Giotto: A Time-Triggered Language
for Embedded Programming”. In: EMSOFT 2001. Vol. LNCS 2211. Springer-Verlag,
2001, pp. 166–184.

[93] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. “Embedded
Control Systems Development with Giotto”. In: Proceedings of the ACM SIGPLAN
Workshop on Languages, Compilers and Tools for Embedded Systems. LCTES ’01.
Snow Bird, Utah, USA: Association for Computing Machinery, 2001, pp. 64–72. isbn:
1581134258. doi: 10.1145/384197.384208.

[94] Carl Hewitt. “Viewing control structures as patterns of passing messages”. In: Journal
of Artificial Intelligence 8.3 (1977), pp. 323–363.

[95] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. “A Universal Modular AC-
TOR Formalism for Artificial Intelligence”. In: Proceedings of the 3rd International
Joint Conference on Artificial Intelligence. Standford, CA, USA, August 20-23, 1973.
1973, pp. 235–245.

[96] C. A. R. Hoare. “Communicating Sequential Processes”. In: Commun. ACM 21.8
(Aug. 1978), pp. 666–677. issn: 0001-0782. doi: 10.1145/359576.359585. url:
https://doi.org/10.1145/359576.359585.

[97] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2019 (Revision of
IEEE 754-2008) (2019), pp. 1–84.

https://doi.org/10.1145/2594291.2594310
https://doi.org/10.1145/2594291.2594310
https://doi.org/10.1145/384197.384208
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585

BIBLIOGRAPHY 136

[98] “IEEE Standard VHDL Language Reference Manual”. In: ANSI/IEEE Std 1076-1993
(1994), pp. 1–288. doi: 10.1109/IEEESTD.1994.121433.

[99] Shams M Imam and Vivek Sarkar. “Savina-an actor benchmark suite: Enabling em-
pirical evaluation of actor libraries”. In: Proceedings of the 4th International Workshop
on Programming based on Actors Agents & Decentralized Control. 2014, pp. 67–80.

[100] IEEE Instrumentation and Measurement Society. 1588: IEEE Standard for a Pre-
cision Clock Synchronization Protocol for Networked Measurement and Control Sys-
tems. Report. IEEE, Nov. 2002.

[101] D. Jefferson. “Virtual Time”. In: ACM Trans. Programming Languages and Systems
7.3 (1985), pp. 404–425.

[102] Chadlia Jerad and Edward A Lee. “Deterministic timing for the industrial internet of
things”. In: 2018 IEEE International Conference on Industrial Internet (ICII). IEEE.
2018, pp. 13–22.

[103] Gilles Kahn. “The Semantics of a Simple Language for Parallel Programming”. In:
Proc. of the IFIP Congress 74. North-Holland Publishing Co., 1974, pp. 471–475.

[104] Gilles Kahn and D. B. MacQueen. “Coroutines and Networks of Parallel Processes”.
In: Information Processing. Ed. by B. Gilchrist. North-Holland Publishing Co., 1977,
pp. 993–998.

[105] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato Hirabayashi,
Yuki Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya Azumi.
“Autoware on board: Enabling autonomous vehicles with embedded systems”. In:
2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS).
IEEE. 2018, pp. 287–296.

[106] Ehsan Khamespanah, Marjan Sirjani, Zeynab Sabahi Kaviani, Ramtin Khosravi, and
Mohammad-Javad Izadi. “Timed Rebeca schedulability and deadlock freedom anal-
ysis using bounded floating time transition system”. In: Science of Computer Pro-
gramming 98 (2015), pp. 184–204.

[107] Hokeun Kim, Eunsuk Kang, David Broman, and Edward A. Lee. “Resilient Au-
thentication and Authorization for the Internet of Things (IoT) Using Edge Com-
puting”. In: ACM Trans. Internet Things 1.1 (Mar. 2020). issn: 2691-1914. doi:
10.1145/3375837. url: https://doi.org/10.1145/3375837.

[108] Christoph M Kirsch and Ana Sokolova. “The logical execution time paradigm”. In:
Advances in Real-Time Systems. Springer, 2012, pp. 103–120.

[109] Hannes Klein. “Performance Evaluation of Reactor Programs”. Bachelor’s Thesis. TU
Dresden, 2020.

[110] E. Kligerman and A. D. Stoyenko. “Real-Time Euclid: A language for reliable real-
time systems”. In: IEEE Transactions on Software Engineering SE-12.9 (Sept. 1986),
pp. 941–949. issn: 2326-3881. doi: 10.1109/TSE.1986.6313049.

https://doi.org/10.1109/IEEESTD.1994.121433
https://doi.org/10.1145/3375837
https://doi.org/10.1145/3375837
https://doi.org/10.1109/TSE.1986.6313049

BIBLIOGRAPHY 137

[111] Philip Koopman. A Case Study of Toyota Unintended Acceleration and Software
Safety. Blog. 2014. url: http://betterembsw.blogspot.com/2014/09/a-case-
study-of-toyota-unintended.html.

[112] Hermann Kopetz. Real-time systems: design principles for distributed embedded ap-
plications. Springer Science & Business Media, 2011.

[113] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinhammer. “The
time-triggered ethernet (TTE) design”. In: Eighth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’05). IEEE. 2005, pp. 22–
33.

[114] Frederick Kuhl, Richard Weatherly, and Judith Dahmann. Creating Computer Sim-
ulation Systems: an Introduction to the High Level Architecture. Prentice Hall PTR,
1999.

[115] Lindsey Kuper, Aaron Turon, Neelakantan R Krishnaswami, and Ryan R Newton.
“Freeze after writing: Quasi-deterministic parallel programming with LVars”. In:
ACM SIGPLAN Notices 49.1 (2014), pp. 257–270.

[116] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the phys-
ical world. 2017. arXiv: 1607.02533 [cs.CV].

[117] Leslie Lamport. “Using Time Instead of Timeout for Fault-Tolerant Distributed Sys-
tems”. In: ACM Transactions on Programming Languages and Systems 6.2 (1984),
pp. 254–280.

[118] Leslie Lamport, Robert Shostak, and Marshall Pease. “Time, Clocks, and the Order-
ing of Events in a Distributed System”. In: Communications of the ACM 21.7 (1978),
pp. 558–565.

[119] Elizabeth Latronico, Edward A. Lee, Marten Lohstroh, Chris Shaver, Armin Wasicek,
and Matthew Weber. “A Vision of Swarmlets”. In: IEEE Internet Computing 19.2
(2015), pp. 20–28. doi: 10.1109/MIC.2015.17.

