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Abstract of the Dissertation

Generalization of Wide Neural Networks from the

Perspective of Linearization and Kernel Learning

by

Hui Jin

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2022

Professor Guido Francisco Montúfar Cuartas, Chair

Recently people showed that wide neural networks can be approximated by linear models

under gradient descent [JGH18a,LXS19a]. In this dissertation we study generalization of wide

neural networks by the linearization of the network, thus some result from kernel learning can

directly apply [SH02,CD07]. In Chapter 2, we investigate gradient descent training of wide

neural networks and the corresponding implicit bias in function space. We approximate the

wide neural networks by corresponding linearized models and show that the implicit bias can

be characterized by certain interpolating splines, thus we can use the approximation theory

of splines to study the generalization of wide neural networks. In Chapter 3, we show that

the decay rate of generalization error of Gaussian Process Regression is determined by the

decay rate of the eigenspectrum of the prior and the eigenexpansion coefficients of the target

function. This result can be applied to study the generalization error of infinitely wide neural

networks with ReLU activations. Since the asymptotic generalization error is closely related

to the asymptotic spectrum of the kernel, in Chapter 4 we study the asymptotic spectrum of

the Neural Tangent Kernel (NTK) by its power series expansion. We first show that under

certain assumptions, the NTK of deep feedforward networks in the infinite width limit can

be expressed as a power series. Later on we show that the eigenvalues of the NTK can be

expressed the coefficients of the power series. From this expression we show that the decay

rate of the eigenvalues is determined by the decay rate of the power series coefficients.
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CHAPTER 1

Introduction

Deep learning and neural networks have achieved significant success in artificial intelligence and

have been widely applied to many areas, such computer vision, natural language processing,

recommendation system and reinforcement learning. The deep neural networks used in

practice are highly overparameterized, which means that the number of trainable parameters

are way larger than the number of training samples. Overparametrized networks are highly

expressive [Bar93,MPC14,PLR16a] and easy to optimize [NH17,KHK19]. Moreover, in many

applications overparameterized networks could achieve small generalization error.

However, traditional statistical learning theory such as Probably Approximately Correct

(PAC) learning theory [Val84] fails to explain why overparameterized networks could generalize

well. This is because overparameterized networks could even fit random training data easily

[ZBH21], which means that the hypothesis class of overparameterized networks cannot satisfies

uniform convergence. [ZBH21] also shows that explicit regularization is not enough to explain

the small generalization error and implicit bias of the optimization method such as stochastic

gradient descent (SGD) is important to generalization.

Recently [JGH18a] showed that gradient descent on a wide neural network can be

characterized by kernel gradient descent in function space with respect to the Neural Tangent

Kernel (NTK). The NTK is fixed during training in the infinite-width limit. [LXS19a] showed

that the training dynamics of wide neural networks is approximated by the linearization of the

networks at initialization. These results allow us to use linearized models and kernel learning

[CD07,CBP21] to analyze the generalization of overparametrized networks. It is noted that

similar to overparametrized networks, kernel learning can also easily fit random labels while

1



performs well on test data in certain tasks [BMM18]. By adopting the tool of linearized models

and kernel learning with respect to the NTK, a bunch of optimization and generalization results

of overparametrized networks can be obtained [DLL19,DZP19,ADH19a,ALS19a,ZCZ20]. In

this dissertation, we are going to follow the approach of linearized models and kernel learning

and analyze several problems regarding the generalization of wide neural networks.

In Chapter 2, we study the implicit bias of gradient descent on wide neural networks, which

is important to explaining the generalization of overparametrized networks. We approximate

the wide neural networks by corresponding linearized models and compute the implicit bias

in function space. For univariate regression, we show that the solution of training a width-n

shallow ReLU network is within n−1/2 of the function which fits the training data and whose

difference from the initial function has the smallest 2-norm of the second derivative weighted

by a curvature penalty that depends on the probability distribution that is used to initialize

the network parameters. We compute the curvature penalty function explicitly for various

common initialization procedures. For instance, asymmetric initialization with a uniform

distribution yields a constant curvature penalty, and thence the solution function is the natural

cubic spline interpolation of the training data. For stochastic gradient descent we obtain

the same implicit bias result. We obtain a similar result for different activation functions.

For multivariate regression we show an analogous result, whereby the second derivative is

replaced by the Radon transform of a fractional Laplacian. For initialization schemes that

yield a constant penalty function, the solutions are polyharmonic splines. Moreover, we

show that the training trajectories are captured by trajectories of smoothing splines with

decreasing regularization strength.

In Chapter 3, we study the generalization error of kernel learning such as Gaussian Process

Regression (GPR) and Kernel Ridge Regression (KRR), which are closely related to infinitely

wide neural networks. We characterize the power-law asymptotics of learning curves for

Gaussian process regression (GPR) under the assumption that the eigenspectrum of the prior

and the eigenexpansion coefficients of the target function follow a power law. Under similar

assumptions, we leverage the equivalence between GPR and kernel ridge regression (KRR) to

2



show the generalization error of KRR. Gaussian process kernel and the neural tangent kernel

(NTK) in several cases (e.g. with ReLU activations) is known to have a power-law spectrum.

Hence our methods can be applied to study the generalization error of infinitely wide neural

networks with ReLU activations.

In Chapter 4, we study the asymptotic spectrum of the Neural Tangent Kernel (NTK)

via a power series expansion of the NTK. The asymptotic spectrum of the NTK can be used

to study the asymptotics of learning curves as we show in Chapter 3. Under mild conditions

on the network initialization we show that the NTK of arbitrarily deep feedforward networks

in the infinite width limit can be expressed in the form of a power series. The power series

expansion of the NTK facilitate us to study the spectrum of the NTK. For data drawn

uniformly on the sphere we derive an explicit formula for the eigenvalues of the NTK, given

the coefficient of the NTK power series. This result shows that faster decay in the NTK

coefficients implies a faster decay in its spectrum. From this we recover existing results on

eigenvalue asymptotics for ReLU networks and comment on how the activation function

influences the RKHS.
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CHAPTER 2

Implicit Bias of Gradient Descent for Mean Squared Error

Regression with Two-Layer Wide Neural Network *

2.1 Introduction

Understanding why artificial neural networks trained in the overparametrized regime and

without explicit regularization generalize well in practice is one of the key challenges in

contemporary deep learning [ZBH17]. A series of works have observed that this phenomenon

must involve some form of capacity control beyond the network size [NTS15] and, specifi-

cally, an implicit bias resulting from the parameter optimization procedures [NTS17]. By

implicit bias we mean that among the many candidate hypotheses that fit the training data,

the optimization procedure selects one which satisfies additional properties benefitting its

performance on new data. In this chapter we investigate the implicit bias of gradient descent

parameter optimization for mean squared error regression with wide shallow ReLU networks.

Our theory shows that gradient descent is biased towards smooth functions. More precisely,

the trained functions are well captured by interpolating splines depending on the initial

function and the probability distribution that is used to initialize the network parameters.

Under appropriate conditions, we intuitively expect that gradient descent will be biased

towards solutions close to the initial parameter. Indeed, considering overparametrized neural

networks, [OS19] showed that gradient descent finds a global minimizer of the training objective

which is close to the initialization. This intuition is spot-on for least squares regression with

linearized models. In this case, [ZXL20] showed that gradient flow optimization converges
∗This chapter is adapted from [JM20].
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to the global minimum which is closest to the initialization in parameter space. Although

neural networks have a non-linear parametrization, [JGH18a] and [LXS19b] showed that

the training dynamics of wide neural networks is well approximated by the dynamics of the

linearization at a suitable initialization. This is referred to as the kernel regime, in contrast to

the adaptive regime where the models are not well approximated by their linearization. Also,

[COB19] showed that, under appropriate scaling of the output weights, a model can converge

to zero training loss while hardly varying its parameters. This phenomenon is referred to as

“lazy training”. On the other hand, it is also possible to relate properties of the parameters to

properties of the represented functions. [SES19] studied infinite-width univariate (single input)

neural networks and showed that, under a standard parametrization, the complexity of the

represented functions, as measured by the 1-norm of the second derivative, can be controlled

by the 2-norm of the parameters. [OWS20] extended these results to the multivariate setting.

Using these results, one can show that gradient descent with ℓ2 weight penalty leads to simple

functions. We will pursue an approach following these ideas, where we first approximate the

gradient dynamics of a wide network in terms of a linear model and then establish a function

space description of the implicit bias in parameter space.

The implicit bias of parameter optimization has also been investigated in terms of

the properties of the loss function at the points reached by different optimization proce-

dures [KMN17,WZW17,DPB17]. [GLS18a] analyze the implicit bias of different optimization

methods (natural gradient, steepest and mirror descent) for linear regression and separable

linear classification problems, and obtain characterizations in terms of minimum norm or

max-margin solutions. Several works have studied the implicit bias of optimization for

classification tasks in terms of margins. [SHN18] showed that in classification problems with

separable data, gradient descent with linear networks converges to a max-margin solution.

[GLS18b] presented a result on implicit bias for deep linear convolutional networks, and

[JT19] studied non-separable data. [CB20] showed that gradient flow for logistic regression

with infinitely wide two-layer networks yields a max-margin classifier in a certain space. In the

adaptive regime, [MBG18] showed that gradient flow for shallow ReLU networks initialized
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close to zero quantizes features depending on the training data but not on the network size.

[BGL21] showed the evolution of the tangent features during training which can be interpreted

as feature selection and compression. [WTP19] obtained results for univariate regression

contrasting the kernel regime and the adaptive regime. We will obtain a related result for

univariate regression in the kernel regime and a corresponding result for the multivariate

case.

This chapter is organized as follows. In Section 2.2 we provide settings and notation.

We present our main results in Section 2.3, along with a discussion. The main techniques

pertaining wide networks and the infinite width limit are presented in Sections 2.4 and 2.5.

In Sections 2.6 and 2.7, we present the main derivations for the implicit bias in function

space for univariate and multivariate regression. In the interest of a concise presentation,

technical proofs and extended discussions are deferred to appendices.

2.2 Notations and Problem Setup

Consider a fully connected network with d inputs, one hidden layer of width n, and a single

output. For any given input x ∈ Rd, the output of the network is

f(x, θ) =
n∑
i=1

W
(2)
i ϕ(⟨W(1)

i ,x⟩+ b
(1)
i ) + b(2), (2.1)

where ϕ is an entry-wise activation function, W(1) = (W
(1)
1 , . . . ,W

(1)
n )T ∈ Rn×d, W(1)

i =

(W
(1)
i,1 , . . . ,W

(1)
i,d )

T ∈ Rd, W(2) = (W
(2)
1 , . . . ,W

(2)
n )T ∈ Rn, b(1) = (b

(1)
1 , . . . , b

(1)
n )T ∈ Rn

and b(2) ∈ R are the weights and biases of the first and second layer. We write θ =

vec(W(1),b(1),W(2), b(2)) for the vector of all network parameters. These parameters are

initialized by independent samples of pre-specified random variables W and B as follows:

W
(1)
i,j

d
=
√

1/d W , b
(1)
i

d
=
√
1/d B,

W
(2)
i

d
=
√

1/n W , b(2)
d
=
√
1/n B.

(2.2)
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In the analysis of [JGH18a, LXS19b], W and B are Gaussian N (0, σ2). In the default

initialization of PyTorch [PGM19], W and B have uniform distribution Unif(−σ, σ). More

generally, we will also allow weight-bias pairs (W
(1)
i , b

(1)
i ) of units in the hidden layer to be

sampled from the joint distribution of a sub-Gaussian (W ,B), where W is a d-dimensional

random vector and B is a random variable. The parameters of the second layer are still

sampled from random variables W(2) and B(2). Then the parameters of the network are

initialized as follows:
(W

(1)
i , b

(1)
i )

d
= (W ,B)

W
(2)
i

d
=
√

1/n W(2), b(2)
d
=
√

1/n B(2).
(2.3)

The setting (2.1) is known as the standard parametrization. Some works [JGH18a,LXS19b]

use the so-called NTK parametrization, where the factor
√

1/n is carried outside of the

trainable parameter (for details see Appendix 2.B.3). If we fix the learning rate for all

parameters, gradient descent leads to different trajectories under these two parametrizations

(for details see Appendix 2.B.3). Our results are presented for the standard parametrization.

We consider a regression problem for data {(xj, yj)}Mj=1 with inputs X = {xj}Mj=1 and

outputs Y = {yj}Mj=1. For a loss function ℓ : R × R → R, the empirical risk (also called

training error) is L(θ) = 1
M

∑M
j=1 ℓ(f(xj, θ), yj). We will mainly focus on the square loss

ℓ(y, ŷ) = 1
2
∥y − ŷ∥2, in which case L is the mean squared error. We use full batch gradient

descent with a fixed learning rate η to minimize L(θ). Writing θt for the parameter at time t,

and θ0 for the initialization, this defines an iteration

θt+1 = θt − η∇L(θ) = θt − η∇θf(X , θt)T∇f(X ,θt)L, (2.4)

where f(X , θt) = [f(x1, θt), . . . , f(xM , θt)]
T is the vector of network outputs for all training

inputs, and ∇f(X ,θt)L is the gradient of L as a function of the network outputs f(X , θt). We

will use subscript i to index neurons and subscript t to index time. Furthermore, we denote

by Θ̂n the empirical neural tangent kernel (NTK) of the standard parametrization (2.1) at

time 0, which is the matrix Θ̂n = 1
n
∇θf(X , θ0)∇θf(X , θ0)T . We write Ck for the space of
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real valued functions with continuous kth derivatives and Lip for the space of Lipschitz

continuous functions. We use the notations Op to denote the standard mathematical orders

in probability.1

2.3 Main Results

In this section we describe our main results for univariate and multivariate regression, followed

by an interpretation and overview of the proof steps developed in the next sections.

2.3.1 Univariate Regression

We have the following description of the implicit bias in function space when applying gradient

descent to univariate least squares regression with wide ReLU neural networks.

Theorem 1 (Implicit bias of gradient descent for univariate regression). Consider a feed-

forward network with a single input unit, a hidden layer of n rectified linear units, and a

single linear output unit. Assume standard parametrization (2.1) and parameter initialization

(2.3), which means for each hidden unit the input weight and bias are initialized from a

sub-Gaussian (W ,B) with joint density pW,B. Then, for any finite data set {(xj, yj)}Mj=1 and

sufficiently large n there exist constants u, v ∈ R so that optimization of the mean squared

error on the adjusted training data {(xj, yj − uxj − v)}Mj=1 by full-batch gradient descent

with sufficiently small step size converges to a parameter θ∗ for which the output function

f(x, θ∗) attains zero training error. Furthermore, letting ζ(x) =
∫
R |W |

3pW,B(W,−Wx) dW

and S = supp(ζ) ∩ [minj xj,maxj xj], we have supx∈S ∥f(x, θ∗)− g∗(x)∥2 = Op(n
− 1

2 )over the

random initialization θ0, where g∗ solves following variational problem:

min
g∈C2(S)

∫
S

1

ζ(x)
(g′′(x)− f ′′(x, θ0))

2 dx

subject to g(xj) = yj − uxj − v, j = 1, . . . ,M.

(2.5)

1Xn = Op(an) as n→∞ means that for any ϵ > 0, there exists a finite Mϵ > 0 and a finite Nϵ > 0 such
that P(|Xn/an| > Mϵ) < ϵ,∀n > Nϵ.
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The proof is provided in Appendix 2.C. Our main theorem also holds when the network

parameters are trained by stochastic gradient descent. For details, see Theorem 24 and

Remark 25 in Appendix 2.D. We will give an interpretation of the result in Section 2.3.3. We

first give the explicit form of ζ for several common parameter initialization procedures.

Theorem 2 (Explicit form of the curvature penalty for common initializations).

(a) Gaussian initialization. Assume that W and B are independent, W ∼ N (0, σ2
w) and

B ∼ N (0, σ2
b ). Then ζ(x) =

2σ3
wσ

3
b

π(σ2
b+x

2σ2
w)2

.

(b) Binary-uniform initialization. Assume that W and B are independent, W ∈ {−1, 1}

and B ∼ Unif(−ab, ab) with ab ≥ I. Then ζ is constant on [−I, I].

(c) Uniform initialization. Assume that W and B are independent, W ∼ Unif(−aw, aw) and

B ∼ Unif(−ab, ab) with ab
aw
≥ I. Then ζ is constant on [−I, I].

The proof is provided in Appendix 2.H.3.

Remark 3. Theorem 2 (b) and (c) show that for certain parameter initialization distributions,

the function ζ is constant on an interval. In this case, the solution (g(x) − f(x, θ0)) to

the variational problem (2.5) in Theorem 1 corresponds to cubic spline interpolation with

natural boundary conditions (see, e.g., [ANW67]). For general ζ, the solution corresponds

to a spatially adaptive natural cubic spline, which can be computed numerically by solving a

linear system and theoretically in an RKHS formalism (see Appendix 2.O for details).

For different activation functions, we have the following corollary, proved in Appendix 2.J.

Corollary 4 (Different activation functions). Use the same settings as in Theorem 1 except

with activation function ϕ instead of ReLU. Suppose that ϕ is a Green’s function of a linear

operator L, i.e., Lϕ = δ, where δ denotes the Dirac delta function. Assume that ϕ is

homogeneous of degree k, i.e., ϕ(ax) = akϕ(x) for all a > 0. Then we can find a function

p satisfying Lp ≡ 0 and adjust the training data {(xj, yj)}Mj=1 to {(xj, yj − p(xj)}Mj=1. After
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that, the statement in Theorem 1 holds with the variational problem (2.5) changed to

min
g∈C2(S)

∫
S

1

ζ(x)
[L(g(x)− f(x, θ0))]2 dx

subject to g(xj) = yj − p(xj), j = 1, . . . ,M,

(2.6)

where ζ(x) = pC(x)E(W2k|C = x) and S = supp(ζ) ∩ [minj xj,maxj xj].

Based on Theorem 1, we can also give an approximate description of the optimization

trajectory in function space. If we substitute the constraints g(xj) = yj in (2.5) by a quadratic

penalty 1
λ

1
M

∑M
j=1(g(xj)−yj)2, then we obtain the variational problem for a so-called spatially

adaptive smoothing spline (see [AS96a,PSH06]). This problem can be solved explicitly and

can be shown to approximate early stopping. In Appendix 2.N we provide details for the

following observation.

Remark 5 (Training trajectory). The output function of the network after gradient descent

training for t steps with learning rate η̄/n is approximated by the solution to following

optimization problem:

min
g∈C2(S)

M∑
j=1

[g(xj)− yj]2 +
1

η̄t

∫
S

1

ζ(x)
(g′′(x)− f ′′(x, θ0))

2 dx. (2.7)

2.3.2 Multivariate Regression

For multivariate regression, we have the following generalization of Theorem 1.

Theorem 6 (Implicit bias of gradient descent for multivariate regression). Consider the same

network settings as in Theorem 1 except with d input units instead of a single input unit.

Assume that W is a random vector with P(∥W∥ = 0) = 0 and B is a random variable; the

distribution of (W ,B) is symmetric, i.e., (W ,B) and (−W ,−B) have the same distribution;

and ∥W∥2 and B are both sub-Gaussian. Then, for any finite data set {(xj, yj)}Mi=1 and

sufficiently large n there exist a constant vector u and a constant v so that optimization of
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n = 10 n = 640 Solution g∗ to the variational problem

Reciprocal curvature penalty ζ

Figure 2.1: Illustration of Theorem 1. Left: Uniform error between the solution g∗ to the
variational problem and the functions f(·, θ∗) obtained by gradient descent training with
uniform initialization W ∼ Unif(−1, 1), B ∼ Unif(−2, 2), against the number of neurons n.
The inset shows the training data (dots), g∗ (orange), and f(·, θ∗) (blue) for two values of n.
Right: Effect of the curvature penalty function on the shape of the solution function. The
bottom shows g∗ for various ζ shown at the top. The green curve is for ζ constant on [−2, 2],
derived from W ∼ Unif(−1, 1), B ∼ Unif(−2, 2); blue is for ζ(x) = 1/(1 + x2)2, derived from
W ∼ N (0, 1), B ∼ N (0, 1); and orange for ζ(x) = 1/(0.1 + x2)2, derived from W ∼ N (0, 1),
B ∼ N (0, 0.1). Theorem 2 shows how to compute ζ for these distributions.

the mean squared error on the adjusted training data {(xj, yj − ⟨u,xj⟩ − v)}Mj=1 by full-batch

gradient descent with sufficiently small step size converges to a parameter θ∗ for which f(x, θ∗)

attains zero training error. Furthermore, let U = ∥W∥2, V = W/∥W∥2, C = −B/∥W∥2

and ζ(V , c) = pV,C(V , c)E(U2|V = V , C = c), where pV,C is the joint density of (V , C). Then,

for any compact set D ⊂ Rd, we have supx∈D ∥f(x, θ∗)− g∗(x)∥2 = Op(n
− 1

2 ) over the random

initialization θ0, where g∗ solves following variational problem:

min
g∈Lip(Rd)

∫
supp(ζ)

(
R{(−∆)(d+1)/2(g − f(·, θ0))}(V , c)

)2
ζ(V , c)

dV dc

subject to g(xj) = yj, j = 1, . . . ,M

R{(−∆)(d+1)/2(g − f(·, θ0))}(V , c) = 0, (V , c) ̸∈ supp(ζ)

(−∆)(d+1)/2(g − f(·, θ0)) ∈ Lp(Rd), 1 ≤ p < d/(d− 1).

(2.8)
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Here R is the Radon transform defined by R{f}(ω, b) :=
∫
⟨ω,x⟩=b f(x)ds(x), the fractional

power of the negative Laplacian (−∆)(d+1)/2 is defined in Fourier domain by ̂(−∆)(d+1)/2f(ξ) =

∥ξ∥d+1f̂(ξ), and Lip(Rd) is the space of Lipschitz continuous functions on Rd.

The proof is given in Appendix 2.C. In Proposition 17 we will show that for specific

distributions of (W ,B), the function ζ(V , c) is constant on supp(ζ), which greatly simplifies

the variational problem (2.8). We prove the following theorem in Appendix 2.I.2.

Theorem 7 (Variational problem for constant ζ). Suppose W is uniformly distributed on

Sd−1 and B is uniformly distributed on [−ab, ab]. Assume that ab ≥ maxi ∥xi∥2. Then the

variational problem (2.8) is equivalent to

min
h∈Lip(Rd)∩C(Rd)

∫
Rd

(
(−∆)(d+3)/4(h(x)− f(x, θ0))

)2
dx

subject to h(xj) = yj, j = 1, . . . ,M

(−∆)(d+1)/2(h(x)− f(x, θ0)) ∈ Lp(Rd), 1 ≤ p < d/(d− 1).

(2.9)

We can solve the simplified variational problem (2.9) explicitly. We prove the following

theorem in Appendix 2.I.3.

Theorem 8 (Closed form solution). Suppose h(x) solves the variational problem (2.9). Then

h(x) is given by

h(x)− f(x, θ0) =
M∑
j=1

λj∥x− xj∥3 + ⟨u,xi⟩+ v, (2.10)

where the coefficients λj, u and v are determined by



∑M
j=1 λj∥xi − xj∥3 + ⟨u,xi⟩+ v = yi − f(xi, θ0), i = 1, . . . ,M∑M
j=1 λj = 0∑M
j=1 λjxj = 0 .

(2.11)

Remark 9. A function of the form (2.10)–(2.11) is referred to as a polyharmonic spline

(see [Pot81]), which is a special type of radial basis function interpolation [Du 08]. When
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d = 1 (i.e., the univariate case), this corresponds to the natural cubic spline interpolation

described in Remark 3. Finally, we observe that the training trajectory of gradient descent for

multivariate regression can be approximately described by a sequence of so-called polyharmonic

smoothing splines [Seg19] with decreasing regularization parameter, similar to the description

(2.7) for the univariate case.

2.3.3 Discussion of the Main Results

Interpretation An intuitive interpretation of Theorem 1 is that gradient descent opti-

mization is biased towards smooth functions. At those regions of the input space where

ζ is smaller, we can expect the difference between the functions after and before training

to have a small curvature. We call ρ = 1/ζ a curvature penalty function. The theorem

gives an explicit description of the bias in function space depending on the initialization.

In Theorem 2 we obtain the explicit form of ζ for various common parameter initialization

procedures. In particular, when the parameters are initialized independently from a uniform

distribution on a finite interval, ζ is constant and the problem is solved by the natural cubic

spline interpolation of the data.

We illustrate Theorem 1 numerically in Figure 2.1 and more extensively in Appendix 2.A.

In close agreement with the theory, the solution to the variational problem captures the

solution of gradient descent training uniformly with error of order n−1/2. To illustrate the

effect of the curvature penalty function, Figure 2.1 also shows the solutions to the variational

problem for different values of ζ corresponding to different initialization distributions. We

see that indeed at input points where ζ is small resp. peaks strongly, the solution function

tends to have a lower curvature resp. use a higher curvature in order to fit the training data.

