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Depth estimation from a single image represents a very exciting challenge in 

computer vision. In this regards Self-supervised monocular depth estimation has gained 

immense popularity recently because they dont require groundtruth depth  during training. 

Instead of the groundtruth depth map, the current methods rely on the view synthesis as a 

supervision for depth prediction. Recently there have been works that leverage the semantic 

cues while training in a multitask setup. But these methods cause some inherent problem 

while learning task-specific and task-sharing features which result in less accurate depth 

features. In this work, we propose to explicitly apply a mechanism by which network can 

weigh features for different tasks and avoid the interference between tasks of depth 

estimation and semantic sementation.  In other words we employ the attention guided 

encoder network to learn both the task-specific and task-sharing depth features. 

Experiments on KITTI dataset demonstrate that our methods compete with the state-of-

the-art methods.  
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Chapter 1 

Introduction 

Measuring distance relative to a camera remains difficult but absolutely key to 

unlocking exciting applications such as autonomous driving, 3D scene reconstruction and 

AR. In robotics, depth is a key prerequisite to perform multiple tasks such as perception, 

navigation, and planning. Creating a 3D map would be another interesting application, 

computing depth allows us to back project images captured from multiple views into 3D.  

As human beings, we reliaze that how important of a role does vision play in our 

daily life. The depth estimation being one of the major activities that our eyes perform. 

Ever since we were born, we start to learn how to gauge how far objects around are present 

and this enables us to interact with the world around us. This capability plays a major role 

in our interaction process; how much do I need to move my hand to grab an object infront 

of me? How should I react to avoid hitting something that is coming my way? How fast 
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cars are movin on a road? All of these activities depend on our ability to understand and 

estimate the distance of the objects accurately and faster. This makes the task of teaching 

machines to learn depth prediction an extremely important one. If our end goal is to make 

fully autonomous vehicles and robots we need to put a lot of significance on depth 

estimation as prerequisite for the ability to reason about the world around us. 

How do we humans estimate depth:  

Lets first understand how we humsns perceive the depth of our sorroundins. This 

will provide some insignt on how the current depth estimation menthis are inspired from 

our human cvision system. Theoretically, when light rays from a source hit surfaces, it 

reflects off and directs towards the back of our retina, projecting them and our eye 

processes them as 2D just like how an image is formed on an image plane. So how do we 

actually measure distance and understand our environment in 3D when the projected scene 

is in 2D? The mechanism at work here is our brain starts to reason about the incoming 

visual signals by recognizing patterns such as the size, texture and motion about the scene 

known as Depth Cues. There are basically 4 categories of depth cues: Static monocular, 

depth from motion, binocular and physiological cues [1]. We subconsciously take 

advantage of these signals to perceive depth remarkably well. 

 

Pictorial depth cues: We humans perceive deoth from a single image depends on the 

spatial location and arrangemenrs of the things in a given scene. The below table 
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summarizes some of the cues that we use to reason about the distance of different objedcts 

which occur to us naturally in our daily interaction with our surroundings.  

 

 

 

Figure 1: Figure shows how humans perceive depth of objects using spatial cues. 

                       Source[39] 

 

Table 1: Depth cues that enable us to reason about the distance of different objects. 

Monoscopic Depth Cues Examples Appear Nearer Appear Fatrther 

Size of Objects Tree Larger Smaller 

Texture Grass Patch High Quality texture Low Quality, blurry 

Linear Perspective Curb Line                - Converge to horizon 
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Depth Cues from Motion ( Motion Parallax): 

When we observe outside from a moving vehicle, things that are close to us pass 

faster than the one that is farthest away. The farther something appears, the slower it seems 

to pass away from the observer. 

Depth Cues from Stereo Vision: 

 Like human eyes, two cameras are displaced horizontally from each other on the 

same plane to obtain two views of the scene. By comparing these two images, the relative 

depth information of the scene can be obtained as a disparity map, which measures the 

horizontal displacement in pixels of the corresponding image points. 

 

1.1 Challenges 

Monocular depth estimation is a fundamentally ill-posed problem in Computer 

Vision. Two significant reasons are projection ambiguity and scale ambiguity. On the 

application of geometric transformation on a scene, the points in the two different scenes 

may map to the same location on the plane, see figure 2. As such, many 3D scenes can 

explain a single 2D image. Humans possess the ability to perceive depth from one image 

using monocular depth cues like the size of objects, texture, and linear perspective as 

discussed above. Figure 1 shows how the spatial arrangement of the trees and other objects 

develops our intuition of the depth associated with every object present in the scene. 
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Figure 2: (a) A line drawing provides information only about the x,y coordinates of points 

lying along the object contours. (b) The human visual system is usually able to reconstruct 

an object in three dimensions given only a single 2D projection. (c) Any planar line-

drawing is geometrically consistent with infinitely many 3D structures. Source[38] 

  

 

Depth estimation from images is an important tool in a variety of applications, 

especially in Autonomous systems and robotics. While several dedicated ranging sensors, 

such as LIDAR  provide superior depth accuracy compared to visual methods they are very 

expensive. Monocular depth estimation is an active area of study in machine learning. 

