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ABSTRACT OF THE DISSERTATION

Weak Interactions of Hot Nuclei in Stellar Collapse

by

Gordon Wendell Misch

Doctor of Philosophy in Physics

University of California, San Diego, 2014

Professor George Fuller, Chair

The physics of the atomic nucleus and supernovas are fundamental to our

very being. Indeed, supernovas provide the wind that disperses the nuclei of which

we are composed, and the physics of nuclei is pivotal in supernova dynamics. Dur-

ing supernova core collapse, the extremely high temperatures and densities and

low entropy favor large, neutron-rich nuclei at high excitation energy. My col-

laborators and I examine two weak interactions that occur in nuclei under these

conditions. First, we study the production of neutrino pairs via de-excitation of

hot nuclei. In de-exciting, the nucleus can emit a virtual Z0 boson that decays into

a neutrino-antineutrino pair. We find this to be the dominant source of neutrino

pairs of all flavors during collapse. Second, we use modern shell model computa-

tion techniques to revise the Brink-Axel hypothesis method of computing electron
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capture rates that was pioneered by Fuller, Fowler, and Newman. Our results show

that the Brink-Axel hypothesis (which posits that the bulk of nuclear transition

strength is distributed among transition energies independently of initial excita-

tion energy) fails at low and moderate excitation, but that at high initial energies,

the strength is largely independent of excitation. The failure of the Brink-Axel hy-

pothesis manifests as the redistribution of strength to low and negative transition

energies, which can have the effect of increasing the overall electron capture rate

in the core.
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Chapter 1

Introduction

Throughout this work, I will liberally use “natural units,” i.e., units such

that ~ = c = kB = 1. These three constants contain the four dimensions of time,

energy, length, and temperature, leaving one independent base unit by which to

measure all four dimensions. Generally, this usage will not be made explicit, and

I will simply give a temperature in mega electron volts (MeV), or an angular

momentum will be dimensionless, or the above constants will simply not appear in

an equation. When a dimensionful quantity is listed, the units attached to it can be

converted by appropriate application of the above constants in units of the reader’s

choice. Additionally, A will be the atomic mass number of the nucleus, given by

the sum of the proton number Z and the neutron number N; this convention will

be absolutely invariant, and later sections will freely assume understanding of the

meanings of these labels.

I will assume a basic familiarity with quantum mechanics and statistical

mechanics, avoiding lengthy discussions on the fundamentals of those topics and

only addressing those aspects which are directly applicable.

1.1 Supernovas

As a star with mass greater than ∼10 M� (solar masses) evolves, it goes

through a series of nuclear fusion (“burning”) phases in its core. It begins with

hydrogen burning, which causes the buildup of a helium-rich core. Gradually, as it

1
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grows in mass, the helium core contracts and heats until it ignites helium burning,

which produces heat and halts the contraction. This process repeats several times

with heavier and heavier core elements until eventually, a silicon core burns into

iron. Iron, on the other hand, is an extremely tightly bound nucleus, and there

is no energy to be gained by fusing it into heavier elements. Thus, as the iron

core grows, it becomes denser and denser, held against gravity by the pressure of a

degenerate sea of electrons. When the iron core reaches the Chandrasekhar mass

of ∼1.4 M�, the electron degeneracy pressure is no longer sufficient to support the

core, and it undergoes a rapid collapse in about 1 second.

1.1.1 Supernova Cores

During the collapse, the core separates into an inner core that falls subson-

ically and an outer core that falls supersonically. The mass of the inner core is

set principally by the electron-to-baryon ratio Ye; the degeneracy pressure of the

electrons tends to slow the collapse, so a larger Ye yields a larger inner core. All

parts of the inner core remain in causal contact, and it collapses self-similarly until

it reaches a density of a few times nuclear density, when it stops suddenly and

rebounds. The outer core, on the other hand, doesn’t know when it’s time to stop,

as it is falling faster than information about conditions at smaller radii can prop-

agate outward. It consequently piles onto the inner core just as the inner core is

rebounding, and this launches a shockwave. The shock propagates outward and is

thought to be one of the mechanisms – along with a neutrino wind – that unbinds

the star’s envelope, blasting it into the interstellar medium. But when this simple

picture is modeled in one dimension on computers, the shockwave dissipates its

energy by dissociating the nuclei of the outer core. The loss of energy causes it to

stall and collapse back down onto the proto-neutron star [1–3].

More recently, the inclusion of multi-dimensional hydrodynamics and more

sophisticated nuclear and neutrino microphysics has improved our understanding

of the supernova mechanism [4–9], but it remains true that the outer core plays a

major role in dissipating the shock energy. We must therefore include in supernova

models the best core physics possible, and the physics of the core is to a great extent
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the physics of the nucleus under extreme conditions.

1.1.2 Nuclei During Core Collapse

For some of the arguments in this section, it is useful to have a simple

model of the nucleus just for the sake of getting an intuitive physical picture. To

that end, consider the nucleus as a Fermi gas consisting of two species, to whit,

protons and neutrons. The nucleons propagate therein as non-interacting plane

waves. The ground state is then the completely degenerate gas, with protons and

neutrons filling all states below the Fermi energy of their respective species, and

nuclear excitations arise from single particle excitations above the Fermi sea.

At the onset of collapse, the core is extremely dense (∼5 × 109 g/cm3)

and extraordinarily hot (∼1 MeV). Despite this, the fact that the electrons are

degenerate and the nucleons bound up in moderately sized nuclei makes the entropy

very low at ∼1 kB per baryon [10]. Naturally, these conditions are opaque to

photons, but as the core collapses, neutrinos freely escape until a density of ∼1012

g/cm3. Various neutrino production processes act to cool the core, keeping entropy

low throughout collapse [11–14].

Because of the low entropy, most of the nucleons remain bound in large

nuclei. This follows intuitively from the point that a large nucleus has fewer degrees

of freedom than many free nucleons or small nuclei, and is made explicit in reference

[10], with a typical nuclear mass number being A ∼ 100. The high temperature

has an interesting effect on large nuclei: the Bethe approximation for the level

density of the nucleus [15] predicts a mean excitation energy of

E = aT 2 (1.1)

where T is the temperature in MeV and a is the level density parameter given

approximately by a = A/8 MeV−1. This is understood intuitively from a Fermi

gas model of the nucleus wherein approximately aT nucleons are excited to energies

of approximately the temperature.

With A = 100 and T = 1 MeV, the mean excitation is ∼12.5 MeV, and

a temperature of T = 1.5 MeV gives an excitation of 28 MeV, which are high
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excitations indeed! There are two important points here. The first is that these

highly excited nuclei are bound, as we are not exciting just one or two nucleons.

This comes from the fundamental postulate of statistical mechanics that all states

are equally likely, and there are many more ways to excite several nucleons a little

bit above the Fermi surface than one or two nucleons by a lot. The second point is

that while the Boltzmann factor e−En/T exponentially suppresses the occupation

index of state n, the density of states within the nucleus grows exponentially with

energy; this rapid growth, seen in Fig. 2.9, competes with the Boltzmann factor,

yielding the large excitations.

As the collapse progresses, electrons capture onto free protons and nuclei,

reducing Ye. As the core becomes more and more neutron rich, it becomes less and

less energetically favorable for electrons to capture on nuclei, since in the Fermi gas

picture of the nucleus, the difference in the Fermi levels of protons and neutrons

becomes larger and larger. This causes Pauli blocking of electron capture, as the

protons in the nucleus require a large amount of energy to reach the top of the

neutron Fermi sea. This effect can be alleviated thermally by the excitation of

protons to higher levels (reducing the jump to the neutron Fermi level) and the

excitation of neutrons, which leaves behind holes at lower energy that can then

serve as final states for electron-capturing protons [16]. As the supernova evolution

is sensitive to Ye, it is then also sensitive to the physics of hot nuclei.

The stage is now set. We have an extremely dense, hot, low entropy envi-

ronment that favors large nuclei with high excitation energies, and the evolution of

the supernova is sensitive to the behavior of those nuclei. The work in the following

chapters examines some important aspects of that behavior.

1.2 Nuclear Physics

The atomic nucleus is essentially a droplet of strongly interacting matter

consisting of a number of net quarks equal to three times the atomic mass number

and a sea of gluons and quark-antiquark pairs. Treating this mess with a rigorous

quantum chromodynamics approach is still a distant dream, but it can be effec-
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tively described as a much smaller number of quasi-particles with nearly identical

quantum numbers (including mass, electric charge, spin, isospin, etc.) as bare

protons and neutrons. In fact, this approximation is so good that we will continue

to think of and refer to them as such.

1.2.1 Spin and Isospin

In the context of nuclear physics, “spin” is commonly used to refer to total

the quantum angular momentum of the nucleus, being comprised of the combined

spins and orbital angular momenta of its constituent particles; this is in contrast

to the more common usage of spin to refer strictly to that part of the angular mo-

mentum of a particle which is not derived from orbital motion. In this work, I will

use “spin” to refer to the total angular momentum of the nucleus and the intrin-

sic angular momentum of protons and neutrons (nucleons), and “orbital angular

momentum” to refer to the angular momentum of particles due to their motion

around a potential. The gory details of quantum angular momentum and the ad-

dition thereof are, I think, best left in the textbooks. Here, I will touch on it just

briefly as it relates to the topic at hand.

The total angular momentum J of a nucleon in the nucleus is the combina-

tion of its orbital angular momentum L and spin s. Nucleons have a spin of 1/2,

meaning that there are two possible outcomes when it is summed with L to obtain

J: either L and s are aligned, giving J = L + 1/2 (“stretched”); or L and s are

anti-aligned, pointing in opposite directions, giving J = L − 1/2 (“jackknifed”).

The total angular momenta of the nucleons are then summed according to the

usual rules to obtain the spin states of the nucleus.

Isospin – short for isobaric or isotopic spin – is a quantum number carried

by particles that interact via the strong force. The inclusion of “spin” in the name

of this quantity is due to the fact that it is treated mathematically in a manner

very similar to the spin of angular momentum. Particles of different charges that

interact identically with the strong force can be considered to be different isospin

states of the same species. What this means for our purposes is that we have a

single species of particle, the nucleon. Each nucleon has a total isospin of 1/2,
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with protons being a nucleon with z-projection of isospin τz = +1/2 (isospin up)

and neutrons being τz = −1/2 (isospin down).

With respect to the strong nuclear force, isospin is nearly a good symmetry,

which is to say that the strong force treats protons and neutrons identically. It is

not strictly true that protons and neutrons behave identically in the nucleus, as

they have slightly different masses and their different charges and magnetic dipole

moments do break the isospin symmetry, and isospin mixing can arise. But the

effects of mixing are small [17], and we ignore them.