[120] E. A. Lee and D. G. Messerschmitt. “Synchronous Data Flow”. In: Proceedings of the
IEEE 75.9 (1987), pp. 1235–1245. doi: 10.1109/PROC.1987.13876.

[121] E. A. Lee and T. M. Parks. “Dataflow Process Networks”. In: Proceedings of the IEEE
83.5 (1995), pp. 773–801. doi: 10.1109/5.381846.

[122] Edward Lee, Jan Reineke, and Michael Zimmer. “Abstract PRET machines”. In: 2017
IEEE Real-Time Systems Symposium (RTSS). IEEE. 2017, pp. 1–11.

[123] Edward A Lee and Alberto Sangiovanni-Vincentelli. The Tagged Signal Model - A
Preliminary Version of a Denotational Framework for Comparing Models of Compu-
tation. Tech. Report. EECS Department, University of California, 1996. url: https:
//ptolemy.berkeley.edu/papers/96/denotational/.

[124] Edward A. Lee. “Computing Needs Time”. In: Communications of the ACM 52.5
(2009), pp. 70–79. issn: UCB/EECS-2009-30. doi: 10.1145/1506409.1506426.

http://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html
http://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html
https://arxiv.org/abs/1607.02533
https://doi.org/10.1109/MIC.2015.17
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1109/5.381846
https://ptolemy.berkeley.edu/papers/96/denotational/
https://ptolemy.berkeley.edu/papers/96/denotational/
https://doi.org/10.1145/1506409.1506426

BIBLIOGRAPHY 138

[125] Edward A. Lee. “Cyber Physical Systems: Design Challenges”. In: International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Comput-
ing (ISORC). IEEE, 2008, pp. 363–369. doi: 10.1109/ISORC.2008.25.

[126] Edward A. Lee. EECS 219D: Semantics of Discrete-Event Systems.
https://bcourses.berkeley.edu/courses/1195544/files/folder/Lecture%

20Notes?preview=45232443. Lecture Slides. Feb. 2014.

[127] Edward A. Lee. “Modeling Concurrent Real-time Processes Using Discrete Events”.
In: Annals of Software Engineering 7 (1999), pp. 25–45.

[128] Edward A. Lee. “The Problem with Threads”. In: Computer 39.5 (2006), pp. 33–42.
doi: 10.1109/MC.2006.180.

[129] Edward A. Lee and Eleftherios Matsikoudis. “The Semantics of Dataflow with Firing”.
In: From Semantics to Computer Science: Essays in memory of Gilles Kahn. Ed.
by Gérard Huet, Gordon Plotkin, Jean-Jacques Lévy, and Yves Bertot. Cambridge
University Press, 2009.

[130] Edward A. Lee, Jan Reineke, and Michael Zimmer. “Abstract PRET Machines”. In:
IEEE Real-Time Systems Symposium (RTSS). Dec. 2017.

[131] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems - A Cyber-
Physical Systems Approach. Second. Cambridge, MA, USA: MIT Press, 2017. url:
http://LeeSeshia.org.

[132] Edward A. Lee and Haiyang Zheng. “Leveraging Synchronous Language Principles
for Heterogeneous Modeling and Design of Embedded Systems”. In: EMSOFT. ACM,
2007, pp. 114–123. doi: 10.1145/1289927.1289949.

[133] Edward A. Lee and Haiyang Zheng. “Operational Semantics of Hybrid Systems”.
In: Hybrid Systems: Computation and Control (HSCC). Ed. by Manfred Morari and
Lothar Thiele. Vol. LNCS 3414. Springer-Verlag, 2005, pp. 25–53. doi: 10.1007/978-
3-540-31954-2_2.

[134] Edward Ashford Lee. Plato and the Nerd — The Creative Partnership of Humans
and Technology. MIT Press, 2017.

[135] Stan Liao, Steve Tjiang, and Rajesh Gupta. “An Efficient Implementation of Reactiv-
ity for Modeling Hardware in the Scenic Design Environment”. In: Design Automation
Conference. ACM, Inc., 1997.

[136] C. L. Liu and James W. Layland. “Scheduling Algorithms for Multiprogramming in
a Hard Real Time Environment”. In: Journal of the ACM 20.1 (1973), pp. 46–61.

[137] Isaac Liu, Jan Reineke, David Broman, Michael Zimmer, and Edward A. Lee. “A
PRET Microarchitecture Implementation with Repeatable Timing and Competitive
Performance”. In: International Conference on Computer Design (ICCD). IEEE,
2012, pp. 87–93. url: http://chess.eecs.berkeley.edu/pubs/919.html.

https://doi.org/10.1109/ISORC.2008.25
https://bcourses.berkeley.edu/courses/1195544/files/folder/Lecture%20Notes?preview=45232443
https://bcourses.berkeley.edu/courses/1195544/files/folder/Lecture%20Notes?preview=45232443
https://doi.org/10.1109/MC.2006.180
http://LeeSeshia.org
https://doi.org/10.1145/1289927.1289949
https://doi.org/10.1007/978-3-540-31954-2_2
https://doi.org/10.1007/978-3-540-31954-2_2
http://chess.eecs.berkeley.edu/pubs/919.html

BIBLIOGRAPHY 139

[138] J.W.S. Liu. Real-Time Systems. Prentice Hall, 2000. isbn: 9780130996510. url: https:
//books.google.co.in/books?id=855QAAAAMAAJ.

[139] Xiaojun Liu and Edward A. Lee. “CPO semantics of timed interactive actor net-
works”. In: Theoretical Computer Science 409.1 (2008), pp. 110–125. doi: 10.1016/
j.tcs.2008.08.044.

[140] Xiaojun Liu, Eleftherios Matsikoudis, and Edward A. Lee. “Modeling Timed Concur-
rent Systems”. In: CONCUR 2006 - Concurrency Theory. Vol. LNCS 4137. Springer,
2006, pp. 1–15. doi: 10.1007/11817949_1.

[141] M. Lohstroh, H. Kim, J. C. Eidson, C. Jerad, B. Osyk, and E. A. Lee. “On En-
abling Technologies for the Internet of Important Things”. In: IEEE Access 7 (2019),
pp. 27244–27256. doi: 10.1109/ACCESS.2019.2901509.

[142] M. Lohstroh and E. A. Lee. “Deterministic Actors”. In: 2019 Forum for Specification
and Design Languages (FDL). Sept. 2019, pp. 1–8. doi: 10.1109/FDL.2019.8876922.

[143] M. Lohstroh, C. Menard, A. Schulz-Rosengarten, M. Weber, J. Castrillon, and E. A.
Lee. “A Language for Deterministic Coordination Across Multiple Timelines”. In:
2020 Forum for Specification and Design Languages (FDL). 2020, pp. 1–8. doi: 10.
1109/FDL50818.2020.9232939.