While initial supervised learning models for this task have enjoyed success, they require 

pixel-wise labelled ground truth for training which is very difficult to obtain and turn out 
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to be very costly to prepare them. Recently, unsupervised methods have surged in usage 

and they employ novel reconstruction loss terms to avoid the need for ground truth depth, 

but utilize only one view of the scene during evaluation. 

 

Moving Objects violate the static assumption for SFM Method: 

 Dynamic objects in the scene further complicate the estimation process. Depth 

estimation via structure from motion involves a moving camera and consecutive static 

scenes. This assumption must hold for matching and aligning pixels. This assumption 

breaks when there are moving objects in the scene. To this end, many researchers have 

looked into several methods to model moving objects in the scene by incorporating velocity 

information using optical flow [2] or by using instance segmentation mask to model the 

object‘s motion from one frame to another [3]. 

 

1.2  Contributions 

This thesis makes the following contributions: 

• We propose an attention mechanism to enhance the quality of depth features 

learned in self-supervised depth estimation networks. 

• We demonstrate that the obtained attention guided semantically global context 

aware depth features can perform better compare to few of the previous methods. 
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The rest of the thesis is organized as follows. Chapter 2 gives an overview of the 

Related Work in supervised, unsupervised, and semi-supervised Monocular Depth 

Estimation. The methodology, i.e., the different types of architecture and loss functions 

used, details on training, etc. are described in Chapter 3. Chapter 4 contains the results, 

experiments, and subsequent discussions. 
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Chapter 2  

Related Work 

 

2.1  Monocular Depth Estimation: In Detail 

 Estimation depth information from images is one of the basic and important tasks 

in computer vision. To bradly classify depth prediction from images into three different 

methods depending on what kind of data and methods are used. 

Geometry-based methods: These methods are the first of its kind that have been widely 

investigated to perceive depth for the last forty years. These methods recover 3D structures 

from a given set of images using the geometric constraints. Structure from Motion (SfM) 

[5] is the primary methods for estimation 3D structures from a series of 2D images. The 

depth is perceived by applying feature correspondences and geometric constraints over a 
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sequence of images. The other important method is Stereo vision matching [6][7]. This 

technique performs depth prediction by matching the scene from two different viewpoints. 

This is inspired from the human eyes and the disparity maps of the two images captured 

using two cameras are calculated. This method overcomes the serious drawback of SfM, 

the scale information is included in depth estimation during stereo vision matching process 

which avoids the monocular scale ambiguity. 

Sensor-based methods: We can get the depth information using depth sensors like RGB-

D and LIDAR for the corresponsing images. RGB-D cameras produce pixel-level depth 

maps, they have limited measuremet range and outdoor sensitivity. LIDAR is most 

commonly used hardware in Autonomous systems for depth measurement but it can only 

generate the sparse 3D maps. 

Deep learning-based methods: In the recent years due to rapid developments in deep 

learning, which led to an increase in performance of deep neural networks. Recent methods 

have shown that an end-to-end methods [8] are able to produce pixel-level depth maps from 

a single image. Many kinds of neural networks were able to effectively address the problem 

of Monocluar depth estimation, such as convolutinla nuera networks (CNN’s) [9], recurrent 

nueral networks (RNN’s) [10], variational auto-encoders (VAE’s) [11] and generative 

adversarial networks (GAN’s) [12].  

 The below sections describe various methods on Monocular depth estimation using 

deep learning techniques since our work is based on neural networks. 
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2.2  Deep learning based Monocular depth estimation 

 Deep neural networls are considered as a black box and they learn some structural 

information to do the depth prediction with the help of suopervised signals. However the 

biggest challenges of deep learning is to acquire large amount pof annotated data also called 

as groundtruth. Getting groundtruth data is very time consuming and expensive. In this 

section we will discuss about monocular depth estimation methods in terms of using 

groundtruth: supervised methods [13], unsupervised methods [14] and semi-supervised 

methods [15]. One major difference is even though the training processes of unsupervised 

and semi-supervised make use of monocular videos or stereo image pairs while training, 

they use only single images while inference. 

  

2.2.1  Supervised monocular depth estimation 

 In a basic model of a supervised method, there exists a supervisory signal based on 

ground truth of depth maps, so that monocular depth estimation can be regarded as a 

regressive problem. The network is guided by  a    Loss: 

 

 One of the earliest work that paved way for the current supervised techniques for 

monocular depth estimation is by Eigen et al. [16]. This paper introduced regressing for 

depth over pixels for the first time. The proposed method consists of a dual component 

structure namely the global coarse network and local fine network to predict depth from a 

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Cmathscr%7BL%7D_%7B2%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Cmathscr%7BL%7D%7B2%7D%5Cleft(d%2Cd%5E%7B*%7D%5Cright)%20%3D%20%5Cfrac%7B1%7D%7BN%7D%20%5Csum%7Bi%7D%5E%7BN%7D%5Cleft%5C%7Cd-d%5E%7B*%7D%5Cright%5C%7C_%7B2%7D%5E%7B2%7D%20#0
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single image. They use a novel scale-invariant loss to account for scale dependent error. 