This description could be used to formulate heuristics for parameter initialization either to

ease optimization or to induce specific smoothness priors on the solutions. In particular,

in Proposition 15 we will show that any curvature penalty 1/ζ can be implemented by an

appropriate choice of the parameter initialization distribution.
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Similar to the univariate case, in the multivariate case gradient descent implicitly controls

the complexity of the solution functions obtained upon training. In this case the complexity

is measured by the weighted 2-norm of the Radon transform of the (d+ 1)/2 power of the

negative Laplacian. The weight function ζ is again determined by the distribution used

to initialize the parameters. Although the precise interpretation of these expressions is no

longer as straightforward, intuitively the implicit bias corresponds to penalizing a global

notion of overall curvature across hyperplanes in the input space. For certain parameter

initialization distributions, Theorem 8 shows that the network output after training is a

polyharmonic spline. We illustrate Theorem 6 numerically in Figure 2.2 and more extensively

in Appendix 2.A. Again in close agreement with the theory, the solution to the variational

problem captures the solution returned by gradient descent training with a uniform error of

order n−1/2.

These results show that the effective capacity of the network, understood as the set

of possible output functions after training, is well captured by a space of cubic splines

(polyharmonic splines for multivariate regression) relative to the initial function. This is a

space with dimension of order M (the number of training examples) independently of the

number of parameters of the network.

We note that under suitable asymmetric parameter initialization (see Appendix 2.B.2), it

is possible to achieve f(·, θ0) ≡ 0. Then in Theorem 1 and Theorem 6, the regularization is on

the curvature of the output function itself (rather than its difference to the initial function).

Further, we note that although Theorem 1 and Theorem 6 describe gradient descent training

with linearly adjusted data, they also approximately describe training with the original

training data (see Appendix 2.K for more details). The adjustment of the training data

simply accounts for the fact that the second derivative and the Laplace operator are invariant

to addition of linear terms. In practice we can use the coefficients u and v of linear regression

yj = ⟨u,xj⟩+ v + ϵj, j = 1, . . . ,M , and set the adjusted data as {(xj, ϵj)}Mj=1. Furthermore,

if we change the network architecture by adding skip connections from the inputs to the

outputs, our result holds for the original training data without any adjustments. Details are
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provided in Appendix 2.L.

Generalization results Theorem 1 allows us to show how gradient descent on wide

neural networks learns a target function. In following paragraphs, we show how the solution

of variational problem (2.5), (2.7) and (2.8) converges to a target function as the amount of

data increases.

In the so-called univariate noiseless model, the training outputs are given by yj = g0(xj),

where g0 : [a, b] 7→ R is the target function. Let a = x0 < x1 < · · · < xM < xM+1 = b and

h = maxi xi+1−xi. If ζ is constant on [a, b], the solution g∗ of (2.5) is the cubic interpolation

spline of training data. [HM76] showed in the context of splines that for a target function

g0 ∈ C4([a, b]) one has ∥g∗ − g0∥∞ ≤ C∥g(4)0 ∥∞h4, where g(4)0 is the fourth derivative of g0.

For univariate noisy models, the training outputs are given by yj = g0(xj) + ϵj, where ϵj

are zero-mean independent random variables with a common variance σ2. In this case we

use early stopping to smooth out the noise and the training result is characterized by the

solution of (2.7). If ζ is constant on [a, b], the solution g∗ of (2.7) is the cubic smoothing

spline of training data. [Rag83, Theorem 5.8] showed that if g0 ∈ C2([a, b]) and {xj}Mj=1 are

the uniform partition of [a, b], then E∥g∗ − g0∥22 ≤ C
(
(1/t+ (1/M)4)∥g′′0∥2 + t1/4/M

)
, where

t is the number of training steps. If we choose t to be Θ(M4/5), then E∥g∗−g0∥22 = O(M−4/5).

This gives us some hints about how to choose the stopping time depending on the number of

training samples. Similar observations can be obtained for more general settings. [Rag83]

also gives out the error bound of g∗ for non-uniform training inputs. [EL06] shows a similar

result if {xj}Mj=1 are sampled independently from a distribution.

If ζ is non-constant on [a, b], the solution g∗ of (2.7) is called the spatially adaptive

smoothing spline of the training data. [WDS13, Corollary 1] showed that if g0 ∈ C4([a, b]),

ζ ∈ C3([a, b]), t = Θ(M4/9) and {xj}Mj=1 are sampled from a distribution on [a, b] with bounded

positive density function q ∈ C3([a, b]), |g∗(x) − g0(x)| = Op(M
−4/9). If the curvature of

the target function changes a lot on its domain, spatially adaptive smoothing splines with

properly chosen ζ perform better than cubic smoothing splines. [WDS13, Corollary 1] showed

that optimal ζ is the solution of a variational problem if the target function is known. They
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approximate the optimal ζ by a piecewise constant function and estimate the target function

from training data by interpolating splines. Then they numerically solve the variational

problem and get the suitable ζ for the training data. [AS96b] and [SBR10] proposed to choose

ζ based on an estimation of the second derivative of g0. [LG10] used a piecewise constant ζ

and proposed a search algorithm to find such ζ. Proposition 15 showed the way to choose

the joint distribution of weight and bias parameters in order that ζ is proportional to a given

function. Once we find out a proper ζ according to the training data using the methods

in above literature, we can initialize the weight and bias parameters by the corresponding

joint distribution and train the wide neural network by gradient descent. According to the

theory, such special parameter initialization should perform better than uniform or Gaussian

initialization.

For multivariate noiseless models, if ζ is constant over its support, the solution g∗ of

variational problem (2.8) is the polyharmonic spline. Then the error bound between g∗ and

target function g0 is shown in [Pot81, Theorem 3.2].

Strategy of the proof In Section 2.4 we observe that for a linearized model, gradient

descent with sufficiently small step size finds the minimizer of the training objective which is

closest to the initial parameter (similar to a result by [ZXL20]). Then Theorem 10 shows

that the training dynamics of a linearized wide network is well approximated in parameter

and in function space by that of a lower dimensional linear model which trains only the

output weights. This property has appeared in different contexts [Dan17] and is sometimes

taken for granted in the literature. We show that it holds for the standard parametrization,

although it does not hold for the NTK parametrization, which leads to the adaptive regime.

Under these settings, the implicit bias of gradient descent amounts to minimizing distance

from the initial parameter, subject to fitting the training data. In Section 2.5, we relate this

description of the implicit bias in parameter space to an alternative optimization problem. In

Theorem 12 we show that the solution to this alternative problem has a well defined limit as

the width of the network tends to infinity, which allows us to obtain a variational description.

In Section 2.6, we focus on the case of univariate regression. In Theorem 13 we translate the
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description of the bias from parameter space to function space. In Section 2.7, we turn to the

case of multivariate regression and use the inversion formula of the dual Radon transform

to analyze the optimization objective. Finally, we exploit recent results (Theorem H.1 in

[LXS19b]) bounding the difference in function space of the solutions obtained from training a

wide network and its linearization to conclude the proof.

Related works [ZXL20] described the implicit bias of gradient descent in the kernel

regime as minimizing a kernel norm from initialization, subject to fitting the training data.

Our result can be regarded as making the kernel norm explicit, thus providing an interpretable

description of the bias in function space and further illuminating the role of the parameter

initialization procedure. We prove the equivalence in Appendix 2.M. [CG19] derived the

generalization bounds for overparametrized deep neural networks under stochastic gradient

descent training. They also approximated the neural network by a linearized model, which is

called a neural tangent random feature (NTRF) model in their work.

[SES19] showed that infinitely wide networks with 2-norm weight regularization represent

functions with smallest 1-norm of the second derivative, an example of which are linear

splines (see Appendix 2.B.4 for more details). A recent work by [PN19] further develops this

direction for two-layer networks with certain activation functions that interpolate data while

minimizing a weight norm. In contrast, our result characterizes the solutions of training from

a given initialization without explicit regularization, which turn out to minimize a weighted

2-norm of the second derivative and hence correspond to cubic splines. Another recent work

[HTW19] discusses ridge weight penalty, adaptive splines, and early stopping for one-input

ReLU networks training only the output layer. The spline perspective for univariate shallow

ReLU networks has recently been also discussed by [SPD20]. [WTP19] showed a similar result

in the kernel regime for shallow ReLU networks training only the output layer from zero

initialization. In contrast, we consider the initialization of the second layer and show that

the difference from the initial output function is implicitly regularized by gradient descent.

We show the result of training both layers can be approximated by training only the second

layer in Theorem 10. In addition, we give the explicit form of ζ in Theorem 2, while the

17



Figure 2.2: Illustration of Theorem 6. Left: Uniform error between the solution g∗ to the
variational problem and the functions f(·, θ∗) obtained by gradient descent training of a
neural network (in this case with initialization W ∼ Unif(S1), B ∼ Unif(−2, 2)), against
the number of neurons. Right: The input training data (dots), the contour plots of trained
network functions with 10, 160, 2560 neurons, and the exact solution to the variational
problem.

description given by [WTP19] has a minor error because of a typo in their computation.

Significantly, our results also cover multivariate regression, different activation functions, and

training trajectories.

In the multivariate case, [OWS20] studied infinite-width neural networks with parameters

having bounded norm. They showed that the complexity of the functions represented by

the network, as measured by the 1-norm of the Radon transform of the (d+ 1)/2-power of

the negative Laplacian of the function, can be controlled by the 2-norm of the parameters.

Rather than bounding the 2-norm of the parameters, our result describes the implicit bias

of gradient descent and in turn we obtain a weighted 2-norm. A recent work by [PN21]

considers adding an explicit regularization of 1-norm of the Radon tranform in function space

for multivariate regression, and uses the representer theorem to obtain the solution to the

variational problem. In contrast, we consider gradient descent without explicit regularization

and the implicit bias turns out to be a weighted 2-norm.
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2.4 Wide Networks and Parameter Space

In this section, we characterize the implicit bias in parameter space and show that, under

our initialization and parametrization scheme, training only the output layer approximates

training all parameters.

2.4.1 Implicit Bias in Parameter Space for a Linearized Model

In this section we describe how training a linearized network or a wide network by gradient

descent leads to solutions having parameter values close to the initial parameter values. First,

we consider the following linearized model:

f lin(x, ω) = f(x, θ0) +∇θf(x, θ0)(ω − θ0). (2.12)

We write ω for the parameter of the linearized model, in order to distinguish it from the

parameter θ of the nonlinearized model. The empirical loss of the linearized model is defined

by

Llin(ω) =
M∑
j=1

ℓ(f lin(xj, ω), yj). (2.13)

The gradient descent iteration for the linearized model is given by

ω0 = θ0, ωt+1 = ωt − η∇θf(X , θ0)T∇f lin(X ,ωt)L
lin. (2.14)

Next, we consider wide neural networks. According to Theorem H.1 in [LXS19b],

sup
t
∥f lin(x, ωt)− f(x, θt)∥2 = Op(n

− 1
2 )

This means that gradient descent training of a wide network or of the linearization of the

network results in similar trajectories and solutions in function space. Both solution functions

fit the training data perfectly, meaning f lin(X , ω∞) = f(X , θ∞) = Y, and they are also
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approximately equal outside of the training data.

Under the assumption that rank(∇θf(X , θ0)) =M , the gradient descent iterations (2.14)

of the linearized network converge to the unique global minimum that is closest to initialization

[GLS18a,ZXL20]. More precisely, ω∞ is the solution to following constrained optimization

problem (further details are provided in Appendix 2.D):

min
ω
∥ω − θ0∥2 s.t. f lin(X , ω) = Y . (2.15)

2.4.2 Training Only the Output Layer Approximates Training All Parameters

In the following we consider networks with a single hidden layer of n ReLUs and a linear

output, f(x, θ) =
∑n

i=1W
(2)
i [⟨W(1)

i ,x⟩ + b
(1)
i ]+ + b(2). We show that the functions and

parameter vectors obtained by training the linearized model are close to those obtained by

training only the output layer. In view of the previous subsection, this implies that training

all parameters of a wide network or training only the output layer results in similar functions.

Let θ0 = vec(W
(1)
,b

(1)
,W

(2)
, b

(2)
) be the parameter at initialization so that f lin(·, θ0) =

f(·, θ0). Denote the trained parameter of the linearized network by ω∞ = vec(Ŵ(1), b̂(1),Ŵ(2),

b̂(2)). Using initialization (2.3), given 1 ≤ i ≤ n, we have that ∥W(1)

i ∥, b
(1)

i = Op(1) and

W
(2)

i , b
(2)

= Op(n
− 1

2 ).2 Therefore, writing H for the Heaviside function, we have

∇
W

(1)
i ,b

(1)
i
f(x, θ0) =

[
W

(2)

i H(⟨W(1)

i ,x⟩+ b
(1)

i ) · x , W (2)

i H(⟨W(1)

i ,x⟩+ b
(1)

i )
]
= Op(n

− 1
2 ),

∇
W

(2)
i ,b(2)

f(x, θ0) =
[
[⟨W(1)

i ,x⟩+ b
(1)

i ]+ , 1
]
= Op(1).

(2.16)

This implies that when n is large, if we use gradient descent with a constant learning rate for

all parameters, then the changes of W(1), b(1), b(2) are negligible compared with the changes

of W(2). In turn, approximately we can train just the output weights, W (2)
i , i = 1, . . . , n,

2More precisely, given 1 ≤ i ≤ n, ∃C, for any δ > 0, s.t. with prob. 1− δ, |W (2)

i |, |b
(2)| ≤ Cn−1/2

√
log 1

δ

and ∥W(1)

i ∥, |b
(1)

i | ≤ C
√

log 1
δ since the random variables are sub-Gaussian.
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and fix all other parameters, which corresponds to training a smaller linear model. Let

ω̃t = vec(W
(1)
,b

(1)
,W̃

(2)
t , b

(2)
) be the parameter at time t under the update rule where

W
(1)
,b

(1), b(2) are kept fixed at their initial values, and

W̃
(2)
0 = W

(2)
, W̃

(2)
t+1 = W̃

(2)
t − η∇W(2)Llin(ω̃t). (2.17)

Let ω̃∞ = limt→∞ ω̃t. By the above discussion, we expect that f lin(x, ω̃∞) will be close to

f lin(x, ω∞). We have the following formal result for mean squared error regression.

Theorem 10 (Training only output weights vs linearized network). Consider a finite data

set {(xi, yi)}Mi=1. Assume that we use the square loss ℓ(ŷ, y) = 1
2
∥ŷ − y∥22; infn λmin(Θ̂n) > 0.

Let ωt denote the parameters of the linearized model at time t when we train all parameters

using (2.14), and let ω̃t denote the parameters at time t when we only train weights of the

output layer using (2.17). If we use the same learning rate η in these two training processes

and η < 2

nλmax(Θ̂n)
, then for any x ∈ Rd,

sup
t
|f lin(x, ω̃t)− f lin(x, ωt)| = Op(n

−1), as n→∞.

Moreover, in terms of the parameter trajectories we have supt ∥W
(1) − Ŵ

(1)
t ∥2 = Op(n

−1),

supt ∥b
(1)− b̂

(1)
t ∥2 = Op(n

−1), supt ∥W̃
(2)
t −Ŵ

(2)
t ∥2 = Op(n

−3/2), supt ∥b
(2)− b̂(2)t ∥ = Op(n

−1).

The proof is provided in Appendix 2.E. By combining Theorem 10 and the fact that

training a linearized model approximates training a wide network (Theorem H.1 in [LXS19b]),

we obtain the following.

Corollary 11 (Training only output weights vs training all weights). Consider the settings

of Theorem 10, and assume that the joint distribution of (W ,B) is sub-Gaussian. Given any

compact set D ⊂ Rd, for every x ∈ D, supt ∥f lin(x, ω̃t)− f(x, θt)∥2 = Op(n
− 1

2 ).

The proof is given in Appendix 2.F. In view of the arguments in this section, in the

next sections we will focus on training only the output weights and understanding the

corresponding solution functions.
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2.5 Infinite Width Limit of Shallow Networks

According to (2.15), gradient descent training of the output weights (2.17) achieves zero

loss, f lin(xj, ω̃∞) − f lin(xj, θ0) =
∑n

i=1(W̃
(2)
i − W

(2)

i )[⟨W(1)

i ,xj⟩ + b
(1)

i ]+ = yj − f(xj, θ0),

j = 1, . . . ,M , with minimum ∥W̃(2) −W
(2)∥22. Hence gradient descent is actually solving

min
W(2)
∥W(2)−W(2)∥22 s.t.

n∑
i=1

(W
(2)
i −W

(2)

i )[⟨W(1)

i ,xj⟩+b
(1)

i ]+ = yj−f(xj, θ0), j = 1, . . . ,M.

(2.18)

To simplify the presentation, in the following we let f lin(x, θ0) ≡ 0 by using the Anti-

Symmetrical Initialization (ASI) trick (see Appendix 2.B.2). The analysis still goes through

without this simplification (see Appendix 2.H).

We reformulate problem (2.18) in a way that allows us to consider the limit of infinitely wide

networks, with n→∞, and obtain a deterministic counterpart, analogous to the convergence

of the NTK. Let µn denote the empirical distribution of the samples (W
(1)

i , b
(1)

i )ni=1, i.e.,

µn(A) =
1
n

∑n
i=1 1A

(
(W

(1)

i , b
(1)

i )
)
, where 1A denotes the indicator function for measurable

subsets A in R2. We further consider a function αn : R2 → R whose value encodes the

difference of the output weight from its initialization for a hidden unit with input weight and

bias given by the argument, i.e., αn(W
(1)

i , b
(1)

i ) = n(W
(2)
i −W

(2)

i ). Then (2.18) with ASI can

be rewritten as

min
αn∈C(R2)

∫
R2

α2
n(W

(1), b) dµn(W
(1), b) s.t.

∫
R2

αn(W
(1), b)[⟨W(1),xj⟩+ b]+ dµn(W

(1), b) = yj,

(2.19)

where j ranges from 1 to M . Here we minimize over functions αn in C(R2), but since only

the values on (W
(1)

i , b
(1)

i )ni=1 are taken into account, we can take any continuous interpolation

of αn(W
(1)

i , b
(1)

i ), i = 1, . . . , n.

Now we can consider the infinite width limit. Let µ be the probability measure of (W ,B).
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By substituting µ for µn, we obtain a continuous version of problem (2.19) as follows:

min
α∈C(R2)

∫
R2

α2(W(1), b) dµ(W(1), b)

subject to
∫
R2

α(W(1), b)[⟨W(1),xj⟩+ b]+ dµ(W(1), b) = yj, j = 1, . . . ,M.

(2.20)

Using that µn weakly converges to µ, the following theorem shows that in fact the solution of

problem (2.19) converges to the solution of (2.20). The proof is given in Appendix 2.G.

Theorem 12 (Infinite width limit). Let (W(1)

i , b
(1)

i )ni=1 be i.i.d. samples from a pair (W ,B)

with finite fourth moment. Suppose µn is the empirical distribution of (W(1)

i , b
(1)

i )ni=1 and

αn(W
(1), b) is the solution of (2.19). Let α(W(1), b) be the solution of (2.20). Then, for any

compact set D ⊂ Rd, we have supx∈D |gn(x, αn)− g(x, α)| = Op(n
−1/2) , where gn(x, αn) =∫

R2 αn(W
(1), b)[⟨W(1),x⟩+ b]+ dµn(W

(1), b) is the function represented by a network with n

hidden neurons after training, and g(x, α) =
∫
R2 α(W

(1), b)[⟨W(1),x⟩+ b]+ dµ(W(1), b) is the

function represented by the infinite-width network.

2.6 Implicit Bias for Univariate Regression

In this section we solve the optimization problem (2.20) in the univariate case, which provides

a function space characterization of the implicit bias previously described in parameter space.

First we rewrite the problem in terms of breakpoints. Consider the breakpoint c = −b/W (1) of

a ReLU with weight W (1) and bias b. We define a corresponding random variable C = −B/W

and let ν denote the distribution of (W , C).3 Then, writing γ(W (1), c) = α(W (1),−cW (1)),

the optimization problem (2.20) is equivalently given as

min
γ∈C(R2)

∫
R2

γ2(W (1), c) dν(W (1), c) s.t.
∫
R2

γ(W (1), c)[W (1)(xj − c)]+ dν(W (1), c) = yj, (2.21)

3Here we assume that P(W = 0) = 0 so that the random variable C is well defined. This is not an
important restriction, since neurons with weight W (1) = 0 have a constant output value that can be absorbed
in the bias of the output layer.
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where j ranges from 1 to M . Let νC denote the distribution of C = −B/W, and νW|C=c

the conditional distribution of W given C = c. Suppose νC has support supp(νC) and a

density function pC(c). Let g(x, γ) =
∫
R2 γ(W

(1), c)[W (1)(x − c)]+ dν(W (1), c), which again

corresponds to the output function of the network. Then, the second derivative g′′ with

respect to x satisfies g′′(x, γ) = pC(x)
∫
R γ(W

(1), x)
∣∣W (1)

∣∣ dνW|C=x(W
(1)) (for details on this

see Appendix 2.H.1). This shows that γ(W (1), c) is closely related to g′′(x, γ). In the following

we seek to express (2.21) in terms of g′′(x, γ). Since g′′(x, γ) determines g(x, γ) only up to

linear functions, we consider the following problem:

min
γ∈C(R2),u∈R,v∈R

∫
R2

γ2(W (1), c) dν(W (1), c)

subject to uxj + v +

∫
R2

γ(W (1), c)[W (1)(xj − c)]+ dν(W (1), c) = yj, j = 1, . . . ,M.

(2.22)

Here u, v are not included in the cost. They add a linear function to the output of the neural

network. If u and v in the solution of (2.22) are small, then the solution is close to the

solution of (2.21). [OWS20] also use this trick to simplify the characterization of neural

networks in function space. Next we study the solution of (2.22) in function space. This is

our main technical result for univariate regression.

Theorem 13 (Implicit bias in function space for univariate regression). Assume W and

B are random variables with P(W = 0) = 0, and let C = −B/W. Let ν denote the

probability distribution of (W , C). Suppose (γ, u, v) is the solution of (2.22), and consider

the corresponding output function

g(x, (γ, u, v)) = ux+ v +

∫
R2

γ(W (1), c)[W (1)(x− c)]+ dν(W (1), c). (2.23)

Let νC denote the marginal distribution of C and assume it has a density function pC. Assume

that W has finite second moment. Let E(W2|C) denote the conditional expectation of W2

given C. Consider the function ζ(x) = pC(x)E(W2|C = x), assume its support contains the

input samples, xi ∈ supp(ζ), i = 1, . . . ,m, and let S = supp(ζ) ∩ [mini xi,maxi xi]. Then
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g(x, (γ, u, v)) satisfies g′′(x, (γ, u, v)) = 0 for x ̸∈ S and for x ∈ S it is the solution to the

following problem:

min
h∈C2(S)

∫
S

(h′′(x))2

ζ(x)
dx s.t. h(xj) = yj, j = 1, . . . ,m. (2.24)

The proof is provided in Appendix 2.H.1, where we also present the corresponding

statement without ASI.

Finally, we discuss the curvature penalty function. We provide the proof of following

propositions in Appendix 2.H.2.

Proposition 14 (Curvature penalty function). Let pW,B denote the joint density function

of (W ,B) and let C = −B/W so that pC is the breakpoint density. Then ζ(x) = E(W 2|C =

x)pC(x) =
∫
R |W |

3pW,B(W,−Wx) dW .

We note that if we sample the initial weight and biases from a suitable joint distribution,

we can make the curvature penalty ρ = 1/ζ arbitrary:

Proposition 15 (Constructing any curvature penalty). Given any function ϱ : R → R>0,

satisfying Z =
∫
R

1
ϱ
<∞, if we set the density of C as pC(x) = 1

Z
1

ϱ(x)
and makeW independent

of C with non-vanishing second moment, then (E(W 2|C = x)pC(x))
−1 = (E(W 2)pC(x))

−1 ∝

ϱ(x), x ∈ R.

2.7 Implicit Bias for Multivariate Regression

In this section we solve the optimization problem (2.20) in the multivariate case. Similar to

Section 2.6, we can relax the optimization problem to

min
α∈C(Rd×R),
u∈Rd,v∈R

∫
Rd×R

α2(W(1), b) dµ(W(1), b)

subject to
∫
Rd×R

α(W(1), b)[⟨W(1),xj⟩+ b]+ dµ(W(1), b) + ⟨u,xj⟩+ v = yj, j = 1, . . . ,M.

(2.25)
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Let U = ∥W∥2, V = W/∥W∥2 and C = −B/∥W∥2. Let ν denote the distribution of

(U ,V , C) and γ(u,V , c) = α(uV ,−cu). Then, after the change of variables, the optimization

problem (2.25) is equivalently expressed as

min
α∈C(R+×Sd−1×R),

u∈Rd,v∈R

∫
R+×Sd−1×R

γ2(u,V , c) dν(u,V , c)

subject to
∫
R+×Sd−1×R

γ(u,V , c) · u · [⟨V ,xj⟩ − c]+ dν(u,V , c) + ⟨u,xj⟩+ v = yj,

j = 1, . . . ,M.

(2.26)

Define the output of the infinite-width network by

g(x, (γ,u, v)) =

∫
R+×Sd−1×R

γ(u,V , c) · u · [⟨V ,x⟩ − c]+ dν(u,V , c) + ⟨u,x⟩+ v.

