
UC Irvine
UC Irvine Previously Published Works

Title
Mapping Spiking Neural Networks to Neuromorphic Hardware

Permalink
https://escholarship.org/uc/item/0fn2443s

Journal
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(1)

ISSN
1063-8210

Authors
Balaji, Adarsha
Das, Anup
Wu, Yuefeng
et al.

Publication Date
2020

DOI
10.1109/tvlsi.2019.2951493

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0fn2443s
https://escholarship.org/uc/item/0fn2443s#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 1

Mapping Spiking Neural Networks to
Neuromorphic Hardware

Adarsha Balaji, Anup Das, Yuefeng Wu, Khanh Huynh, Francesco Dell’Anna, Giacomo Indiveri,
Jeffrey L. Krichmar, Nikil Dutt, Siebren Schaafsma, and Francky Catthoor

Abstract—Neuromorphic hardware platforms implement bio-
logical neurons and synapses to execute spiking neural networks
(SNNs) in an energy-efficient manner. We present SpiNeMap,
a design methodology to map SNNs to crossbar-based neuro-
morphic hardware, minimizing spike latency and energy con-
sumption. SpiNeMap operates in two steps: SpiNeCluster and
SpiNePlacer. SpiNeCluster is a heuristic-based clustering tech-
nique to partition SNNs into clusters of synapses, where intra-
cluster local synapses are mapped within crossbars of the hard-
ware and inter-cluster global synapses are mapped to the shared
interconnect. SpiNeCluster minimizes the number of spikes on
global synapses, which reduces spike congestion on the shared
interconnect, improving application performance. SpiNePlacer
then finds the best placement of local and global synapses on
the hardware using a meta-heuristic-based approach to minimize
energy consumption and spike latency. We evaluate SpiNeMap
using synthetic and realistic SNNs on the DynapSE neuromorphic
hardware. We show that SpiNeMap reduces average energy
consumption by 45% and average spike latency by 21%, compared
to state-of-the-art techniques.

I. INTRODUCTION

SPIKING Neural Networks (SNNs) [1] are typically used
for machine learning on energy-constrained devices [2]–

[4]. Neuromorphic platforms such as TrueNorth [5], Loihi [6],
and DynapSE [7] implement biological neurons and synapses,
making them efficient in executing SNNs. Typically, these
platforms consist of multiple crossbars with a shared time-
multiplexed interconnect. A crossbar is a two-dimensional
arrangement with n rows, n columns, and memory elements
(to store synaptic weights) at every cross-point. Each crossbar
can map at most n synapses per neuron, meaning that a
large SNN must be partitioned into synapses that map inside
different crossbars (local synapses) and those that map on the
shared interconnect (global synapses).

A crossbar’s size is usually kept small to reduce the energy
consumed in driving high voltages through n2 connections of
a n× n crossbar. For the DynapSE platform, with n = 256, a
crossbar consumes 17pJ at 1.3V supply with SRAM-based
synapses. This number is expected to reduce significantly
when using non-volatile memory (NVM) synapses [8]. The
shared interconnect in a neuromorphic hardware introduces
spike congestion and latency to communicate spikes from one
crossbar to another due to time-multiplexing, which impacts
the inter-spike interval (ISI) [9]. This reduces application
performance such as accuracy (see Section II).

Many recent works demonstrate mapping of SNNs to a
single crossbar [10]–[15]. In Section V we show how these
techniques can be inefficient when applied to a multi-crossbar

neuromorphic platform such as the DynapSE. There are only
a few works that address SNN mapping to multi-crossbar
neuromorphic hardware. These include the PACMAN [16],
NEUTRAMS [17], and PSOPART [18].

Compared to PACMAN and NEUTRAMS, which minimize
crossbar usage, PSOPART partitions an SNN into local and
global synapses, minimizing the number of spikes on the
shared interconnect. This optimization strategy reduces spike
congestion and changes in ISI, which improves performance.
PSOPART is designed for the shared bus interconnect and it
does not address the placement of local and global synapses
to the neuromorphic hardware.

Unfortunately, the shared bus becomes the latency and
energy bottleneck for large SNNs, those with more than a
million synapses [19]. In recent years many new intercon-
nects are explored for large-scale neuromorphic computing.
Examples include the multi-stage networks-on-chip for the
new TrueNorth platform [20] and the segmented bus for the
new DynapSE platform [21]. For these new neuromorphic
interconnects, the PSOPART technique has two limitations.
First, the synapse partitioning approach is not scalable for
large number of neurons and synapses. Second, different
synapse placement strategies lead to different latency and
energy consumption, which we show in Section V. Therefore,
the placement problem can no longer be left unaddressed.

We present SpiNeMap, a comprehensive design method-
ology to map SNNs to neuromorphic platforms, minimizing
energy consumption and spike latency on the shared intercon-
nect, and improving application performance.
Contributions : Following are our novel contributions:
• SpiNeCluster: We propose a heuristic-based approach

to partition an SNN into local and global synapses,
reducing the number of spikes communicated on the
shared interconnect.

• SpiNePlacer: We propose a meta-heuristic-based ap-
proach to place local and global synapses on physical
resources of a neuromorphic hardware, reducing energy
consumption and spike latency.

• We evaluate SpiNeMap on the DynapSE neuromorphic
hardware using synthetic and realistic SNNs.

• We evaluate different interconnect topologies and spike
routing algorithms for emerging neuromorphic hardware.

Table I compares our contributions against state-of-the-art
techniques. We evaluate SpiNeMap with SNN-based applica-
tions on the DynapSE hardware. We show that SpiNeMap
reduces energy consumption by 45% and spike latency by 21%

compared to state-of-the-art techniques.

ar
X

iv
:1

90
9.

01
84

3v
1

 [
cs

.E
T

]
 4

 S
ep

 2
01

9

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 2

Techniques Partitioning Placement Optimization Objective

[10]–[15] × × Maximize single crossbar utilization

NEUTRAMS [17]
√

× Minimize number of crossbars

our PSOPART [18]
√

× Minimize spikes on global synapses

SpiNeMap
√ √

Minimize energy consumption and la-
tency of neuromorphic hardware

√
Optimized by these approaches

× Not optimized by these approaches

TABLE I: Contributions of SpiNeMap over the state-of-the-art
approaches and our earlier work [18].

This paper is organized as follows. We provide back-
ground in Section II. We describe our design methodology of
SpiNeMap in Section III. We present our evaluation setup in
Section IV and results in Section V. We describe related works
in Section VI. We conclude the paper in Section VII with an
outlook on the design of future neuromorphic platforms.

II. BACKGROUND

Figure 1 illustrates how a small SNN with two pre-synaptic
neurons connected to a post-synaptic neuron is mapped to a
crossbar. Spikes from a pre-synaptic neuron injects current into
the crossbar, which is the product of spike voltage applied (i.e.,
input activation xi) along the row with the conductance of the
synaptic element at the cross-point (i.e., synaptic weight wij)
following Ohm’s law. Current summations along columns are
performed in parallel following Kirchhoff's current law, and
implement the sums

∑
j wijxi, needed for forward propaga-

tion of neuron excitation xi. Beyond this supervised approach,
recent works [22] have also developed peripheral structures
necessary to implement online synaptic updates such as spike
timing dependent plasticity (STDP) [23].

We demonstrate our design methodology for supervised
machine learning approaches, where an SNN is first trained
with examples from the field and then deployed for inference
with in-field data. Performance is measured using accuracy,
which is assessed using inter-spike intervals (ISIs) [24].

To define ISI, we consider an SNN with N neurons and
S synapses, which is excited with an input over some finite
interval of time [0, T]. Neural activities in this time interval
generate K spikes. We organize these K spikes based on their
generation time and the source neuron of the SNN as

{t11, t12, · · · , t1k1
}, {t21, t22, · · · , t2k2

}, · · · , {tN1 , tN2 , · · · , tNkN
}, (1)

where tni is the time of the ith spike generated by the nth

neuron in the time interval [0, T] and K =
∑N

i=1 ki. The ISI
of this spike train is given by [25]

Ini = tni − tni−1 (2)

For a feedforward architecture [26], (spiking) neurons are
organized into layers, with one input layer, one or more hidden
layers, and one output layer. For these architectures, accuracy
is assessed from ISI of neurons in the (output) decision layer.
For other architectures such as the Liquid State Machine
(LSM) [27], ISI of critical neurons contribute to the accuracy.

Using CARLsim [28] we can simulate different machine
learning approaches and neural architectures, and extract ISI

Fig. 1: Overview of how SNNs are mapped to a crossbar in a
neuromorphic hardware.

from any neuron in the architecture. This makes CARLsim
our ideal starting point. However, CARLsim is an application-
level simulator meaning that hardware latencies are not in-
corporated. In a realistic scenario, ISI will be affected due
to hardware latency arising from two sources – 1) the fixed
latency within a crossbar to propagate current through synaptic
elements and 2) the variable latency of time multiplexing
in the shared interconnect. In Section III we describe our
framework SpiNeMap to obtain these latencies, starting from
the application-level simulation results using CARLsim.

To incorporate hardware latency in ISI computation, Equa-
tion 1 needs to be represented considering spike times at
individual synapse-level. This is because different synapses
have different latencies in neuromorphic hardware based on
whether they are mapped within crossbars (i.e., local synapses)
or on the shared interconnect (i.e., global synapses).

The spike times on synapses are

{τ11 , τ12 , · · · , τ1k1
}, {τ21 , τ22 , · · · , τ2k2

}, · · · , {τS1 , τS2 , · · · , τSkS
}, (3)

where τsj is the jth spike on sth synapse and spike timings in
the set {τsj } are obtained from spike timings in the set {tni }.
We can similarly define ISI for this spike as

Isj = τsj − τsj−1 (4)

We use the notation δsj to represent the latency of the jth spike
on sth synapse. The new ISI due to these latencies is

Isj |new = τsj + δsj − τsj−1 − δsj−1 (5)

The change in ISI (called ISI distortion) is given by

Isj |distortion = Isj |new − Isj = δsj − δsj−1 (6)

For local synapses, which are mapped within crossbars, all
spikes have the same latency, i.e., δsj = δsj−1. So, the ISI
distortion is zero. For global synapses, different spikes of the
same synapse can have different latencies due to the varying
congestion and routing paths on the shared interconnect. These
are the synapses that contribute to ISI distortion, i.e.,

Isj |distortion =

{
0 if s is mapped inside a crossbar
δsj − δsj−1 if s is mapped on the shared interconnect

(7)

ISI distortion due to the interconnect latency can lead
to unacceptable accuracy loss. Existing techniques [10]–[14]
minimize the latency inside crossbar, leaving the optimization
of the interconnect latency to system designers. In this work,
we reduce the average ISI distortion of spikes on all global
synapses. Our framework can also perform other optimizations
such as minimizing the maximum ISI distortion.

