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A B S T R A C T   

How parents manifest symptoms of anxiety or depression may affect how children learn to modulate their own 
distress, thereby influencing the children’s risk for developing an anxiety or mood disorder. Conversely, chil
dren’s mental health symptoms may impact parents’ experiences of negative emotions. Therefore, mental health 
symptoms can have bidirectional effects in parent-child relationships, particularly during moments of distress or 
frustration (e.g., when a parent or child makes a costly mistake). The present study used simultaneous functional 
magnetic resonance imaging (fMRI) of parent-adolescent dyads to examine how brain activity when responding 
to each other’s costly errors (i.e., dyadic error processing) may be associated with symptoms of anxiety and 
depression. While undergoing simultaneous fMRI scans, healthy dyads completed a task involving feigned errors 
that indicated their family member made a costly mistake. Inter-brain, random-effects multivariate modeling 
revealed that parents who exhibited decreased medial prefrontal cortex and posterior cingulate cortex activation 
when viewing their child’s costly error response had children with more symptoms of depression and anxiety. 
Adolescents with increased anterior insula activation when viewing a costly error made by their parent had more 
anxious parents. These results reveal cross-brain associations between mental health symptomatology and brain 
activity during parent-child dyadic error processing.   

1. Introduction 

Mood and anxiety disorders are highly prevalent in adolescent 
populations (Merikangas et al., 2010). An adolescent’s risk for devel
oping these disorders increases substantially if they have a parent with 
anxiety or depression (Spence et al., 2002). Indeed, symptoms of anxiety 
and depression are influenced by both genetic and environmental fac
tors (e.g., parenting practices and family conflict; Fisak and 
Grills-Taquechel, 2007; Petersen et al., 1993). The vast prevalence of 
these disorders is alarming, as anxiety and depression are some of the 

most disabling and costly public health problems (Hoffman et al., 2008; 
Olesen et al., 2012; Reddy, 2010). Therefore, research on risk factors for 
anxiety and depression in adolescence is needed. 

Parents provide children with emotion-related knowledge on how to 
experience and respond to negative affectivity through direct conver
sation (i.e., emotion coaching) and behaviors (i.e., modeling; Morris 
et al., 2007, 2018). Thus, parents play a pivotal role in supporting 
children’s emotional development, even throughout adolescence 
(Thompson and Goodman, 2010; Waller et al., 2014). For example, 
adolescents with more supportive mothers exhibit decreased amygdala 
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activation when viewing negative faces, which may represent decreased 
reactivity to negative affect (Romund et al., 2016). When parents 
experience mental health symptoms, it may negatively impact the pro
cess by which children learn how to respond to distress (Silk et al., 
2006). Importantly, emotional interactions in the parent-child rela
tionship can also influence a parent’s functioning. For instance, 
emotionally reactive children tend to evoke more criticism and harsh 
discipline from parents (Kochanska et al., 2004; Scaramella and Leve, 
2004). Therefore, mental health problems can have bidirectional effects 
within parent-child dyads, particularly during instances of negative 
affect (e.g., distress and frustration). 

The experience of errors is one specific situation known to elicit 
negative affect and for which the neural circuitry has been delineated in 
previous research. In the context of a parent-child relationship, experi
encing errors can be a dyadic process. For instance, a parent or child 
might make a costly error or mistake that impacts the other person. Most 
error processing research has focused on participants’ responses to their 
own errors (rather than someone else’s; i.e., dyadic error processing). 
Error processing tasks elicit activation in brain regions including the 
insula (Klein et al., 2007; Menon et al., 2001), amygdala (McCormick 
and Telzer, 2018), and medial prefrontal cortex (mPFC)/dorsal anterior 
cingulate cortex (dACC; McCormick and Telzer, 2018; Menon et al., 
2001). Notably, these brain regions are also thought to play a role in 
regulating negative affect (Murphy et al., 2003; Ochsner et al., 2004; 
Phan and Sripada, 2013) as well as in anxiety and depression (Drevets, 
2001; Shin and Liberzon, 2010). In studies that have examined partici
pants’ reactions to others making an error (i.e., one that does not affect 
the participant), researchers have found that this also elicits 
mPFC/dACC activity, especially when the participant is close with the 
other person (Kang et al., 2010). It has been hypothesized that the 
similarity in neural response to one’s own error and the error of someone 
else represents empathy, or a shared emotional response (Thoma and 
Bellebaum, 2012). 

A question that remains unanswered in the literature is how dyadic 
error processing relates to neural activation in real-time interactions 
between parents and their children. Furthermore, the role of mental 
health symptoms in these interactions has not been explored. Research 
on this topic is needed, as it may provide insight into how parenting 
practices relate to adolescent development of depression and anxiety. 
Not only does previous evidence suggest that mental health symptoms 
have bidirectional effects in emotional parent-child interactions, but 
these symptoms have also been shown to affect neural processes un
derlying error processing. In fact, both adolescents and adults with 
anxiety and depression exhibit altered neural responses to their own 
errors (Chiu and Deldin, 2007; Ladouceur et al., 2006, 2012; Weinberg 
et al., 2010). Therefore, it is likely that the neural mechanisms under
lying dyadic error processing are impacted by mental health symptoms 
in parent-child dyads. However, empirical research on this idea is 
lacking. 

