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Abstract

Fast-fashion retailers such as Zara offer continuously changing assortments and use minimal
in-season promotions. Their clearance pricing problem is thus challenging because it involves
comparatively more different articles of unsold inventory with less historical price data points.
Until 2007, Zara used a manual and informal decision-making process for determining price
markdowns. In collaboration with their pricing team, we designed and implemented since an
alternative process relying on a formal forecasting model feeding a price optimization model. As
part of a controlled field experiment conducted in all Belgian and Irish stores during the 2008
Fall-Winter season, this new process increased clearance revenues by approximately 6%. Zara
is currently using this process worldwide for its markdown decisions during clearance sales.

1. Introduction

Markdown pricing is an important activity for many retailers of seasonal goods (Talluri and van

Ryzin 2004), and with more than a billion euros generated through clearance sales in 2008 this

is certainly true of Spanish apparel retailer Zara. However, clearance pricing is arguably more

challenging for Zara than for many of its competitors. This is because its innovative fast-fashion

model (also adopted by Sweden-based H&M, Japan-based World Co., and Spain-based Mango)

involves selling many more articles with shorter life cycles that are almost never discounted during

the regular selling season (Ghemawat and Nueno 2003). As a result, when Zara decided in 2007 to

develop internally a markdown optimization system, it quickly realized that its needs were at the

forefront of revenue management practice, for two main reasons. First, almost no historical price

response data is available for its articles at the beginning of each clearance period. As a result, it had

to devise a methodology for estimating price elasticity based exclusively on features common with

articles sold in previous seasons, and updating this estimation based on actual sales information

once the clearance period starts. Second and perhaps most importantly, it could not rely on any

of the published price optimization models known to have been implemented or tested with real

data (e.g., Smith and Achabal 1998, Bitran, Caldentey and Mondschein 1998, Heching, Gallego

and van Ryzin 2002 or Smith 2009), which all consider each article independently. Indeed, the high
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number of different articles available during clearance sales makes it impractical for its stores to

implement pricing policies determined at the article level. For example, stores have to ensure that

groups of similar articles (e.g., men’s shirts) do not include too many different price points, that a

minimum amount of inventory across different articles is associated with any advertised price point,

that two groups of articles merged under a common price point will not be subsequently separated

again, etc. (a complete discussion of these and other store-level markdown implementation issues

associated with the fast-fashion model is provided further).

The present paper describes the development, implementation and evaluation in the field of the

markdown optimization system that Zara has deployed worldwide since to address these challenges.

To the best of our knowledge, this constitutes the first large-scale application of a multi-product

price optimization model by a firm for which all relevant technical and implementation details as

well as related impact estimation results are made public. In the remainder of this introduction, we

provide additional background on Zara’s clearance sales period (in §1.1), then describe its legacy

clearance pricing process (in §1.2) and the structure of the new process developed along with the

paper organization (in §1.3).

1.1 Clearance Sales at Zara

As many other apparel retailers, Zara holds its clearance sale periods for about two months follow-

ing each biannual selling season, with country-specific starting dates at the beginning of January

(Fall/Winter season) and late June or early July (Spring/Summer season). The generic goal of

these clearance sales is to maximize the revenue derived from merchandise that is still unsold when

a new collection is about to be introduced. At Zara, merchandise is often deliberately withdrawn

from the store display area during the season in order to make room for more recent incoming

articles. As a result, clearance sales offer a biannual opportunity to reduce the cost of not only the

traditional assortment/collection transitions between seasons mentioned above, but also the fre-

quent in-season assortment transitions associated with the fast-fashion model. While some of that

inventory withdrawn during the season is sometimes kept in the store backroom, the majority of it

is returned to a warehouse in order to subsequently enable a more efficient re-distribution before

the clearance sales. Because clearance selling rates exceed the replenishment capacity of Zara’s

distribution system however, this re-distribution of clearance inventory to stores takes place over

a period of several weeks preceding the sales period. As the sales period unfolds, Zara dedicates

an increasing portion of its store space to the new collection; this overlap strategy is designed to

promote the new collection and induce upsales. Some transfers of remaining clearance inventory

may also be organized between nearby stores in order to aggregate merchandise in fewer locations

and improve their display quality (e.g., complete missing sizes). Finally, the sales period end with
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the step know as liquidation, when all remaining clearance inventory is collected from Zara stores

and sold (sometimes by weigth) to wholesale buyers working for low-price channels, typically in

developing countries.

At the store level, clearance sales induce many substantial changes. The price reductions con-

sented then, which are visibly advertised, attract substantially more visitors and the volume of

merchandise sold drastically increases. As a result, the store workload increases both before and

during clearance sales. In the weeks before the sales, the clearance inventory must be received,

labeled and stored in the backroom. The day (and night) before the sale begins, the store display

is entirely re-arranged: while garments are displayed with a relatively low density according to

matching colors and styles during the regular season, during the sales period they are displayed

with a very high density according to their type (e.g., men’s shirts) and selling price. During the

sales, store associates are solicited by many more customers, must re-fold and re-place many more

tried garments, replenish and/or re-arrange display areas from the backroom and update price la-

bels and signs more frequently, process more customers at the register, etc... Consequently, store

staffing must be substantially increased during clearance sales, often with temporary employees.

For legal, marketing and organizational reasons, Zara’s pricing policy during both the regular

season and the clearance period is country-specific and to date Zara is not considering segmenting

large countries into smaller pricing regions (e.g., U.S. east and west coasts). During clearance sales,

another barrier to price segmentation shared with many other apparel retailers is the strong appeal

to visitors of a limited number of signs displayed within the store to signal specific price points

or markdowns (e.g., “everything at e4.99”, or “-20%”). In addition, during both clearance sales

and the regular season Zara only uses prices from a discrete and finite set of so-called commercial

prices all ending with ”.99” which, as discussed in the marketing literature (Anderson and Simester

2003) tend to be more appealing to customers. Another key feature more specific to fast-fashion

is the substantial increase of the number of different articles present in the starting clearance sale

inventory compared to that found in stores at any time during the regular season (which results

from the short season life-cycles). As a result, it would be neither easy nor desirable for stores to

implement a different pricing policy for each article during the clearance period, as is done during

the regular season. In particular, because the current price display technology is paper-based, the

implementation of markdowns requires store associates to locate and retrieve articles from the store

backroom or display area and attach a price update sticker on each article tag. In this environment,

Zara learned that the retrieving workload and probability of costly mislabeling errors associated

with an independent pricing policy for each individual article are particularly high.

To address these challenges, Zara makes clearance pricing decisions in each country instead at
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the level of a set of articles called a group, which corresponds to a relatively high-level descriptor

encompassing anywhere from 20 to 350 different articles; examples of groups include “woman blaz-

ers”, “man knitwear”, “basic skirts”, etc. Each group is partitioned into clusters, which are subsets

of articles that were sold at the same price during the regular season; each group typically includes

between 4 and 12 clusters. Finally, clearance pricing decisions are implemented by aggregating one

or several clusters into a category, and assigning a different clearance sales price to each category.

A important feature is that categories are almost always defined as an interval of regular season

prices. For example, the group “basic skirts” could include 4 clusters of 9, 15, 25 and 12 articles

sold respectively at e19.99, e24.99, e29.99 and e35.99 during the regular season; at a specific

time during the clearance period Zara might decide to form a first category comprising the e19.99

cluster and assign it a marked-down price of e9.99, and form a second category comprising all the

articles with a regular season selling price between e24.99 and e35.99 (i.e., the three remaining

clusters) and assign it a clearance price of e19.99.

A key rationale for the clearance pricing methodology just described is that it is particularly easy

to communicate and implement at the store level. This is because during clearance sales articles

are both displayed (in stores) and stored (in their backrooms) by group. In addition, by design the

regular season selling price is the feature of each article which is most prominently displayed on

its tag. This methodology also makes it easy to ensure that clearance prices are always lower than

regular season prices by a sufficient amount (a legal requirement in many countries), and that the

total number of different price points for each group (which is often contrained by store display

space limitations) remains sufficiently low. Finally, with this method clearance pricing decisions can

be updated for each country and group on a weekly basis. In each such update the clearance price

of a given cluster is never allowed to increase, in part to avoid arbitrage and returns. In addition,

to simplify store execution and progressively reduce the store space dedicated to clearance sales,

categories are allowed to merge but not split over time. In the next subsection, we describe the

legacy process used by Zara to make the clearance pricing decisions just described.

1.2 Legacy Clearance Pricing Decision Process

Until 2007, the decision process used by Zara for clearance pricing consisted of two steps. The

first consisted of determining initial categories and markdowns (see §1.1) for the very first week of

the sales, and took place over a period of about a month preceding the beginning of the clearance

period. This started with a systematic review of the unsold inventory and sales performance during

the selling season for all the product groups in Spain (Zara’s top sales country to date), performed

by the pricing committee –a small group of 4-5 key executives combining financial, commercial and

distribution expertise that included Zara’s CFO, in conjunction with the two sales managers for
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that country. This team then determined all the categories and markdowns for Spain, based on an

exchange of views and experience by its members. These decisions were then transposed to all the

other countries using standard conversion tables taking into account differences in national factors

(e.g., overall pricing strategy, income level, competitive positioning), and communicated to all the

country managers for review. Finally, the initial markdown lists were finalized as part of subsequent

meetings where country managers would discuss possible modifications to the default list for their

country with one or several members of the pricing committee, based on their experience and

judgment. An important challenge for this first step was the lack of data, as for nearly all articles

no price markdowns are performed during the season, which made it difficult to predict the response

to a given price cut in the first week of sales.

The second step focused on updating the categories and markdowns after the clearance sale

had started. This was performed independently by each country manager, typically on a weekly

basis, in consultation with one or several members of the pricing committee. The main source of

information used to make these update decisions was the weekly country clearance sales report

generated at least every week for each country and each group of articles, as shown in Figure 1.

Figure 1: Example of a weekly country clearance sales report (second week of the Winter 2009
clearance sales in Italy for the group “Basic Skirts”).