As we can clearly see from Equation 7, ISI distortion is
due to the latency to time-multiplex spikes on the shared

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 3

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning (PSO) local

synapses

global
synapses

Step 1: Train
SNN

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: Assign neurons
and synapses to

crossbars of
neuromorphic

hardware

(a) state-of-the-art approaches (e.g., NEUTRAMS, Eyeriss, PACMAN)

(b) our previous approach PSOPART

Minimum
number of
crossbars

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

ISI of
validation

data

(minimize #crossbars)

(minimize #global spikes)

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning

(SpiNeCluster) local
synapses

global
synapses

(b) our proposed methodology SpiNeMap

ISI of
validation

data

(minimize #global spikes)

Step 4: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

Step 3: SNN
Placement

(SpiNePlacer)

neuron and
synapse

placement

(minimize energy and latency)

Step 1: Train
SNN

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: Assign neurons
and synapses to

crossbars of
neuromorphic

hardware

Minimum
number of
crossbars

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data(minimize #crossbars)

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning (PSO) local

synapses

global
synapses

ISI of
validation

data

(minimize #global spikes)

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning

(SpiNeCluster) local
synapses

global
synapses

ISI of
validation

data

(minimize #global spikes)

Step 4: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

Step 3: SNN
Placement

(SpiNePlacer)

neuron and
synapse

placement

(minimize energy and latency)

(a) state-of-the-art approaches, e.g., NEUTRAMS [17]

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning (PSO) local

synapses

global
synapses

Step 1: Train
SNN

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: Assign neurons
and synapses to

crossbars of
neuromorphic

hardware

(a) state-of-the-art approaches (e.g., NEUTRAMS, Eyeriss, PACMAN)

(b) our previous approach PSOPART

Minimum
number of
crossbars

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

ISI of
validation

data

(minimize #crossbars)

(minimize #global spikes)

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning

(SpiNeCluster) local
synapses

global
synapses

(b) our proposed methodology SpiNeMap

ISI of
validation

data

(minimize #global spikes)

Step 4: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

Step 3: SNN
Placement

(SpiNePlacer)

neuron and
synapse

placement

(minimize energy and latency)

Step 1: Train
SNN

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: Assign neurons
and synapses to

crossbars of
neuromorphic

hardware

Minimum
number of
crossbars

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data(minimize #crossbars)

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning (PSO) local

synapses

global
synapses

ISI of
validation

data

(minimize #global spikes)

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning

(SpiNeCluster) local
synapses

global
synapses

ISI of
validation

data

(minimize #global spikes)

Step 4: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

Step 3: SNN
Placement

(SpiNePlacer)

neuron and
synapse

placement

(minimize energy and latency)

(b) our previous approach PSOPART [18]

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning (PSO) local

synapses

global
synapses

Step 1: Train
SNN

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: Assign neurons
and synapses to

crossbars of
neuromorphic

hardware

(a) state-of-the-art approaches (e.g., NEUTRAMS, Eyeriss, PACMAN)

(b) our previous approach PSOPART

Minimum
number of
crossbars

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

ISI of
validation

data

(minimize #crossbars)

(minimize #global spikes)

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning

(SpiNeCluster) local
synapses

global
synapses

(b) our proposed methodology SpiNeMap

ISI of
validation

data

(minimize #global spikes)

Step 4: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

Step 3: SNN
Placement

(SpiNePlacer)

neuron and
synapse

placement

(minimize energy and latency)

Step 1: Train
SNN

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: Assign neurons
and synapses to

crossbars of
neuromorphic

hardware

Minimum
number of
crossbars

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data(minimize #crossbars)

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning (PSO) local

synapses

global
synapses

ISI of
validation

data

(minimize #global spikes)

Step 3: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

Step 1: SNN
Simulation
(CARLsim)

SNN-based
application

Trained
SNN

Training
data

Validation
 data

Step 2: SNN
Partitioning

(SpiNeCluster) local
synapses

global
synapses

ISI of
validation

data

(minimize #global spikes)

Step 4: Deploy
SNN-based application

mapped to
neuromorphic

hardware

In-field data

Step 3: SNN
Placement

(SpiNePlacer)

neuron and
synapse

placement

(minimize energy and latency)

(c) our proposed design methodology SpiNeMap

Fig. 2: A high-level overview of our SpiNeMap mechanism
and its difference with state-of-the-art.

interconnect. This latency depends on the number of spikes
that must be communicated via the shared interconnect at any
given time (i.e., spike congestion). Therefore, by reducing the
number of spikes on global synapses we can reduce spike
congestion, which would reduce ISI distortion and improve
application performance. This is precisely the intuition behind
our optimization strategy for the partitioning approach in
our prior work PSOPART [18] and this current work. The
difference is that the partitioning approach in this work is
scalable to larger problem sizes than PSOPART (see Section
V-G for comparison with PSOPART).

III. SPINEMAP: MAPPING SPIKING NEURAL NETWORKS
TO NEUROMORPHIC HARDWARE

A. High-Level overview and difference with state-of-the-art

In Figure 2, we illustrate our SpiNeMap methodology and
its differences with state-of-the-art. In Figure 2(a), we illustrate
how NEUTRAMS [17] and PACMAN [16] can be used to
deploy SNN-based application on neuromorphic hardware.
These approaches use 3 steps: Step 1) train the SNN using
training data and validate the trained model, Step 2) pack
neurons and synapses to crossbars, minimizing the resource
requirements, and Step 3) deploy the trained SNN mapped to
the neuromorphic hardware for inference with in-field data.

Our previously-proposed PSOPART [18] also uses 3 steps
to deploy SNN-based applications for inference (see Figure
2(b)). The difference in our prior approach is that we minimize
the number of spikes on the global synapses to reduce ISI
distortion, which improves application performance. To do
so, we extract the spike count on every synapse of the SNN
corresponding to the validation data used in SNN simulation.

clu
ste

r A

cluster B

cluster C

global

synapse

local
synapse

local
synapse

gl
ob

al

sy
na

ps
e

global

synapse

A

B

C

(a) SNN clusters with local
and global synapse

(b) abstract representation

16

22

16

local
synapse

cluster A

cluster B

cluster C

3

3

6
3

8

4

4

6

2

3

3

6
3

8

4

4

6

2

3

3

6
3

8

4

4

6

2

inter-cluster spikes = 28 # inter-cluster spikes = 22

cluster Acluster B

cluster C

3

3

6
3

8

4

4

6

2

inter-cluster spikes = 8

cluster A

cluster B

clu
ste

r C

3

3

6
3

8

4

4

6

2

cluster A

cluster B

clu
ste

r C

local
synapses

global
synapses

Fig. 3: An example illustrating how an SNN with 8 neurons
is partitioned into 3 clusters with local and global synapses.

Algorithm 1: SNN Clustering algorithm.
1 foreach Ci, Cj ∈ C do

/* iterate over all cluster pairs */
/* begin 2-part procedure */

2 gs = total spikes between Ci and Cj ;
3 while True do
4 foreach ni ∈ Ci and nj ∈ Cj do
5 if ni and nj are not previously selected then
6 Move ni to Cj and calculate gs1;
7 Move nj to Ci and calculate gs2;
8 Swap ni and nj and calculate gs3;
9 Select the option which lowers gs;

10 Return new partitions C′
i, C

′
j ;

11 end
12 end
13 gs′ = total spikes between C′

i and C′
j ;

14 if gs′ < gs then
15 gs = gs′ and break;
16 end
17 end

/* end 2-part procedure */
18 end

The spike count information is used by PSOPART to partition
the SNN into local and global synapses using an instance of
the particle swarm optimization (PSO) [29].

In Figure 2(c), we illustrate our SpiNeMap. The key dif-
ference with our previously-proposed PSOPART is that we
propose a 4-step methodology, with the new SNN Placement
step explicitly minimizing energy consumption and latency
on the shared interconnect. This step is necessary for SNN
mapping to large neuromorphic architectures with many cross-
bars. To do so, we extract not only the spike count on
different synapses, but also their precise timing information
by simulating the SNN in CARLsim. These information about
spikes, also called spike trace, are then used in SpiNePlacer to
simulate the exact latency and energy consumption, consider-
ing spike traffic on the shared interconnect. Overall, the SNN
Partitioning and Placement steps jointly improve application
performance, energy consumption, and spike latency.

B. Detailed design of SNN Partitioning via SpiNeCluster

In Figure 3, we illustrate an SNN partitioned into three
clusters A, B, and C. The number of spikes communicated
between a pair of neurons is indicated on its synapse. We also
indicate the local synapses in black and the global ones in
blue in this figure. In this example, the total number of spikes
on global synapses is 8. To understand how SpiNeCluster
partitions an SNN, we introduce the following notations.

Let G(N ,S) be an SNN with a set N of neurons, and a
set S of synapses. A synapse si,j connects neuron ni with nj ,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 4

and communicates wi,j spikes. Our objective is to partition
this SNN into k clusters. Let H(C, E) be the partitioned SNN
with a set C of clusters, and a set E of global synapses. This
problem of transforming G(N ,S) → H(C, E) is a classic
graph partitioning problem [30], and has been applied in many
context, including task mapping on multiprocessor systems
[31]. The graph partitioning problem is already NP-complete
[32], so heuristics are typically used to solve them [33].
In our earlier work PSOPART [18], we use an instance of
particle-swarm optimization (PSO) [34] to solve this problem.
However, the approach becomes intractable as the size of the
SNN increases. Here we propose a greedy approach, roughly
based on the Kernighan-Lin Graph Partitioning algorithm [30],
which we show to be scalable to large SNNs.

We set k = d |N |nc
e, where nc is the number of neurons

that can be accommodated per crossbar. We make this choice
because by utilizing the minimum number of crossbars, the
overall energy consumption of the hardware can be minimized
[10]–[14]. Next, we evenly (and arbitrarily) distribute neurons
to these k clusters. Starting from this arbitrary assignment,
we analyze the change in the number of spikes on global
synapses by moving a single neuron from one cluster to
another, tracking and enforcing those changes that lead to
minimum number of spikes on global synapses.