During the training process, they guide the network with a loss function set as below: 

 

 refers to the balance factor. The global coarse network 

predicts the overall depth map and the coarse network performs the local refinements on 

previous output by utilizing vanishing points, object locations. 

 Xu et al. [17] proposed a new method that is derived from the multiscale predictions 

derived from CNN inner layers by structurally fusing them within a unified CNN-CRF 

framework. Similarly, Li et al. [18] introduced to fuse features from two different streams 

of CNN’s, by extracting features at intermediate layers at different scales. There are two 

different techniques to fuse these intermediate layers: 

Multi-scale CRF: Given an LN-dimensional vector  obtained by concatenating side 

output score maps  and an  dimensional vector d, the CRF modelling the 

conditional distribution is defined as: 

 

 

Cascade CRFs: The cascade model is based on L CRF models, each one at a specific scale 

L which are progressively stacked to use only the previous scale as an input to define 

features at the next level. 

Methods based on conditional random fields: Instead of using an additional network for 

different tasks in [16], Li et al [18] propose a refinement method using conditional random 

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Cmathscr%7BL%7D%5Cleft(d%2C%20d%5E%7B%5Cstar%7D%5Cright)%3D%5Cfrac%7B1%7D%7BN%7D%20%5Csum_%7Bi%7D%5E%7BN%7D%20y_%7Bi%7D%5E%7B2%7D-%5Cfrac%7B%5Clambda%7D%7BN%5E%7B2%7D%7D%5Cleft(%5Csum_%7Bi%7D%5E%7BN%7D%20y_%7Bi%7D%5Cright)%5E%7B2%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctext%20%7B%20where%20%7D%20y_%7Bi%7D%5E%7B2%7D%3D%5Clog%20(d)-%5Clog%20%5Cleft(d%5E%7B*%7D%5Cright)%20.%20%5Clambda%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Chat%7Bs%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cleft%5C%7Bs_%7B1%7D%2C%20%5Cldots%2C%20s_%7BL%7D%5Cright%5C%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20L%20N%20#0
https://www.codecogs.com/eqnedit.php?latex=%20P(%5Cmathrm%7B~d%7D%20%5Cmid%20%5Chat%7B%5Cmathrm%7Bs%7D%7D)%3D%5Cfrac%7B1%7D%7BZ(%5Chat%7B%5Cmathrm%7Bs%7D%7D)%7D%20%5Cexp%20%5C%7B-E(%5Cmathrm%7B~d%7D%2C%20%5Chat%7Bs%7D)%5C%7D%20#0
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fields which were already used for many tasks like semantic segmentation [19][20]. In 

these methods, the depth map is refined from a super-pixel level to pixel level using CRF, 

and the energy function is as follows: 

 

where S stands for the set of super-pixels and refers to the set of pixels that share a common 

boundary. Similarly, another method is proposed after this by Liu et al. [21] to solve the 

problem of monocular depth estimation.  

 Xu et al. [22] proposed a very similar structure to that of Xu et al. [17], this method 

consists of the same kind of front end of the CNN architecture using the multi-scale features 

are extracted and passed to the next step through conditional random fields. One new 

significant change that they proposed in the new framework is to regulate how much 

information is exchanged between different features at various scales. They have achieved 

this using a structured attention model. The important idea of using an attention model is 

to manage the flow of information. More specifically, an attention model 

 parameterized by binary variables   is 

introduced. The attention variable  regulates information which is allowed to flow 

between intermediate scale  and final scale  for pixel . 

 A CRF can be structured given the observed multi-scale feature maps X and the 

estimated latent multiscale representation Y as: 

 

Here the first term represents the summation of unary potentials and correspondingly the 

second term represents the relation between features of the latest layers at the final scale 