Then the Laplacian ∆g(x, (γ,u, v)) =
∑d

i=1 ∂
2
xi
g(x, (γ,u, v)) is given by

∆g(x, (γ,u, v)) =

∫
R+×Sd−1×R

γ(u,V , c) · u · δ(⟨V ,x⟩ − c) dν(u,V , c)

=

∫
Sd−1×R

(∫
R+

γ(u,V , c) · u dνU|V=V ,C=c(u)

)
δ(⟨V ,x⟩ − c) dνV,C(V , c),

(2.27)

where νV,C denotes the joint distribution of (V , C), and νU|V=V ,C=c the conditional distribution

of U given V = V and C = c. Let νC|V=V denote the conditional distribution of C given

V = V . Suppose νC|V=V has a density function pC|V=V (c). Define

κ(V , c) =

∫
R+

γ(u,V , c) · u dνU|V=V ,C=c(u). (2.28)
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Then (2.27) becomes

∆g(x, (α,u, v)) =

∫
Sd−1×R

κ(V , c) δ(⟨V ,x⟩ − c) dνV,C(V , c)

=

∫
Sd−1

(∫
R
κ(V , c) δ(⟨V ,x⟩ − c)pC|V=V (c)dc

)
dνV(V )

=

∫
Sd−1

κ(V , ⟨V ,x⟩) pC|V=V (⟨V ,x⟩) dνV(V ),

(2.29)

where νV denotes the distribution of V . Assume that νV has a density function pV(V ) with

respect to the spherical measure σd−1. Then (2.29) becomes

∆g(x, (α,u, v)) =

∫
Sd−1

κ(V , ⟨V ,x⟩) pC|V=V (⟨V ,x⟩)pV(V ) dσd−1(V ). (2.30)

Now, defining

β(V , c) = κ(V , c) pC|V=V (c) pV(V ), (2.31)

we observe that
∆g(x, (α,u, v)) =

∫
Sd−1

β(V , ⟨V ,x⟩) dV

= R∗{β}(x).
(2.32)

The right-hand side of (2.32) is precisely the dual Radon transform of β. Let β = β++β− be

the even–odd decomposition of β, where β+ is even and β− is odd, i.e., β+(V , c) = β+(−V ,−c)

and β−(V , c) = −β−(−V ,−c) for all (V , c) ∈ Sd−1 × R. Since the dual Radon transform

annihilates odd functions, we have ∆g(x, (α,u, v)) =
∫
Sd−1 β

+(V , ⟨V ,x⟩) dV . [OWS20]

observed that β+ can be recovered from ∆g by using the inversion formula of the dual Radon

transform. According to [OWS20, Lemma 3],

β+ = − 1

2(2π)d−1
R{(−∆)(d+1)/2g(·, α)}, (2.33)

where R is the Radon transform which is defined by

R{f}(ω, b) :=
∫
⟨ω,x⟩=b

f(x)ds(x), (ω, b) ∈ Sd−1 × R,
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where ds(x) represents integration with respect to the (d− 1)-dimensional surface measure

on the hyperplane ⟨ω,x⟩ = b. The fractional power of the negative Laplacian (−∆)(d+1)/2 in

(2.33) is the operator defined in Fourier domain by

̂(−∆)(d+1)/2f(ξ) = ∥ξ∥d+1f̂(ξ).

When d+ 1 is a even number, (−∆)(d+1)/2 is the same as applying the negative Laplacian

(d+ 1)/2 times. When d+ 1 is odd, it is a pseudo-differential operator given by convolution

with a singular kernel (see [Kwa17]). Then according to (2.33) and the definition of β, we

have
R{(−∆)(d+1)/2g(·, α)}(V , c)− 2(2π)d−1β−

=− 2(2π)d−1κ(V , c)pC|V=V (c)pV(V )

=− 2(2π)d−1pC|V=V (c)pV(V )

∫
R+

γ(u,V , c) · u dνU|V=V ,C=c(u).

(2.34)

From the above equation, we show how γ(u,V , c) is characterized by the network output

function, which allows us to study the solution of (2.26) in function space. The following

theorem generalizes Theorem 13 to the multivariate case.

Theorem 16 (Implicit bias in function space for multivariate regression). Assume that (1)

W is a random vector with P(∥W∥ = 0) = 0 and B is a random variable; (2) the distribution

of (W ,B) is symmetric, i.e., (W ,B) and (−W ,−B) have the same distribution; (3) ∥W∥2

and B both have finite second moments. Let U = ∥W∥2, V = W/∥W∥2 and C = −B/∥W∥2.

Let ν denote the distribution of (U ,V , C). Suppose (γ,u, v) is the solution of (2.26), and

assume that (2.26) is feasible, which means

∫
R+×Sd−1×R

γ2(u,V , c) dν(u,V , c) < +∞.

Consider the corresponding output function

g(x, (γ,u, v)) =

∫
R+×Sd−1×R

γ(u,V , c) · u · [⟨V ,x⟩ − c]+ dν(u,V , c) + ⟨u,x⟩+ v. (2.35)
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Let νV denote the marginal distribution of C and assume it has a density function pV(V ).

Let νC|V=V denote the conditional distribution of C given V = V and assume it has a density

function pC|V=V (c). Let E(U2|V = V , C = c) denote the conditional expectation of U2 given

V and C. Consider the following function ζ : Sd−1 × R→ R,

ζ(V , c) = pC|V=V (c) pV(V )E(U2|V = V , C = c). (2.36)

Then g(x, (γ,u, v)) is the solution of the following problem:

min
h∈Lip(Rd)∩C(Rd)

∫
supp(ζ)

(
R{(−∆)(d+1)/2h}(V , c)

)2
ζ(V , c)

dσd−1(V )dc

subject to h(xj) = yj, j = 1, . . . ,M,

R{(−∆)(d+1)/2h}(V , c) = 0, ∀(V , c) ̸∈ supp(ζ),

(−∆)(d+1)/2h ∈ Lp(Rd), 1 ≤ p < d/(d− 1),

(2.37)

where Lip(Rd) is the space of Lipschitz continuous function on Rd and σd−1 is the spherical

measure.

The proof of Theorem 16 is provided in Appendix 2.I.1. The optimization problem (2.37)

characterizes the implicit bias of the gradient descent in function space for the multivariate

setting. [ZXL20] obtained a characterization in terms of the minimization of a kernel norm in

function space, which is also valid for multi-dimensional inputs. In Appendix 2.M we prove

the equivalence between the kernel norm minimization and our result in the one-dimensional

setting. In future work it will be interesting to show that in the multivariate setting, the

kernel norm is equivalent to the objective in (2.37) under appropriate conditions.

To conclude this section, we discuss the function ζ in the variational problem (2.37). The

proofs of the following statements are presented in Appendix 2.I.4. First we propose an

initialization scheme such that ζ is constant over a bounded region.

Proposition 17 (Constant ζ over a bounded region). If W is sampled uniformly from the

unit sphere and B from a symmetric interval, i.e., W ∼ Unif(Sd−1) and B ∼ Unif(−a, a),
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then ζ(V , c) is constant over {(V , c) : |c| ≤ a} and ζ(V , c) = 0 for |c| > a.

Now we discuss the form of ζ under certain conditions.

Proposition 18 (Penalty function ζ). Let pW,B denote the joint density function of

(W ,B) and let U = ∥W∥2, V = W/∥W∥2 and C = −B/∥W∥2. Then ζ(V , c) =

pC|V=V (c) pV(V )E(U2|V = V , C = c) =
∫
R u

d+2pW,B(uV ,−uc) du.

Using the above result we compute the explicit form of ζ for Gaussian initialization.

Theorem 19 (Explicit form of ζ for Gaussian initialization). Assume that W and B are

independent, W ∼ N (0, σ2
wId) and B ∼ N (0, σ2

b ). Then ζ is given by

ζ(V , c) =
σ3
wσ

d+2
b

π(d+1)/2(σ2
b + c2σ2

w)
(d+3)/2

Γ(
d+ 3

2
).

2.8 Conclusion

We obtained explicit descriptions in function space for the implicit bias of gradient descent in

mean squared error regression with wide shallow ReLU networks covering the univariate and

multivariate cases. We also presented a generalization to networks with different activation

functions and discussed a relaxation related to early stopping and training trajectories in

function space.

In the case of univariate regression, our main result shows that the trained network function

interpolates the training data while minimizing a weighted 2-norm of the second derivative

with respect to the input. Such functions correspond to spatially adaptive interpolating

splines. In the case of multivariate regression, our results also characterize the trained network

functions. Under specific parameter initialization schemes, these functions correspond to

polyharmonic interpolating splines. The spaces of interpolating splines are linear of dimension

in the order of the number of data points. Hence, our results imply that, even if the network

has many parameters, the complexity of the trained functions will be adjusted to the number

of training data points. This can be used to explain why overparametrized networks do not
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overfit in practice, as the generalization error can be regarded as the precision of the spline

interpolation (see, e.g., [Wen04]).

[ZXL20] described the implicit bias of gradient descent as minimizing a RKHS norm from

initialization. Our result can be regarded as making the RKHS norm explicit, providing an

interpretable description of the bias in function space. Compared with [ZXL20], our results

describe the role of the parameter initialization scheme, which determines the curvature

penalty function 1/ζ. This gives us a clearer picture of how the initialization affects the

implicit bias of gradient descent. This could be used in order to select a good initialization

scheme. For instance, one could conduct a pre-assessment of the data to estimate the locations

of the input space where the solution should have a high curvature, and choose the parameter

initialization accordingly. This is an interesting possibility to experiment with based on our

theoretical results.

Our results can also be interpreted in combination with early stopping. The training

trajectory is approximated by a smoothing spline, meaning that the network will filter out

high frequencies which are usually associated to noise in the training data. This behaviour is

sometimes referred to as a spectral bias [RBA19a]. [CFW21] studied spectral bias theoretically

and showed that spherical harmonics of low frequency are easier to be learned by over-

parameterized neural networks if the input data is uniformly distributed over the unit

hypersphere.

Appendix

The appendix is organized as follows.

• In Appendix 2.A we illustrate our theoretical results numerically, and provide details on

the numerical implementation.

• In Appendix 2.B we briefly discuss definitions and settings around the parametrization

and initialization of neural networks, as well as on the limiting NTK and the linearization
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of a neural network.

• In Appendices 2.C, 2.D, 2.E, 2.F, 2.G, we provide proofs and supporting results for the

results presented in Sections 2.3, 2.4.1, 2.4.2, and 2.5.

• In Appendices 2.H and 2.I, we provide the proofs of the results in Sections 2.6 and 2.7 for

univariate and multivariate regression respectively.

• In Appendix 2.J, we prove a corresponding result for activation functions other than ReLU.

• In Appendix 2.K we discuss the linear adjustment of the training data and why our

result still gives a good description of training with the original data for non-linear target

functions.

• In Appendix 2.M we show the equivalence between our variational characterization of the

implicit bias of gradient descent in function space and the description in terms of a kernel

norm minimization problem.

• In Appendix 2.N we discuss the relation between the gradient descent optimization trajec-

tory and a trajectory of spatially adaptive smoothing splines with decreasing smoothness

regularization coefficient which converges to the spatially adaptive interpolating spline.

• In Appendix 2.O we give the explicit form of the solution to our variational problem, i.e.,

the spatially adaptive interpolating spline, which corresponds to the output function after

gradient descent training in the infinite width limit.

• In Appendix 2.P we comment on possible extensions and generalizations of the analysis.

2.A Numerical Illustration of the Theoretical Results

Implementation of gradient descent Training is implemented as full-batch gradient

descent. In practice we choose the learning rate as follows. We start with a large learning

rate and keep decreasing it by half until we observe that the loss function decreases. After
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that, we start training with the fixed learning rate we found. We observe that the learning

rate we found is inversely proportional to the width n of the neural network. This observation

is in accord with Theorem 20 with respect to the upper bound of the learning rate in order

to converge.

We note that the implicit bias in parameter space shown in Theorem 20 is independent

of the specific step size that is used in the optimization, so long as it is small enough

(see Appendix 2.D). The stopping criterion for training of the neural network is that the

change in the training loss in consecutive iterations is less than a pre-specified threshold:

|L(θt)− L(θt−1)| ≤ 10−8.

We use ASI (see Appendix 2.B.2) at initialization. Then the initial output function of the

network is f(·, θ0) ≡ 0. Hence in the figures the network output function is actually equal to

the difference from initialization.

For the comparison of the functions f(·, θ∗) and g∗, the infinity norm ∥f(·, θ∗)− g∗∥∞ is

computed over a discretization of [−maxi ∥xi∥2,maxi ∥xi∥2]d.

Implementation of numerical solutions to the variational problem For univariate

regression, the variational problem for cubic splines can be solved explicitly as described in

Appendix 2.O. For a general non-constant curvature penalty function 1/ζ, we can obtain

a numerical solution to problem (2.24) as follows. First we discretize the interval [−I, I]

evenly with points xj = −I + 2jI/N , j = 0, . . . , N . For simplicity we suppose that the M

input training data points are among these grid points, and we denote them by xj1 , . . . , xjM .

Then we initialize f(xj) = 0 for xj not in the training data (to be optimized) and f(xji) = yi

(fixed values during optimization). We use the central difference to approximate the second

derivative, f ′′(xj) =
f(xj+1)−2f(xj)+f(xj−1)

h2
, where h = |xj+1 − xj|. Then the objective function

in (2.24) is approximated by
∑N−1

j=1
1

ζ(xj)

(
f(xj+1)−2f(xj)+f(xj−1)

h2

)2
. This is a quadratic problem

in f(xj), j ∈ {1, . . . , N} \ {j1, . . . , jM}. If we equate the gradient to zero, we obtain a linear

system. The solution can be written in closed form in terms of the inverse of a design matrix.

As with any linear regression problem, in practice we may still prefer to use an iterative
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approach to obtain a numerical solution. In our experiment, we discretize the interval [−2, 2]

into 200 pieces and use conjugate gradient descent for solving the linear system.

For multivariate regression, it is not straightforward to numerically solve (2.8). Hence we

numerically solve (2.25) instead. We discretize the interval [−Iw, Iw] evenly with points wj =

−Iw+2jIw/nw, j = 0, . . . , nw and the interval [−Ib, Ib] evenly with points bj = −Ib+2jIb/nb,

j = 0, . . . , nb. Let α(i1,...,id,j) = α((wi1 , . . . , wid), bj), ik = 0, . . . , nw, j = 0, . . . , nb. We use

numerical integration to approximate the objective and constraints of (2.25) and then get

an optimization problem with search variables α(i1,...,id,j). This is a quadratic programming

problem which can be solved using an internal point method.

Gradient descent training and variational problem To illustrate Theorem 1 across

different initialization procedures, in Figures 2.3 and 2.4 we show analogous experiments to

those in the left panel of Figure 2.1, but using two types of Gaussian initialization instead of

the uniform initialization. As we already observed in the right panel of Figure 2.1, here the

effect of the curvature penalty function is also visible. In portions of the input space where ζ

is peaked, the solution function can have a high curvature, and, conversely, in portions of the

input space where ζ takes small values, the solution function has a small second derivative

and is more linear.

To verify that the results are stable over different data sets, in Figure 2.5 we show an

experiment similar to that of Figure 2.1, but for a larger data set.

Training all layers versus training only the output layer To illustrate Theorem 10,

we conduct the following experiment. We use the same training set as in Figure 2.1 and use

uniform initialization. Starting from the same initial weights, we train the network in two

ways. One way is only training the output layer and another way is training all layers of the

network. The result is shown in Figure 2.6. The left panel plots the error between two trained

network functions against the number of neurons n. In this experiment the error is of order

n−3/2, which is even smaller than the upper bound n−1 given in Theorem 10. Potentially the
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Gaussian initialization σ2B = 1

n = 20 n = 80

n = 320 n = 1280

Figure 2.3: Illustration of Theorem 1. Shown is the error between the output function f(·, θ∗)
of the trained neural network and the solution g∗ to the variational problem (2.24) against
the number of neurons, n. Shown is the average over 5 repetitions, with error bars indicating
the standard deviation. Here the training data is fixed, and the parameters were initialized
with W ∼ N (0, 1) and B ∼ N (0, 1). The right panel shows the data (dots), trained network
functions (blue) with 20, 80, 320, 1280 neurons, and the solution (orange) to the variational
problem.

Gaussian initialization σ2B = 0.1

n = 20 n = 80

n = 320 n = 1280

Figure 2.4: Illustration of Theorem 1. Similar to Figure 2.3, but with a different initialization
W ∼ N (0, 1) and B ∼ N (0, 0.1), which gives rise to a curvature penalty function ζ that
is more strongly peaked around x = 0 (see Figure 2.1). We observe in particular that the
solutions are more curvy around x = 0.
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Uniform initialization

n = 160 n = 640

n = 2560 n = 10240

Figure 2.5: Illustration of Theorem 1. Similar to Figure 2.1, with uniform initialization, but
with a larger data set and larger networks.

bound can be improved. The right panel plots two trained network functions with 20, 80,

320, 1280 neurons.

Effect of linear function on implicit bias In Theorem 1, since the variational problem

defines functions only up to addition of linear functions, we need to adjust training data by

subtracting a specific linear function ux+v. However, in our previous experiments, we observed

that even if we do not adjust the training data, the statement of Theorem 1 still approximately

holds. We attribute this to the fact that the linear function can be easily fit by the neural

network. We provide details about this in Appendix 2.K. In order evaluate the effect of this

linear function on the implicit bias, we conduct the following experiment. Similar to Figure 2.1,

we use uniform initialization. We add a linear function 10x + 10 to the training data in

Figure 2.1. So the training data we use are {(−2,−8.5), (−1, 0.5), (0, 11.5), (1, 20.5), (2, 31.5)}.

In Figure 2.7 we show analogous experiments to those in the left panel of Figure 2.1. In

order to clearly show the difference between the trained network function and the solution to

the variational problem, we subtract 10x+ 10 from these two functions in the right panel of

Figure 2.7. From the right panel of Figure 2.7, we see that the difference between plotted two

functions is relatively larger than that in Figure 2.1. From the left panel of Figure 2.7, we

see that the error between these two functions stops to decrease when number of neurons n
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Only output layer vs all parameters

n = 20 n = 80

n = 320 n = 1280

Figure 2.6: Illustration of Theorem 10. Training only output layer vs training all parameters
of the network. We use uniform initialization and the same training set as in Figure 2.1.
The left panel plots the error between two trained network functions against the number of
neurons n. For one network, we only train the output layer while for the another one, we
train all layers. The right panel shows the data (dots) and two trained network functions
with 20, 80, 320, 1280 neurons.

is larger than 1280. It means that the limit of trained network function as n→∞ is slightly

different from the solution to the variational problem. If we choose bigger u and v, we expect

that the difference will become larger.

Experiments for two-dimensional regression problems We illustrate Theorem 6

numerically in Figure 2.2. We conduct experiments similar to Figure 2.1 and Figure 2.3 for

the bivariate case. The initialization used in Figure 2.2 is W ∼ U(S1) and B ∼ U(−2, 2),

thus we can use Theorem 8 to exactly compute the solution to the variational problem (2.8).

In close agreement with the theory, the solution to the variational problem captures the

solution of gradient descent training uniformly with error of order n−1/2.

To verify that the results are stable over different data sets, in Figure 2.8 we show an

experiment similar to that of Figure 2.2, but for a larger data set.

To illustrate Theorem 6 across different initialization procedures, in Figures 2.9 and 2.10

we show analogous experiments to Figure 2.2, but using Gaussian initialization instead. The

initialization used in Figure 2.9 is W ∼ N (0, Id) and B ∼ N (0, 1), and the initialization used
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Severely unadjusted data

n = 80 n = 320

n = 1280 n = 5120

Figure 2.7: Effect of not adjusting the data. We use uniform initialization and add a linear
function 10x+ 10 to the training data of Figure 2.1. In order to clearly show the difference
between trained network function and the solution to the variational problem, we subtract
10x + 10 from these two functions in the right panel. In the right panel we see that if we
ignore u and v in the variational problem (2.22), the solution is slightly different from (2.24).

Figure 2.8: Illustration of Theorem 6. Similar to Figure 2.2, with the same initialization, but
with a larger data set.
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Figure 2.9: Illustration of Theorem 6. Similar to Figure 2.2, but with the Gaussian initializa-
tion W ∼ N (0, Id) and B ∼ N (0, 1).

in Figure 2.10 is W ∼ N (0, Id) and B ∼ N (0, 0.1). So we can use Theorem 19 to exactly

compute the curvature penalty function and solve the variational problem (2.8) numerically.

2.B Additional Background on the NTK, Initialization, and Parametriza-

tion

In this appendix we provide a few additional details on the NTK, ASI initialization, standard

vs NTK parametrization, and discuss the difference between our results and weight norm

minimization.

2.B.1 NTK Convergence and Positive-definiteness

The convergence of the empirical NTK to a deterministic limiting NTK as the width of

the network tends to infinity and the positive-definiteness of this limiting kernel can be

ensured whenever the neural network converges to a Gaussian process. The arguments

from [JGH18a] to prove convergence and positive definiteness hold in this case. As they

mention, the limiting NTK only depends on the choice of the network activation function,

the depth of the network, and the variance of the parameters at initialization. They prove

positive definiteness when the input data is supported on a sphere. More generally, positive
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Figure 2.10: Illustration of Theorem 6. Similar to Figure 2.2, but with the Gaussian
initialization W ∼ N(0, Id) and B ∼ N(0, 0.1). Because of the linear adjustment, the exact
solution of the variational problem (2.8) is slightly different from the network output with a
large number of hidden neurons.

definiteness can be proved based on the structure of the NTK as a covariance matrix. Let

∥f∥2p = Ex∼p[f(x)
Tf(x)], where p denotes the distribution of inputs. The NTK is positive

definite when the span of the partial derivatives ∂θif(·, θ), i = 1, . . . , d, becomes dense in

function space with respect to ∥ · ∥p as the width of the network tends to infinity [JGH18a].

For a finite data set x1, . . . ,xM , positive definiteness of the corresponding Gram matrix is

equivalent to ∂θif(xj, ·) being linearly independent [DZP19, Theorem 3.1]. This condition for

positive definiteness does not depend on the specific distribution of the parameters, but if

anything it only depends on the support of the distribution of parameters and on the input

data. The precise value of the least eigenvalue may be affected by changes in the distribution

however. The convergence of the network function to a Gaussian process in the limit of

infinite width and independent parameter initialization is a classic result [Nea96c]. To verify

this Gaussian process assumption it is sufficient that
∑

iW
(2)
i σ(⟨W(1)

i ,x⟩+ bi) is a sum of

independent random variables with finite variance.

40



2.B.2 Anti-Symmetrical Initialization (ASI)

The AntiSymmetrical Initialization (ASI) trick as proposed by [ZXL20] creates duplicate

hidden units with opposite output weights, ensuring that f(·, θ0) ≡ 0. More precisely, ASI

defines fASI(x, ϑ) =
√
2
2
f(x, ϑ′)−

√
2
2
f(x, ϑ′′). Here ϑ = (ϑ′, ϑ′′) is initialized with ϑ′

0 = ϑ′′
0, so

that

fASI(x, ϑ0) =
n∑
i=1

√
2

2
V

(2)

i [⟨V (1)

i ,x⟩+ a
(1)
i ]+ +

n∑
i=1

−
√
2

2
V

(2)

i [⟨V (1)

i ,x⟩+ a
(1)
i ]+ ≡ 0.

The parameter vector at initialization is thus ϑ0 = vec(V
(1)
,V

(1)
,a(1),a(1),

√
2
2
V

(2)
,−

√
2
2
V

(2)
,

√
2
2
a(2),−

√
2
2
a(2)).

The basic statistics on the size of the parameters remains like (2.3), even if now there are

perfectly correlated pairs of parameters. Hence the analysis and results on limits when the

number of hidden units tends to infinity remain valid under ASI. The ASI is not needed for

our analysis, which can be used to compare different types of initialization procedures, but it

simplifies some of the presentation. One motivation for using ASI in practical applications

is that it provides a simple way to implement a simple output function at initialization.

Since the output function at initialization directly influences the bias of the gradient descent

solution, this is a particular way to control the bias. Manipulating the bias from initialization

is also the motivation presented by [ZXL20]. A related discussion also appears in [SDP20].

2.B.3 Standard vs NTK Parametrization

We have focused on the standard parametrization of the neural network. [JGH18a] use a

non-standard parametrization which is now known as the NTK parametrization. We briefly

discuss the difference. A network with NTK parametrization is described as


h(l+1) =

√
1
nl
W(l+1)xl + b(l+1)

x(l+1) = ϕ(h(l+1))

and


W

(l)
i,j ∼ N (0, 1)

b
(l)
j ∼ N (0, 1)

.
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In contrast to the standard parametrization, in the NTK parametrization the factor
√
1/nl

is carried outside of the trainable parameter. In this case, the scaling of the derivatives is

∇
W

(1)
i,j
f(x, θ0) = O(n− 1

2 ) and ∇
W

(2)
i
f(x, θ0) = O(n− 1

2 ). In turn, during training the changes

of W (1)
i,j and W

(2)
i are comparable in magnitude. This implies that we can not ignore the

changes of W (1)
i,j and approximate the dynamics by that of the linearized model that trains

only the output weights as we did in the case of the standard parametrization. In particular,

we can not use problem (2.20) to describe the result of gradient descent as n→∞.

2.B.4 Weight Norm Minimization

[SES19] studied networks of the form f(x, θ) =
∑n

i=1W
(2)
i [W

(1)
i x+ b

(1)
i ]+ + b(2) allowing the

width to tend to infinity. They showed that the minimum weight norm for approximating a

given function g is related to a measure of the smoothness of g by limϵ→0(infθ C(θ) s.t. ∥f(·, θ)−

g∥∞ ≤ ϵ) = max{
∫∞
−∞ |g

′′(x)| dx, |g′(−∞)+g′(∞)|}, where C(θ) = 1
2

∑n
i=1((W

(2)
i )2+(W

(1)
i )2).