We formalize these steps in Algorithm 1. The algorithm
applies a 2-part procedure (lines 2-17) to every cluster pair
(with a total of

(
k
2

)
iterations). In the 2-part procedure, we

first calculate the total number of inter-cluster spike (gs)
with the two clusters (line 2). Next, we select a pair of
neurons ni and nj from the two selected clusters Ci and
Cj , respectively, such that neither ni nor nj is selected in
the previous iterations (lines 4-5). We then perform three
operations: (1) move ni ∈ Ci to cluster Cj (if Cj can
accommodate more neurons) (line 6), (2) move nj ∈ Cj to
cluster Ci (if Ci can accommodate more neurons) (line 7),
and (3) swap ni and nj (line 8). We calculate the number of
inter-cluster spike for each of these operations, and select the
option that generates the maximum reduction of inter-cluster
spike compared to gs (line 9). We return the new clusters (line
10). We repeat the procedure (lines 4-13) while the number
of inter-cluster spike continues to be reduced (lines 14-16).

1) Time complexity: We compute the time complexity of
Algorithm 1 as follows: Line 2-17 are executed

(k
2

)
times. At

each iteration, lines 4-16 is iterated for every neurons of the
a cluster with each cluster accommodating a maximum of nc

neurons. This time complexity is therefore

time complexity = O

((k
2

)
× nc ∗ nc

)
= O

(
k2 × n2

c

)
= O

(
|N |2

)
(8)

where k = d |N|
nc
e.

C. Detailed design of SNN Placement via SpiNePlacer

In Figure 4, we illustrate how a partitioned SNN (obtained
via SpiNeCluster) can be placed on to the hardware, which
consists of three crossbars arranged in a mesh topology.
Different placement alternatives lead to different interconnect
lengths traversed by spikes to reach their destinations. This
impacts both energy consumption and latency, meaning that

1,0

2,0

Fig. 4: Illustrating the impact of different placements of
clusters of a partitioned SNN on a neuromorphic hardware.

CARLsim
SpiNeCluster
(Algorithm 1)

SpiNePlacer

Noxim++

SNN-based
application
mapped to

neuromorphic
hardware

SNN-based
application

DynapSE

Fig. 5: Our design methodology SpiNeMap.

the placement problem is no longer a trivial one, especially for
large neuromorphic architectures (a limitation of NEUTRAMS
[17], PACMAN [16], Eyeriss [35], and PSOPART [18]).

To accurately estimate the energy and latency impact of
different placement alternatives, we have extended the Noxim
[36], a cycle-accurate interconnect simulator, to support 1)
simulation of spike traces from CARLsim containing in-
formation (generation time, source neuron, and destination
neuron) of every spike in an SNN and clustered to generate
information about communication on global synapses, i.e.,
broadcast, multicast and one-to-one, 2) simulation of current
and emerging interconnect topologies of neuromorphic archi-
tectures, 3) simulation of different routing algorithms, and 4)
technology-specific energy and latency of interconnect wires
and switches. We call our new framework Noxim++. In Figure
5 we present our design methodology SpiNeMap, illustrating
how Noxim++ is integrated in the SpiNePlacer and configured
to model the DynapSE neuromorphic platform [7]. We now
formalize the optimization problem of our SpiNePlacer.

We consider the mapping of a clustered SNN H(C, E) to
the neuromorphic architecture A(V, I), where V is the set of
crossbars in the architecture and I is the set of connections
of these crossbars for a given interconnect topology.

Mapping M : H(C, E) → A(V, I) is represented by a logical
matrix (mij) ∈ {0, 1}|C|×|V|, where mij is defined as

mij =

{
1 if cluster ci ∈ C is mapped to crossbar vj ∈ V
0 otherwise

(9)

The constraints in this formulation are the following:
1. A cluster can be mapped to only one crossbar, i.e.,∑

j

mij = 1 ∀i (10)

2. A crossbar can accommodate at most one cluster, i.e.,∑
i

mij ≤ 1 ∀j (11)

We use our Noxim++ framework to evaluate a mapping
in terms of the optimization objective of SpiNePlacer, i.e.,
to minimize energy consumption and spike latency on the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 5

interconnect. In has been shown in many prior works such as
[37] that minimizing these metrics is equivalent to minimizing
the average number of hops that spikes communicate before
reaching their destination (see also the formulations in Section
IV-D). Let Li be the average hop count for the cluster
mapping Mi obtained using Noxim++, i.e., Li = Noxim++(Mi).
The optimization objective of our SpiNePlacer is to find the
mapping with the minimum average hop count, i.e.,

Lmin = La, where a = arg min{Noxim++(Mi)|i ∈ 1, 2, · · · , Nm},
(12)

where Nm is the total number of mappings evaluated. Of
different techniques to generate and evaluate cluster mappings,
we use an instance of PSO, which we describe next.

In general, PSO finds the optimum solution to a fitness
function F . There can be several particles in the swarm.
The position of these particles are solutions to the fitness
functions, and they represent cluster mappings, i.e., M’s in
Equation 12. Each particle also has a velocity with which
it moves in the search space to find the optimum solution.
During the movement, a particle updates its position and
velocity according to its own experience (closeness to the
optimum) and also experience of its neighbors. We introduce
the following notations for PSO.

D = dimensions of the search space (13)
np = number of particles in the swarm

Θ = {θl ∈ RD}np−1

l=0 = positions of particles in the swarm

V = {vl ∈ RD}np−1

l=0 = velocity of particles in the swarm

Here θl is the position of the lth particle in the swarm, and
translates to the mapping Ml. D is therefore the dimension of
the logical mapping matrix M , i.e., D = |C| × |V|.

Position and velocity updates are performed according to
the following equation.

Θ(t+ 1) = Θ(t) + V(t+ 1) (14)

V(t+ 1) = V(t) + ϕ1 ·
(
Pbest −Θ(t)

)
+ ϕ2 ·

(
Gbest −Θ(t)

)
where t is the iteration number, ϕ1, ϕ2 are constants and Pbest

(and Gbest) is the particles own (and neighbors) experience.
The fitness function is then

F (θl) = Ll = Noxim++(Ml) (15)

Once the fitness function is computed for all particles in the
swarm, the personal best position of each particle (P t

best) and
the global best position of the swarm (Gbest) are updated using
Equation 16.

P t
best = F (θt) if F (θt) < F (P t

best)

Gbest = min
t=0,...np−1

P t
best (16)

Due to the binary formulation of the mapping problem (see
Equation 9), we need to binarize the velocity and position of
Equation 13, which we illustrate below.

Start

Calculate Fitness
F(𝛳t)

Equation (15)

Initialize Polulation
Equation (9)

F(𝛳t)<F(Pt
best)

Equation (16)
Retain Pbest Update Pbest

Update GbestRetain Gbest

Update Velocity (V)
Equation (14)

Update Position (𝛳)
Equation (14)

Convergence
criteria
met?

No

No

Yes

Yes

No

End
Yes

min(Pt
best)< Gbest

Equation (16)
t=0...np-1

m
u
lt

ip
le

 In
vo

ca
ti

on
s

Fig. 6: Flow chart of our PSO algorithm.

V̂ = sigmoid(V) =
1

1 + e−V

Θ̂ =

{
0 if rand() < V̂

1 otherwise
(17)

In finding a new position of a PSO particle, we use the two
constraints in Equations 10 & 11.

1) PSO Algorithm: In Figure 6, we describe our iterative
PSO algorithm that uses the analytical formulations we intro-
duced in Equations 10-17. The algorithm begins by initializing
the position of the PSO particles that satisfies constraints 10
& 11. Then the algorithm runs for nISO iterations. At each
iteration, the PSO algorithm evaluates the fitness function
(Equation 15) and updates its position based on the local and
global best positions (Equation 14), binarizing these updates
using Equation 17. The time complexity of the PSO algorithm
is therefore O(nISO × operations in each iteration), where operations
in each iteration is proportional to the PSO dimension D =

|C|× |V| and the number of particles np. We represent the time
complexity as

time complexity of PSO = O (nISO × np × |C| × |V|) (18)

D. Justification of SpiNeMap’s design choices

In this section, we motivate SpiNeMap’s design choices.
1) Minimize spike count at the partitioning stage: To jus-

tify our optimization objective of minimizing the number of
spikes at the partitioning stage of our design methodology,
we conducted an experiment with the hand written digit

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 6

1.92M 2.13M 2.27M 2.32M 2.34M
Total number of spikes on the shared interconnect

2x

4x

6x

8x

Pe
rfo

rm
an

ce

1.0
1.9

3.2

5.5
6.2

1.0
1.6

18.8 43.1
67.8

1.3

4.9

11.0 22.5 22.5
time-multiplexing latency
ISI distortion
drop in accuracy

Fig. 7: Latency, ISI distortion, and accuracy as a function
of the number of spikes on the global interconnect for the
handwritten digit recognition example.

recognition example, where as the number of spikes on the
shared interconnect is increased, the latency and average
ISI distortion on the time-multiplexed interconnect, and the
classification accuracy are recorded. We use the hardware
configuration of DynapSE, with four crossbars organized in
a 2x2 mesh with XY routing algorithm. Each crossbar can
accommodate 256 neurons. We report these results in Figure
7, with the latency and ISI distortion normalized to the case
with minimum number of spikes on the shared interconnect.
The drop in accuracy is calculated with respect to the accuracy
obtained when the number of spikes on the shared interconnect
in the minimum.

We observe that as the number of spikes on the shared
interconnect increases, the latency increases, increasing the ISI
distortion. This lowers the application accuracy. We observe a
similar behavior for all our evaluated applications.

2) Integration of Noxim++ within PSO: The average hop
count of spikes communicated between clusters (i.e., cross-
bars) on the shared interconnect depends on 1) the cluster
mapping M and 2) the routing algorithm that dynamically
routes spikes on the interconnect to avoid congestion of in-
terconnect links. Our PSO incorporates cluster mapping in the
fitness function. Due to the dynamic nature of spike routing for
congestion avoidance, we need to simulate the cycle-accurate
behavior of the interconnect for every mapping with the spike
trace generated from CARLsim to accurately compute the
hop distance that each spike traverses before reaching its
destination. This motivates our strategy to integrate Noxim++
within PSO to minimize the average hop count.

3) Using PSO only for SpiNePlacer: We use binary particle
swarm optimization (PSO) [29], an evolutionary computing
technique inspired by social behaviors such as bird flocking
and fish schooling. Evolutionary computing techniques, in
general, are efficient in avoiding being stuck at local optima.
Additionally, PSO is computationally less expensive with
faster convergence compared to its counterparts such as genetic
algorithm (GA) or simulated annealing (SA).