We addressed the aforementioned gaps in the literature by employ
ing simultaneous fMRI scanning to study parent-adolescent dyads. We 
utilized simultaneous fMRI (as opposed to other imaging modalities such 
as electroencephalography [EEG] or functional near-infrared spectros
copy [fNIRS]) because it has the unique capacity to measure activity in 
deep brain structures involved in social processes and emotion (e.g., 
amygdala; Koike et al., 2015), which makes it particularly useful for 
studying social interactions. During simultaneous fMRI scanning, dyads 
completed the Testing Emotional Attunement and Mutuality (TEAM) 
task. The TEAM task contains trials in which participants are given 
feedback that their partner made a costly error. The goal of ’costly error’ 
trials is to invoke negative affectivity (e.g., disappointment and frus
tration), which is a common response to monetary loss (Abler et al., 
2005; Angus and Harmon-Jones, 2019). These trials thereby provided a 
naturalistic opportunity to observe dyadic error processing, or how 
participants’ brains respond to their partner’s mistake. We chose to 
study dyadic error processing in psychiatrically healthy dyads in order 

to examine possible risk factors in the development of adolescent 
internalizing disorders. 

Given the potential links between error processing, anxiety, and 
depression, we explored how mental health symptoms relate to partic
ipants’ brain responses to their partner’s costly errors in the amygdala, 
anterior insula, and mPFC/dACC. Specifically, we hypothesized that 
during dyadic error processing, participants’ symptoms of anxiety and 
depression would relate to increased activity in the brain regions 
involved in error processing. This would suggest that increased mental 
health symptoms relate to stronger reactions to a partner’s costly error. 
Because we were assessing real-time dyadic interactions, we hypothe
sized that these effects would be observed in participants’ own brains (i. 
e., intra-brain analyses) and their partners’ (i.e., inter-brain analyses). 

2. Methods 

2.1. Participants 

The research protocol of the present study was approved by Okla
homa State University Center for Health Sciences Institutional Review 
Board (IRB) prior to data collection (IRB # 2017011). All participants 
provided written informed consent (assent for adolescents) to partici
pate and were compensated for their time and effort. Participants were 
recruited as parent-adolescent dyads. The adolescents were between 14 
and 16 years of age. Adolescents completed the study with one of their 
biological parents with whom they resided at least four days a week. 
Because the sample was comprised of healthy controls, all participants 
were excluded for current psychiatric disorder, and adolescents were 
additionally excluded for previous psychiatric disorder (excluding 
attention-deficit/hyperactivity disorder and learning disorders). The 
Mini International Neuropsychiatric Interview (MINI 7.0.1 or MINI-KID 
7.0.1) was used to assess for psychiatric disorder in parents (i.e., 
depression and anxiety disorders, suicidality, bipolar disorder, obsessive 
compulsive disorder, posttraumatic stress disorder, substance use dis
orders, psychotic disorders, eating disorders, and antisocial personality 
disorders; Sheehan et al., 1997) and in adolescents (i.e., depression and 
anxiety disorders, suicidality, bipolar disorder, obsessive compulsive 
disorders, trauma- and stressor-related disorders, substance use disor
ders, neurodevelopmental disorders, conduct disorders, psychotic dis
orders, and eating disorders; Sheehan et al., 2010). Adolescent 
participants were excluded for developmental delays that would inter
fere with completion of study procedures. Additional exclusion criteria 
for all participants included left-handedness, primary language other 
than English, current pregnancy (based on urine pregnancy test), 
alcohol or drug intoxication (based on breathalyzer and saliva drug 
test), body mass index (BMI) larger than 40, and medical conditions or 
concomitant medications likely to influence cerebral blood flow or 
neurological function. All psychotropic medications were exclusionary, 
and participants could not have taken any psychotropic medications for 
three weeks (six weeks for fluoxetine). Participants could not take 
stimulant medications for at least 36 h before their scanning visit. 

Forty dyads (i.e., 80 total participants) met criteria for study inclu
sion and completed the study protocol described below. For the present 
analyses, individual participants’ fMRI data were excluded for artifacts 
and poor quality (n ¼ 6), excessive head motion (i.e., average motion >
0.15 mm across all runs; n ¼ 10), and incidental MRI findings (e.g., 
significant structural abnormalities; n ¼ 3). Imaging data were also 
excluded for issues related to the TEAM task including: poor perfor
mance on the error condition of interest (i.e., committing errors them
selves on at least half of the costly error trials; n ¼ 6) and technical 
difficulties with the task (e.g., problems with the response box; n ¼ 2). 
One participant was excluded for disclosing suspicions that the task was 
pre-programmed during debriefing. The final sample used for imaging 
analyses consisted of 25 parents (M age ¼ 43 years, SD ¼ 6 years; female 
n ¼ 23; Caucasian n ¼ 22) and 27 adolescents (M age ¼ 15 years, SD 
¼1 year; female n ¼ 15; Caucasian n ¼ 20). The parent sample was 
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predominantly comprised of mothers. See Table 1 for additional 
participant characteristics. Because participants’ imaging data were 
excluded on an individual rather than dyadic level, some participants 
were included in the sample even if their partner was not. This allowed 
for the maximization of sample size in order to maintain power. The 
number of dyads in which either the parent or adolescent had usable 
fMRI data was 35 (i.e., 70 total participants) and the number of dyads in 
which both the parent and adolescent had usable fMRI data was 17 (i.e., 
34 total participants). The analyses presented in this manuscript were 
also conducted in this subsample of 17 dyads, and the results can be 
found in Supplementary Materials. 

