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Mapping Spiking Neural Networks to
Neuromorphic Hardware

Adarsha Balaji, Anup Das, Yuefeng Wu, Khanh Huynh, Francesco Dell’Anna, Giacomo Indiveri,
Jeffrey L. Krichmar, Nikil Dutt, Siebren Schaafsma, and Francky Catthoor

Abstract—Neuromorphic hardware platforms implement bio-
logical neurons and synapses to execute spiking neural networks
(SNNs) in an energy-efficient manner. We present SpiNeMap,
a design methodology to map SNNs to crossbar-based neuro-
morphic hardware, minimizing spike latency and energy con-
sumption. SpiNeMap operates in two steps: SpiNeCluster and
SpiNePlacer. SpiNeCluster is a heuristic-based clustering tech-
nique to partition SNNs into clusters of synapses, where intra-
cluster local synapses are mapped within crossbars of the hard-
ware and inter-cluster global synapses are mapped to the shared
interconnect. SpiNeCluster minimizes the number of spikes on
global synapses, which reduces spike congestion on the shared
interconnect, improving application performance. SpiNePlacer
then finds the best placement of local and global synapses on
the hardware using a meta-heuristic-based approach to minimize
energy consumption and spike latency. We evaluate SpiNeMap
using synthetic and realistic SNNs on the DynapSE neuromorphic
hardware. We show that SpiNeMap reduces average energy
consumption by 45% and average spike latency by 21%, compared
to state-of-the-art techniques.

I. INTRODUCTION

SPIKING Neural Networks (SNNs) [1] are typically used
for machine learning on energy-constrained devices [2]–

[4]. Neuromorphic platforms such as TrueNorth [5], Loihi [6],
and DynapSE [7] implement biological neurons and synapses,
making them efficient in executing SNNs. Typically, these
platforms consist of multiple crossbars with a shared time-
multiplexed interconnect. A crossbar is a two-dimensional
arrangement with n rows, n columns, and memory elements
(to store synaptic weights) at every cross-point. Each crossbar
can map at most n synapses per neuron, meaning that a
large SNN must be partitioned into synapses that map inside
different crossbars (local synapses) and those that map on the
shared interconnect (global synapses).

A crossbar’s size is usually kept small to reduce the energy
consumed in driving high voltages through n2 connections of
a n× n crossbar. For the DynapSE platform, with n = 256, a
crossbar consumes 17pJ at 1.3V supply with SRAM-based
synapses. This number is expected to reduce significantly
when using non-volatile memory (NVM) synapses [8]. The
shared interconnect in a neuromorphic hardware introduces
spike congestion and latency to communicate spikes from one
crossbar to another due to time-multiplexing, which impacts
the inter-spike interval (ISI) [9]. This reduces application
performance such as accuracy (see Section II).

Many recent works demonstrate mapping of SNNs to a
single crossbar [10]–[15]. In Section V we show how these
techniques can be inefficient when applied to a multi-crossbar

neuromorphic platform such as the DynapSE. There are only
a few works that address SNN mapping to multi-crossbar
neuromorphic hardware. These include the PACMAN [16],
NEUTRAMS [17], and PSOPART [18].

Compared to PACMAN and NEUTRAMS, which minimize
crossbar usage, PSOPART partitions an SNN into local and
global synapses, minimizing the number of spikes on the
shared interconnect. This optimization strategy reduces spike
congestion and changes in ISI, which improves performance.
PSOPART is designed for the shared bus interconnect and it
does not address the placement of local and global synapses
to the neuromorphic hardware.

Unfortunately, the shared bus becomes the latency and
energy bottleneck for large SNNs, those with more than a
million synapses [19]. In recent years many new intercon-
nects are explored for large-scale neuromorphic computing.
Examples include the multi-stage networks-on-chip for the
new TrueNorth platform [20] and the segmented bus for the
new DynapSE platform [21]. For these new neuromorphic
interconnects, the PSOPART technique has two limitations.
First, the synapse partitioning approach is not scalable for
large number of neurons and synapses. Second, different
synapse placement strategies lead to different latency and
energy consumption, which we show in Section V. Therefore,
the placement problem can no longer be left unaddressed.

We present SpiNeMap, a comprehensive design method-
ology to map SNNs to neuromorphic platforms, minimizing
energy consumption and spike latency on the shared intercon-
nect, and improving application performance.
Contributions : Following are our novel contributions:
• SpiNeCluster: We propose a heuristic-based approach

to partition an SNN into local and global synapses,
reducing the number of spikes communicated on the
shared interconnect.

• SpiNePlacer: We propose a meta-heuristic-based ap-
proach to place local and global synapses on physical
resources of a neuromorphic hardware, reducing energy
consumption and spike latency.

• We evaluate SpiNeMap on the DynapSE neuromorphic
hardware using synthetic and realistic SNNs.

• We evaluate different interconnect topologies and spike
routing algorithms for emerging neuromorphic hardware.

Table I compares our contributions against state-of-the-art
techniques. We evaluate SpiNeMap with SNN-based applica-
tions on the DynapSE hardware. We show that SpiNeMap
reduces energy consumption by 45% and spike latency by 21%

compared to state-of-the-art techniques.
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Techniques Partitioning Placement Optimization Objective

[10]–[15] × × Maximize single crossbar utilization

NEUTRAMS [17]
√

× Minimize number of crossbars

our PSOPART [18]
√

× Minimize spikes on global synapses

SpiNeMap
√ √

Minimize energy consumption and la-
tency of neuromorphic hardware

√
Optimized by these approaches

× Not optimized by these approaches

TABLE I: Contributions of SpiNeMap over the state-of-the-art
approaches and our earlier work [18].

This paper is organized as follows. We provide back-
ground in Section II. We describe our design methodology of
SpiNeMap in Section III. We present our evaluation setup in
Section IV and results in Section V. We describe related works
in Section VI. We conclude the paper in Section VII with an
outlook on the design of future neuromorphic platforms.

II. BACKGROUND

Figure 1 illustrates how a small SNN with two pre-synaptic
neurons connected to a post-synaptic neuron is mapped to a
crossbar. Spikes from a pre-synaptic neuron injects current into
the crossbar, which is the product of spike voltage applied (i.e.,
input activation xi) along the row with the conductance of the
synaptic element at the cross-point (i.e., synaptic weight wij)
following Ohm’s law. Current summations along columns are
performed in parallel following Kirchhoff's current law, and
implement the sums

∑
j wijxi, needed for forward propaga-

tion of neuron excitation xi. Beyond this supervised approach,
recent works [22] have also developed peripheral structures
necessary to implement online synaptic updates such as spike
timing dependent plasticity (STDP) [23].