In our earlier work [18], we use PSO for SNN partitioning
(equivalent of SpiNeCluster). In this work we use PSO only
for SpiNePlacer and a greedy approach for SpiNeCluster. The
rationale behind this is as follows.

Had PSO been used for SpiNeCluster, the total number of

dimensions for each particle in PSO would be D = |N |× |C|.
The total number of dimensions of each particle in the PSO of
SpiNePlacer is D = |C| × |V|. In Table II, we compare these
dimensions for different SNN sizes, with a fixed neuromorphic
hardware (16 crossbars, with 256 neurons each).

of PSO dimensions (D) for
SNN neurons SNN partitioning SNN placement

1,000 16,000 64
2,000 32,000 128
3,000 48,000 192
4,000 64,000 256

TABLE II: Dimensions of PSO to solve partitioning and
placement problems, for different SNN sizes on a fixed neu-
romorphic hardware with 16 crossbars, and 256 neurons each.

As we can clearly see from Table II, the PSO problem of
partitioning soon becomes intractable with modest size SNNs,
even if we restrict to 1000 particles (each with dimensions
D) in the swarm. To keep the solution time reasonable, we
therefore, use PSO only for the placement problem (viz.
SpiNePlacer), and use a greedy approach instead for the
partitioning problem (viz. SpiNeCluster).

IV. EVALUATION METHODOLOGY

We build SpiNeMap with the following system components.
• CARLsim [28] : A GPU accelerated simulator used to

train and test SNN-based applications. CARLsim reports
spike times for every synapse in the SNN.

• Noxim++ [36] : A trace-driven and cycle-accurate inter-
connect simulator for multiprocessor systems. We extend
it (1) to incorporate crossbar-based neuromorphic hard-
ware, (2) to communicate spikes (rather than data pack-
ets), and (3) to generate key performance statistics such as
energy consumption, spike latency and ISI distortion. In
our SpiNeMap mechanism, the spike timing information
from CARLsim is used as trace and is input to Noxim++
to generate the performance statistics.

• DynapSE [7]: We configure Noxim++ to model the
DynapSE neuromorphic hardware at 65nm technology
nodes with 256 neurons per crossbar. The crossbars
are interconnected using a multi-stage networks-on-chip
(NoCs) [38]. We extract the latency and energy numbers
of each crossbar from silicon data [39]. We also use
the analytical performance and energy model of the
interconnect network at 65nm technology. Finally, we
use predictive technology mapping (PTM) [40] to scale
technology parameters to 28nm nodes.

A. Simulation environment

We conduct all experiments on a system with 8 CPUs, 32GB
RAM, and NVIDIA Tesla GPU, running Ubuntu 16.04.

B. Evaluated applications

In order to evaluate the effectiveness of SpiNeMap, we use 7
synthetic and 8 realistic SNN applications. These applications

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 7

Category Applications Synapses Topology Spikes

synthetic

S 1000 240,000 FeedForward (400, 400, 100) 5,948,200
S 1500 300,000 FeedForward (500, 500, 500) 7,208,000
S 2000 640,000 FeedForward (800, 400, 800) 45,807,200
S 2500 1,440,000 FeedForward (900, 900, 700) 66,972,600
S 3000 2,000,000 FeedForward (1000, 1000, 1000) 155,123,000
S 3500 2,500,000 FeedForward (1000, 1000, 1500) 46,476,000
S 4000 3,750,000 FeedForward (1500, 1500, 1000) 149,580,500

realistic

ImgSmooth [28] 136,314 FeedForward (4096, 1024) 17,600
EdgeDet [28] 272,628 FeedForward (4096, 1024, 1024, 1024) 22,780

MLP-MNIST [41] 79,400 FeedForward (784, 100, 10) 2,395,300
HeartEstm [2] 636,578 Recurrent 3,002,223

HeartClass [42] 2,396,521 CNN1 1,036,485
CNN-MNIST [43] 159,553 CNN2 97,585
LeNet-MNIST [43] 1,029,286 CNN3 165,997
LeNet-CIFAR [43] 2,136,560 CNN4 589,953

1. Input(82x82) - [Conv, Pool]*16 - [Conv, Pool]*16 - FC*256 - FC*6
2. Input(24x24) - [Conv, Pool]*16 - FC*150 - FC*10
3. Input(32x32) - [Conv, Pool]*6 - [Conv, Pool]*16 - Conv*120 - FC*84 - FC*10
4. Input(32x32x3) - [Conv, Pool]*6 - [Conv, Pool]*6 - FC*84 - FC*10

TABLE III: 7 synthetic and 8 realistic applications we use to
evaluate SpiNeMap.

are described in Table III. We indicate the synthetic applica-
tions with the letter ‘S’ followed by a number (e.g., S 1000),
where the number represents the total number of neurons
in the synthetic SNN. We use 7 synthetic SNN applications
with number of neurons between 1000 to 4000. In column
3 of this table, we indicate the number of synapses in the
networks, while in column 4 we describe the corresponding
SNN topology. The total number of synapse in these synthetic
applications ranges from 240,000 in S 100 to 3.75M in S4000.

We use eight realistic applications: image smoothing
(ImgSmooth) [28] on 64x64 images, edge detection (EdgeDet)
[28] on 64x64 images using difference-of-Gaussian, multi-
layer perceptron (MLP)-based handwritten digit recognition
(MLP-MNIST) [41] on 28x28 images of handwritten digits,
ECG-based heart-rate estimation (HeartEstm) [2], ECG-based
heart-beat classification (HeartClass) [42], CNN-based digit
classification (CNN-MNIST) [43], [44], CNN-based digit clas-
sification with LeNet (LeNet-MNIST) [43], and CNN-based
CIFAR image classification with LeNet (LeNet-CIFAR) [43].
We note that the last three applications are part of the MLPerf
benchmark suite [43] and developed using analog computation
model. We convert these applications into spike-based model
using the CNN-to-SNN conversion tool N2D2 [45].

Finally, in the last column of Table III we report the
total number of spikes for these applications obtained through
simulation of the representative validation data using CARL-
sim [28]. The spike trace from CARLsim is clusted using
SpiNeCluster, and placed on crossbars using SpiNePlacer.

C. Evaluated state-of-the-art techniques

We evaluate the following four approaches.
• Baseline: The Baseline uses NEUTRAMS [17] to cluster

SNNs, minimizing the use of crossbars.
• SCO: The SCO approach uses the framework of [13] to

balance the utilization of crossbars in the hardware.
• PSOPART: Our previously-proposed PSOPART [18]

clusters SNNs to minimize the total number of spikes
on the shared interconnect.

• SpiNeMap: Our SpiNeMap uses (1) SpiNeCluster to
partition SNNs into clusters to minimize the total number

SpiNeMap
Energy Spike ISI Application

Consumption Latency Distortion Accuracy
(Sec. V-B) (Sec. V-C) (Sec. V-D) (Sec. V-E)

vs. Baseline [17] 45% 21% 36% 12%
vs. SCO [13] 40% 27% 39% 20%
vs. PSOPART [18] 20% 13% 23% 5%

TABLE IV: Average improvement summary using SpiNeMap
for all our evaluated applications.

of spikes on the shared interconnect and (2) SpiNePlacer
to optimize the placement of clusters to crossbars of the
neuromorphic hardware to minimize energy consumption
and latency on the shared interconnect.

D. Evaluated metrics

We evaluate all four approaches in terms of the following
metrics for every application.
• Total number of spikes on the shared interconnect: This

is the number of spikes (Ns) on the shared interconnect
obtained after mapping synapse clusters to crossbars of
the neuromorphic hardware.

• Spike latency on the shared interconnect: This is the de-
lay experienced by spikes before reaching their destina-
tion, averaged over all spikes [37], i.e.,

L =

Ns∑
i=1

[(hi − 1) ∗ lw + hi ∗ ls]/Ns, (19)

where hi is the number of hops that spikes traverses
between the source crossbar and destination crossbar, lw
is the delay on the wires connecting two crossbars, and
ls is the delay of the hop.

• Energy consumption on the shared interconnect: This is
the total energy consumed by all spikes on the shared
interconnect [37], i.e.,

E =

Ns∑
i=1

[(hi − 1) ∗ ew + hi ∗ es], (20)

where ew and es are the energy consumption on the wires
and hops, respectively.

• Average ISI distortion: This is motivated in Section II
and computed using Equation 7, averaged over all spikes,
i.e.,

I =

Ns∑
i=1

Ii|distortion/Ns, (21)

V. RESULTS AND DISCUSSIONS

A. Improvement summary

In Table IV, we summarize the average improvements of
SpiNeMap against the Baseline [17], SCO [13], and our
previously-proposed PSOPART [18].

We now describe these results in details.

B. Energy consumption on the shared interconnect

In Figure 8, we report the energy consumption on the
shared interconnect of each of our applications for each of
our evaluated systems normalized to the Baseline. We make
the following three observations.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 8

S_
10

00
S_

15
00

S_
20

00
S_

25
00

S_
30

00
S_

35
00

S_
40

00
Im

gS
moo

th
Ed

ge
De

t
ML

P-M
NI

ST
He

ar
tE

stm
He

ar
tC

las
s

CN
N-

MN
IST

Le
Ne

t-M
NI

ST
Le

Ne
t-C

IFA
R

Av
er

ag
e

0.0

0.5

1.0

1.5
En

er
gy

 c
on

su
m

pt
io

n
no

rm
al

ize
d

to
 th

e
Ba

se
lin

e
Baseline
SCO

PSOPART
SpiNeMap

Fig. 8: Energy consumption on the shared interconnect nor-
malized to the Baseline.

First, the average energy consumption of SCO is very
similar to that of the Baseline. For some workloads such as
S 2500 it achieves 45% lower energy consumption, while for
other workloads such as EdgeDet it has 43% higher energy
consumption than the Baseline. These differences are due to
the earlier discussed distinction in the optimization objective
for these two approaches. Second, PSOPART has 31% lower
average energy consumption than the Baseline. This reduction
is because PSOPART minimizes the total number of global
spikes, which also reduces the energy consumption on the
shared interconnect. Third, SpiNeMap has the lowest energy
consumption of all our evaluated systems (45% lower average
energy consumption than the Baseline, 40% lower than SCO,
and 20% lower than PSOPART). These improvements are
because of SpiNeMap’s optimization policies: 1) SpiNeCluster
reduces the total number of spikes on the shared interconnect,
which lowers energy consumption, and 2) SpiNePlacer places
the clusters on crossbars of the hardware to minimize both
latency and energy consumption on the shared interconnect.