Here the derivatives are understood in the weak sense. This implies that infinite width shallow

networks trained with weight norm regularization (sparing biases) represent functions with

smallest 1-norm of the second derivative, an example of which are linear splines. (Note that

C(θ) is not strictly convex in the space of all parameters and also the 1-norm of the second

derivative is not strictly convex, hence the solution is not unique).

The result of [SES19] is illuminating in that it connects properties of the parameters

and properties of the represented functions. However, the result does not necessarily inform

us about the functions represented by the network upon gradient descent training without

explicit weight norm regularization. Indeed, if we initialize the parameters by (2.3) with

sub-Gaussian distribution, the neural network can be approximated by the linearized model.

Then by Theorem 20, ∥ω − θ0∥2 is minimized rather than ∥ω∥2. But in this case ∥θ0∥2 is

bounded away from zero with high probability and the 2-norm of all parameters (or also of

the weights only) is not minimized. On the other hand, if we initialize the parameters with

∥θ0∥2 close to 0, then the neural network might not be well approximated by the linearized

model. This has been observed experimentally by [COB19] and we further illustrate it in
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Appendix 2.B.5.

Even if we assume that the linearization of a network at the origin is valid, in order for

the network to approximate certain complex functions, the weights necessarily have to be

bounded away from zero. This means that reaching zero training error requires to move

far from the basis point, where the difference between linearized and non-linearized model

could become significant. In turn, the implicit bias description derived from a linearization

at the origin may not accurately reflect the implicit bias of gradient descent in the original

non-linearized model.

The above paragraphs discuss why the result of [SES19] does not apply to gradient descent

training without weight norm regularization. It is also interesting to discuss the difference

between our result and the result of [SES19]. In our result, the implicit bias of gradient

descent without weight norm regularization is characterized by 2-norm of the second derivative

weighted by 1/ζ, which is a RKHS-norm. In the result of [SES19], they showed that training

with weight norm regularization (sparing biases) leads to functions with smallest 1-norm of

the second derivative, which is not a RKHS norm. The reason why training without weight

decay gives RKHS norm is because the training trajectory can be approximated by that of

a linear model, which corresponds to a certain RKHS. And for training with weight norm

regularization, the weight in the first layer is regularized, so it changes the feature space and

we can no longer regard that as a linear model. Some works give empirical evidence that

minimizing a non-RKHS norm can have better generalization than minimizing an RKHS

norm because of the limitation of linear models and the kernel regime. However, as far

as we know, there is no theory which shows that a non-RKHS-norm could result in better

generalization than a RKHS norm.

The paper by [PN19] follows the approach of [SES19] and generalizes the result of [SES19]

to different types of activation functions σ. Then they show that minimizing the weight

“norm” of two-layer neural networks with activation function σ is actually minimizing 1-norm

of Lf in place of the second derivative, where f is the output function of the neural network.

Here L and σ satisfy Lσ = δ, i.e., σ is a Green’s function of L. Such activation functions can
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be used in combination with our analysis. We comment further on such generalizations in

Appendix 2.J.

2.B.5 Basis Parameter for Linearization of the Model

We discuss how the quality of the approximation of a neural network by a linearized model

depends on the basis point. For a feedforward ReLU network and a list X = (xi)
m
i=1 of input

data points, the mapping θ 7→ f(X , θ) = [f(x1, θ), . . . , f(xm, θ)] is piecewise multilinear. Each

of the pieces is smooth and we can assume that it is approximated reasonably well by its Taylor

expansion. However, the quality of the approximation can drop when we cross the boundary

between smooth pieces. Consider a single-input network with a layer of n ReLUs and a

single output unit. At an input x the prediction is f(x; θ) =
∑n

j=1W
(2)
j [W

(1)
j x+ b

(1)
j ]+ + b(2),

where θ = vec(W(1),b(1),W(2), b(2)). The Jacobian is non-smooth whenever θ ∈ Hxj =

{W (1)
j x+ b

(1)
j = 0} for some j = 1, . . . , n. Hence for m input data points xi, i = 1, . . . ,m, the

locus of non-smoothness is given by m central hyperplanes Hij , i = 1, . . . ,m in the parameter

space of each hidden unit j = 1, . . . , n. For an individual ReLU, if the parameter θ0 is

drawn from a centrally symmetric probability distribution, the probability p that an ϵ ball

around cθ0 intersects one of the non-linearity hyperplanes Hi, i = 1, . . . ,m, behaves roughly

as p = O(mc−1) as c goes to infinity. Hence we can expect that the prediction function will

be better approximated by its linearization f lin(x, θ) = f(x, cθ0) +∇θf(x, cθ0)(θ − cθ0) at

a point cθ0 if c is larger. This is well reflected numerically in Figure 2.11. As we see, for

larger initialization the model looks more linear. We observed that this qualitative behavior

remains same if we try to adjust the size of the window around the initial value.

2.C Proof of Theorem 1 and Theorem 6

The proof of Theorem 1 and Theorem 6 is the compilation of results from Sections 2.4, 2.5,

2.6 and 2.7. Next we give the proof of Theorem 6. Theorem 1 can be similarly proved.
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Figure 2.11: Left: For a single ReLU, the map θ 7→ f(X , θ) from parameters to prediction
vectors over a set X = {x1, . . . , xm} of m input data points is piecewise linear, with pieces
separated by m central hyperplanes. Right: Shown is the prediction f(x, θ) of a shallow ReLU
network on a fixed input point x, over a 2D slice of parameters θ = cθ0 + v1ξ1 + v2ξ2 spanned
by two random orthogonal unit norm vectors v1, v2 and parametrized by (ξ1, ξ2) ∈ [−1, 1]2.
From top to bottom, the number of hidden units is n = 1, 5, 25, 125 and in each row the initial
parameter θ0 is drawn i.i.d. from a standard Gaussian. In each column we use a different
scaling constant c = 0, 0.5, 10. As we see, for larger scaling c of the initialization the model
looks more linear.
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Proof of Theorem 6. The convergence to zero training error for ReLU networks is by now a

well known result [DZP19,ALS19b]. We proceed with the implicit bias result.

For simplicity, we give out the proof under ASI (see Appendix 2.B.2). In Section 2.7, we

relax the optimization problem (2.20) to (2.25). Suppose (α,u, v) is the solution of (2.25).

The we can adjust the training samples {(xi, yi)}Mi=1 to {(xi, yi − ⟨u,xi⟩ − v)}Mi=1. It’s easy

to see that on the adjusted training samples, (α,0, 0) is the solution of (2.25). Then α is

the solution of (2.20) on the adjusted data. Furthermore, the solution of (2.20) in function

space, g(x, α), equals to the solution of (2.25) in function space, g(x, (α, 0, 0)), i.e.,

g(x, α) = g(x, (α,0, 0)). (2.38)

It we change the variable α to γ as in Section 2.7, we get

g(x, (α,0, 0)) = g(x, (γ,0, 0)), (2.39)

On any compact set D ⊂ Rd, according to Theorem 12,

sup
x∈D
|gn(x, αn)− g(x, α)| = Op(n

−1/2), (2.40)

where gn(x, αn) is the solution of problem (2.19) in function space. Since problem (2.19)

is equivalent to problem (2.18), gn(x, αn) is also the solution of (2.18) in function space.

According to discussion in Section 2.5, f lin(x, ω̃∞) is the solution of (2.18). Then we have

gn(x, αn) = f lin(x, ω̃∞). (2.41)

According to Corollary 11, we get

sup
x∈D
|f lin(x, ω̃∞)− f(x, θ∗)| = Op(n

− 1
2 ). (2.42)

Finally, according to Theorem 16 (to prove Theorem 1, apply Theorem 13 and Proposition
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14), g(x, (γ,0, 0)) is the solution of (2.8), which is g∗(x). It means that

g(x, (γ, 0, 0)) = g∗(x). (2.43)

Combining (2.38), (2.39), (2.40), (2.41), (2.42), (2.43), we prove the theorem.

2.D Implicit Bias in Parameter Space for a Linearized Model

[ZXL20] show that gradient flow converges to the solution with zero empirical loss which is

closest to the initial weights. We show a similar result for the case of gradient descent with

small enough learning rate.

Theorem 20 (Bias of the linearized model in parameter space). Consider a convex loss

function ℓ with a unique finite minimum and its derivative is K-Lipschitz continuous, i.e.,

| d
dy
ℓ(y1, ŷ) − d

dy
ℓ(y2, ŷ)| ≤ K|y1 − y2|. If rank(∇θf(X , θ0)) = M , then the gradient descent

iteration (2.14) with learning rate η ≤ M

Knλmax(Θ̂n)
converges to the unique solution of following

constrained optimization problem:

min
ω
∥ω − θ0∥2 s.t. f lin(X , ω) = Y . (2.44)

Remark 21 (Remark on Theorem 20, step size). Note that this statement is valid for the

linearization of any set of functions, not only neural networks. The proof remains valid for a

changing step size as long as this satisfies the required inequality.

Remark 22 (Remark on Theorem 20, rank assumption). The assumption ∇θf(X , θ0) =M

is satisfied in most cases when n ≥M (here n refers to the number of parameters in θ since

we use the linearized model). This is because ∇θf(X , θ0) is a M × n matrix. The M rows

corresponds to M training samples and they are almost always linearly independent.

Here we give out the proof of Theorem 20. We note that [ZXL20] prove a similar result

for gradient flow. Our proof is for finite step size and different from theirs.
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Proof of Theorem 20. We use gradient descent to minimize Llin(ω) = 1
M

∑M
i=1 ℓ(f

lin(xi, ω), yi).

First we prove that ∇ωL
lin(ω) is Lipschitz continuous as follows:

∥∇ωL
lin(ω1)−∇ωL

lin(ω2)∥2

=
1

M
∥∇θf(X , θ0)⊤∇f lin(X ,ω1)L−∇θf(X , θ0)⊤∇f lin(X ,ω2)L∥2

≤ 1

M
∥∇θf(X , θ0)⊤∥2∥∇f lin(X ,ω1)L−∇f lin(X ,ω2)L∥2

=
1

M
∥∇θf(X , θ0)⊤∥2

√√√√ M∑
i=1

(
d

dy
l(f lin(xi, ω1), yi)−

d

dy
l(f lin(xi, ω2), yi)

)2

≤K
M
∥∇θf(X , θ0)⊤∥2∥f lin(X , ω1)− f lin(X , ω2)∥2 (K-Lipschitz continuity of ℓ)

=
K

M
∥∇θf(X , θ0)⊤∥2∥∇θf(X , θ0)(ω1 − ω2)∥2

≤K
M
∥∇θf(X , θ0)⊤∥2∥∇θf(X , θ0)∥2∥(ω1 − ω2)∥2

≤Kn
M

λmax(Θ̂n)∥ω1 − ω2∥2.

So Llin(ω) is Lipschitz continuous with Lipschitz constant Kn
M
λmax(Θ̂n). Since Llin is convex

over ω, gradient descent with learning rate η = M

Knλmax(Θ̂n)
converges to a global minimium

of Llin(ω). By assumption that rank(∇θf(X , θ0)) =M , the model can perfectly fit all data.

Then the minimium of Llin(ω) is zero and gradient descent converges to zero loss.

Let ω∞ = limt→∞ ωt. Then f lin(X , ω∞) = Y . According to gradient descent iteration,

ω∞ = θ0 −
∞∑
t=0

η∇θf(X , θ0)T∇f lin(X ,ωt)L
lin

= θ0 − η∇θf(X , θ0)T
∞∑
t=0

∇f lin(X ,ωt)L
lin.

Since f lin is linear over weights ω and ∥ω − θ0∥2 is strongly convex, the constrained

optimization problem (2.44) is a strongly convex optimization problem. The first order
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optimality condition of the problem is


ω − θ0 +∇θf

lin(X , θ0)Tλ = 0,

f lin(X , ω) = Y .
(2.45)

Let λ =
∑∞

t=0∇f lin(X ,θt)L, we can easily check that ω∞ satisfies condition (2.45). So ω∞ is

the solution of problem (2.44).

Remark 23 (Remark on Theorem 20). Making an analogous statement to Theorem 20 to

describe the bias in parameter space when training wide networks rather than the linearized

model is interesting, but harder, because the gradient direction is no longer constant. [OS19]

obtain bounds on the trajectory length in parameter space, putting the final solution within

a factor 4β/α of minθ ∥θ0 − θ∥, where β and α are upper and lower bounds on the singular

values of the Jacobian over the relevant region. However, currently it is unclear whether the

solution upon gradient optimization is indeed the distance minimizer from initialization.

Next we discuss the implicit bias of SGD (stochastic gradient descent) in parameter space.

Consider the following stochastic gradient descent iteration for the linearized model:

ω0 = θ0, ωt+1 = ωt − ηt
d

dy
ℓ(f lin(xr(t), ωt), yr(t))∇θf(xr(t), θ0), (2.46)

where r(t) is evenly chosen from the set {1, 2, ...,M} and ηt is the learning rate at the step t.

Typically, ηt needs to decay in order for SGD to converge. However, for overparametrized

linearized model, we can show that SGD converges for constant learning rate and the implicit

bias of SGD is the same as gradient descent under certain conditions. This is shown in the

following theorem.

Theorem 24 (Bias of the linearized model in parameter space, SGD). Consider a convex

loss function ℓ with a unique finite minimum and its derivative is K-Lipschitz continuous,

i.e., | d
dy
ℓ(y1, ŷ)− d

dy
ℓ(y2, ŷ)| ≤ K|y1 − y2|. If rank(∇θf(X , θ0)) =M , the stochastic gradient

descent iteration (2.46) with constant learning rate ηt = η ≤ 1
Kmaxj ∥∇θf(xj ,θ0)∥22

converges to
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the unique solution of following constrained optimization problem with probability 1:

min
ω
∥ω − θ0∥2 s.t. f lin(X , ω) = Y . (2.47)

Proof of Theorem 24. Let ω∗ be the solution to the optimization problem (2.47). Let zj =

∇θf(xj, θ0). It is easy to see that ωt − ⟨ωt − ω∗,
zj

∥zj∥2 ⟩
zj

∥zj∥2 is the projection of ωt onto the

hyperplane {⟨ω, zj⟩} = {⟨ω∗, zj⟩}. So for any η̂ ≤ 1, we have

∥∥∥∥ωt − η̂⟨ωt − ω∗,
zj
∥zj∥2

⟩ zj
∥zj∥2

− ω∗
∥∥∥∥2
2

= ∥ωt − ω∗∥22 − (1− (1− η̂)2)
∣∣∣∣⟨ωt − ω∗,

zj
∥zj∥22

⟩
∣∣∣∣2

(2.48)

≤ ∥ωt − ω∗∥22. (2.49)

The length of the stochastic gradient in (2.46) can be bounded as follows:

ηt
d

dy
ℓ(f lin(xr(t), ωt), yr(t))∥zr(t)∥2 (2.50)

≤ ηtK|f lin(xr(t), ωt)− yr(t)|∥zr(t)∥2 (2.51)

≤ K
1

Kmaxj ∥∇θf(xj, θ0)∥22
|f lin(xr(t), ωt)− yr(t)|∥zr(t)∥2 (2.52)

=
1

maxj ∥zj∥22
⟨ωt − ω∗, zr(t)⟩∥zr(t)∥2 (2.53)

≤ 1

maxj ∥zj∥22
∥zr(t)∥22⟨ωt − ω∗,

zr(t)
∥zr(t)∥2

⟩ (2.54)

≤ ⟨ωt − ω∗,
zr(t)
∥zr(t)∥2

⟩ (2.55)

Then according to (2.49), we have

∥∥∥∥ωt − ηt ddy ℓ(f lin(xr(t), ωt), yr(t))∥zr(t)∥2
zr(t)
∥zr(t)∥2

− ω∗
∥∥∥∥
2

≤ ∥ωt − ω∗∥2. (2.56)

The above equation means that

∥ωt+1 − ω∗∥2 ≤ ∥ωt − ω∗∥2. (2.57)
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Then ∥ωt∥2 is bounded and limt→∞ ∥ωt − ω∗∥2 − ∥ωt+1 − ω∗∥2 = 0. Next we show that for

any convergent subsequence {ωtk}k≥1 of {ωt}t≥1, we have limk→∞ ωtk = ω∗.

Let limk→∞ ωtk = ω̄. Asuume that ω̄ ̸= ω∗. According to the first order optimality (2.45),

we have that ω∗ = θ0 +
∑M

j=1 λjzj. From the stochastic gradient descent iterations, we have

ωt = θ0−η
∑t−1

s=1
d
dy
ℓ(f lin(xr(s), ωs), yr(s))zr(s). Then ωt−ω∗ is a linear combination of {ωj}Mj=1.

It means that ω̄ − ω∗ is a linear combination of {zj}Mj=1. Since ω̄ − ω∗ is not zero, the set

A =
{
j :
∣∣∣⟨ω̄ − ω∗,

zj
∥zj∥2 ⟩

∣∣∣ > 0
}

is not empty. With probability 1, we have that r(t) ∈ A

infinitely many times. So for any given k, we can find t′k ≥ tk such that r(t′k) ∈ A and

r(t) ̸∈ A for tk ≤ t < t′k.

When we prove (2.57), we only use the property that f lin(xr(t), ω
∗) = yr(t). When

tk ≤ t < t′k, we have r(t) ̸∈ A, so ⟨ω̄, zj
∥zj∥2 ⟩ = ⟨ω

∗,
zr(t)

∥zr(t)∥2
⟩. It means that f lin(xr(t), ω̄) =

f lin(xr(t), ω
∗) = yr(t). Using the same argument as (2.57), we have ∥ωt+1 − ω̄∥2 ≤ ∥ωt − ω̄∥2

when tk ≤ t < t′k. Then ∥ωt′k − ω̄∥2 ≤ ∥ωtk − ω̄∥2. Then limk→∞ ωt′k = limk→∞ ωtk = ω̄.

According to (2.48), we have

∥ωt+1 − ω∗∥22 = ∥ωt − ω∗∥22 − (1− (1− η̃t)2)
∣∣∣∣⟨ωt − ω∗,

zr(t)
∥zr(t)∥2

⟩
∣∣∣∣2 (2.58)

and η̃t =
η d
dy
ℓ(f lin(xr(t), ωt), yr(t))∥zr(t)∥2∣∣∣⟨ωt − ω∗,

zr(t)
∥zr(t)∥2

⟩
∣∣∣ . (2.59)

Since limk→∞ ωt′k = ω̄, for sufficiently large k we have

∣∣∣∣∣⟨ωt′k − ω∗,
zr(t′k)

∥zr(t′k)∥2
⟩

∣∣∣∣∣
2

≥ 1

2
min
j∈A

∣∣∣∣⟨ω̄ − ω∗,
zr(j)
∥zr(j)∥2

⟩
∣∣∣∣2 (2.60)

= Ω(1), (2.61)
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and

η̃t ≥
1

2

ηminj∈A
d
dy
ℓ(f lin(xj, ω̄), yj)minj∈A ∥zj∥2
∥ω̄ − ω∗∥2

(2.62)

= Ω(1)min
j∈A

d

dy
ℓ(f lin(xj, ω̄), yj) (2.63)

= Ω(1), (2.64)

where (2.64) holds because f lin(xj, ω̄)− yj = ⟨ω̄ − ω∗, zj⟩ ≠ 0 for all j ∈ A and d
dy
ℓ(y, ŷ) = 0

if and only if y = ŷ according to the fact that loss function ℓ has a unique finite minimum.

From (2.61) and (2.64) we have ∥ωt′k − ω
∗∥22 − ∥ωt′k+1 − ω∗∥22 = Ω(1). This contradicts the

fact that limt→∞ ∥ωt−ω∗∥2−∥ωt+1−ω∗∥2 = 0. Then the assumption ω̄ ̸= ω∗ is not true. So

for any convergent subsequence {ωtk}k≥1 of {ωt}t≥1, we have limk→∞ ωtk = ω∗. Combining

the above statement with the fact that ∥ωt∥2 is bounded, we have limt→∞ ωt = ω∗

Remark 25 (Remark on Theorem 24). Theorem 24 shows that SGD and gradient descent

has the same implicit bias in parameter space. Then our main theorem also holds for SGD

training.

2.E Proof of Theorem 10

We note that assumption liminfn→∞ λmin(Θ̂n) > 0 is satisfied if the empirical NTK converges

and the limit NTK is positive definite. For details see Appendix 2.B.1.

Proof of Theorem 10. According to (2.14),

ωt+1 = ωt − η∇θf(X , θ0)T∇f lin(X ,ωt)L
lin.

Since we use the MSE loss, we have

ωt+1 = ωt − η∇θf(X , θ0)T (f lin(X , ωt)− Y).
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Using (2.12), we get

f lin(X , ωt+1) = f lin(X , ωt)− η∇θf(X , θ0)∇θf(X , θ0)T (f lin(X , ωt)− Y)

= f lin(X , ωt)− nηΘ̂n(f
lin(X , ωt)− Y).

Then we have

f lin(X , ωt+1)− Y = (I − nηΘ̂n)(f
lin(X , ωt)− Y),

and
f lin(X , ωt)− Y = (I − nηΘ̂n)

t(f lin(X , θ0)− Y)

= (I − nηΘ̂n)
t(f(X , θ0)− Y).

According to the update rule of ωt, we know that ωt = ∇θf(X , θ0)T ξ+θ0, where ξ is a column

vector. Then we have

f lin(X , ωt)− Y = f lin(X , ωt)− f(X , θ0) + f(X , θ0)− Y

= ∇θf(X , θ0)(ωt − θ0) + f(X , θ0)− Y

= ∇θf(X , θ0)∇θf(X , θ0)T ξ + f(X , θ0)− Y

= nΘ̂nξ + f(X , θ0)− Y

= (I − nηΘ̂n)
t(f(X , θ0)− Y).

From above equation we can solve for ξ:

ξ = −n−1Θ̂−1
n [I − (I − nηΘ̂n)

t](f(X , θ0)− Y).

Therefore

ωt = −n−1∇θf(X , θ0)T Θ̂−1
n [I − (I − nηΘ̂n)

t](f(X , θ0)− Y) + θ0. (2.65)
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For any x ∈ Rd,

f lin(x, ωt) = f(x, θ0) +∇θf(x, θ0)(ωt − θ0)

= f(x, θ0)− n−1∇θf(x, θ0)∇θf(X , θ0)T Θ̂−1
n [I − (I − nηΘ̂n)

t](f(X , θ0)− Y).
(2.66)

For the training process (2.17), we can define the corresponding empirical neural tangent

kernel in the following way:

Θ̃n =
1

n
∇W(2)f(X , θ0)∇W(2)f(X , θ0)T .

Using the same argument, we have

W̃
(2)
t = −n−1∇W(2)f(X , θ0)T Θ̃−1

n [I − (I − nηΘ̃n)
t](f(X , θ0)− Y) +W

(2)

0 (2.67)

and

f lin(x, ω̃t) = f(x, θ0)− n−1∇W(2)f(x, θ0)∇W(2)f(X , θ0)T Θ̃−1
n [I − (I − nηΘ̃n)

t](f(X , θ0)−Y).

(2.68)

According to (2.66) and (2.68), we have

|f lin(x, ω̃t)− f lin(x, ωt)|

=n−1
∣∣∣∇θf(x, θ0)∇θf(X , θ0)T Θ̂−1

n [I − (I − nηΘ̂n)
t](f(X , θ0)− Y)

−∇W(2)f(x, θ0)∇W(2)f(X , θ0)T Θ̃−1
n [I − (I − nηΘ̃n)

t](f(X , θ0)− Y)
∣∣∣.

(2.69)

The next step is to compute the difference between Θ̃n and Θ̂n. Let ∆Θ = Θ̂n − Θ̃n, then

the ij-th entry of the matrix ∆Θ is

(∆Θ)ij =
1

n

[
n∑
k=1

(〈
∇

W
(1)
k
f(xi, θ0),∇W

(1)
k
f(xj, θ0)

〉
+∇

b
(1)
k
f(xi, θ0)∇b

(1)
k
f(xj, θ0)

)
+ ∇b(2)f(xi, θ0)∇b(2)f(xj, θ0)

]
.

(2.70)
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Given x ∈ Rd, we have

∥∇
W

(1)
k
f(x, θ0)∥ =∥W (2)

k H(⟨W(1)
k ,x⟩+ b

(1)
k ) · x∥ ≤ |W (2)

k |∥x∥ (2.71)

|∇
b
(1)
k
f(x, θ0)| =|W (2)

k H(⟨W(1)
k ,x⟩+ b

(1)
k )| ≤ |W (2)

k | (2.72)

|∇
W

(2)
k
f(x, θ0)| =[⟨W(1)

k ,x⟩+ b
(1)
k ]+ ≤ ∥W(1)

k ∥∥x∥2 + b
(1)
k (2.73)

|∇b(2)f(x, θ0)| =1. (2.74)

Therefore,

|(∆Θ)ij| ≤
1

n

[
n∑
k=1

(
|W (2)

k |
2∥xi∥∥xj∥+ |W (2)

k |
2
)
+ 1

]

=
∥xi∥∥xj∥+ 1

n

n∑
k=1

|W (2)
k |

2 +
1

n
.

(2.75)

According to initialization (2.3), W (2)
k

d
=
√
1/n W(2). Then according to the law of large

numbers, limn→∞
∑n

k=1 |W
(2)
k |2 = E|W(2)|2 almost surely as n → ∞. Then

∑n
k=1 |W

(2)
k |2 =

Op(1) and |(∆Θ)ij| = Op(n
−1).

