
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title

Soteria: Automatically Mitigating Timing Side-Channel Vulnerabilities in Sensitive Programs

Permalink

https://escholarship.org/uc/item/0fn3s0c7

Author

Unal, Arda

Publication Date

2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0fn3s0c7
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Soteria: Automatically Mitigating Timing Side-Channel Vulnerabilities in Sensitive
Programs

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Software Engineering

by

Arda Ünal

Thesis Committee:
Assistant Professor Joshua Garcia, Chair

Associate Professor James Jones
Professor Sam Malek

2022

© 2022 Arda Ünal

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

LIST OF ALGORITHMS vi

LIST OF LISTINGS vii

ACKNOWLEDGMENTS viii

ABSTRACT OF THE THESIS ix

1 Introduction 1

2 Background 6

3 Soteria 11
3.1 Identifying and Transforming Side-Channel Inducing Patterns 13

3.1.1 Early Return Rewrite Transformation 13
3.1.2 Secret-Dependent Assignment Rewrite Transformation 15
3.1.3 Final Branchless Transformation . 18

4 Evaluation 20
4.1 RQ1: Correctness of Converted Side-Channel Benchmarks 21
4.2 Updates to Fix Errors in Original Benchmarks 22
4.3 RQ2: Constant-Time Effectiveness of Transformations 24
4.4 RQ3: Functional Correctness of Transformed IR 26

5 Threats to Validity 29
5.1 Construct Validity . 29
5.2 Internal Threat to Validity . 30
5.3 External Threat to Validity . 31

6 Related Work 32

7 Conclusions and Future Work 35

ii

Bibliography 37

iii

LIST OF FIGURES

Page

3.1 Overview of Soteria . 12
3.2 Overview of Soteria’s transformations . 13

iv

LIST OF TABLES

Page

3.1 Patterns used by Soteria to identify side-channel inducing code 12

4.1 Correctness Results for Rewritten Benchmarks 21
4.2 The results of differential fuzzing on converted benchmarks’ constant-time

behavior. Red cells indicate that they could not be compared since automat-
ically mitigated and updated, safe versions are not available in the original
Java benchmarks. 27

4.3 Results of the Running Example . 28

v

LIST OF ALGORITHMS

Page
1 Matcher used to find branching on secret 13
2 Transformation rule to rewrite early termination 14
3 Matcher used to find secret-dependent early termination in a loop 15
4 Transformation rule to rewrite early termination in a loop 16
5 Matcher used to find the assignment statements in secret-dependent branches 16
6 Transformation rule to rewrite assignments in secret-dependent branches . . 17
7 Matcher used to find cmov calls in secret-dependent branches 18
8 Transformation rule to eliminate secret-dependent branches 19

vi

LIST OF LISTINGS

1.1 Unsafe password check . 2
2.1 Mitigation attempt susceptible to cache timing attacks 7
2.2 Constant-time select with bitmasks . 8
2.3 Nonconstant-time select with branching . 9
2.4 Constant-time select with cmov . 9
2.5 Constant-time password check . 10
3.1 After automatic elimination of early termination 17
3.2 After rewriting secret-dependent assignments using the cmov construct . . . 18
3.3 After eliminating secret-dependent branches 19
4.1 Nonconstant-time array safe . 23
4.2 Updated constant-time array safe . 23
4.3 Nonconstant-time loopandbranch. The red operator is unsafe code removed

in the original version; the green operator is the code added that attempted
to make the code safe but failed to do so. 24

5.1 Straightline unsafe benchmark has a fixed number of instructions difference
between the imbalanced branches. 30

vii

ACKNOWLEDGMENTS

I want to thank my committee members, Josh Garcia, Jim Jones, and Sam Malek, who have
given time and provided critical feedback that has made my dissertation stronger at each
milestone.

viii

ABSTRACT OF THE THESIS

Soteria: Automatically Mitigating Timing Side-Channel Vulnerabilities in Sensitive
Programs

By

Arda Ünal

Master of Science in Software Engineering

University of California, Irvine, 2022

Assistant Professor Joshua Garcia, Chair

Side-channel attacks try to gain information about the secret data in sensitive programs

through leveraging the difference between the algorithm and its implementation. Most com-

mon side-channel vulnerabilities arise from timing variations in program execution, memory

access patterns, memory, power, and network consumption, response size, electromagnetic

emissions, and acoustics that could be tied back to secret information. For these reasons,

sensitive programs (e.g., real-world cryptographic code) are written in a constant-time fash-

ion to avoid timing side-channel vulnerabilities. In this thesis, we present an approach

that automatically mitigates timing side-channel vulnerabilities through a set of source-to-

source transformations resulting in secret-dependent branch-free code so that there will be

no secret-dependent timing variation during the execution of the program.

ix

Chapter 1

Introduction

Side-channel vulnerabilities stem from the gap between the abstract machine and its imple-

mentation targeting a real system. Side-channel attacks exploit these unintended vulnerabil-

ities caused by the implementation to uncover the secret data from sensitive programs. Side-

channel attacks extend from power consumption analysis to exploiting micro-architectural

features and optimizations. Kocher [32] exploited the power usage between successive runs

of tamper resistant devices such as smart cards and this differential power analysis (DPA)

attack is followed by the analysis of electromagnetic emissions of these security devices [43].

We have witnessed the evolution of these attacks over the years. With the rise of cloud

computing, side-channel attacks shifted scope to timing attacks that could be performed re-

motely [17, 12]. These attacks are followed by cache-timing attacks [2, 3, 45, 1, 35, 26, 28] in

cloud settings and even on mobile devices [33]. More recently we saw two important attacks

that exploited the micro-architectural side-channel vulnerabilities in branch prediction and

speculative executions in both the Spectre [30] and Meltdown [34] attacks.

Timing side-channel attacks differ from the other side-channel attacks as they do not require

vicinity to the victim machine and can be conducted remotely. They have been demon-

1

strated in practice over many years with extensive research in both academia and industry:

Kocher [31] showed that timing attacks are possible on implementations of cryptographic

algorithms (e.g., finding fixed Diffie-Hellman exponents or factor RSA keys); side-channel

vulnerabilities helped attackers to steal private keys and caused catastrophic damage in DSA

signing operations [24]; and researchers successfully attacked Amazon’s TLS implementation

using a timing attack [4].

A simple function in Listing 1.1 contains two exploitable timing side-channel vulnerabilities.

In this function, there are two vector inputs: pw, the password the attack is trying to identify,

and guess, an attacker-supplied string that is compared against the password. The first side-

channel vulnerability arises from an early termination that occurs if the size of guess and pw

are not the same (lines 2-3). An attacker can leverage this vulnerability by trying different

lengths for guess until the execution time increases. For example, when the secret pw = 123,

execution takes 41 instructions with guess ∈ {1, 12, 1234, 12345} and it takes 70 instructions

when guess = 456.

For the second side-channel vulnerability in Listing 1.1, another early termination can occur

if elements of guess and pw at the same index are not equal, leading to another variance

in execution time that can be exploited by an attacker (lines 5-6). For example, when

the secret pw = 123, execution takes 70 instructions when guess = 456, terminating after

comparing 1 to 4; 99 instructions when guess = 193, terminating after comparing 2 to 9;

128 instructions when guess = 129, terminating after comparing 3 to 9; and 142 instructions

when guess = 123, completing the loop without early termination.

1 bool pwcheck(std::vector <byte_t > &guess , std::vector <byte_t > &pw) {

2 if (guess.size() != pw.size()) {

3 return false; }

4 for (size_t i = 0; i < guess.size(); i++) {

5 if (guess[i] != pw[i]) {

2

6 return false; }}

7 return true;}

Listing 1.1: Unsafe password check

Software-based countermeasures are taken to implement constant-time systems using con-

stant time constructs. These constant-time constructs often deviate from conventional pro-

gramming practices in that they avoid common optimization techniques such as early func-

tion and loop terminations. These common optimization techniques can result in discrepan-

cies in execution time and memory access patterns which, in turn, can be used by an attacker

to determine if an input was close to matching the secret.