C. Spike latency on the shared interconnect

In Figure 9, we report the spike latency of the global
synapses on the shared interconnect of each of our applications
for each of our evaluated systems normalized to the Baseline.
We make the following three observations.

S_
10

00
S_

15
00

S_
20

00
S_

25
00

S_
30

00
S_

35
00

S_
40

00
Im

gS
moo

th
Ed

ge
De

t
ML

P-M
NI

ST
He

ar
tE

stm
He

ar
tC

las
s

CN
N-

MN
IST

Le
Ne

t-M
NI

ST
Le

Ne
t-C

IFA
R

Av
er

ag
e

0.0

0.5

1.0

1.5

Sp
ik

e
la

te
nc

y
no

rm
al

ize
d

to
 th

e
Ba

se
lin

e Baseline
SCO

PSOPART
SpiNeMap

Fig. 9: Spike latency on the shared interconnect normalized to
the Baseline.

First, the average spike latency of SCO is 14% higher
than the Baseline. This increase is because SCO balances
the crossbar utilization in the hardware and in doing so
it can place certain synapses with large number of spikes

on the shared interconnect, increasing the congestion and
therefore the latency. Second, PSOPART has 9% lower average
spike latency than the Baseline. This improvement is because
PSOPART reduces the total number of spikes on the shared
interconnect, which reduces spike congestion, improving the
latency. Third, SpiNeMap has the lowest average spike latency
among all our evaluated systems (21% lower average spike
latency than the Baseline, 27% lower than SCO, and 13% lower
than PSOPART). These improvements are due to SpiNeMap’s
optimization policies: 1) SpiNeCluster, which reduces the
number of spikes on the shared interconnect, reducing con-
gestion and latency and 2) SpiNeCluster, which minimizes
latency by minimizing the average number of hop counts that
spike traverses before reaching their destination.

D. Average ISI distortion of spikes on the shared interconnect
In Figure 10, we compare the average inter-spike interval

(ISI) distortion on the shared interconnect of each of our
applications for each of our evaluated systems normalized to
the Baseline. We make the following three observations.

S_
10

00
S_

15
00

S_
20

00
S_

25
00

S_
30

00
S_

35
00

S_
40

00
Im

gS
moo

th
Ed

ge
De

t
ML

P-M
NI

ST
He

ar
tE

stm
He

ar
tC

las
s

CN
N-

MN
IST

Le
Ne

t-M
NI

ST
Le

Ne
t-C

IFA
R

Av
er

ag
e

0.0

0.5

1.0

1.5
IS

I d
ist

or
tio

n
no

rm
al

ize
d

to
 th

e
Ba

se
lin

e Baseline
SCO

PSOPART
SpiNeMap

Fig. 10: Average ISI distortion normalized to the Baseline.

First, the ISI distortion of SCO is 12% higher than the
Baseline. This increase is due to the increase in total spikes on
the shared interconnect, which increases spike congestion and
ISI distortion. Second, PSOPART has 21% lower average ISI
distortion than the Baseline. This reduction is due to the reduc-
tion of the number of spikes on the shared interconnect. Third,
SpiNeMap has the lowest ISI distortion of all our evaluated
systems (36% lower average ISI distortion than the Baseline,
39% lower than SCO, and 23% lower than PSOPART). The
improvement with respect to PSOPART is because of our new
SpiNePlacer step (see Figure 2), which further reduces the ISI
distortion while reducing the spike latency.

E. Application accuracy
In Figure 11, we report the application accuracy of each of

our applications for each of our evaluated systems normalized
to the Baseline. We observe that the accuracy results directly
correlate with the ISI distortion results we presented in Section
V-D. Specifically, the accuracy using SCO is lower than the
Baseline by an average 6% due to the 12% increase in ISI
distortion. PSOPART increases the accuracy by 7% due to the
17% reduction of ISI distortion. Finally, SpiNeMap achieves
the highest accuracy among all our evaluated systems (12%

higher average accuracy than the Baseline, 20% higher than
SCO, and 5% higher than PSOPART).

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 9

S_
10

00
S_

15
00

S_
20

00
S_

25
00

S_
30

00
S_

35
00

S_
40

00
Im

gS
moo

th
Ed

ge
De

t
ML

P-M
NI

ST
He

ar
tE

stm
He

ar
tC

las
s

CN
N-

MN
IST

Le
Ne

t-M
NI

ST
Le

Ne
t-C

IFA
R

Av
er

ag
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Ap

pl
ica

tio
n

ac
cu

ra
cy

no

rm
al

ize
d

to
 th

e
Ba

se
lin

e Baseline SCO PSOPART SpiNeMap

Fig. 11: Application accuracy normalized to the Baseline.

F. Evaluation of SpiNeCluster in terms of spike count

In Figure 12, we compare the total number of spikes
communicated on the shared interconnect of each of our
applications for each of our evaluated systems normalized to
the Baseline. We make the following three observations.

S_
10

00
S_

15
00

S_
20

00
S_

25
00

S_
30

00
S_

35
00

S_
40

00
Im

gS
moo

th
Ed

ge
De

t
ML

P-M
NI

ST
He

ar
tE

stm
He

ar
tC

las
s

CN
N-

MN
IST

Le
Ne

t-M
NI

ST
Le

Ne
t-C

IFA
R

Av
er

ag
e

0.0

0.5

1.0

1.5

Av
er

ag
e

sp
ik

e
co

un
t

no
rm

al
ize

d
to

 th
e

Ba
se

lin
e Baseline

SCO
PSOPART
SpiNeMap

Fig. 12: Number of spike on the shared interconnect normal-
ized to the Baseline.

First, SCO has an average 6% higher number of spikes
on the shared interconnect compared to the Baseline. These
extra spikes increases the energy consumption on the shared
interconnect, which we presented in Section V-B. Second,
PSOPART has 23% lower number of spikes due to the PSO
approach, which explicitly minimizes the total number of
spikes on the shared interconnect. Third, SpiNeMap generates
the lowest number of spikes on the shared interconnect (26%

lower than the Baseline, 24% lower than SCO, and 9% lower
than PSOPART) The improvement over PSOPART is due to
the greedy approach of Algorithm 1, which outperforms the
PSO, especially for the large application use-cases.

G. Evaluation of SpiNeCluster in terms of optimization time

In Figure 13, we compare the execution time of our new
clustering algorithm (Algorithm 1) against the PSO-based
clustering approach of PSOPART normalized to the Baseline.

We observe that our SpiNeCluster has an average 3x
lower execution time than our previously-proposed PSO-based
PSOPART. Additionally, we have shown in Section V-F that
Algorithm 1 generates an average 9% lower number of spikes
than the PSO-based solution, improving energy consumption,
spike latency, and application accuracy. We conclude that

S_
10

00
S_

15
00

S_
20

00
S_

25
00

S_
30

00
S_

35
00

S_
40

00
Im

gS
moo

th
Ed

ge
De

t
ML

P-M
NI

ST
He

ar
tE

stm
He

ar
tC

las
s

CN
N-

MN
IST

Le
Ne

t-M
NI

ST
Le

Ne
t-C

IFA
R

Av
er

ag
e

0.0

0.5

1.0

1.5

2.0

Ex
ec

ut
io

n
tim

e
no

rm
al

ize
d

to
 th

e
Ba

se
lin

e
 (l

og
sc

al
e)

Baseline PSOPART SpiNeMap

Fig. 13: Execution time normalized to the Baseline.

our new clustering algorithm is scalable and generates better
results than our previously-proposed PSO-based approach.

H. Interconnect design explorations

In Figure 14, we illustrate how our design methodology
can be used for explorations on interconnect for neuromorphic
hardware. In this figure, we compare XY routing, which is
used in DynapSE against NorthLast and WestFirst routing
algorithms. Finally, we evaluate our previously-proposed seg-
mented bus [46] as an alternative to the multi-stage NoC used
in the DynapSE neuromorphic platform. We evaluate these
alternatives for all our evaluated workloads. We make the
following two observations.

S_
10

00
S_

15
00

S_
20

00
S_

25
00

S_
30

00
S_

35
00

S_
40

00
Im

gS
moo

th
Ed

ge
De

t
ML

P-M
NI

ST
He

ar
tE

stm
He

ar
tC

las
s

CN
N-

MN
IST

Le
Ne

t-M
NI

ST
Le

Ne
t-C

IFA
R

Av
er

ag
e

0.0

0.5

1.0

1.5

Sp
ik

e
la

te
nc

y
no

rm
al

ize
d

to
 S

pi
Ne

M
ap

wi

th
 X

Y
ro

ut
in

g

XY NorthLast WestFirst SegmentedBus

Fig. 14: Exploration of interconnects and routing algorithms
using SpiNeMap

First, the NorthLast and WestFirst routing algorithms have
an average 7% and 4% higher latency than the default XY rout-
ing algorithms, meaning that the XY routing algorithm is the
most suitable one for the applications. Second, the segmented
bus interconnect has the lowest spike latency among all our
evaluated routing algorithms (average 54% lower for all these
three routing algorithms). Lower spike latency leads to lower
energy consumption and higher application performance.

Our SpiNeMap design methodology allows simulating
NoCs, segmented bus, and other interconnect topologies, fa-
cilitating future research on scalable interconnect for neuro-
morphic computing. Our continuing work is to extend the
SpiNeMap with architecture of TrueNorth, Loihi, and other
neuromorphic hardware platforms.

VI. RELATED WORKS

This is the first work that jointly addresses the partition-
ing and placement of SNNs on crossbar-based neuromorphic

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 10

hardware, minimizing the energy consumption, spike latency,
and ISI distortion, and improving application accuracy.

A. SNN-based machine learning

Machine learning techniques such as neural networks [26]
have proved to be immensely successful in many domains
such as computer vision [47] and natural language processing
[48]. The machine learning database MLPerf [43] provides
a comprehensive collection of these applications. We demon-
strate the performance of SpiNeMap using applications from
MLPerf benchmark suite. Compared to analog and rate
models, machine learning techniques implemented with spike
model [49] and brain-inspired learning algorithms [50], e.g.,
spiking neural networks [1], have ultra-low power footprint
when executed on neuromorphic hardware such as DYNAP-
SE [7], TrueNorth [?], and Loihi [6]. This makes spike-
based computation model attractive for implementing machine
learning applications on these devices. Verstraeten et al.
propose reservoir computing with SNNs for speech recognition
[51]. Grzyb et al. use spiking liquid state machine for facial
recognition [52]. Diehl et al. propose hand-written digit recog-
nition using SNNs [41]. We have previously proposed a liquid
state machine approach for heart-rate estimation from ECG
signals [2]. We demonstrate the performance of SpiNeMap
using some of these applications.