Specifically, the country manager and pricing committee representative would typically review

then the estimated time to sell the remaining stock of each category at the current price (calculated

based on the average sales rate over the last three days) and compare it with the time remaining in

the clearance period. When these time comparisons indicated a substantial risk of unsold inventory

at the end of clearance sales, they would further markdown the category, but otherwise leave the

current price unchanged. In other words, the primary heuristic pursued qualitatively consisted in

minimizing the amount of inventory sold through liquidation, but keeping prices as high as possible
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when doing so. Additionally, markdowns of individual categories were sometimes determined so

that two separate adjacent categories would merge into a single one, in particular near the end of

the clearance period when the inventory remaining in one category would not be deemed sufficient

to justify a separate price point in stores. An important observation however is that no formal

or explicit guidelines were followed when making these decisions. Rather, country managers and

members of the pricing committee would rely then on their experience and an exchange of views

with their colleagues. Finally, the price update decisions for all categories in each country had

to be made under significant time pressure. This was due to both the short delay between the

availability of the country clearance sales report and the desirable time for communicating price

update decisions to stores, and to the labor-intensive nature of this process for the members of the

pricing committee.

1.3 Paper Organization

The high-level structure of the markdown optimization system we developed with Zara to improve

the clearance pricing process just described matches fairly closely that of a typical Revenue Man-

agement solution as described in Chapter 1 of Talluri and van Ryzin (2004). Specifically, it involves

a data collection module, a demand prediction model and a price optimization model. After a lit-

erature review and summary of our contributions in Section 2, Sections 3 and 4 discuss both the

development and the formulation of this demand prediction model and price optimization model,

respectively. Section 5 then describes a pilot implementation study we conducted with Zara in order

to assess the impact of the resulting new clearance pricing decision system, and we offer concluding

remarks in Section 6. Some of the data presented in this paper has been disguised to protect its

confidentiality, and we emphasize that the views presented in this paper do not necessarily represent

those of the Inditex Group.

2. Literature Review

Within the relatively vast literature on markdown optimization and dynamic pricing (see the survey

by Elmaghraby and Keskinocak 2003 and the monograph by Talluri and van Ryzin 2004), this paper

is characterized by its consideration of a multi-product pricing problem (see Maglaras and Meissner

2006 and Gallego and van Ryzin 1997 for seminal theoretical models, and Soon 2011 for a recent

survey). Its main distinguishing feature however is a focus on the development, implementation

and use of a novel operational markdown optimization model by an actual firm. That is, we seek to

shed light on the frontier of clearance pricing optimization practice through a rigorous case study

of a pricing system development and implementation in a challenging environment.

6



With a similar concern for application, Bitran, Caldentey and Mondschein (1998), Mantrala

and Rao (2001) and Heching, Gallego and van Ryzin (2002) analyze historical demand and pricing

data from various firms in order to generate useful insights on the likely additional revenue and

qualitative pricing policy differences associated with the potential implementation of a markdown

optimization model. An important additional step is taken in Smith and Achabal (1998), Smith

(2009) and Valkov (2006), which describe the implementation and use of markdown optimization

systems by various companies, and report some related results. However, these last three references

only contain limited example data and do not discuss the methodology used for calculating the

impact estimates provided. In addition, Valkov (2006) does not contain a detailed description of

the pricing optimization models used as part of the implementations reported. In contrast, our

paper contains complete descriptions of the clearance pricing process of the firm under study and

the technical details of the pricing system developed, and provides an extensive discussion of its

implementation. A second critical difference is our focus on the implementation of multi-product

markdown optimization model, whereas all the existing application-oriented pricing papers just

cited only discuss single-product models. That difference is significant and positions our work at the

forefront of OR practice because, as stated in Talluri and van Ryzin (2004), “[...] many commercial

applications of dynamic-pricing models make the simplifying assumption of unrelated products and

independent demand and solve a collection of single-product models as an approximation.” Finally,

our paper relies on a rigorously designed controlled field experiment spanning several countries to

estimate the resulting impact on both prices and revenue. This also seems significant, because we

are aware of no other markdown optimization paper reporting an estimation of impact involving a

control for external factors.

Because of the impact estimation methodology just mentioned, our work is also related to the set

of papers discussing empirical tests in retail networks. Those tests are typically designed to estimate

the effects of many possible marketing interventions such as packaging, shelf placement or price on

sales, or to estimate network-wide season demand based on preliminary sales observations from a

limited set of stores – see Fisher and Rajaram (2000) and Gaur and Fisher (2005) for discussions

on experimental design methodologies, application examples and references. In particular, several

such studies show how valuable insights on customers’ price response behavior can be generated

by testing empirically the impact of various price points on sales (e.g., Gaur and Fisher 2005,

Sigurdsson et al. 2010). As previously mentioned however, our paper seems to be the first one

among this group to describe the test of a markdown optimization system (as opposed to specific

price points) as part of a controlled field experiment.

Finally, this paper is relevant to the literature investigating the operational problems that are
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specific to fast-fashion retailing, including the studies of assortment by Caro and Gallien (2007), of

distribution by Caro and Gallien (2010), and of operations strategy by Cachon and Swinney (2009)

and Caro and Martinez de Albeniz (2010). Among this group, our paper is the first to investigate

the clearance pricing problem faced by a fast-fashion retailer. This seems an important endeavour,

both because the fast-fashion retail model may provide some important competitive advantages

(Ghemawat and Nueno 2003), and because clearance pricing is arguably more challenging in that

specific context (see §1).

3. Demand Prediction Model

A key input data to a markdown optimization system are the predictions of demand for the various

clearance prices considered. Given the pricing process described in §1.1, for Zara these predictions

(and the ensuing price optimization to be described in §4) must be performed independently for

each group of articles in each country. We discuss next the two steps we followed in order to

develop these forecasts, namely the construction of a historical demand dataset (in §3.1) and the

specification and fitting of a prediction model (in §3.2).1 We then conclude this section in §3.3 with

a brief discussion of the resulting model’s underlying assumptions. It is worth noting that here we

describe the development of the forecasting method that gave the best results in our application.

A comprehensive theoretical analysis of the forecasting problem itself is beyond the scope of this

paper but would be an interesting avenue for future research.

3.1 Demand Dataset Construction

Let R and J denote all the articles and stores in a given group and country respectively, and

let s ∈ S(r) denote the size-color combinations available for each article r ∈ R. An SKU (fully

specified article) corresponds then to a pair (r, s) ∈ R× S(r), which for brevity we write rs. Let

w ∈ Z denote a clearance sales period which is usually a week. By convention, we write w = 1

and w = c to denote the first and the current period of clearance sales respectively, and we write

w < 1 to represent the weeks during the regular selling season, i.e., prior to clearance sales. For

article r, let Iw
r :=

∑
s∈S(r), j∈J Iw

rsj be the inventory position of article r available in the entire

country at the beginning of period w, where Iw
rsj is the inventory position of SKU rs at store j

at the beginning of that period. Let λw
r denote the demand rate in period w for article r which

is roughly computed as the sales observed in period w divided by the number of days the article

was on display. The exact computation of λw
r is described in Appendix A and it presents some

challenges due to the presence of seasonality effects (e.g., Christmas or weekends), which cause
1The implemented data collection module involves standard database access queries and is not discussed here.
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variations in demand that are unrelated to prices, and because of stockouts and inventory display

policies, which cause demand censoring.

Historical sales and inventory data for each SKU at the store level are readily available at Zara.

Using this information we constructed a dataset of historical weekly demand λw
r and inventory Iw

r

spanning four representative product groups and the three years from 2006 to 2008. This dataset

was further split into a training set (all data from 2006 and 2007 and regular selling season of 2008)

and a testing set (2008 clearance sales).

3.2 Forecasting Model Specification

The main challenge when forecasting the demand rate λw
r for future periods is the initial lack of price

sensitivity data, due to the fixed-price policy that Zara applies to most of its articles in the regular

season. To overcome this, we relied on a two-stage estimation procedure, which we will describe

shortly. For many different model specifications, we applied this procedure to the training dataset

defined above, and computed predictions for the sales realized in the clearance period of 2008

(testing dataset). The final model selection was based on a combination of managerial judgement,

the t-statistics and overall goodness-of-fit in the two-stage procedure, and most importantly, the

aggregate forecasting error for the testing dataset. The final validation took place during the live

pilot described in §5, when forecast accuracy was measured as part of a field implementation (see

§5.2.1 for a discussion of these results). Although our forecasting model was thus derived through

extensive experimentation, we only describe here the final implemented result, and refer the reader

to Carboni (2009) for more details on that development process.

The process just described resulted in the selection of the following functional form

λw
r = F

(
Cr, A

w
r , λw−1

r , Iw
r , pw

r

)

= exp
(

β0r + β1 ln(Cr) + β2A
w
r + β3 ln(λw−1

r ) + βw
4 ln(min{1,

Iw
r

f
}) + βw

5 ln
(pw

r

pT
r

))
, (1)

where the dependent variable is the demand rate of article r in period w and the regressors are:

• Purchase quantity (Cr): Size of the purchase made for article r (measured in number of units).

We explain the selection of this variable by its correlation with the “fashion” component of

an article. Usually, articles with low fashion content (also known as “basic”) are purchased

in large quantities, whereas more trendy items are deliberately purchased in small amounts.

Because each article purchase covers Zara’s entire store network, this variable is the same

across countries.

• Age of an article (Aw
r ): Number of days since article r was introduced at the stores. The
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selection of this variable is intuitive because sales typically peak shortly after a product is

introduced then gradually decrease as weeks go by. This variable can be country-dependent.

• Previous period demand (λw−1
r ): The demand rate showed some degree of autocorrelation.

We considered a first-order autoregressive term because it gave a good fit and kept the model

simple. We used the Dickey-Fuller test to discard the presence of a unit root.

• Broken assortment effect (min{1,
Iw
r

f
}): In retailing it has been well-documented that the

demand rate of an article usually declines when the inventory goes below a certain level.