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7BE%7D(%5Cmathbf%7Bd%7D)%3D%5Csum_%7Bi%20%5Cin%20S%7D%20%5Cphi_%7Bi%7D%5Cleft(d_%7Bi%7D%5Cright)%2B%5Csum_%7B(i%2C%20j)%20%5Cin%20%5Cvarepsilon_%7Bs%7D%7D%20%5Cphi_%7Bi%20j%7D%5Cleft(d_%7Bi%7D%2C%20d_%7Bj%7D%5Cright)%2B%5Csum_%7Bc%20%5Cin%20P%7D%20%5Cphi_%7Bc%7D%5Cleft(d_%7Bc%7D%5Cright)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20A%3D%5Cleft%5C%7BA_%7Bs%7D%5Cright%5C%7D%7Bs%3D1%7D%5E%7BS-1%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20A%7Bs%7D%3D%5Cleft%5C%7Ba_%7Bs%7D%5E%7Bi%7D%5Cright%5C%7D%7Bi%3D1%7D%5E%7BN%7D%2C%20a%7Bs%7D%5E%7Bi%7D%20%5Cin%5C%7B0%2C1%5C%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20a%5E%7Bi%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20s%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S%20#0
https://www.codecogs.com/eqnedit.php?latex=%20I%20#0
https://www.codecogs.com/eqnedit.php?latex=%20E(%5Cmathbf%7BY%7D%2C%20%5Cmathbf%7BA%7D)%3D%5CPhi(%5Cmathbf%7BY%7D%2C%20%5Cmathbf%7BA%7D)%2B%5CXi(%5Cmathbf%7BY%7D%2C%20%5Cmathbf%7BA%7D)%2B%5CPsi(%5Cmathbf%7BA%7D)%20#0
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with the intermediate scale. They employed a ResNet-50 for the feature extractor frontend. 

The model is optimized using the backpropagation with stochastic gradient descent. Below 

I have summarized various methods in a table. 

 

Table 2 : Comparision of supervised methods for monocular depth estiomation 

Method Network 

Architueeture 

Multi-scale 

Features 

CRF’s Learing 

Paradigm 

Multi-Scale CNN Deep CNN Yes No Supervised 

Multi-Scale CRFs Deep CNN Yes Yes Supervised 

SAGCNF Xu et al. Deep CNN Yes Yes Supervised 

DORN Fu et al. DSE+SUM Yes Yes Supervised 

 

 

2.2.2 Unsupervised monocular depth estimation 

 Instead of using ground truth while training the models, unsupervised techniques 

make use of geometric constraints and the underlying epipolar geometry present in the 

training data. Acquiring labels or ground truth data is very expensive and time-consuming. 

To avoid such cumbersome processes, unsupervised methods are proposed and are gaining 

attention in the research community over recent years. 

Monocular depth estimation with Left-Right consistency: 

The first leap towards unsupervised methods for MDE is taken by Godard et al. 

[23]. The main proposal of this work is to make use of binocular stereo footage with left 

and right view images of the scene while training but only one view while testing. By 

exploiting the epipolar geometric constraints their models generate the disparity maps 
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using an image reconstruction loss. Since the model learns from stereo pair it doesn't 

require any ground truth labelled data to predict pixel-level disparity between pairs of 

rectified stereo images. 

The novelty of this method is just not using stereo pairs of images, they also 

introduced depth estimation as image reconstruction and a novel loss to predict depth with 

high accuracy. The main idea is to be able to learn a function  such that we can predict 

per-pixel scene depth  given a single image  . Applying this function in a 

supervised setting is not practical considering the fact that making labels is expensive. 

Also, expensive hardware such as LIDAR can only produce sparse maps. Thus they 

propose to learn a function capable of reconstructing one image from another. During 

training, the network is provided with two images  and  which are left and right colour 

images from a calibrated stereo pair. The goal of the network is to find a depth relation   

which should enable us to reconstruct the right image when it applied to the left image. 

The reconstructed image is denoted as  or . In the case of a rectified images,  

resembles the image disparity – where each pixel is a scalar value that the model has 

learned to predicted. Once we have the disparity maps and the static distance between the 

cameras  and their focal length  we can get the depth  as . 

The authors proposed a network that generates the depth predicted image using a 

bilinear sampler. With the help of a novel left-right consistency loss, Godard et al. [23] 

proposed to generate the disparity maps for both the left and right images instead of 

predicting depth pixel values individually for one and sampling on the other. They 

https://www.codecogs.com/eqnedit.php?latex=%20f%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7Bd%7D%3Df(I)%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20I%2C%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20I%5E%7Bt%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20I%5E%7Br%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20d%5E%7Br%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20I%5E%7B%5Cprime%7D%5Cleft(d%5E%7Br%7D%5Cright)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbar%7BI%7D%5E%7Br%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20d%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20b%20#0
https://www.codecogs.com/eqnedit.php?latex=%20f%2C%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Chat%7Bd%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20d%3Db%20f%20%2F%20d%20#0
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employed an encoder and a decoder with skip connections. The authors have used a loss 

 for outputs individually at each scale which resulted in a total loss of: 

 

where   encourages similarity in the reconstructed image,   enforces smoothness 

disparities, and   prefers predicted left and right disparities to be consistent. 