Since the size of ∆Θ is M×M , which does not change as n goes up. So ∥∆Θ∥2 = Op(n
−1),

which means ∥Θ̂n − Θ̃n∥2 = Op(n
−1).

Now we measure the difference of each part in (2.69). According to the assumption

infn λmin(Θ̂n) > 0, we have

λmin(Θ̂
−1
n ) ≥ 1

infn λmin(Θ̂n)
= Op(1) (2.76)

λmin(Θ̃
−1
n ) ≥ 1

infn λmin(Θ̂n)−Op(n−1)
= Op(1). (2.77)

Therefore
∥Θ̂−1

n − Θ̃−1
n ∥2 = ∥Θ̂−1

n (Θ̃n − Θ̂n)Θ̃
−1
n ∥2

≤ ∥Θ̂−1
n ∥2∥∆Θ∥2∥Θ̃−1

n ∥2

= Op(n
−1).

(2.78)
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The assumption η < 2

nλmax(Θ̂n)
implies

∥I − nηΘ̂n∥2 < 1, (2.79)

and
∥I − nηΘ̃n∥2 ≤ ∥I − nηΘ̂n∥2 + nη∥Θ̂n −Θ∥2

≤ max{nηλmax(Θ)

2
, 1− nηλmin(Θ̂n)}+Op(n

−1).

For any δ > 0, as n is large enough, we also have ∥I − nηΘ̃n∥2 < 1 with probability at least

1− δ. Then as n is large enough,

∥[I − (I − nηΘ̂n)
t]− [I − (I − nηΘ̃n)

t]∥2

= ∥(I − nηΘ̂n)
t − (I − nηΘ̃n)

t∥2

≤ ∥[(I − nηΘ̂n)− (I − nηΘ̃n)](I − nηΘ̂n)
t−1∥2

+ ∥(I − nηΘ̃n)[(I − nηΘ̂n)− (I − nηΘ̃n)](I − nηΘ̂n)
t−2∥2

+ · · ·

+ ∥(I − nηΘ̃n)
t−1[(I − nηΘ̂n)− (I − nηΘ̃n)]∥2

≤ η∥Θ̂n − Θ̃n∥2∥I − nηΘ̂n∥t−1
2

+ η∥I − nηΘ̃n∥2∥Θ̂n − Θ̃n∥2∥I − nηΘ̂n∥t−2
2

+ · · ·

+ η∥I − nηΘ̃n∥t−1
2 ∥Θ̂n − Θ̃n∥2

≤ η∥Θ̂n − Θ̃n∥2 · t · (max{∥I − nηΘ̂n∥2, ∥I − nηΘ̃n∥2})t−1.

Since max{∥I − nηΘ̂n∥2, ∥I − nηΘ̃n∥2} < 1, supt>0 t · (max{∥I − nηΘ̂n∥2, ∥I − nηΘ̃n∥2})t−1

is a finite number. Then we have

∥[I − (I − nηΘ̂n)
t]− [I − (I − nηΘ̃n)

t]∥2 ≤ O(η∥Θ̂n − Θ̃n∥2)

= Op(n
−1).

(2.80)
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Let ∆Θ(x,X ) = n−1(∇θf(x, θ0)∇θf(X , θ0)T −∇W(2)f(x, θ0)∇W(2)f(X , θ0)T ), then the i-th

entry of the vector ∆Θ(x,X ) is

(∆Θ(x,X ))i =
1

n

[
n∑
k=1

(
∇

W
(1)
k
f(x, θ0)∇W

(1)
k
f(xi, θ0) +∇b

(1)
k
f(x, θ0)∇b

(1)
k
f(xi, θ0)

)
+ ∇b(2)f(x, θ0)∇b(2)f(xi, θ0)

]
.

Similar to (2.75), we have

(∆Θ(x,X ))i| = Op(n
−1). (2.81)

Since the size of ∆Θ(x,X ) is M , which does not change as n goes up. So

∥∆Θ(x,X )∥2 = Op(n
−1). (2.82)

Let Θ̃n(x,X ) = n−1(∇W(2)f(x, θ0)∇W(2)f(X , θ0)T )), then the i-th entry of the vector Θ̃n(x,X )

is

|(Θ̃n(x,X ))i| ≤
1

n

n∑
k=1

|∇
W

(2)
k
f(x, θ0)∇W

(2)
k
f(xi, θ0)|

≤ 1

n

n∑
k=1

|(∥W(1)
k ∥∥x∥2 + b

(1)
k )(∥W(1)

k ∥∥xi∥2 + b
(1)
k )|.

(2.83)

According to initialization (2.3), (W(1)
k , b

(1)
k )

d
= (W ,B). Then according to the law of large

numbers,

|(Θ̃n(x,X ))i| = Op(1). (2.84)

Since the size of Θ̃n(x,X ) is M , which does not change as n goes up. So

∥Θ̃n(x,X )∥2 = Op(1).

[Nea96c], [LSP18] show that as n goes to infinity, the output function at initialization f(·, θ0)

converges to a Gaussian process in distribution, which means that f(X , θ0) ∼ N (0,K(X ,X )).

Here K(X ,X ) can be computed recursively. Then f(X , θ0) is bounded in probability and we
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get

∥f(X , θ0)− Y∥2 = Op(1). (2.85)

Then following (2.69) and (2.85), we get

|f lin(x, ω̃t)− f(x, θt)|

=n−1|∇θf(x, θ0)∇θf(X , θ0)T Θ̂−1
n [I − (I − nηΘ̂n)

t](f(X , θ0)− Y)

−∇W(2)f(x, θ0)∇W(2)f(X , θ0)T Θ̃−1
n [I − (I − nηΘ̃n)

t](f(X , θ0)− Y)|

=n−1∥∇θf(x, θ0)∇θf(X , θ0)T Θ̂−1
n [I − (I − nηΘ̂n)

t]

−∇W(2)f(x, θ0)∇W(2)f(X , θ0)T Θ̃−1
n [I − (I − nηΘ̃n)

t]∥2∥f(X , θ0)− Y∥2

=n−1∥∇θf(x, θ0)∇θf(X , θ0)T Θ̂−1
n [I − (I − nηΘ̂n)

t]

−∇W(2)f(x, θ0)∇W(2)f(X , θ0)T Θ̃−1
n [I − (I − nηΘ̃n)

t]∥2 ·Op(1).

According to (2.78), (2.79), (2.80), (2.82) and (2.84), we have that

n−1∥∇θf(x, θ0)∇θf(X , θ0)T Θ̂−1
n [I − (I − nηΘ̂n)

t]

−∇W(2)f(x, θ0)∇W(2)f(X , θ0)T Θ̃−1
n [I − (I − nηΘ̃n)

t]∥2

≤n−1∥∇θf(x, θ0)∇θf(X , θ0)T −∇W(2)f(x, θ0)∇W(2)f(X , θ0)T∥∥Θ̂−1
n ∥2∥I − (I − nηΘ̂n)

t∥2

+ n−1∥∇W(2)f(x, θ0)∇W(2)f(X , θ0)T∥2∥Θ̂−1
n − Θ̃−1

n ∥2∥I − (I − nηΘ̂n)
t∥2

+ n−1∥∇W(2)f(x, θ0)∇W(2)f(X , θ0)T∥2∥Θ̃−1
n ∥2∥[I − (I − nηΘ̂n)

t]− [I − (I − nηΘ̃n)
t]∥2

≤Op(n
−1)Op(1)Op(1) +Op(1)Op(n

−1)Op(1) +Op(1)Op(1)Op(n
−1)

=Op(n
−1).

So we have |f lin(x, ω̃t)− f(x, θt)| = Op(n
−1), and the constants in Op(n

−1) do not depend on

t. Then we get

sup
t
|f lin(x, ω̃t)− f lin(x, ωt)| = Op(n

−1), as n→∞.
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For the difference of parameters, we have

ω̃t − ωt = vec(W
(1) − Ŵ

(1)
t ,b

(1) − b̂
(1)
t ,W̃

(2)
t − Ŵ

(2)
t , b

(2) − b̂(2)t ).

According to (2.65) and (2.67),

∥W(1) − Ŵ
(1)
t ∥2 = ∥n−1∇W(1)f(X , θ0)T Θ̂−1

n [I − (I − nηΘ̂n)
t](f(X , θ0)− Y)∥2

≤ ∥n−1∇W(1)f(X , θ0)T∥2∥Θ̂−1
n ∥2∥I − (I − nηΘ̂n)

t∥2∥f(X , θ0)− Y∥2

≤ n−1∥∇W(1)f(X , θ0)T∥2 ·Op(1).

Here ∇W(1)f(X , θ0)T is a n ×M matrix, the ij-th entry of the matrix is ∇
W

(1)
i
f(xj, θ0).

According to (2.71), we have ∇
W

(1)
i
f(xj, θ0) = Op(n

−1/2). Then we get ∥∇W(1)f(X , θ0)T∥2 =

Op(1) by the law of large numbers. So we have ∥W(1) − Ŵ
(1)
t ∥2 = Op(n

−1), and Op(n
−1)

does not contain any constant factor which is related to t. Then we get

sup
t
∥W1 − Ŵ1

t ∥2 = Op(n
−1), as n→∞.

Similarly we can prove

sup
t
∥b1 − b̂1

t∥2 = Op(n
−1), as n→∞, (2.86)

sup
t
∥b2 − b̂2t∥ = Op(n

−1), as n→∞. (2.87)
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For W̃
(2)
t − Ŵ

(2)
t , we have

∥W(2) − Ŵ
(2)
t ∥2 = ∥n−1∇W(2)f(X , θ0)T

(
Θ̂−1
n [I − (I − nηΘ̂n)

t]−

Θ̃−1
n [I − (I − nηΘ̃n)

t]
)
(f(X , θ0)− Y)∥2

≤ ∥n−1∇W(2)f(X , θ0)T∥2
(
∥Θ̂−1

n − Θ̃−1
n ∥2∥I − (I − nηΘ̂n)

t∥2+

∥Θ̃−1
n ∥2∥[I − (I − nηΘ̂)t]− [I − (I − nηΘ̃)t]∥2

)
∥f(X , θ0)− Y∥2

≤ n−1∥∇W(2)f(X , θ0)T∥2(Op(n
−1)Op(1) +Op(1)Op(n

−1)) ·Op(1)

= Op(n
−2)∥∇W(2)f(X , θ0)T∥2.

Here ∇W(2)f(X , θ0)T is a n × M matrix, the ij-th entry of the matrix is ∇
W

(2)
i
f(xj, θ0).

According to (2.73), we have ∇
W

(2)
i
f(xj, θ0) = Op(1). Then ∥∇W(2)f(X , θ0)T∥2 = Op(n

1/2)

by the law of large numbers. So we have ∥W̃(2)
t − Ŵ

(2)
t ∥2 = Op(n

−3/2), and Op(n
−3/2) does

not contain any constant factor which is related to t. Then we get

sup
t
∥W̃2

t − Ŵ2
t ∥2 = Op(n

−3/2), as n→∞.

2.F Training Only the Output Layer Approximates Training a Wide

Shallow Network

Corollary 11 is obtained by combining Theorem 10 and the fact that training a linearized model

approximates training a wide network [LXS19b, Theorem H.1]. Although [LXS19b, Theorem

H.1] consider Gaussian initialization, the arguments extend to sub-Gaussian initialization.

Proof of Corollary 11. Using Theorem 10, we have that

sup
t
|f lin(x, ω̃t)− f lin(x, ωt)| = Op(n

−1), as n→∞. (2.88)
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According to [LXS19b, Theorem H.1], in the case of Gaussian initialization, we have

sup
t
|f lin(x, ωt)− f(x, θ)| = Op(n

− 1
2 ), as n→∞.

Under our neural network setting, which is a one-input network with a single hidden layer of n

ReLUs and a linear output, we can generalize the above result to sub-Gaussian initialization.

In the remark of Theorem 10, we illustrate that the empirical NTK converges to analytic

NTK for initialization with finite variance distribution. Then for sub-Gaussian initialization

the empirical NTK still converges to analytic NTK. Then the only part we need to adapt in

the proof of [LXS19b, Theorem H.1] is the following theorem [LXS19b, Theorem G.3]:

Theorem 26. Let A be an N × n random matrix whose entries are independent standard

normal random variables. Then for every t ≥ 0, with probability at least 1− 2 exp(−t2/2) one

has

∥A∥op ≤
√
N +

√
n+ t.

Then [LXS19b] applies the above theorem to weight matrices in the neural network. In our

case, we use sub-Gaussian initialization and next we derive the similar bound for ∥W(1)∥op

and ∥W(2)∥op. Since W (1)
ij is sub-Gaussian, P(|W (1)

ij | ≥ t) ≤ 2 exp(−t2/2σ2) for some positive

σ. Then (W
(1)
ij )2 is sub-exponential. Using the property of sub-Gaussian exponential, we

have E exp(|W (1)
ij |2/λ) ≤ 2 for some positive λ. Using [Ver18, Theorem 1.4.1], we have

P

(
|

n∑
i=1

d∑
j=1

(W
(1)
ij )2 − E

n∑
i=1

d∑
j=1

(W
(1)
ij )2| ≥ t

)
≤ 2 exp

[
−cmin

(
t2

ndλ2
,
t

λ

)]
,

where c is a constant. Let t = ndλ, then we have

P

(
n∑
i=1

d∑
j=1

(W
(1)
ij )2 ≥ E

n∑
i=1

d∑
j=1

(W
(1)
ij )2 + ndλ

)
≤ 2 exp(−cnd).
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The above equation means that with probability at least 1− 2 exp(−cnd),

∥W(1)∥2F =
n∑
i=1

d∑
j=1

(W
(1)
ij )2

≤ E
n∑
i=1

d∑
j=1

(W
(1)
ij )2 + ndλ

= ndE(W (1)
ij )2 + ndλ

= O(n).

So ∥W(1)∥op ≤ ∥W(1)∥F = Op(
√
n). For a similar reason, ∥W(2)∥op = Op(1). Then following

similar arguments as [LXS19b] we can show that

sup
t
|f lin(x, ωt)− f(x, θ)| = Op(n

− 1
2 ), as n→∞.

Combining the above equation with (2.88) concludes the proof.

2.G Proof of Theorem 12

Proof of Theorem 12. The Lagrangian of problem (2.19) is

L(αn, λ
(n)) =

∫
R2

α2
n(W

(1), b) dµn(W
(1), b) +

M∑
j=1

λ
(n)
j (gn(xj, αn)− yj).

The optimal condition is ∇αnL = 0, which means

∇αnL = 2αn(W
(1), b)+

M∑
j=1

λ
(n)
j [⟨W(1),xj⟩+b]+ = 0 when (W(1), b) = (W

(1)
i , bi), i = 1, . . . , k.

Then we get

αn(W
(1), b) = −1

2

M∑
j=1

λ
(n)
j [⟨W(1),xj⟩+ b]+ when (W(1), b) = (W

(1)
i , bi), i = 1, . . . , k.
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Since only function values on (W
(1)
i , bi)

M
i=1 are taken into account in problem (2.19), we can

let

αn(W
(1), b) = −1

2

M∑
j=1

λ
(n)
j [⟨W(1),xj⟩+ b]+ ∀(W(1), b) ∈ Rd+1 (2.89)

without changing
∫
R2 α

2
n(W

(1), b) dµn(W
(1), b) and gn(x, αn).

Here λ(n)j , j = 1, . . . ,M are chosen to make gn(xi, αn) = yi, i = 1, . . . ,M . This means

that

−1

2

M∑
j=1

λ
(n)
j

∫
R2

[⟨W(1),xj⟩+ b]+[⟨W(1),xi⟩+ b]+ dµn(W
(1), b) = yi, i = 1, . . . ,M. (2.90)

Similarly, the Lagrangian of problem (2.20) is

L̃(α, λ) =

∫
R2

α2(W(1), b) dµ(W(1), b) +
M∑
j=1

λj(g(xj, α)− yj).

The optimality condition is ∇αL̃ = 0, which means

∇αL̃ = 2α(W(1), b) +
M∑
j=1

λj[⟨W(1),xj⟩+ b]+ = 0 ∀(W(1), b) ∈ Rd+1.

Then we get

α(W(1), b) = −1

2

M∑
j=1

λj[⟨W(1),xj⟩+ b]+ ∀(W(1), b) ∈ Rd+1. (2.91)

Here λj, j = 1, . . . ,M are chosen to make g(x, α) = yi, i = 1, . . . ,M . This means that

−1

2

M∑
j=1

λj

∫
R2

[⟨W(1),xj⟩+ b]+[⟨W(1),xi⟩+ b]+ dµ(W(1), b) = yi, i = 1, . . . ,M. (2.92)

Compare (2.90) and (2.92). Since the number of samples is finite, xi is also bounded. Then

by the assumption that W and B have finite fourth moments, we have that [⟨W(1),xj⟩ +

63



b]+[⟨W(1),xi⟩ + b]+ has finite variance. According to central limit theorem, as n → ∞,∫
R2 [⟨W(1),xj⟩ + b]+[⟨W(1),xi⟩ + b]+ dµn(W

(1), b) tends to a Gaussian distribution with

variance O(n−1). This implies that ∀i = 1, . . . ,M, ∀j = 1, . . . ,M ,

|
∫
R2

[⟨W(1),xj⟩+ b]+[⟨W(1),xi⟩+ b]+ dµn(W
(1), b)

−
∫
R2

[⟨W(1),xj⟩+ b]+[⟨W(1),xi⟩+ b]+ dµ(W(1), b)|

= Op(n
−1/2)

Since (2.90) and (2.92) are systems of linear equations and coefficients of (2.90) converge to

coefficients of (2.92) at the rate of Op(n
−1/2), then we get

|λnj − λj| = Op(n
−1/2), j = 1, . . . ,M. (2.93)

Compare (2.89) and (2.91). Given (W(1), b), we have

|αn(W(1), b)− α(W(1), b)| = Op(n
−1/2). (2.94)

Next we want to prove that supx∈D |gn(x, αn)− g(x, α)| = Op(n
−1/2). Firstly, we prove that

supx∈D |gn(x, α)− g(x, α)| = Op(n
−1/2). Note that

gn(x, α) =

∫
R2

α(W(1), b)[⟨W(1),x⟩+ b]+ dµn(W
(1), b)

g(x, α) =

∫
R2

α(W(1), b)[⟨W(1),x⟩+ b]+ dµ(W(1), b).

Therefore,

E(gn(x, α)) = g(x, α)

Var(gn(x, α)) =
1

n

∫
R2

[α(W(1), b)[⟨W(1),x⟩+ b]+ − g(x, α)]2 dµ(W(1), b).
(2.95)

Here the expectation and the variance are with respect to (W
(1)
i , bi)

n
i=1. According to (2.91)
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and the assumption that W and B have finite fourth moments, the integral in (2.95) is

bounded on D. So supx∈D Var gn(x, α) = O(n−1). According to central limit theorem, as

n → ∞, gn(x, α) tends to Gaussian distribution of variance O(n−1) for any x ∈ D. Then

|gn(x, α)−g(x, α)| = Op(n
−1/2) pointwise on D.Then we only need to prove that the sequence

of functions {gn(x, α)}∞n=1 is uniformly equicontinuous. Actually, ∀x1,x2 ∈ D

|gn(x1, α)− gn(x2, α)|

≤
∫
R2

∣∣α(W(1), b)[⟨W(1),x1⟩+ b]+ − α(W(1), b)[⟨W(1),x2⟩+ b]+
∣∣ dµn(W(1), b)

≤
∫
R2

∣∣α(W(1), b)
∣∣∣∣∣W(1)

i

∣∣∣|x1 − x2| dµn(W(1), b)

≤
∫
R2

∣∣α(W(1), b)
∣∣∣∣∣W(1)

i

∣∣∣ dµn(W(1), b)|x1 − x2|.

Notice that
∫
R2

∣∣α(W(1), b)
∣∣∣∣∣W(1)

i

∣∣∣ dµn(W(1), b) →
∫
R2

∣∣α(W(1), b)
∣∣∣∣∣W(1)

i

∣∣∣ dµ(W(1), b) with

probability 1 according to the law of large numbers. Hence
∫
R2

∣∣α(W(1), b)
∣∣∣∣∣W(1)

i

∣∣∣ dµn(W(1), b)

is bounded and the bound is independent of n. So {gn(x, α)}∞n=1 is uniformly equicontinuous.

Then by similar arguments to the Arzela-Ascoli theorem,

sup
x∈D
|gn(x, α)− g(x, α)| = Op(n

−1/2). (2.96)
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Finally, we prove that supx∈D |gn(x, αn)− gn(x, α)| = Op(n
−1/2). Since ∀x ∈ D

|gn(x, αn)− gn(x, α)|

≤
∫
R2

∣∣αn(W(1), b)[⟨W(1),x⟩+ b]+ − α(W(1), b)[⟨W(1),x⟩+ b]+
∣∣ dµn(W(1), b)

≤
∫
R2

∣∣αn(W(1), b)− α(W(1), b)
∣∣[⟨W(1),x⟩+ b]+ dµn(W

(1), b)

≤
∫
R2

∣∣∣∣∣−1

2

M∑
j=1

(λnj − λj)[⟨W(1),xj⟩+ b]+

∣∣∣∣∣[⟨W(1),x⟩+ b]+ dµn(W
(1), b)

≤1

2

M∑
j=1

|λnj − λj|
∫
R2

[⟨W(1),xj⟩+ b]+[⟨W(1),x⟩+ b]+ dµn(W
(1), b)

≤1

2

(
max
x∈D

∫
R2

[⟨W(1),xj⟩+ b]+[⟨W(1),x⟩+ b]+ dµn(W
(1), b)

) M∑
j=1

|λnj − λj|.

Because D is compact and
∫
R2 [⟨W(1),xj⟩ + b]+[⟨W(1),x⟩ + b]+ dµn(W

(1), b) converges ac-

cording to the law of large numbers, we have that maxx∈D
∫
R2 [⟨W(1),xj⟩+ b]+[⟨W(1),x⟩+

b]+ dµn(W
(1), b) is bounded by a finite number independent of n. Then according to (2.93),

sup
x∈D
|gn(x, αn)− gn(x, α)| = Op(n

−1/2).

Combined with (2.96), we have

sup
x∈D
|gn(x, αn)− g(x, α)| = Op(n

−1/2).

This concludes the proof.
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2.H Proofs of Results for Univariate Regression

2.H.1 Proof of Theorem 13

The second derivative g′′ is given by

g′′(x, γ) = pC(x)

∫
R
γ(W (1), x)

∣∣W (1)
∣∣ dνW|C=x(W

(1)). (2.97)

The detailed calculation of (2.97) is as follows:

g′′(x, γ) =

∫
R2

γ(W (1), c)
∣∣W (1)

∣∣δ(x− c) dν(W (1), c)

=

∫
supp(νC)

(∫
R
γ(W (1), c)

∣∣W (1)
∣∣ dνW|C=c(W

(1))

)
δ(x− c) dνC(c)

=

∫
supp(νC)

(∫
R
γ(W (1), c)

∣∣W (1)
∣∣ dνW|C=c(W

(1))

)
δ(x− c)pC(c)dc

= pC(x)

∫
R
γ(W (1), x)

∣∣W (1)
∣∣ dνW|C=x(W

(1)).

(2.98)

Proof of Theorem 13. First, if x ̸∈ supp(ζ), similar to (2.97), we have

g(x, (γ, u, v)) = pC(x)

∫
R
γ(W (1), x)

∣∣W (1)
∣∣ dνW|C=x(W

(1))

= 0.

Next, we prove that g(x, (γ, u, v)) restricted on supp(ζ) is the solution of the following

problem:

min
h∈C2(supp(ζ))

∫
supp(ζ)

(h′′(x))2

ζ(x)
dx

subject to h(xj) = yj, j = 1, . . . ,m.

(2.99)

Let L(f) =
∫
supp(ζ)

(f ′′(x))2

p(x)E(W2|C=x)dx. Then the functional L(f) is strictly convex on space

{f ∈ C2(R2)|f(xi) = yi, i = 1, . . . ,m} when m ≥ 2. This means that the minimizer of

problem (2.99) is unique.

Suppose h(x) is the minimizer of problem (2.99) and h(x) is different from g(x, (γ, u, v))
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restricted on supp(ζ). Then by uniqueness of the solution,

L(h) < L(g(·, (γ, u, v))). (2.100)

Now our goal is to find a different (γ, u, v) with smaller cost in problem (2.22). Then (γ, u, v)

is not the solution of (2.22), which is a contradiction. We set

γ(W (1), c) =
h′′(c)|W (1)|

pC(c)E(W2|C = c)
, c ∈ supp(ζ).

Then according to (2.97),

g′′(x, γ) = p(x)

∫
R
γ(W (1), x)

∣∣W (1)
∣∣ dνW|C=x(W

(1))

= p(x)

∫
R

h′′(x)|W (1)|
p(x)E(W2|C = x)

∣∣W (1)
∣∣ dνW|C=x(W

(1))

=
h′′(x)

E(W2|C = x)

∫
R

∣∣W (1)
∣∣2 dνW|C=x(W

(1))

=
h′′(x)

E(W2|C = x)
E(W2|C = x)

= h′′(x), x ∈ supp(ζ).

This means that we can find u, v ∈ R such that ux+v+g(x, γ) ≡ h(x). Then we find (γ, u, v)

such that g(x, (γ, u, v)) = ux+ v+ g(x, γ) = h(x) on supp(ζ). So g(xj, (γ, u, v)) = h(xj) = yj .