2.2. Study design 

All participants completed two data collection visits: a screening 
session and an fMRI session. The average duration between these visits 
was 15 days. The screening session was conducted with parents and 
adolescents concurrently, but separately. During this visit, participants 
provided demographic and MRI safety information, were administered 
the MINI 7.0.1 or MINI-KID 7.0.1 by trained research assistants, and 
responded to several questionnaires regarding mental health, family 
environment, and behavior. To assess symptoms of depression, parents 
completed the Quick Inventory of Depressive Symptomatology Self- 
Report (QIDS; Rush et al., 2003) and adolescents completed the Mood 
and Feelings Questionnaire (MFQ; Angold and Costello, 1987). Symp
toms of anxiety were measured using the Hamilton Anxiety Rating Scale 
(HAM-A; Hamilton, 1959) for parents and the Screen for Child Anxiety 
Related Disorders (SCARED; Birmaher et al., 1997) for adolescents. 
Regardless of their scores on these measures, all participants were given 
a list of local mental health resources. After completing the screening 
visit, eligible parent-adolescent dyads were invited back for the simul
taneous fMRI scanning session. 

At the beginning of the scanning session, participants completed 
alcohol, drug, and pregnancy tests. They were also provided instructions 
for the fMRI task described in Section 2.3. Then, participants were 
placed in a mock MRI scanner in order to acclimate to the scanning 
environment and to practice staying still during scans. After being in the 
mock scanner, participants practiced the fMRI task on a computer. Next, 
parents and their adolescent children were positioned in two identical 3- 
Tesla, whole-body MRI scanners. The scanners are in close proximity to 
each other but are located in separate rooms. While in the scanners, 
dyads completed the TEAM task, which was developed for this study 
(Burrows et al., 2018; Kerr et al., 2019a.(under review). 

2.3. TEAM task 

The TEAM task was designed by the study investigators to assess 
dyadic error processing (see Fig. 1). The task is presented as a cooper
ative game that dyads complete together. Before the task begins, dyads 
are told that they can collectively win up to $50 from the game. During 
the task, both participants are shown a pattern of four colored arrows 
twice, lasting three seconds each time. Then, the pattern disappears, and 
participants are given four seconds to recreate it using an MRI- 
compatible handheld response device. Participants are told that both 
members of the dyad must recreate the pattern correctly or the dyad will 
lose $5 from the total shared prize of $50. The TEAM task, however, is 
preprogrammed to show participants that their partner responded 
incorrectly during 16 percent of the trials. The remaining trials are 
programmed to show feedback that the other person responded 
correctly. The feedback for all trials of the TEAM task was presented for 
six seconds. The task was programmed to ensure that participants would 
be shown a standardized number of correct and incorrect responses by 
their partner. The use of simultaneous fMRI scanning enhanced the 
believability of the TEAM task because participants were aware that 
their partner was also being scanned and completing the task. 

For the present study, dyads completed two runs of the TEAM task. 
Parents and their adolescent children were shown the same set of trials 
and were always shown accurate feedback of their own performance. In 
addition to the pattern trials, the TEAM task also involves an active 
baseline condition of 14 ’s-detection’ trials. During these trials, partic
ipants are asked to press a button if they see the letter ‘s’ in a random 
string of 20 letters. Participants do not lose money or receive perfor
mance feedback during the s-detection trials. Overall, the intent of the 
TEAM task is to assess participant brain activation when they perceive 
that their partner (in this case, their parent or adolescent child) has 
made a costly error (i.e., dyadic error processing). After the completion 
of the task, participants were debriefed and told that they would receive 
the full $50 prize (see Kerr et al., under review for a thorough descrip
tion of the TEAM task design). 

2.4. MRI and fMRI data acquisition and preprocessing 

In each MRI scanner, we used an eight-channel phased array head 
coil for signal reception. Blood oxygenation level-dependent (BOLD) 
fMRI was conducted with a single-shot, Sensitivity Encoded (SENSE) 
gradient-recalled echo-planar imaging (EPI) sequence. The following 
EPI parameters were used: FOV/slice/gap ¼ 240/2.9/0 mm, axial slices 
per volume ¼ 41, acquisition matrix ¼ 96 � 96, flip angle ¼ 78�, SENSE 
acceleration factor R ¼ 2, TR/TE ¼ 2000/25 ms, sampling band
width ¼ 250 kHz, 235 volumes per run (scan duration ¼ 7 min 50 s). A 
128 � 128 matrix was used to reconstruct the EPI images resulting in 
voxel volume of 1.9 � 1.9 � 2.9 mm3. The EPI images for each partici
pant were aligned to an anatomical scan created by a T1-weighted 
magnetization-prepared rapid gradient-echo (MPRAGE) sequence 
accelerated with SENSE. The parameters for the MPRAGE sequence 
were as follows: FOV ¼ 240 mm, axial slices per volume ¼ 128, slice 
thickness ¼ 0.9 mm, image matrix ¼ 256 � 256, voxel vol
ume ¼ 0.9 � 0.9 � 0.9 mm3, flip angle ¼ 8�, SENSE acceleration factor 
R ¼ 2, TR/TE ¼ 5/2.0 ms, inversion/delay time TI/TD ¼ 725/1400 ms, 
sampling bandwidth ¼ 31.3 kHz, scan time ¼ 6 min and 13 s. 