Constant-time implementations of sensitive programs such as cryptographic algorithms avoid

leaking secret data through timing attacks by making sure that the variation in the execution

time does not depend on the secret data. However, major challenges arise when creating such

constant-time code as such code may be optimized away into nonconstant time intermediate

representations by compiler optimizations that constant-time code does not account for.

Writing constant-time code is not straightforward. Rather, it requires compiler knowledge

to understand that a compiler may optimize these constant-time constructs in a way that is

likely to deviate from the programmer’s intentions. As a result, these deviations may result

in nonconstant time intermediate representations and, subsequently, become nonconstant

time executables. These vulnerabilities in security-critical software systems escape diligent

testing and code-review processes [4, 40, 39, 41] and suggest that (1) more rigorous analysis

techniques are required and (2) these constant-time transformations should be done in a

systematic way.

Support for side-channel resistance from a mainstream compiler would enable every pro-

grammer writing code in the compiler’s supported languages—not only side-channel experts

such as cryptographers—to secure their code in a systematic way. To address these afore-

3

mentioned challenges, this thesis makes the following contributions:

• We present Soteria, a compiler-based approach to rewrite sensitive programs that

are written in a conventional manner into timing side-channel resistant programs. So-

teria provides annotations to mark secret variables in sensitive programs and apply

a series of general source-to-source transformations to rewrite these sensitive programs

into constant-time counterparts without forcing the programmer to deviate from con-

ventional programming practices. Soteria first matches against code patterns that

result in timing side-channel vulnerabilities. It then transforms these matched code

patterns using grammar-based rules to eliminate their underlying nonconstant-time

behavior.

• We implement Soteria using LibAST Matchers [36] and clang [37] to target C/C++

programs. We focus on C/C++ since the majority of high-value target programs

susceptible to timing side channels, such as cryptographic libraries, are written in

C/C++—avoiding just-in-time (JIT) compilation (e.g., in Java) that might introduce

timing side-channel vulnerabilities [16].

• We evaluate Soteria on C/C++ benchmarks converted from Java benchmarks uti-

lized in the evaluation of the side-channel analysis approaches DifFuzz [38], Blazer [7],

and Themis [20].

For the majority of the benchmarks, we found that running programs rewritten by So-

teria finds zero or small discrepancies in the number of instructions retired—effectively

demonstrating that Soteria eliminates timing side-channel vulnerabilities for the bench-

marks. Instructions are retired when they leave the retirement unit—which is a unit of

a CPU microarchitecture that knows how and when to commit (i.e., “retire”) temporary,

speculatively-executed results to permanent architectural state. In other words, the unit

will write the results of speculatively executed instructions as if it was executed in-order

4

when instructions are retired. Using the number of instructions retired over the number of

instructions is a more accurate representation of how many instructions were really executed

[23].

5

Chapter 2

Background

The current research for detecting and mitigating timing side-channel vulnerabilities focuses

on secret keys and cryptographic algorithms since they are high-value targets [27, 18]. How-

ever, it is not sufficient to only harden the cryptographic algorithm implementations to make

a security critical system timing side-channel resistant. Ideally, all software in security critical

systems, not just cryptographic code, should have resistance against timing side channels.

With Soteria, we propose a solution to show that when these solutions are integrated into

a mainstream compiler, side-channel resistance can be achieved systematically in a general-

purpose programming language without having to design or use a domain-specific language

(DSL) as previously done by qhasm [13], Vale [15], Jasmin [5] and FaCT [18].

In constant-time implementations, the variation in the execution time or memory access pat-

terns cannot be correlated with secret data. Constant-time implementations take advantage

of constant-time constructs such as avoiding memory access patterns that depend on the

secret data and branchings that are controlled by secret data. Secret-dependent memory

access might leak the address of the element if a cache miss occurs. A cache miss takes a

longer time introducing a timing variance that depends on the secret data which could be

6

exploited by the attacker [45, 1, 35, 26, 28]. If a conditional branching depends on secret

data, both the statements and their execution time depend on the secret data introducing a

timing side-channel vulnerability.

These timing side channels might be mitigated by adding dummy instructions to each branch

to make them identical in terms of the number of instructions executed. However, this

mitigation could still be susceptible to memory access-pattern attacks as shown in Listing

2.1, with the mitigation code highlighted in green. The mitigation attempts to balance the

number of instructions between the branches by adding a dummy loop from the true branch

to the false branch. However, the lookup by index i in line 14 of Listing 2.1 might result in

a cache miss if the dummy loop evicts the cache line where a[i] resides. This cache miss

might leak to the attacker which branch is taken.

1 int array_unsafe(PUBLIC std::vector <int > &a, SECRET int taint) {

2 int t = 0;

3 if (taint < 0) {

4 int i = a.size() -1;

5 while (i >= 0) {

6 t = a[i];

7 i--;}}

8 else {

9 int i = 0;

10 t = a[i] / 2;

11 i = a.size();}

12 return t;}

Listing 2.1: Mitigation attempt susceptible to cache timing attacks

For this reason, eliminating these conditional branches by writing them in a flat manner using

bitmasks would be a more robust solution as shown in Listing 2.2. In this select function,

isnonzero variable gets assigned to 1 when the predicate is true and 0 otherwise. Conse-

quently, variable mask gets assigned to 0xff...ff when the predicate is true and 0 otherwise.

7

When the mask is 0xff...ff, variable ret becomes old val ⊕ new val ⊕ old val ends up being

equal to new val whereas when the mask is zero ret becomes 0⊕ old val which is equal to

old val. Consequently, eliminating the branch-dependent assignments using bitmasks would

result in a uniform memory access pattern.

1 /* Conditionally return new_val or old_val depending on whether pred is

set */

2 /* Semantically equivalent to:

3 return pred ? new_val : old_val */

4 unsigned select (unsigned pred , unsigned old_val ,

5 unsigned new_val) {

6 unsigned isnonzero = (pred | -pred) >>

7 (sizeof(unsigned) * CHAR_BIT - 1);

8 /* -0 = 0, -1 = 0xffff */

9 unsigned mask = -isnonzero;

10 unsigned ret = mask & (old_val^new_val);

11 ret = ret ^ old_val;

12 return ret;}

Listing 2.2: Constant-time select with bitmasks

In some popular hardware architectures, there are conditional move operations that could

be utilized to eliminate these branches rather than using bitmasks, such as the CMOVcc

instruction in x86 [21]. These kinds of conditional move operations enable assignment op-

erations to be done without branch instructions which are subject to speculative execution

(i.e., executing code before it is known the code is needed). With the use of the CMOV in-

struction, such execution is avoided because such operations are implemented as ALU select

operations—which are a type of operation that is not subject to predictive or speculative

execution—as opposed to branch instructions—which are the current types of instructions

leveraged by state-of-the-art compiler-based side-channel resistance techniques [42].

These conditional move operations enable us to remove the secret-dependent branches while

8

keeping the behavior of these branches intact. For example, the following branching example

in Listing 2.3 could be replaced by its branchless cmov counterpart in Listing 2.4. The

branch function takes 38 instructions when the branch in line 4 of Listing 2.3 is taken and

40 instructions when it is not, whereas the cmov select function in Listing 2.4 always takes

39 instructions since it has no branching.

1 unsigned branch(unsigned pred , unsigned old_val , unsigned new_val) {

2 unsigned ret = old_val;

3 if(pred == 1)

4 ret = new_val;

5 return ret;}

Listing 2.3: Nonconstant-time select with branching

1 unsigned cmov_select(unsigned pred , unsigned old_val , unsigned new_val)
{

2 unsigned ret = 0;
3 __asm__ __volatile__(
4 "mov %3, %0;"
5 "test %1, %1;"
6 "cmovz %2, %0;"
7 : "=&r"(ret)
8 : "r"(pred), "r"(old_val), "r"(new_val));
9 return ret;}

Listing 2.4: Constant-time select with cmov

There are other important details to take into consideration such as nonconstant-time library

functions; for example, if the size() function were not constant-time and if it is called on

the secret data, the length of the secret data would be leaked. Additionally, one should

be careful with short-circuit evaluation which will terminate the evaluation of the boolean

expression without evaluating it fully if the result of this expression can be determined by

the evaluation of its first argument. For example, the expression b1 ∧ b2 is already known to

be false if b1 = false without having to evaluate b2. This short-circuit evaluation might leak

information about the secret data when there is a time-consuming predicate.