We demonstrate our design methodology for supervised
machine learning approaches, where an SNN is first trained
with examples from the field and then deployed for inference
with in-field data. Performance is measured using accuracy,
which is assessed using inter-spike intervals (ISIs) [24].

To define ISI, we consider an SNN with N neurons and
S synapses, which is excited with an input over some finite
interval of time [0, T ]. Neural activities in this time interval
generate K spikes. We organize these K spikes based on their
generation time and the source neuron of the SNN as

{t11, t12, · · · , t1k1
}, {t21, t22, · · · , t2k2

}, · · · , {tN1 , tN2 , · · · , tNkN
}, (1)

where tni is the time of the ith spike generated by the nth

neuron in the time interval [0, T ] and K =
∑N

i=1 ki. The ISI
of this spike train is given by [25]

Ini = tni − tni−1 (2)

For a feedforward architecture [26], (spiking) neurons are
organized into layers, with one input layer, one or more hidden
layers, and one output layer. For these architectures, accuracy
is assessed from ISI of neurons in the (output) decision layer.
For other architectures such as the Liquid State Machine
(LSM) [27], ISI of critical neurons contribute to the accuracy.

Using CARLsim [28] we can simulate different machine
learning approaches and neural architectures, and extract ISI

Fig. 1: Overview of how SNNs are mapped to a crossbar in a
neuromorphic hardware.

from any neuron in the architecture. This makes CARLsim
our ideal starting point. However, CARLsim is an application-
level simulator meaning that hardware latencies are not in-
corporated. In a realistic scenario, ISI will be affected due
to hardware latency arising from two sources – 1) the fixed
latency within a crossbar to propagate current through synaptic
elements and 2) the variable latency of time multiplexing
in the shared interconnect. In Section III we describe our
framework SpiNeMap to obtain these latencies, starting from
the application-level simulation results using CARLsim.

To incorporate hardware latency in ISI computation, Equa-
tion 1 needs to be represented considering spike times at
individual synapse-level. This is because different synapses
have different latencies in neuromorphic hardware based on
whether they are mapped within crossbars (i.e., local synapses)
or on the shared interconnect (i.e., global synapses).

The spike times on synapses are

{τ11 , τ12 , · · · , τ1k1
}, {τ21 , τ22 , · · · , τ2k2

}, · · · , {τS1 , τS2 , · · · , τSkS
}, (3)

where τsj is the jth spike on sth synapse and spike timings in
the set {τsj } are obtained from spike timings in the set {tni }.
We can similarly define ISI for this spike as

Isj = τsj − τsj−1 (4)

We use the notation δsj to represent the latency of the jth spike
on sth synapse. The new ISI due to these latencies is

Isj |new = τsj + δsj − τsj−1 − δsj−1 (5)

The change in ISI (called ISI distortion) is given by

Isj |distortion = Isj |new − Isj = δsj − δsj−1 (6)

For local synapses, which are mapped within crossbars, all
spikes have the same latency, i.e., δsj = δsj−1. So, the ISI
distortion is zero. For global synapses, different spikes of the
same synapse can have different latencies due to the varying
congestion and routing paths on the shared interconnect. These
are the synapses that contribute to ISI distortion, i.e.,

Isj |distortion =

{
0 if s is mapped inside a crossbar
δsj − δsj−1 if s is mapped on the shared interconnect

(7)

ISI distortion due to the interconnect latency can lead
to unacceptable accuracy loss. Existing techniques [10]–[14]
minimize the latency inside crossbar, leaving the optimization
of the interconnect latency to system designers. In this work,
we reduce the average ISI distortion of spikes on all global
synapses. Our framework can also perform other optimizations
such as minimizing the maximum ISI distortion.

As we can clearly see from Equation 7, ISI distortion is
due to the latency to time-multiplex spikes on the shared
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Fig. 2: A high-level overview of our SpiNeMap mechanism
and its difference with state-of-the-art.

interconnect. This latency depends on the number of spikes
that must be communicated via the shared interconnect at any
given time (i.e., spike congestion). Therefore, by reducing the
number of spikes on global synapses we can reduce spike
congestion, which would reduce ISI distortion and improve
application performance. This is precisely the intuition behind
our optimization strategy for the partitioning approach in
our prior work PSOPART [18] and this current work. The
difference is that the partitioning approach in this work is
scalable to larger problem sizes than PSOPART (see Section
V-G for comparison with PSOPART).

III. SPINEMAP: MAPPING SPIKING NEURAL NETWORKS
TO NEUROMORPHIC HARDWARE

A. High-Level overview and difference with state-of-the-art

In Figure 2, we illustrate our SpiNeMap methodology and
its differences with state-of-the-art. In Figure 2(a), we illustrate
how NEUTRAMS [17] and PACMAN [16] can be used to
deploy SNN-based application on neuromorphic hardware.
These approaches use 3 steps: Step 1) train the SNN using
training data and validate the trained model, Step 2) pack
neurons and synapses to crossbars, minimizing the resource
requirements, and Step 3) deploy the trained SNN mapped to
the neuromorphic hardware for inference with in-field data.

Our previously-proposed PSOPART [18] also uses 3 steps
to deploy SNN-based applications for inference (see Figure
2(b)). The difference in our prior approach is that we minimize
the number of spikes on the global synapses to reduce ISI
distortion, which improves application performance. To do
so, we extract the spike count on every synapse of the SNN
corresponding to the validation data used in SNN simulation.
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Fig. 3: An example illustrating how an SNN with 8 neurons
is partitioned into 3 clusters with local and global synapses.

Algorithm 1: SNN Clustering algorithm.
1 foreach Ci, Cj ∈ C do

/* iterate over all cluster pairs */
/* begin 2-part procedure */

2 gs = total spikes between Ci and Cj ;
3 while True do
4 foreach ni ∈ Ci and nj ∈ Cj do
5 if ni and nj are not previously selected then
6 Move ni to Cj and calculate gs1;
7 Move nj to Ci and calculate gs2;
8 Swap ni and nj and calculate gs3;
9 Select the option which lowers gs;

10 Return new partitions C′
i, C

′
j ;

11 end
12 end
13 gs′ = total spikes between C′

i and C′
j ;

14 if gs′ < gs then
15 gs = gs′ and break;
16 end
17 end

/* end 2-part procedure */
18 end

The spike count information is used by PSOPART to partition
the SNN into local and global synapses using an instance of
the particle swarm optimization (PSO) [29].