Each participant’s fMRI data were preprocessed using Analysis of 
Functional Neuroimaging (AFNI) package (Cox, 1996). First, partici
pants’ anatomical scans were aligned to the first volume of their EPI 
timecourse. Then, anatomical scans were spatially transformed to 
Talairach space (Talairach and Tournoux, 1988). The first four volumes 
from the timecourse of each voxel were removed to allow the fMRI 
signal to reach steady state. After correcting for motion using 3dvolreg 
and volumes censoring in the AFNI pipeline, the EPI data were resam
pled to 1.75 � 1.75 � 1.75 mm3 voxels. Lastly, EPI data were smoothed 
using a 6-mm full-width, half-maximum Gaussian kernel and 

Table 1 
Demographic and mental health characteristics of the parent and adolescent 
samples.   

Adolescents (n ¼ 27) Parents (n ¼ 25) 

Gender (% Female) 56 92 
Race (% Caucasian) 74 88  

M (SD) Range 
Within 
Sample 

M (SD) Range 
Within 
Sample 

Age in years 15 (1) 14 - 16 43 (6) 30 - 53 
Depression     

Mood and Feelings 
Questionnaire (MFQ) 

5.44 
(4.09) 

0 - 14 – – 

Quick Inventory of 
Depressive 
Symptomatology (QIDS) 

– – 3.36 
(3.59) 

0 - 14 

Anxiety     
Screen for Child Anxiety 
Related Disorders 
(SCARED) 

13.00 
(8.66) 

0 - 39 – – 

Hamilton Anxiety Rating 
Scale (HAM-A) 

– – 3.00 
(2.94) 

0 - 9  
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normalized to percent signal change using the mean signal from each 
voxel. Single subject analyses were then conducted with multiple linear 
regression in order to prepare participant data for group analyses. 

The task regressors used for single subject analyses were created by 
convolving a stimulus reference time series with hemodynamic response 
function (gamma-variate function). The regressor model included four 
feedback conditions: 1) the participant and their partner re-created the 
stimulus pattern correctly (‘both correct’); 2) the participant responded 
correctly but was shown their partner did not (‘costly error’); 3) the 
participant re-created the pattern incorrectly and was shown their 
partner re-created it correctly; and 4) the participant and their partner 
responded incorrectly. As these regressors were dependent upon one’s 
unique performance during the task, some participants may not have 
had all four of these regressors (e.g., if they never re-created the pattern 
incorrectly). Other task regressors included in the model were s-detec
tion trials, pattern display periods, and response periods. Regressors of 
non-interest included in the model were each run’s signal mean, linear, 
quadratic, and cubic signal trends and six motion parameters (i.e., 
rotation in the roll, pitch, and yaw axes and displacement in the supe
rior, left, and posterior directions). 

2.5. Statistical analyses 

Correlational analyses between mental health symptoms reported by 
parents and adolescents were conducted using R statistical package (R; R 
Core Team, 2017). Separate analyses were conducted to look at the 
association between parent-child anxiety and depression in all partici
pants with usable fMRI data (as this maximized statistical power; N ¼ 35 
dyads) and in only the dyads in which both participants had usable fMRI 
data (n ¼ 17 dyads). 

Group analyses of the TEAM task were conducted using voxel-wise, 
random-effects multivariate modeling (AFNI’s 3dMVM) in the parent 
(n ¼ 25) and adolescent (n ¼ 27) samples separately. For results of the 
3dMVM analyses in the 17 complete dyads, see Supplementary Materials 
Section 3.0. The contrast used in the 3dMVM analyses was between the 
‘costly error’ and ‘both correct’ conditions. We focused on this contrast 
because the TEAM task was designed to capture dyadic error processing. 
We therefore examined participants’ brain activation in response to 
their partner’s error (when they themselves responded correctly) 
compared to when both they and their partner responded correctly. 

After collecting our findings, we determined the ’costly error’ condition 
was driving the results using post-hoc correlations (see Supplementary 
Materials Section 5.1). In order to examine how dyadic error processing 
relates to mental health symptoms, anxiety and depression scores were 
included as predictors in the model. Because of the dyadic nature of 
error processing in this task, separate analyses were conducted to assess 
the association between a participant’s BOLD activation and their 
partner’s anxiety and depression scores (i.e., inter-brain analyses) as 
well as their own mental health symptom scores (i.e., intra-brain ana
lyses). Age was included as a covariate in all analyses, and gender was 
included as a covariate for analyses involving adolescent BOLD activa
tion. In the inter-brain analyses, we included one’s own mental health 
symptoms as covariates. 