This fact is known as the broken assortment effect and it is especially prevalent in apparel

since, when inventory is low, the remaining items are usually those that are less attractive to

customers (see Smith and Achabal 1998 and Section A-3 in Fisher and Raman 2010).2 To

incorporate this in our model, we define the threshold f , which can be article-dependent, and

represents the minimum on-hand inventory required for an adequate in-store presentation of

the product. Though this parameter can be defined for an individual store, we calibrated it

for the entire country in order to keep the regression aggregated at that level.

• Price discount (
pw

r

pT
r

): Price is obviously a key sales driver in the clearance period. The

selection of this specific variable reflects however that customers are more sensitive to the

relative markdown than to the absolute price cut. Indeed, a common practice at Zara and

other apparel retailers is to advertise specific markdowns (expressed as negative percentages)

using signs posted in various areas of the store. In addition, Zara deliberately shows the

current price pw
r together with the regular season price pT

r on the article’s price tag, so

customers immediately know how big is the markdown. The selected regressor captures these

features as the ratio between the two prices.

The parameters β0r, β1, . . . , β5 in Equation (1) are regression coefficients. In particular, β5

represents the price elasticity, which in this model is constant and identical for all articles in the

given product group for each country. This gave better results than alternative specifications with

price- or article-dependent elasticities. Similarly, the multiplicative/exponential functional form in

(1) provided a better fit for price response than a linear model, as is also noted by other studies in the

literature (Smith et al. 1994). To linearize the regression model, we took logarithms in Equation

(1). Note that the error term in the linearized model becomes a multiplicative error factor in
2Note that the literature also documents cases where large quantities of inventory correlate positively with demand.

This could be incorporated by including the complement of the broken assortment effect max{1,
Iw

r

f
} in the regression

model. However, we chose not to use it as an explanatory variable since the causality was less clear. Indeed, the

inventory might be high because Zara anticipated higher demand. In contrast, Zara avoids holding incomplete

assortments even if demand is low (see Caro and Gallien 2010).
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the original model – this apparently innocuous transformation has important consequences when

forecasting, as will be seen later.

An important observation is that when applying Equation (1) to predict demand during clear-

ance sales, the desirable frequencies at which the regression coefficients should be updated vary

for different regressors. Specifically, while β0r, β1, β2 and β3 may be estimated once using regular

season data, it is desirable to update the estimation of β4 and β5 more frequently, in part because

very little price response data is initially available for most articles of the current season. This

motivates the two-stage estimation procedure we apply: in Stage 1 coefficients for some regressors

are estimated with regular season data, while in Stage 2 the coefficient of the other explanatory

variables such as price elasticity are estimated and periodically updated as clearance sales data

becomes available. Note that this approach closely resembles the two-stage method developed by

Smith et al. (1994) in the context of temporary in-season promotions.

More specifically, in Stage 1 we used regular selling season data (w < 1) and ran the regression

ln(λw
r ) = β0r + β1 ln(Cr) + β2A

w
r + β3 ln(λw−1

r ) + β4 ln(min{1,
Iw
r

f
}) + uw

r , ∀ r ∈ R, w < 1, (2)

with error term uw
r , from where we obtained the set of parameters β̃0r, β̃1, β̃2, β̃3. In Stage 2, we

used clearance sales data (w ≥ 1) to compute the residuals

φw
r = ln(λw

r )− β̃0r − β̃1 ln(Cr)− β̃2A
w
r − β̃3 ln(λw−1

r ), ∀r ∈ R, w ≥ 1. (3)

As in Smith et al. (1994), this two-stage procedure is based on the pragmatic assumption that

season-wide effects–i.e., those estimated in the first stage–are more stable than the key parameters

that are updated in the second stage. Therefore, in Equation (3) the effects of the non-updated

regressors from Stage 1 are removed to obtain the residuals that contain only the effects of the

updated regressors. Note that βt
4 was included in the Stage 1 regression to improve the fit, but

it is disregarded in Equation (3) since the broken assortment effect is particularly relevant during

clearance sales, and therefore, the parameter should be updated. Then, Stage 2 is accomplished by

regressing the residuals with respect to the broken assortment effect and the price markdowns:

φw
r = βw

4 ln(min{1,
Iw
r

f
}) + βw

5 ln
(pw

r

pT
r

)
+ εw

r , ∀r ∈ R, w ≥ 1, (4)

where εw
r is the regression error term. This yields the estimated parameters β̃4 and β̃5.

The leverage date from the past and current seasons, the two-stage procedure aforementioned

was executed twice. This is depicted in Figure 2. First, the procedure was executed pooling the

data from past seasons, which generated the set of estimated parameters
{
β̃

P,w

4 , β̃
P,w

5

}
w≥1

, where

we use the superscript P to denote that it comes from past season data. Of course, from Stage 1 we
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Figure 2: Two-stage estimation procedure using past (P ) and current (C) season data. The current
period is denoted by w = c.

also obtained the set of parameters β̃
P

0r, β̃
P

1 , β̃
P

2 , β̃
P

3 , but these only played a role in the computation

of the residuals. The two-stage procedure was then executed using current season data up to the

most recent period available (w = c−1). From Stage 1 we obtained the set of estimated parameters

β̃
C

0r, β̃
C

1 , β̃
C

2 , β̃
C

3 , and from Stage 2 we obtained
{
β̃

C,w

4 , β̃
C,w

5

}
1≤w<c

, where we use the superscript C

to denote that it comes from current season data. Finally, the parameters β̂
w

4 and β̂
w

5 used in the

forecast for the current period (w = c) were computed with the following recursive equation:

β̂
1

i = β̃
P,1

i (5)

β̂
w

i = γ1β̂
w−1

i + γ2β̃
C,w−1

i + γ3β̃
P,w

i w > 1, (6)

where i = 4, 5 and γ1 + γ2 + γ3 = 1.

The recursion (6) is a direct generalization of the one-dimensional exponential smoothing, which

is a common procedure used to update parameters in adaptive systems (see Little 1966). In the

first period of clearance sales, all the weight was given to the historical parameters due to the lack

of current pricing information. For subsequent periods, the value of γ2 determined the weight given

to the most recent data.3 Note that as clearance sales progressed, only the residual regression for

the most recent period had to be run. With the parameters β̂
w

4 and β̂
w

5 obtained from Equations

(5)-(6) we forecasted the demand rate for the current period (w = c) according to the formula

λ̃
w

r ≈ exp
(

β̃
C

0r + β̃
C

1 ln(Cr) + β̃
C

2 Aw
r + β̃

C

3 ln(λw−1
r ) + β̂

w

4 ln(min{1,
Iw
r

f
}) + β̂

w

5 ln
(pw

r

pT
r

))
. (7)

There is one caveat to the forecasting formula (7): it ignores the fact that the expectation of

the regression error term (εw
r ) is usually greater than one when the logarithmic transformation is

3In our implementation, for the second period we set γ2 = γ3 = −γ1 = 1, and then for the third period onwards

we used γ1 = 0.15, γ2 = 0.85, γ3 = 0.
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reversed. Indeed, by Jensen’s inequality, E[eε] ≥ 1 when E[ε] = 0, and in many cases the inequality

is strict, which introduces a systematic downwards bias if ignored. In the test runs we observed

a tendency to underestimate demand. Therefore, we multiplied the forecast (7) by a correction

factor, and specifically used the smearing factor Hw introduced by Duan (1983):

Hw :=
1
|R|

∑

r∈R
exp (̃εw

r ) , w ≥ 1. (8)

where ε̃w
r corresponds to the estimated errors in Equation (4). The bias in the re-transformation

can be even more significant in the presence of heteroscedasticity, see Manning and Mullahy (2001).

To avoid this issue, we tested systematically for heteroscedasticity, and if present, we modified the

correction factor (8) accordingly (see the Appendix D for details). In general, the correction factor

took values ranging from 1.2 to 1.6.

3.3 Demand Model Discussion

We now provide a brief discussion on the assumptions underlying the demand model presented

in §§3.1 and 3.2. To begin, note from Equation (31) that the estimation of the demand rate

λw
r for article r only uses sales data of that article. Similarly, the functional form in Equation

(1) only depends on the price and inventory of article r. Therefore, the model does not capture

substitution or complementarity effects between products. Though there exists recent literature on

how to estimate primary demand for substitutable products under the presence of stock-outs (e.g.,

Vulcano et al. 2009 and Musalem et al. 2010), the data and computational requirements make them

more suitable for in-season promotions rather than markdown sales. Moreover, finding the dynamic

pricing solution becomes very challenging even in stylized settings where the substitution structure

is known (e.g., Dong et al. 2009). Given the additional complexity that cross-product dependencies

impose, we chose not to model them explicitly. For the same reason, we did not consider directly the

impact of competition (see Gallego and Hu 2007) or strategic customers (see Cachon and Swinney

2009). While some of these effects may be incorporated indirectly by restricting the range of feasible

prices based on Zara’s informed judgement, these observations certainly constitute limitations of

our model. Note however that these limitations also apply to the legacy pricing process, which

constitutes our benchmark in this particular practical setting. Furthermore, we refer the reader

to §5.2.1 for a discussion of the actual forecasting accuracy performance achieved by our demand

model when implemented in the field, which constitutes in our view the ultimate validation of this

model and its assumptions.
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4. Price Optimization Model

This section describes the development and formulation of the markdown optimization model we

implemented (in §4.1) and a brief discussion of its underlying assumptions (in §4.2).