1.2.2 The Nuclear Shell Model

The nucleus can be considered to consist of protons and neutrons moving

in a collective potential well, usually a variant of the Woods-Saxon potential [18]

given by

V (r) =
V0

1 + e(r−r0)/a
(1.2)

where V0 indicates the depth of the potential, r0 is the size of the nucleus, and a

sets the diffuseness of the nuclear surface. This central potential is built up from

the presence of the many nucleons, and in the first order approximation, individual

nucleons otherwise move without interaction with one another. The potential gives

rise to individual single particle states described by quantum numbers similar to

those of the electrons in an atom: they are designated by the principal quantum

number n of the radial component of the associated wave function and the orbital

angular momentum L. The nucleons fill those states starting from the lowest energy

and going up – obeying the Pauli exclusion principle – until all nucleons have been

placed, yielding the ground state of the nucleus. Excited states of the nucleus

are constructed by moving individual nucleons into higher-energy single particle

states, much the same as atomic excitations largely result from excitations of single

electrons.

There exist in the nucleus certain “magic numbers” (specifically 2, 8, 20,

28, 50, 82, 126) of nucleons that are particularly tightly bound. That is, the energy

gap between the nth and the n+1th single particle states is enhanced when n is a

magic number, giving rise to the notion of nuclear shells. Protons and neutrons are
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counted separately, and a nucleus with a magic number of each is called “doubly

magic.” However, these numbers cannot be accounted for by the action of the

central potential alone, and this is where the nuclear single particle state structure

diverges from the electron analogy. Maria Goeppert-Mayer and her collaborators

found that a strong coupling between the spin and orbital angular momentum

produces the measured magic numbers [19–21], for which work they were awarded

the 1963 Nobel prize. Essentially, the single particle nuclear Hamiltonian contains

a term proportional to −L·s, causing the stretched state to be lower in energy than

the jackknifed state. This spin-orbit splitting reorders the single particle levels and

produces energy gaps where the number of states with energies lower than the gap

energy is a magic number; a very nice schematic of this is given in reference [22]. In

the independent single particle shell model (ISPSM), non-interacting nuclei occupy

these single particle states, which are labeled by nLJ , where n and L are as in the

electron analogy, and J is the total angular momentum L± s. As with electron

orbitals, the orbital angular momentum L is usually denoted by a letter, with L=0

indicated by s, L=1 by p, L=2 by d, L=3 by f, and higher values of L proceeding

alphabetically from f.

The ISPSM is an excellent tool for understanding the gross features of the

nucleus. It successfully predicts the ground state spin and parity of nuclei by

simply filling the single particle states from the bottom up with the assumption

that nucleons in the same sub-shell (same nLJ) will always pair to minimize the

total angular momentum, and it was the basis for the works of Fuller, Fowler, and

Newman [23–26] (collectively “FFN”), which even today serve as the standard

against which computations of nuclear weak rates in a stellar core are compared.

Where the ISPSM fails is in predicting the detailed nuclear spectra, a task for which

particle interactions (usually referred to as the “residual Hamiltonian”) must be

included. The residual Hamiltonian as it is used computationally consists in its

simplest form of the interaction matrix elements for each pair of single particle

states.

In order to compute the energy level spectrum of a nucleus using the shell

model, we first construct configurations of nucleons in the ISPSM (as an example, a
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Figure 1.1: One possible single particle configuration for 28Si. States that are
occupied are marked with X, while holes are indicated by O. The wave functions
of the particles are summed with appropriate phases to give definite values of total
nuclear spin and isospin.

particular configuration is shown in Fig. 1.1), with each configuration representing

a Slater determinant of the nucleons with J and T as good quantum numbers.

These configurations form a basis for the nucleus which is then diagonalized in the

residual Hamiltonian to obtain total nuclear wave functions and energies.

This can be a daunting computational task because the number of possible

configurations – and hence the dimension of the matrix to be diagonalized – grows

rapidly with A. Therefore, some simplifications must usually be employed in order

to reduce the matrix size to one that can be handled on modern computers. While

no one of the following simplifications must necessarily be applied in any particular

calculation, I used each in the work presented in this thesis. The first approxima-

tion is to take the nucleus to consist of a “closed core” of tightly bound nucleons

completely filling all of the single particle states up to some energy, with the re-
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maining “valence” nucleons free to occupy higher-lying states. The core is chosen

to be a doubly magic nucleus with A = Z, e.g. a closed 16O core or a closed 40Ca

core. Because magic numbers of nucleons are particularly tightly bound, this ap-

proximation works well for modest nuclear excitation energies. Second, only allow

the valence nucleons to occupy single particle states within the shell immediately

above the core. Again, the large energy gap between shells makes this a reasonably

good approximation. Finally, only allow some of the valence nucleons to occupy

single particle levels above the ISPSM ground state configuration. This is the most

restrictive simplification, but it still yields satisfactory results for low-lying nuclear

states.

Once the residual Hamiltonian has been diagonalized in the configuration

basis, we have a set of nuclear energies and wave functions on which to perform

further computations.

1.2.3 Nuclear Weak Interactions

In the same sense that the electromagnetic force is mediated by the photon,

the weak interaction is mediated by the W± and Z0 bosons, with the superscripts

indicating electric charge; the magnitude of the charge is one unit of elementary

charge. However, there are two key differences from electromagnetic interactions.

The first is that the W± and Z0 bosons are very massive, the former weighing in at

≈ 80 GeV, and the latter ≈ 91 GeV. Any interactions with center-of-momentum

energy less than the mass of the mediating particle will take place via a virtual

particle. Consequently, these enormous masses cause the weak force to be short-

range, as the lifetime of a virtual particle is set by Heisenberg’s uncertainty princi-

ple: ∆E∆t ≥ ~. Secondly, the W± bosons carry electric charge and can affect the

intrinsic properties of the interacting particles, changing the particles to different

species with different charge and mass.

In this work I am concerned primarily with two interactions within the

nucleus: one “neutral current” interaction (mediated by the Z0 boson) and one

“charged current” interaction (mediated by the W± bosons). The neutral current

nuclear de-excitation interaction shown in Fig. 2.1 and discussed in chapter 2
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takes place via the isospin z-projected Gamow-Teller operator: −̂→σ Tz. Here −̂→σ
is the quantum mechanical spin operator, and T̂z is the nuclear z-component of

isospin operator. Because isospin is taken to be a good symmetry with respect to

the nuclear Hamiltonian, T̂z can change the total isospin of the nucleus, but leaves

the z-projection of isospin Z − N unchanged. Neglecting fundamental constants

(these are included in chapter 2), the transition amplitudes between nuclear states

are given by

〈Ψf |−̂→σ Tz|Ψi〉 = 〈Ψf |
∑
n

−̂→σnτzn|Ψi〉 (1.3)

where |Ψi〉 and |Ψf〉 are the initial and final nuclear states, the sum is over nucleons,
−→σn is the single particle spin operator of particle n, and τzn is the single particle

z-component of isospin operator. The selection rules for the final states of this

operator are ∆J = 0,±1, with 0 → 0 not allowed; ∆T = 0,±1, with 0 → 0 not

allowed; ∆Tz = 0; ∆parity = 0.

The charged current interaction of chapter 3, namely electron capture, is

mediated by the W+ and W− bosons, as shown in Fig. 1.2. Electron capture

has two principle operators associated with it: the Fermi lowering operator T̂−

and the Gamow-Teller lowering operator −̂→σ T−. The T̂− operator is the isospin

analog of the angular momentum lowering operator; it takes an initial state with

z-projection of isospin Tz to a final state with z-projection of isospin Tz − 1.

As in the neutral current case, the nuclear operators are sums over nucleons of

single particle operators. The selection rules for the Fermi lowering operator are

∆J = 0; ∆T = 0; ∆Tz = −1; ∆parity = 0. For the GT lowering operator, they

are ∆J = 0,±1, with 0 → 0 not allowed; ∆T = 0,±1, with 0 → 0 not allowed;

∆Tz = −1; ∆parity = 0.

With the matrix elements in hand, it is now simply a matter of applying

Fermi’s Golden Rule

λif =
2π

~
|Mif |2ρ(Ef ) (1.4)

to obtain the transition rates, where λif is the transition rate from the initial state

to the final state, Mif is the matrix element (including fundamental constants)

connecting the two states, and ρ(Ef ) is the density of final states. In general, the

total transition rate is found by averaging Eq. 1.4 over initial states and summing
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Figure 1.2: Feynman diagram showing electron capture. An incoming nucleus
with mass number A and proton number Z and an incoming electron exchange a
W+ or W− boson, resulting in an outgoing nucleus with proton number Z-1 and
an outgoing electron-flavored neutrino.

or integrating over final states. For the transitions addressed in this work, this

is done with thermal population of initial nuclear states, sums over final nuclear

states, and phase space integrals over the momenta (or equivalently, energies) of

the incoming and outgoing particles.



Chapter 2

Neutral Current De-excitation of

Hot Nuclei During Stellar

Collapse

2.1 Abstract

We present shell-model calculations showing that residual interaction-

induced configuration mixing enhances the rate of neutral current de-excitation of

thermally excited nuclei into neutrino-antineutrino pairs. Though our calculations

reinforce the conclusions of previous studies that this process is the dominant

source of neutrino pairs near the onset of neutrino trapping during stellar collapse,

our shell-model result has the effect of increasing the energy of these pairs, possibly

altering their role in entropy transport in supernovae.

2.2 Introduction

In this paper we study the role of the nucleon-nucleon interaction in the

process of de-excitation of hot, excited nuclei into virtual Z0’s and neutrino-

antineutrino pairs. This process is likely the dominant source of neutrino pairs

in collapsing stellar cores [13, 27, 28]. The energy of the neutrinos in these pairs,

12
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set in part by nuclear structure considerations, can be an important determinant of

entropy transport in core collapse supernovae. In turn, the entropy figures promi-

nently in the nuclear composition, neutronization history, and initial shock energy

in supernova models.

The entropy per baryon in the collapsing stellar core is low and, as a result,

most nucleons reside in large nuclei and there are very few free protons [10,16]. The

paucity of free protons has the effect of suppressing the overall electron capture

rate [16], yielding a greater electron fraction Ye (electrons per baryon). Most

pressure support within the core comes from electron degeneracy, so higher Ye

during collapse implies a larger pressure and, hence, a larger homologous core

mass. The mass of this inner core determines the initial energy of the post-bounce

shock: a more massive inner core yields a stronger initial shock. The strength of

the shock, the mass of the core above the shock, and photo-dissociation of heavy

nuclei in this outer core (all determined in part by Ye) are important parameters

in the supernova explosion process [3–9,29–34].

In the epoch near neutrino trapping, when the core density is ∼ 1012 g cm−3,

the electron fraction is Ye ≈ 0.32 [29], giving an electron Fermi energy µe ≈
51.5 MeV (ρ12 Ye)

1/3 ≈ 35 MeV, where the density is scaled as ρ12 ≡ ρ/1012 g cm−3.