Group analyses focused on voxel-wise results identified for whole- 
brain analyses, as well as analyses constricted to five a priori regions 
of interest (ROIs). These ROIs included regions implicated in error 
processing, anxiety, and depression (i.e., bilateral anterior insula, 
bilateral amygdala, medial PFC [combined mask encompassing mPFC, 
dmPFC, and dACC], ventromedial PFC [vmPFC], and bilateral dorso
lateral PFC [dlPFC]). For information of the creation of the ROI masks, 
see Supplementary Materials Section 1.0. Separate masks for whole 
brain analyses were created for parents and adolescents, and these 
masks were comprised of all voxels in which at least 70% of the par
ticipants had EPI data. 

We employed a traditionally conservative multiple comparisons 
correction approach to control for the likelihood of false positive in
ferences (Eklund et al., 2016) by utilizing the spatial autocorrelation 
function (acf) option for AFNI’s 3dFWHMx and 3dClustSim (Cox et al., 
2017). Results were considered significant using a conservative 
voxel-wise threshold of p < 0.005 and a cluster-size multiple compari
sons correction threshold of p < 0.05. For whole brain results, minimum 
cluster thresholds were 1764 mm3 for parents and 2008 mm3 for ado
lescents. Parent ROI cluster thresholds were 164 mm3 for anterior 
insula, 59 mm3 for amygdala, 369 mm3 for mPFC, 177 mm3 for vmPFC, 
and 417 mm3 for dlPFC. Adolescent ROI cluster thresholds were 
175 mm3 for anterior insula, 60 mm3 for amygdala, 409 mm3 for mPFC, 
173 mm3 for vmPFC, and 520 mm3 for dlPFC. 

Fig. 1. Example pattern trial of the TEAM task. Partners (e.g., parents and their adolescent children) complete this task while being simultaneously scanned and are 
told that they are completing the task cooperatively. In each pattern trial, participants are shown a pattern of four arrows twice. Then, they have four seconds to 
recreate this pattern from memory using a handheld response box. Finally, they are given feedback on their own performance (i.e., whether they entered the pattern 
correctly) as well as their partner’s. However, the feedback about their partner’s performance is preprogrammed, and in 16% of the trials, participants are told their 
partner made an error that cost the dyad five dollars. 
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3. Results 

3.1. Mental health assessments 

The present study explored dyadic error processing in healthy par
ents and adolescents. Therefore, participants did not meet criteria for 
any current (or past for adolescents) mental health diagnoses according 
to the MINI 7.0.1 or MINI-KID 7.0.1. Despite this, there was variability in 
the severity of mental health symptoms reported by participants. This is 
expected, as natural variation in mental health symptoms occurs in the 
general population at sub-syndromal levels. On the QIDS, 21 parents’ 
scores suggested no depression, two parents scored in the mild range, 
and two parents scored in the moderate range. All parents were in the 
mild range for the HAM-A. One adolescent exceeded the clinical cutoff 
score for the SCARED (i.e., �25), and three adolescents exceeded the 
cutoff score for the MFQ (i.e., �12). Table 1 exhibits the average scores 
on these measures as well as the range of scores within the sample. There 
were no significant correlations between parents’ and adolescents’ 
scores on measures of anxiety or depression (N ¼ 35 dyads, Parent QIDS 
and Adolescent MFQ: r ¼ 0.01, p ¼ 0.95, Parent HAM-A and Adolescent 
SCARED: r ¼ -0.10, p ¼ 0.56; n ¼ 17 dyads, Parent HAM-A and 
Adolescent SCARED: r ¼ -0.33, p ¼ 0.19, Parent QIDS and Adolescent 
MFQ: r ¼ -0.13, p ¼ 0.62). 

3.2. TEAM task 

3.2.1. Task effects 
A paper focused on the design and general effects of the TEAM task is 

currently under review (Kerr et al., under review). Therefore, the task 
effects are not a focus of the present paper, which concentrates on the 
TEAM task effects related to dyadic symptoms of anxiety and depression. 
To summarize the general task results, parents and adolescents 
demonstrated increased BOLD activation in regions including the dlPFC, 
anterior insula, fusiform gyrus, thalamus, caudate, precuneus, and su
perior parietal lobule when seeing that their partner made a costly error. 
Additionally, adolescents exhibited greater left amygdala activation 
than parents. See Supplementary Materials Section 2.0 for a summary of 
Kerr et al., 2019b (under review) findings on the TEAM task effects. 

3.2.2. Parent results 
In whole-brain analyses, parents of children with greater anxiety and 

depression (Adolescent SCARED and MFQ scores, respectively) exhibi
ted decreased BOLD activation in the posterior cingulate cortex (PCC) 
and precuneus when viewing their child’s costly error (controlling for 
parents’ own anxiety and depression). No significant whole-brain results 
were found in analyses examining the association between parents’ own 
mental health symptoms and BOLD activation when viewing their 
child’s error. Within the ROIs, decreased BOLD activation in parent 
mPFC when viewing their child’s costly error was associated with 
greater adolescent anxiety (Adolescent SCARED score; controlling for 

parents’ own anxiety). Increased BOLD activation in parent left dlPFC 
when viewing their child’s costly error was associated with greater 
parent depression (Parent QIDS score; see Table 2 and Fig. 2). If a more 
stringent cluster-wise threshold was used (i.e., p < 0.01 rather than p <
0.05 to account for the number of ROIs), these ROI-based results would 
not remain statistically significant. Despite this, these results appear 
meaningful based on their respective effect size estimates (although it 
should be noted that effect sizes in fMRI should be interpreted with 
caution; Yarkoni et al., 2009). While we did not have a large enough 
sample of fathers to determine between-group gender differences in the 
parent sample, we assessed how the removal of the fathers impacted the 
findings within the clusters presented above (see Supplemental Mate
rials Section 4.0). Overall, the effects were similar. 