4.1 Model Development

The decision problem considered arises at least every week during the clearance sales period for

every combination of country (e.g., Belgium) and product group (Woman Blazer or T-Shirts). It

consists of partitioning each product group in each country into price categories (e.g., Woman

Blazer from e99 to e55), and assign to each subset a clearance price (e.g. e29.99) at which all

the articles in that subset will be sold. An important general constraint is that different articles

with the same regular season price or the same price at some point during the clearance period are

typically always sold subsequently at the same clearance price. That is, price categories aggregate

but do not separate over time. As a result, instead of considering individual articles we can use

the concept of a cluster (see §1.1), which are articles that were sold for the same price during the

regular selling season. Also, all clearance prices for a given product group must be chosen within

a discrete feasible price set (e.g. {e9.99, e14.99, e19.99, e24.99, e29.99, e34.99}).
A natural approach to model clearance pricing is dynamic programming (DP) (Talluri and van

Ryzin 2004). Such formulation for our problem is given in Appendix , but as with most DPs it is

subject to the curse of dimensionality (Bertsekas 1995) and therefore difficult to implement in a

practical setting. This leads us to consider approximate formulations. Specifically, for the inventory

dynamics we use a certainty equivalent approximation by which future sales are replaced by their

expected values (see Bertsimas and Popescu 2003). Though each period the problem is solved

for the entire horizon, only the actions suggested for the current period are implemented. After

sales are observed, the input data including the forecast is updated and the model is solved again.

Besides its advantages from an implementation standpoint, the certainty equivalent controller also

has a good theoretical performance as discussed in Jasin and Kumar (2010).

In what follows, we assume that customers demanding SKU rs at store j in period w arrive

according to a Poisson process with arrival rate αrsj λ̃
w

r , where λ̃
w

r is given by the forecast formula

(7) and αrsj is the sales weight of SKU rs at store j (see Appendix A for details on the computation

of this last parameter). Let k ∈ K := {1, ..., K} be the clearance price index. The set of clearance

prices is {pk, k ∈ K} which by convention is increasing, i.e., p0 ≤ p1 ≤ p2 ≤ . . . ≤ pK , and p0 is

the final unit salvage value or liquidation price. Let n ∈ N := {1, ..., N} denote clusters and let

Rn be the set of products in cluster n, so the entire product group is R =
⋃

n∈N Rn. Clusters are

ordered in reverse order of regular season prices. That is, R1 contains the most expensive items,
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and RN the cheapest. Let W := {w| c ≤ w < W} be the remaining pricing periods, where W is the

last period when all the remaining inventory will be liquidated at price p0. As before, w = c − 1

represents the most recent period for which there is data available.

For the decision variables, xw
nk ∈ {0, 1} indicates whether cluster n should be sold at clearance

price pk or lower during pricing period w ∈ W, with xw
n0 = 0 for all (n, w) ∈ N ×W. The prices

from the previous period are given by xc−1
nk , which is input data in the current period. In particular,

recall that w = 1 corresponds to the first period, therefore one can use x0
nk to impose a minimum

markdown at the beginning of clearance sales. The auxiliary variable yw
nk ∈ {0, 1} indicates whether

cluster n should be sold at clearance price pk during period w; λw
nk ≥ 0 represents the expected

sales for cluster n in period w ∈ W if sold at price pk; zw
k ∈ {0, 1} indicates whether clearance

price pk is used for any cluster (zw
k = 1) or not at all (zw

k = 0) during period w ∈ W; and

Iw
n :=

∑
r∈Rn, s∈S(r), j∈J Iw

rsj represents the inventory of cluster n available at the beginning of

period w. Note that the inventory level for the current period Ic
n is input data. The uncertainty

in the problem is given by Salesw
rsj , the sales of SKU rs at store j in period w, which is a random

variable for w ∈ W that depends on price and the inventory position. Finally, let Qw and Nw be

input parameters that represent the minimum inventory per category and the maximum number

of distinct prices in period w respectively. We formulate the pricing optimization model as follows:

max
∑

w∈W,n∈N , k∈K
pkλ

w
nk +

∑

n∈N
p0I

W
n (9)

s.t.

λw
nk = yw

nk

∑

r∈Rn

∑

s∈S(r)

∑

j∈J
E

[
Salesw

rsj

∣∣ pk, I
w
rsj

]
, ∀ w ∈ W, n ∈ N , k ∈ K (10)

yw
nk = xw

nk − xw
nk−1, ∀ w ∈ W, n ∈ N , k ∈ K, (11)

xw
nk−1 ≤ xw

nk, ∀ w ∈ W, n ∈ N , k ∈ K, (12)

xw
nk ≤ xw

n+1k, ∀ w ∈ W, n ∈ N , k ∈ K, (13)
∑

w∈W,k∈K
xw

nk =
∑

w∈W,k∈K
xw

n+1k, ∀ n such that
∑

k∈K
xc−1

nk =
∑

k∈K
xc−1

n+1k, (14)

xw−1
nk ≤ xw

nk, ∀ w ∈ W, n ∈ N , k ∈ K, (15)

Iw+1
n = Iw

n −
∑

k∈K
λw

nk, ∀ w ∈ W, n ∈ N (16)

yw
nk ≤ zw

k , ∀ w ∈ W, n ∈ N , k ∈ K, (17)
∑

k∈K
zw
k ≤ Nw, ∀ w ∈ W, (18)

∑

n∈N
Iw
n yw

nk ≥ Qwzw
k , ∀ w ∈ W, k ∈ K, (19)

Iw
n , λw

nk ≥ 0, xw
nk ∈ {0, 1}, zw

k ∈ [0, 1], ∀ w ∈ W, n ∈ N , k ∈ K. (20)
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The objective (9) is the sum of the revenue from all clusters up until the last week, and the

revenue from liquidation at price p0 after clearance sales. Constraint (10), which we soon discuss

further, links predicted sales volume with prices, i.e., it represents the underlying price response

model. Constraints (11) and (12) follow from the definition of the xw
nk and yw

nk variables. Con-

straint (13) ensures that the initial ordering of clusters by prices is maintained throughout the

clearance period. Constraints (14) make sure that clusters that were priced together, remain to-

gether. Constraint (15) ensures that the clearance sales price for any cluster decreases over time.

Constraint (16) implements the inventory dynamics as a function of the pricing decisions. Note

that inventory is aggregated by cluster since pricing decisions are made at that level. Constraint

(17) implements the definition of zw
k . Constraint (18) ensures that the number of distinct price

categories in period w does not exceeds Nw. Constraint (19) ensures that the amount of inventory

available at the beginning of period w is at least Qw for each category.4 Finally, constraint (20)

imposes the non-negative or binary requirements for the decision variables – observe that variables

yw
nk and zw

k do not need to be defined as binary provided that xw
nk is. Also, the non-negativity of

Iw+1
n together with the inventory balance constraint (16) ensure that the expected sales λw

nk never

exceed the available inventory Iw
n .

The formulation above is still hard to solve in practice due to the non-linearity of constraint (10).

Therefore, we linearize these equations. This requires some attention since the random variables

Salesw
rsj depend on inventory in two ways. First, sales are bounded by the inventory available

(as in the usual newsvendor), and second, the demand rate of the Poisson process is affected by

inventory level through the broken assortment effect (see §3). Moreover, the latter takes place at

the article level, while our problem is formulated at the cluster level. Taking this into account, our

approximation is based on the following observation: Let Îw
rsj be an upper bound for the inventory

level of SKU rs at store j in period w. Then, we have that

λw
rk :=

∑

s∈S(r)

∑

j∈J
E

[
Salesw

rsj

∣∣ pk, I
w
rsj

]

= λ̃
w

r (pk, I
w
r )

∑

s∈S(r)

∑

j∈J
αrsj E

[
τw

rsj

∣∣ pk, I
w
rsj

]

≤ λ̃
w

r (pk, I
w
r )

∑

s∈S(r)

∑

j∈J
αrsj E

[
τw

rsj

∣∣ pk, Î
w
rsj

]

=

(
min{1, Iw

r
f }

)β̃4

(
min{1, Îw

r
f }

)β̃4

∑

s∈S(r)

∑

j∈J
E

[
Salesw

rsj

∣∣ pk, Î
w
rsj

]

=
(
min{1,

Iw
r

f
})β̃4

Ew
r (pk)

(
min{1, Îw

r
f }

)β̃4

, (21)

4This constraint was usually dropped in the final periods.
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where Ew
r (pk) :=

∑
s∈S(r), j∈J E

[
Salesw

rsj

∣∣ pk, Î
w
rsj

]
and λ̃

w

r (pk, I
w
r ) is the arrival rate given by the

forecast (7) evaluated at pw
r = pk. The first equality is the definition of λw

rk. The second equality

follows from the Poisson process where τw
rsj is the stopping time until when SKU rs is on display

at store j in period w (the same property is used in Caro and Gallien 2010). The third step follows

from Iw
rsj ≤ Îw

rsj for all stores and SKUs. The fourth step uses the definition of λ̃
w

r (pk, I
w
r ) and

again the Poisson property, and the last step is just the definition of Ew
r (pk).

We linearize the broken assortment term in equation (21) by fitting the linear form used in

Smith and Achabal (1998). While details are given in Appendix C, the resulting expression is

(
min{1,

Iw
r

f
})β̃4

Ew
r (pk)

(
min{1, Îw

r
f }

)β̃4

≈ min
{

1, 1− µ + µ
Iw
r

f

}
Ew

r (pk)
(
min{1, Îw

r
f }

)β̃4

, (22)

where µ :=
3ρ2 + 9ρ

2ρ2 + 6ρ + 4
and ρ := β̃4. We can use Equation (22) to write the following (approxi-

mate) linear constraints for λw
rk:

λw
rk ≤ Ew

r (pk)yw
nk, ∀ w ∈ W\{c}, r ∈ Rn, n ∈ N , k ∈ K, (23)

λw
rk ≤

(
1− µ + µ

Iw
r

f

)
Fw

r (pk), ∀ w ∈ W\{c}, r ∈ R, k ∈ K, (24)

where Fw
r (pk) :=

Ew
r (pk)

(
min{1, Îw

r
f }

)β̃4

. Constraint (23) is the relevant bound when 1 − µ + µ Iw
r
f ≥ 1

or yw
nk = 0, and constraint (24) captures the complementary case. Note that in the first case the

denominator in the right hand side of equation (22) is equal to one (here we are using again the fact

that Iw
r ≤ Îw

r ). Note that constraints (23) and (24) do not need to be defined for w = 1 since the

inventory levels for the current period are known so Ew
r (pk) and Fw

r (pk) can be computed exactly.