The temperature of the core is in the neighborhood of T ∼ 1 MeV to 2 MeV,

so the electrons are highly degenerate. (In this paper we use natural units and

set ~ = kb = c = 1.) Energy emission from the core via neutrinos helps to

maintain low entropy, but at a core density of ρ12 ∼ 1, high energy neutrinos are

trapped by neutral current coherent scattering on nuclei. However, since the cross-

section for this process varies as the square of neutrino energy, low energy (Eν <

10 MeV) neutrinos may escape, carrying away entropy and possibly, depending on

the process, lepton number.

There are a number of ways to produce low energy neutrinos in the core:

inelastic down-scatter of neutrinos on electrons [35, 36]; electron neutrino-pair

bremsstrahlung; plasmon decay, etc. [12,37–44]. However, most of these processes

involve either electrons losing energy or the creation of virtual electrons, both of

which are suppressed by the extreme electron degeneracy; in these conditions there
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simply isn’t much phase space available below the Fermi level. Inelastic neutrino

down-scatter on electrons involves electrons gaining energy and is probably the

dominant source of low-energy electron neutrinos, since there is phase space above

the Fermi sea for electrons to move into. But even this process is not completely

unblocked, as only electrons within ∆E (where ∆E is the energy transferred from

the neutrino to the electron) of the Fermi level can participate.

This leads us to explore low-energy neutrino production mechanisms

that do not involve electrons. Simple neutral current neutrino-nucleon down-

scattering tends to be ineffective in this regard. This is because this process is

roughly conservative: the nucleon mass is large compared to the typical electron

capture-generated neutrino energies, Eν ∼ 25 MeV. Free nucleon neutrino-pair

bremsstrahlung [45–47], a key process in neutron star cooling, is less effective here

because of phase space considerations and because there are few free nucleons in

the low entropy conditions that favor large nuclei during stellar collapse.

Indeed, there are analogs of these two processes for nucleons that reside

in the large nuclei characterizing the neutrino trapping epoch, and these are not

subject to the limitations of their free nucleon cousins. These analogs are: inelastic

down-scattering of energetic neutrinos on nuclei; and neutrino pair emission from

thermally-excited nuclei [11, 13, 27]. The first of these processes has a relatively

large cross section, as this channel is what Ref. [13] termed an “up” transition,

where the nucleus acquires energy from the neutrino, implying that nucleons tran-

sition to higher nuclear excited states, where they are relatively less Pauli blocked.

These processes can have important implications for supernovae [13,48–51].

In contrast, the second of these, the nuclear de-excitation into neutrino

pairs channel shown in Fig. 2.1, is a “down” transition, subject to more nuclear

Pauli blocking, and therefore possessing considerably less nuclear weak interaction

strength on average than the neutrino inelastic down-scatter channel. Nevertheless,

the de-excitation process has some unique features: in principle it may produce

lower energy neutrinos than the down-scattering channel and, should these escape

the core, entropy will be lost but electron lepton number will not be. As shown in

Ref. [28], hot nuclei can also de-excite into neutrino pairs through a virtual plasmon



15

Figure 2.1: Neutral current neutrino pair emission from an excited nucleus A*.

Figure 2.2: Thermally populated nuclear state with excitation energy Ei de-
excites via virtual Z0 emission to a final state with excitation energy Ef .

(photon collective mode in the plasma), and this process has been argued to lead to

large enhancement factors in nuclear neutrino pair emission in the first forbidden

channel. As we will show, our nuclear structure considerations also impact this

channel. All of these issues depend to some extent on the nuclear physics of down

transitions, and so this is where we concentrate in this work.

In Section II we discuss the nuclear and phase space aspects of de-excitation

into neutrino pairs. Nuclear shell-model considerations are discussed in section III.

In Section IV we discuss results, and in Section V we give conclusions.
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2.3 De-Excitation Rates and Nuclear Structure

2.3.1 Large, Highly-Excited Nuclei During Core Collapse

Strong and electromagnetic interactions are fast enough that the material in

stellar collapse can be in thermal and chemical equilibrium, i.e., Nuclear Statistical

Equilibrium (NSE). The weak interaction also is driving toward equilibrium (beta

equilibrium) at the epoch of neutrino trapping, but has not yet arrived there. The

pioneering work by Bethe et al., Ref. [10], showed that the entropy-per-baryon in

a collapsing iron core is s ≈ 1 and, as a consequence, most all nucleons will reside

in large nuclei. Minimizing the free energy for typical conditions, for example with

ρ12 ∼ 1 and T = 1 MeV to 2 MeV, yields a mean nuclear mass A ∼ 100.

The mix of nuclei in NSE in these conditions is exotic. These huge nuclei

will have fair neutron excess, because Ye < 0.4, implying neutron-to-proton ratios

n/p > 1.5. Moreover, because the nuclear level density is high, these nuclei will

be sitting at high excitation energies. To see this we can treat the nucleons in

the nucleus as a Fermi gas. Using the familiar Bethe approximation [15] for the

nuclear level density, an estimate of the average nuclear excitation energy is [10]

〈E〉 ≈ a T 2, (2.1)

where the level density parameter is a ≈ A/8 MeV−1. For example, with A = 100

and T = 2 MeV, Eq. 2.1 implies an excitation energy 〈E〉 ∼ 50 MeV. The expres-

sion in Eq. 2.1 is easily understood: The number of nucleons excited above the

nuclear neutron and proton Fermi levels will be ≈ a T , and in thermal equilibrium

each nucleon so excited will have an average excitation ∼ T .

2.3.2 Nuclear De-Excitation Rates

Consider an excited nucleus dropping down to a lower excitation energy

via virtual Z0 emission, as depicted in Fig. 2.2. This is similar to a nuclear M1

gamma transition. The de-excitation rate [11, 13] from initial nuclear state |i〉,
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with excitation energy Ei, to final nuclear state |f〉, with excitation energy Ef , is

λif ≈
G2

F g
2
A

60π3
(∆E)5B(GT )if (2.2)

≈ 1.71× 10−4 s−1
(

∆E

MeV

)5

B(GT )if (2.3)

where GF is the Fermi constant, gA ≈ 1.26 is the axial vector coupling constant,

∆E = |Ei − Ef | (hereafter referred to as the transition energy) is the difference

between the initial and final state nuclear excitation energies, and B(GT )if =

|〈f ||Σk(
−→σ tz)k||i〉|2/(2Ji + 1) is the reduced transition probability associated with

the axial vector operator. The matrix element connects initial nuclear state |i〉 with

final nuclear state |f〉. Here −→σ is the Pauli operator and tz is the z-component

of nuclear isospin. For the nuclei we consider here, only the axial vector matrix

element is significant: when we neglect the relatively small Coulomb effects, the

nuclear part of the Hamiltonian commutes with isospin operators (e.g., Tz), and

the weak vector matrix element |〈f |Tz|i〉|2 is zero.

The corresponding neutrino-plus-antineutrino energy emission rate, Λif , for

this transition is the product of the de-excitation rate and the transition energy.

Whether or not the neutrinos carrying this energy escape from the star without

scattering, thereby turning the energy emission rate into an energy loss rate, de-

pends on many factors, most especially the neutrino energies.

The total energy emission rate for an excited nucleus in initial state |i〉 is

the sum of the energy emission rates to all accessible final states, and can be viewed

as a function of Ei,

Λtot
i (Ei) =

∑
f, Ef≤Ei

|Ef − Ei|λif . (2.4)

The total overall energy emission rate for the entire nucleus follows on

performing a population index-weighted sum over all initial states i,

Λtot =
∑
i

Pi Λtot
i ≈

1

Z

∫ ∞
0

ρ̃ (Ei) e
−Ei/T Λtot

i dEi, (2.5)

where Pi = (2Ji + 1) exp(−Ei/T )/Z is the population index for state i,

with Ji the spin of level i, Z =
∑

i (2Ji + 1) exp(−Ei/T ) is the nuclear partition
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function, and ρ̃(Ei) is the nuclear level density at excitation energy Ei.

For the thermodynamic conditions relevant for NSE near ρ12 ∼ 1, we can

get a crude estimate of Λtot by simply evaluating Λtot
i at the mean excitation energy

for temperature T , i.e., taking Ei = 〈E〉,

Λtot ≈ Λtot
i (Ei = 〈E〉) . (2.6)

The rationale for this approximation is that while the nuclear level density

rises nearly exponentially with excitation energy, the Boltzmann factor in Eq. 2.5

falls exponentially with this energy, so that their product is strongly peaked at

〈E〉.
However, using this rough approximation is problematic. The level density

is high near 〈E〉, and there will be many different kinds of nuclear many-body

states with e.g., different spins and isospins, but all with roughly this excitation

energy. Therefore, choosing a single representative state is not possible.

2.4 Shell-Model Considerations

2.4.1 Approaches to the Problem

Evaluating the energy emission rates in Eq. 2.4 and Eq. 2.5 for a nucleus

with nuclear mass number A ∼ 100 at a mean excitation energy∼ 50 MeV is clearly

impractical with conventional nuclear structure techniques tailored to capture low

excitation energy physics. The shear size of the problem, some two dozen particles

excited above the Fermi surface in a mass ∼ 100 nucleus with all of the fp-, gd-,

and gh-shells in play, precludes this route.

There are two possible alternative approaches: (1) Treat the ∼ a T nucleons

excited above the Fermi sea as nearly free particles within a dense environment,

with appropriate phase space modifications, and then calculate the neutrino-pair

bremsstrahlung rates for these; and (2) Exploit the fact that each nucleon excited

above the nuclear Fermi level has only a relatively small amount of energy (∼ T ),

so that conventional shell-model treatments are efficacious, at least for nuclei with
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low enough mass that the problem is tractable computationally. The first of these,

by treating valence nucleons as plane waves [27], will tend to overestimate [13] the

nuclear weak strength available, but has the advantage that it would go smoothly

to the homogeneous matter limit when nuclei merge at high density (ρ12 > 10).

Here we will take up the second approach, in part because it has the ad-

vantage of getting a better handle on the weak nuclear strength, nuclear structure

effects, and energetics. The latter is an especially critical issue since the neutrino

energy emission rates scale like six powers of the transition energies. Therefore,

ascertaining how e.g., configuration mixing and particle-hole repulsion act is impor-

tant. However, we will have to model nuclei with lower masses, generally sd-shell

and fp-shell species, rather than the mass ∼ 100 nuclei that neutrino trapping NSE

conditions pick out. At best, this approach will allow us to see trends that may at

some point facilitate extrapolation of these considerations to enable estimates for

rates from heavier nuclei.