9

Returning to our unsafe password check example in Listing 1.1, comparing two buffers of

arbitrary length is not straightforward to implement in a constant-time fashion and is sus-

ceptible to memory access-pattern (i.e., cache timing) attacks. For this reason, there should

be an assumption or an agreement as to a maximum length allowed and the execution time

of this function should only depend on the properties of an attacker-controlled guess. As

a result, for this example, we assume that an attacker-controlled guess will not be longer

than the secret pw. The example code snippet shown below in Listing 2.5 is a version of

the pwcheck function without the timing side-channel vulnerabilities in Listing 1.1. This

pwcheck function does not perform an early termination when the size of the guess and pw

buffers do not match or when the elements that are in the same index location are not equal

to each other, resulting in a scan of the entire guess buffer for every execution. Furthermore,

memory access patterns become identical for every execution hardening the program against

the cache timing attacks. Since the loop always iterates over the whole guess buffer, exe-

cution time of this program will only depend on the length of the attacker-controlled guess

buffer which is already known to the attacker. Consequently, these countermeasures harden

the program in Listing 1.1 against aforementioned side-channel vulnerabilities.

1 #define SECRET [[clang :: annotate("secret")]]
2
3 bool pwcheck(std::vector <byte_t > &guess , SECRET std::vector <byte_t > &pw

) {
4 bool result = true;
5 for (size_t i = 0; i < guess.size(); ++i) {
6 result &= guess[i] == pw[i];}
7 return result & (guess.size() == pw.size());}

Listing 2.5: Constant-time password check

10

Chapter 3

Soteria

Our approach, Soteria, as depicted in Figure 3.1, allows a programmer to annotate the

secret and public values in C/C++ source code and automatically mitigates the timing side-

channel vulnerabilities through a set of source-to-source transformations. Soteria produces

flat code that will no longer have secret-dependent timing variation during the execution of

the program. Soteria is implemented using LibAST Matchers and clang to target C/C++

programs. The LibAST Matcher library in LLVM makes it easy to match AST nodes using

an embedded domain-specific language as a query language. Using this language enables

us to find specific AST nodes with complex predicates and rewrite them in a constant-time

way.

Certain common coding patterns in conventional programming practices might lead to tim-

ing side-channel vulnerabilities if they are secret-dependent, such as early termination to

minimize execution time. We explain these patterns, the manner in which they can reveal

secrets, and the manner in which they can be rewritten in a constant-time fashion using

the password comparison code in Listing 1.1 as a running example. To specify code pat-

terns that induce side-channel vulnerabilities, we utilize the patterns described in Table 3.1.

11

Figure 3.1: Overview of Soteria

Each row of Table 3.1 describes the form of each pattern that consists of code statements

or expressions. Soteria matches and transforms (1) code patterns resulting in early ter-

minations of a function that is dependent on secret information, (2) assignment statements

dependent on secret information, and (3) any remaining secret-dependent branches in the

code to be flat. Figure 3.2 depicts these transformations as a workflow. Together, identifying

and transforming these three types of code patterns achieve side-channel resistance.

Code Patterns Description

f(x : T){Stmt } : Tret

Function declaration with ar-
gument x of type T and return
value of type Tret

for(exprinit, exprcond, exprinc)
{Stmtbody }

For statement

while(exprcond)
{Stmtbody }

While statement

exprsecret

Expression to a
secretly annotated

declaration

ifStmt(expr)
{Stmtif }

else
{Stmtelse }

If and Else conditional
branching

return Return Statement

exprLHS ← exprRHS Assignment Statement

cmov(expr, exprold, exprnew) cmov Statement

Table 3.1: Patterns used by Soteria to identify side-channel inducing code

12

Figure 3.2: Overview of Soteria’s transformations

3.1 Identifying and Transforming Side-Channel Induc-

ing Patterns

3.1.1 Early Return Rewrite Transformation

As mentioned in the previous section, secret-dependent branches with an early return state-

ment need to be eliminated in order to avoid secret-dependent variance in execution time.

First, we need to identify the secret-dependent branches that have a return statement. To

that end, the formalized matcher in Algorithm 1 matches AST nodes that have a conditional

statement branching on secret (exprsecret) and have a return statement on either branch of

the conditional. For example, in Listing 1.1, the conditional statement in line 2 will match.

Algorithm 1 Matcher used to find branching on secret

∃ifStmt(exprsecret) :

(returnStmt ∈ Stmtif ∨ returnStmt ∈ Stmtelse)

After matching these AST nodes, the transformation rule in Algorithm 2 will be used to

13

Algorithm 2 Transformation rule to rewrite early termination

Before

1: function F(x : T): Tret

2: Stmt1
3: if exprsecret then
4: return exprret ▷ Early-terminating secret-dependent branch
5: end if
6: Stmt2
7: return exprretFin

8: end function

After

1: function F(x : T): Tret

2: Tret return val← exprretFin

3: SECRET bool not return← true
4: Stmt1
5: if exprsecret ∧ not return then
6: return val← exprret
7: not return← false
8: end if
9: if not return then
10: Stmt2
11: end if
12: return return val
13: end function

rewrite these matched nodes. The return statement in the matched branch will be replaced

by return val = exprret statement. To accommodate this change, initialization of this

variable is added to the beginning of the function assigning exprretF in, which is the default

return value, to the newly introduced variable return val. To keep the behavior of the

program the same, statements that come after this change need to be wrapped inside a

branch that will be taken if and only if the function does not terminate early at this stage.

For this reason, the boolean variable not return is introduced and Stmt2 is wrapped in a

branch conditioned on this variable. Finally the default return statement is rewritten to

return return val.

After automatically eliminating the return statement in the if statement in line 3 of Listing

1.1, we get the following code snippet in lines 3, 5-9, and 16 in Listing 3.1 shown in color

brown . Similar to the previous rule, early termination of the loop also needs to be elim-

inated. The matcher in Algorithm 3 is utilized to match every for loop with a body that

has a secret-dependent branch with a return statement. For our running example in Listing

14

1.1, lines 4-6 will be matched.

Algorithm 3 Matcher used to find secret-dependent early termination in a loop

∀for(Stmtinit, exprcond) ∋ {Stmtbody } ∋
(ifStmt(exprsecret)∧
(returnStmt ∈ Stmtif ∨ returnStmt ∈ Stmtelse))

The transformation in Algorithm 4 is very similar to the previous one in Algorithm 2.

However, unlike the previous rule, statements both before (as represented by Stmt1) and after

(as represented by Stmt2) this early-terminating if branch are wrapped in two new branches

(i.e., lines 5-6 and lines 12-13 of the After section of Figure 4). Wrapping statements before

and after the early-terminating if branch ensures that the code keeps iterating until the loop

naturally terminates. To keep the behavior of the loop the same, statements both before

and after the secret-dependent branch are wrapped in new branches as they would not be

executed during iterations after a premature termination. After automatically eliminating

the return statement in the if statement in lines 5-6 of Listing 1.1, we get the following code

snippet in lines 11-15 in Listing 3.1 shown in color green .

3.1.2 Secret-Dependent Assignment Rewrite Transformation

The next step in the sequence of transformations takes the output of the previous section

(i.e., source code that is free of early terminations) and prepares it for elimination of secret-

dependent branches. To that end, assignment statements in the secret-dependent control flow

need to be rewritten. To preserve the constant-time properties and hide the secret-dependent

memory access pattern, these assignment statements are transformed into cmov constructs.