Constraints (23) and (24) linearize constraint (10) in our pricing optimization model. Note

that constraints (23) and (24) are defined at the article level r while the constraint they replace

is defined at cluster level n. Therefore, a complete formulation would also have to include the

identity λw
nk :=

∑
r∈Rn

λw
rk and an inventory balance equation at the article level. An alternative is

to aggregate constraints (23) and (24) across articles of the same cluster. This reduces the size of

the model and is also consistent with the fact that pricing decisions are made at the cluster level.

In Appendix C we provide the details on how to aggregate these constraints and how to compute

the parameters Ew
r (pk) and Fw

r (pk) for w > 1.

4.2 Optimization Model Discussion

The premise in the pricing optimization model described in §4.1 is that the firm’s objective is to

maximize the total revenue across the entire duration of clearance sales. This seems natural since

at the time of clearance sales, inventory is a sunk cost. However, in practice many retailers make
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pricing decision with the de facto objective of liquidating inventory in order to open up space for the

upcoming season. The consequences of this is discussed later in §5, but for the model formulation

the question is how to account for the fact that markdown items hold up valuable retail display

area. One approach is to include an opportunity cost that captures the relative value between old

and new items (see Araman and Caldentey 2009), but estimating this parameter can be a difficult

task. An alternative approach preferred by Zara is to deliberately reduce the number of posted

prices as clearance sales goes by. That is the purpose of constraint (18), and the rationale is that

having less prices allows the store manager to consolidate the inventory on display so it uses less

store space. In some situations, it is imperious that most of the inventory is sold, e.g., when there is

little opportunity to salvage stock and disposing it would imply a cost. For those cases, we included

an optional constraint that explicitly limits the amount of inventory left over.

The Poisson assumption is another central premise in the model formulation, which is needed

for tractability reasons as in many revenue management problems. We specifically take advantage

of it to approximate the price response where the demand rate also depends on the inventory level

(see Equation (21)). We believe this feature constitutes a novel feature of the model since most of

the literature on inventory-dependent demand is for the single-period newsvendor (e.g., Dana and

Petruzzi 2001). Finally, it must be noted that we rely on the certainty equivalent approximation to

solve a math program instead of a DP. This is driven by the need of efficient run times since there

is a small time window to make the pricing decisions.

However restrictive the assumptions and approximations discussed here may seem, we note in

closing that they are supported and partially justified from a practical standpoint by the imple-

mentation results to be presented next.

5. Pilot Implementation Study

A working prototype of the entire new pricing system was completed in 2008. The forecast described

in §3 was implemented in Java and the optimization model from §4 was coded in AMPL and solved

with CPLEX. Pulling the data from Zara’s databases to feed the forecast was the most time-

consuming task and was usually done over the weekend. Solving the optimization problem was

done overnight and the usual instance for a group in a given country would have up to 12 prices,

15 clusters and 8 periods. Therefore, the number of binary variable in the model rarely exceeded

1,500, and each instance was typically solved in a few minutes.

We tested the resulting model-based pricing process in a controlled field experiment that took

place from January to March 2009, corresponding to clearance sales of the 2008 Fall-Winter season.

The objective of the live pilot was threefold: First, establish the applicability of the model in
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the field. Second, refine the solution based on user feedback. And third, quantify the model’s

specific impact on markdown decisions, which is the main issue discussed in the present section.

Specifically, the details of our methodology are given in §5.1, where we present the experimental

design (in §5.1.1) and the performance metrics used (in §5.1.2). The results of the pilot are then

reported in §5.2, specifically the observed forecast accuracy (in §5.2.1), pricing behavior (in §5.2.2)

and financial impact (in §5.2.3).

5.1 Methodology

5.1.1 Experimental Design

Zara’s assortment in the Women section consists of 20 product groups, not including accessories.

For the pilot, we divided the assortment in two large sets of product groups: groups 1-12, that

include relatively more classic designs targeted to women in their late twenties and above; and

groups 13-20, that include more fashionable items targeted to younger women. Articles in the

latter groups tend to have lower prices than those in the former. Zara gave our team the entire

countries of Belgium (BEL) and Ireland (IRL) to run the experiment. We carefully designed the

pilot in the following way: In Belgium, the optimization model was used to suggest prices for groups

1-12, whereas the manual legacy process was used to price groups 13-20. Conversely, in Ireland,

the manual process was used for groups 1-12, and the model suggested prices for groups 13-20.

Finally, in the rest of Western Europe (RWE), the manual process was used to price all the product

groups.5

The groups subject to the model, i.e., groups 1-12 in Belgium and 13-20 in Ireland, represented

the treatment set, while the rest served as the control set. On the one hand, this partition allowed

to rule out country and store specific factors, i.e., whether the conditions in a given country or

store were intrinsically more (or less) favorable for clearance sales. On the other hand, the fact

that the treatment and control groups were inverted between Belgium and Ireland made sure that

the particular selection of the treatment set was not driving the results. Finally, any base difference

between groups 1-12 and 13-20 was captured by using the rest of Western Europe as a reference

point, against which Belgium and Ireland were compared. This design was also constructed to

minimize potential demand substitution across test and control groups. Specifically, Zara managers

felt that demand substitutions would be plausible between any two articles within either groups 1-12

or groups 13-20, but unlikely across those two sets of groups because they appealed to fairly different

customer types. These considerations ruled out designs involving (say) even-numbered groups for

the intervention and odd-numbered group for the control. Finally, the inventory available at the
5For this experiment, RWE consisted of Spain, Portugal, France, Italy, Austria, Holland, and the United Kingdom.
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beginning of clearance sales, while not explicitly controlled for, was fairly uniform across groups and

countries (i.e., the amount of initial inventory relative to past season demand was about the same

everywhere). This resulted from the use by Zara of the same pre-clearance inventory positioning

process worldwide (Verdugo 2010).

Note that for the treatment groups, the model was used to suggest markdowns, but the manual

prices were still generated in parallel. In other words, at each price revision, two lists of suggested

prices were available for the treatment set: one list from the model, and the other from the legacy

pricing process (followed as usual without knowledge of the model pricing recommendations). The

actual decision to follow the model prices required the approval from Zara’s pricing committee

together with the country managers of Belgium and Ireland. Though in an ideal experiment we

would have liked the model to dictate the prices for the treatment groups, this was not allowed given

that there was still uncertainty, and even some skepticism, on whether the model would perform

well. Moreover, the model had always been envisioned as a support tool rather than an automated

decision maker. Hence, letting the pricing committee and country manager have the final say, not

only was pivotal for the experiment to happen, but also was closer to the actual use intended for

the model. We did keep track of the adherence to the model’s suggestion and report this later in

§5.2.

5.1.2 Metrics

The primary financial metric used by Zara to evaluate its clearance sales performance is the realized

income Y defined as

Y :=
clearance period income + liquidation income

value of clearance inventory at regular season prices
, (25)

which can be calculated for a store, country or the entire chain. If only the inventory sold until pe-

riod w is considered in Equation (25), then the metric is denoted Y w. The realized income measures

the ratio of the actual revenue from clearance sales to the maximum revenue achievable by selling

the inventory at regular season prices. A higher realized income is better as it reflects more revenue

generated out of a given amount of initial stock, valued at the prices prior to markdowns. Note

that, if the numerator and denominator in Equation (25) are divided by the inventory expressed

in units, then the metric Y can be seen as the ratio of the average price in clearance sales to the

average price in the regular season. Therefore, 1−Y is the average markdown, or the average price

cut, as it is known internally at Zara.

As discussed before, even though the objective of clearance sales is to maximize revenue, an

indirect goal is also to liquidate stock. Therefore, a secondary metric that is very relevant to Zara
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is the percentage sold Xw, internally known as the fraction sold, which is defined as

Xw :=
units sold up to period w

initial clearance sales inventory (in units)
. (26)

Since the fraction sold can always be improved by introducing more aggressive markdowns, it is

complemented by the average price Pw in period w, defined as

Pw :=
period w initial inventory valued at period w prices

period w initial inventory (in units)
. (27)

Note that Pw is computed at the beginning of period w and reflects the pricing decisions, while

Xw and Y w are trailing metrics that are computed at the end of period w once sales have been

observed.

Historically, the fraction sold Xw, the average price Pw and the (trailing) average markdown

1 − Y w had been the metrics most closely monitored by managers at Zara, usually comparing

them across different countries. For the pilot, we were also interested in the trajectory followed by

these metrics. However, for our purpose of comparing two pricing methods, the key metric was the

realized income Y at the end of clearance sales. The live experiment was specifically designed to

measure the model’s impact on that metric by using a difference-in-differences statistical procedure

– see Stock and Watson (2003) for a textbook discussion and see Imbens and Wooldridge (2009)

for a survey on the use of difference-in-differences for program evaluation. Indeed, for each store

in Belgium we computed the aggregate realized income for groups 1-12 and 13-20 (denoted Y1-12

and Y13-20, respectively). Then, we took first differences and computed the average across all stores

(denoted Y
BEL
1-12 − Y

BEL
13-20). We did the same for the stores in Ireland and in RWE. Finally, we

computed the (second) difference between the averages in Belgium and RWE to obtain

∆BEL :=
(
Y

BEL
1-12 − Y

BEL
13-20

)− (
Y

RWE
1-12 − Y

RWE
13-20

)
, (28)

and we did the same between Ireland and RWE to obtain ∆ IRL.

As mentioned in §5.1, the first difference in Equation (28) removed any country or store specific

factors, while the second difference removed any intrinsic performance differential between groups

1-12 and 13-20. Averaging across stores removed any random noise. Moreover, we used the store

sample to perform a t-test comparing the means Y
BEL
1-12 − Y

BEL
13-20 and Y

RWE
1-12 − Y

RWE
13-20 , which deter-

mined whether the expression in Equation (28) was significantly different from zero. Similarly, we

used the Mann-Whitney test to determine whether the medians of the first differences across stores

in Belgium and RWE were significantly apart. The same calculations were repeated for Ireland and

RWE.