2.4.2 Extension to Heavy Nuclei

Even calculating the de-excitation rate from a single level in a “small”

nucleus is a challenging and unusual nuclear structure problem, in part because

matrix elements between highly excited states are required. We have approached

this using a conventional nuclear shell model with the usual filled closed core of

nucleons in low-lying single-particle states plus valence nucleons in a model space.

We then employ the Lanczos iteration with an appropriate nuclear Hamiltonian

to generate converged eigenstates corresponding to excitation energies from the

ground state to high values.

Using the shell-model code Oxbash [52], we performed a full sd-shell calcu-

lation of 28Si using the USDB Hamiltonian [53] (closed 16O core with 12 valence

nucleons in the 1d and 2s shells). We performed a full fp-shell calculation of 47Ti

using the GPFX1 Hamiltonian [54] (closed 40Ca core with 7 valence nucleons in the

1f and 2p shells). Finally, we performed a truncated fp-shell calculation for 56Fe

using the GPFX1 Hamiltonian, only allowing up to 2 valence protons and up to a

total of 4 valence nucleons to occupy single-particle states above the zero-order (no
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Figure 2.3: Neutrino-pair emission transition strength for 28Si (averaged over 12
initial states), 47Ti (2 initial states), and 56Fe (3 initial states) at 27.6 MeV initial
excitation shown as functions of the difference between initial excitation energy Ei

and final excitation energy Ef .

residual interaction) ground state configuration. Some of the sd calculations were

carried out with the NuShellX code [55]. With 10,000 Lanczos iterations, states

up to about 40 MeV are converged to 1 keV precision.

When experimental Gamow-Teller beta-decay strengths are compared to

the results obtained from calculations in the sd and pf model spaces it is observed

that experimental strengths are uniformly reduced relative to theory by a factor

of 0.5-0.6 [56, 57]. This “quenching” is mainly due to second-order configuration

mixing induced by the short-ranged part of the tensor interaction [58, 59]. We

assume that the same quenching applies to transitions from the excited states and

we use a reduction factor of r = 0.50.

We examined transition strengths and energy loss rates over a range of

excitation energies from 0 to 40 MeV in 28Si and 56Fe and at 23 and 27.6 MeV

excitation in 47Ti. The strength distributions for all three nuclei at 27.6 MeV

excitation are shown in Fig. 2.3 along with the distribution obtained by averaging

the strength as a function of transition energy over all three nuclei. While the

details of the shapes of the strength distributions vary between nuclei, the essential

feature of a central peak with a long tail out to transition energies of 15 or 20 MeV

is consistent.
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Figure 2.4: Energy loss by neutrino-pair emission shown as functions of excitation
energy.

To obtain energy emission rates per nucleon as functions of excitation en-

ergy, shown in Fig. 2.4, we applied Eq. 2.4 to each nucleus, then divided by A.

With an eye toward extension to large nuclei, the key observation is that the en-

ergy loss rate per nucleon is strongly dependent on excitation energy, but nearly

independent of nucleus, despite the considerable differences in the models used for

each nucleus.

To find temperature as a function of mean excitation energy and nucleus,

we invert Eq. 2.1. This, along with the approximation in Eq. 2.6, gives emission

rate per nucleon as a function of temperature, shown in Fig. 2.5. Also shown is

the result for 28Si, but with the temperature computed from excitation energy as

though it had the same mass number as 56Fe. As can be seen from Eq. 2.1, this

amounts to scaling the temperature of 28Si by a factor of
(
28
56

)1/2
. This allows us

to compare the 28Si (our most realistic model) and 56Fe (our most astrophysically

relevant nucleus) results directly as functions of temperature: the comparison of

the scaled results in Fig. 2.5 is equivalent to what is shown in Fig. 2.4. We use

this method of temperature scaling extensively throughout this paper; it will be

indicated in each case.
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Figure 2.5: Energy loss by neutrino-pair emission for 28Si, 47Ti, and 56Fe shown
as functions of temperature. The “rescaled”line shows the 28Si result with the

temperature scaled by a factor of
(
28
56

)1/2
, allowing the 28Si and 56Fe results to be

compared directly at equivalent excitation energies, as in Fig. 2.4.

2.5 Results

We found that the weak strength in transitions from highly excited initial

states is spread significantly in energy. The 28Si results for the distribution of axial

vector strength (B(GT): squared matrix element) with transition energy and the

corresponding neutrino-pair energy spectrum are shown in the lower and upper

panels, respectively, of Fig. 2.6. This plot shows both “up” transition strength,

corresponding to positive values of Ef − Ei, and “down” strength with negative

values of Ef − Ei appropriate for de-excitation into neutrino pairs. We obtained

these distributions by averaging over ten states with Ji = 5 near each indicated

initial excitation energy; Ji = 5 was chosen because the sd shell (2J + 1) state

density peaks at this spin value. The distributions in the lower panel of Fig. 2.6

are plotted only up to the point where the final state eigenvalues are converged; the

emission rates plotted in the upper panel are fully converged. At 20 and 30 MeV

excitation, there is obviously more strength in the up than in the down channel.

For a better calculation of the entire strength distribution, one should apply the

Lanczos method to the Gamow-Teller distribution functions on accurate initial

states. We have not implemented the GT Lanczos method in the present set of
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Figure 2.6: Both panels: lower line corresponds to 20 MeV excitation, middle
line is 30 MeV, and upper line is 40 MeV. Bottom: Transition strengths for 28Si
as functions of transition energy. Top: Energy emission rates per nucleus via
neutrino pairs for 28Si as functions of transition energy, i.e., spectra of emitted
neutrino pairs.

codes, but it will not change the results of this paper for the “down” GT strength

as it is computed directly from converged nuclear eigenstates.

According to Eqs. 2.3 and 2.4, the strength distribution as a function of

transition energy can be multiplied by six powers of the transition energy and

a constant to give the contribution of a given transition energy to the overall

neutrino-pair energy emission rate, i.e., the neutrino-pair energy spectrum. Al-

though the actual strength distribution is skewed toward lower energy transitions,

weighting with six powers of transition energy clearly favors larger transitions.

Summing over transition energy (e.g., Eq. 2.4) gives the total neutrino-pair en-
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ergy emission rate per baryon. Table 2.1 shows total energy loss rates per baryon

computed in this fashion for several nuclei over a range of excitation energies and

temperatures (rescaled as in Fig. 2.5).

Our calculations show that the central peaks in the Fig. 2.6 strength dis-

tributions stem primarily from lateral (no spin flip) transitions. Such transitions

do not change the single-particle energy of the transitioning nucleon. The wings of

these strength spectra at larger transition energy come mostly from nucleon spin-

flip transitions. Because configurations that result from a spin flip have a lower

zero-order energy as a result of particle-hole repulsion and spin-orbit splitting, they

tend to be more readily mixed down to lower excitation energy than their coun-

terparts stemming from no-spin-flip, lateral transitions. This became abundantly

clear when we computed 28Si with no spin-orbit splitting in the nuclear Hamilto-

nian, treating the ` + 1/2 and ` − 1/2 single-particle states as though they have

the same energy. The results of this computation are shown in Fig. 2.7, where it

is readily seen that all of the strength is concentrated in a central peak, drasti-

cally reducing the rate of neutrino pair production. Since the spin-orbit splitting

is due to the nuclear surface, we conclude that the Gamow-Teller down-strength

is greatly enhanced when the baryons are confined to nuclei.

2.6 Discussion and Conclusions

We have found that transitions between spin-orbit partners account for the

bulk of the spread to lower excitation energies (hence, larger ∆E) of the Gamow-

Teller strength in this channel. That actually bodes well for any attempt to use

the nuclear systematics of lighter nuclei like 28Si and 56Fe to effect an extrapolation

of neutrino pair emission mechanisms to the higher mass nuclei of most interest

in stellar collapse. This is because the spin-orbit splitting is relatively constant

across nuclear mass in the range over which we are interested [60]. Particle-hole

repulsion probably plays a lesser role than spin-orbit splitting in pushing strength

to larger ∆E. Interestingly, the particle-hole repulsion we find in our shell-model

calculations may have a direct analog in the bulk matter renormalization of the



25

Table 2.1: Energy loss rate (MeV/s/baryon) for various nuclei as functions of
excitation energy (MeV) and the corresponding (rescaled to A=56) temperature
(MeV). The unstarred rates were computed by averaging over several (5 to 14)
initial states at the indicated excitation energy; starred rates were computed from
1 or 2 states. The angular momenta of all initial states are indicated. The en-
try 28Si (no SO) was computed by neglecting spin-orbit splitting in the nuclear
Hamiltonian.

Nucleus Ji Excitation Rate T (A=56)
28Si 1-4 10.8 0.30 1.2

0, 2-5 14.0 0.02 1.4
0-5 15.0 0.22 1.5
5 20 0.50 1.7

0-5 20.0 0.50 1.7
0, 2-5 21.9 1.1 1.8

5 25 1.8 1.9
1-5 25.0 1.8 1.9
0-5 27.6 3.6 2.0
5 30 3.4 2.1

0-3, 5 30.0 3.3 2.1
1-5 31.5 4.0 2.1
5 35 4.5 2.2
5 40 6.0 2.4

0-5 40.0 8.6 2.4
28Si (no SO) 5 30 0.21 2.1

29Si 11/2 30 4.6 2.1
28P 5 30 9.7 2.1
47Ti 3/2 23.0 0.33* 1.8

3/2, 5/2 27.6 2.0* 2.0
56Fe 2 10.0 0.01* 1.2

0 15.0 0.09* 1.5
1 20.0 2.7* 1.7
2 25.0 0.30* 1.9

0, 1 27.6 4.6 2.0
0 30.0 10.9* 2.1
4 35.0 12.1* 2.2
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Figure 2.7: 28Si strength and neutrino pair spectrum at 30 MeV excitation com-
puted with spin-orbit splitting in the nuclear Hamiltonian set to zero. The strong
central peak, lack of wings, and concomitant drastic reduction in neutrino produc-
tion confirm the role of spin-orbit splitting and spin-flip transitions in producing
the high rates computed in our more realistic models.
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energetics of weak interaction processes as found in Ref. [61].

There are three obvious effects of skewing the strength distributions to

higher transition energy ∆E. These follow from the simple fact that the neutrino-

pair energy emission rate derived from the strength function is weighted by six

powers of ∆E. First, more strength at higher ∆E generally means faster neutrino-

pair emission rates. In turn, this means more energy will be pumped into neutrino

pairs by this process. Second, the neutrinos and antineutrinos produced by this

process will have higher energies on average. This brings up an obvious question:

will the neutrino pair energies now be so high (> 10 MeV) that they are more

readily trapped? Third, more configurations in play and more configuration mixing

at higher excitation energy will make the transition strength and the neutrino-pair

emission rate more sensitive to temperature.