In Figure 2(c), we illustrate our SpiNeMap. The key dif-
ference with our previously-proposed PSOPART is that we
propose a 4-step methodology, with the new SNN Placement
step explicitly minimizing energy consumption and latency
on the shared interconnect. This step is necessary for SNN
mapping to large neuromorphic architectures with many cross-
bars. To do so, we extract not only the spike count on
different synapses, but also their precise timing information
by simulating the SNN in CARLsim. These information about
spikes, also called spike trace, are then used in SpiNePlacer to
simulate the exact latency and energy consumption, consider-
ing spike traffic on the shared interconnect. Overall, the SNN
Partitioning and Placement steps jointly improve application
performance, energy consumption, and spike latency.

B. Detailed design of SNN Partitioning via SpiNeCluster

In Figure 3, we illustrate an SNN partitioned into three
clusters A, B, and C. The number of spikes communicated
between a pair of neurons is indicated on its synapse. We also
indicate the local synapses in black and the global ones in
blue in this figure. In this example, the total number of spikes
on global synapses is 8. To understand how SpiNeCluster
partitions an SNN, we introduce the following notations.

Let G(N ,S) be an SNN with a set N of neurons, and a
set S of synapses. A synapse si,j connects neuron ni with nj ,
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and communicates wi,j spikes. Our objective is to partition
this SNN into k clusters. Let H(C, E) be the partitioned SNN
with a set C of clusters, and a set E of global synapses. This
problem of transforming G(N ,S) → H(C, E) is a classic
graph partitioning problem [30], and has been applied in many
context, including task mapping on multiprocessor systems
[31]. The graph partitioning problem is already NP-complete
[32], so heuristics are typically used to solve them [33].
In our earlier work PSOPART [18], we use an instance of
particle-swarm optimization (PSO) [34] to solve this problem.
However, the approach becomes intractable as the size of the
SNN increases. Here we propose a greedy approach, roughly
based on the Kernighan-Lin Graph Partitioning algorithm [30],
which we show to be scalable to large SNNs.

We set k = d |N |nc
e, where nc is the number of neurons

that can be accommodated per crossbar. We make this choice
because by utilizing the minimum number of crossbars, the
overall energy consumption of the hardware can be minimized
[10]–[14]. Next, we evenly (and arbitrarily) distribute neurons
to these k clusters. Starting from this arbitrary assignment,
we analyze the change in the number of spikes on global
synapses by moving a single neuron from one cluster to
another, tracking and enforcing those changes that lead to
minimum number of spikes on global synapses.

We formalize these steps in Algorithm 1. The algorithm
applies a 2-part procedure (lines 2-17) to every cluster pair
(with a total of

(
k
2

)
iterations). In the 2-part procedure, we

first calculate the total number of inter-cluster spike (gs)
with the two clusters (line 2). Next, we select a pair of
neurons ni and nj from the two selected clusters Ci and
Cj , respectively, such that neither ni nor nj is selected in
the previous iterations (lines 4-5). We then perform three
operations: (1) move ni ∈ Ci to cluster Cj (if Cj can
accommodate more neurons) (line 6), (2) move nj ∈ Cj to
cluster Ci (if Ci can accommodate more neurons) (line 7),
and (3) swap ni and nj (line 8). We calculate the number of
inter-cluster spike for each of these operations, and select the
option that generates the maximum reduction of inter-cluster
spike compared to gs (line 9). We return the new clusters (line
10). We repeat the procedure (lines 4-13) while the number
of inter-cluster spike continues to be reduced (lines 14-16).

1) Time complexity: We compute the time complexity of
Algorithm 1 as follows: Line 2-17 are executed

(k
2

)
times. At

each iteration, lines 4-16 is iterated for every neurons of the
a cluster with each cluster accommodating a maximum of nc

neurons. This time complexity is therefore

time complexity = O

((k
2

)
× nc ∗ nc

)
= O

(
k2 × n2

c

)
= O

(
|N |2

)
(8)

where k = d |N|
nc
e.

C. Detailed design of SNN Placement via SpiNePlacer

In Figure 4, we illustrate how a partitioned SNN (obtained
via SpiNeCluster) can be placed on to the hardware, which
consists of three crossbars arranged in a mesh topology.
Different placement alternatives lead to different interconnect
lengths traversed by spikes to reach their destinations. This
impacts both energy consumption and latency, meaning that

1,0

2,0

Fig. 4: Illustrating the impact of different placements of
clusters of a partitioned SNN on a neuromorphic hardware.

CARLsim
SpiNeCluster 
(Algorithm 1)

SpiNePlacer

Noxim++

SNN-based 
application 
mapped to 

neuromorphic 
hardware

SNN-based 
application 

DynapSE

Fig. 5: Our design methodology SpiNeMap.

the placement problem is no longer a trivial one, especially for
large neuromorphic architectures (a limitation of NEUTRAMS
[17], PACMAN [16], Eyeriss [35], and PSOPART [18]).

To accurately estimate the energy and latency impact of
different placement alternatives, we have extended the Noxim
[36], a cycle-accurate interconnect simulator, to support 1)
simulation of spike traces from CARLsim containing in-
formation (generation time, source neuron, and destination
neuron) of every spike in an SNN and clustered to generate
information about communication on global synapses, i.e.,
broadcast, multicast and one-to-one, 2) simulation of current
and emerging interconnect topologies of neuromorphic archi-
tectures, 3) simulation of different routing algorithms, and 4)
technology-specific energy and latency of interconnect wires
and switches. We call our new framework Noxim++. In Figure
5 we present our design methodology SpiNeMap, illustrating
how Noxim++ is integrated in the SpiNePlacer and configured
to model the DynapSE neuromorphic platform [7]. We now
formalize the optimization problem of our SpiNePlacer.

We consider the mapping of a clustered SNN H(C, E) to
the neuromorphic architecture A(V, I), where V is the set of
crossbars in the architecture and I is the set of connections
of these crossbars for a given interconnect topology.