21



5.2 Results

5.2.1 Forecast Accuracy

We begin this section by looking at the quality of the forecast. In general, the forecast was computed

overnight after the weekend and the pricing decisions were made the following day. For each price

decision implemented in Belgium and Ireland, we computed the forecast error, i.e., the difference

between the actual and predicted sales. Then, we computed the mean absolute deviation (MAD)

for each period (each period corresponds approximately to a week) and each country.6 The results

are shown in Table 1, where the last column provides the sales-weighted average across all periods.

Overall, we found the forecast accuracy to be reasonable and within range of other studies. For

instance, Fisher and Vaidyanathan (2009) report an out-of-sample MAD of 25.8% at the chain-SKU

level over a 6-month period. Our forecast had a similar MAD at a slightly more aggregate product

level (price categories) but for a shorter time window and a single country rather than the entire

chain.7 Experience at other retailers confirms that it is very difficult to get better than 25% MAD

for weekly sales of specific retail products, especially when prices are changing each week (Smith

2011).

Country Clearance Sales Period (Week) Sales-weighted

100 101 102 103 104 105 106 107 108 Average

Belgium 24.7% 28.7% 19.7% 17.8% 28.4% 21.3% 22.7% 23.3% 26.8% 23.8%

Ireland 20.1% 19.4% 27.1% 22.9% 27.0% 23.4% 27.6% 31.9% 41.7% 24.1%

Table 1: Forecast accuracy measured in MAD per period at the country level.

Table 1 shows that the quality of the forecast was quite consistent across time. Only in the

last two periods in Ireland the MAD was above 30%. We believe that this was in part due to

differences between the actual stock at the stores and the inventory levels in the database. In fact,

record inaccuracy is a well-known issue for retailers (DeHoratius et al. 2008), and it becomes more

prevalent as stock is depleted towards the end of clearance sales. Although this seems a plausible

explanation, it did not have a major impact since the last periods accounted for a small fraction of

total clearance sales.

For validation purposes, we checked the quality of the forecast aggregated across all groups.

We expected the accuracy to improve significantly, which was indeed the case. Figure 3 shows the

weekly aggregate forecast versus actual sales for Belgium and Ireland (we report it as percentages of
6Here we used the definition of MAD given in Fisher and Raman (2010), p. 65, which is equivalent to the

sales-weighted mean absolute percentage error, or MAPE, commonly used by practitioners.
7It should also be noted that the forecast in Fisher and Vaidyanathan (2009) is for an assortment problem instead

of markdown pricing.
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total sales since the absolute values cannot be disclosed). In both countries, the aggregate forecast

closely followed sales, with a small underestimation mostly in the first periods. Part of this could be

due to systematic errors of the kind that motivated the correction factor in Equation (8). However,

we believe it is also explained by the fact that the forecast in the initial periods relied more on the

the elasticity computed from historical data, see Equation (5)-(6). As clearance sales progressed,

the elasticity was updated with current data so the later periods in Figure 3 could reflect some

degree of learning by the model over time.

Figure 3: Weekly aggregate forecast versus actual sales for Belgium (left) and Ireland (right).

5.2.2 Pricing Behavior

As described in §5.1.1, the model prices were evaluated by the pricing committee and the country

managers. Whenever the model and the manual prices differed, there would be a discussion, and

occasionally the team chose to implement the manual ones (recall that the legacy process was still

performed in parallel as a back-up for the treatment groups). Figure 4 shows the adherence to

the model prices. A solid dot indicates a group-period where the model and the manual prices

differed, and a shaded box indicates that the latter was followed. From this figure it is clear that

the two pricing methods differed quite often. However, in many cases the discrepancy was only in

a couple of price categories, and frequently the model’s suggestion was the price above or below in

the discrete set K.

Overall, the adherence to the model prices was very high, with a few exceptions in Ireland.

In the cases of G16-P100 and G20-P102 (we use “G” and “P” to abbreviate Group and Period,

respectively), the choice of the manual prices were judgement calls following the perception that

the model prices were too conservative. In the other cases, the manual prices were selected due

to a lack of confidence in the model’s suggestion, mostly induced by a large forecast error in the

previous period. The case of G20 deserves particular attention. In period 102 the manual prices

were implemented, and for those prices the forecast overestimated sales by 35%. This led to believe
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Figure 4: Adherence to model prices. Shaded cells indicate when they were not followed.

that the model had suggested higher prices for P102 because it was overestimating demand. The

latter created some skepticism towards the model prices for G20, and therefore, in the following

weeks when the price suggestions differed, the manual ones were implemented.

The average price Pw and the fraction sold Xw in each period w of clearance sales for the

treatment and control sets are shown in Figure 5 and Table 2, respectively. The trajectories in

Figure 5 show that in Belgium the model discounted prices a bit more aggressively in the first

couple of weeks but then came fairly close to the manual prices after that. In Ireland, however,

the model markdowns remained less aggressive than the manual markdowns for the entire sales

period. In terms of inventory, Table 2 shows that groups 1-12 in Belgium ended with a higher

fraction sold that the same groups in Ireland, while the opposite happened with groups 13-20.

Recall that groups 1-12 had articles with higher initial prices than groups 13-20. Hence, compared

to the manual process, in the experiment the model chose to markdown sooner the more expensive

items to increase sales volume, and it chose to collect more revenue out the cheaper items at the

expense of selling lower quantities. Put simply, for the expensive items the model’s strategy called

for volume, whereas for the cheaper articles it called for price. The impact of these decisions in

terms of revenue is described in the next section.

5.2.3 Financial Impact Assessment

The overall impact of the model is based on the on the difference-in-differences metric ∆q, q =

BEL, IRL, defined in Equation (28). The results are summarized in Table 3. In particular, the
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Figure 5: Average price (Pw) across periods for groups 1-12 (left) and groups 13-20 (right) in
Belgium and Ireland.

Groups – Country Period (w) Final

100 101 102 103 104 105 106 107 108

Groups 1-12 Belgium 19.1% 34.0% 51.4% 63.1% 71.0% 75.2% 79.6% 82.7% 84.4% 85.1%

Ireland 20.5% 28.6% 38.0% 47.4% 59.3% 67.0% 72.5% 76.7% 79.8% 82.2%

Groups 13-20 Belgium 19.0% 32.3% 43.5% 53.3% 65.5% 75.2% 81.5% 86.3% 89.2% 89.9%

Ireland 23.4% 33.1% 43.1% 53.9% 60.7% 68.1% 71.6% 73.7% 76.8% 80.3%

Table 2: Fraction sold (Xw) across periods for groups 1-12 (intervention in Belgium, control in
Ireland) and 13-20 (control in Belgium, intervention in Ireland). The last column reports the
fraction sold two weeks after the last markdown

first row corresponds to the figures for the live pilot in 2008. The mean and median of the first

difference Y1-12 − Y13-20 across stores in Belgium, Ireland, and RWE are reported in columns two,

three, and four, respectively. The second difference between the averages observed in Belgium

(Ireland) and in RWE is reported in column five (six) and corresponds to the empirical value of

∆BEL (∆IRL). We also report the difference between the medians. We provide the t-statistics

to assess the significance of the difference between the means, and for the medians we provide a

z-statistic that corresponds to the usual Normal approximation of the Mann-Whitney U-statistic.

The significance of the statistics is reported conservatively by considering the two-tailed versions

of the tests.

The actual average first difference observed during the pilot was 0.5 percentage points (pp) in

Belgium and -4.8pp in Ireland. However, one of the two sets of product groups could have been

intrinsically harder to sell during clearance sales than the other, and indeed the numbers for RWE

show that groups 13-20 had a higher realized income than groups 1-12 by about 2.2pp, which

provided a baseline value for these average differences. The estimated impact of the model on the

realized income was therefore an increase of 2.7pp in Belgium and an increase of 2.6pp in Ireland.

These results were not driven by outliers because the mean and median changes were consistently

alike and all had the same sign. The t-test comparing the means showed that this estimation of
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impact on Y was significant at the 5% level in Ireland, and at the 0.04% level in Belgium. This

observation was confirmed by the Mann-Whitney test comparing the medians. For completeness,

we performed the t-test with the Welch correction for unequal variances. The significance level was

the same in Belgium but actually improved in Ireland, which showed that our results were robust

and most likely conservative.

Year 1st Difference: Y1-12 − Y13-20 2nd Difference

BEL IRL RWE BEL − RWE IRL − RWE

2008 mean (median) 0.5(0.4) −4.8(−4.6) −2.2(−2.1) 2.7∗∗∗∗(2.5∗∗∗∗) −2.6∗(−2.5∗∗)

t-stat (z-stat) 3.59(3.73) 2.12(2.93)

2007 mean (median) −0.2(0.2) −0.8(−0.5) 1.5(1.7) −1.7∗(−1.5∗) −2.3(−2.2)

t-stat (z-stat) 2.37(2.17) 1.93(1.94)

2006 mean (median) −3.2(−2.8) −3.7(−3.5) −2.4(−2.7) −0.8(−0.1) −1.2(−0.8)

t-stat (z-stat) 0.97(0.89) 0.82(1.05)

Note: Statistical significance from two-tailed test: ∗p < 5%, ∗∗p < 1%, ∗∗∗p < 0.2%, ∗∗∗∗p < 0.04%.

Table 3: Model impact assessment using difference-in-differences, where the first difference is be-
tween groups 1-12 (intervention in Belgium, control in Ireland) and 13-20 (intervention in Ireland,
control in Belgium), and the second difference is between Belgium/Ireland and RWE. Figures are
percentage points.