[144] Marten Lohstroh, Íñigo Íncer Romeo, Andrés Goens, Patricia Derler, Jeronimo Cas-
trillon, Edward A. Lee, and Alberto Sangiovanni-Vincentelli. “Reactors: A Deter-
ministic Model for Composable Reactive Systems”. In: 8th International Workshop
on Model-Based Design of Cyber Physical Systems (CyPhy’19). Vol. LNCS 11971. in
press. Springer-Verlag, 2019.

[145] Marten Lohstroh and Edward A. Lee. “An Interface Theory for the Internet of
Things”. In: International Conference on Software Engineering and Formal Methods
(SEFM). Vol. LNCS 9276. Springer, 2015, pp. 20–34.

[146] Marten Lohstroh, Martin Schoeberl, Andrés Goens, Armin Wasicek, Christopher Gill,
Marjan Sirjani, and Edward A. Lee. “Actors Revisited for Time-Critical Systems”.
In: Proceedings of the 56th Annual Design Automation Conference 2019, DAC 2019,
Las Vegas, NV, USA, June 02-06, 2019. ACM, 2019, 152:1–152:4. isbn: 978-1-4503-
6725-7. doi: 10.1145/3316781.3323469.

[147] Marten Lohstroh, Martin Schoeberl, Mathieu Jan, Edward Wang, and Edward A. Lee.
“Work-in-Progress: Programs with Ironclad Timing Guarantees”. In: Proceedings of
the International Conference on Embedded Software Companion. EMSOFT ’19. New
York, New York: Association for Computing Machinery, 2019. isbn: 9781450369244.
doi: 10.1145/3349568.3351553. url: https://doi.org/10.1145/3349568.

3351553.

https://books.google.co.in/books?id=855QAAAAMAAJ
https://books.google.co.in/books?id=855QAAAAMAAJ
https://doi.org/10.1016/j.tcs.2008.08.044
https://doi.org/10.1016/j.tcs.2008.08.044
https://doi.org/10.1007/11817949_1
https://doi.org/10.1109/ACCESS.2019.2901509
https://doi.org/10.1109/FDL.2019.8876922
https://doi.org/10.1109/FDL50818.2020.9232939
https://doi.org/10.1109/FDL50818.2020.9232939
https://doi.org/10.1145/3316781.3323469
https://doi.org/10.1145/3349568.3351553
https://doi.org/10.1145/3349568.3351553
https://doi.org/10.1145/3349568.3351553

BIBLIOGRAPHY 140

[148] Carmen Torres Lopez, Robbert Gurdeep Singh, Stefan Marr, Elisa Gonzalez Boix,
and Christophe Scholliers. “Multiverse Debugging: Non-Deterministic Debugging for
Non-Deterministic Programs (Brave New Idea Paper)”. In: 33rd European Confer-
ence on Object-Oriented Programming (ECOOP 2019). Ed. by Alastair F. Donald-
son. Vol. 134. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 27:1–27:30. isbn:
978-3-95977-111-5. doi: 10.4230/LIPIcs.ECOOP.2019.27. url: http://drops.
dagstuhl.de/opus/volltexte/2019/10819.

[149] Matthew C. Loring, Mark Marron, and Daan Leijen. “Semantics of Asynchronous
JavaScript”. In: SIGPLAN Not. 52.11 (Oct. 2017), pp. 51–62. issn: 0362-1340. doi:
10.1145/3170472.3133846. url: https://doi.org/10.1145/3170472.3133846.

[150] Natividad Mart́ınez Madrid, Peter T. Breuer, and Carlos Delgado Kloos. “A se-
mantic model for VHDL-AMS”. In: Advances in Hardware Design and Verification:
IFIP TC10 WG10.5 International Conference on Correct Hardware and Verification
Methods, 16–18 October 1997, Montreal, Canada. Ed. by Hon F. Li and David K.
Probst. Boston, MA: Springer US, 1997, pp. 106–123. isbn: 978-0-387-35190-2. doi:
10.1007/978-0-387-35190-2_7. url: https://doi.org/10.1007/978-0-387-
35190-2_7.

[151] Oded Maler, Zohar Manna, and Amir Pnueli. “From Timed to Hybrid Systems”. In:
Real-Time: Theory and Practice, REX Workshop. Uses super dense time (super-dense,
superdense). Springer-Verlag, 1992, pp. 447–484.

[152] Frédéric Mallet. “Clock constraint specification language: specifying clock constraints
with UML/MARTE”. In: Innovations in Systems and Software Engineering 4.3 (2008),
pp. 309–314. doi: https://doi.org/10.1007/s11334-008-0055-2.

[153] Louis Mandel, Cédric Pasteur, and Marc Pouzet. “ReactiveML, Ten Years Later”.
In: Int. Symp. on Principles and Practice of Declarative Programming (PPDP). July
2015. doi: 10.1145/2790449.2790509.

[154] Zohar Manna and Amir Pnueli. “Modeling Real Concurrency”. In: The Temporal
Logic of Reactive and Concurrent Systems. Springer, 1992, pp. 103–175.

[155] Zohar Manna and Amir Pnueli. “Verifying Hybrid Systems”. In: Hybrid Systems.
Vol. LNCS 736. 1993, pp. 4–35.

[156] Eleftherios Matsikoudis and Edward A. Lee. “An Axiomatization of the Theory of
Generalized Ultrametric Semilattices of Linear Signals”. In: International Symposium
on Fundamentals of Computation Theory (FCT). Vol. LNCS 8070. Springer, 2013,
pp. 248–258.

[157] Eleftherios Matsikoudis and Edward A. Lee. The Fixed-Point Theory of Strictly
Causal Functions. Report UCB/EECS-2013-122. EECS Department, University of
California, Berkeley, June 2013. url: http://www.eecs.berkeley.edu/Pubs/

TechRpts/2013/EECS-2013-122.html.

https://doi.org/10.4230/LIPIcs.ECOOP.2019.27
http://drops.dagstuhl.de/opus/volltexte/2019/10819
http://drops.dagstuhl.de/opus/volltexte/2019/10819
https://doi.org/10.1145/3170472.3133846
https://doi.org/10.1145/3170472.3133846
https://doi.org/10.1007/978-0-387-35190-2_7
https://doi.org/10.1007/978-0-387-35190-2_7
https://doi.org/10.1007/978-0-387-35190-2_7
https://doi.org/https://doi.org/10.1007/s11334-008-0055-2
https://doi.org/10.1145/2790449.2790509
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-122.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-122.html

BIBLIOGRAPHY 141

[158] Eleftherios Matsikoudis and Edward A. Lee. “The fixed-point theory of strictly causal
functions”. In: Theoretical Computer Science 574 (2015), pp. 39–77.