It means that (γ, u, v) satisfies the condition in problem (2.22). Next we compute the cost of
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(γ, u, v):

∫
R2

γ2(W (1), c) dν(W (1), c)

=

∫
R2

(
h′′(c)|W (1)|

pC(c)E(W2|C = c)

)2

dν(W (1), c)

=

∫
supp(ζ)

(∫
R

(
h′′(c)|W (1)|

pC(c)E(W2|C = c)

)2

dνW|C=c(W
(1))

)
dνC(c)

=

∫
supp(ζ)

(
h′′(c)

pC(c)E(W2|C = c)

)2(∫
R
|W (1)|2 dνW|C=c(W

(1))

)
pC(c)dc

=

∫
supp(ζ)

(
h′′(c)

pC(c)E(W2|C = c)

)2(∫
R
|W (1)|2 dνW|C=c(W

(1))

)
pC(c)dc

=

∫
supp(ζ)

(h′′(c))2

pC(c)E(W2|C = c)
dx

=L(h).

(2.101)

On the other hand, the cost of (γ, u, v) is

∫
R2

γ2(W (1), c) dν(W (1), c)

=

∫
supp(ζ)

(∫
R
γ2(W (1), c) dνW|C=c(W

(1))

)
pC(c)dc

≥
∫
supp(ζ)

(∫
R γ(W

(1), c)|W (1)| dνW|C=c
)2∫

R |W (1)|2 dνW|C=c
pC(c)dc (Cauchy-Schwarz inequality)

=

∫
supp(ζ)

(g′′(c, γ)/pC(c)))
2∫

R |W (1)|2 dνW|C=c
pC(c)dc (according to (2.97))

=

∫
supp(ζ)

(g′′(c, γ))2

pC(c)E(W2|C = c)
dc

=L(g(·, γ))

=L(g(·, (γ, u, v))) (g(·, (γ, u, v)) has the same second derivative as g(·, γ)).

(2.102)
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From this we have∫
R2

γ2(W (1), c) dν(W (1), c) = L(h) (according to (2.101))

< L(g(·, (γ, u, v))) (according to (2.100))

≤
∫
R2

γ2(W (1), c) dν(W (1), c) (according to (2.102)).

It means that the cost of (γ, u, v) is smaller than the cost of (γ, u, v). So (γ, u, v) is not

the solution of (2.99), which is a contradiction. So our assumption is wrong. So h(x) ≡

g(x, (γ, u, v)) on supp(ζ), and g(x, (γ, u, v)) is the solution of problem (2.99). In the last step

we prove that g′′(x, (γ, u, v)) = 0 when x ̸∈ [mini xi,maxi xi] and g(x, (γ, u, v)) restricted on

supp(ζ) ∩ [mini xi,maxi xi] is the solution of (2.99). We only need to prove these statements

for h(x), which is the solution of (2.99).

Since |xi| ∈ [mini xi,maxi xi], the function values on (−∞,mini xi) and (maxi xi,∞) are

not related to constraints of problem (2.99), so h(x) can be replaced by following h̃(x) which

also satisfies the constraints of problem (2.99):

h̃(x) =


h(x) x ∈ [mini xi,maxi xi]

h′(mini xi)(x−mini xi) + h(mini xi) x ∈ (−∞,mini xi)

h′(maxi xi)(x−maxi xi) + h(maxi xi) x ∈ (maxi xi,∞).

Then we get

h̃′′(x) =


h′′(x) x ∈ [mini xi,maxi xi]

0 x ∈ (−∞,mini xi)

0 x ∈ (maxi xi,∞).

So the cost of h̃(x) is less than that of h(x). Then the fact h(x) is the minimizer of (2.99)

tell us that h(x) ≡ h̃(x). So h(x) should be linear on (−∞,mini xi) and (maxi xi,∞). Then

h′′(x) = 0 when x ̸∈ [mini xi,maxi xi]. Let h(x)|S denote the function h(x) restricted on

S = supp(ζ) ∩ [mini xi,maxi xi]. Since h(x) is the solution to problem (2.99), we get h(x)|S
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is the solution to problem (2.99). This concludes the proof.

In the case of not using ASI, problem (2.22) becomes

min
γ∈C(R2),u∈R,v∈R

∫
R2

γ2(W (1), c) dν(W (1), c)

subject to uxj + v +

∫
R2

γ(W (1), c)[W (1)(xj − c)]+ dν(W (1), c) = yj − f(xj, θ0),

j = 1, . . . ,M.

(2.103)

Then Theorem 13 without ASI is stated as follows.

Theorem 27 (Theorem 13 without ASI). Suppose (γ, u, v) is the solution of (2.103), and

consider the corresponding output function

g(x, (γ, u, v)) = ux+ v +

∫
R2

γ(W (1), c)[W (1)(x− c)]+ dν(W (1), c) + f(x, θ0). (2.104)

Then g(x, (γ, u, v)) satisfies g′′(x, (γ, u, v)) = f ′′(x, θ0) for x ̸∈ S and for x ∈ S it is the

solution of the following problem:

min
h∈C2(S)

∫
S

(h′′(x)− f ′′(x, θ0))
2

ζ(x)
dx

subject to h(xj) = yj, j = 1, . . . ,M.

(2.105)

2.H.2 Proof of Proposition 14 and Remarks to Proposition 15

Proof of Proposition 14. Let pW,C and pW,B denote the joint density functions of (W , C) and

(W ,B), respectively. We have

pW,C(W, c) =

∣∣∣∣∂(W,−Wc)

∂(W, c)

∣∣∣∣pW,B(W,−Wc) = |W |pW,B(W,−Wc),
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and
E(W 2|C = x)pC(x) =

∫
R
W 2pW|C=x(W ) dW · pC(x)

=

∫
R
W 2pW,C(W,x) dW

=

∫
R
|W |3pW,B(W,−Wx) dW.

(2.106)

Proof of Proposition 15. The construction is given in the statement of the proposition.

Remark 28 (Remark to Proposition 15, sampling the initial parameters). The variables

(W ,B) can be sampled by first sampling C from pC(x) =
1
Z

1
ϱ(x)

, then independently sampling

W from a standard Gaussian distribution and setting B = −WC. In this construction, in

general W and B are not independent.

Intuitively, if we want the output function to be smooth at a certain point x0, we can let

the conditional distribution of W given C be concentrated around zero for C = x0, or we can

let the probability density function of C to be small at C = x0. Note that pC is the breakpoint

density at initialization. The form of this has been studied for uniform initialization by

[SDP20]. We provide the explicit form of the smoothness penalty function for several types

of initialization in Appendix 2.H.3.

Remark 29 (Remark to Proposition 15, independent initialization). Note that constructing

an arbitrary curvature penalty function will necessitate in general a non-independent joint

distribution of W and B. If W and B are required to be independent random variables, (2.106)

gives

ζ(x) = E(W 2|C = x)pC(x) =

∫
R
|W |3pW(W )pB(−Wx) dW.

Given a desired function for the left hand side, we can still try to solve for the parameter

densities. This type of integral equation problem has been studied [Nas73] and one can write

a formal solution, although it is not always clear whether it will be a density.
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2.H.3 Proof of Theorem 2

We prove the statement for the three considered types of initialization distributions in turn.

Proof of Theorem 2 for Gaussian initialization. Using (2.106), we have

E(W 2|C = x)pC(x) =

∫
R
|W |3pW(W )pB(−Wx)dW

=

∫
R
|W |3 1√

2πσw
e
− W2

2σ2
w

1√
2πσb

e
−W2x2

2σ2
b dW

=
1

2πσwσb

∫
R
|W |3e

−( 1

2σ2
w
+ x2

2σ2
b

)W 2

dW.

Let σ2 = 1/
(

1
σ2
w
+ x2

σ2
b

)
, then we get

E(W 2|C = x)pC(x) =
σ√

2πσwσb

∫
R
|W |3 1√

2πσ
e−

W2

2σ2 dW

=
σ√

2πσwσb
σ3 · 2 ·

√
2

π

=
2σ4

πσwσb

=
2σ3

wσ
3
b

π(σ2
b + x2σ2

w)
2
.

Then we have
ζ(x) = E(W 2|C = x)pC(x)

=
2σ3

wσ
3
b

π(σ2
b + x2σ2

w)
2
.

Proof of Theorem 2 for binary-uniform initialization. Since W is either −1 or 1, E(W2|C =

x) = 1 for any x ∈ supp(νC). Since B ∼ Unif(−ab, ab), it is easy to check −B/W ∼

Unif(−ab, ab). So ζ(x) = 1/2ab, x ∈ [−ab, ab].

Proof of Theorem 2 for uniform initialization. According to Theorem 1 in [SDP20], the den-
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sity function pC(c) of νC is

pC(c) =
1

4awab

(
min

{
ab
|c|
, aw

})2

, c ∈ supp(νC).

When |c| ≤ ab
aw

, then pC(c) = 1
4awab

(aw)
2. It means that pC(c) is constant when |c| ≤ ab

aw
.

Let pW,B(W
(1), b) denote the density function of µ, pW,C(W

(1), c) denote the density

function of ν, so

pW,C(W
(1), c) = pW,B(W

(1),−cW (1))
∂b

∂c

=
1

4awab
1W (1)∈[−aw,aw] · 1−cW (1)∈[−ab,ab] · (−W

(1)).

Here 1a is the indicator function which equals to 1 when condition a is true, and 0 otherwise.

Then density function pW|C(W
(1)|c) of the conditional distribution νW|C=c is

pW|C(W
(1)|c) = pW,C(W

(1), c)

pC(c)

=
1

4awab
1W (1)∈[−aw,aw] · 1−cW (1)∈[−ab,ab] · (−W

(1))

pC(c)
.

When |c| ≤ ab
aw

, |− cW (1)| ≤ ab
aw
aw = ab. So −cW (1) ∈ [−ab, ab] is true and 1−cW (1)∈[−ab,ab] = 1.

Combined with the fact that pC(c) is constant when |c| ≤ ab
aw

, we have pW|C(W
(1)|c) is

independent of c when |c| ≤ ab
aw

. So E(W2|C = c) is constant when |c| ≤ ab
aw

. Since ab
aw
≥ I,

E(W2|C = c) and pC(c) are constant when c ∈ [−I, I]. Then ζ(x) = E(W 2|C = x)pC(x) is

constant when c ∈ [−I, I].

2.I Proofs of Results for Multivariate Regression

2.I.1 Proof of Theorem 16

In this section, we prove Theorem 16. We will need the following lemmas:

Lemma 30. Let f ∈ Lip(Rd) be considered as a tempered distribution and (−∆)sf ≡ 0,
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s > 0. Then f is linear, i.e., f = ⟨u,x⟩+ v.

Proof of Lemma 30. In the following proof we regard f as a tempered distribution, thus

the fractional Laplacian and Fourier transform of f can be defined. We first give a brief

introduction of tempered distribution.

The space of tempered distributions S ′(Rd) is the space of continuous linear functionals

on the space of Schwartz test functions S(Rd). The space of Schwartz test functions on Rd is

the rapidly decreasing function space

S(Rd) :=

{
ψ ∈ C∞(Rd) | ∀α, β ∈ Nd, sup

x∈Rd

|xβDαψ(x)| <∞
}
. (2.107)

The details of defining norms and the topology on S(Rd) is shown in [MU08, Chapter 1].

For any f ∈ Lip(Rd), we can define a corresponding tempered distribution Tf by

Tf : S(Rd) 7→ R, Tf (ψ) =
∫
Rd

fψdx. (2.108)

So any f ∈ Lip(Rd) can be naturally regarded as a tempered distribution Tf .

Let F be the Fourier transform. Since F and its adjoint maps a Schwartz function to a

Schwartz function, we can define the Fourier transform of a tempered distribution by

F : S ′(Rd) 7→ S ′(Rd), (FTf )(ψ) =
∫
Rd

f · Gψdx, (2.109)

where G is the adjoint of F . Details of Fourier transform on tempered distributions can be

found in [MU08, Chapter 1.7].

Similarly the fractional Laplacian of a tempered distribution is defined by

(−∆)s : S ′(Rd) 7→ S ′(Rd), ((−∆)sTf )(ψ) =

∫
Rd

f · (−∆)sψdx, (2.110)

Since (−∆)sf ≡ 0, in Fourier domain we have ∥ξ∥2sFf ≡ 0. It means that the support
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of Ff is {0}. From [Fol99b, Chapter 9], we know that f̂ is the linear combinations of δ

(Dirac’s Delta) and its derivatives. Then f is a polynomial. Since f is Lipschitz continuous,

we conclude that f is linear.

Lemma 31. Let α ∈ L2(Sd−1 × R). Suppose that α = α+ + α− where α+ is even and α− is

odd. Then ∥α∥2 ≥ ∥α+∥2 and ∥α∥2 ≥ ∥α−∥2.

Proof of Lemma 31. Since

∥α∥22 = ∥α+ + α−∥22

= ∥α+∥22 + ∥α−∥22 + 2⟨α+, α+⟩

= ∥α+∥22 + ∥α−∥22 + 2

∫
Sd−1×R

α+ · α− dσd−1(V )dc

= ∥α+∥22 + ∥α−∥22,

where the last equality holds true since α+ · α− is odd. Then we have ∥α∥2 ≥ ∥α+∥2 and

∥α∥2 ≥ ∥α−∥2.

The next lemma shows that the output of the infinite-width network is Lipschitz continuous.

This is also observed in [OWS20, Proposition 8].

Lemma 32. Assume that (1) the norm of the random vector ∥W∥ has the finite second

moment; (2)
∫
R+×Sd−1×R γ

2(u,V , c) dν(u,V , c) < +∞; (3) u ∈ Rd and v ∈ R. Then

g(x, (γ,u, v)) is Lipschitz continuous.
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Proof of Lemma 32. Let α(uV ,−cu) = γ(u,V , c). For all x1,x2 ∈ Rd, we have

|g(x1, (γ,u, v))− g(x2, (γ,u, v))|

≤
∣∣∣∣∫

Rd×R
|α(W(1), b)|

∣∣[⟨W(1),x1⟩+ b]+ − [⟨W(1),x2⟩+ b]+
∣∣ dµ(W(1), b)

∣∣∣∣+ |⟨u,x1 − x2⟩|

≤
∣∣∣∣∫

Rd×R
|α(W(1), b)|

∣∣⟨W(1),x1 − x2⟩
∣∣ dµ(W(1), b)

∣∣∣∣+ |⟨u,x1 − x2⟩|

≤
(∫

Rd×R
|α(W(1), b)|∥W(1)∥ dµ(W(1), b) + ∥u∥

)
∥x1 − x2∥

≤
(∫

Rd×R
α2(W(1), b) dµ(W(1), b) ·

∫
Rd×R

∥W(1)∥2 dµ(W(1), b) + ∥u∥
)
∥x1 − x2∥

≤
(∫

Rd×R
α2(W(1), b) dµ(W(1), b) · E(∥W∥2) + ∥u∥

)
∥x1 − x2∥.

According to the assumptions,
∫
Rd×R α

2(W(1), b) dµ(W(1), b), E(∥W∥2) and ∥u∥ are all finite.

Then g(x, (γ,u, v)) is Lipschitz continuous.

Lemma 33. Given a function h ∈ Lip(Rd) ∩ C(Rd). Define ψ : Sd−1 × R → R by ψ :=

− 1
2(2π)d−1R{(−∆)(d+1)/2h}. Assume that (1)

∫
supp(ζ)

(ψ(V , c))2/ζ(V , c) dσd−1(V )dc < +∞,

where ζ(V , c) is define in (2.36), and ψ(V , c) = 0, ∀(V , c) ̸∈ supp(ζ); (2) ∥W∥2 and B both

have finite second moments; (3) (−∆)(d+1)/2h ∈ Lp(Rd), 1 ≤ p < d/(d− 1). Then there exist

u ∈ Rd and v ∈ R such that h(x) =
∫
Sd−1×R ψ(V , c)[⟨V ,x⟩ − c]+ dσd−1(V )dc+ ⟨u,x⟩+ v.

Proof of Lemma 33. Since ∥W∥2 and B both have finite second moments, we have

∫
supp(ζ)

ζ(V , c) dσd−1(V )dc

=

∫
supp(ζ)

pC|V=V (c) pV(V )E(U2|V = V , C = c) dσd−1(V )dc

= E
(
E(U2|V , C)

)
= E(U2)

= E(∥W∥22)

< +∞,
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and ∫
supp(ζ)

ζ(V , c) · c2 dσd−1(V )dc

=

∫
supp(ζ)

pC|V=V (c) pV(V )E(U2|V = V , C = c) · c2 dσd−1(V )dc

= E
(
E(U2C2|V , C)

)
= E(U2C2)

= E(B2)

< +∞.

Let h̃(x) =
∫
Sd−1×R ψ(V , c)[⟨V ,x⟩ − c]+ dσd−1(V )dc. For any x ∈ Rd, we have

∫
Sd−1×R

|ψ(V , c)|[⟨V ,x⟩ − c]+ dσd−1(V )dc

≤
∫
supp(ζ)

|ψ(V , c)|(∥V ∥2∥x∥2 + |c|) dσd−1(V )dc

≤
∫
supp(ζ)

|ψ(V , c)|(∥x∥2 + |c|) dσd−1(V )dc

≤∥x∥2

√∫
supp(ζ)

(ψ(V , c))2

ζ(V , c)
dσd−1(V )dc ·

∫
supp(ζ)

ζ(V , c) dσd−1(V )dc

+

√∫
supp(ζ)

(ψ(V , c))2

ζ(V , c)
dσd−1(V )dc ·

∫
supp(ζ)

ζ(V , c) · c2 dσd−1(V )dc

<+∞.

So h̃(x) is well-defined. The above inequality also implies that the Lipschitz constant of

h̃(x) is bounded by
∫
supp(ζ)

|ψ(V , c)|∥V ∥2 dσd−1(V )dc, which is finite. So h̃(x) is Lipschitz

continuous. Then we have

(−∆)(d+1)/2h̃ = −(−∆)(d−1)/2

∫
Sd−1×R

ψ(V , c)δ(⟨V ,x⟩ − c) dσd−1(V )dc

= −(−∆)(d−1)/2

∫
Sd−1

ψ(V , ⟨V ,x⟩) dσd−1(V )

= −(−∆)(d−1)/2R∗{ψ}.

(2.111)
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Since (−∆)(d+1)/2h ∈ Lp(Rd), 1 ≤ p < d/(d− 1), we can apply the inversion formula of the

Radon transform [Sol87]:

(−∆)(d+1)/2h =
1

2(2π)d−1
(−∆)(d−1)/2R∗{R{(−∆)(d+1)/2h}}

= −(−∆)(d−1)/2R∗{ψ}

= (−∆)(d+1)/2h̃.

According to Lemma 30, we have that h− h̃ is linear, which gives the claim.

Lemma 33 immediately gives the following corollary:

Corollary 34. If R{(−∆)(d+1)/2g} ≡ R{(−∆)(d+1)/2h}, and (−∆)(d+1)/2g, (−∆)(d+1)/2h ∈

Lp(Rd), 1 ≤ p < d/(d− 1), then g − h is linear.

Next lemma shows that the minimizer h(x) of problem (2.37) satisfies thatR{(−∆)(d+1)/2h}

is compactly supported.

Lemma 35. Consider the training data {(xi, yi)}Mi=1. Let R be the maximum 2-norm of

training inputs, i.e., R = maxi ∥xi∥2. Suppose h(x) is the solution of the optimization problem

(2.37). Then R{(−∆)(d+1)/2h}(V , c) = 0, ∀(V , c) ̸∈ Sd−1 × [−R,R].

Proof of Lemma 35. Define ψ : Sd−1 × R→ R by ψ := − 1
2(2π)d−1R{(−∆)(d+1)/2h}. Then we

construct the function ψ : Sd−1 × R→ R as follows:

ψ(V , c) =


ψ(V , c), for |c| ≤ R

0. for |c| > R.

Since the Radon transform is even, we have that ψ and ψ are both even. Since h is the solution

of (2.37), ψ satisfies all assumptions of Lemma 33. Then according to Lemma 33, h(x) =∫
Sd−1×R ψ(V , c)[⟨V ,x⟩ − c]+ dσd−1(V )dc+ ⟨u,x⟩+ v. Let h(x) =

∫
Sd−1×R ψ(V , c)[⟨V ,x⟩ −

c]+ dσd−1(V )dc. Then h(x)−h(x) =
∫
Sd−1×R(ψ−ψ)(V , c)[⟨V ,x⟩−c]+ dσd−1(V )dc+⟨u,x⟩+v.
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When |c| ≤ R, ψ − ψ = 0. When |c| > R, [⟨V ,x⟩ − c]+ is linear with respect to x on

{x : ∥x∥2 ≤ R}. It means that h(x)−h(x) is linear on {x : ∥x∥2 ≤ R}. Then we can find out

u and v such that h(x) = h(x) + ⟨u,x⟩+ v on {x : ∥x∥2 ≤ R}. Let h̃(x) = h(x) + ⟨u,x⟩+ v.

Since all training inputs satisfy ∥xi∥ ≤ R, we have that h̃(x) fits all training data. Similar to

(2.111), we have that ∆h̃ = R∗{ψ}. Since ψ has compact support, the inversion formula of

the Radon transform [Sol87] gives that ψ = − 1
2(2π)d−1R{(−∆)(d+1)/2h̃}. Since the support

of ψ is contained in the support of ψ, we have R{(−∆)(d+1)/2h̃}(V , c) = 0, ∀(V , c) ̸∈

supp(ζ). Since (−∆)(d+1)/2h̃ = −(−∆)(d−1)/2R∗{ψ} and ψ is compactly supported, we have

(−∆)(d−1)/2R∗{ψ} ∈ Lp(Rd), 1 ≤ p < d/(d− 1) according to [Sol87, Lemma 4.1]. The above

argument shows that h̃ satisfies all constrains of the problem (2.37). Since h is the solution

of (2.37), we have
∫
supp(ζ)

(ψ(V ,c))2

ζ(V ,c)
dσd−1(V )dc ≤

∫
supp(ζ)

(ψ(V ,c))
2

ζ(V ,c)
dσd−1(V )dc. It means that

ψ(V , c) = 0 when |c| > R, which gives the claim.

The proof of Lemma 35 also applies to the optimization problem without the constraint

R{(−∆)(d+1)/2h}(V , c) = 0, ∀(V , c) ̸∈ supp(ζ). Then we have the following corollary.

Corollary 36. Consider the training data {(xi, yi)}Mi=1. Let R be the maximum 2-norm

of training inputs, i.e., R = maxi ∥xi∥2. Suppose h(x) is the solution of the following

optimization problem:

min
h∈Lip(Rd)∩C(Rd)

∫
supp(ζ)

(
R{(−∆)(d+1)/2h}(V , c)

)2
ζ(V , c)

dσd−1(V )dc

subject to h(xj) = yj, j = 1, . . . ,M,

(−∆)(d+1)/2h ∈ Lp(Rd), 1 ≤ p < d/(d− 1).

(2.112)

Then R{(−∆)(d+1)/2h}(V , c) = 0, ∀(V , c) ̸∈ Sd−1 × [0, R]. It means that if Sd−1 × [0, R] ⊂

supp(ζ), h(x) is also the solution of (2.37).

Now we are ready to prove Theorem 16. We use the proof technique of Theorem 13 and

(2.34).
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Proof of Theorem 16. First, according to (2.28) and (2.34), if (V , c) ̸∈ supp(ζ), we have

|R{(−∆)(d+1)/2g(·, (γ,u, v))}(V , c)|

=|2(2π)d−1

∫
R
γ(u,V , c) · u dνU|V=V ,C=c(u) · pC|V=V (c) pV(V )|

≤|2(2π)d−1

∫
R
γ2(u,V , c) dνU|V=V ,C=c(u) · E(U2|V = V , C = c)pC|V=V (c) pV(V )|

=0.

(2.113)

By Lemma 32, we have that g(x, (γ,u, v)) is Lipschitz continuous, thus g(x, (γ,u, v)) satisfies

all constraints of (2.37). Next, we prove that g(x, (γ,u, v)) is the solution of (2.37).

Let L(f) =
∫
supp(ζ)

(R{(−∆)(d+1)/2g}(V ,c))
2

ζ(V ,c)
dσd−1(V )dc. We first show that when m ≥ d+1,

the functional L(f) is strictly convex on the feasible set, which means that the minimizer of

problem (2.37) is unique.

Suppose f1, f2 are two different functions in the feasible set of (2.37). SoR{(−∆)(d+1)/2f1}

and R{(−∆)(d+1)/2f2} should be different. Otherwise, according to Corollary 34, f1 − f2

is a linear function. We know that (f1 − f2)(xi) = 0, i = 1, . . . ,m. So f1 = f2 on at least

d+ 1 points. Then f1 − f2 ≡ 0 and this is a contradiction. Since R{(−∆)(d+1)/2(f1)} and

R{(−∆)(d+1)/2(f2)} are different, by strict convexity of the square function, we have that

L(f) is strictly convex on the feasible set.

Suppose h(x) is the minimizer of problem (2.37) and h(x) is different from g(x, (γ,u, v)).

Then by uniqueness of the solution,

L(h) < L(g(x, (γ,u, v))). (2.114)

Now our goal is to find a different (γ,u, v) with smaller cost in problem (2.26). Then
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(γ,u, v) is not the solution of (2.26), which is a contradiction. We set

γ(u,V , c) =


R{(−∆)(d+1)/2h}(V , c) · u
−2(2π)d−1ζ(V , c)

, (V , c) ∈ supp(ζ),

0, (V , c) ̸∈ supp(ζ).