In order to validate our methodology, in rows three and four of Table 3 we report the difference-

in-differences calculation for 2006 and 2007. Since in those years no pilot took place, we expected

any difference between Belgium (Ireland) and RWE to be statistically insignificant and closer to

zero. In fact, the values for 2006 and 2007 in the last two columns of Table 3 are consistently

smaller in absolute terms than their equivalent in 2008. None of them is statistically significant at

the the 5% level, except for the 2007 difference in Belgium. We looked at this result carefully and

we believe that it is irrelevant. Indeed, it has a negative sign, which if anything, would indicate

that there is even more merit to the positive result observed in 2008, and the latter was obtained

with a significance level that is two orders of magnitude better than the value in 2007. Moreover,

if the t-test is performed with the Welch correction, the result in 2008 remains unchanged, while

in 2007 it becomes insignificant at the 5% level. We took this analysis as evidence that supported

the overall methodology.

The remarks drawn from Table 3 rely on the significance of the results given by the statistical

tests. In that sense, the impact of the model in Belgium could seem stronger than in Ireland.

However, recall that the model recommendations were not implemented as closely for group 20 in

Ireland (c.f. §5.2.2). Hence, it is important to observe that when group 20 was excluded from the

calculations in Ireland, see Table 4, the impact estimation on the realized income increased from

2.6pp to 3.1pp, and more importantly, the significance level increased from 5% to 1%, and from 1%

to 0.2%, for the difference of the means and medians, respectively. Averaging the result for Belgium
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in Table 3 and for Ireland in Table 4, we can therefore conclude that the price optimization model

increased the realized income Y by approximately 2.9pp during the pilot experiment.

Year 1st Diff: Y1-12 − Y13-19 2nd Difference

IRL RWE IRL − RWE

2008 mean (median) −6.9(−6.2) −3.8(−3.8) −3.1∗∗(−2.5∗∗∗)

t-stat (z-stat) 2.65(3.16)

Note: Statistical significance from two-tailed test: ∗p < 5%, ∗∗p < 1%,
∗∗∗p < 0.2%, ∗∗∗∗p < 0.04%.

Table 4: Model impact assessment in Ireland without G20, i.e., the first difference is
only between groups 1-12 and 13-19. Figures are percentage points.

A rough historic average for the realized income at Zara during clearance sales is 50%. Therefore,

an additional 2.9pp in Y means a 5.8% increase in revenues. For a monetary value of this impact

estimate, consider 2006 when Zara reported $7,194M in revenues. Following Ghemawat and Nueno

(2003), we assume that 17.5% of sales were generated at markdown prices (see §1), which would

result in a clearance sales income of $1,259M (since Zara avoids markdowns during the regular

season we assume that discounted sales prior to the clearance period are negligible). Increasing the

realized income by 2.9pp therefore corresponds to an increase of annual clearance revenue by about

$73M (i.e., 5.8% of $1,259M). In 2007 this would mean $83M in additional sales, and $90M in

2008.8 Given that the use of the model does not have a major impact on Zara’s costs, the increase

in revenues due to this new pricing process is likely to translate directly into additional net profits.

To the best of our knowledge, Smith and Achabal (1998) report the only other observed relative

financial impact of a markdown optimization system implementation in the literature. Specifically,

for the most successful of three implementations described in that paper it was observed that the

realized income increased 4% over the previous year, which is consistent with but lower than our

increase estimate of 5.8% for the present application. This difference in impact could be driven by

the relative features of the systems implemented, but also the relative performance of the legacy

markdown policies they replaced as well as the estimation methodology (the impact estimations in

Smith and Achabal 1998 do not involve controls for external factors).

6. Pilot Aftermath and Conclusion

Following the pilot test, Zara’s IT group completed a distributed software application allowing

managers of all countries to use the model continuously through clearances sales for all product
8The financial impact estimations provided here assume a 1.3 $/Euro exchange rate. They were performed

independently by the paper authors and do not engage the responsibility of the Inditex group.
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groups (see Appendix E for snapshots of the user interface). This application provides the complete

pricing recommendations and corresponding sales and revenue predictions for all clusters and all

remaining weeks, and it also enables what-if scenario analysis relative to a baseline of specified

pricing decisions, as well as a visualization of the expected revenue and quantity sold corresponding

to different possible selling prices in a given situation. At the time of writing, the model and its user

interface have become the standard markdown pricing tool within the company. Country managers

have been trained and can now access the application independently from their desktop computer.

The model is used to make pricing decisions in all the countries where Zara has company-managed

stores and the commercial regulations allow for discretionary markdowns. This represents about

80% of the entire store network. The remainder corresponds to either countries with franchised

stores, about 12% of the store network in 2009, or countries where clearance sales must adhere to

specific markdown regulations, preventing the use of the model or even the legacy pricing process.

Given the successful results, other brands within Inditex, such as Stradivarius and Pull & Bear,

have shown interest in adapting this tool for their own stores.

In conclusion, our work is the first documented application of a complete multi-product mark-

down optimization solution to the setting of fast-fashion retailing. It involves a rigorous impact

assessment through a pilot experiment designed to provide a control-adjusted estimation, which

contrasts with many other applications where the specific impact is either not estimated at all or

estimated through a before versus after methodology which completely ignores than many other

factors can affect the difference between before and after. Finally, we believe this to be the first

large-scale application of a pricing optimization solution by a global firm for which all relevant

technical and implementation details as well as related impact estimation results are made public.

By exposing important aspects of how pricing is performed in practice, this paper opens the field

for more theoretical research.

In terms of impact, we showed that the solution implemented increases clearances sales revenue

by about 6%, corresponding for example to $90M in 2008. This financial impact is explained by

the model’s ability, relative to the legacy process, of maximizing revenue rather than liquidating

stock. Indeed, the model usually made price suggestions that were slightly more aggressive at the

beginning and more conservative towards the end. It also showed its ability to correctly identify

the appropriate markdown strategy depending on the type of article (e.g., classic vs. fashion)

considered.

Beyond the financial aspect, this project also had a cultural impact on Zara. First, it changed

Zara’s approach to markdowns from intuition-based to model-based, and demonstrated that pricing

decisions can be improved by a scientific approach. Second, the project created consensus on the
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objective of clearance sales, which in turn provided a basis for discussion and pushed the country

managers to find stronger arguments to justify their intuition. Third, a slightly more subtle cultural

impact resulted from the introduction of a formal forecasting method. Initially, the forecast error

received most of the attention at the pricing meetings, and the model-based process was evaluated

based on the accuracy of its sales predictions. It took a concerted communicational effort to shift

the discussion to the impact of the suggested prices on revenue, which was the actual purpose of

the model. Keeping track of the forecast error is relevant, and there is always room to improve it,

but it was important to anchor the debate on what really mattered, and that despite some level

of forecast inaccuracy, the model could still generate better pricing decisions. We considered this

to be a key learning, especially given the fact that many optimization projects do not materialize

because the performance is measured exclusively based on the forecast rather than the realized

profits (a similar observation motivated the work by Besbes et al. 2010).

From a process standpoint, the pricing solution we implemented enables more consistency, scal-

ability and organizational distribution of pricing decisions. In other words, it provides a yardstick

that unifies the pricing criteria across a diverse pool of country managers. This is particularly

relevant for Zara in light of that firm’s growth aspirations. Finally, we believe that the public dis-

semination of this successful and fully documented application of revenue management in a global

company with a visible brand should also generate a substantial impact beyond Zara.
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Appendix (to be posted online)

A. Demand Rate Estimation

In the following, let Salesd
rsj denote sales of SKU rs at store j ∈ J in day d ∈ D and let Id

rsj be the

inventory position of SKU rs at store j at the beginning of day d. We want estimate the demand

rate λw
r , which can differ from sales due to demand censoring caused by stockouts. We must also

take into account seasonality effects that affect demand but are not related to price changes.

The first step in the demand estimation is thus to de-seasonalize the data, using daily seasonality

factors defined as

δd :=

(∑
r∈R Sales

w(d)
r

Sales

)
·
(

7
Mm(d)∑
m∈MMm

)
, ∀ d ∈ D, (29)

where Sales is the average weekly sales in the given country, w(d) is the week in which day d falls,

Salesw
r :=

∑
s∈S(r), j∈J ,d∈D(w) Salesd

rsj are the sales for article r in period w aggregated across sizes,

colors and stores, D(w) is the set of days in period w, m denotes a day of the week, m(d) ∈M :=

{Mon, . . . ,Sun} is the day of the week for d, Mm :=

∑
d∈D, r∈R, s∈S(r), j∈J 1{m(d)=m} Salesd

rsj∑
d∈D 1{m(d)=m}

is the

average sales that occur on a day m ∈ M, and 1E is the indicator function associated with event

E. In words, the factor δd captures the expected daily sales variations for the brand at the country

level. Note that the definition in Equation (29) has two components which normalize sales data

with respect to inter-week as well as intra-week variations. Although these components should be

updated every season, we have observed that they have remained in fact quite constant over the

years (see Carboni 2009), which shows the formula’s robustness and validates its use.

Correcting for demand censoring is more complicated, even for a single SKU (see Besbes and

Muharremoglu 2010). Moreover, due to Zara’s inventory display policy, an article r is usually

moved from display when some of its key sizes or colors are missing, even if there is stock available

for other sizes/colors, which exacerbates the censoring effect. To capture this, we followed Caro

and Gallien (2010) and defined the indicator 1DNDd
rsj

that equals one if SKU rs was not on display

at store j in day d. Here DNDd
rsj stands for Days Not on Display, and formally the event is defined

as

DNDd
rsj :=

{{
Id
rsj = 0

}
or

{
min

s̃∈S+(r)
Id
rs̃j = 0 and max

s̃∈S(r)
Salesd

rs̃j = 0
}}

, (30)

where S+(r) has the key sizes/colors for article r.