[159] Eleftherios Matsikoudis, Christos Stergiou, and Edward A. Lee. “On the Schedulabil-
ity of Real-Time Discrete-Event Systems”. In: International Conference on Embedded
Software (EMSOFT). ACM, 2013. doi: 10.1109/EMSOFT.2013.6658590.

[160] Tobias R Mayer, Lionel Brunie, David Coquil, and Harald Kosch. “On reliability in
publish/subscribe systems: a survey”. In: International Journal of Parallel, Emergent
and Distributed Systems 27.5 (2012), pp. 369–386.

[161] Erik Meijer. “Reactive Extensions (Rx): Curing Your Asynchronous Programming
Blues”. In: ACM SIGPLAN Commercial Users of Functional Programming. CUFP
’10. Baltimore, Maryland: ACM, 2010, 11:1–11:1. isbn: 978-1-4503-0516-7.

[162] Christian Menard, Andrés Goens, Marten Lohstroh, and Jeronimo Castrillon. “Achiev-
ing Derterminism in Adaptive AUTOSAR”. In: Design, Automation and Test in Eu-
rope (DATE 20). in press. Grenoble, France, Mar. 2020.

[163] David L. Mills. Computer Network Time Synchronization — The Network Time Pro-
tocol. Boca Raton, FL: CRC Press, 2006.

[164] Robin Milner. “A calculus of communicating systems”. In: (1980).

[165] Robin Milner. Communicating and mobile systems: the pi calculus. Cambridge uni-
versity press, 1999.

[166] Robin Milner. Communication and concurrency. Vol. 84. Prentice hall Englewood
Cliffs, 1989.

[167] V. Milutinovic, J. Protic, and M. Tomasevic. “Distributed Shared Memory: Concepts
and Systems”. In: IEEE Concurrency (out of print) 4.02 (Apr. 1996), pp. 63–79. issn:
1558-0849. doi: 10.1109/88.494605.

[168] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,
Eric Liang, William Paul, Michael I. Jordan, and Ion Stoica. “Ray: A Distributed
Framework for Emerging AI Applications”. In: CoRR abs/1712.05889 (2017). arXiv:
1712.05889.

[169] Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. “Effective static deadlock
detection”. In: 2009 IEEE 31st International Conference on Software Engineering.
IEEE. 2009, pp. 386–396.

[170] Walid A. Najjar, Edward A. Lee, and Guang R. Gao. “Advances in the dataflow
computational model”. In: Parallel Computing 25.13-14 (Dec. 1999), pp. 1907–1929.
doi: 10.1016/S0167-8191(99)00070-8.

[171] NASA Engineering and Safety Center. National Highway Traffic Safety Adminis-
tration Toyota Unintended Acceleration Investigation. Technical Assessment Report.
NASA, Jan. 2011.

https://doi.org/10.1109/EMSOFT.2013.6658590
https://doi.org/10.1109/88.494605
https://arxiv.org/abs/1712.05889
https://doi.org/10.1016/S0167-8191(99)00070-8

BIBLIOGRAPHY 142

[172] Saranya Natarajan and David Broman. “Timed C: An Extension to the C Program-
ming Language for Real-Time Systems”. In: Real-Time and Embedded Technology
and Applications Symposium (RTAS). Apr. 2018, pp. 227–239. doi: 10.1109/RTAS.
2018.00031.

[173] Peter Csaba Ölveczky and José Meseguer. “The real-time Maude tool”. In: Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer. 2008, pp. 332–336.

[174] Marie-Agnes Peraldi-Frati and Julien DeAntoni. “Scheduling Multi Clock Real Time
Systems: From Requirements to Implementation”. In: 2011 14th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Comput-
ing. 2011, pp. 50–57.

[175] Sibylla Priess-Crampe and Paulo Ribenboim. “Generalized Ultrametric Spaces I”. In:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 66 (1996),
pp. 55–73.

[176] Aleksandar Prokopec. “Pluggable Scheduling for the Reactor Programming Model”.
In: Programming with Actors: State-of-the-Art and Research Perspectives. Ed. by
Alessandro Ricci and Philipp Haller. Springer International Publishing, 2018, pp. 125–
154. isbn: 978-3-030-00302-9. doi: 10.1007/978-3-030-00302-9_5.

[177] Aleksandar Prokopec, Heather Miller, Tobias Schlatter, Philipp Haller, and Mar-
tin Odersky. “Flowpools: A lock-free deterministic concurrent dataflow abstraction”.
In: International Workshop on Languages and Compilers for Parallel Computing.
Springer. 2012, pp. 158–173.

[178] Aleksandar Prokopec and Martin Odersky. “Isolates, Channels, and Event Streams for
Composable Distributed Programming”. In: 2015 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software (Onward!)
New York, NY, USA: ACM, 2015, pp. 171–182. isbn: 978-1-4503-3688-8. doi: 10.
1145/2814228.2814245.

[179] Claudius Ptolemaeus. System Design, Modeling, and Simulation using Ptolemy II.
Berkeley, CA: Ptolemy.org, 2014. isbn: 978-1-304-42106-7. url: http://ptolemy.
org/books/Systems.

[180] Peter Puschner and Alan Burns. “A review of worst-case execution-time analyses”.
In: REAL TIME SYSTEMS-AVENEI NJ- 18.2/3 (2000), pp. 115–128.

[181] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Ng. “ROS: an open-source Robot Operating System”. In:
vol. 3. Jan. 2009.

[182] George M. Reed and A. W. Roscoe. “Metric Spaces as Models for Real-Time Concur-
rency”. In: 3rd Workshop on Mathematical Foundations of Programming Language
Semantics. 1988, pp. 331–343.

https://doi.org/10.1109/RTAS.2018.00031
https://doi.org/10.1109/RTAS.2018.00031
https://doi.org/10.1007/978-3-030-00302-9_5
https://doi.org/10.1145/2814228.2814245
https://doi.org/10.1145/2814228.2814245
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems

BIBLIOGRAPHY 143

[183] Shangping Ren and Gul A Agha. “RTsynchronizer: language support for real-time
specifications in distributed systems”. In: ACM Sigplan Notices 30.11 (1995), pp. 50–
59.

[184] Leila Ribeiro Korff and Martin Korff. “True Concurrency = Interleaving Concur-
rency + Weak Conflict”. In: Electronic Notes in Theoretical Computer Science 14
(1998). US-Brazil Joint Workshops on the Formal Foundations of Software Sys-
tems, pp. 204–213. issn: 1571-0661. doi: https:/ /doi.org /10.1016/ S1571-

0661(05)80237-3. url: http://www.sciencedirect.com/science/article/pii/
S1571066105802373.