According to (2.32), we have ∆g(·, (γ,0, 0)) = R∗{β} where β is defined in (2.28) and

(2.31). Using Lemma 35, we know that R{(−∆)(d+1)/2h} is compactly supported. Then

we can easily verify that β is also compactly supported. According to [Sol87, Lemma 4.1],

(−∆)(d−1)/2R∗{β} ∈ Lp(Rd), 1 ≤ p < d/(d− 1), which means that g(·, (γ,0, 0)) satisfies the

third constraint of the optimization problem (2.37).

Since the Radon transform is an even function, we have γ(u,V , c) = γ(u,−V ,−c). Since

the distribution of (W ,B) is symmetric, we have that νU|V=V ,C=c is the same probability

measure as νU|V=−V ,C=−c and pC|V=V (c)p−V(V ) = pC|V=V (−c)pV(−V ). From the definition

of κ (2.28) and β (2.31), we have that κ and β are even. Then the odd part β− of β is 0.

According to (2.34),

R{(−∆)(d+1)/2g(·, (γ,0, 0)))}(V , c)

=− 2(2π)d−1pC|V=V (c)pV(V )

∫
R+

γ(u,V , c) · u dνU|V=V ,C=c(u)

=− 2(2π)d−1pC|V=V (c)pV(V )

∫
R+

R{(−∆)(d+1)/2h}(V , c) · u2

−2(2π)d−1ζ(V , c)
dνU|V=V ,C=c(u)

=− 2(2π)d−1pC|V=V (c)pV(V )
R{(−∆)(d+1)/2h}(V , c) · E(U2|V = V , C = c)

−2(2π)d−1ζ(V , c)

=R{(−∆)(d+1)/2h}(V , c), (V , c) ∈ supp(ζ).

(2.115)

It is not difficult to show that if (V , c) ̸∈ supp(ζ), thenR{(−∆)(d+1)/2g(·, (γ, 0, 0)))}(V , c) = 0

as in (2.113). Then, according to (2.115), R{(−∆)(d+1)/2g(·, (γ,0, 0)))} ≡ R{(−∆)(d+1)/2h}.

According to Corollary 34, we have that g(·, (γ,0, 0)))− h is a linear function. This means

that we can find u ∈ Rd, v ∈ R such that ⟨u,x⟩ + v + g(x, (γ,0, 0))) ≡ h(x). Then we

find (γ,u, v) such that g(x, (γ,u, v)) = ⟨u,x⟩ + v + g(x, (γ,0, 0))) = h(x) on supp(ζ). So
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g(xj, (γ,u, v)) = h(xj) = yj. This means that (γ,u, v) satisfies the condition in problem

(2.26). Next we compute the cost of (γ,u, v):

∫
R+×Sd−1×R

γ2(u,V , c) dν(u,V , c)

=

∫
R+×Sd−1×R

(
R{(−∆)(d+1)/2h}(V , c) · u
−2(2π)d−1ζ(V , c)

)2

dν(u,V , c)

=

∫
Sd−1×R

(
R{(−∆)(d+1)/2h}(V , c)

ζ(V , c)

)2(∫
R+ u

2 dνU|V=V ,C=c(u)

4(2π)2(d−1)

)
dνV,C(V , c)

=

∫
Sd−1×R

(
R{(−∆)(d+1)/2h}(V , c)

ζ(V , c)

)2E(U2|V = V , C = c)pC|V=V (c) pV(V )

4(2π)2(d−1)
dσd−1(V )dc

=
1

4(2π)2(d−1)

∫
Sd−1×R

(
R{(−∆)(d+1)/2h}(V , c)

)2
ζ(V , c)

dσd−1(V )dc

=
1

4(2π)2(d−1)
L(h).

(2.116)

According to (2.34), the cost of (γ,u, v) is

∫
R+×Sd−1×R

γ2(u,V , c) dν(u,V , c)

=

∫
Sd−1×R

(∫
R+

γ2(u,V , c) dνU|V=V ,C=c(u)

)
dνV,C(V , c)

≥
∫
Sd−1×R

(∫
R+ γ(u,V , c) · u dνU|V=V ,C=c(u)

)2
E(U2|V = V , C = c)

dνV,C(V , c)

=

∫
Sd−1×R

(
R{(−∆)(d+1)/2g(·, (γ,0, 0))}(V , c)− 2(2π)d−1β−

2(2π)d−1pC|V=V (c) pV(V )

)2
dνV,C(V , c)

E(U2|V = V , C = c)

≥
∫
Sd−1×R

(
R{(−∆)(d+1)/2g(·, (γ,0, 0))}(V , c)

2(2π)d−1pC|V=V (c) pV(V )

)2
pC|V=V (c) pV(V )

E(U2|V = V , C = c)
dσd−1(V )dc

=

∫
Sd−1×R

(
R{(−∆)(d+1)/2g(·, (γ,0, 0))}(V , c)

)2
4(2π)2(d−1)pC|V=V (c) pV(V )E(U2|V = V , C = c)

dσd−1(V )dc

=
1

4(2π)2(d−1)
L(g(·, (γ,0, 0)))

=
1

4(2π)2(d−1)
L(g(·, (γ,u, v))) (since (−∆)(d+1)/2 is invariant up to a linear function),

(2.117)

where the first inequality is by the Cauchy-Schwarz inequality and the second inequality
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is by the Lemma 31 and the fact that R{(−∆)(d+1)/2g(·,(γ,0,0))}(V ,c)
2(2π)d−1pC|V=V (c) pV (V )

is an even function and
−2(2π)d−1β−

2(2π)d−1pC|V=V (c) pV (V )
is an odd function. Then we have

∫
R+×Sd−1×R

γ2(u,V , c) dν(u,V , c)

=
1

4(2π)2(d−1)
L(h) (according to (2.116))

<
1

4(2π)2(d−1)
L(g(·, (γ,u, v))) (according to (2.114))

≤
∫
R+×Sd−1×R

1

4(2π)2(d−1)
γ2(u,V , c) dν(u,V , c) (according to (2.117)).

This means that the cost of (γ,u, v) is smaller than the cost of (γ,u, v). This implies that

(γ,u, v) is not the solution of (2.26), which is a contradiction and hence the assumption

cannot be true. In turn, h(x) ≡ g(x, (γ,u, v)), and g(x, (γ,u, v) is the solution of problem

(2.26). This concludes the proof.

2.I.2 Proof of Theorem 7

Proof of Theorem 7. To simplify the analysis, we let f(x, θ0) ≡ 0. The analysis still holds

without this simplification. It is easy to verify that supp(ζ) = Sd−1 × [−ab, ab] and ζ(V , c) is

constant over supp(ζ) according to Proposition 17. According to Corollary 36, we have that

the variational problem (2.8) is equivalent to the following variational problem:

min
h∈Lip(Rd)∩C(Rd)

∫
supp(ζ)

(
R{(−∆)(d+1)/2h}(V , c)

)2
dσd−1(V )dc

subject to h(xj) = yj, j = 1, . . . ,M,

(−∆)(d+1)/2h ∈ Lp(Rd), 1 ≤ p < d/(d− 1).

(2.118)

The solution h(x) of (2.118) satisfies that R{(−∆)(d+1)/2h}(V , c) = 0, ∀(V , c) ̸∈ Sd−1 ×

[0,maxi ∥xi∥2]. The assumption ab ≥ maxi ∥xi∥2 means that Sd−1× [0,maxi ∥xi∥2] ⊂ supp(ζ).

So R{(−∆)(d+1)/2h}(V , c) = 0, ∀(V , c) ̸∈ supp(ζ), which means that h(x) is also the solution
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of the following variational problem:

min
h∈Lip(Rd)∩C(Rd)

∫
Sd−1×R

(
R{(−∆)(d+1)/2h}(V , c)

)2
dσd−1(V )dc

subject to h(xj) = yj, j = 1, . . . ,M.

(−∆)(d+1)/2h ∈ Lp(Rd), 1 ≤ p < d/(d− 1).

(2.119)

So it is sufficient to prove that if h ∈ Lip(Rd) and (−∆)(d+1)/2h ∈ Lp(Rd), 1 ≤ p < d/(d− 1),

we have

∫
Sd−1×R

(
R{(−∆)(d+1)/2h}(V , c)

)2
dσd−1(V )dc =

∫
Rd

(
(−∆)(d+3)/4h(x)

)2
dx.

Given f : Sd−1 × R→ R, let f̃ be the Fourier transform over affine parameter:

f̃(V , τ) =

∫ ∞

∞
f(V , c)e−icτdc.

According to [Sol87, Lemma 4.5], we have

R̃{(−∆)(d+1)/2h}(V , τ) = ̂(−∆)(d+1)/2h(τV )

= ∥τ∥d+1ĥ(τV ) a.e.,
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where ĥ is the Fourier transform of h. Then we have∫
Sd−1×R

(
R{(−∆)(d+1)/2h}(V , c)

)2
dσd−1(V )dc

=

∫
Sd−1×R

(
R̃{(−∆)(d+1)/2h}(V , τ)

)2
dσd−1(V )dτ

=

∫
Sd−1×R

(
∥τ∥d+1ĥ(τV )

)2
dσd−1(V )dτ

=

∫
Rd

(
∥τ∥(d+3)/2ĥ(x)

)2
dx

=

∫
Rd

(
̂(−∆)(d+3)/4h(x)

)2
dx

=

∫
Rd

(
(−∆)(d+3)/4h(x)

)2
dx.

2.I.3 Proof of Theorem 8

In order to prove Theorem 8, we need following lemmas:

Lemma 37. For any d ≥ 2 and x1,x2 ∈ Rd, we have (−∆)(d+1)/2(∥x− x1∥3 − ∥x− x2∥3) =

Cd(Γ(x− x1)− Γ(x− x2)), where Cd is a constant.

Proof of Lemma 37. In order to prove the lemma, we need the following simple fact that

(−∆)∥x∥p = C̃p∥x∥p−2, (2.120)

where C̃p is a constant depends on p.

For d ≥ 3, we can actually prove that (−∆)(d+1)/2∥x∥3 = Cd(Γ(x)). We discuss the cases

of odd d and even d separately. If d is odd, we apply (2.120) for (d+ 1)/2 times and get

(−∆)(d+1)/2∥x∥3 = C̄∥x∥3−(d+1)

= Cd(Γ(x)),
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where Cd and C̄ are some constant.

If d is even, we apply (2.120) for d/2 times and get

(−∆)(d+1)/2∥x∥3 = C̄(−∆)1/2∥x∥3−d.

Then we only need to prove that (−∆)1/2∥x∥3−d = C∥x∥2−d for some constant C. Let

g(x) = (−∆)1/2∥x∥3−d. Since the fraction Laplacian can be written a singular integral, we

have

g(x) = C1

∫
Rd

∥x∥3−d − ∥y∥3−d

∥x− y∥d+1
dy,

where C1 is some constant. It is easy to see that g(x) is radially symmetric. For any positive

number k > 0, we have

g(kx) = C1

∫
Rd

∥kx∥3−d − ∥y∥3−d

∥kx− y∥d+1
dy

= C1

∫
Rd

kd · ∥kx∥
3−d − k∥y∥3−d

∥kx− ky∥d+1
dy

= C1

∫
Rd

k2−d · ∥x∥
3−d − ∥y∥3−d

∥x− y∥d+1
dy

= k2−dg(x).

Combining the above equation with the fact that g(x) is radially symmetric, we show that

g(x) = C∥x∥2−d for some constant C.

Now we have proved the lemma for d ≥ 3. Next we consider the case when d = 2. Since

(−∆)3/2(∥x − x1∥3 − ∥x − x2∥3) = (−∆)1/2(∥x − x1∥ − ∥x − x2∥), we only need to prove

that (−∆)1/2(∥x− x1∥ − ∥x− x2∥) = C(log ∥x− x1∥ − log ∥x− x2∥), where C is a constant.
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Using the singular integral definition of fractional Laplacian, we get

(−∆)1/2(∥x− x1∥ − ∥x− x2∥)

=C1

∫
Rd

∥x− x1∥ − ∥x− x2∥ − ∥y − x1∥+ ∥y − x2∥
∥x− y∥3

dy

=C1 lim
R→∞

∫
B(x1,R)∪B(x2,R)

∥x− x1∥ − ∥x− x2∥ − ∥y − x1∥+ ∥y − x2∥
∥x− y∥3

dy

=C1 lim
R→∞

∫
B(x1,R)

∥x− x1∥ − ∥y − x1∥
∥x− y∥3

dy − C1 lim
R→∞

∫
B(x2,R)

∥x− x2∥ − ∥y − x2∥
∥x− y∥3

dy

+C1 lim
R→∞

∫
B(x2,R)\B(x1,R)

∥x− x1∥ − ∥y − x1∥
∥x− y∥3

dy

−C1 lim
R→∞

∫
B(x1,R)\B(x2,R)

∥x− x2∥ − ∥y − x2∥
∥x− y∥3

dy.

Since for y ∈ B(x2, R)\B(x1, R), we have ∥y∥ ≥ R−∥x1∥. And the area of B(x2, R)\B(x1, R)

is at most 2R∥x1 − x2∥. So

lim
R→∞

∫
B(x2,R)\B(x1,R)

∣∣∣∣∥x− x1∥ − ∥y − x1∥
∥x− y∥3

∣∣∣∣dy
≤ lim

R→∞
2R∥x1 − x2∥ ·

∥x− x1∥+R + ∥x1∥+ ∥x2∥
(R− ∥x∥ − ∥x1∥)3

=0.

Similarly we have limR→∞
∫
B(x1,R)\B(x2,R)

∥x−x2∥−∥y−x2∥
∥x−y∥3 dy = 0. Then we get

(−∆)1/2(∥x− x1∥ − ∥x− x2∥)

=C1 lim
R→∞

∫
B(x1,R)

∥x− x1∥ − ∥y − x1∥
∥x− y∥3

dy − C1 lim
R→∞

∫
B(x2,R)

∥x− x2∥ − ∥y − x2∥
∥x− y∥3

dy

=C1 lim
R→∞

∫
B(0,R)

∥x− x1∥ − ∥y∥
∥x− x1 − y∥3

dy − C1 lim
R→∞

∫
B(0,R)

∥x− x2∥ − ∥y∥
∥x− x2 − y∥3

dy.

Let f(x, R) =
∫
B(0,R)

∥x∥−∥y∥
∥x−y∥3 dy. Then (−∆)1/2(∥x−x1∥−∥x−x2∥) = limR→∞ f(x−x1, R)−
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f(x− x2, R). Next we show that f(λx, λR) = f(x, R) for any λ > 0. Actually

f(λx, λR) =

∫
B(0,λR)

∥λx∥ − ∥y∥
∥λx− y∥3

dy

=

∫
B(0,R)

λ∥x∥ − λ∥y∥
∥λx− λy∥3

λddy

=

∫
B(0,R)

∥x∥ − ∥y∥
∥x− y∥3

dy = f(x, R).

Also it is easy to see that f(x, R) is radially symmetric over x. So f(x, R) = f(∥x∥u, R) for

any unit vector u ∈ R2. Then we get

lim
R→∞

f(x− x1, R)− f(x− x2, R) = lim
R→∞

f(u,
R

∥x− x1∥
)− f(u, R

∥x− x2∥
)

= lim
R→∞

∫
B(0, R

∥x−x1∥
)\B(0, R

∥x−x2∥
)

∥u∥ − ∥y∥
∥u− y∥3

dy

= lim
R→∞

∫
B(0, R

∥x−x1∥
)\B(0, R

∥x−x2∥
)

−∥y∥
∥ − y∥3

dy

= − lim
R→∞

∫
[ R
∥x−x2∥

, R
∥x−x1∥

]

2π

r
dr

= −2π lim
R→∞

log
R

∥x− x1∥
− log

R

∥x− x2∥

= 2π(log ∥x− x1∥ − log ∥x− x2∥).

So we proved the lemma for case d = 2.

The problem (2.37) is over the Lipschitz continuous function space, which is hard to

analyse. The following Lemma shows that we can consider the optimization problem over

−∆h.

Lemma 38. Suppose h(x) is the solution of the variational problem (2.37). Then there exist

89



u ∈ Rd, v ∈ R such that (−∆h(x),u, v) is the solution of the following variational problem:

min
f∈C(Rd),

u∈Rd,v∈R

∫
supp(ζ)

(
R{(−∆)(d−1)/2f}(V , c)

)2
ζ(V , c)

dσd−1(V )dc

subject to
∫
Rd

f(s)[Γ(xj − s)− Γ(−s)− ⟨xj,∇Γ(−s)⟩]ds+ ⟨u,xj⟩+ v = yj, j = 1, . . . ,M,

R{(−∆)(d−1)/2f}(V , c) = 0, ∀(V , c) ̸∈ supp(ζ),

(−∆)(d−1)/2f ∈ Lp(Rd), 1 ≤ p < d/(d− 1),

sup
x∈Rd

∥x∥ · |f(x)| <∞,

(2.121)

where Γ(x) is the fundamental solution of the Laplace equation −∆Γ(x) = δ(x). The closed

form of Γ(x) is

Γ(x) =


− 1

2π
log ∥x∥, d = 2,

1
d(d−2)Vd∥x∥d−2 , d ≥ 3,

where Vd is the volume of the unit ball in Rd.

Proof of Lemma 38. First we prove that supx∈Rd ∥x∥ · | −∆h| < ∞. According to Lemma

35 and Lemma 33, we have −∆h = R∗{ψ}, where ψ is tightly supported. Then [Sol87,

Corollary 3.6] shows that R∗{ψ} = O(∥x∥−1), which gives that supx∈Rd ∥x∥ · | −∆h| <∞.

Now it is sufficient to prove that for any h ∈ Lip(Rd) satisfying that −∆h ∈ C(Rd) and

supx∈Rd ∥x∥ · | −∆h(x)| <∞, there exist u ∈ Rd, v ∈ R such that

∫
Rd

[−∆h(s)][Γ(x− s)− Γ(−s)− ⟨x,∇Γ(−s)⟩]ds+ ⟨u,x⟩+ v = h(x).

Let g(x) =
∫
Rd [−∆h(s)][Γ(x− s)− Γ(−s)− ⟨x,∇Γ(−s)⟩]ds. First we show that g(x) is

well-defined. Since
∫
∥s∥≥1

∥s∥−(d+1)ds <∞, we only need to prove that Γ(x− s)− Γ(−s)−

⟨x,∇Γ(−s)⟩ = O(∥s∥−d) as ∥s∥ → ∞ for any given x. Using Taylor’s expansion, we have

Γ(x− s)− Γ(−s)− ⟨x,∇Γ(−s)⟩ = xTHΓ(cx− s)x for some c ∈ [0, 1], (2.122)
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where HΓ is the Hessian matrix of Γ. Since

∂Γ

∂si∂sj
(s) = −δij∥s∥

2 − dsisj
dVd∥s∥d+2

= O(∥s∥−d), (2.123)

where δij = 1 when i = j, and δij = 0 otherwise. According to (2.122) we have Γ(x− s)−

Γ(−s)− ⟨x,∇Γ(−s)⟩ = O(∥s∥−d) as ∥s∥ → ∞. Then we proved that g(x) is well-defined.

Next we prove that ∥∇g(x)∥ = O(log ∥x∥). We only need to consider the large enough x.

Suppose ∥x∥ ≥ 2. The partial derivative of g is given by

∂g

∂xi
(x) =

∫
Rd

− 1

dVd
[−∆h(s)]

[
xi − si
∥x− s∥d

+
si
∥s∥d

]
ds. (2.124)

Since supx∈Rd ∥x∥ · | −∆h(x)| <∞, we have ∥ −∆h(x)∥ ≤ C ·min{1, 1
x
)} for some constant

C. It is easy to see that the integrand of (2.124) is O(∥s∥d+1). So | ∂g
∂xi

(x)| < ∞. Next we

estimate the integral (2.124) on Rd\B(0, ∥x∥/2):

∣∣∣∣∫
∥s∥>∥x∥/2

[−∆h(s)]
[
xi − si
∥x− s∥d

+
si
∥s∥d

]
ds

∣∣∣∣
≤
∣∣∣∣∫

∥s∥>∥x∥/2

1

∥s∥

[
xi − si
∥x− s∥d

+
si
∥s∥d

]
ds

∣∣∣∣
=

∣∣∣∣∫
∥s∥>1/2

1

∥s∥

[
xi/∥x∥ − si
∥x/∥x∥ − s∥d

+
si
∥s∥d

]
ds

∣∣∣∣
≤ max

∥x̂∥=1

∣∣∣∣∫
∥s∥>1/2

1

∥s∥

[
x̂i − si
∥x̂− s∥d

+
si
∥s∥d

]
ds

∣∣∣∣.
(2.125)

Since
∣∣∣∫∥s∥>1/2

1
∥s∥

[
x̂i−si
∥x̂−s∥d +

si
∥s∥d

]
ds
∣∣∣ is well-defined and continuous function over x̂. Then

max∥x̂∥=1

∣∣∣∫∥s∥>1/2
1

∥s∥

[
x̂i−si
∥x̂−s∥d +

si
∥s∥d

]
ds
∣∣∣ is a finite number.
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Next we estimate the integral (2.124) on B(0, ∥x∥/2):

∣∣∣∣∫
∥s∥≤∥x∥/2

[−∆h(s)]
[

xi − si
∥x− s∥d−1

+
si
∥s∥d

]
ds

∣∣∣∣
≤
∣∣∣∣∫

∥s∥≤1

C

[
1

∥x− s∥d
+

1

∥s∥d−1

]
ds

∣∣∣∣+ ∣∣∣∣∫
1<∥s∥≤∥x∥/2

C

∥s∥

[
1

∥x− s∥d−1
+

1

∥s∥d−1

]
ds

∣∣∣∣
≤
∣∣∣∣∫

∥s∥≤1

C

[
2d

∥x∥d
+

1

∥s∥d−1

]
ds

∣∣∣∣+ ∣∣∣∣∫
1<∥s∥≤∥x∥/2

C

∥s∥

[
2d

∥x∥d−1
+

1

∥s∥d−1

]
ds

∣∣∣∣
≤C1 +

2dC

∥x∥d−1

∣∣∣∣∫
1<∥s∥≤∥x∥/2

1

∥s∥
ds

∣∣∣∣+ C

∣∣∣∣∫
1<∥s∥≤∥x∥/2

1

∥s∥d
ds

∣∣∣∣
≤C1 +

2dC2

∥x∥d−1
∥x∥d−1 + C3 log ∥x∥

≤C4 + C3 log ∥x∥,

(2.126)

where C1, C2, C3 and C4 are some constants. Combining (2.125) and (2.126) we proved that

∥∇g(x)∥ = O(log ∥x∥).

In our last step, we prove that g− h is linear. Because of the property of the fundamental

solution, we have −∆(g− h) ≡ 0. Since h is Lipschitz continuous and ∥∇g(x)∥ = O(log ∥x∥),

we have ∇(g−h) = O(log ∥x∥). So we can regard g−h as a tempered distribution. Using the

proof technique of Lemma 30, we have that g−h is a polynomial. Since∇(g−h) = O(log ∥x∥),

g − h must be a linear function, which gives the claim.

Proof of Theorem 8. To simplify the proof, we let f(x, θ0) ≡ 0. The analysis still holds

without this simplification. Let h(x) be the solution of (2.9). Then Lemma 38 tell us that

there exist u ∈ Rd, v ∈ R such that (−∆h(x),u, v) is the solution of the following variational
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problem:

min
f∈C(Rd),

u∈Rd,v∈R

∫
Rd

(
(−∆)(d−1)/4f(x)

)2
dx

subject to
∫
Rd

f(s)[Γ(xj − s)− Γ(−s)− ⟨xj,∇Γ(−s)⟩]ds+ ⟨u,xj⟩+ v = yj, j = 1, . . . ,M

(−∆)(d−1)/2f ∈ Lp(Rd), 1 ≤ p < d/(d− 1)

sup
x∈Rd

∥x∥ · |f(x)| <∞,

(2.127)

Suppose that f(x) is the solution of (2.127). Let J(f,u, v) =
∫
Rd

(
(−∆)(d−1)/4f(x)

)2
dx and

Gj(f,u, v) =
∫
Rd f(s)[Γ(xj − s)− Γ(−s)− ⟨xj,∇Γ(−s)⟩]ds+ ⟨u,xj⟩+ v. For any function φ

in Schwartz space S(Rd),4 ũ ∈ Rd and ṽ ∈ R, we consider the perturbation (ϵφ, ϵũ, ϵṽ) to the

solution (−∆h,u, v). It is easy to verify that −∆h+ϵφ satisfies that (−∆)(d−1)/2(−∆h+ϵφ) ∈

Lp(Rd), 1 ≤ p < d/(d− 1) and supx∈Rd ∥x∥ · |(−∆h+ ϵφ)(x)| <∞. Next we have

d

dϵ
J(−∆h+ ϵφ,u+ ϵũ, v + ϵṽ) = 2

∫
Rd

(
(−∆)(d−1)/4(−∆h)

)(
(−∆)(d−1)/4φ)

)
dx

= 2

∫
Rd

φ ·
(
(−∆)(d−1)/2(−∆h))

)
dx,

The last equality holds because φ ∈ S(Rd). Also we have

d

dϵ
Gj(−∆h+ ϵφ,u+ ϵũ, v + ϵṽ)

=

∫
Rd

φ(s)[Γ(xj − s)− Γ(−s)− ⟨xj,∇Γ(−s)⟩]ds+ ⟨ũ,xj⟩+ ṽ.