 For the second part of sampling one stereo image from the other using the produced 

disparity map, they employed the image sampler from the spatial transformer networks 

(STN) [24] to sample any given input image using the disparity map. The   loss is a 

combination of an   and single scale SSIM [] loss. This loss is defined as: 

 

Disparity Smoothness Loss Disparities are encouraged to be locally smooth with an 

  penalty on disparity gradients $\partial d$. Because depth may have discontinuity, this 

loss is weight with an edge-aware term using image gradients , 

 

 

Self-supervised Training with Stereo Vision 

To mitigate the issue mentioned above, Garg et al. and Godard et al. propose self-

supervised training methods for monocular depth estimation. These approaches exploit the 

warping function to transfer the coordinates of the left image to the right image plane. In 

particular, design a photometric loss combining SSIM with L1 term and geometric 

warping. Moreover, casting depth estimation as an image reconstruction task represents a 

https://www.codecogs.com/eqnedit.php?latex=%20C_%7Bs%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20C_%7Bs%7D%3Da_%7Ba%20p%7D%5Cleft(C_%7Ba%20p%7D%5E%7Bl%7D%2BC_%7Ba%20p%7D%5E%7Br%7D%2B%5Calpha_%7Bd%20s%7D%5Cleft(C_%7Bd%20s%7D%5E%7Bl%7D%2BC_%7Bd%20s%7D%5E%7Br%7D%5Cright)%2B%5Calpha_%7Bl%20r%7D%5Cleft(C_%7Bl%20r%7D%5E%7Bl%7D%2BC_%7Bl%20r%7D%5E%7Br%7D%5Cright)%5Cright)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20C_%7Ba%20p%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20C_%7Bd%20s%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20C_%7B%5Ctext%20%7Bir%20%7D%7D%20#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%20C_%7Ba%20p%7D%20#0
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very attractive way to overcome the need for expansive, ground truth labels by using a 

large amount of unsupervised imagery.  During training, the network’s predicted disparity 

is used to transform one image to the other image in a stereo pair. The transformed image 

is compared against the corresponding training example with a photometric loss term. 

Other optimizations are presented including disparity smoothness loss and consistency 

between disparities predicted on the left and right images. 

 

Semantically guided monocular depth estimation 

 Our work is closely related to few recent works [49][50] in a way that the general 

framework that is used to enhance the depth features by using region aware object 

boundaries. Our work and theirs utilizes the semantic segmentation as a guidance network, 

but our work is novel in 4 different ways: 

1. Work done in [49] uses two different encoders for the two tasks of semantic and 

depth estimation, whereas in our work we use a common encoder for both the tasks 

which enables our model to learn more accurate task-sharing features . 

2. In [49], they propose to  use a pretrained semantic network and freeze/fix the 

weights, but in our work we also train the semantic segmentation network 

simultaneously with depth estimation which enables us to perform attention 

guidance in a dynamic nature. 

3. In [50] they propose to use the attention mechanism after the encoder and before 

the decoder. In our work we try to use the attention mechanism inbetween the two 

task-specific decoders to create the semantic aware depth features. 
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4. In [49], they use pixel adaptive convolutions two fuse the feature maps from 

separate decoders, whereas we utilize an attention mechanism which helps us to 

reduce the task-interference during feature fusing. 
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Chapter 3 

Method Overview 

 Over the recent years, there has been increased interest in the self-supervised 

monocular depth estimation also commonly known as structure-from-motion (SfM) using 

deep neural networks since the self-supervision relaxes the hard requirement of having 

annotated ground truth which itself is cumbersome. This methodology has been gaining 

popularity among researchers for the above reasons. It all started with the seminal work of 

Zhou et al. [25]. Since then there has been a proliferation of interest in this area. Many new 

works have started to nail down and systematically tackle each component in this 

framework.  

 In this thesis, we exploit the geometric relationship between depth estimation and 

semantic segmentation for understanding a scene more precisely in the context of 

autonomous navigation. To be specific, we propose to enforce the semantic boundary 

information into the depth features by introducing a joint multitask learning framework 

that takes into consideration the geometric constraints which help in adaptively choosing 

the most significant features for monocular depth estimation. Understanding the spatial 

context of the scene will help the model to comprehend the individual characteristics of the 

pixels in that scene very well which in turn improve the performance of monocular depth 

estimation. Even after so many advances in the monocular depth estimation techniques 

suffer from some drawbacks. For example, they struggle with the cases where the texture 
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of the scenes is very similar they fail to distinguish and also they lack enough information 

of the occluded objects in the scene. We aim to address these issues by incorporating the 

global context of the scene into network with the help of semantic cues. 

 Our work is closely related to Meng et al. [26] in which the authors propose to use 

the fused input augmentation of semantic features and RGB images and fed them into the 

network. The major drawback of this method is that since the input features were just 

stacked together without considering any constraints there is a higher chance that the model 

tends to get confused and also the learned depth features may get corrupted due to the 

deeper nature of current neural networks. 

 

3.1  Self-Supervised Monocular Depth Estimation 

 In a self-supervised setting the groundtruth comes from the input signal itself. In 

this case it is the RGB images. The pioneering work in this direction is set by work of  

Zhou et al. 