Mapping M : H(C, E) → A(V, I) is represented by a logical
matrix (mij) ∈ {0, 1}|C|×|V|, where mij is defined as

mij =

{
1 if cluster ci ∈ C is mapped to crossbar vj ∈ V
0 otherwise

(9)

The constraints in this formulation are the following:
1. A cluster can be mapped to only one crossbar, i.e.,∑

j

mij = 1 ∀i (10)

2. A crossbar can accommodate at most one cluster, i.e.,∑
i

mij ≤ 1 ∀j (11)

We use our Noxim++ framework to evaluate a mapping
in terms of the optimization objective of SpiNePlacer, i.e.,
to minimize energy consumption and spike latency on the
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interconnect. In has been shown in many prior works such as
[37] that minimizing these metrics is equivalent to minimizing
the average number of hops that spikes communicate before
reaching their destination (see also the formulations in Section
IV-D). Let Li be the average hop count for the cluster
mapping Mi obtained using Noxim++, i.e., Li = Noxim++(Mi).
The optimization objective of our SpiNePlacer is to find the
mapping with the minimum average hop count, i.e.,

Lmin = La, where a = arg min{Noxim++(Mi)|i ∈ 1, 2, · · · , Nm},
(12)

where Nm is the total number of mappings evaluated. Of
different techniques to generate and evaluate cluster mappings,
we use an instance of PSO, which we describe next.

In general, PSO finds the optimum solution to a fitness
function F . There can be several particles in the swarm.
The position of these particles are solutions to the fitness
functions, and they represent cluster mappings, i.e., M’s in
Equation 12. Each particle also has a velocity with which
it moves in the search space to find the optimum solution.
During the movement, a particle updates its position and
velocity according to its own experience (closeness to the
optimum) and also experience of its neighbors. We introduce
the following notations for PSO.

D = dimensions of the search space (13)
np = number of particles in the swarm

Θ = {θl ∈ RD}np−1

l=0 = positions of particles in the swarm

V = {vl ∈ RD}np−1

l=0 = velocity of particles in the swarm

Here θl is the position of the lth particle in the swarm, and
translates to the mapping Ml. D is therefore the dimension of
the logical mapping matrix M , i.e., D = |C| × |V|.

Position and velocity updates are performed according to
the following equation.

Θ(t+ 1) = Θ(t) + V(t+ 1) (14)

V(t+ 1) = V(t) + ϕ1 ·
(
Pbest −Θ(t)

)
+ ϕ2 ·

(
Gbest −Θ(t)

)
where t is the iteration number, ϕ1, ϕ2 are constants and Pbest

(and Gbest) is the particles own (and neighbors) experience.
The fitness function is then

F (θl) = Ll = Noxim++(Ml) (15)

Once the fitness function is computed for all particles in the
swarm, the personal best position of each particle (P t

best) and
the global best position of the swarm (Gbest) are updated using
Equation 16.

P t
best = F (θt) if F (θt) < F (P t

best)

Gbest = min
t=0,...np−1

P t
best (16)

Due to the binary formulation of the mapping problem (see
Equation 9), we need to binarize the velocity and position of
Equation 13, which we illustrate below.

Start

Calculate Fitness
F(𝛳t)

Equation (15)

Initialize Polulation
Equation (9)

F(𝛳t)<F(Pt
best)

Equation (16)
Retain Pbest Update Pbest

Update GbestRetain Gbest

Update Velocity (V)
Equation (14)

Update Position (𝛳)
Equation (14)

Convergence 
criteria
met?

No

No

Yes

Yes

No

End
Yes

min(Pt
best)< Gbest

Equation (16)
t=0...np-1

m
u
lt

ip
le

 In
vo
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ti
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s

Fig. 6: Flow chart of our PSO algorithm.

V̂ = sigmoid(V) =
1

1 + e−V

Θ̂ =

{
0 if rand() < V̂

1 otherwise
(17)

In finding a new position of a PSO particle, we use the two
constraints in Equations 10 & 11.

1) PSO Algorithm: In Figure 6, we describe our iterative
PSO algorithm that uses the analytical formulations we intro-
duced in Equations 10-17. The algorithm begins by initializing
the position of the PSO particles that satisfies constraints 10
& 11. Then the algorithm runs for nISO iterations. At each
iteration, the PSO algorithm evaluates the fitness function
(Equation 15) and updates its position based on the local and
global best positions (Equation 14), binarizing these updates
using Equation 17. The time complexity of the PSO algorithm
is therefore O(nISO × operations in each iteration), where operations
in each iteration is proportional to the PSO dimension D =

|C|× |V| and the number of particles np. We represent the time
complexity as

time complexity of PSO = O (nISO × np × |C| × |V|) (18)

D. Justification of SpiNeMap’s design choices

In this section, we motivate SpiNeMap’s design choices.
1) Minimize spike count at the partitioning stage: To jus-

tify our optimization objective of minimizing the number of
spikes at the partitioning stage of our design methodology,
we conducted an experiment with the hand written digit
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Fig. 7: Latency, ISI distortion, and accuracy as a function
of the number of spikes on the global interconnect for the
handwritten digit recognition example.

recognition example, where as the number of spikes on the
shared interconnect is increased, the latency and average
ISI distortion on the time-multiplexed interconnect, and the
classification accuracy are recorded. We use the hardware
configuration of DynapSE, with four crossbars organized in
a 2x2 mesh with XY routing algorithm. Each crossbar can
accommodate 256 neurons. We report these results in Figure
7, with the latency and ISI distortion normalized to the case
with minimum number of spikes on the shared interconnect.
The drop in accuracy is calculated with respect to the accuracy
obtained when the number of spikes on the shared interconnect
in the minimum.

We observe that as the number of spikes on the shared
interconnect increases, the latency increases, increasing the ISI
distortion. This lowers the application accuracy. We observe a
similar behavior for all our evaluated applications.

2) Integration of Noxim++ within PSO: The average hop
count of spikes communicated between clusters (i.e., cross-
bars) on the shared interconnect depends on 1) the cluster
mapping M and 2) the routing algorithm that dynamically
routes spikes on the interconnect to avoid congestion of in-
terconnect links. Our PSO incorporates cluster mapping in the
fitness function. Due to the dynamic nature of spike routing for
congestion avoidance, we need to simulate the cycle-accurate
behavior of the interconnect for every mapping with the spike
trace generated from CARLsim to accurately compute the
hop distance that each spike traverses before reaching its
destination. This motivates our strategy to integrate Noxim++
within PSO to minimize the average hop count.

3) Using PSO only for SpiNePlacer: We use binary particle
swarm optimization (PSO) [29], an evolutionary computing
technique inspired by social behaviors such as bird flocking
and fish schooling. Evolutionary computing techniques, in
general, are efficient in avoiding being stuck at local optima.
Additionally, PSO is computationally less expensive with
faster convergence compared to its counterparts such as genetic
algorithm (GA) or simulated annealing (SA).