This transformation replaces the assignment operations in secret-dependent branches to

avoid MOV operations. Unlike MOV operations in secret-dependent branches, cmov will

15

Algorithm 4 Transformation rule to rewrite early termination in a loop

Before

1: function F(x : T): Tret

2: while exprcond do
3: Stmt1
4: if exprsecret then
5: return exprret ▷ Early-terminating secret-dependent branch
6: end if
7: Stmt2
8: end while
9: return exprretFin

10: end function

After

1: function F(x : T): Tret

2: Tret return val← exprretFin

3: SECRET bool not return← true
4: while exprcond do
5: if not return then
6: Stmt1
7: end if
8: if exprsecret ∧ not return then
9: return val← exprret
10: not return← false
11: end if
12: if not return then
13: Stmt2
14: end if
15: end while
16: return return val
17: end function

always execute and write the variable with either the old or the new value contributing to

both the constant-time property and identical memory access pattern.

Algorithm 5 Matcher used to find the assignment statements in secret-dependent branches

∀exprLHS := exprRHS : ifStmt(exprsecret)∧
(exprLHS := exprRHS ∈ Stmtif

∨ exprLHS := exprRHS ∈ Stmtelse)

The matcher in Algorithm 5 is utilized to identify all the assignment operations in the

secret-dependent control flow. For our example, this matcher will match the assignment

operations in lines 7-8 and 13-14 in Listing 3.1. These statements are rewritten using the

transformation rule in Algorithm 6. The first argument passed to cmov() is the predicate

that is the condition of the secret-dependent if statement. For the nested if statements, these

conditions are accumulated by combining nested conditional expressions with conjunctions

16

1 bool pwcheck(PUBLIC std::vector <byte_t > &guess ,
2 SECRET std::vector <byte_t > &pw) {

3 bool return val = true;

4 SECRET bool not return0 = true;

5 SECRET bool not return1 = true;

6 if ((guess.size() != pw.size()) & not return0) {

7 return val = false;

8 not return0 = false; }

9 if (not return0) {
10 for (size_t i = 0; i < guess.size(); i++) {

11 if (not return1) {}

12 if ((guess[i] != pw[i]) & not return1) {

13 return val = false;

14 not return1 = false; }

15 if (not return1) {}}}

16 return return val; }

Listing 3.1: After automatic elimination of early termination

(e.g., exprsecret ∧ exprsecretNested). The second argument is the old value, i.e., the exprLHS ,

which is analogous to the branch not taken. Finally, the third argument is the new value

exprRHS which is assigned when the branch is taken. These transformations are shown in

lines 7-8 and 13-14 in Listing 3.2 shown in color blue .

Algorithm 6 Transformation rule to rewrite assignments in secret-dependent branches
Before

1: function F(x : T)
2: if exprsecret then
3: if exprsecretNested then
4: exprLHS1 ← exprRHS1

5: end if
6: exprLHS2 ← exprRHS2

7: end if
8: end function

After

1: function F(x : T)
2: if exprsecret then
3: if exprsecretNested then
4: exprLHS1 ← cmov(exprsecret ∧ exprsecretNested ,
5: exprLHS1 , exprRHS1)
6: end if
7: exprLHS2 ← cmov(exprsecret , exprLHS2 , exprRHS2)
8: end if
9: end function

17

1 bool pwcheck(PUBLIC std::vector <byte_t > &guess ,
2 SECRET std::vector <byte_t > &pw) {
3 bool return_val = true;
4 SECRET bool not_return0 = true;
5 SECRET bool not_return1 = true;
6 if ((guess.size() != pw.size()) & not_return0) {
7 return val = cmov((guess.size() != pw.size()) & not return0, return val, false);
8 not return0 = cmov((guess.size() != pw.size()) & not return0, not return0,

false);
9 if (not_return0) {
10 for (size_t i = 0; i < guess.size(); i++) {
11 if (not_return1) {}
12 if ((guess[i] != pw[i]) & not_return1) {
13 return val = cmov((guess[i] != pw[i]) & not return1 & not return0,

return val, false);
14 not return1 = cmov((guess[i] != pw[i]) & not return1 & not return0,

not return1, false);}
15 if (not_return1) {}}}
16 return return_val ;}

Listing 3.2: After rewriting secret-dependent assignments using the cmov construct

3.1.3 Final Branchless Transformation

In the final step of these transformations, all of the secret-dependent branches that use

the cmov construct are eliminated. Utilization of the matcher below in Algorithm 7 will

match the if statements in lines 6, 9, 11, 12, and 15 in Listing 3.2. This matcher matches

all the branches with cmov statements in them. Since the cmov construct already does

the assignment operation depending on the predicate that is accumulated by combining the

branch conditions, there is no need to keep these secret-dependent branches to protect the

program’s behavior. These matched secret-dependent branches are eliminated through the

transformation rule shown in Algorithm 8. This transformation removes the AST nodes

from the program. The final output after all the transformations is shown below in Listing

3.3.

Algorithm 7 Matcher used to find cmov calls in secret-dependent branches

ifStmt(exprsecret) ∧ (cmov(...) ∈ Stmtif ∨ cmov(...) ∈ Stmtelse)

18

Algorithm 8 Transformation rule to eliminate secret-dependent branches
Before

1: function F(x : T)
2: if exprsecret then
3: if exprsecretNested then
4: exprLHS1 ← cmov(exprsecret ∧ exprsecretNested ,
5: exprLHS1 , exprRHS1)
6: end if
7: exprLHS2 ← cmov(exprsecret, exprLHS2 , exprRHS2)
8: end if
9: end function

After

1: function F(x : T)
2: exprLHS1 ← cmov(exprsecret ∧ exprsecretNested ,
3: exprLHS1 , exprRHS1)
4: exprLHS2 ← cmov(exprsecret, exprLHS2 , exprRHS2)
5: end function

1 bool pwcheck(PUBLIC std::vector <byte_t > &guess ,
2 SECRET std::vector <byte_t > &pw) {
3 bool return_val = true;
4 SECRET bool not_return0 = true;
5 SECRET bool not_return1 = true;
6 {return_val =
7 cmov((guess.size() != pw.size()) & not_return0 , return_val ,

false);
8 not_return0 =
9 cmov((guess.size() != pw.size()) & not_return0 , not_return0 ,

false);}
10 {for (size_t i = 0; i < guess.size(); i++) {
11 {return_val = cmov((guess[i] != pw[i]) & not_return1 &

not_return0 , return_val , false);
12 not_return1 = cmov((guess[i] != pw[i]) & not_return1 &

not_return0 , not_return1 , false);}}}
13 return return_val ;}

Listing 3.3: After eliminating secret-dependent branches

19

Chapter 4

Evaluation

To evaluate Soteria we run it on benchmarks converted from ones used by state-of-the-art

side-channel analysis techniques and answer the following research questions:

RQ1. Do our benchmarks converted from Java to C/C++ still exhibit unsafe and safe

behavior?

RQ2. To what extent do Soteria transformations result in intermediate-representation

code that is constant-time on secret-dependent input?

RQ3. To what extent do Soteria transformations maintain the functional correctness of

the original code?

We elaborate on the experiments that we conduct to answer these RQs and the results of

those experiments in the remainder of this section.

20

4.1 RQ1: Correctness of Converted Side-Channel Bench-

marks

To assess the effectiveness of Soteria in latter RQs, we need evaluation subjects that

exhibit behaviors that are both unsafe (i.e., they have timing side channels) and safe (i.e.,

lack timing side channels). To that end, we select benchmarks utilized in the evaluation of the

state-of-the-art side-channel analysis approaches DifFuzz [38], Blazer [7], and Themis [20].

However, these benchmarks are written in Java. Unfortunately, Java is a lower-value target

since high-value target programs, such as cryptographic libraries, are written in C/C++

and Java’s JIT compilation might introduce timing side channels. As a result, we need to

convert these Java benchmarks to C/C++. To ensure accuracy of our converted benchmarks,

we diligently rewrote them into C/C++ to be compatible with the clang implementation

of Soteria. To test (1) the functional correctness of our converted benchmarks and (2)

whether timing properties are preserved for them, a modified version of DifFuzz [38], a

differential fuzzing tool to automatically detect timing side channels, is utilized. DifFuzz

outperforms the other side-channel detection tools [38]. Its original implementation targets

Java programs. However, DifFuzz utilizes Kelinci [29], which is based on American Fuzzy

Loop (AFL) [47], a widely-used fuzzing tool that targets C/C++ programs. The generality

of the DifFuzz approach and the fact that AFL already targets C/C++ enabled us to easily

port DifFuzz to target C/C++ programs for our use cases. For these reasons, we decided to

utilize DifFuzz to verify the impact of our transformations.