We found that at expected typical supernova core temperatures the transi-

tion energies we computed are substantially greater than those found in previous

work. Fig. 2.8 shows the transition strength and emission spectrum for 56Fe at a

temperature of 2 MeV computed using a technique very similar to the indepen-

dent single particle calculation in Fuller & Meyer (1991) [13]. It clearly shows a

peak in the emission spectrum at -7 to -8 MeV, which is about half the energy of

the peak in our results (Fig. 2.6). These figures show only allowed strength. Of

course, at substantially higher temperature, e.g., T = 5 MeV, forbidden channel

de-excitations will contribute significantly . However, typical conditions expected

in realistic stellar collapse will likely not suggest temperatures this high. Moreover,

the cooling engendered in part by the neutrino pair emission process discussed here

will also mitigate against high temperatures.

Higher temperatures and higher excitation energies bring up an issue which

is unresolved in our work. When nucleons are promoted into the next-higher

oscillator level, how is the Gamow-Teller strength affected? For example, for 28Si

the actual level density just above roughly 10 MeV excitation will start to be

dominated by one-nucleon excitations into and out of the sd shell (negative-parity

states). This level density is shown for both positive- and negative-parity states

in Fig. 2.9. The Gamow-Teller down-strength for negative-parity states will be
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relatively reduced since they must transition to negative-parity final states, and

there is a paucity of these states relative to positive-parity states at low excitation.

Starting at 20 MeV excitation, more positive-parity states can be made

from two nucleons excited into and out of the sd shell. Does this result in a

lower overall amount of strength? Or is this loss of strength compensated by more

transitions between spin-orbit partners in the higher energy shell? In general, it

may seem reasonable that the higher the temperature and excitation energy, the

“looser” the nucleus and the more transitions are unblocked [16]. However, this

trend could be thwarted by the actual behavior of the level density in the shell

model. Certainly, model space truncation could contribute to this if, for example,

not all spin-flip transition channels in the higher oscillator level are included in

the calculation. This issue may or may not complicate extrapolation of our trends

in weak strength energy distributions to higher mass nuclei and requires further

investigation.

The next step will be to understand how more realistic level densities affect

the Gamow-Teller distribution. Explorations along these lines could be based on a

statistical-type model that takes into account level density and orbital occupation

numbers as a function of excitation energy. Such a model should be able to repro-

duce the exact results we obtain for truncated sets of single-particle states (e.g.

three for the sd shell and four for the pf shell). In particular, it should reproduce

the strong dependence on the spin-orbit splitting that we find. For the sake of this

paper, it is sufficient to note that up to excitations of ∼35 MeV, our computed

density of states follows a roughly exponential trend; within the sd shell we are in

a regime where relative to lower energies, we are not missing states at or below

the initial excitation energy. However, as mentioned previously, the actual level

density above 10 MeV is dominated by excitations into and out of the sd shell.

Fig. 2.10 shows a comparison between our shell-model calculations of the

neutrino-pair energy emission rate per baryon for 28Si as a function of (rescaled)

temperature, other estimates for this rate in 56Fe as a function of temperature,

the neutrino pair emission rate for electron bremsstrahlung as a function of tem-

perature assuming a density ρ12 = 1 [12], and the neutrino pair emission rate for



30

0


1000


2000


3000


4000


5000


0
 10
 20
 30


L
e
v
e
ls

 p
e
r 

2
0

0
 k

e
V

E
x
 (MeV)

Figure 2.9: Computed density of states as a function of excitation energy for 28Si.
Upper line: negative-parity states. Lower line: positive-parity states.

nucleon bremsstrahlung in nuclear matter as a function of temperature [62]. We

include the nucleon bremsstrahlung result to show that collectivity within the nu-

cleus enhances the emission rate relative to bulk nuclear matter. We found that in

the temperature regime of interest, our calculations can yield neutrino-pair energy

emission rates that equal or exceed earlier estimates [13, 27] at all temperatures.

As a general rule, our estimates of these rates are approximately three orders of

magnitude faster than neutrino pair production from electron bremsstrahlung.

Clearly, de-excitation of nuclei is the dominant contributor of relatively

low-energy neutrino pairs under these conditions. Moreover, the rates presented

here are lower bounds on the actual neutrino-pair production rates, particularly

at temperatures between 1 and 1.5 MeV. The small number of nucleons in a 28Si

nucleus gives a relatively low density of states at the temperatures of interest. As

a consequence, there are few lower-lying states to transition to, which reduces the

total transition rate. Indeed, the apparent decrease in emission rate of 28Si at

a (rescaled) temperature of 1.4 MeV is a consequence of the simple fact that no

states near 14 MeV excitation have transitions with energies greater than those

available to states near 10.8 MeV transition.
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Figure 2.10: Energy per baryon emitted in neutrino pairs as a function of temper-
ature. a) 28Si as computed in this paper. b) 56Fe from Fuller & Meyer independent
single-particle shell-model calculation [13]. c) 56Fe from Fuller & Meyer analytic
approximation [13]. d) 56Fe from Kolb & Mazurek [27]. e) Electron bremsstrahlung
into neutrino pairs for ρ12 = 1 from Dicus et al [12]. f) Nucleon bremsstrahlung
into neutrino pairs at nuclear matter density from Friman & Maxwell [62].

If it turns out that the neutrinos produced by pair de-excitation have low

enough energies to escape the pre-supernova star, then this process likely acts as

a thermostat for the collapsing core. In this limit, as the core heated up, more

neutrino pairs would be produced and escape, carrying away entropy, and perhaps

keeping the core temperature near T = 1 MeV to 1.5 MeV.

However, our calculations may be suggesting that the neutrino pairs pro-

duced by de-excitation at higher temperature are so energetic that they do not

escape. Though the thermostat effect will be disabled in this case, lower to inter-

mediate energy neutrino phase space will be filled more quickly by this process,

and the core will approach beta equilibrium sooner. This effect would tend to

block electron capture and neutronization sooner also, but against this neutrino-

nucleus and neutrino-electron down scattering will tend to heat the system, adding

entropy, implying faster electron capture through more free protons and nuclear

thermal unblocking [16] and, therefore, a lower Ye, a smaller homologous core, and

a concomitantly lower initial bounce shock energy.

The issue of higher energy neutrino-pairs is complicated further when con-

sidering the effects of dynamics and flavor. The energy is shared between a neutrino
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and an anti-neutrino, and the energy is small compared to the mass of the nucleus.

As a consequence, the energy can be shared unequally between the two neutrinos,

with the nucleus absorbing whatever momentum is needed to satisfy conservation.

So a low-energy partner to a high-energy neutrino could escape. Furthermore, this

process is flavor blind: it produces neutrinos of all flavors at equal rates. Because

high energy neutrinos within the collapsing core are produced primarily from elec-

tron capture, there is plenty of available phase space for nuclear de-excitation to

produce a high energy electron anti-neutrino or a high energy neutrino or anti-

neutrino of mu or tau flavor with a low energy partner that easily escapes. The

resultant asymmetry between electron flavored neutrinos and anti-neutrinos could

impact lepton number within the core, as it is more likely to produce a high energy

electron anti-neutrino with a low energy partner than the other way around.

Another effect of the larger ∆E values suggested by our shell-model cal-

culations may be an enhancement in the plasmon-mediated neutrino-pair nuclear

de-excitation process pointed out by Horowitz in Ref. [28]. The matrix element

for the first forbidden vector channel considered in Ref. [28] is ∝ 〈f |q ·Tz|i〉, where

q ∼ ∆E is the momentum transfer. This first forbidden channel is in general cut

down by a geometric factor, (qR)2 ∼ 1/16, which is the square of the ratio of

the nuclear radius R to the inverse momentum transfer. Our larger values of ∆E

should give a smaller reduction, increasing the overall rate of nuclear de-excitation

into pairs.

Though our shell-model calculations are only a beginning, they do suggest

that nuclear de-excitation into neutrino pairs is likely the dominant source of low

to intermediate energy neutrino pairs in stellar collapse. Our calculations suggest a

spin-orbit splitting-induced increase in the rate of this process and a steepening of

the temperature dependence of this rate. These calculations also suggest, however,

that the neutrinos produced in this process are more energetic and may be trapped.

Only inclusion in a full core collapse neutrino transport simulation could reveal

what role this process plays in core collapse supernova explosions.
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Chapter 3

Modification of the Brink-Axel

Hypothesis for High Temperature

Nuclear Weak Interactions

3.1 Abstract

We present shell model calculations of electron capture strength distribu-

tions in A=28 nuclei and computations of the capture rates in supernova core con-

ditions. We find that in these nuclei the Brink-Axel hypothesis for the distribution

of Gamow-Teller strength fails at low and moderate initial excitation energy, but

may be a valid tool at high excitation. The redistribution of GT strength at high

initial excitation may affect capture rates during collapse. If these trends which

we have found in lighter nuclei also apply for the heavier nuclei which provide the

principal channels for neutronization during stellar collapse, then there could be

two implications for supernova core electron capture physics. First, a modified

Brink-Axel hypothesis could be a valid approximation for use in collapse codes.

Second, the electron capture strength may be moved down significantly in tran-

sition energy, which would likely have the effect of increasing the overall electron

capture rate during stellar collapse.

34
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3.2 Introduction

The Brink-Axel hypothesis posits that the electromagnetic giant dipole res-

onance in nuclei resides at the same relative energy from excited states as it does

from the ground state [63,64]. That is, if a given nucleus in its ground state has the

resonance at 10 MeV, then that same nucleus in an excited state would have that

resonance at 10 MeV above the excited level, and indeed experiment bears this

out. In this paper we examine electron capture strength on nuclei with high ini-

tial excitation energy and its effect on the electron capture rate, with a particular

emphasis on adapting the Brink-Axel hypothesis for use in this channel.

Neutronization of the collapsing core through electron capture is pivotally

important in the supernova problem, as electrons provide pressure support within

the core. During infall, the mass of the homologous inner core (that portion

which collapses subsonically) is set by the electron-to-baryon ratio Ye. This mass,

which acts as a sort of piston at core bounce, sets the initial post-bounce shock

energy. Moreover, Ye figures into the nuclear composition of the outer core, which

dissipates much of the shock energy through photodissociation of its nuclei and

affects neutrino transport through coherent interaction with nuclei [3–9,29–34].

During supernova core collapse, the density is very high, starting at around

1010 g/cm3 at the onset of collapse and proceeding to >1014 g/cm3 at bounce. The

temperature is very high at ∼1-2 MeV, but the entropy per baryon is extremely low

at ≈1 unit of Boltzmann’s constant per baryon [10]. Although electrons are most

readily captured onto free protons, the low entropy favors large nuclei which are

then in turn the principal sites for electron capture [10,16,29]. The core is initially

cooled during collapse by neutrino emission [11–14], so the entropy remains low.