In our earlier work [18], we use PSO for SNN partitioning
(equivalent of SpiNeCluster). In this work we use PSO only
for SpiNePlacer and a greedy approach for SpiNeCluster. The
rationale behind this is as follows.

Had PSO been used for SpiNeCluster, the total number of

dimensions for each particle in PSO would be D = |N |× |C|.
The total number of dimensions of each particle in the PSO of
SpiNePlacer is D = |C| × |V|. In Table II, we compare these
dimensions for different SNN sizes, with a fixed neuromorphic
hardware (16 crossbars, with 256 neurons each).

# of PSO dimensions (D) for
SNN neurons SNN partitioning SNN placement

1,000 16,000 64
2,000 32,000 128
3,000 48,000 192
4,000 64,000 256

TABLE II: Dimensions of PSO to solve partitioning and
placement problems, for different SNN sizes on a fixed neu-
romorphic hardware with 16 crossbars, and 256 neurons each.

As we can clearly see from Table II, the PSO problem of
partitioning soon becomes intractable with modest size SNNs,
even if we restrict to 1000 particles (each with dimensions
D) in the swarm. To keep the solution time reasonable, we
therefore, use PSO only for the placement problem (viz.
SpiNePlacer), and use a greedy approach instead for the
partitioning problem (viz. SpiNeCluster).

IV. EVALUATION METHODOLOGY

We build SpiNeMap with the following system components.
• CARLsim [28] : A GPU accelerated simulator used to

train and test SNN-based applications. CARLsim reports
spike times for every synapse in the SNN.

• Noxim++ [36] : A trace-driven and cycle-accurate inter-
connect simulator for multiprocessor systems. We extend
it (1) to incorporate crossbar-based neuromorphic hard-
ware, (2) to communicate spikes (rather than data pack-
ets), and (3) to generate key performance statistics such as
energy consumption, spike latency and ISI distortion. In
our SpiNeMap mechanism, the spike timing information
from CARLsim is used as trace and is input to Noxim++
to generate the performance statistics.

• DynapSE [7]: We configure Noxim++ to model the
DynapSE neuromorphic hardware at 65nm technology
nodes with 256 neurons per crossbar. The crossbars
are interconnected using a multi-stage networks-on-chip
(NoCs) [38]. We extract the latency and energy numbers
of each crossbar from silicon data [39]. We also use
the analytical performance and energy model of the
interconnect network at 65nm technology. Finally, we
use predictive technology mapping (PTM) [40] to scale
technology parameters to 28nm nodes.

A. Simulation environment

We conduct all experiments on a system with 8 CPUs, 32GB
RAM, and NVIDIA Tesla GPU, running Ubuntu 16.04.

B. Evaluated applications

In order to evaluate the effectiveness of SpiNeMap, we use 7
synthetic and 8 realistic SNN applications. These applications
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Category Applications Synapses Topology Spikes

synthetic

S 1000 240,000 FeedForward (400, 400, 100) 5,948,200
S 1500 300,000 FeedForward (500, 500, 500) 7,208,000
S 2000 640,000 FeedForward (800, 400, 800) 45,807,200
S 2500 1,440,000 FeedForward (900, 900, 700) 66,972,600
S 3000 2,000,000 FeedForward (1000, 1000, 1000) 155,123,000
S 3500 2,500,000 FeedForward (1000, 1000, 1500) 46,476,000
S 4000 3,750,000 FeedForward (1500, 1500, 1000) 149,580,500

realistic

ImgSmooth [28] 136,314 FeedForward (4096, 1024) 17,600
EdgeDet [28] 272,628 FeedForward (4096, 1024, 1024, 1024) 22,780

MLP-MNIST [41] 79,400 FeedForward (784, 100, 10) 2,395,300
HeartEstm [2] 636,578 Recurrent 3,002,223

HeartClass [42] 2,396,521 CNN1 1,036,485
CNN-MNIST [43] 159,553 CNN2 97,585
LeNet-MNIST [43] 1,029,286 CNN3 165,997
LeNet-CIFAR [43] 2,136,560 CNN4 589,953

1. Input(82x82) - [Conv, Pool]*16 - [Conv, Pool]*16 - FC*256 - FC*6
2. Input(24x24) - [Conv, Pool]*16 - FC*150 - FC*10
3. Input(32x32) - [Conv, Pool]*6 - [Conv, Pool]*16 - Conv*120 - FC*84 - FC*10
4. Input(32x32x3) - [Conv, Pool]*6 - [Conv, Pool]*6 - FC*84 - FC*10

TABLE III: 7 synthetic and 8 realistic applications we use to
evaluate SpiNeMap.

are described in Table III. We indicate the synthetic applica-
tions with the letter ‘S’ followed by a number (e.g., S 1000),
where the number represents the total number of neurons
in the synthetic SNN. We use 7 synthetic SNN applications
with number of neurons between 1000 to 4000. In column
3 of this table, we indicate the number of synapses in the
networks, while in column 4 we describe the corresponding
SNN topology. The total number of synapse in these synthetic
applications ranges from 240,000 in S 100 to 3.75M in S4000.

We use eight realistic applications: image smoothing
(ImgSmooth) [28] on 64x64 images, edge detection (EdgeDet)
[28] on 64x64 images using difference-of-Gaussian, multi-
layer perceptron (MLP)-based handwritten digit recognition
(MLP-MNIST) [41] on 28x28 images of handwritten digits,
ECG-based heart-rate estimation (HeartEstm) [2], ECG-based
heart-beat classification (HeartClass) [42], CNN-based digit
classification (CNN-MNIST) [43], [44], CNN-based digit clas-
sification with LeNet (LeNet-MNIST) [43], and CNN-based
CIFAR image classification with LeNet (LeNet-CIFAR) [43].
We note that the last three applications are part of the MLPerf
benchmark suite [43] and developed using analog computation
model. We convert these applications into spike-based model
using the CNN-to-SNN conversion tool N2D2 [45].

Finally, in the last column of Table III we report the
total number of spikes for these applications obtained through
simulation of the representative validation data using CARL-
sim [28]. The spike trace from CARLsim is clusted using
SpiNeCluster, and placed on crossbars using SpiNePlacer.

C. Evaluated state-of-the-art techniques

We evaluate the following four approaches.
• Baseline: The Baseline uses NEUTRAMS [17] to cluster

SNNs, minimizing the use of crossbars.
• SCO: The SCO approach uses the framework of [13] to

balance the utilization of crossbars in the hardware.
• PSOPART: Our previously-proposed PSOPART [18]

clusters SNNs to minimize the total number of spikes
on the shared interconnect.