[185] Raymond Roestenburg, Rob Bakker, and Rob Williams. Akka In Action. Manning
Publications Co., 2016.

[186] Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. “Just Model!
– Putting Automatic Synthesis of Node-Link-Diagrams into Practice”. In: Proceed-
ings of the IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC ’13). San Jose, CA, USA, Sept. 2013, pp. 75–82. doi: 10.1109/VLHCC.
2013.6645246.

[187] Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and Daniel
Prokesch. “Patmos: A Time-predictable Microprocessor”. In: Real-Time Systems 54(2)
(Apr. 2018), pp. 389–423. issn: 1573-1383. doi: 10.1007/s11241-018-9300-4.

[188] A. Schulz-Rosengarten, R. Von Hanxleden, F. Mallet, R. De Simone, and J. Deantoni.
“Time in SCCharts”. In: 2018 Forum on Specification Design Languages (FDL). Sept.
2018, pp. 5–16. doi: 10.1109/FDL.2018.8524111.

[189] Alexander Schulz-Rosengarten, Reinhard von Hanxleden, Frédéric Mallet, Robert de
Simone, and Julien Deantoni. “Time in SCCharts”. In: Proc. Forum on Specification
and Design Languages (FDL ’18). Munich, Germany, Sept. 2018.

[190] Christoph Daniel Schulze, Miro Spönemann, and Reinhard von Hanxleden. “Drawing
Layered Graphs with Port Constraints”. In: Journal of Visual Languages and Com-
puting, Special Issue on Diagram Aesthetics and Layout 25.2 (2014), pp. 89–106. issn:
1045-926X. doi: 10.1016/j.jvlc.2013.11.005.

[191] M. A. Sehr, M. Lohstroh, M. Weber, I. Ugalde, M. Witte, J. Neidig, S. Hoeme,
M. Niknami, and E. A. Lee. “Programmable Logic Controllers in the Context of
Industry 4.0”. In: IEEE Transactions on Industrial Informatics (2020), pp. 1–1. doi:
10.1109/TII.2020.3007764.

[192] Sanjit A Seshia and Jonathan Kotker. “GameTime: A toolkit for timing analysis of
software”. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer. 2011, pp. 388–392.

https://doi.org/https://doi.org/10.1016/S1571-0661(05)80237-3
https://doi.org/https://doi.org/10.1016/S1571-0661(05)80237-3
http://www.sciencedirect.com/science/article/pii/S1571066105802373
http://www.sciencedirect.com/science/article/pii/S1571066105802373
https://doi.org/10.1109/VLHCC.2013.6645246
https://doi.org/10.1109/VLHCC.2013.6645246
https://doi.org/10.1007/s11241-018-9300-4
https://doi.org/10.1109/FDL.2018.8524111
https://doi.org/10.1016/j.jvlc.2013.11.005
https://doi.org/10.1109/TII.2020.3007764

BIBLIOGRAPHY 144

[193] Sanjit A Seshia and Pramod Subramanyan. “UCLID5: Integrating modeling, verifica-
tion, synthesis and learning”. In: 2018 16th ACM/IEEE International Conference on
Formal Methods and Models for System Design (MEMOCODE). IEEE. 2018, pp. 1–
10.

[194] Sanjit A. Seshia and Alexander Rakhlin. “Quantitative Analysis of Systems Using
Game-Theoretic Learning”. In: ACM Transactions on Embedded Computing Systems
(TECS) 11.S2 (2012), 55:1–55:27.

[195] Lui Sha, Abdullah Al-Nayeem, Mu Sun, José Meseguer, and Peter Ölveczky. PALS:
Physically Asynchronous Logically Synchronous Systems. Report Technical Report.
Univ. of Illinois at Urbana Champaign (UIUC), 2009.

[196] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Concepts, Sev-
enth Edition. McGraw-Hill Book Company, 2020. isbn: 9780078022159. url: https:
//www.db-book.com/db7/index.html.

[197] Marjan Sirjani, Edward A Lee, and Ehsan Khamespanah. “Model checking software
in cyberphysical systems”. In: 2020 IEEE 44th Annual Computers, Software, and
Applications Conference (COMPSAC). IEEE. 2020, pp. 1017–1026.

[198] Marjan Sirjani, Ali Movaghar, Amin Shali, and Frank S. de Boer. “Modeling and
Verification of Reactive Systems using Rebeca”. In: Fundam. Inform. 63.4 (2004),
pp. 385–410.

[199] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling and Syn-
chronization. Marcel Dekker, Inc. (now Taylor and Francis), 2000.

[200] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: Eclipse
Modeling Framework. Pearson Education, 2008.

[201] Alexander D. Stoyenko. “The evolution and state-of-the-art of real-time languages”.
In: Journal of Systems and Software 18.1 (1992), pp. 61–83. issn: 0164-1212. doi:
https://doi.org/10.1016/0164-1212(92)90046-M.

[202] System C Standardization Working Group and others. 1666-2011-IEEE Standard for
Standard SystemC Language Reference Manual.

[203] Samira Tasharofi, Peter Dinges, and Ralph E Johnson. “Why do scala developers
mix the actor model with other concurrency models?” In: European Conference on
Object-Oriented Programming. Springer. 2013, pp. 302–326.

[204] Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel Legay, Darko Mari-
nov, and Gul Agha. “TransDPOR: A Novel Dynamic Partial-Order Reduction Tech-
nique for Testing Actor Programs”. In: Formal Techniques for Distributed Systems.
Ed. by Holger Giese and Grigore Rosu. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 219–234. isbn: 978-3-642-30793-5.

https://www.db-book.com/db7/index.html
https://www.db-book.com/db7/index.html
https://doi.org/https://doi.org/10.1016/0164-1212(92)90046-M

BIBLIOGRAPHY 145

[205] B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten, S.V. Gheorghita, and
S. Stuijk. “A Scenario-Aware Data Flow Model for CombinedLong-Run Average and
Worst-Case Performance Analysis”. In: Formal Methods and Models for Co-Design.
2006.

[206] Donald Thomas and Philip Moorby. The Verilog® hardware description language.
Springer Science & Business Media, 2008.

[207] Stefan Tilkov and Steve Vinoski. “Node. js: Using JavaScript to build high-performance
network programs”. In: IEEE Internet Computing 14.6 (2010), pp. 80–83.

[208] TimeSys. Real-Time Specification for Java, Reference Implementation. Available at
http://www.timesys.com/.