Benchmarks # Passed Tests # Total Tests Percentage

Array 14873 14873 %100
LoopAndBranch 2443 2443 %100

Sanity 2073 2073 %100
Straightline 5005 5005 %100
passwordEq 15133 15133 %100
PWCheck 16371 16371 %100

Table 4.1: Correctness Results for Rewritten Benchmarks

For correctness, we compare the results of these rewritten benchmarks to the results of

21

original benchmarks that are written in Java using the inputs generated by the fuzzer;

the result of this effort is shown in Table 4.1. The modified fuzzer that targets C/C++

programs is used to verify that rewritten benchmarks still exhibit the original unsafe and

safe behavior. The original purportedly “safe” versions of two benchmarks entitled (Array-

Safe and LoopAndBranch) do not actually show safe behavior. In the following section

(Section 4.2), we describe these two benchmarks in more detail. These benchmarks are

manually rewritten and the related results are shown in Table 4.2 with the -Updated suffix.

We elaborate on the updates we apply to eliminate safety and functional correctness errors

in the remainder of our discussion of RQ1 in this section.

4.2 Updates to Fix Errors in Original Benchmarks

As shown in Table 4.2, most benchmarks have comparable results to DifFuzz. While most

benchmarks show similar timing behavior (as measured using instructions retired) there is

one that does not: Array Safe-Original, which is shown in Listing 4.1. The array unsafe

function in Listing 2.1 is originally made safe by adding a dummy while loop in the false

branch. However, the discrepancy in the array safe function arises from the extra division

operator in the false branch in line 11 of Listing 4.1. Whenever the variable taint is not

negative this extra division operation will contribute additional instructions to the false

branch per iteration creating a variable imbalance between two branches. Even this small

example shows that manually writing constant-time code is not straightforward. This side-

channel vulnerability is mitigated by taking the division operation out of the loop and

adding more dummy statements shown in green in Listing 4.2 in both branches to balance

the number of instructions resulting in a constant-time array safe function, the results of

which are shown as Array Safe-Updated in Table 4.2.

22

1 int array_safe(PUBLIC std::vector <int > &a, SECRET int taint) {

2 int t = 0;

3 if (taint < 0) {

4 int i = a.size() -1;

5 while (i >= 0) {

6 t = a[i];

7 i--;}

8 } else {

9 int i = a.size()-1;

10 while (i >= 0) {

11 t = a[i] / 2;

12 i--; }}

13 return t;}

Listing 4.1: Nonconstant-time array safe

1 int array_safe(PUBLIC std::vector <int > &a, SECRET int taint) {

2 int t = 0;

3 if (taint < 0) {

4 int i dummy = 0;

5 t = a[i dummy] / 2;

6 int i = a.size() -1;

7 while (i >= 0) {

8 t = a[i];

9 i--;}

10 } else {

11 int i = 0;

12 int i dummy = a.size()-1;

13 while (i dummy >= 0) {

14 t = a[i dummy];

15 i dummy--; }

16 t = a[i] / 2; }

17 return t;}

Listing 4.2: Updated constant-time array safe

Additionally, we detected that the original safe version of the LoopAndBranch benchmark

does not have the same behavioral semantics as its unsafe counterpart. This is caused by

the operation change shown in line 7 of Listing 4.3. This change forces the execution of this

program to take the branch in line 8 unless the addition operation causes an overflow that

will take the else branch at line 13. We rewrite a version of this program to make it safe

and have the same semantics as its unsafe counterpart. The results are shown in Table 4.2

under LoopAndBranch Safe-Updated.

An important point to note here is that compiler optimizations were turned off when com-

piling these benchmark programs as they are simple programs with dummy instructions to

create intentional imbalance and balance in the number of instructions in secret-dependent

23

control flows in safe and unsafe versions of these benchmark programs. Compiler optimiza-

tions might optimize away both manual and automatic mitigation in respectively safe and

rewritten versions of these programs in both IR and machine-code optimizations passes with

target-specific optimizations.

1 int loopandbranch_safe(PUBLIC int a, SECRET int taint) {

2 int i = a;

3 if (taint < 0) {

4 while (i > 0) {

5 i--;}

6 }else {

7 taint = taint - + 10;

8 if (taint >= 10) {

9 i = i + taint;

10 int j = a;

11 while (j > 0) {

12 j--;}

13 }else {

14 if (a < 0) {

15 int k = a;

16 while (k > 0)

17 k- -;}}}

18 return taint ;}

Listing 4.3: Nonconstant-time loopandbranch. The red operator is unsafe code removed in
the original version; the green operator is the code added that attempted to make the code
safe but failed to do so.

4.3 RQ2: Constant-Time Effectiveness of Transforma-

tions

This question investigates the effectiveness of Soteria’s source-to-source transformations

at mitigating the side-channel vulnerabilities. After transforming code to eliminate timing

side channels, we test the resulting code to detect if any timing side channels remain. To

make sure that our transformations result in constant-time secret-dependent paths, we utilize

our modified version of DifFuzz. This fuzzing-based approach finds inputs to the program

that maximize resource consumption between two executions. These two executions are run

24

with two mutated secrets while keeping the public values the same to detect the variance

only in secret-dependent paths. This resource consumption is measured as the number

of instructions retired, where differences depending on secret-dependent paths indicate a

detected timing side channel.

To answer RQ2, two different techniques are used: 1) Inputs that are found by the fuzzer

to cause discrepancies in execution time for unsafe programs are also tested by running the

mitigated programs using these same inputs; and 2) these mitigated programs are also fuzzed

independently from these inputs. The fuzzer was not able to detect any timing side-channel

vulnerabilities in these hardened programs in which timing side-channel vulnerabilities are

automatically mitigated as shown in Table 4.2.

To demonstrate the ability of Soteria’s transformations to mitigate timing side channels,

we discuss in more detail the impacts of those transformations on the running example (i.e.,

the unsafe password check in Listing 1.1). In Table 4.3, the column titled Unsafe pwcheck

shows the number of instructions retired during the execution of unsafe password check;

the column titled Mitigated pwcheck shows the number of instructions retired during the

execution of the mitigated password check program that is written in a flat fashion. The

first row shows us the vulnerability in lines 2-3 of Listing 1.1; when the size of guess and

pw are not the same, the program terminates early. The attacker will be able observe from

other input pairs that have longer execution times that the attacker-controlled guess buffer

does not match the secret pw in size. This vulnerability could be exploited in the unsafe

version via brute forcing until execution takes longer. However, the flat version takes 201

instructions whether or not the size of these two buffers are equal to each other, i.e., the

number of instructions retired in the first and the second row are equal and cost is equal to

0 in both rows in Table 4.3.

The results for other inputs highlight the side-channel vulnerability in lines 5-6 of Listing

1.1. This secret-dependent return statement causes early termination of the program as soon

25

as the elements at the same index are not equal to each other. This results in a leakage from

which the attacker can infer the number of leading elements that are equal to each other:

the number of instructions retired are 70, 99, 128, and 142, respectively, when 0, 1, 2, and

3 elements match. As shown in the last row, the cost (difference in number of instructions)

will potentially increase with longer buffers resulting in a more distinguishable variance for

an attacker to exploit. On the other hand, the execution time of the transformed program

only depends on the size of the guess buffer. This does not leak anything for the attacker

to exploit since the size of the guess buffer is already known by the attacker.