• SpiNeMap: Our SpiNeMap uses (1) SpiNeCluster to
partition SNNs into clusters to minimize the total number

SpiNeMap
Energy Spike ISI Application

Consumption Latency Distortion Accuracy
(Sec. V-B) (Sec. V-C) (Sec. V-D) (Sec. V-E)

vs. Baseline [17] 45% 21% 36% 12%
vs. SCO [13] 40% 27% 39% 20%
vs. PSOPART [18] 20% 13% 23% 5%

TABLE IV: Average improvement summary using SpiNeMap
for all our evaluated applications.

of spikes on the shared interconnect and (2) SpiNePlacer
to optimize the placement of clusters to crossbars of the
neuromorphic hardware to minimize energy consumption
and latency on the shared interconnect.

D. Evaluated metrics

We evaluate all four approaches in terms of the following
metrics for every application.
• Total number of spikes on the shared interconnect: This

is the number of spikes (Ns) on the shared interconnect
obtained after mapping synapse clusters to crossbars of
the neuromorphic hardware.

• Spike latency on the shared interconnect: This is the de-
lay experienced by spikes before reaching their destina-
tion, averaged over all spikes [37], i.e.,

L =

Ns∑
i=1

[(hi − 1) ∗ lw + hi ∗ ls]/Ns, (19)

where hi is the number of hops that spikes traverses
between the source crossbar and destination crossbar, lw
is the delay on the wires connecting two crossbars, and
ls is the delay of the hop.

• Energy consumption on the shared interconnect: This is
the total energy consumed by all spikes on the shared
interconnect [37], i.e.,

E =

Ns∑
i=1

[(hi − 1) ∗ ew + hi ∗ es], (20)

where ew and es are the energy consumption on the wires
and hops, respectively.

• Average ISI distortion: This is motivated in Section II
and computed using Equation 7, averaged over all spikes,
i.e.,

I =

Ns∑
i=1

Ii|distortion/Ns, (21)

V. RESULTS AND DISCUSSIONS

A. Improvement summary

In Table IV, we summarize the average improvements of
SpiNeMap against the Baseline [17], SCO [13], and our
previously-proposed PSOPART [18].

We now describe these results in details.

B. Energy consumption on the shared interconnect

In Figure 8, we report the energy consumption on the
shared interconnect of each of our applications for each of
our evaluated systems normalized to the Baseline. We make
the following three observations.
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Fig. 8: Energy consumption on the shared interconnect nor-
malized to the Baseline.

First, the average energy consumption of SCO is very
similar to that of the Baseline. For some workloads such as
S 2500 it achieves 45% lower energy consumption, while for
other workloads such as EdgeDet it has 43% higher energy
consumption than the Baseline. These differences are due to
the earlier discussed distinction in the optimization objective
for these two approaches. Second, PSOPART has 31% lower
average energy consumption than the Baseline. This reduction
is because PSOPART minimizes the total number of global
spikes, which also reduces the energy consumption on the
shared interconnect. Third, SpiNeMap has the lowest energy
consumption of all our evaluated systems (45% lower average
energy consumption than the Baseline, 40% lower than SCO,
and 20% lower than PSOPART). These improvements are
because of SpiNeMap’s optimization policies: 1) SpiNeCluster
reduces the total number of spikes on the shared interconnect,
which lowers energy consumption, and 2) SpiNePlacer places
the clusters on crossbars of the hardware to minimize both
latency and energy consumption on the shared interconnect.

C. Spike latency on the shared interconnect

In Figure 9, we report the spike latency of the global
synapses on the shared interconnect of each of our applications
for each of our evaluated systems normalized to the Baseline.
We make the following three observations.
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Fig. 9: Spike latency on the shared interconnect normalized to
the Baseline.

First, the average spike latency of SCO is 14% higher
than the Baseline. This increase is because SCO balances
the crossbar utilization in the hardware and in doing so
it can place certain synapses with large number of spikes

on the shared interconnect, increasing the congestion and
therefore the latency. Second, PSOPART has 9% lower average
spike latency than the Baseline. This improvement is because
PSOPART reduces the total number of spikes on the shared
interconnect, which reduces spike congestion, improving the
latency. Third, SpiNeMap has the lowest average spike latency
among all our evaluated systems (21% lower average spike
latency than the Baseline, 27% lower than SCO, and 13% lower
than PSOPART). These improvements are due to SpiNeMap’s
optimization policies: 1) SpiNeCluster, which reduces the
number of spikes on the shared interconnect, reducing con-
gestion and latency and 2) SpiNeCluster, which minimizes
latency by minimizing the average number of hop counts that
spike traverses before reaching their destination.

D. Average ISI distortion of spikes on the shared interconnect
In Figure 10, we compare the average inter-spike interval

(ISI) distortion on the shared interconnect of each of our
applications for each of our evaluated systems normalized to
the Baseline. We make the following three observations.
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Fig. 10: Average ISI distortion normalized to the Baseline.

First, the ISI distortion of SCO is 12% higher than the
Baseline. This increase is due to the increase in total spikes on
the shared interconnect, which increases spike congestion and
ISI distortion. Second, PSOPART has 21% lower average ISI
distortion than the Baseline. This reduction is due to the reduc-
tion of the number of spikes on the shared interconnect. Third,
SpiNeMap has the lowest ISI distortion of all our evaluated
systems (36% lower average ISI distortion than the Baseline,
39% lower than SCO, and 23% lower than PSOPART). The
improvement with respect to PSOPART is because of our new
SpiNePlacer step (see Figure 2), which further reduces the ISI
distortion while reducing the spike latency.

E. Application accuracy
In Figure 11, we report the application accuracy of each of

our applications for each of our evaluated systems normalized
to the Baseline. We observe that the accuracy results directly
correlate with the ISI distortion results we presented in Section
V-D. Specifically, the accuracy using SCO is lower than the
Baseline by an average 6% due to the 12% increase in ISI
distortion. PSOPART increases the accuracy by 7% due to the
17% reduction of ISI distortion. Finally, SpiNeMap achieves
the highest accuracy among all our evaluated systems (12%

higher average accuracy than the Baseline, 20% higher than
SCO, and 5% higher than PSOPART).
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Fig. 11: Application accuracy normalized to the Baseline.