Self-supervised learning framework: The defined goal is to resynthesize the images 

based on some input images. In our context, the images synthesized are making use of 3D 

scene geometry.  
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Figure 3: Self-supervised depth estimation pipeline. This pipeline shows the schematic of 

an unsupervised learning framework where we try to get the supervision from the input 

data itself. This has two blocks: The convolutional neural network for depth estimation, 

and view synthesis module to perform image reconstruction using Image geometry. 

Source[48] 

 

 

 When depth together with egomotion is provided, we can synthesize a new view 

(target) by applying a projective warping from the source camera point of view. From the 

figure above, the warping is achieved using a view synthesis module. One the main thing 

to notice here is that depth is an input to the module and in our case is predicted from a 

neural network. Learning in a self-supervised structure-from-motion setting requires two 

networks: a monocular depth model , that outputs a depth prediction 

https://www.codecogs.com/eqnedit.php?latex=%20f_%7BD%7D%3A%20I%20%5Crightarrow%20D%20#0
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 for every pixel  in the target image ; and a monocular ego-motion 

estimator  that predicts the 6 DoF transformations for all  

given by 

 

between the target image  and a set of temporal context source images . In all 

reported experiments they use  and  as source images. 

View synthesis module: As discussed above, in the view synthesis module using the 

monocular image sequences the projection is performed between neighbouring frames: 

 

where  stands for the pixel on image  and  refers to the corresponding pixel of  

on image .  is the camera intrinsics matrix, which is known.  denotes the 

depth value at pixel , and  represents the spatial transformation between  and 

. Hence, if  and  are known, the correspondence between the pixels on 

different images  and  are established by the projection function. Inspired by this 

constraint, Zhou et al. design a depth network to predict the depth map  from a single 

image  and a pose network to regress the transformation  between frames 

 and . Based on the output of networks, the pixel correspondences between  and 

 are built up: 
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Then, the photometric error between the corresponding pixels is calculated as the geometric 

constraints. Zhou et al. are inspired by [27] to use a view synthesis as a metric. and the 

reconstruction loss is formulated as: 

 

where  indexes over pixel coordinates.  denotes the reconstructed frame. The 

structure similarity based on SSIM is also introduced into  to quantify the differences 

between reconstructed and target images: 

 

where  is a balance factor. An edge-aware depth smoothness loss is adapted to encourage 

the local smooth of depth map: 

 

 

3.2  Multi-task depth estimation using global context 

 Multi Task Learning has been developed for a single CNN model to handle a 

multitude of tasks and yield better results in all of them. Previous MTL methods based on 

CNNs commonly utilize parameter sharing, which share some layers across all tasks and 

add task-specific layers on the top of the shared networks. These naive approaches have 

two limitations. First, since these methods combine all the task-specific losses without 

considering optimal weight parameters, the model cannot learn multiple objectives 

properly. Thus, some papers propose ways to assign the weights to balance each task. 
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Second, task-specific features may discourage the network from performing other tasks. 

Alternative studies are presented to learn task-shared features and task-specific features, 

respectively. In [22], task-specific attention modules allow the shared network to achieve 

this goal. Maninis et al. also apply the attention mechanisms, such as Squeeze and 

Excitation blocks [20] and Residual Adapters to calibrate intermediate features. These 

approaches enable the separate learning of task-specific and task-shared features. 
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Chapter 4 

Experiments and Results 

4.1  Implementation details 

 In this thesis, we have extended Zhou et al’s [25] work to incorporate the global 

context-aware features to improve the performance of our depth estimation pipeline. Our 

network is based on an encoder-decoder atchitecture with skip connections. To compare 

the results we have used the same ResNet encoder which is pretrained on ImageNet dataset. 

Without a direct association between tasks, task interference can occur, which can corrupt 

each task-specific feature. We propose a network with the parameter sharing that two tasks 

share an encoder and have each decoder branch. Therefore, the task-specific schemes are 

designed to prevent corruption in single encoder.  

Attention : To avoid interference between the tasks of depth estimation and segmentation, 

we build an attention mechanism in order to adaptively recalibrate and fuse feature maps 

from task-specific decoder networks, we design a new architectural unit for our network 

architecture. The goal of this block is to explicitly model the correlation between the two 

task-specific feature maps before passing them to the separate decoders so that the network 
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can exploit the complementary features by learning to selectively emphasize more 

informative features from one task, while suppressing the less informative features from 

the other. We construct the topology of this block in a fully-convolutional fashion which 

empowers the network with the ability to emphasize features from a task- specific for only 

certain spatial locations or object categories, while emphasizing features from the 

complementary task for other locations or object categories. Moreover, this dynamically 

recalibrates the feature maps based on the input scene context. 

 

 

Figure 4: Our proposed Attention module for the depth network. The topology of our 

proposed Attention module that adaptively recalibrates and fuses task-specific feature 

maps based on the inputs in order to exploit the more informative features from the task- 

specific streams. η denotes the bottleneck compression rate. 