3.2.3. Adolescent results 
Increased BOLD activation in adolescent left anterior insula when 

viewing their parent’s costly error was associated with greater parent 
anxiety (Parent HAM-A score; when controlling for adolescents’ own 
anxiety; see Table 2 and Fig. 3). Similar to the parent ROI-based results, 
this finding would not survive a more stringent cluster-wise threshold of 
p < 0.01. There were no significant clusters identified in whole-brain 
analyses or in any of the other ROIs among the adolescent sample. 

4. Discussion 

The present study utilized simultaneous fMRI scanning to explore 
associations between symptoms of anxiety and depression and brain 
activation during dyadic error processing. Results from the fMRI task 
designed for this study (i.e., TEAM task) demonstrated that when wit
nessing their partner’s costly error, both parent and adolescent partici
pants exhibited activation in regions previously implicated in 
responding to one’s own error (Klein et al., 2007; McCormick and 
Telzer, 2018; Menon et al., 2001). Our analyses revealed three primary 
findings. First, parents with more depressive symptoms exhibited 
increased activation in dlPFC when reacting to a costly error made by 
their child. Second, parents who had more anxious children exhibited 
less activation in mPFC, PCC, and precuneus when reacting to a costly 
error made by their child. Similarly, parents of children with more 
depressive symptoms exhibited decreased activation in PCC and pre
cuneus. Finally, adolescents with more anxious parents exhibited 
increased activation in anterior insula when reacting to a costly error 
made by their parent. These findings appear to be driven by the ’costly 
error’ condition of the task and are unrelated to parent education level 
or error rate on the TEAM task (see Supplemental Materials Section 5.0). 

Our results suggest that parents with greater depressive symptom
atology exhibit increased activation in dlPFC when viewing their child’s 
error. The dlPFC is a region recruited during cognitive control (Brosnan 
and Wiegand, 2017; Weissman et al., 2008), including cognitive control 
of emotion (i.e., emotional reappraisal and suppression; Eippert et al., 
2007; Goldin et al., 2008; Golkar et al., 2012). Individuals with major 

Table 2 
Clusters demonstrating a significant relationship between mental health symptoms and BOLD activation of parent or adolescent while processing a costly error 
committed by their dyadic partner (voxel-wise p < 0.005).  

Symptom Measure Regions in Cluster L/R Vol (mm3) x y z t-value η2
G p-value BA 

Parent BOLD Activation 
Adolescent Depression (MFQ) Posterior Cingulate, Precuneus, Cuneus Bilateral 2936 � 6 � 61 32 � 5.61 0.60 < 0.01 7, 23, 29, 30, 31 
Adolescent Anxiety (SCARED) Posterior Cingulate, Precuneus, Cuneus Bilateral 2213 � 10 � 55 21 � 5.30 0.58 0.02 7, 23, 29, 30, 31 
Adolescent Anxiety (SCARED) Medial Frontal Gyrus, Anterior Cingulate L 488 � 8 39 23 � 5.34 0.59 0.03 9, 32 
Parent Depression (QIDS) Dorsolateral Prefrontal Cortex L 595 � 29 3 51 5.11 0.54 0.02 6 
Adolescent BOLD Activation 
Parent Anxiety (HAM-A) Anterior Insula L 188 � 45 11 4 4.53 0.48 0.05 13, 44 

Note. MFQ ¼Mood and Feelings Questionnaire. SCARED ¼ Screen for Child Anxiety Related Disorders. QIDS ¼Quick Inventory of Depressive Symptomatology. HAM- 
A ¼ Hamilton Anxiety Rating Scale. L ¼ left hemisphere. Vol ¼ Volume in cubic millimeters. Talairach coordinates and t-value reflect the area of peak activation in the 
cluster. η2

G ¼ Generalized Eta-Squared, which should be interpreted with caution due to possible inflation (Yarkoni, 2009). p-value ¼Minimum cluster-wise threshold. 
BA ¼ Brodmann Area gathered from the ’whereami’ function in AFNI. 
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depressive disorder demonstrate decreased dlPFC activation during 
emotion regulation tasks as compared to healthy controls (Davidson 
et al., 2002; Erk et al., 2010; Taylor and Liberzon, 2007), which may 
indicate a dysfunction in emotion regulation abilities (Koenigs and 
Grafman, 2009). However, our results suggest that in the dyadic 
parent-child context, parents with more depressive symptoms demon
strate increased dlPFC activation when their child commits a costly 
error. Although this appears contrary to previous literature, the present 
sample was comprised of psychiatrically healthy individuals. Therefore, 
symptoms experienced within this sample are sub-syndromal and may 
not be severe enough to be associated with underlying aberrant hypo
active dlPFC activity. Interpreted within this context, the current find
ings may indicate that healthy parents with more depressive symptoms 
need to regulate their emotional responses to their child’s errors more 
than parents who have fewer or no depressive symptoms. This may 

reveal an adaptive response in which parents with mild depressive 
symptomology work harder to regulate their emotions and to prevent 
poor reactions to their children’s mistakes. Relatedly, parents with 
sub-syndromal depressive symptoms who are able to engage the dlPFC 
in emotion regulation may be less likely to develop major depressive 
disorder. These interpretations align with previous research that sug
gests adaptive emotion regulation is a protective factor against the 
development of major depressive disorder (Southwick and Charney, 
2012; Troy and Mauss, 2011). 