Recent works have demonstrated techniques to convert
operations of analog computation model to spike model. One
example is the N2D2 tool [45]. Using this tool we have previ-
ously demonstrated the SNN implementation of convolutional
neural networks (CNN)-based heart-beat classification [42].

B. Neuromorphic hardware

Recently, several research initiatives are undertaken to de-
velop crossbar-based neuromorphic hardware using the emerg-
ing non-volatile memory technologies. Ramasubramanian et
al. propose to use Spin-transfer torque magnetic RAM (STT
MRAM) to build neuromorphic crossbars [53]. Burr et al.
propose to use phase-change memories (PCM) to design neu-
romorphic crossbars [22]. Mallik et al. propose to use oxide-
based resistive RAM (OxRAM) as alternative [54]. While all
these orthogonal works focus on the design of a crossbar, we
focus on the architecture of a neuromorphic chip integrating
multiple such crossbars. To this end, Khan et al. propose a
mapping strategy for SNNs on the SpiNNaker platform [55].
Ji et al. propose NEUTRAMS for mapping neural networks on
crossbar-based neuromorphic hardware [17]. In Section V we
compare SpiNeMap against NEUTRAMS (i.e., the Baseline)
and found that SpiNeMap is significantly better in terms of
energy, latency, and application accuracy.

C. SNN and neuromorphic simulators

SpiNeMap is a technique that maps trained SNNs on the
neuromorphic hardware. To this end, there are several choices
for application-level SNN simulators that can generate trained
SNNs. PyNN [56] is a high level, simulator-independent
interface used for building neuronal models by providing high

level abstractions allowing the access of low-level details like
neuron and synapse models of the computing back-end. There
are also other simulators such as Brian [57], GeNN [58], and
NEST [59]. We use CARLsim [28] due to its detailed STDP
and homeostasis models, parameter tuning, and multi-GPU
support to accelerate the simulation. Nevertheless, SpiNeMap
can be combined with any other SNN simulators.

D. Related concepts in similar domains

Graph partitioning problem has been extensively used for
multiprocessor systems, where an application task graph is
partitioned to map tasks on the processing cores. The survey
paper [60] provides an overview of different mapping tech-
niques and optimization objectives that have been proposed
for multiprocessor systems. These mapping techniques cannot
be directly used for clustering because of the new metric ISI
distortion that is specific to SNN. We chose the clustering
technique in SpiNeCluster because it is scalable and generates
a good starting solution for the SpiNePlacer.

VII. CONCLUSION AND FUTURE OUTLOOK

This paper introduces SpiNeMap, a design methodology to
map SNN-based applications to crossbar-based neuromorphic
hardware. SpiNeMap completes the mapping in two steps. In
Step 1 (SpiNeCluster), we use a heuristic-based clustering al-
gorithm to partition SNNs into local and global synapses, with
local synapses mapped within crossbars, and global synapses
to the shared interconnect. Our objective is to minimize the
number of spikes on the shared interconnect, which reduces
spike congestion, leading to a reduction of the ISI distortion. In
Step 2 (SpiNePlacer), we use an instance of the particle swarm
optimization (PSO) to place clusters on physical crossbars
in the hardware, optimizing energy consumption and spike
latency on the shared interconnect.

Our optimization strategies in the two steps also improves
application accuracy. We evaluate SpiNeMap using synthetic
and realistic SNN applications. SpiNeMap reduces energy
consumption on the shared interconnect by 45% and spike
latency by 21%, compared to the state-of-the-art techniques.
This reduces ISI distortion by 36%, which improves application
accuracy by 12% over state-of-the-art approaches.

We believe that SpiNeMap is an end-to-end
design methodology to map SNN applications on
neuromorphic hardware. Our SpiNeMap framework
is open-sourced and can be downloaded from the url
https://github.com/drexel-DISCO/SpiNeMap.

A. Future Outlook

In this section, we describe how our design methodology
SpiNeMap can be used to advance neuromorphic computing.

1) Mapping new machine learning approaches to hardware:
Supervised machine learning approaches are usually limited
when remembering and dealing with rare events. Advanced
machine learning approaches are therefore investigated. Many
of these new proposals are based on spiking events. Examples
include the liquid state machine [27], zero-shot learning

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 11

[61], one-shot learning [62], lifelong learning [63], transfer
learning [64], and deep reinforcement learning [65] among
others. All these new approaches can be mapped to hardware
using SpiNeMap, by first simulating the application behavior
in CARLsim, and then using the spike trace to partition and
place the clusters on to hardware. In fact, in this work we
demonstrate the mapping of one such emerging machine
learning approach viz the liquid state machine implemented
in the HeartEstm application.

From the computational neuroscience models front, we have
demonstrated our design methodology SpiNeMap using the
spike-based model. Machine learning algorithms designed with
the analog model such as CNN or MLP can also be used in
our design methodology by first converting the analog model
to a spike-based model before presenting the application to
SpiNeMap. In this work, we demonstrate this using three ana-
log CNN-based applications. We converted these applications
to spike-based model using the N2D2 tool [45].

For the rate model, information is encoded as average firing
rate of neurons in the SNN. ISI distortion due to congestion
on the interconnect does not always lead to performance loss
as long as the average number of spikes received within a
given time interval remains the same. A relevant metric for
the rate model to capture the effect of spike congestion on
the shared interconnect is the spike disorder. We provide a
proper intuition behind spike disorder as follows: We consider
that a source neuron generates three spikes at time t = 0ns,
5ns, 25ns and 50ns. The spike rate of the source neuron are
200MHz and 50MHz, respectively. These three spikes need
to be communicated to a destination neuron. We consider
a scenario where spike 0 and 2 are received earlier at the
destination neurons at time t = 5ns and 30ns, and spike
1 is re-routed due to congestion, reaching the destination
neuron at t = 35ns. The spike rate received at the destination
is therefore 40MHz and 200MHz, respectively. This spike
disorder can lead to performance loss. We can formalize the
definition of spike disorder as follows. Let F i = {F i

1, · · · , F i
ni
}

be the expected spike arrival rate at neuron i (from CARLsim)
and F̂ i = {F̂ i

1, · · · , F̂ i
ni
} be the actual spike rate considering

hardware latencies. The spike disorder is computed as

spike disorder =

ni∑
j=1

[(F i
j − F̂ i

j)2]/ni (22)

Our SpiNeCluster can be trivially extended with minimum
effort to compute and minimize spike disorder.

2) Using SpiNeMap for other neuromorphic platforms:
Our design methodology uses CARLsim to extract neural
activity on every synapse of SNNs. CARLsim’s support for
built-in biologically realistic neuron, synapse, and computation
models, designing new machine learning approaches and
online learning algorithms, and continuous integration and
testing, make it an easy to use and powerful simulator of
biologically-plausible neural network models. The present
release allows for the simulation using multiple GPUs
and multiple CPU cores concurrently in a heterogeneous
computing cluster. Benchmarking results demonstrate
simulation of 8.6 million neurons and 0.48 billion synapses

using 4 GPUs and up to 60x speedup for multi-GPU
implementations over a single-threaded CPU implementation,
making CARLsim 4 well- suited for large-scale SNN models
in the presence of real-time constraints. Additionally, the
present release adds new features, such as leaky-integrate-
and-fire (LIF), 9-parameter Izhikevich, multi-compartment
neuron models, and fourth order Runge Kutta integration.

SpiNeMap is a general-purpose design methodology for
mapping SNN-based applications to neuromorphic hardware.
We have seamlessly integrated SpiNeMap with both open-
sourced SNN simulators such as Brian [57] and proprietary
simulators such as XNet [66]. As the input for SpiNeMap is
the precise time of neural activity on every synapse, SpiNeMap
can be extended with minimum effort to consider any SNN
simulator that allows extracting spike timing information.

Our SpiNePlacer uses the Noxim [36] simulator for cycle-
accurate simulation of neuromorphic interconnect. To this end,
we have previously evaluated many other simulators such as
BookSim2 [67] and NIRGAM [68] for neuromorphic com-
puting. Noxim allows significant advantage in terms of trace-
driven simulations, extensions to other interconnect types,
etc. See our prior work [69] for discussion of these alter-
natives. Our design-methodology SpiNeMap can be trivially
extended to consider other interconnect simulators as long as
they support 1) cycle-accurate simulation, and 2) trace-driven
simulation. The former requirement is necessary to precisely
compute the spike latency, which impacts performance (such
as accuracy) of spike-based computation model. The second
requirement is necessary to simulate application-level spike
behavior in hardware considering delays on the interconnect.

Finally, our SpiNeMap is demonstrated to work with the Dy-
napSE neuromorphic hardware [7]. Our continuing work is to
support other neuromorphic architectures including TrueNorth
[20] and Loihi [6]. We have open-sourced our framework to
foster future research in neuromorphic computing.

REFERENCES

[1] W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[2] A. Das, P. Pradhapan, W. Groenendaal, P. Adiraju, R. T. Rajan,
F. Catthoor, S. Schaafsma, J. L. Krichmar, N. Dutt, and C. Van Hoof,
“Unsupervised heart-rate estimation in wearables with liquid states and
a probabilistic readout,” Neural Networks, 2018.

[3] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” International Journal
of Computer Vision, vol. 113, no. 1, pp. 54–66, 2015.

[4] P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni, and E. Neftci, “Con-
version of artificial recurrent neural networks to spiking neural networks
for low-power neuromorphic hardware,” in 2016 IEEE International
Conference on Rebooting Computing (ICRC). IEEE, 2016, pp. 1–8.

[5] F. Akopyan, J. Sawada et al., “TrueNorth: Design and tool flow of a 65
mw 1 million neuron programmable neurosynaptic chip,” IEEE trans-
actions on computer-aided design of integrated circuits and systems,
vol. 34, no. 10, pp. 1537–1557, 2015.

[6] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya et al., “Loihi: A
neuromorphic manycore processor with on-chip learning,” IEEE Micro,
vol. 38, no. 1, pp. 82–99, 2018.