4.4 RQ3: Functional Correctness of Transformed IR

To test the correctness of the transformations, we utilize the inputs found by the fuzzer

during side-channel fuzzing, in addition to the manual unit tests we wrote during the im-

plementation of the transformations. We run the original programs from benchmarks and

the converted timing side-channel resistant ones using these inputs and then compare their

outputs, checking to see if the outputs across benchmarks are the same. The inputs from

the fuzzer are utilized to verify that our transformations kept the functional behavior of the

programs intact—demonstrating our transformations to be functionally correct. As Table

4.1 demonstrates, Soteria achieves 100% correctness using all these test cases.

26

N
u
m
b
e
r
o
f
In

str
u
c
tio

n
s
R
e
tir

e
d

S
o
te

r
ia
’s

F
u
z
z
e
r

D
ifF

u
z
z

B
e
n
c
h
m

a
r
k
s

V
e
r
sio

n
A
v
e
r
a
g
e
δ

S
td

.
E
r
r
o
r

M
a
x
im

u
m

A
v
e
r
a
g
e
δ

S
td

.
E
r
r
o
r

M
a
x
im

u
m

M
ic
r
o
b
e
n
c
h

S
a
fe-O

rig
in
a
l

4
8
,2
4
5

1
2
0
,5
8
6

5
2
8
,0
5
0

1
0

1
S
a
fe-U

p
d
a
ted

0
0

0
U
n
sa
fe

2
4
3
,2
0
2

5
8
2
,3
0
5

2
,5
7
5
,2
7
9

1
9
2

2
.6
8

1
9
5

A
rra

y

M
itig

a
ted

0
0

0
S
a
fe-O

rig
in
a
l

1
0
3
,3
4
4
,8
6
0

1
,1
3
8
,6
7
5
,1
0
0

1
2
,8
8
4
,9
0
2
,1
1
6

1
,4
6
8
,2
1
2
,3
1
2

7
1
9
,3
7
5
,4
7
9
.7
7

4
,2
7
8
,2
6
8
,7
0
2

S
a
fe-U

p
d
a
ted

0
0

0
U
n
sa
fe

7
9
6
,7
4
0

1
,9
5
8
,9
8
3

7
,1
8
8
,9
3
7

4
,2
8
3
,4
0
4
,8
5
2

4
,4
5
0
,2
7
8

4
,2
9
4
,8
3
8
,7
8
2

L
o
o
p
A
n
d
B
ra
n
ch

M
itig

a
ted

0
0

0
S
a
fe

0
0

0
0

0
0

U
n
sa
fe

1
7
,3
4
9
,1
1
3

1
2
,0
3
5
,7
2
6

4
4
,7
7
0
,1
3
7

4
,2
1
3
,2
3
7
,1
9
8

6
0
,8
5
7
,8
8
8

4
,2
9
0
,5
1
0
,8
8
3

S
a
n
ity

M
itig

a
ted

0
0

0
S
a
fe

0
0

0
0

0
0

U
n
sa
fe

8
0
6

0
8
0
6

8
0

8
S
tra

ig
h
tlin

e
M
itig

a
ted

0
0

0
S
T
A
C

S
a
fe

0
0

0
0

0
0

U
n
sa
fe

5
7
6
,0
8
5

1
,2
8
8
,7
7
4

5
,2
0
5
,5
6
5

8
6

2
0
.3
1

1
2
7

P
a
ssw

o
rd

E
q

M
itig

a
ted

0
0

0
R
u
n
n
in

g
E
x
a
m

p
le

S
a
fe

0
0

0
U
n
sa
fe

7
0
3
,6
8
9

1
,4
9
5
,5
1
8

5
,6
6
8
,8
4
8

p
w
ch

eck
M
itig

a
ted

0
0

0

Table 4.2: The results of differential fuzzing on converted benchmarks’ constant-time behav-
ior. Red cells indicate that they could not be compared since automatically mitigated and
updated, safe versions are not available in the original Java benchmarks.

27

Public Input Value Secret Values
Number of Instructions Retired
Unsafe pwcheck Cost Mitigated pwcheck Cost

guess = 1
pw = 12 41

0
201

0
pw = 123 41 201

guess = 1
pw = 1 84

14
201

0
pw = 2 70 201

guess = 12
pw = 12 113

43
295

0
pw = 34 70 295

guess = 123
pw = 123 142

72
389

0
pw = 456 70 389

guess = 123
pw = 193 99

29
389

0
pw = 129 128 389

guess = 123456
pw = 777777 70

159
671

0
pw = 123456 229 671

Table 4.3: Results of the Running Example

28

Chapter 5

Threats to Validity

5.1 Construct Validity

The execution timing cost is measured by counting the number of instructions retired dur-

ing the execution of the program by using perf events [25] library on Linux. DifFuzz [38],

Themis [20] and Blazer [7] also utilize a similar approach by counting bytecode instructions

executed in Java programs. This approach, counting the number of instructions retired

during the execution of the program, as opposed to measuring the wall-clock time of the

execution, is a more robust metric under the assumption of the fact that these instructions

are constant-time and not variable-time instructions. For the modern implementations of

x86 architectures, all integer arithmetic instructions are constant time except for the division

instruction [23]. Measuring the wall-clock time could be imprecise due to its sensitivity to

other processes competing for the same resources. Since previous timing side-channel detec-

tion approaches use a similar measurement, counting the number of instructions enables us

to have a comparable evaluation with them.

We note that while the results will not be directly comparable because (1) counting native

29

instructions as opposed to bytecode instructions will yield different results and (2) the fuzzing

approach uses random mutations, so the inputs the fuzzers come up with will likely be

different. Nevertheless, these results still indicate the correctness of these benchmarks. For

example, when we look at the Straightline benchmark in Table 4.2, we see a similar result

for both Soteria’s fuzzer and DifFuzz. Both fuzzers have a fixed maximum and average

number of instructions resulting in zero standard deviation (a maximum of 806 for Soteria’s

fuzzer and 8 for DifFuzz). As shown in Listing 5.1, this result occurs because both branches

in the straightline unsafe function have a fixed number of instructions (i.e., no loops with

a variable number of iterations)—resulting in the same amount of difference in the number

of instructions between two branches. To account for the randomness of the fuzzers, each

version of the benchmark is fuzzed for 45 minutes and this experiment is repeated 5 times.

Average results of these repeated experiments are shown in Table 4.2.

1 int straightline_unsafe(SECRET int a, PUBLIC int b) {

2 int x=a, y=b;

3 if(a > 0 && b > 0) {

4 x = 2;

5 } else {

6 // FOLLOWING CODE SNIPPET REPEATS 9 TIMES

7 x=1+y; y=2+x; x=3+y; y=4+x; x=5+y; y=6+x; x=7+y; y=8+x; x=9+y; y=10+x; x=1+y; y=2+x;

x=3+y; y=4+x; x=5+y; y=6+x; x=7+y; y=8+x; x=9+y; y=10+x; x=1+y; y=2+x; x=3+y; y=4+x

; x=5+y; y=6+x; x=7+y; y=8+x; x=9+y; y=10+x;

8 }

9 return x+y;

10 }

Listing 5.1: Straightline unsafe benchmark has a fixed number of instructions difference
between the imbalanced branches.

5.2 Internal Threat to Validity

Internal threats to validity in our work arise in the context of validating the correctness of

our converted benchmarks. Two major goals are important to consider in terms of inter-

nal validity in this context: First, to test that the program behaviors are kept intact and

30

maintain the same semantics as the original benchmarks; second, to show that the rewritten

programs still exhibit unsafe and safe behavior. These benchmark programs—adapted from

DifFuzz, Themis, and Blazer are small applications—which have two versions: unsafe (with

intentional timing side-channel vulnerabilities) and safe (side-channel vulnerabilities from

unsafe versions are mitigated). To show that the benchmarks are correctly rewritten from

Java to C/C++, not only are manual tests used but also the expected outputs from inputs

that the fuzzer comes up with are used, and these outputs are compared to the outputs of the

original Java versions. The correctness results from this comparison are shown in Table 4.1.

Additionally, as discussed in Section 4.2, we corrected errors in the original benchmarks—

which arose from unsafe code that is supposed to be safe and also has functional correctness

issues—further demonstrating our diligence in ensuring their correctness.