[209] Stavros Tripakis, Christos Stergiou, Chris Shaver, and Edward A. Lee. “A Modular
Formal Semantics for Ptolemy”. In: Mathematical Structures in Computer Science
Journal to appear (2012). url: http://chess.eecs.berkeley.edu/pubs/877.html.

[210] A. M. Turing. “On Computable Numbers with an Application to the Entscheidungs-
problem”. In: Proceedings of the London Mathematical Society 42 (1936), pp. 230–
265.

[211] John David Valois. “Lock-free data structures”. In: (1996).

[212] Carlos Varela and Gul Agha. “Programming dynamically reconfigurable open systems
with SALSA”. In: ACM SIGPLAN Notices 36.12 (2001), pp. 20–34.

[213] Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks for
synchronous programming”. In: 2017 Forum on Specification and Design Languages
(FDL). IEEE. 2017, pp. 1–8.

[214] Andrew Wellings. Concurrent and real-time programming in Java. John Wiley & Sons,
Inc., 2004.

[215] Jonatan Wiik, Johan Ersfolk, and Marina Waldén. “A Contract-Based Approach to
Scheduling and Verification of Dynamic Dataflow Networks”. In: 2018 16th ACM-
IEEE International Conference on Formal Methods and Models for System Design
(MEMOCODE). IEEE. 2018, pp. 1–10.

[216] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan The-
sing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tu-
lika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per
Stenström. “The Worst-Case Execution Time Problem – Overview of Methods and
Survey of Tools”. In: ACM Transactions on Embedded Computing Systems (TECS)
7.3 (2008), pp. 1–53. issn: 1539-9087. doi: http://doi.acm.org/10.1145/1347375.
1347389.

http://chess.eecs.berkeley.edu/pubs/877.html
https://doi.org/http://doi.acm.org/10.1145/1347375.1347389
https://doi.org/http://doi.acm.org/10.1145/1347375.1347389

BIBLIOGRAPHY 146

[217] R. Wittig, A. Goens, C. Menard, E. Matus, G. P. Fettweis, and J. Castrillon. “Modem
Design in the Era of 5G and Beyond: The Need for a Formal Approach”. In: 2020
27th International Conference on Telecommunications (ICT). 2020, pp. 1–5. doi:
10.1109/ICT49546.2020.9239539.

[218] William Wulf and Mary Shaw. “Global variable considered harmful”. In: ACM Sigplan
notices 8.2 (1973), pp. 28–34.

[219] W. Xiang, P. C. Richardson, C. Zhao, and S. Mohammad. “Automobile Brake-by-
Wire Control System Design and Analysis”. In: IEEE Transactions on Vehicular
Technology 57.1 (2008), pp. 138–145. doi: 10.1109/TVT.2007.901895.

[220] R. K. Yates. “Networks of Real-Time Processes”. In: Proc. of the 4th Int. Conf. on
Concurrency Theory (CONCUR). Ed. by E. Best. Vol. LNCS 715. Springer-Verlag,
1993.

[221] Bernard Zeigler. Theory of Modeling and Simulation. DEVS abbreviating Discrete
Event System Specification. New York: Wiley Interscience, 1976.

[222] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of Modeling and
Simulation. 2nd. Discrete event systems (DEVS). Academic Press, 2000.

[223] Yang Zhao, Edward A. Lee, and Jie Liu. “A Programming Model for Time-Synchro-
nized Distributed Real-Time Systems”. In: Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2007, pp. 259–268. doi: 10.1109/RTAS.
2007.5.

[224] Ye Zhou and Edward A. Lee. “Causality Interfaces for Actor Networks”. In: ACM
Transactions on Embedded Computing Systems (TECS) 7.3 (2008), pp. 1–35. doi:
10.1145/1347375.1347382.

[225] Michael Zimmer, David Broman, Chris Shaver, and Edward A. Lee. “FlexPRET:
A Processor Platform for Mixed-Criticality Systems”. In: Real-Time and Embedded
Technology and Application Symposium (RTAS). 2014.

https://doi.org/10.1109/ICT49546.2020.9239539
https://doi.org/10.1109/TVT.2007.901895
https://doi.org/10.1109/RTAS.2007.5
https://doi.org/10.1109/RTAS.2007.5
https://doi.org/10.1145/1347375.1347382

147

Appendix A

Summary of the Reactor Model

Execution environment
Set of action instances A

Set of identifiers Σ (an abstract set)

Set of port instances P

Set of priorities P = Z− ∪ Z+ ∪ {∗}
Set of reaction instances N

Set of reactor instances R

Set of reactor classes C ⊆ Σ

Set of tags G = T× N
Set of values V (an abstract set)

Absent value ε ∈ V
Current tag g = (t,m) ∈ G
First tag, last tag gstart, gstop ∈ G
Current physical time T ∈ T
Reactor instantiation counter cinst ∈ N
Reactor instantiation function ν : C × N→ R

Event queue QE

Reaction queue QR

Defunct reactor stack SD
Reactors
Reactor instance r = (I,O,A, S,N ,M,R,P, {•, �}) ∈ R
Set of input ports for r I(r) ⊆ {p ∈ P | C(p) = r}
Set of output ports for r O(r) ⊆ {p ∈ P | C(p) = r}
Set of actions for r A(r) ⊆ {a ∈ A | C(a) = r}
Set of state variables for r S(r) ⊆ Σ× V
Set of reactions contained in r N (r) ⊆ {n ∈ N | C(n) = r}
Set of mutations contained in r M(r) ⊆ N (r)

Set of contained reactors of r R(r) ⊆ {r′ ∈ R | C(r′) = r}

APPENDIX A. SUMMARY OF THE REACTOR MODEL 148

Priority function P(r) : N (r)→ P
Startup trigger for r •(r)
Shutdown trigger for r �(r)
Reactor containing reactor r C(r) ⊆ R
Ports
Port instance p = (x, v) ∈ P
Port identifier x ∈ Σ

Port value v ∈ V
Reactions with p as a source N (p) =

{
n ∈

((⋃
r∈R(C(p))N (r)

)
∪N (C(p))

) ∣∣∣ p ∈ D(n)
}

Reactions with p as an effect N∨(p) =
{
n ∈

((⋃
r∈R(C(p))N (r)

)
∪N (C(p))

) ∣∣∣ p ∈ D∨(n)
}

Reactor containing p C(p) ⊆ R
Actions
Action instance a = (x, v, o, d, s, p) ∈ A
Action identifier x ∈ Σ