Beyond the association between parent depression and activity in 
their own dlPFC when seeing their child make a costly error, we did not 
find any other significant intra-brain results (i.e., the association be
tween one’s own mental health symptoms and brain activation during 
dyadic error processing). This was surprising due to the established 
relationship between mental illness and maladaptive error processing 

Fig. 2. Results from analyses examining parents’ BOLD activation when processing a costly error committed by their child (voxel-wise p < 0.005). A) Adolescent 
Anxiety - Parents with more anxious children exhibit decreased activation in posterior cingulate cortex, precuneus, and medial prefrontal cortex. B) Adolescent 
Depression - Parents with more depressed children exhibit decreased activation in posterior cingulate cortex and precuneus. C) Parent Depression - Parents who were 
more depressed themselves demonstrated increased activation in left dorsolateral prefrontal cortex. Coordinates are in Talairach space. 

Fig. 3. Result from analyses examining adolescents’ BOLD activation when processing a costly error committed by their parent (voxel-wise p < 0.005). Adolescents 
with more anxious parents exhibit increased activation in left anterior insula. Coordinates are in Talairach space. 
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(Chiu and Deldin, 2007; Ladouceur et al., 2006, 2012; Weinberg et al., 
2010). However, previous studies have focused on participant reactions 
to their own errors rather than a partner’s. Therefore, we propose that 
this lack of intra-brain findings may be attributable to the dyadic nature 
of the TEAM task and our focus on instances in which participants 
received feedback that they responded correctly, and their partner made 
a costly error. As a result, participants likely may have interpreted these 
errors within the context of their partner’s reactions rather than solely 
focusing on how it impacted themselves. 

Next, we examined the association between parents’ neural re
sponses to their adolescents’ errors and adolescent symptoms of anxiety 
and depression. We found that parents who exhibited lower activation in 
the PCC and precuneus had children with more symptoms of depression 
and anxiety. Additionally, parents’ mPFC activity was negatively asso
ciated with adolescent anxiety. As mentioned previously, the mPFC has 
been implicated in error processing. However, mPFC along with the PCC 
and precuneus are all primary foci within the default mode network 
(Raichle, 2015). Regions in the default mode network (DMN) are acti
vated during self-referential thought, introspection, and reflecting on 
the past or present (Andrews-Hanna, 2012; Buckner et al., 2008; 
Raichle, 2015). When applied to the current findings, one possible 
interpretation is that parents with more distressed children may exhibit 
less self-referential thought and are more engaged in the task when their 
child makes an error. Future research could further examine the asso
ciation between activity in DMN regions and the use of specific strate
gies (i.e., reappraisal) to regulate responses to one’s own or others’ 
errors, and whether changes in DMN activity could be a marker of 
successful implementation of these strategies in parents to help 
ameliorate anxiety and depression symptoms in their children. 

When considering adolescents’ neural responses to costly errors 
made by their parents, we found that adolescents’ anterior insula acti
vation was positively associated with their parents’ anxiety symptoms. 
The anterior insula is implicated in emotional reactivity and awareness 
(Gu et al., 2013; Murphy et al., 2003). In fact, real-time fMRI neuro
feedback studies with both adult and adolescent samples have revealed 
that participants are able to increase or decrease salience of responses to 
emotional stimuli by regulating their anterior insula activity (Caria 
et al., 2010; Cohen Kadosh et al., 2016). Our finding that adolescents 
with anxious parents respond with greater anterior insula activation 
could be reflective of greater emotional reactivity to their parents’ 
mistakes. More specifically, activity in the anterior insula has been 
found to represent social emotions such as empathy and compassion 
(Kanske et al., 2015; Lamm and Singer, 2010). For instance, adolescents 
who exhibit greater anterior insula activity while witnessing social 
exclusion have been found to engage in more prosocial behaviors to the 
excluded victims (Masten et al., 2011). Thus, the anterior insula activity 
of adolescents in our sample may be reflective of more empathic re
sponses to their parents’ errors, if their parent was high on anxiety. 
When taken together, our anterior insula finding may indicate that 
children of parents with greater anxiety find their parents’ mistakes to 
be more emotionally salient (i.e., because they believe their parent may 
be more upset by the error) and may therefore respond more empath
ically to this mistake. 