 

The structure of the Attention block is shown in Figure 4. Let  and 

 denote the task- specific feature maps from task  and task  respectively, 

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7BX%7D%5E%7Ba%7D%20%5Cin%20%5Cmathbb%7BR%7D%5E%7BC%20%5Ctimes%20H%20%5Ctimes%20W%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathbf%7BX%7D%5E%7Bb%7D%20%5Cin%20%5Cmathbb%7BR%7D%5E%7BC%20%5Ctimes%20H%20%5Ctimes%20W%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20A%20#0
https://www.codecogs.com/eqnedit.php?latex=%20B%20#0


 

26 

 

where  is the number of feature channels and  is the spatial dimension. First, we 

concatenate the task-specific feature maps to yield  . We then employ a 

recalibration technique to adapt the concatenated feature maps before fusion. In order to 

achieve this, we first pass the concatenated feature map  through a bottleneck 

consisting of two  convolutional layers for dimensionality reduction and to improve 

the representational capacity of the concatenated features. The first convolution has 

weights   with a channel reduction ratio  and a non-linearity function 

. We use ReLU for the non-linearity, similar to the other activations in the encoders. 

 

The subsequent convolutional layer with weights  increases the 

dimensionality of the feature channels back to concatenation dimension  and a sigmoid 

function  scales the dynamic range of the activations to the [0,1] interval. This can be 

represented as:  

 

The resulting output s is used to recalibrate or emphasize/de-emphasize regions as: 

 

 

4.2  Training, Hyperparameter, and System details 

For the training of the depth estimation, we resize all images to a resolution of 

640×192 , if not mentioned otherwise, while for the semantic segmentation, the images are 

images to a resolution of 640×192, randomly cropped to the same resolution. We adopt the 
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zero-mean normalization for the RGB images used during training of the ResNet encoder. 

For input images we use augmentations including horizontal flipping, random brightness 

(±0.2), contrast (±0.2), saturation (±0.2) and hue (±0.1), while the photometric losses are 

calculated on images without color augmentations. 

  

4.3  Evaluation criteria 

 To evaluate the depth estimation we follow other works [3,25] in computing four 

error metrics between predicted and ground truth depth as defined in [16], namely the 

absolute relative error (Abs Rel), the squared relative error (Sq Rel), the root mean squared 

error (RMSE), and the logarithmic root mean squared error (RMSE log). Additionally, we 

compute three accuracy metrics, which give the fraction δ of predicted depth values in- 

side an image whose ratio and inverse ratio with the ground truth is below the thresholds 

1.25, 1.252 and 1.253. We follow [25] by applying median scaling to the predicted depths. 

The semantic segmentation is evaluated using the mean intersection over union (mIoU). 

The four error depth metrics used for evaluation on the Eigen and KITTI split are 

defined. The absolute relative error averages the error for all the predicted depth and the 

groundtruth depth pixels as shown below: 
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For the Squared relative error, one difference from absolute relative error is, before 

doing average over all the pixels in the image, the error between the predicted depth and 

the groundtruth depth is squared. 

 
By measuring the Root mean square error metric on the test data, we will be able 

to understand the standard deviation of the residuals (Prediction errors). RMSE is a 

measure of how spread out these residuals are. Given the predicted depth pixel values and 

groundtruth values we can calculate it as follows: 

 
 Similarly, in case if we have an outlier depth values which is predicted by the 

network, the root mean square error may blow up into a bigger value, in order to overcome 

that we also use the root mean square error log while evaluating our model. 

 

Let  being the set of all pixels and  and  being the width and height of the 

image, respectively. The accuracy metrics help us in finding how many of the predicted 

depth pixels are same as in the groundtruth data. In other words, when our model predicts 

depth on test images, the accuracy metrics tells us the percentage of pixels across all images 

that are correctly estimated. In order to calculate that we make use of Iversion bracket as 

shown below: 
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where [·] is defined as the Iverson bracket, which is 1 if the condition inside the bracket is 

true, and 0 if the condition is false. Similarly we also calcuarte accuracy metric at two other 

δ values as well. For thresholds of 1.252 and 1.253,  we calculate a similar metric for all the 

test images. 