F. Evaluation of SpiNeCluster in terms of spike count

In Figure 12, we compare the total number of spikes
communicated on the shared interconnect of each of our
applications for each of our evaluated systems normalized to
the Baseline. We make the following three observations.
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Fig. 12: Number of spike on the shared interconnect normal-
ized to the Baseline.

First, SCO has an average 6% higher number of spikes
on the shared interconnect compared to the Baseline. These
extra spikes increases the energy consumption on the shared
interconnect, which we presented in Section V-B. Second,
PSOPART has 23% lower number of spikes due to the PSO
approach, which explicitly minimizes the total number of
spikes on the shared interconnect. Third, SpiNeMap generates
the lowest number of spikes on the shared interconnect (26%

lower than the Baseline, 24% lower than SCO, and 9% lower
than PSOPART) The improvement over PSOPART is due to
the greedy approach of Algorithm 1, which outperforms the
PSO, especially for the large application use-cases.

G. Evaluation of SpiNeCluster in terms of optimization time

In Figure 13, we compare the execution time of our new
clustering algorithm (Algorithm 1) against the PSO-based
clustering approach of PSOPART normalized to the Baseline.

We observe that our SpiNeCluster has an average 3x
lower execution time than our previously-proposed PSO-based
PSOPART. Additionally, we have shown in Section V-F that
Algorithm 1 generates an average 9% lower number of spikes
than the PSO-based solution, improving energy consumption,
spike latency, and application accuracy. We conclude that
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Fig. 13: Execution time normalized to the Baseline.

our new clustering algorithm is scalable and generates better
results than our previously-proposed PSO-based approach.

H. Interconnect design explorations

In Figure 14, we illustrate how our design methodology
can be used for explorations on interconnect for neuromorphic
hardware. In this figure, we compare XY routing, which is
used in DynapSE against NorthLast and WestFirst routing
algorithms. Finally, we evaluate our previously-proposed seg-
mented bus [46] as an alternative to the multi-stage NoC used
in the DynapSE neuromorphic platform. We evaluate these
alternatives for all our evaluated workloads. We make the
following two observations.
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Fig. 14: Exploration of interconnects and routing algorithms
using SpiNeMap

First, the NorthLast and WestFirst routing algorithms have
an average 7% and 4% higher latency than the default XY rout-
ing algorithms, meaning that the XY routing algorithm is the
most suitable one for the applications. Second, the segmented
bus interconnect has the lowest spike latency among all our
evaluated routing algorithms (average 54% lower for all these
three routing algorithms). Lower spike latency leads to lower
energy consumption and higher application performance.

Our SpiNeMap design methodology allows simulating
NoCs, segmented bus, and other interconnect topologies, fa-
cilitating future research on scalable interconnect for neuro-
morphic computing. Our continuing work is to extend the
SpiNeMap with architecture of TrueNorth, Loihi, and other
neuromorphic hardware platforms.

VI. RELATED WORKS

This is the first work that jointly addresses the partition-
ing and placement of SNNs on crossbar-based neuromorphic
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hardware, minimizing the energy consumption, spike latency,
and ISI distortion, and improving application accuracy.

A. SNN-based machine learning

Machine learning techniques such as neural networks [26]
have proved to be immensely successful in many domains
such as computer vision [47] and natural language processing
[48]. The machine learning database MLPerf [43] provides
a comprehensive collection of these applications. We demon-
strate the performance of SpiNeMap using applications from
MLPerf benchmark suite. Compared to analog and rate
models, machine learning techniques implemented with spike
model [49] and brain-inspired learning algorithms [50], e.g.,
spiking neural networks [1], have ultra-low power footprint
when executed on neuromorphic hardware such as DYNAP-
SE [7], TrueNorth [?], and Loihi [6]. This makes spike-
based computation model attractive for implementing machine
learning applications on these devices. Verstraeten et al.
propose reservoir computing with SNNs for speech recognition
[51]. Grzyb et al. use spiking liquid state machine for facial
recognition [52]. Diehl et al. propose hand-written digit recog-
nition using SNNs [41]. We have previously proposed a liquid
state machine approach for heart-rate estimation from ECG
signals [2]. We demonstrate the performance of SpiNeMap
using some of these applications.

Recent works have demonstrated techniques to convert
operations of analog computation model to spike model. One
example is the N2D2 tool [45]. Using this tool we have previ-
ously demonstrated the SNN implementation of convolutional
neural networks (CNN)-based heart-beat classification [42].

B. Neuromorphic hardware

Recently, several research initiatives are undertaken to de-
velop crossbar-based neuromorphic hardware using the emerg-
ing non-volatile memory technologies. Ramasubramanian et
al. propose to use Spin-transfer torque magnetic RAM (STT
MRAM) to build neuromorphic crossbars [53]. Burr et al.
propose to use phase-change memories (PCM) to design neu-
romorphic crossbars [22]. Mallik et al. propose to use oxide-
based resistive RAM (OxRAM) as alternative [54]. While all
these orthogonal works focus on the design of a crossbar, we
focus on the architecture of a neuromorphic chip integrating
multiple such crossbars. To this end, Khan et al. propose a
mapping strategy for SNNs on the SpiNNaker platform [55].
Ji et al. propose NEUTRAMS for mapping neural networks on
crossbar-based neuromorphic hardware [17]. In Section V we
compare SpiNeMap against NEUTRAMS (i.e., the Baseline)
and found that SpiNeMap is significantly better in terms of
energy, latency, and application accuracy.

C. SNN and neuromorphic simulators

SpiNeMap is a technique that maps trained SNNs on the
neuromorphic hardware. To this end, there are several choices
for application-level SNN simulators that can generate trained
SNNs. PyNN [56] is a high level, simulator-independent
interface used for building neuronal models by providing high

level abstractions allowing the access of low-level details like
neuron and synapse models of the computing back-end. There
are also other simulators such as Brian [57], GeNN [58], and
NEST [59]. We use CARLsim [28] due to its detailed STDP
and homeostasis models, parameter tuning, and multi-GPU
support to accelerate the simulation. Nevertheless, SpiNeMap
can be combined with any other SNN simulators.

D. Related concepts in similar domains

Graph partitioning problem has been extensively used for
multiprocessor systems, where an application task graph is
partitioned to map tasks on the processing cores. The survey
paper [60] provides an overview of different mapping tech-
niques and optimization objectives that have been proposed
for multiprocessor systems. These mapping techniques cannot
be directly used for clustering because of the new metric ISI
distortion that is specific to SNN. We chose the clustering
technique in SpiNeCluster because it is scalable and generates
a good starting solution for the SpiNePlacer.