Our results reveal an interesting contrast between the parent and 
adolescent samples. The brain regions in parents associated with mental 
health symptoms were all regions commonly implicated in higher-order 
cognitive processing (e.g., emotion regulation and self-referential 
thought). Conversely, adolescents exhibited associations in the ante
rior insula, which is involved in emotional reactivity and salience pro
cessing. This is likely indicative of the development of emotion-related 
neurocircuitry over time. The PFC matures with age (Guyer et al., 2016) 
and develops increased functional connectivity with emotion reactivity 
regions over time. Therefore, as children advance through adolescence, 
the PFC begins to downregulate emotional reactivity regions (Gee et al., 
2013b; Wu et al., 2016). This neurodevelopmental process is believed to 
represent enhanced emotion regulation abilities. Parenting practices as 

well as mental health symptoms can impact this process (Aupperle et al., 
2016; Gee et al., 2014, 2013a; Silk et al., 2017). Our results support this 
idea, as mental health symptoms appear to have cross-brain associations 
within parent-adolescent dyads. 

The present study is not without limitations. First, the dyadic nature 
of the experiment (i.e., simultaneous fMRI of two participants) resulted 
in increased likelihood for data and participant exclusion. Although we 
began with 40 dyads (i.e., 80 participants), our imaging analyses 
incorporated only 52 participants. The number of dyads in which both 
participants had usable imaging data was even lower (n ¼ 17). Future 
studies involving simultaneous fMRI scanning can accommodate for this 
limitation and improve experimental robustness through anticipatory 
recruitment of larger samples. In the present study, we maximized us
able data and statistical power by including all participants in our pri
mary analyses, regardless of whether their dyadic partner had usable 
data. Second, this study examined the effects of mental health symptoms 
on dyadic error processing within a psychiatrically healthy population. 
Results may differ for participants who meet criteria for mental health 
disorders (e.g., generalized anxiety disorder and major depressive dis
order). For instance, we would expect correlations between parent and 
adolescent mental health symptoms to be significant in clinical pop
ulations; however, we did not observe this relationship in the present 
sample. The reasoning behind this is unknown; however, it is possible 
that our findings could be influenced by range restriction or by the 
exclusion criteria used in the study. Our results remain important, 
however, as subthreshold symptoms of anxiety and depression are 
common, especially in adolescent populations (Burstein et al., 2014). 
Moreover, sub-clinical presentations of mood and anxiety disorders in 
adolescence are associated with functional impairment and suicidality 
(Bal�azs et al., 2013) as well as the subsequent diagnosis of mood and 
anxiety disorders in adulthood (Klein et al., 2009). Third, because par
ticipants were shown different stimuli during the TEAM task (i.e., their 
own responses and pre-programmed partner responses), our analyses 
focused on regional activation patterns within each group (i.e., parents 
and adolescents) rather than trial-by-trial synchrony or cross-brain 
connectivity (i.e., concurrent and time-lagged connectivity between 
parent and adolescent brain regions). Physiological synchrony between 
dyads is thought to be beneficial for healthy parent-child interactions 
and later child outcomes (Feldman, 2007; Kudinova et al., 2019). 
Therefore, future research with more continuous interaction tasks (i.e., 
parent-adolescent conflict tasks) would be ideal for assessing how neural 
synchrony between parents and adolescents may relate to mental health. 
Fourth, only two fathers were included in the present sample, so we 
were unable to examine gender differences in the parent sample due to 
insufficient power. In addition, the current analytic approach focused on 
small volume corrected analyses within a priori ROIs, rather than cor
recting for whole-brain voxel-wise analyses. Further, the ROI-based 
findings would not survive a cluster-wise threshold corrected for the 
number of ROIs, yet the effect size estimates provide some evidence for 
the significance of these results. Future, larger studies are needed to 
determine whether fathers’ and mothers’ dyadic brain activation 
differentially relates to adolescent mental health, and to allow for a 
well-powered investigation of relationships across the entire brain. 
Lastly, the data were collected cross-sectionally, so interpretations of 
causation between mental health symptoms and neural activation pat
terns cannot be made. 

Acknowledging these limitations, the present study also possesses 
many strengths. The use of simultaneous fMRI scanning provided a 
novel opportunity for examining, characterizing, and understanding 
parent-child relationships and cross-brain patterns of activation within a 
social context. Simultaneous scanning not only allowed us to examine 
both participants in a parent-adolescent dyad but also enhanced the 
believability of the TEAM task. Our findings support the use of simul
taneous fMRI scanning in future studies of dyadic social interaction, as 
examining these processes in isolation (e.g., dealing with one’s own 
costly error) might result in vastly different activation patterns. 
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Moreover, the TEAM task, developed specifically for the present study, 
allowed for the evaluation of dyadic error processing through an 
ecologically valid paradigm. Results from the TEAM task suggest that 
the task is effective in activating brain regions involved in error pro
cessing. The TEAM task may therefore be an effective way to study 
dyadic error processing in other important social relationships (e.g., 
teacher-student, romantic couples, and siblings), which are rarely 
studied with fMRI. 

Overall, the findings in the present study extend the current litera
ture by suggesting the neurobiological bases by which parents’ and their 
adolescent children’s dyadic error processing may be associated with 
mental health symptoms. This supports the idea that, within the context 
of dyadic error processing in the parent-child relationship, mental 
health symptoms can have bidirectional effects. Parents play an 
important role in their children’s emotional development, and this likely 
includes modeling and providing instruction on how to respond when 
mistakes are made. Our results suggest that parents’ mental health 
symptoms may impact how children learn to respond to emotional sit
uations. Future longitudinal research on the role of cross-brain associ
ations of mental health symptoms in predicting adolescent development 
of anxiety and depressive disorders is warranted. 
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