Action value v ∈ V
Action origin o ∈ {Logical,Physical}
Minimum delay d ∈ {t ∈ T | t ≥ 0}
Minimum spacing s ∈ {t ∈ T | t ≥ 0}∪⊥
Spacing violation policy p ∈ {Defer,Drop,Replace}
Last scheduled event L(a) ⊆ ({a} × V ×G) ∪⊥
Reactor containing a C(a) ⊆ R
Events
Event instance e = (a, v, g)

Event action a ∈ A
Event value v ∈ V
Event tag g ∈ G
Triggered reactions T (a) = {n ∈ N (C(a)) | a ∈ T (n)}
Reactions
Reaction instance n = (D, T , B,D∨, H,∆, B∆) ∈ N
Set of reaction sources D(n) ⊆ I(C(n)) ∪

(⋃
r∈R(C(n))O(r)

)
Set of reaction triggers T (n) ⊆ D(n) ∪A(C(n)) ∪ {•, �}
Reaction body B(n)

Set of reaction effects D∨(n) ⊆ O(C(n)) ∪
(⋃

r∈R(C(n)) I(r)
)

Set of schedulable actions H(n) ⊆ A(C(n))

Reactor containing reaction n C(n) ⊆ R

Reaction priority P(n) ∈

{
Z− if n ∈M(C(n))

Z+ ∪ {∗} otherwise

Priority of unordered reactions ∀p ∈ Z− ∀q ∈ Z+.(p < ∗) ∧ (q ≮ ∗) ∧ (∗ ≮ q) ∧ (∗ ≤ ∗)
Deadline ∆(n) ∈ {t ∈ T | t ≥ 0}∪⊥
Deadline miss handler B∆(n)

149

Index

‘*’ in metasyntax, 59
‘+’ in metasyntax, 59
‘&’ in metasyntax, 59

absent value, 24, 66, 75, 96
accessors, 15, 21
ACP, 1
action, 15, 19, 21, 25, 26, 28, 29, 30, 34,

40, 42, 52, 66, 73, 96, 123
action identifier, 28
action origin, 28
action value, 28
active objects, 12
actor abstract semantics, 15
actors, 2, 2, 4, 12, 18, 20, 127
Ada, 16
Akka, 2, 121
answer procedure, 98
at keyword, 62
atomic reactor, 26
automatic layout, 56
AUTOSAR, 51, 126
Autoware, 121
Avast, x

Banach fixed point theorem, 78, 82
bank of reactors, 74, 123
bare-iron platforms, 51, 124
barrier synchronization, 96, 123
Bluespec, 14

C target, 50, 52, 58, 75, 87, 101, 122
CAF, 2, 12, 121
callee, 98
callee port, 97, 98, 99
caller, 98
caller port, 97, 98, 99
Camozzi, x
Cantor metric, 78
causality interface, 20, 39, 43
causality loop, 16, 35, 42, 43, 44
CCS, 1
CCSL, 17
centralized coordination, 114, 117
chain, 94
chain ID, 92, 93, 94
channel, 66
cleanup procedure, 47
clearAll procedure, 50
code generation, 50, 52, 65, 115
Collatz conjecture, 79
comments, 57
compiler target property, 59
complete partial order, 11, 78
computation, 1
concurrency, 1
connect procedure, 36, 37, 39, 99
connection, 19, 20, 26, 71, 74, 75, 77, 81
contained reactor, 25
container function, 26

INDEX 150

contraction, 81
coordination target property, 116
create procedure, 36, 37
CSP, 1
currentTag procedure, 31
cyber-physical systems, 2, 3, 11, 15, 24, 29,

83, 122

DARPA, x
dataflow, 3, 10, 14
deadline, 23, 30, 74, 86, 87, 90, 109
deadline miss handler, 31, 47, 74, 87
decentralized coordination, 96, 110, 114,

116, 119, 125
defunct reactor stack, 32
delete procedure, 36, 37
delta cycles, 14
denotational semantics, 82
DENSO, x
dependency graph, 14, 40, 42
determinism, 8, 54, 78, 107, 119, 127
disconnect procedure, 36, 39, 99
discrete events, 44, 78, 108
discrete-event systems, 11
Distributed Erlang, 121
distributed shared memory, 13, 127
doStep procedure, 36, 45, 47
down set, 81
downstream, 27, 33, 39, 43, 52, 71, 87, 90,

91, 96, 100
dynamic partial-order reduction, 122

EDF scheduling, 90
Erlang, 2, 12
Esterel, 13
event, 18, 25, 40
event loops, 2
event queue, 32, 35, 36, 45, 48, 59, 60, 88,

118, 123
event value, 18, 23, 25, 29, 79
execute procedure, 45

fast target property, 59, 117

fault-tolerant systems, 109, 110
FCRP, x
federate, 96, 106, 114, 117, 125
federated execution, 107, 110, 115
federated keyword, 62
federated reactor, 63, 106
federation, 62, 106, 125
files target property, 59
finite state machine, 123
fixed point, 44, 79, 82
flags target property, 59
FlowPools, 14
Ford, x
futures, 5, 14

GameTime, 124
generalized ultrametric space, 11, 44, 54,

78, 79, 82
get procedure, 31
Giotto, 16

hardware description languages, 14
hierarchy, 19

iCyPhy, x
identifiers, 23
import statement, 60
importing reactors, 60
inheritance, 64
input port, 25, 26, 66, 77, 78, 100
invoke procedure, 97
isolation types, 14

Kahn process networks, 9, 10, 14
Kahn’s algorithm, 89
Kahn-MacQueen principle, 9
keepalive target property, 59

labelled transition systems, 122
LabVIEW, 15
largest common prefix, 81
LET paradigm, 17, 88
LF, i, x, 11, 12, 21, 50, 54, 121

INDEX 151

Linda, 13
LLCDs, 15
logical action, 16, 28, 32, 44, 66, 67, 84,

88, 112, 120
logical connection, 71
logical keyword, 66
logical simultaneity, 10, 18, 20, 25, 31, 78
logical time, 3, 11, 13, 15, 16, 18, 19, 22,

24, 28, 29, 31, 33, 35, 39, 40, 43,
45, 47, 48, 59, 62, 67, 70, 72, 73,
81, 83, 86, 107, 111, 119, 123, 125,
127

logical time delay, 88
Lustre, 13, 19
LVars, 14

main keyword, 62
MARCO, x
metasyntax notation, 59
metric spaces, 82
microstep index, 24, 29, 35, 36, 42, 67, 79,