VII. CONCLUSION AND FUTURE OUTLOOK

This paper introduces SpiNeMap, a design methodology to
map SNN-based applications to crossbar-based neuromorphic
hardware. SpiNeMap completes the mapping in two steps. In
Step 1 (SpiNeCluster), we use a heuristic-based clustering al-
gorithm to partition SNNs into local and global synapses, with
local synapses mapped within crossbars, and global synapses
to the shared interconnect. Our objective is to minimize the
number of spikes on the shared interconnect, which reduces
spike congestion, leading to a reduction of the ISI distortion. In
Step 2 (SpiNePlacer), we use an instance of the particle swarm
optimization (PSO) to place clusters on physical crossbars
in the hardware, optimizing energy consumption and spike
latency on the shared interconnect.

Our optimization strategies in the two steps also improves
application accuracy. We evaluate SpiNeMap using synthetic
and realistic SNN applications. SpiNeMap reduces energy
consumption on the shared interconnect by 45% and spike
latency by 21%, compared to the state-of-the-art techniques.
This reduces ISI distortion by 36%, which improves application
accuracy by 12% over state-of-the-art approaches.

We believe that SpiNeMap is an end-to-end
design methodology to map SNN applications on
neuromorphic hardware. Our SpiNeMap framework
is open-sourced and can be downloaded from the url
https://github.com/drexel-DISCO/SpiNeMap.

A. Future Outlook

In this section, we describe how our design methodology
SpiNeMap can be used to advance neuromorphic computing.

1) Mapping new machine learning approaches to hardware:
Supervised machine learning approaches are usually limited
when remembering and dealing with rare events. Advanced
machine learning approaches are therefore investigated. Many
of these new proposals are based on spiking events. Examples
include the liquid state machine [27], zero-shot learning
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[61], one-shot learning [62], lifelong learning [63], transfer
learning [64], and deep reinforcement learning [65] among
others. All these new approaches can be mapped to hardware
using SpiNeMap, by first simulating the application behavior
in CARLsim, and then using the spike trace to partition and
place the clusters on to hardware. In fact, in this work we
demonstrate the mapping of one such emerging machine
learning approach viz the liquid state machine implemented
in the HeartEstm application.

From the computational neuroscience models front, we have
demonstrated our design methodology SpiNeMap using the
spike-based model. Machine learning algorithms designed with
the analog model such as CNN or MLP can also be used in
our design methodology by first converting the analog model
to a spike-based model before presenting the application to
SpiNeMap. In this work, we demonstrate this using three ana-
log CNN-based applications. We converted these applications
to spike-based model using the N2D2 tool [45].

For the rate model, information is encoded as average firing
rate of neurons in the SNN. ISI distortion due to congestion
on the interconnect does not always lead to performance loss
as long as the average number of spikes received within a
given time interval remains the same. A relevant metric for
the rate model to capture the effect of spike congestion on
the shared interconnect is the spike disorder. We provide a
proper intuition behind spike disorder as follows: We consider
that a source neuron generates three spikes at time t = 0ns,
5ns, 25ns and 50ns. The spike rate of the source neuron are
200MHz and 50MHz, respectively. These three spikes need
to be communicated to a destination neuron. We consider
a scenario where spike 0 and 2 are received earlier at the
destination neurons at time t = 5ns and 30ns, and spike
1 is re-routed due to congestion, reaching the destination
neuron at t = 35ns. The spike rate received at the destination
is therefore 40MHz and 200MHz, respectively. This spike
disorder can lead to performance loss. We can formalize the
definition of spike disorder as follows. Let F i = {F i

1, · · · , F i
ni
}

be the expected spike arrival rate at neuron i (from CARLsim)
and F̂ i = {F̂ i

1, · · · , F̂ i
ni
} be the actual spike rate considering

hardware latencies. The spike disorder is computed as

spike disorder =

ni∑
j=1

[(F i
j − F̂ i

j )2]/ni (22)

Our SpiNeCluster can be trivially extended with minimum
effort to compute and minimize spike disorder.

2) Using SpiNeMap for other neuromorphic platforms:
Our design methodology uses CARLsim to extract neural
activity on every synapse of SNNs. CARLsim’s support for
built-in biologically realistic neuron, synapse, and computation
models, designing new machine learning approaches and
online learning algorithms, and continuous integration and
testing, make it an easy to use and powerful simulator of
biologically-plausible neural network models. The present
release allows for the simulation using multiple GPUs
and multiple CPU cores concurrently in a heterogeneous
computing cluster. Benchmarking results demonstrate
simulation of 8.6 million neurons and 0.48 billion synapses

using 4 GPUs and up to 60x speedup for multi-GPU
implementations over a single-threaded CPU implementation,
making CARLsim 4 well- suited for large-scale SNN models
in the presence of real-time constraints. Additionally, the
present release adds new features, such as leaky-integrate-
and-fire (LIF), 9-parameter Izhikevich, multi-compartment
neuron models, and fourth order Runge Kutta integration.

SpiNeMap is a general-purpose design methodology for
mapping SNN-based applications to neuromorphic hardware.
We have seamlessly integrated SpiNeMap with both open-
sourced SNN simulators such as Brian [57] and proprietary
simulators such as XNet [66]. As the input for SpiNeMap is
the precise time of neural activity on every synapse, SpiNeMap
can be extended with minimum effort to consider any SNN
simulator that allows extracting spike timing information.

Our SpiNePlacer uses the Noxim [36] simulator for cycle-
accurate simulation of neuromorphic interconnect. To this end,
we have previously evaluated many other simulators such as
BookSim2 [67] and NIRGAM [68] for neuromorphic com-
puting. Noxim allows significant advantage in terms of trace-
driven simulations, extensions to other interconnect types,
etc. See our prior work [69] for discussion of these alter-
natives. Our design-methodology SpiNeMap can be trivially
extended to consider other interconnect simulators as long as
they support 1) cycle-accurate simulation, and 2) trace-driven
simulation. The former requirement is necessary to precisely
compute the spike latency, which impacts performance (such
as accuracy) of spike-based computation model. The second
requirement is necessary to simulate application-level spike
behavior in hardware considering delays on the interconnect.

Finally, our SpiNeMap is demonstrated to work with the Dy-
napSE neuromorphic hardware [7]. Our continuing work is to
support other neuromorphic architectures including TrueNorth
[20] and Loihi [6]. We have open-sourced our framework to
foster future research in neuromorphic computing.
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