[7] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore
architecture with heterogeneous memory structures for dynamic neuro-
morphic asynchronous processors (DYNAPs),” Biomedical Circuits and
Systems, IEEE Transactions on, vol. 12, no. 1, pp. 106–122, Feb. 2018.

[8] G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler,
K. Virwani, M. Ishii, P. Narayanan, A. Fumarola, and others, “Neuro-
morphic computing using non-volatile memory,” Advances in Physics:
X, vol. 2, no. 1, pp. 89–124, 2017.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 12

[9] T. Sauer, “Interspike interval embedding of chaotic signals,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 5, no. 1, pp. 127–
132, 1995.

[10] A. Ankit, A. Sengupta, and K. Roy, “Neuromorphic computing across
the stack: Devices, circuits and architectures,” in 2018 IEEE Interna-
tional Workshop on Signal Processing Systems (SiPS). IEEE, 2018,
pp. 1–6.

[11] X. Zhang, A. Huang, Q. Hu, Z. Xiao, and P. K. Chu, “Neuromorphic
computing with memristor crossbar,” physica status solidi (a), vol. 215,
no. 13, p. 1700875, 2018.

[12] Q. Xia and J. J. Yang, “Memristive crossbar arrays for brain-inspired
computing,” Nature materials, vol. 18, no. 4, p. 309, 2019.

[13] M. K. F. Lee, Y. Cui, T. Somu, T. Luo, J. Zhou, W. T. Tang, W.-F.
Wong, and R. S. M. Goh, “A system-level simulator for rram-based
neuromorphic computing chips,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 15, no. 4, p. 64, 2019.

[14] P. Wijesinghe, A. Ankit, A. Sengupta, and K. Roy, “An all-memristor
deep spiking neural computing system: A step toward realizing the
low-power stochastic brain,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 2, no. 5, pp. 345–358, 2018.

[15] W. Wen, C.-R. Wu, X. Hu, B. Liu, T.-Y. Ho, X. Li, and Y. Chen, “An
eda framework for large scale hybrid neuromorphic computing systems,”
in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC).
IEEE, 2015, pp. 1–6.

[16] F. Galluppi, S. Davies, A. Rast, T. Sharp, L. A. Plana, and S. Furber, “A
hierachical configuration system for a massively parallel neural hardware
platform,” in International Conference on Computing Frontiers, 2012.

[17] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen,
“NEUTRAMS: Neural network transformation and co-design under
neuromorphic hardware constraints,” in International Symposium on
Microarchitecture (MICRO). IEEE, 2016.

[18] A. Das, Y. Wu, K. Huynh, F. Dell’Anna, F. Catthoor, and S. Schaafsma,
“Mapping of local and global synapses on spiking neuromorphic hard-
ware,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), March 2018, pp. 1217–1222.

[19] Y. Orii, A. Horibe, K. Matsumoto, T. Aoki, K. Sueoka, S. Kohara,
K. Okamoto, S. Yamamichi, K. Hosokawa, and H. Mori, “Advanced
interconnect technologies in the era of cognitive computing,” in Pan
Pacific Microelectronics Symposium (Pan Pacific), 2016.

[20] M. V. DeBole, B. Taba, A. Amir, F. Akopyan, A. Andreopoulos, W. P.
Risk, J. Kusnitz, C. O. Otero, T. K. Nayak, R. Appuswamy, and others,
“TrueNorth: Accelerating From Zero to 64 Million Neurons in 10 Years,”
Computer, vol. 52, no. 5, pp. 20–29, 2019.

[21] A. Balaji, Y. Wu, A. Das, F. Catthoor, and S. Schaafsma, “Exploration
of segmented bus as scalable global interconnect for neuromorphic
computing,” in Great Lakes Symposium on VLSI. ACM, 2019.

[22] G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler,
K. Virwani, M. Ishii, P. Narayanan, A. Fumarola et al., “Neuromorphic
computing using non-volatile memory,” Advances in Physics: X, vol. 2,
no. 1, pp. 89–124, 2017.

[23] R. P. N. Rao and T. J. Sejnowski, “Spike-timing-dependent Hebbian
plasticity as temporal difference learning,” Neural computation, vol. 13,
no. 10, pp. 2221–2237, 2001.

[24] D. P. Phillips and S. A. Sark, “Separate mechanisms control spike
numbers and inter-spike intervals in transient responses of cat auditory
cortex neurons,” Hearing research, vol. 53, no. 1, pp. 17–27, 1991.

[25] S. Grün and S. Rotter, Analysis of parallel spike trains. Springer, 2010,
vol. 7.

[26] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[27] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural computation, vol. 14, pp. 2531–2560, 2002.

[28] T. Chou, H. J. Kashyap, J. Xing, S. Listopad, E. L. Rounds, M. Beyeler,
N. Dutt, and J. L. Krichmar, “Carlsim 4: An open source library
for large scale, biologically detailed spiking neural network simulation
using heterogeneous clusters,” in 2018 International Joint Conference
on Neural Networks (IJCNN), July 2018, pp. 1–8.

[29] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in International Symposium on Micro Machine and Human
Science (MHS). IEEE, 1995, pp. 39–43.

[30] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell system technical journal, vol. 49, no. 2, pp.
291–307, 1970.

[31] A. Das, A. Kumar, and B. Veeravalli, “Communication and migration
energy aware task mapping for reliable multiprocessor systems,” Future
Generation Computer Systems, vol. 30, pp. 216–228, 2014.

[32] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified np-
complete problems,” in Proceedings of the sixth annual ACM symposium
on Theory of computing. ACM, 1974, pp. 47–63.

[33] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for im-
proving network partitions,” in Design Automation Conference. IEEE,
1982, pp. 175–181.

[34] J. Kennedy, “Particle swarm optimization,” Encyclopedia of machine
learning, pp. 760–766, 2010.

[35] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE journal of solid-state circuits, vol. 52, pp. 127–138, 2017.

[36] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, “Noxim:
An open, extensible and cycle-accurate network on chip simulator,” in
International Conference on Application-specific Systems, Architectures
and Processors (ASAP). IEEE, 2015.

[37] H. G. Lee, N. Chang, U. Y. Ogras, and R. Marculescu, “On-chip com-
munication architecture exploration: A quantitative evaluation of point-
to-point, bus, and network-on-chip approaches,” ACM Transactions on
Design Automation of Electronic Systems (TODAES), vol. 12, no. 3,
p. 23, 2007.

[38] L. Benini and G. De Micheli, “Networks on chip: A new paradigm for
systems on chip design,” in Proceedings 2002 Design, Automation and
Test in Europe Conference and Exhibition. IEEE, 2002, pp. 418–419.

[39] G. Indiveri, F. Corradi, and N. Qiao, “Neuromorphic architectures
for spiking deep neural networks,” in International Electron Devices
Meeting (IEDM). IEEE, 2015, pp. 4–2.

[40] W. Zhao and Y. Cao, “New generation of predictive technology model
for sub-45 nm early design exploration,” IEEE Transactions on Electron
Devices, vol. 53, no. 11, pp. 2816–2823, 2006.

[41] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in computational
neuroscience, vol. 9, 2015.

[42] A. Balaji, F. Corradi, A. Das, S. Pande, S. Schaafsma, and F. Catthoor,
“Power-accuracy trade-offs for heartbeat classification on neural net-
works hardware,” Journal of Low Power Electronics, vol. 14, 2018.

[43] MLPerf: Fair and useful benchmarks for measuring training and in-
ference performance of ML hardware, software, and services. https:
//mlperf.org/ training-overview/ .

[44] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” arXiv preprint
arXiv:1412.6806, 2014.

[45] N2D2: Neural Network Design and Deployment. https://github.com/
CEA-LIST/N2D2.

[46] A. Balaji, Y. Wu, A. Das, F. Catthoor, and S. Schaafsma, “Exploration
of Segmented Bus As Scalable Global Interconnect for Neuromorphic
Computing,” in Proceedings of the 2019 on Great Lakes Symposium on
VLSI, 2019.

[47] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[48] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing, 2013, pp. 6645–6649.

[49] R. Brette, “Philosophy of the spike: rate-based vs. spike-based theories
of the brain,” Frontiers in systems neuroscience, vol. 9, p. 151, 2015.

[50] Y. Dan and M.-m. Poo, “Spike timing-dependent plasticity of neural
circuits,” Neuron, vol. 44, no. 1, pp. 23–30, 2004.

[51] D. Verstraeten, B. Schrauwen, and D. Stroobandt, “Reservoir-based
techniques for speech recognition,” in International Joint Conference
on Neural Network Proceedings. IEEE, 2006, pp. 1050–1053.

[52] B. J. Grzyb, E. Chinellato, G. M. Wojcik, and W. A. Kaminski, “Facial
expression recognition based on liquid state machines built of alternative
neuron models,” in 2009 International Joint Conference on Neural
Networks. IEEE, 2009, pp. 1011–1017.

[53] S. G. Ramasubramanian, R. Venkatesan, M. Sharad, K. Roy, and
A. Raghunathan, “Spindle: Spintronic deep learning engine for large-
scale neuromorphic computing,” in International symposium on Low
power electronics and design. ACM, 2014, pp. 15–20.

[54] A. Mallik, D. Garbin, A. Fantini, D. Rodopoulos, R. Degraeve, J. Stuijt,
A. Das, S. Schaafsma, P. Debacker, G. Donadio et al., “Design-
technology co-optimization for oxrram-based synaptic processing unit,”
in 2017 Symposium on VLSI Technology. IEEE, 2017, pp. T178–T179.

[55] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras, and
S. B. Furber, “SpiNNaker: mapping neural networks onto a massively-
parallel chip multiprocessor,” in International Joint Conference on
Neural Networks (IJCNN). IEEE, 2008.

https://mlperf.org/training-overview/
https://mlperf.org/training-overview/
https://github.com/CEA-LIST/N2D2
https://github.com/CEA-LIST/N2D2

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 13

[56] A. P. Davison, D. Brüderle, J. M. Eppler, J. Kremkow, E. Muller,
D. Pecevski, L. Perrinet, and P. Yger, “Pynn: a common interface for
neuronal network simulators,” Frontiers in neuroinformatics, 2009.

[57] D. F. Goodman and R. Brette, “The brian simulator,” Frontiers in
neuroscience, vol. 3, p. 26, 2009.

[58] E. Yavuz, J. Turner, and T. Nowotny, “Genn: a code generation frame-
work for accelerated brain simulations,” Scientific reports, vol. 6, p.
18854, 2016.