5.3 External Threat to Validity

This section discusses the generalizability of Soteria’s approach. Since the transformations

are not language-specific, they are applicable to other languages. With a reasonable amount

of engineering effort, it should be possible to integrate these source-to-source transformations

that automatically rewrite Java programs using Soteria’s approach. Additionally, these

transformations can be done at the IR level instead of the source level. Since Soteria aims

to harden general-purpose programs that are written by general programmers and not only

side-channel experts such as cryptographers, we decided to implement these transformations

at the source level as it would make the code-review process easier. Furthermore, the type

of benchmark programs also fit this purpose as they are general-purpose programs with

common optimization techniques such as the early termination of functions and loops.

31

Chapter 6

Related Work

With the increasing recognition of side-channel vulnerabilities, there has been a diverse body

of research focusing on both detection and mitigation. There have been efforts to investigate

implementing a domain-specific language to write constant-time programs. qhasm [13] is a

portable assembly language with a register allocator that allows a programmer to write high-

performing cryptographic code. Vale [15] is similarly a portable high-performance assembly

code that utilizes a proven-correct taint-analysis engine. This engine verifies the abstract

syntax tree generated from this assembly code to prove that the program is side-channel

resistant. Jasmin [5], unlike the previously mentioned languages, combines high-level con-

structs such as variables, arrays and functions with low-level capabilities such as instruction

selection and scheduling, and register allocation to enable a programmer to have a stronger

control over the program. Jasmin utilizes EasyCrypt to formally verify that the executable is

constant-time [10]. FaCT [18] is another DSL that helps write constant-time code using stan-

dard and high-level constructs. FaCT compiles such high-level code to constant-time LLVM

intermediate representation (IR). These languages are not general-purpose programming lan-

guages and they are designed with cryptographic implementations in mind. Soteria, unlike

these DSLs, takes an annotated C/C++ source code and transforms it into a constant-time

32

IR. With Soteria, writing timing side-channel resistant code is not reserved for only ex-

perts; instead, every programmer is able to harden their general-purpose programs against

side-channel vulnerabilities.

There are also several efforts to formally verify the existing implementations of crypto-

graphic libraries and build formally verified cryptographic implementations. Barthe et. al

[9] performs a rigorous study of cache-timing attacks in virtualized environments by model-

ing virtual addressing, memory mappings, page tables, translation lookaside buffers (TLBs)

and caches. The authors provide a formal proof that constant-time implementations are

resistant against cache-timing side-channel attacks in this model of virtualization platforms

and evaluate their work on implementations of PolarSSL AES, DES and RC4, SHA256 and

Salsa20. Moreover, CacheFix [19] automatically verifies and synthesizes patches for cache

side-channel vulnerabilities using symbolic verification techniques. Even though CacheFix

generates proofs for the programs of their cache side-channel freedom, it focuses only on cache

side-channel vulnerabilities and, unlike Soteria, does not consider non-cache related tim-

ing side-channel vulnerabilities such as early terminations and imbalanced secret-dependent

branches. Additionally, Beringer et. al [11] verifies the correctness and security of OpenSSL

implementation of HMAC with machine-checked proofs in Coq [22]; Appel [8] similarly verify

the correctness of OpenSSL implementation of SHA-256 by utilizing Coq and CompCert, a

verified C compiler. Furthermore, Ye et. al [46] verifies the correctness of mbedTLS imple-

mentation of HMAC-DRBG by formalizing the functional specification and using a hybrid

game-based proof. Tsai et. al [44] verifies low-level mathematical constructs, often written in

assembly and manually optimized, that are used as constant-time primitives to implement

the underlying algebraic structures in an OpenSSH implementation of X25519. Almeida

et. al [6] formally verifies the LLVM IRs of constant-time implementations. Besides formal

verification of existing implementations of cryptographic libraries, Bhargavan et. al [14] im-

plements a formally verified version of TLS 1.2. These research efforts to formally verify

the correctness of cryptographic libraries and their resistance against side-channel attacks

33

are not generalizable as they target specific projects in isolation and suffer from scalability

issues.

This large body of research work to formally verify these implementations relies on pro-

grammers to write these programs in a constant-time fashion to begin with. To the best

of our knowledge, Soteria is the first approach to provide an end-to-end mitigation and

verification of the impacts of this mitigation.

34

Chapter 7

Conclusions and Future Work

We have presented Soteria, a compiler-based approach to transform sensitive programs

that are written in a non-constant-time manner into their constant-time equivalents. We

believe that a sensitive system should be timing side-channel resistant overall rather than

having only the high-value target components, such as cryptographic libraries, hardened

against timing side-channel vulnerabilities. When programming, we generally rely on and

trust compilers to generate correct and optimized programs; we should also rely on compilers

to generate secure programs to protect against timing side-channel vulnerabilities. Soteria

aims to be a step toward this goal. It is integrated into a mainstream compiler to allow a

programmer to annotate the secret parts of the code and perform source-to-source transfor-

mations to automatically eliminate timing side channels. Soteria’s results on six evaluation

benchmarks that we converted from ones used by three state-of-the-art side-channel analysis

approaches—DifFuzz [38], Blazer [7], and Themis [20]—demonstrate the ability of Soteria

to mitigate timing side channels while maintaining functional correctness.

Nevertheless, mitigating these side channels at the source level is not sufficient to guarantee

the constant-time properties of the program. The compiler might introduce optimizations

35

that revert these mitigations. This could be avoided by detecting these specific optimiza-

tions and disabling them. A sound and complete formal verification of LLVM IR of mitigated

source code would give stronger guarantees for constant-time behavior [6]. We aim to adopt

such an approach for future work. Besides mitigation at the IR level, mitigating timing

side channels requires the knowledge of computer architecture. Constant-time implemen-

tations need to consider architecture-specific performance optimizations that might induce

side-channel vulnerabilities. To address this challenge, our future work includes automatic

detection and mitigation of vulnerabilities that might arise when the compiler back-end

generates nonconstant-time executables from constant-time IR.

36

Bibliography

[1] Y. A Younis, K. Kifayat, Q. Shi, and B. Askwith. A new prime and probe cache
side-channel attack for cloud computing. In 2015 IEEE International Conference on
Computer and Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing,
Washington, DC, USA, 10 2015. IEEE.

[2] O. Acıiçmez, W. Schindler, and c. K. Koç. Cache based remote timing attack on the
aes. In Proceedings of the 7th Cryptographers’ Track at the RSA Conference on Topics
in Cryptology, CT-RSA’07, page 271–286, Berlin, Heidelberg, 2007. Springer-Verlag.

[3] O. Aciicmez and W. Schindler. A major vulnerability in rsa implementations due to
microarchitectural analysis threat, 2007. onur.aciicmez@gmail.com 13751 received 26
Aug 2007, last revised 26 Aug 2007.

[4] M. R. Albrecht and K. G. Paterson. Lucky microseconds: A timing attack on amazon’s
s2n implementation of tls. In M. Fischlin and J.-S. Coron, editors, Advances in Cryp-
tology – EUROCRYPT 2016, pages 622–643, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

[5] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. Laporte, T. Oliveira,
H. Pacheco, B. Schmidt, and P. Strub. Jasmin: High-assurance and high-speed cryptog-
raphy. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 1807–1823, New York,
NY, USA, 2017. ACM.

[6] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi. Verifying constant-
time implementations. In Proceedings of the 25th USENIX Conference on Security
Symposium, SEC’16, page 53–70, USA, 2016. USENIX Association.

[7] T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and S. Wei. De-
composition instead of self-composition for proving the absence of timing channels. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2017, page 362–375, New York, NY, USA, 2017. Association
for Computing Machinery.

37

[8] A. W. Appel. Verification of a cryptographic primitive: Sha-256. ACM Trans. Program.
Lang. Syst., 37(2), Apr. 2015.

[9] G. Barthe, G. Betarte, J. Campo, C. Luna, and D. Pichardie. System-level non-
interference for constant-time cryptography. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14, page 1267–1279, New
York, NY, USA, 2014. Association for Computing Machinery.