Furthermore, the high temperature puts these nuclei into extremely highly excited

states. Using the Bethe approximation for nuclear excitation energy [15]

E = a(kBT )2 (3.1)

where a ≈ A
8

MeV−1 is the level density parameter, and a typical nuclear mass of

∼120, we find the average excitation energy to be between 15 and 60 MeV. Finally,

as the collapse progresses, the core electron fraction tends toward Ye ≈ 0.32, which
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yields extremely neutron rich nuclei. In order to understand neutronization during

core collapse, we must therefore consider the capture of electrons onto large, highly

excited, and eventually neutron rich nuclei.

Large, highly excited, neutron rich nuclei are, unfortunately, problematic

to understand both experimentally and theoretically. Experimental data on these

nuclei is sparse [65], and while large nuclei certainly exist in abundance, there are as

of yet no experimental means by which to put them into high energy states without

utterly destroying them. The (n,p), (p,n), (3He,t), (d,2He), and similar charge

exchange channels give information on the Gamow-Teller structure [66–68], but

these experiments can only probe nuclei in the ground state, whereas low entropy,

high temperature environments favor much higher excitations. The Extreme Light

Infrastructure may eventually be able to provide some insight into the structure

and behavior of highly excited nuclei through the use of multiple MeV laser light,

but it is not yet in operation [69]. Of course, even when high energy states become

readily attainable, we still face the problem that nuclei of the appropriate neutron

richness are completely unstable in the laboratory; it is the high density and low

entropy of the supernova core that allows them to exist in that environment.

From the theoretical direction, we should look for trends in the Gamow-

Teller electron capture strength distribution, as the Brink-Axel hypothesis has had

experimental success in the electromagnetic channel. Fuller, Fowler, and New-

man [23–26] (hereafter FFNI, FFNII, FFNIII, and FFNIV, respectively, for those

specific works, and FFN for the body of work as a whole) previously adapted the

Brink-Axel hypothesis for use in the Gamow-Teller charged current channel (we

will call this and similar techniques the GT Brink-Axel hypothesis to distinguish

it from the experimentally verified electromagnetic phenomenon). This approach

and modifications thereof have since been widely used to compute weak rates.

Variations include essentially copying the FFN approach [70], using a broad GT

resonance that is the same for all excited states [71, 72], computing in detail only

the lowest few states in the parent and/or daughter nuclei and employing the

GT Brink-Axel hypothesis to treat the bulk of the strength at high excitations or

neglecting highly excited states entirely [17, 73–80], and using thermal averaging
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techniques [81, 82]. Recently, electron capture rates have been tabulated using

combinations of these approaches over a wide range of nuclear masses and stellar

conditions [83].

However, some authors have observed the breakdown of the GT Brink-Axel

hypothesis even at modest excitation energies [84–86]. Thus, whenever it is com-

putationally feasible, we should avoid use of the GT Brink-Axel hypothesis. Oda et

al [87] performed full sd shell model computations of the first 100 excited states in

each sd shell nucleus, while others have taken to the random phase approximation

to examine heavier nuclei [88,89]. But the Oda et al approach of neglecting states

higher than the 100th excitation may miss some important features of higher-lying

states, and while RPA does well at determining the overall strength distribution,

it is unable to accurately reproduce the detailed distributions to which electron

capture rates are sensitive. We are therefore well served by scrutinizing detailed

strength distributions up to very high initial excitation to learn in what ways the

distribution evolves. We will show that at least in the sd shell, a modified form of

the GT Brink-Axel hypothesis derived from large scale shell model calculations can

be both computationally tractable and capture features of the strength distribution

at low and high excitation with consequences for core collapse.

Computationally, large nuclei are difficult to study simply because of the

large number of nucleons involved; the sheer combinatorics of so many nucleons

rapidly drives up the computational requirements. This difficulty is usually cir-

cumvented by holding most of the nucleons fixed and only allowing a few to occupy

single particle states above the lowest energy. While this approach works reason-

ably well for the lowest-lying nuclear states, it’s efficacy quickly breaks down at

higher energies (higher nuclear energies imply more nucleons above the lowest sin-

gle particle energies) and when the model has too few single particle states, i.e.

is restricted, allowing too few basis states to yield a realistic set of total nuclear

eigenstates.

Because of these computational obstacles and the fact that we want to

understand the GT structure of very highly excited nuclei, we are relegated in this

work to studying relatively light nuclei. The biggest drawback of this approach
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is that although light nuclei are abundant prior to the onset of collapse, they are

disfavored during infall. In our favor, reference [14] found that in some respects,

heavy nuclei and light nuclei exhibit similar weak transition characteristics. In

any case, light nuclei are at present the only option for computing highly excited

states, and through them we will ideally learn something that will shed light on

the behavior of all nuclei, including heavier, more neutron rich species.

In section 3.3, we provide a brief overview of the nuclear shell model and GT

transitions, as it will be convenient in later sections to have that picture in mind.

Section 3.4 outlines the historical approach to the problem at hand and discusses

its weaknesses. The results of our electron capture strength computations are in

section 3.5, and using those results, we show a calculation of electron capture rate

in section 3.6. We give discussion and conclusions in section 3.7.

3.3 Nuclear Shell Model and GT Transitions

In the shell model, individual nucleons are considered to occupy non-

interacting single-particle states, with the sets of occupied states (configurations)

having good spin J and isospin T. These configurations form a basis for the nucleus,

eigenstates of which are constructed by diagonalizing the residual nucleon-nucleon

Hamiltonian in the configuration basis, thus mixing many configurations into a

single nuclear state:

|ΨJ,T 〉i =
∑
k

Aik|CkJ,T 〉 (3.2)

where |ΨJ,T 〉i is nuclear eigenstate i with spin J and isospin T, the Aik are complex

amplitudes, and |CkJ,T 〉 is the kth configurations with spin J and isospin T.

One-body nuclear transitions – such as the Gamow-Teller transition – con-

sist of a single nucleon changing its single particle state. There are three qualita-

tively different single particle GT transitions: spin flip transitions (from an l + 1
2

state to an l− 1
2

state), back spin flip transitions (from l− 1
2

to l+ 1
2
), and lateral

transitions (no change in total angular momentum). Respectively, these represent

a net gain, loss, and no change in single particle energy. If any other nuclear

state has as one of its components a configuration resulting from a single particle
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transition, then the nucleus can transition to that final state. The strength of the

transition from an initial nuclear state |i〉 to a final state |f〉 is given by

|〈f |
∑
k

ôk|i〉|2 (3.3)

where ô is the single body operator and the sum is over nucleons. Throughout

this paper, “GT strength” will refer to the reduced nuclear transition probability

B(GT)if , given by
|〈f ||Σk(~στ−)k||i〉|2

2Ji + 1
(3.4)

where ~στ− is the one-body Gamow-Teller lowering operator and the sum is over

nucleons.

3.4 Previous Adaptation of GT Brink-Axel Hy-

pothesis

FFNII [24] approached the problem of GT transition strength distributions

by using experimental values of the strength where known, supplementing that

with estimated allowed and forbidden strength to known states in the daughter

nucleus, and placing the remainder of the GT strength computed from a zero-order

shell model into a single resonance, the energy of which was also computed using

a zero-order shell model. Using two simple assumptions, FFNII took the strength

and relative energy of the resonance to be the same for all excited states as it is

for the ground state. First, assume that the individual nucleons are distributed

among the single particle states in a way that is on average independent of nuclear

excitation energy. Second, assume that the transition energy of the GT resonance

is principally due to a single nucleon undergoing a spin flip, and thus is similar in

excited states to that of the ground state. To the extent that these approximations

are valid, they are extremely useful, as the partition function becomes algebraically

irrelevant in determining the resonant electron capture rate. From FFNII, the total

electron capture rate through resonant transitions is given by

Λres =
∑
i

Piλ
res
i (3.5)
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where Pi is the probability that the nucleus is in state |i〉 (given by the product of

the degeneracy and the Boltzmann factor, divided by the partition function) and

λresif is the resonant transition rate from state |i〉 to state |f〉, itself a function of

nuclear structure and electron distribution in the supernova core. But under the

assumption that the GT resonances are the same–irrespective of nuclear excitation

energy–all of the λresi are identical; we shall call them λres. We now have

Λres =
∑
i

Piλ
res

= λres
∑
i

Pi

= λres (3.6)

So, the total resonant transition rate is simply the resonant transition rate

of any single state, which we take to be the ground state. Of course, highly excited

states in the parent would be in the GT resonances of lower energy states in the

daughter, leading to “back-resonant” transitions. Accounting for the fact that the

Pi will not sum to unity for back-resonant transitions and otherwise treating them

identically to resonant transitions, we eventually arrive at

Λbackres = λbackres
Gd

Gp
e

−R
kT (3.7)

where Gp (Gd) is the partition function of the parent (daughter) nucleus and R is

the characteristic transition energy of the GT resonance from the daughter nucleus

to the parent. Finally, Fermi transitions are handled in an identical manner to the

GT transitions, and the rates are summed along with the rates from known and

estimated transitions to get the total capture rate.

A priori, we might expect the GT Brink-Axel hypothesis to fail. If we

keep the assumption that single particles are distributed roughly independently

of nuclear excitation energy, we should be unsurprised if the GT resonance moves

dramatically or is redistributed in transition energy, since at sufficiently high initial

excitation, there will be strength for the daughter nucleus to be at many energies

relative to the parent, without any particular single particle transition dominating

the strength. Since by assumption the single particles in all of these daughter
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states are also arranged similarly, we would rather expect the GT strength to be

broadly distributed in transition energy. The question, then, is in what way does

the hypothesis fail? Do strength distributions evolve in some characteristic way as

initial excitation energy increases, or must we abandon the hypothesis completely

and replace it with a thermal mean strength distribution?

3.5 GT Strength Computations

Using the shell model code Oxbash [52], we performed shell model calcu-

lations of A = 28 nuclei using a closed 16O core and 12 valence nucleons in the

sd shell. Although A = 28 is unrealistically light for the supernova core environ-

ment, we chose to use it because it provides a good balance of complexity and

computability; that is, we have many valence nucleons and holes (implying many

single particle configurations), but there are few enough configurations that we can

compute nuclear eigenstates in a reasonable time.

The sd shell consists of the single particle sates 1d5/2, 2s1/2, and 1d3/2.

In these computations, we used the USDB Hamiltonian [53], with single particle

energies −3.9257, −3.2079, and 2.1117 MeV, respectively. In the GT interaction,

nucleons can transition from 2s1/2 to 2s1/2, and from either d sub-orbital to either

d sub-orbital.

In order to make an apples-to-apples comparison with the FFN results, we

neglect quenching throughout this work.