81
minimum delay, 28, 67, 73, 123
minimum spacing, 22, 28, 29, 36, 68, 96,

123, 125
modal models, 123
models, 8, 9, 109, 122
modularity, 9
MPI, 121
multiclock Esterel, 13
multiport, 65, 74, 123
multiport width, 75, 77
mutable keyword, 65
mutation, 25, 31, 36, 41, 82, 122, 126
mutex lock, 33, 48, 50, 94

new keyword, 63
next procedure, 48
no-compile target property, 59
Node.js, 53
nondeterminism, 1, 2, 4, 7, 12, 13, 23, 67,

71, 79, 83, 87, 120, 126, 127

NSF, x
NTP, 117

object orientation, 51, 61, 63
objects, 2
observer pattern, 14
operational semantics, 82
output port, 12, 25, 26, 52, 77, 78, 87, 100
ownership semantics, 52

P, 2, 12
PALS, 11
parameter assignment, 63
path cover, 92
physical action, 16, 22, 23, 28, 32, 59, 62,

66, 67, 71, 79, 84, 86, 94, 97, 109,
111, 112, 114, 117, 119, 127

physical connection, 13, 71, 117–119
physical keyword, 66
physical time, 3, 11, 13, 16, 23, 24, 28, 29,

31, 35, 45, 48, 59, 62, 66, 67, 74,
83, 86–88, 94, 107, 109, 111–113,
116–118, 124, 127

physical time delay, 117, 119
physicalTime procedure, 31
port, 19, 21, 27, 30, 40, 52, 73, 74, 77, 81,

88, 107
port graph, 43, 43
port identifier, 27
port value, 27
preamble block, 61
precedence, 31, 32, 43
precedence graph, 42
preemption, 91, 122
priority function, 25
priority queue, 88
priority set, 26
promises, 14
pthreads, 45, 50, 51, 84, 101, 122
Ptides, 3, 110–113, 119
Ptolemy II, 15, 20
publish-subscribe, 2, 127

INDEX 152

Ray, 2, 5, 12, 121
reaction, 18, 20, 22, 25, 30, 40, 41, 74, 75,

81, 87
reaction body, 21, 30, 32, 52, 57, 74
reaction chain, 92, 93
reaction effect, 30, 42
reaction graph, 39, 41, 42, 43, 55, 88, 90–

93, 98
reaction level, 89, 90, 91, 94
reaction priority, 22, 31, 41, 43
reaction queue, 32, 45, 47, 88, 94, 96, 99,

102, 118, 123
reaction sources, 27, 30, 40, 42, 73
reaction triggers, 15, 20, 27, 30, 50, 73
Reactive C, 13
reactive isolates, 12
Reactive ML, 13
reactive programming, 2, 14
reactive systems, 1, 14
ReactiveX, 14
reactor, i, x, 18, 25, 26, 77, 81
reactor containment, 19
reactor instantiation, 55, 63
reactor parameters, 52, 62
reactor runtime, 32, 33, 44, 50, 54, 100,

101, 103, 124
reactor-cpp, 51, 100, 101
reactor-ts, x, 52, 97, 100
real concurrency, 2
real-time languages, 16
Real-time Maude, 3
realtime keyword, 62
realtime reactors, 62, 96, 117
Rebeca, 3, 12
reference counting, 51
relativity, 9
relay reaction, 26, 39
requestStop procedure, 32, 36, 47, 119
ROS, 121

Salsa, 12
Savina benchmark suite, 100, 121, 122

SCADE, 16
Scala actors, 2
SCCharts, 13, 20, 123
schedulability, 29, 68, 74, 83, 124
schedulable action, 30, 34
schedule procedure, 31, 32, 34, 36, 50,

66–68, 86, 111
SD Erlang, 121
SDF, 14, 96, 124
semicolons, 57
sequential constructiveness, 20
set of values, 23
set procedure, 31, 32, 33, 97
shutdown keyword, 73
shutdown procedure, 47, 118
shutdown reactions, 37, 60, 118
shutdown trigger, 20, 25, 73
Siemens, x
Signal, 13, 19
signal, 78
simulation, 11, 15, 107, 108
SL, 13
spacing violation policy, 28, 29, 68
Spanner, 3, 9, 110–112
sparse synchrony, 18, 22
SpecC, 15
STARnet, x
start procedure, 37
startup keyword, 73
startup trigger, 20, 25, 45, 73
state variable, 18, 20, 22, 25, 40, 52, 70,

97, 100, 123
Statecharts, 20
STP threshold, 112, 113, 120, 125
strictly contracting, 79, 81
superdense time, 15, 24, 35, 78
SyncCharts, 13
synchronous dataflow, 14, 96, 124
synchronous languages, 3, 13, 78
synchronous-reactive models, 10
SytemC, 15

INDEX 153

tag, 18, 24, 24, 25, 28–31, 35, 36, 40, 45,
67, 78, 79, 87, 94, 107, 109, 117

target code delimiters, 57, 58, 61, 73
target keyword, 59
target properties, 59, 101, 116
TerraSwarm, x
TESL, 17
threads, 2, 3, 7, 11, 12, 33, 47, 53, 64, 91,

101
threads target property, 64
time basis, 66, 67
time type, 58, 66
time value, 24, 32, 35, 36, 48, 58, 59, 66–

68, 90, 94
Timed C, 16
timeout target property, 59, 72, 118
timer, 68, 89, 96, 100, 123, 125
timer offset, 68, 123
timer period, 68, 89, 123
top-level reactor, 19, 26, 42, 43, 62, 88, 114
topological sort, 40, 88, 89
Toyota, x
transient views, 56
Turing machine, 1, 8

upstream, 20, 39, 43, 71, 87, 94, 96, 100,
125

Verilog, 14
VHDL, 14, 15

WCET, 83, 88, 124

Xtext, 54, 56, 59

Zeno systems, 78

	Contents
	List of Algorithms
	List of Figures
	List of Code Listings
	List of Tables
	Introduction
	Motivation
	Background
	Contributions
	Related Work
	Outline

	Reactors
	Ports, Hierarchy, and Actions
	State Variables
	Connections
	Example: Drive-by-wire System
	Formalization
	Dependency Analysis
	Execution Algorithm
	Implementations

	Lingua Franca
	Overview
	Target Declaration
	Import Statement
	Preamble Block
	Reactor Definition
	Reaction Definition
	Banks and Multiports
	Semantics

	Concurrency and Timing
	Physical Actions in Reactive Systems
	Runtime Scheduling and Real-Time Constraints
	Exposing More Parallelism
	Further Optimizations
	Subroutines
	Performance Benchmarks

	Federated Execution
	Reasoning About Time
	Decentralized Coordination
	Centralized Coordination
	Support for Federated Programs in LF
	Conclusion

	Conclusion
	Further Work
	Applications
	Final Remarks

	Bibliography
	Summary of the Reactor Model
	Index