We finally estimated the demand rate for article r in period w as

λw
r =

Salesw
r

Timew
r

, (31)
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with

Timew
r :=

∑

s∈S(r), j∈J
αrsj ·

∑

d∈D(w)

δd(1− 1DNDd
rsj

), (32)

where αrsj :=
∑

w<1 Salesw
rsj

/∑
w<1 Salesw

r denote the relative sales weight of store j for SKU

rs and Salesw
rsj :=

∑
d∈D(w) Salesd

rsj are the sales of SKU rs at store j in period w. Note that

Equation (32) is a weighted average of the deseasonalized “days on display” in period w. Therefore,

the ratio in Equation (31) corresponds to a normalized demand rate. The sales weight parameters

αrsj are also used to disaggregate the forecast in Equation (7). Note that Zara frequently reallocates

inventory prior to clearance sales. When that happened, we used

αrsj =

∑
w<1, j∈J Salesw

rsj∑
w<1 Salesw

r

·
∑

w<1, r∈R, s∈S(r) Salesw
rsj∑

w<1, r∈R Salesw
r

to disaggregate the demand rate to the SKU and store level.

B. Dynamic Programming Formulation

In the dynamic programming formulation, the state of the system is the current inventory level

(Iw) and the previous price decisions (xw). Note that here we use the vector notation Iw :=

{Iw
rsj}r∈R, s∈S(r), j∈J , Salesw:= {Salesw

rsj}r∈R, s∈S(r), j∈J , xw := {xw
nk}n∈N ,k∈K, and pw:= {pw

n }n∈N ,

where the variable pw
n represents the price assigned to cluster n in period w (it should not be

confused with the input parameters pk, k ∈ K, which are the feasible prices). After clearance sales,

the remaining inventory is salvaged at price p0. Hence, for any final state, the revenue from the

liquidating the inventory is JW (IW , xW−1) =
∑

r∈R, s∈S(r), j∈J p0I
W
rsj . The Bellman equation in

period w ∈ W of clearance sales is the following:

Jw(Iw, xw−1) = max
∑

n∈N
pw

n λw
n + E

[
Jw+1(Iw − Salesw, xw)

∣∣ pw, Iw
]

(33)

s.t.

λw
n =

∑

r∈Rn

∑

s∈S(r)

∑

j∈J
E

[
Salesw

rsj

∣∣ pw
n , Iw

rsj

]
, ∀ n ∈ N , (34)

pw
n =

∑

k∈K
pk yw

kn, ∀ n ∈ N , (35)

yw
nk = xw

nk − xw
nk−1, ∀ n ∈ N , k ∈ K, (36)

xw
nk−1 ≤ xw

nk, ∀ n ∈ N , k ∈ K, (37)

xw
nk ≤ xw

n+1k, ∀ n ∈ N , k ∈ K, (38)
∑

k∈K
xw

nk =
∑

k∈K
xw

n+1k, ∀ n such that
∑

k∈K
xw−1

nk =
∑

k∈K
xw−1

n+1k, (39)

xw−1
nk ≤ xw

nk, ∀ n ∈ N , k ∈ K, (40)

yw
nk ≤ zw

k , ∀ n ∈ N , k ∈ K, (41)
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∑

k∈K
zw
k ≤ N, (42)

∑∑

n∈N

∑

r∈Rn

∑

j∈J
Iw
rj yw

nk ≥ Qzw
k , ∀ k ∈ K, (43)

xw
nk ∈ {0, 1}, zw

k ∈ [0, 1], ∀ n ∈ N , k ∈ K. (44)

C. Model Linearization

Let ρ = β̃4 be the parameter associated to the broken assortment term ln(min{1,
Iw
r

f
}) in the

demand regression. We assume that 0 ≤ ρ ≤ 1, which is consistent with our empirical results. We

would like to fit the following linear form suggested by Smith and Achabal (1998) to capture the

broken assortment effect:

min
{

1, 1− µ + µ
Iw
r

f

}

For µ ≥ 0, this expression is relevant when it is less than one, which only occurs when
Iw
r

f
≤ 1. We

can chose µ to be the value that minimizes the quadratic distance between the two functional forms.

This amounts to minimize
∫ 1

0
(xρ − 1 + µ− µx)2 dx with respect to µ. The first-order conditions

provide the closed-form formula µ =
3ρ2 + 9ρ

2ρ2 + 6ρ + 4
.

The linearization of the broken assortment effect yields constraints (23) and (24) which are

defined at the article level. Constraint (23) can be easily aggregated for all articles r that belong

to a given cluster n to obtain

λw
nk ≤ Ew

n (pk)yw
nk, ∀ w ∈ W\{c}, n ∈ N , k ∈ K, (45)

where Ew
n (pk) :=

∑

r∈Rn

Ew
r (pk). For constraint (24), by adding the right hand side over r ∈ Rn we

have

∑

r∈Rn

(
1− µ + µ

Iw
r

f

)
Fw

r (pk) = (1− µ)
∑

r∈Rn

Fw
r (pk) + µ

( ∑

r∈Rn

Iw
r

Iw
n

Fw
r (pk)

)Iw
n

f

≈ (1− µ)
∑

r∈Rn

Fw
r (pk) + µ

( ∑

r∈Rn

Îw
r

Îw
n

Fw
r (pk)

)Iw
n

f
,

where in the last parenthesis we have replaced Iw
r by its estimated upper bound Îw

r . We use this

last expression to formulate a linear constraint for the broken assortment effect at the cluster level:

λw
nk ≤ (1− µ)Fw

n (pk) + µF
w
n (pk)

Iw
n

f
, ∀ w ∈ W\{c}, n ∈ N , k ∈ K, (46)

where Fw
n (pk) :=

∑

r∈Rn

Fw
r (pk), and F

w
n (pk) :=

∑

r∈Rn

Îw
r

Îw
n

Fw
r (pk) is a weighted average of the pa-

rameters Fw
r (pk). Replacing constraint (10) by Equations (45) and (46) we finally obtain a mixed

integer programming (MIP) formulation for the clearance pricing problem.
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In order to compute Ew
r (pk) and Fw

r (pk) we would need an upper bound Îw
r for the inventory

level in period w > 1. One possibility is to use the current inventory level Î 1
r , but that can be a

loose upper bound for periods beyond w = 1 which could lead to a significant overestimation of

sales as indicated by the derivation of Equation (21). Instead, we introduce a factor 0 < κ < 1 such

that Ew
r (pk) = κw−1E1

r (pk). The parameter κ can be seen as a discount factor that captures how

prices age, regardless of the inventory level. Indeed, from our conversation with Zara managers it

appears that consumers’ perception of novelty during clearance sales seems to decay very quickly.

That is, one expects to sell considerably more today than a week later, everything else remaining

constant. Note also that κ is different from the Aw
r variable used in the demand estimation model

since the latter captures how the product ages (not the price) and it is computed during the regular

selling season when prices are kept fixed.

In order to estimate κ, we use actual sales data from periods that had the same price in past

clearance sales. In particular, let V be the set of triplets (r, w, w′) from past years such that w < w′,

pw−1
r > pw

r , and pw′
r = pw

r . We want to make sure that the “aging prices” effect is not confounded

with the broken assortment effect, since the latter is captured explicitly by constraints (46). For

that reason, we only consider triplets (r, w, w′) where there is plenty of inventory (i.e., the broken

assortment effect is not present). Then, we perform a minimization with respect to κ of the squared

differences
∑

(r,w,w′)∈V

(
κw′−w − Ew′

r (pw′
r )

Ew
r (pw

r )

)2

, (47)

where Ew
r (pw

r ) is substituted by Salesw
r . Note that κ < 1 guarantees that in future periods less

sales are expected at the same price, regardless of the stock level. Finally, the parameter Fw
r (pk)

can be approximated by κw−1F 1
r (pk).

D. Bias Correction with Heteroscedasticity

An (implicit) assumption in OLS is that the variance of the error in the regression does not de-

pend on the the explanatory variables. However, during clearance sales it could be that for some

groups/countries the average magnitude of the error (i.e., its standard deviation) depends on the

price level or the broken assortment effect. If the latter occurs, then we have a case of heteroscedas-

ticity and the bias correction factor (due to the logarithmic transformation) will depend on the

explanatory variables. To deal with this, we propose the following steps that are based on White’s

test, which is commonly used to detect heteroscedasticity (see Green 2003).

1. As before, run the regression of the residuals and compute the errors as:

ε̃w
r = ln(λw

r )− β̃0r − β̃1 ln(Cr)− β̃2A
w
r − β̃3 ln(λT

r )− β̃
w

4 ln(min{1,
Iw
r

f
})− β̃

w

5 ln
(pw

r

pT
r

)
.

36



2. To detect heteroscedasticity, we can regress the square of the errors (̃εw
r )2 with respect to

the explanatory variables, their squares, and cross-products. In other words, let BA(Iw
r ) :=

ln(min{1,
Iw
r

f
}) and EL(pw

r ) := ln
(

pw
r

pT
r

)
. Then, run the following regression:

(̃εw
r )2 = ν0 + ν1BA(Iw

r ) + ν2EL(pw
r ) + ν3BA(Iw

r )2 + ν4EL(pw
r )2 + ν5BA(Iw

r ) · EL(pw
r ).

3. If none of the estimated parameters ν̃1 to ν̃5 are significant, i.e., the (absolute) t-statistics are

less than 1.96, then nothing changes and the (logarithmic) bias correction factor is computed

as before using the formula in Equation (8).

4. If any of the estimated parameters ν̃1 to ν̃5 is significant, then we should adjust the bias

correction factor for heteroscedasticity. For simplicity, assume that only ν̃2 is significant.

Then, for price p, the bias correction factor is given by

Hw(p) =
1

|R(tc)|
∑

r∈R(tc)

exp
(
ũw

r

√
ν̃0 + ν̃2EL(p)

)
, w ≥ 1, (48)

where ũw
r =

ε̃w
r√

ν̃0 + ν̃2EL(pw
r )

. If more parameters ν̃i are significant, then we must include

the respective term under the square root in Equation (48) and in the denominator of ũw
r . It

is easy to see that when the parameters ν̃1 to ν̃5 are not significant (i.e., they are equal to

zero), then Equation (48) reduces to Equation (8).

E. User Interface Snapshots

Figure 6: Two snapshots of the distributed software application that implements the model-based
pricing process.
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