[59] M.-O. Gewaltig and M. Diesmann, “Nest (neural simulation tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[60] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: survey of current and emerging trends,” in
Design Automation Conference (DAC). IEEE, 2013, pp. 1–10.

[61] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, “Zero-shot learn-
ing through cross-modal transfer,” in Advances in neural information
processing systems, 2013, pp. 935–943.

[62] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object cate-
gories,” IEEE transactions on pattern analysis and machine intelligence,
vol. 28, no. 4, pp. 594–611, 2006.

[63] D. L. Silver, Q. Yang, and L. Li, “Lifelong machine learning systems:
Beyond learning algorithms,” in 2013 AAAI spring symposium series,
2013.

[64] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[65] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
and others, “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[66] O. Bichler, D. Roclin, C. Gamrat, and D. Querlioz, “Design exploration
methodology for memristor-based spiking neuromorphic architectures
with the xnet event-driven simulator,” in 2013 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH). IEEE, 2013,
pp. 7–12.

[67] N. Jiang, G. Michelogiannakis, D. Becker, B. Towles, and W. J. Dally,
“Booksim 2.0 users guide,” Standford University, 2010.

[68] L. Jain, B. Al-Hashimi, M. Gaur, V. Laxmi, and A. Narayanan, “Nirgam:
a simulator for noc interconnect routing and application modeling,” in
Design, Automation and Test in Europe Conference, 2007, pp. 16–20.

[69] K. Huynh, “Exploration of dynamic communication networks for neu-
romorphic computing,” 2016.

Adarsha Balaji Adarsha Balaji received a Bachelors degree from Visves-
varaya Technological University, India, in 2012 and a Master’s degree from
Drexel University, Philadelphia, PA, in 2017. He is currently pursuing a
Ph.D. degree from the Department of Electrical and Computer Engineering,
Drexel University, Philadelphia, PA. His current research interests include
design of neuromorphic computing systems, particularly data-flow and power
optimization of spiking neural networks (SNN) hardware.

Anup Das Dr. Anup Das is an Assistant Professor at Drexel University. He
received a Ph.D. in Embedded Systems from National University of Singapore
in 2014. Prior to his Ph.D., he was a research engineer for more than 7 years
at ST Microelectronics (India and Grenoble) and LSI Corporation (India).
Following his Ph.D., he was a post-doctoral fellow at the University of
Southampton and a researcher at IMEC. His research focuses on neuromorphic
computing and architectural exploration. He is a senior member of the IEEE.

Yuefeng Wu Yuefeng was enrolled in a joint master program of KTH,
Royal Institute of Technology, Stockholm, Sweden and Technology University
of Eindhoven after receiving his bachelor degree from Tianjin University.
He worked at IMEC NL for his master thesis and researched on the
communication mechanisms of neuromorphic computing. He designed and
implemented the simulator for communication based on Noxim. He joined
ING Groep N.V. as a management trainee in the track of IT after graduation
and currently works as an information architect.

Khanh Huynh Biography not available.

Francesco G. Dell’Anna Francesco G. Dell’Anna was born in Gallipoli, Italy,
on 14 January 1993. He received the BE degree in computer engineering
and the ME degree in embedded systems from Polytechnic of Turin in
2014 and 2016 respectively. In 2016 he attended the electrical engineering
master program at KULeuven, working on a neuromorphic simulator in IMEC
(Belgium). He is currently a researcher in the Institute of Applied Micro-Nano
Systems Technology, Key Laboratory of Micro-Nano System Technology
and Smart Transduction, Chongqing Technology and Business University,
Chongqing, China, and a Ph.D. student in the department of Micro- and
Nanotechnology systems at the university college of southeast Norway. In
2018 he then joined Omnivision Technology as a Digital Designer in Oslo.
His research interests include image sensors, neural networks, piezoelectric
energy harvesters and low power electronic designs.

Giacomo Indiveri Giacomo Indiveri is a Professor at the Faculty of Science
of the University of Zurich, Switzerland, director of the Institute of Neuroin-
formatics (INI) of the University of Zurich and ETH Zurich, and head of the
Neuromorphic Cognitive Systems group at INI. Indiveri was awarded an ERC
starting grant in 2011, and an ERC consolidator grant in 2017. He is interested
in the study of real and artificial neural processing systems, and is building
hardware neuromorphic cognitive systems, using full custom analog and
digital VLSI technology. The circuits he develops are designed to emulate the
physics of computation of biological neural processing systems and are aimed
at building autonomous agents that can learn and reason about the actions
to take in response to the combinations of external stimuli, internal states,
and behavioral objectives. These ”neuromorphic cognitive agents” are used
to validate brain inspired computational paradigms in real-world scenarios,
and to develop a new generation of fault-tolerant event-based neuromorphic
computing technologies.

Jeffrey L. Krichmar Jeffrey L. Krichmar received a B.S. in Computer
Science in 1983 from the University of Massachusetts at Amherst, a M.S.
in Computer Science from The George Washington University in 1991, and
a Ph.D. in Computational Sciences and Informatics from George Mason Uni-
versity in 1997. He spent 15 years as a software engineer on projects ranging
from the PATRIOT Missile System at the Raytheon Corporation to Air Traffic
Control for the Federal Systems Division of IBM. From 1999 to 2007, he was
a Senior Fellow in Theoretical Neurobiology at The Neurosciences Institute.
He currently is a professor in the Department of Cognitive Sciences and
the Department of Computer Science at the University of California, Irvine.
Krichmar has nearly 20 years experience designing adaptive algorithms,
creating neurobiologically plausible network simulations, and constructing
brain-based robots whose behavior is guided by neurobiologically inspired
models. He has over 100 publications and holds 7 patents. His research
interests include neurorobotics, embodied cognition, biologically plausible
models of learning and memory, neuromorphic applications and tools, and
the effect of neural architecture on neural function. He is a Senior Member
of IEEE and the Society for Neuroscience.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. XX, NO. X, MONTH 20XX 14

Nikil D. Dutt Nikil D. Dutt (F) received a Ph.D. in Computer Science from
the University of Illinois at Urbana-Champaign in 1989, and is currently
a Distinguished Professor of Computer Science, Cognitive Sciences, and
EECS at the University of California, Irvine. He is also a Distinguished
Visiting Professor in the CSE department at IIT Bombay, India. Dutts research
interests are in embedded systems, electronic design automation (EDA),
computer systems architecture and software, healthcare IoT, and brain-inspired
architectures and computing. He received over a dozen best paper awards
and nominations at premier EDA and embedded systems conferences and
is coauthor of 7 books on topics covering hardware synthesis, memory and
computer architecture specification and validation, and on-chip networks. Dutt
has served as Editor-in-Chief of ACM TODAES and as Associate Editor for
ACM TECS and IEEE TVLSI. He has extensive service on the steering,
organizing, and program committees of several premier EDA and Embedded
System Design conferences and workshops, and also serves or has served
on the advisory boards of ACM SIGBED, ACM SIGDA, ACM TECS, IEEE
Embedded Systems Letters (ESL), and the ACM Publications Board.

He is a Fellow of the ACM, Fellow of the IEEE, and recipient of the IFIP
Silver Core Award.

Siebren Schaafsma Dr. Siebren Schaafsma is an R&D manager in the IoT
unit of Imec The Netherlands (Imec-nl). This unit is part of the Holst Center
in Eindhoven. He is responsible for two teams of Analog and Digital IC
designers building new state of the art Radio ICs and sub GHz Radar (BT-
LE, Wifi 11.ah, subGHz, etc). He is also responsible for a team of embedded
hardware and software engineers working in the domain of IoT and Artificial
Intelligence. He received two masters (Nuclear physics in 1988 and computer
science in 1989) at the Rijks Universiteit Groningen (RUG). His dissertation
in the latter one addresses a neural networks implementation on a transputer
cluster. He received his Ph.D. (Dr.) from the University of Nijmegen (KUN)
in the Biophysics Department. His dissertation addresses the coding of optic
flow in the visual cortex. He holds two patents on his research inventions
from his period in research at Ericsson Telecommunications.

Francky Catthoor Dr. Francky Catthoor received a Ph.D. in EE from the
Katholieke Univ. Leuven, Belgium in 1987. Between 1987 and 2000, he
has headed several research domains in the area of synthesis techniques
and architectural methodologies. Since 2000 he is strongly involved in other
activities at IMEC including deep submicron technology aspects, IoT and
biomedical platforms, and smart photovoltaic modules, all at IMEC Leuven,
Belgium. Currently he is an IMEC fellow. He is also part-time full professor
at the EE department of the KULeuven.

He has been associate editor for several IEEE and ACM journals. He was
elected IEEE fellow in 2005.

	I Introduction
	II Background
	III SpiNeMap: Mapping Spiking Neural Networks to Neuromorphic Hardware
	III-A High-Level overview and difference with state-of-the-art
	III-B Detailed design of SNN Partitioning via SpiNeCluster
	III-B1 Time complexity

	III-C Detailed design of SNN Placement via SpiNePlacer
	III-C1 PSO Algorithm

	III-D Justification of SpiNeMap's design choices
	III-D1 Minimize spike count at the partitioning stage
	III-D2 Integration of Noxim++ within PSO
	III-D3 Using PSO only for SpiNePlacer

	IV Evaluation Methodology
	IV-A Simulation environment
	IV-B Evaluated applications
	IV-C Evaluated state-of-the-art techniques
	IV-D Evaluated metrics

	V Results and Discussions
	V-A Improvement summary
	V-B Energy consumption on the shared interconnect
	V-C Spike latency on the shared interconnect
	V-D Average ISI distortion of spikes on the shared interconnect
	V-E Application accuracy
	V-F Evaluation of SpiNeCluster in terms of spike count
	V-G Evaluation of SpiNeCluster in terms of optimization time
	V-H Interconnect design explorations

	VI Related Works
	VI-A SNN-based machine learning
	VI-B Neuromorphic hardware
	VI-C SNN and neuromorphic simulators
	VI-D Related concepts in similar domains

	VII Conclusion and Future Outlook
	VII-A Future Outlook
	VII-A1 Mapping new machine learning approaches to hardware
	VII-A2 Using SpiNeMap for other neuromorphic platforms

	References
	Biographies
	Adarsha Balaji
	Anup Das
	Yuefeng Wu
	Khanh Huynh
	Francesco G. Dell'Anna
	Giacomo Indiveri
	Jeffrey L. Krichmar
	Nikil D. Dutt
	Siebren Schaafsma
	Francky Catthoor