[10] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P. Strub. Easycrypt:
A tutorial. In A. Aldini, J. López, and F. Martinelli, editors, Foundations of Security
Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures, volume 8604 of Lecture
Notes in Computer Science, pages 146–166, New York, NY, USA, 2013. Springer.

[11] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel. Verified correctness and security
of openssl HMAC. In 24th USENIX Security Symposium (USENIX Security 15), pages
207–221, Washington, D.C., Aug. 2015. USENIX Association.

[12] D. J. Bernstein. Cache-timing attacks on AES. https://cr.yp.to/antiforgery/

cachetiming-20050414.pdf. [Online; accessed 2021-02-08].

[13] D. J. Bernstein. Writing high-speed software. https://cr.yp.to/qhasm.html, 2005.
[Online; accessed 2021-02-08].

[14] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub. Implementing tls
with verified cryptographic security. In 2013 IEEE Symposium on Security and Privacy,
pages 445–459, 2013.

[15] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch, B. Parno, A. Rane,
S. Setty, and L. Thompson. Vale: Verifying high-performance cryptographic assembly
code. In 26th USENIX Security Symposium (USENIX Security 17), pages 917–934,
Vancouver, BC, Aug. 2017. USENIX Association.

[16] T. Brennan, N. Rosner, and T. Bultan. JIT leaks: Inducing timing side channels through
just-in-time compilation. In 2020 IEEE Symposium on Security and Privacy, SP 2020,
San Francisco, CA, USA, May 18-21, 2020, pages 1207–1222. IEEE, 2020.

[17] D. Brumley and D. Boneh. Remote timing attacks are practical. In Proceedings of the
12th Conference on USENIX Security Symposium - Volume 12, SSYM’03, page 1, USA,
2003. USENIX Association.

[18] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby, J. Renner,
B. Grégoire, G. Barthe, R. Jhala, and D. Stefan. Fact: A dsl for timing-sensitive
computation. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, page 174–189, New York, NY, USA,
2019. Association for Computing Machinery.

[19] S. Chattopadhyay and A. Roychoudhury. Symbolic verification of cache side-channel
freedom. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 37(11):2812–2823, 2018.

38

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/qhasm.html

[20] J. Chen, Y. Feng, and I. Dillig. Precise detection of side-channel vulnerabilities using
quantitative cartesian hoare logic. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, page 875–890, New York, NY,
USA, 2017. Association for Computing Machinery.

[21] F. Cloutier. CMOVcc — Conditional Move Reference. https://www.felixcloutier.
com/x86/cmovcc, 2022. [Online; accessed 2021-02-08].

[22] T. C. development team. The Coq proof assistant reference manual. LogiCal Project,
2004. Version 8.0.

[23] A. Fog. The microarchitecture of Intel, AMD and VIA CPUs An optimization guide for
assembly programmers and compiler makers.

[24] C. P. Garćıa, B. B. Brumley, and Y. Yarom. Make sure dsa signing exponentiations
really are constant-time. Cryptology ePrint Archive, Report 2016/594, 2016. https:

//eprint.iacr.org/2016/594.

[25] B. Gregg. perf: Linux profiling with performance counters.

[26] D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+ flush: a fast and stealthy
cache attack. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 279–299. Springer, 2016.

[27] S. He, M. Emmi, and G. Ciocarlie. ct-fuzz: Fuzzing for timing leaks, 2019.

[28] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel. A high-resolution side-
channel attack on last-level cache. In Proceedings of the 53rd Annual Design Automation
Conference, page 72. ACM, 2016.

[29] R. Kersten, K. Luckow, and C. S. Păsăreanu. Poster: Afl-based fuzzing for java with
kelinci. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’17, page 2511–2513, New York, NY, USA, 2017. Association
for Computing Machinery.

[30] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting speculative exe-
cution, 2018.

[31] P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In N. Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 18-22,
1996, Proceedings, volume 1109 of Lecture Notes in Computer Science, pages 104–113.
Springer, 1996.

[32] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Proceedings of the
19th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO
’99, page 388–397, Berlin, Heidelberg, 1999. Springer-Verlag.

39

https://www.felixcloutier.com/x86/cmovcc
https://www.felixcloutier.com/x86/cmovcc
https://eprint.iacr.org/2016/594
https://eprint.iacr.org/2016/594

[33] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. Armageddon: Cache
attacks on mobile devices. In 25th USENIX Security Symposium (USENIX Security
16), pages 549–564, Austin, TX, Aug. 2016. USENIX Association.

[34] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg. Meltdown, 2018.

[35] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache side-channel attacks
are practical. In 2015 IEEE Symposium on Security and Privacy, pages 605–622. IEEE,
2015.

[36] LLVM. Clang LibAST Matchers Reference. https://clang.llvm.org/docs/

LibASTMatchersReference.html. [Online; accessed 2021-02-08].

[37] LLVM. Clang: a C language family frontend for LLVM. https://clang.llvm.org/,
2022.

[38] S. Nilizadeh, Y. Noller, and C. S. Pasareanu. Diffuzz: Differential fuzzing for side-
channel analysis, 2019.

[39] openssl. Memory corruption in the ASN.1 encoder (CVE-2016-2108). https://www.

openssl.org/news/secadv/20160503.txt. [Online; accessed 2021-02-08].

[40] openssl. Security of CBC Ciphersuites in SSL/TLS. https://www.openssl.org/

~bodo/tls-cbc.txt. [Online; accessed 2021-02-08].

[41] openssl. Timing vulnerability in DSA signature generation (CVE-2018-0734). https:

//www.openssl.org/news/secadv/20181030.txt. [Online; accessed 2021-02-08].

[42] openssl. Constant-time Constructs in OpenSSL. https://github.com/openssl/

openssl/blob/master/include/internal/constant_time.h, 2022. [Online; accessed
2021-02-08].

[43] J.-J. Quisquater and D. Samyde. Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In Proceedings of the International Conference on
Research in Smart Cards: Smart Card Programming and Security, E-SMART ’01, page
200–210, Berlin, Heidelberg, 2001. Springer-Verlag.

[44] M.-H. Tsai, B.-Y. Wang, and B.-Y. Yang. Certified verification of algebraic properties
on low-level mathematical constructs in cryptographic programs. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS ’17,
page 1973–1987, New York, NY, USA, 2017. Association for Computing Machinery.

[45] Y. Yarom and K. Falkner. Flush+reload: A high resolution, low noise, l3 cache side-
channel attack. In 23rd USENIX Security Symposium (USENIX Security 14), pages
719–732, San Diego, CA, 2014. USENIX Association.

[46] K. Q. Ye, M. Green, N. Sanguansin, L. Beringer, A. Petcher, and A. W. Appel. Verified
correctness and security of mbedtls HMAC-DRBG. CoRR, abs/1708.08542, 2017.

[47] M. Zalewski. American fuzzy lop (afl).

40

https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/
https://www.openssl.org/news/secadv/20160503.txt
https://www.openssl.org/news/secadv/20160503.txt
https://www.openssl.org/~bodo/tls-cbc.txt
https://www.openssl.org/~bodo/tls-cbc.txt
https://www.openssl.org/news/secadv/20181030.txt
https://www.openssl.org/news/secadv/20181030.txt
https://github.com/openssl/openssl/blob/master/include/internal/constant_time.h
https://github.com/openssl/openssl/blob/master/include/internal/constant_time.h

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	LIST OF LISTINGS
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Background
	Soteria
	Identifying and Transforming Side-Channel Inducing Patterns
	Early Return Rewrite Transformation
	Secret-Dependent Assignment Rewrite Transformation
	Final Branchless Transformation

	Evaluation
	RQ1: Correctness of Converted Side-Channel Benchmarks
	Updates to Fix Errors in Original Benchmarks
	RQ2: Constant-Time Effectiveness of Transformations
	RQ3: Functional Correctness of Transformed IR

	Threats to Validity
	Construct Validity
	Internal Threat to Validity
	External Threat to Validity

	Related Work
	Conclusions and Future Work
	Bibliography