3.5.1 28Si

We first examined 28Si. Although this nucleus is neutron poor by super-

nova collapse standards, it has the most single particle configurations among sd

nuclei and therefore computationally is the most realistic. We found that the GT

Brink-Axel hypothesis as originally formulated does not obtain in that the strength

distributions of excited states bear no resemblance to the ground state. However,

at initial excitation energies greater than 12 or 16 MeV, the GT strength distribu-

tion is almost independent of initial state energy, although its shape does depend
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on the initial isospin. Fig. 3.1 shows the strength as a function of excitation energy

and nuclear transition energy (that is, the total energy input required to make the

transition, including the change in nuclear mass).

Although initial isospin evidently plays a role in the strength distribution,

we found that the strength does not depend strongly on initial spin. Fig. 3.2 shows

the strengths for a representative selection of spins with initial isospin Ti = 0.

Evidently, we can safely neglect spin in our analyses.

The shapes of the strength distributions can be partially understood by

decomposing them into contributions from final states with specific isospin (Fig.

3.3); the strength distribution is strongly dependent on the final isospin. It can

be clearly seen that the small peak in the total strength distribution at ∆E ≈ 17

MeV for states with Ti = 2 is due to transitions to final states with Tf = 3.

Finally, we sought an understanding of the similarity of the strength dis-

tributions in the high excitation energy regime. To this end, we examined single

particle distribution as a function of nuclear excitation energy. Fig. 3.4 shows the

average single particle state occupation as a function of excitation energy for T= 0

states in 28Si. The most salient feature is that the 1d state occupations have a lin-

ear dependence on nuclear excitation with slopes of roughly 1 particle per 12 MeV

(which is approximately the spin-orbit splitting energy + particle-hole repulsion

energy in this sub-shell), while the 2s1/2 occupation is independent of excitation;

this is in contrast to reference [24], which assumed that the average occupations

of all single particle states were independent of nuclear excitation energy. While

Fig. 3.4 shows only T= 0 states, the trends are consistent for all isospins, with the

exception that the intercept of the 1d3/2 (1d5/2) occupation gradually shifts by -1

(1) particle as T goes from 0 to 3, and shifts an additional -1 (1) particle as T goes

from 3 to 4.

Since we did the computations in this paper with isospin as a good quan-

tum number, we can take the single particle occupations in Fig. 3.4 to be split

proportionately between the valence protons and neutrons. In the case of 28Si,

then, the proton and neutron single particle occupation numbers are each 1/2 the

total occupation. This implies that the 1 particle per 12 MeV slope in fig. 3.4
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Figure 3.1: Gamow-Teller strength distribution as a function of initial isospin T
and excitation energy. Initial state energies are binned in 4 MeV increments. The
strength distribution has an apperent dependence on initial isospin, though the
dependence on excitation energy becomes small at high excitation.
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Figure 3.2: GT strength distributions as a function of initial spin Ji and excitation
energy with initial isospin Ti = 0. It is readily seen that the strength distribution
is not strongly dependent on Ji. We saw this trend in all nuclei we studied.
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Figure 3.3: Strength distribution for 28Si with initial spin Ji = 4, initial isospin
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certain features of the total strength distribution are a consequence of the available
final state isospins.
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Figure 3.4: 28Si single particle state occupation for states with isospin T= 0. The
occupation numbers are the sum of protons and neutrons. The linear dependence of
the d orbital occupation numbers on excitation energy is easily understood to arise
from the spin-orbit splitting and particle-hole repulsion energies of those orbitals.
This dependence is consistent across all values of T, although the intercepts of the
d orbitals do shift as T increases.
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is split evenly between protons and neutrons, giving a slope for each species of 1

particle per 24 MeV. Perhaps, then, the assumption in [24] that the single particle

distributions are all similar to the ground state can be simply revised to say that

above a certain nuclear excitation energy, the single particle distributions change

only very slowly with excitation energy, resulting ultimately in similarly slowly

changing strength distributions. This leaves us to challenge the second assump-

tion in that work: that the transition energy of the GT resonance does not change

with nuclear excitation energy.

From the ground state, nuclear transitions are dominated by the spin flip

single particle transition, as is clear from comparing the strength distribution and

the ground state single particle distribution; this results in the observed resonance.

However, at higher excitation energies there is an abundance of final nuclear states

that are reachable by the other single particle transitions, which has the conse-

quence of leaving the daughter nucleus at similar or lower excitation. Thus, the

GT resonance changes, distributing its strength to lower transition energy. Un-

fortunately, as can be seen in Figs. 3.5 and 3.6, there does not seem to be any

obvious correlation between the single particle state energies and the peaks in the

strength distributions. Nevertheless, given that single particle state occupations

vary slowly with excitation energy, it is unsurprising that over a broad range of

excitation energies (above the turmoil near the ground state and where the density

of states is sufficiently high), the strength distributions are largely independent of

excitation.

3.5.2 28Ne

The two biggest weaknesses of 28Si as a model are that it is light and

neutron poor. Unfortunately, current computational limits do not allow for careful

examination of appropriately large nuclei, but we can hope to learn something by

studying neutron rich light nuclei. Although 28Ne has fewer sd shell configurations

than 28Si (it has only 2 protons and 2 neutron holes), it is nevertheless interesting

because has proton fraction of ≈0.36; this is still neutron poor by supernova core

standards, but not as grossly so as 28Si.
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Figure 3.5: 28Ne GT strength distribution. It is surprising that much of the
strength at high excitation is concentrated 0 transition energy; this coupled with
the fact that 28Ne is very neutron rich imply an enhanced electron capture rate.
We must be circumspect, however, as the model space for this nucleus is highly
restricted.

Fig. 3.5 shows the GT strength distribution for 28Ne. Interestingly, at high

excitation, the strength is very strongly concentrated near zero transition energy.

But this is a severely restricted model space, so we should exercise caution in

interpreting the results.

3.5.3 28Na

At high excitation energies, nucleons will be promoted out of the core and

into the valence sd shell and/or promoted from the sd shell into the fp shell. Here

we propose a simple model accounting for one each of these promotions in 28Ne:

a proton leaving the core and entering the sd shell, and a neutron leaving the sd
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shell and entering the fp shell. Although the core is now somewhat unrealistic

in the context of sd shell computations (having a proton hole), the valence sd

shell is exactly like 28Na. These promotions roughly correspond to the behavior

of real nuclei, and we gain the computational advantage of opening up phase

space for more sd shell configurations, allowing for more realistic (sd shell only)

computations.

Fig. 3.6 shows the strength distribution for 28Na. Here the non-correlation

with single particle energies is especially apparent; there are at least three peaks,

with a fourth appearing near -10 MeV transition energy when Ti = 4 and Ei = 28

MeV. Unfortunately, this dashes any hope of finding a simple relationship between

single particle energies and GT strength distribution, and we are relegated to

considering strength as a function of isospin.

3.6 Computation of Transition Rate

Throughout this section, we will use natural units such that ~ = c = kB = 1.

Following FFNI, the electron capture rate for a given initial nuclear state is

λif = ln(2)
fif (T, µe)

(ft)if
(3.8)

where (ft)if is the comparative Gamow-Teller half-life computed from the matrix

elements by

log(ftGTif ) = 3.596− log(|MGT
if |2) (3.9)

log(ftFif ) = 3.791− log(|MF
if |2) (3.10)

1

(ft)if
=

1

ftGTif
+

1

ftFif
(3.11)

and fif (T, µe) is the phase space integral for the incoming electron and outgoing

neutrino. T is the temperature, and µe is the electron Fermi energy, including rest

mass. The phase space integral is

fif =

∫ ∞
wl

w2(w − q)2G(Z,w)fe(w, µe, T )(1− fν)dw (3.12)
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Figure 3.6: Strength distribution for 28Na. Within the sd shell, this nucleus
is identical to 28Ne with one proton promoted out of the core and one neutron
promoted into the fp shell, a configuration that will more closely match actual
nuclei with very high excitations.
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where w is the total electron energy in units of electron mass, q is the change in

total nuclear energy Mf +Ef −Mi−Ei in units of electron mass, Z is the nuclear

charge, and fe and fν are the electron and neutrino distribution functions. The

lower limit wl is a function of q, as the incoming electron must supply enough

energy to the nucleus to make the transition; if q<1, then wl=1 (corresponding

to zero electron kinetic energy), while if q>1, wl=q. G is related to the Coulomb

barrier factor and is detailed in FFNI; rather than use the limiting approximations

described in that work, we use the form given by eqn. 5b therein. Note that that

work defines q in the negative sense of its use here; that is to say, q in that work

is defined as the parent energy minus the daughter energy.

Up until neutrino trapping sets in at ρ ∼ 1012 g/cm3, we may take fν ≈ 0.

Here fe(w, µe, T ) is the Fermi-Dirac distribution (1 + e(wme−µe)/T )−1. Using this

and our definition of wl and integrating over final states, we at last arrive at

λi = ln(2)

∫ 1

−∞

(
BGT
i (q)

103.596
+
BF
i (q)

103.791

)
dq

∫ ∞
1

fe(w, µe, T )w2(w − q)2G(Z,w)dw

+ln(2)

∫ ∞
1

(
BGT
i (q)

103.596
+
BF
i (q)

103.791

)
dq

∫ ∞
q

fe(w, µe, T )w2(w − q)2G(Z,w)dw(3.13)

To compute the total capture rate, we sum over population index weighted initial

states.

Λ =
∑
i

λi
(2Ji + 1)e−Ei/T

G(T )
(3.14)

where G is the partition function. Recall, however, that above ∼12 MeV, the

strength distributions look similar. Therefore, we propose a modification to the

GT Brink-Axel hypothesis by applying a cutoff energy below which all states are

included weighted by their population index, and with all remaining statistical

weight carried by a single high energy average state. This is in contrast to the

FFN approach of placing the bulk of the strength in a single resonant transition

that is identical for all states. In other words, where FFN treated all states as

having an identical giant GT resonance, we treat all states above the cutoff energy

as having exactly the same distribution. The difference in these two treatments

is profound; Fig. 3.7 shows the strength distributions in the ground state for the

FFN approach and the shell model; the large peak in the FFN distribution is the
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Figure 3.7: 28Si ground state strength distribution. The solid line shows the
distribution using our shell model calculations, and the dotted line shows the
strength from the FFN prescription. The large peak in the FFN distribution is
the GT resonance used in those works.

GT resonance. The two major differences are that the shell model result has less

total strength, and the strength is spread to lower transition energies; the former

will have the effect of decreasing the capture rate, while the latter will tend to

increase it.

Despite the overestimate of the total strength and the misplacement of the

resonance, the power of FFN is that it used experimental strengths wherever they

were available, and any other technique of computing rates would be well-served by

following that example. Therefore, the strength distributions that we ultimately

use to compute capture rates are defined as follows. For the experimentally mea-

sured states used by FFN, we use the FFN strength distributions, but neglect the

resonances. We then sum the strength, and remove that much from the low transi-

tion energy end of the strength distribution of our corresponding shell model state.