 

 

4.4 Datasets used 

 For training and inference generation, following datasets have been used. We 

always utilize one dataset to train the semantic segmentation and another one for self-

supervised training of the depth estimation of our model. For training the semantic 

segmentation we utilize the Cityscapes dataset [32] while at the same time we use different 

subsets of the KITTI dataset [33] for training the depth estimation. Similar to other state- 

of-the-art approaches we compare our depth estimation results by training and evaluating 

on the Eigen split [16] of the KITTI dataset, following [25] in removing static scenes from 

the training subset. We also train and evaluate on the single image depth prediction 

Benchmark split from KITTI [34]. To evaluate the joint prediction of depth and 

segmentation we utilize the KITTI split defined by [23] whose test set is the official training 

set of the KITTI Stereo 2015 dataset [35]. The number of training images deviates slightly 

from the original definitions, as we need a preceding and a succeeding image to train the 

depth estimation. The below table summarizes the datasets used: 
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Table 3: The table summarizes the amount of training data available for various dataset 

Dataset Subset Number of Images 

 

Eigen split 

Train 21880 

Val 4187 

Test 697 

 

Kitti split 

Train 28937 

Val 1158 

Test 200 

 

Cityscapes 

Train 2975 

Val 500 

Test 1525 

 

 

4.4.1  KITTI: Eigen split 

 The split of the KITTI dataset, which is most frequently used to compare depth 

estimation models, is the Eigen split [16], containing 697 images for testing. While the 

number of test images is constant throughout recent approaches, the number of training 

and validation images has been redefined by [71] to exclude static scenes. As shown in 

below table, there is a significant improvement in the RMSE values on the addition of the 

semantic supervision using attention mechanisms to our baseline model. It is to be noted 

that no post processing techniques have been used, demonstrating the sole effect of the 

attention guided semantic cues on an unsupervised monocular depth estimation model. In 

figure 4, we have shown qualitatively, how we obtain more continuous and crisp 

boundaries using our method. 
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Table 3: Evaluation of our self-supervised multitask attention guided depth estimation on 

the KITTI Eigen split. 

Method Resolution 

Lower is better 

Abs Rel      Sq Rel       RMSE       RMSE log 

Higher is better 

δ < 1.25    δ < 1.252     δ < 1.253 

Zhou et al.[25] 416 × 128 0.198    1.836    6.565    0.275 0.718    0.901    0.960 

Mahjourian et al.[3] 416 × 128 0.159    1.231    5.912    0.243 0.784    0.923    0.970 

Yin and Shi et al.[36] 416 × 128 0.153    1.328    5.737    0.232 0.802    0.934    0.972 

Wang et al.[10] 416 × 128 0.148    1.187    5.583    0.228 0.810    0.936    0.975 

Casser et al.[37] 416 × 128 0.141    1.026    5.291    0.215 0.816    0.945    0.979 

Meng et al.[26] 416 × 128 0.139    0.949    5.227    0.214 0.818    0.945    0.980 

Godard et al.[23] 416 × 128 0.128    1.087    5.171    0.204 0.855    0.953    0.978 

Our Method 416 × 128 0.124    1.140     4.960    0.198 0.860    0.949    0.982 

 

 

4.4.2  KITTI: Kitti split 

 We train and evaluate on the KITTI split [18], whose test set are the official 200 

training images from the KITTI 2015 Stereo dataset [40]. This test set has the advantage 

that it has available labels for both depth and semantic segmentation, which makes it 

suitable to observe the benefits of multi-task training for depth and semantic segmentation. 

 

4.4.3 Cityscapes 

 The Cityscapes dataset has 2,975 labeled training images on which we train the 

semantic segmentation part of our network. Our evaluation on this dataset is conducted on 

the official validation set containing 500 labeled images. 
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Conclusion:  

 After evaluationg our proposed method on the KITTI test data, it is clearly evident 

that our method has gained a significant improvement in terms of the error metrics and 

accuracy. The proposed novel attention mechanism which helps in creating the semantic 

aware depth features has a positive impact on the overall performance of the model. From 

the baseline metrics, we can see that using a common encoder for both the tasks has helped 

our model to learn the task-sharing features without any features getting corrupted. To 

further enhance the results, we can try to implement our novel attention mechanism in a 

fully convolutional manner which would help to backpropagate the error through attention 

module.  
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Figure 5: Qualitative examples of our proposed method in comparison to other recent 

methods.  

 

 

 

 

 

 

 

   Input image                         Our method                     Godard et al [23]                     Wang et al [28]                   Zhou et al [25] 
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Figure 6: Additional examples of our proposed method in comparison to other recent 

methods.  

 

 

 

 

 

 

   Input image                         Our method                     Godard et al [23]                     Wang et al [28]                   Zhou et al [25] 
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Figure 7: Additional examples of our proposed method in comparison to other recent 

methods.  

 

 

 

 

 

 

   Input image                         Our method                     Godard et al [23]                     Wang et al [28]                   Zhou et al [25] 
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Figure 8: Additional examples of our proposed method in comparison to other recent 

methods.  

 

 

 

 

 

 

   Input image                         Our method                     Godard et al [23]                     Wang et al [28]                     Zhou et al[25] 
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Figure 9: Examples of how our method compares to the models trained with and without 

attention guidance for the tasks of depth estimation and semantic segmentation. 

 

 

 

 

 

           Input image                       Our method (with attention)      Our method (without attention)       Semantic segmentation        
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Figure 10: Additional examples of how our method compares to the models trained with 

and without attention guidance for the tasks of depth estimation and semantic 

segmentation. 
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