We then augment the FFN distribution with what remains of the shell model distri-

bution for that state. In essence, this gives a better estimate of both the capture

strength sum rule and the (non-experimental) strength distribution. For higher

energies, we simply used our shell model distributions, ignoring all parent shell
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model states with an excitation energy lower than the highest used experimental

state.

We now require the nuclear partition function to obtain appropriate initial

state occupation indexes. There are a few approaches to the partition function

problem, but in our case, the simplest and most self-consistent is to include only

the sd shell states, i.e. only include in the partition function those states that can

be constructed from configurations in the sd shell. The biggest weaknesses of this

approach are that at high enough energies, the density of shell model states actually

decreases to zero, and all negative parity states are neglected, as well as any other

states that include configurations with one or more particles promoted into or out

of the sd shell. By the same token, those states will also not be considered to

contribute to the electron capture rate, thereby compensating for the overestimate

of the included states’s occupation indexes. With the partition function in hand,

we can compute the total capture rate from eqn. 3.14.

The electron distribution function consists of two qualitatively different do-

mains: when 1 ≤ w ≤ µe/me, it varies slowly from a maximum of at most 1 at

w = 1 down to a minimum of 0.5 at w = µe/me (we will call this the “shoul-

der”), and when w > µe/me, it is exponentially damped (“tail”). We numerically

integrated the inner integrals of eqn. 3.13 using a combination of two methods,

one for each domain. When the shoulder was part of the integration domain (i.e.,

q < µe/me), we integrated the shoulder with a 64-point Gauss-Legendre quadra-

ture. Some or all of the tail is aways in the integration domain, and we integrated

it with a 64-point Gauss-Laguerre quadrature.

Fig. 3.8 shows electron capture rates for 28Si as a function of electron Fermi

energy and temperature. The solid lines were computed using a cutoff energy of 12

MeV and a high energy average state strength distribution computed from the spin-

weighted (2J + 1) average of every state between 12 and 14 MeV, and the dashed

lines are the rates computed using the FFN resonance prescription. At sufficiently

high Fermi energy, there are enough electrons above the GT resonance used in the

FFN approach for the rates to outstrip those of our shell model results, as the

large amount of strength in the resonance outcompetes the shell model. However,
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Figure 3.8: Electron capture rates for 28Si as a function of density and temper-
ature. Solid lines show rates with all states up to 12 MeV considered individually
and the rest of the statistical weight carried by a single high energy average state,
while dashed lines correspond to the rates when all states are assumed to have
the same narrow GT resonance, in accordance with the FFN approach to the GT
Brink-Axel hypothesis.

at low Fermi energy, the spread of strength to low transition energies found in the

shell model approach serves to boost the rates above the FFN estimates.

Fig. 3.9 compares the shell model capture rates with a cutoff of 12 MeV

against a GT Brink-Axel approach (as in Fig. 3.8), but with the single resonance

in the FFN model replaced by the shell model strength distribution for the ground

state. That is, in the “Brink” approach here, we used experimental values of the

transition strength for each initial state where known, and the rest of the strength

in each excited state is carried by the ground state distribution. In contrast to the

behavior of the FFN approach, the shell model Brink-Axel curves lack the marked

jump above the more comprehensive shell model rates as Fermi energy increases,

and they eventually converge. It is notable that the GT Brink-Axel results are not

uniformly greater or lesser than the more comprehensive shell model rates; in the

Fermi energy region between 5 and 15 MeV, the T=0.8 and 1.0 MeV Brink-Axel

rates just peek above the corresponding shell model rates.

In light of the apparent sensitivity to how excited states are handled in rate

calculations, we compare in Fig. 3.10 the thermodynamically unweighted capture
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Figure 3.9: Electron capture rates for 28Si as a function of density and temper-
ature. Solid lines show rates with all states up to 12 MeV considered individually
and the rest of the statistical weight carried by a single high energy average state,
while dashed lines correspond to the rates when all states are assumed to have the
same bulk GT strength distribution as our shell model calculation of the ground
state.

rates of the high energy average (HEA) state for a range of cutoff energies. The

solid lines show rates for an HEA state including all shell model states between 12

and 14 MeV, as in the previous calculations. The dashed lines give the rates of an

HEA state computed from all states between 15 and 16 MeV, and the dotted lines

are for an HEA state comprised of states between 20 and 20.3 MeV. The widths

for the averaging were chosen such that each HEA state was comprised of at least

50 individual states.

The rates for all three HEA states differ from one another by at the most

a factor of 3 in the range considered, which is offset by the reduction in statistical

weight carried by the HEA state as the cutoff energy increases. The HEA statistical

weight is simply the remaining probability after the occupation indexes of all lower-

energy states are accounted for:

wHEA = 1− 1

G(T )

∑
Ei<Ecutoff

e−Ei/T (3.15)

The weights for the given cutoff energies and temperatures are shown in Table

3.1. Over most of the temperature range, the weight falls off much faster than



56

0 5 10 15 20 25 30 35
Electron Fermi energy (MeV)

100

101

102

103

104

105

106

E
le

ct
ro

n
 c

a
p
tu

re
 r

a
te

 (
s−

1
)

T=0.8, cutoff=12.0

T=1.0

T=1.5

T=2.0

T=0.8, cutoff=15.0

T=1.0

T=1.5

T=2.0

T=0.8, cutoff=20.0

T=1.0

T=1.5

T=2.0

Figure 3.10: Thermodynamically unweighted electron capture rates for high en-
ergy average states in 28Si. The solid lines are the rates for an HEA state with a
cutoff energy of 12 MeV, the dashed lines show a cutoff of 15 MeV, and the dotted
lines are for a cutoff of 20 MeV.

Table 3.1: Statistical weights of the high energy average state as a function of
temperature and cutoff energy.

T (MeV) Cutoff = 12 MeV 15 MeV 20 MeV
0.8 2.86× 10−5 1.70× 10−6 1.23× 10−8

1.0 6.30× 10−4 7.76× 10−5 1.88× 10−6

1.5 3.49× 10−2 1.11× 10−2 1.31× 10−3

2.0 2.00× 10−1 9.94× 10−2 2.53× 10−2

the unweighted HEA rate grows with cutoff energy. Fig. 3.11 shows the total

capture rates for cutoff energies of 12 and 15 MeV. Clearly, the two choices produce

nearly identical results, and the errors introduced by a particular choice of cutoff

energy will ultimately be washed out by other uncertainties, including the eventual

treatment of quenching

3.7 Discussion and Conclusions

The three principle observations from this work are that 1) at high excita-

tion energies the GT strength distribution does not depend sensitively on nuclear

excitation energy (though it is a function of isospin), 2) the GT strength distribu-
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Figure 3.11: Electron capture rates for 28Si comparing two choices of cutoff
energy. The solid lines correspond to a cutoff energy of 12 MeV, wile the dashed
lines are for a cutoff of 15 MeV. That they are nearly identical lends credence to
the technique of using a high energy average state.

tion spreads to low and negative transition energies, and 3) the spreading of the

strength tends to increase the electron capture rate, as not only does it decrease

the electron energy capture threshold, but for a given incoming electron, it also

increases the phase space of the outgoing neutrino.

As seen in Figs. 3.8 and 3.9, point 3 above is counteracted in some regimes

of temperature and Fermi energy. In order to understand why the Brink-Axel rate

sometimes exceeds the shell model rate, we must examine what the total strength,

i.e. sum rule, looks like as a function of excitation energy. Fig. 3.12 shows the

total GT strength vs. excitation energy for our shell model states, with each point

corresponding to a single initial state. The vertical stripes are due to sampling;

all shell model states up to 20 MeV are included, as are many states near 24 and

28 MeV. The black line shows the average total strength for all shown states in 1

MeV bins.

Comparing Figs. 3.7 and 3.12 we see that the strength in the GT resonance

employed by FFN is about twice that computed from the shell model, resulting

in an overestimate of the capture rate at high Fermi energies. The sources of the

deviations in the shell model Brink-Axel approach are a little more subtle. Where
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Figure 3.12: Total GT strength in 28Si as a function of excitation energy. Each
point corresponds to a specific state computed from the shell model, giving a GT
sum rule for that state. The black line shows the average total strength, computed
from 1 MeV bins.

the Brink-Axel rates are lower than the shell model rates, we easily attribute it to

the low-lying strength of the excited states. Furthermore, it is apparent from Fig.

3.12 that on average, the total strength increases slowly with excitation (roughly,

from ∼4 in the ground state to ∼5.5 at 30 MeV). But at relatively low excitation

energies, there are two significant drops in the total strength, which account for

the regions where the Brink-Axel rate exceeds the shell model rate. Recall that

the GT Brink-Axel approach treats all excited states as having the same bulk

GT strength distribution as the ground state, but the more comprehensive model

includes contributions from those states that have less total strength. Importantly,

some of those states are at low excitation. Hence, they do not have the low-lying

strength seen in higher states, and they have a comparatively large Boltzmann

factor. Consequently, there are temperature and Fermi energy regimes where the

Brink-Axel approach overestimates the rate.

Ultimately, we must conclude that the GT Brink-Axel hypothesis as it

has been traditionally used is likely inappropriate for obtaining accurate electron

capture rates – and by extension, all nuclear weak rates – at the high temperatures
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and densities characteristic of collapsing supernova cores. We must be circumspect,

however, as the nuclei examined here are very light by supernova core standards.

If later work is able to demonstrate that the trends found here are applicable

to larger nuclei, then we will have found a useful technique for simplifying the

accurate computation of weak rates in those nuclei.

The analysis of 28Si in this work is essentially a cruder version of the work

of Oda et al. We performed no careful matching of the energies of the daughter

states relative to the parent states, meaning that where experimental data were not

used, the distributions shown here will not have precise transition energies. This

imprecision is unimportant for the sake of our goal here, which was to demonstrate

the failure of the GT Brink-Axel hypothesis and how it can be modified for use

at high initial excitation. With these results and the 20 years of experimental

data collected since the Oda et al rate survey, though, it is worth re-examining the

weak rate calculations for sd-shell nuclei, which are important in the late phases

of stellar evolution leading up to core collapse.

This leaves us with two major directions to follow up. First, we will recom-

pute the weak rates for all sd-shell nuclei over a wide range of temperatures and

densities relevant to late stellar evolution and core collapse using our modification

to the GT Brink-Axel hypothesis and the most recent experimental data. Sec-

ond, we will seek ways to extend the results presented in this paper to the large,

neutron-rich nuclei that are abundant during collapse, ideally allowing for more

accurate computations of weak rates in those nuclei.

Chapter 3, in full, is material currently in preparation for publication in an

academic journal with co-authors George M. Fuller, B. Alex Brown, and Calvin

W. Johnson. I am the primary investigator and author of this paper.
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