Then according to the first-order optimality condition, there are scalars λ̄1, . . . , λ̄M such that


(−∆)(d−1)/2(−∆h(x)) =

∑M
j=1 λ̄j[Γ(xj − x)− Γ(−x)− ⟨xj,∇Γ(−x)⟩]∑M

j=1 λ̄j = 0∑M
j=1 λ̄jxj = 0

,

4The Schwartz functions on Rd is the function space S(Rd) = {f ∈ C∞(Rd) : ∀α, β ∈
Nd, supx∈Rd xα(Dβf)(x) <∞}, where α and β are multi-indices.
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which can be simplified to


(−∆)(d+1)/2h(x) =

∑M
j=1 λ̄j[Γ(x− xj)− Γ(x)]∑M

j=1 λ̄j = 0∑M
j=1 λ̄jxj = 0

. (2.128)

According to Lemma 37 and Lemma 30, we can find out u ∈ Rd, v ∈ R such that

h(x) =
1

Cd

M∑
j=1

λ̄j
[
∥x− xj∥3 − ∥x∥3

]
+ ⟨u,x⟩+ v

=
1

Cd

M∑
j=1

λ̄j∥x− xj∥3 + ⟨u,x⟩+ v,

which gives (2.10) after substituting λ̄j
Cd

by λj. Since h(x) should fit all training data and λj

should satisfy (2.128), the coefficients λj, u and v satisfy (2.11). Now h(x) satisfies the first-

order optimality condition and fits all training data. Since the variational problem (2.119) is

convex, we only need to check that h ∈ Lip(Rd) and (−∆)(d+1)/2h ∈ Lp(Rd), 1 ≤ p < d/(d−1)

then we can conclude that h(x) is the solution of (2.119). Using (2.122), we have

(−∆)(d+1)/2h(x) =
M∑
j=1

λ̄j[Γ(xj − x)− Γ(−x)− ⟨xj,∇Γ(−x)⟩]

=
M∑
j=1

λ̄jx
T
j HΓ(cxj − x)xj for some c ∈ [0, 1].

According to (2.123), we get that (−∆)(d+1)/2h(x) = O(∥x∥−d). We set p = (d+ 1)/d which

satisfies 1 ≤ p < d/(d − 1). It is easy to verify that
∫
B(xj ,ϵ)

Γp(xj − x)dx is integrable for

small enough ϵ and
∫
Rd\B(0,1)

∥x∥−pddx is integrable. Then (−∆)(d+1)/2h ∈ Lp(Rd).
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Similarly we have

h(x) =
M∑
j=1

λ̄j
[
∥xj − x∥3 − ∥ − x∥3 − ⟨xj,∇(∥ · ∥3)(−x)⟩

]
=

M∑
j=1

λ̄jx
T
j H∥·∥3(cxj − x)xj for some c ∈ [0, 1],

where H∥·∥3 is the Hessian matrix of ∥x∥3. As ∥x∥ → ∞, we have

∂∥ · ∥3

∂xi∂xj
(x) = 3δij∥x∥ − 3

xixj
∥x∥

= O(∥x∥), (2.129)

where δij = 1 when i = j, and δij = 0 otherwise. Then we have h ∈ Lip(Rd).

2.I.4 Explicit Form of the Curvature Penalty Function

Proof of Proposition 17. Since W ∼ U(Sd−1), we have that pV(V ) is constant over Sd−1 and

E(U2|V = V , C = c) = 1 because U = ∥W∥ = 1. Since B ∼ U(−a, a) and W and B are

independent, we have pC|V=V (c) =
1
2a
1[−a,a](c). Then we get

ζ(V , c) = pC|V=V (c) pV(V )E(U2|V = V , C = c)

= C11[−a,a](c),

where C1 is a constant.

Proof of Proposition 18. Let pW,B and pU ,V,C denote the joint density functions of (W ,B)

and (U ,V , C), respectively. We have

pU ,V,C(u,V , c) =

∣∣∣∣∂(uV ,−uc)
∂(u,V , c)

∣∣∣∣pW,B(uV ,−uc) = udpW,B(uV ,−uc),
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and
pC|V=V (c) pV(V )E(U2|V = V , C = c)

=pC|V=V (c) pV(V ) ·
∫
R+

u2pU|V=V ,C=c(u) du

=

∫
R+

u2pU ,V,C(u,V , c) du

=

∫
R+

ud+2pW,B(uV ,−uc) du.

(2.130)

Proof of Theorem 19. Using (2.130), we have

ζ(V , c) =

∫
R+

ud+2pW,B(uV ,−uc) du

=

∫
R+

ud+2 1√
(2π)dσdw

e
− ∥uV ∥22

2σ2
w

1√
2πσb

e
−u2c2

2σ2
b du

=
1

(2π)(d+1)/2σdwσb

∫
R+

ud+2e
−( 1

2σ2
w
+ c2

2σ2
b

)u2

du.

Let σ2 = 1/
(

1
σ2
w
+ c2

σ2
b

)
, then we have

ζ(V , c) =
σ

(2π)d/2σdwσb

∫
R+

ud+2 1√
2πσ

e−
u2

2σ2 du

=
σ

(2π)d/2σdwσb
σd+2 · 2d/2 ·

Γ(d+3
2
)

√
π

=
σd+3

π(d+1)/2σdwσb
Γ(
d+ 3

2
)

=
1

π(d+1)/2σdwσb

(
1
σ2
w
+ c2

σ2
b

)(d+3)/2
Γ(
d+ 3

2
)

=
σ3
wσ

d+2
b

π(d+1)/2(σ2
b + c2σ2

w)
(d+3)/2

Γ(
d+ 3

2
).
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2.J Other Activation Functions for Univariate Regression

We have focused on networks with ReLUs. The ReLU is special in that the second derivative

of ReLU is a delta function. For other activation functions the variational problem on function

space will look different.

The paper by [PN19] considers different types of activation functions σ. These are then

related to different types of linear operators L in the definition of the smoothness regularizer.

Here L and σ satisfy Lσ = δ, i.e., σ is a Green’s function of L. Suppose σ is homogeneous.

Then [PN19] show that minimizing the weight “norm”5 of two-layer neural networks with

activation function σ is actually minimizing 1-norm of Lf where f is the output function of

the neural network.

The approach in [PN19] can be combined with our analysis. So if for example we replace

the ReLU by another homogeneous activation, we can replace the operator accordingly and

get an analogous result.

Proof of Corollary 4. Use the same notation as in Section 2.5, and let σ be the activation

function, where we assume that σ is a Green’s function of a linear operator L. Then

optimization problem (2.19) becomes:

min
αn∈C(R2)

∫
R2

α2
n(W

(1), b) dµn(W
(1), b)

subject to
∫
R2

αn(W
(1), b)σ(W (1)xj + b) dµn(W

(1), b) = yj, j = 1, . . . ,M.

(2.131)

The limit of the problem (2.131) as width n→∞ is

min
α∈C(R2)

∫
R2

α2(W (1), b) dµ(W (1), b)

subject to
∫
R2

α(W (1), b)σ(W (1)xj + b) dµ(W (1), b) = yj, j = 1, . . . ,M.

(2.132)

5Here the form of “norm” depends on the degree of homogeneity of the activation σ. We use quotation
marks because it is a generalized notion of norm which may not satisfy the property of a norm.
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As in Section 2.6, we can change the variables and relax the optimization problem (2.132) to

min
γ∈C(R2),
p∈C(R)

∫
R2

γ2(W (1), c) dν(W (1), c)

subject to p(xj) +

∫
R2

γ(W (1), c)σ
(
W (1)(xj − c)

)
dν(W (1), c) = yj, j = 1, . . . ,M

L p ≡ 0.

(2.133)

If the activation function σ is ReLU, p is a linear function. Then (2.133) becomes the

optimization problem (2.22). Define the output function g of the neural network by

g(x, (γ, p)) = p(x) +

∫
R2

γ(W (1), c)[W (1)(x− c)]+ dν(W (1), c).

Assume that the activation function σ is homogeneous of degree k, i.e., σ(ax) = akσ(x) for

all a > 0. Similar to (2.98), we have

(Lg)(x, (γ, p)) = L

(∫
R2

γ(W (1), c)
∣∣W (1)

∣∣kσ(sign(W (1)) · (x− c)
)
dν(W (1), c)

)
=

∫
R2

γ(W (1), c)
∣∣W (1)

∣∣kδ(x− c) dν(W (1), c)

=

∫
supp(νC)

(∫
R
γ(W (1), c)

∣∣W (1)
∣∣k dνW|C=c(W

(1))

)
δ(x− c) dνC(c)

=

∫
supp(νC)

(∫
R
γ(W (1), c)

∣∣W (1)
∣∣k dνW|C=c(W

(1))

)
δ(x− c)pC(c)dc

= pC(x)

∫
R
γ(W (1), x)

∣∣W (1)
∣∣k dνW|C=x(W

(1)).

(2.134)

Then similar to Theorem 13, we show that the solution of (2.133) in function space actually

solves the following optimization problem:

min
h∈C2(S)

∫
S

((Lh)(x))2

ζ(x)
dx s.t. h(xj) = yj, j = 1, . . . ,m, (2.135)

where ζ(x) = pC(x)E(W2k|C = x) and S = supp(ζ)∩ [mini xi,maxi xi]. Then Corollary 4 can

be shown by using (2.135) and the technique used in proof of Theorem 1.
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2.K Effect of Linear Adjustment of the Training Data

In this section, we show that the solution of the variational problem with linearly adjusted

training data (2.25) is close to the solution of training with the original training data (2.20).

This means that our characterization of the implicit bias in Theorem 1 gives a close description

of the solution of gradient descent training with the original data set. The high level intuition

is that fitting a linear function only requires a very small adjustment of the parameters of the

network in comparison with the parameter adjustment needed to fit a non-linear function.

For the reader’s convenience, we restate the continuous version of the problem (2.20):

min
α∈C(Rd×R)

∫
Rd×R

α2(W(1), b) dµ(W(1), b)

subject to
∫
Rd×R

α(W(1), b)[⟨W(1),xj⟩+ b]+ dµ(W(1), b) = yj, j = 1, . . . ,M,

(2.136)

and the linearly adjusted variational problem:

min
α∈C(Rd×R),
u∈Rd,v∈R

∫
Rd×R

α2(W(1), b) dµ(W(1), b)

subject to
∫
Rd×R

α(W(1), b)[⟨W(1),xj⟩+ b]+ dµ(W(1), b) + ⟨u,xj⟩+ v = yj, j = 1, . . . ,M.

(2.137)

In this chapter, our main focus is on the variational problem (2.137), thus we derive our main

result Theorem 1 and Theorem 6 which are statements on linearly adjusted training data.

In this section, we try to analyze the difference between solutions of variational problems

(2.136) and (2.137), and thus show that to what extent the variational problem (2.5) and

(2.8) in Theorem 1 and Theorem 6 describes the implicit bias of gradient descent on original

training data.

Suppose the solution of problem (2.136) is ᾱ1, and the corresponding output function is

g(x, ᾱ1) =

∫
R2

ᾱ1(W
(1), b)[⟨W(1),x⟩+ b]+ dµ(W(1), b).
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The solution of problem (2.137) is (ᾱ2, ū, v̄) and the corresponding output function is:

g(x, (ᾱ2, ū, v̄)) = ⟨ū,x⟩+ v̄ +

∫
R2

ᾱ2(W
(1), b)[⟨W(1),x⟩+ b]+ dµ(W(1), b).

Our goal is to show that g(x, ᾱ1) and g(x, (ᾱ2, ū, v̄)) are close to each other.

Suppose that the linear function ⟨ū,x⟩ + v̄ can be fitted by an infinite width network

with parameters αs, i.e.,

∫
R2

αs(W
(1), b)[⟨W(1),x⟩+ b]+ dµ(W(1), b) = ⟨ū,x⟩+ v̄. (2.138)

Then ᾱ2+αs is a feasible solution of the problem (2.136). It is easy to show that g(x, ᾱ2+αs) =

g(x, (ᾱ2, ū, v̄)). So we only need to measure the difference between g(x, ᾱ1) and g(x, ᾱ2 +αs).

The next theorem characterizes the relative difference between ᾱ1 and ᾱ2 + αs.

Theorem 39. Suppose that the solution of the optimization problem (2.136) is ᾱ1 and the

solution of the optimization problem (2.137) is (ᾱ2, ū, v̄). Suppose that αs satisfies (2.138).

Then we have

∫
R2(ᾱ1 − ᾱ2 − αs)2 dµ(W(1), b)∫

R2 ᾱ
2
1 dµ(W(1), b)

≤ 2

√∫
R2 α2

s dµ(W(1), b)∫
R2 ᾱ

2
1 dµ(W(1), b)

+

∫
R2 α

2
s dµ(W(1), b)∫

R2 ᾱ
2
1 dµ(W(1), b)

.

Proof of Theorem 39. Since (ᾱ2, ū, v̄) is the minimizer of (2.137), we have that (ᾱ1, 0, 0) is a

feasible solution of (2.136) but not optimal, which means

∫
R2

ᾱ2
1(W

(1), b) dµ(W(1), b) ≥
∫
R2

ᾱ2
2(W

(1), b) dµ(W(1), b). (2.139)

From the optimality of α1, we have

∫
R2

ᾱ2
1(W

(1), b) dµ(W(1), b) ≤
∫
R2

(ᾱ2 + αs)
2(W(1), b) dµ(W(1), b).

Using the first order optimality condition on the problem (2.136), we have that there exist
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λj ∈ R such that

α1(W
(1), b) =

M∑
j=1

λj[⟨W(1),x⟩+ b]+. (2.140)

Since both ᾱ1 and ᾱ2 + αs are the feasible solutions of the problem (2.132),

∫
R2

(ᾱ1 − ᾱ2 − αs) · [⟨W(1),xj⟩+ b]+ dµ(W(1), b) = 0, j = 1, . . . ,M. (2.141)

Using (2.140) and (2.141), we have

∫
R2

(ᾱ1 − ᾱ2 − αs)ᾱ1 dµ(W(1), b)

=

∫
R2

(ᾱ1 − ᾱ2 − αs)
M∑
j=1

λj[⟨W(1),x⟩+ b]+ dµ(W(1), b)

=
M∑
j=1

λj

∫
R2

(ᾱ1 − ᾱ2 − αs) · [⟨W(1),x⟩+ b]+ dµ(W(1), b)

=0.

(2.142)
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Then we measure the difference between ᾱ1 and ᾱ2 + αs:∫
R2

(ᾱ1 − ᾱ2 − αs)2 dµ(W(1), b)

=

∫
R2

(ᾱ2 + αs)
2 − (2ᾱ2 + 2αs − ᾱ1)ᾱ1 dµ(W(1), b)

=

∫
R2

(ᾱ2 + αs)
2 − ᾱ2

1 + (2ᾱ2 + 2αs − 2ᾱ1)ᾱ1 dµ(W(1), b)

=

∫
R2

(ᾱ2 + αs)
2 − ᾱ2

1 dµ(W(1), b) (use (2.142))

=

∫
R2

(ᾱ2
2 + 2ᾱ2αs + α2

s)− ᾱ2
1 dµ(W(1), b)

≤
∫
R2

(ᾱ2
1 + 2ᾱ2αs + α2

s)− ᾱ2
1 dµ(W(1), b) (use (2.139))

≤
∫
R2

2ᾱ2αs + α2
s dµ(W

(1), b)

≤2

√∫
R2

ᾱ2
2 dµ(W(1), b) ·

∫
R2

α2
s dµ(W

(1), b) +

∫
R2

α2
s dµ(W

(1), b)

≤2

√∫
R2

ᾱ2
1 dµ(W(1), b) ·

∫
R2

α2
s dµ(W

(1), b) +

∫
R2

α2
s dµ(W

(1), b) (use (2.139)).

Then we bound the relative difference between ᾱ1 and ᾱ2 + αs:∫
R2(ᾱ1 − ᾱ2 − αs)2 dµ(W(1), b)∫

R2 ᾱ
2
1 dµ(W(1), b)

≤
2
√∫

R2 ᾱ
2
1 dµ(W(1), b) ·

∫
R2 α2

s dµ(W
(1), b) +

∫
R2 α

2
s dµ(W

(1), b)∫
R2 ᾱ

2
1 dµ(W(1), b)

=2

√∫
R2 α2

s dµ(W
(1), b)∫

R2 ᾱ
2
1 dµ(W(1), b)

+

∫
R2 α

2
s dµ(W

(1), b)∫
R2 ᾱ

2
1 dµ(W(1), b)

.

The above theorem means that if
∫
R2 α

2
s dµ(W

(1), b) is much smaller than
∫
R2 ᾱ

2
1 dµ(W

(1), b),

the relative difference between ᾱ1 and ᾱ2 + αs is quite small. Here αs fits a linear function

and ᾱ1 fits the original training data. Since it is much easier for a neural network to fit a

linear function than a non-linear function, in practice we observe that
∫
R2 α

2
s dµ(W

(1), b) is
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dimension
of in-
puts

training input set X training output Y distribution of
(W ,B)

Setting 1 1 −2, −1.6, 0.3, 0.6, 2 1.5, 0.5, 1.5, 0.5,
1.5

W ∼ U(−1, 1)
B ∼ U(−2, 2)

Setting 2 2 (−1,−1), (1, 1), (0, 0),
(−1, 1), (1,−1)

1.5, 1.5, 0.5, −0.5,
−0.5

W ∼ U(S1)
B ∼ U(−2, 2)

Setting 3 2 (−1, 1), (1, 1), (0.5, 0.9),
(−1,−1), (1,−1), (0, 0),
(−1.3,−0.7), (−0.8, 0.3),
(−0.4, 1.6), (1.6,−0.4)

1.5, 1.5, 0.5, −0.5,
−0.5, −1.5, −1.5,
−0.5, 0.5, 0.5

W ∼ U(S1)
B ∼ U(−2, 2)

Table 2.1: Experimental settings.

indeed much smaller than
∫
R2 ᾱ

2
1 dµ(W(1), b) when the training data is not highly linearly

correlated. This is shown in the right panel of Figure 2.12.

Generally speaking, the relative difference between g(x, ᾱ1) and g(x, (ᾱ2, ū, v̄)) can be

related to the relative difference between ᾱ1 and ᾱ2+αs, which can be bounded by using D1 :=∫
R2 α

2
s dµ(W(1),b)∫

R2 α
2
1 dµ(W(1),b)

. In experiments, the relative difference between g(x, ᾱ1) and g(x, (ᾱ2, ū, v̄)) is

measured by D :=
∫
[−R,R]d

(g(x,ᾱ1)−g(x,(ᾱ2,ū,v̄)))
2 dx∫

[−R,R]d
(g(x,ᾱ1))

2 dx
, where R is the minimal positive number such

that [−R,R]d includes all training samples. In order to compute
∫
R2 ᾱ

2
1 dµ(W(1), b) we only

need to solve the optimization problem (2.136) and get α1. To compute
∫
R2 α

2
s dµ(W

(1), b),

we first need to solve the optimization problem (2.137) and get (ᾱ2, ū, v̄). Then we need to

find out αs which satisfies (2.138). We can give out an easy form of αs if we assume that

the distribution of (W ,B) is symmetric over each component, i.e., (W1, . . . ,Wi, . . . ,Wd,B)

and (W1, . . . ,−Wi, . . . ,Wd,B) have the same distribution for i = 1, . . . , d. In this case we

can choose αs(W(1), b) = C1⟨W(1), ū⟩+ C2v̄ where C1, C2 are constants which is determined

by (2.138).

Next, we conduct some experiments to verify the above argument. We try three different

settings and they are summarized in Table 2.1. For each setting, we add different linear

functions to training data and compute corresponding D1 and D. In order to verify the

idea that D1 is small if training data is not highly correlated, we compute the coefficient of

determination R2 of the training data and then compare it with D1. In Figure 2.12 we plot
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D against D1 D1 against R2

Figure 2.12: Scatter plots of D1, D and R2. The left panel is the scatter plot of D against
D1, which shows that D1 is a very loose upper bound of D. Even when D1 is around 1, D is
still around 10−3. The right panel is the scatter plot of D1 against R2, which shows that D1

is small when training data are not highly linearly correlated and D1 is large when training
data are highly linearly correlated.

D against D1 and D1 against R2. We observe that D1 is small when R2 is small and D1 is a

loose upper bound of D. Actually, D is very small even if D1 is relatively large, which implies

that the relative difference between solutions of (2.136) and (2.137) is small in practice.

2.L Neural Networks with Skip Connections

For any given input x ∈ Rd, the output of the network with skip connections from the inputs

to the outputs is

f(x, θ) =
n∑
i=1

W
(2)
i ϕ(⟨W(1)

i ,x⟩+ b
(1)
i ) + ⟨u,x⟩+ v. (2.143)

The initializations of W(1)
i , b

(1)
i ,W

(2)
i are the same as (2.3). The parameters of skip connections

are initialized by zero. We also train this network by gradient descent. The learning rate

of parameters W(1)
i , b

(1)
i ,W

(2)
i is ηr and the learning rate of parameters of skip connections

u, v is ηs. Let θ0 = vec(W
(1)
,b

(1)
,W

(2)
,0, 0) be the parameters at initialization and θt =

vec(W
(1)
t ,b

(1)
t ,W

(2)
t ,ut, vt) be the parameters after t steps of gradient descent. Then the
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gradient descent iterations are

W
(1)
0 = W

(1)
, W

(1)
t+1 = W

(1)
t − ηr∇W(1)Llin(θt)

b
(1)
0 = b

(1)
, b

(1)
t+1 = b

(1)
t − ηr∇b(1)Llin(θt)

W
(2)
0 = W

(2)
, W

(2)
t+1 = W

(2)
t − ηr∇W(2)Llin(θt)

u0 = 0, ut+1 = ut − ηs∇uL
lin(θt)

v0 = 0, vt+1 = vt − ηs∇vL
lin(θt)

(2.144)

Let ω̃t = vec(W
(1)
,b

(1)
,W̃

(2)
t , ũ, ṽ) be the parameters at time t under the update rule where

W
(1)
,b

(1) are kept fixed at their initial values, and

W̃
(2)
0 = W

(2)
, W̃

(2)
t+1 = W̃

(2)
t − ηr∇W(2)Llin(ω̃t)

ũ0 = 0, ũt+1 = ũt − ηs∇uL
lin(ω̃t)

ṽ0 = 0, ṽt+1 = ṽt − ηs∇vL
lin(ω̃t)

(2.145)

Let Ψ =
∑M

j=1(xj, 1)
T (xj, 1). Using the similar argument in Section 2.4, we can show

that training all parameters can be approximated by training only output weights and skip

connections parameters, which is actually a linearized model. Then we can apply Theorem 2.44

with some modifications and show that gradient descent training of the output weights (2.145)

on mean squared loss with ηr ≤ M

4nλmax(Θ̂n)
, ηs ≤ M

4λmax(Ψ)
, achieves zero loss and solves the

following optimization problem:

min
W(2)

1

ηr
∥W(2) −W

(2)∥22 +
1

ηs

(
∥u∥22 + v2

)
s.t.

n∑
i=1

(W
(2)
i −W

(2)

i )[⟨W(1)

i ,xj⟩+ b
(1)

i ]+ + ⟨u,xj⟩+ v = yj − f(xj, θ0), j = 1, . . . ,M.

(2.146)

Similar to Section 2.5, we let f lin(x, θ0) ≡ 0 by using the Anti-Symmetrical Initialization

(ASI) trick. Let µn denote the empirical distribution of the samples (W
(1)

i , b
(1)

i )ni=1, i.e.,

µn(A) =
1
n

∑n
i=1 1A

(
(W

(1)

i , b
(1)

i )
)
, where 1A denotes the indicator function for measurable
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subsets A in R2. We further consider a function αn : R2 → R, αn(W
(1)

i , b
(1)

i ) = n(W
(2)
i −W

(2)

i ).

Then (2.146) with ASI can be rewritten as

min
αn∈C(R2)

∫
R2

α2
n(W

(1), b) dµn(W
(1), b) +

nηr
ηs

(
∥u∥22 + v2

)
s.t.

∫
R2

αn(W
(1), b)[⟨W(1),xj⟩+ b]+ dµn(W

(1), b) + ⟨u,xj⟩+ v = yj, j = 1, . . . ,M.

(2.147)

Now we can consider the infinite width limit. Let µ be the probability measure of (W ,B).

Assume that ηr ≤ n−1.5ηs. Then nηr
ηs

= o(1) as n→∞, thus it can be ignored in the infinite

width limit. By substituting µ for µn, we obtain a continuous version of problem (2.147) as

follows:

min
α∈C(R2)

∫
R2

α2(W(1), b) dµ(W(1), b)

s.t.
∫
R2

α(W(1), b)[⟨W(1),xj⟩+ b]+ dµ(W(1), b) + ⟨u,xj⟩+ v = yj, j = 1, . . . ,M.

(2.148)

Using that µn weakly converges to µ, we show that in fact the solution of problem (2.147)

converges to the solution of (2.148) in Theorem 40.

Theorem 40 (Infinite width limit for network with skip connections). Let (W(1)

i , b
(1)

i )ni=1 be

i.i.d. samples from a pair (W ,B) with finite fourth moment. Suppose µn is the empirical

distribution of (W(1)

i , b
(1)

i )ni=1 and (αn,un, vn) is the solution of (2.147). Let (α,u, v) be the

solution of (2.148). Assume that ηr ≤ n−1.5ηs. Then, for any compact set D ⊂ Rd, we

have supx∈D |gn(x, (αn,un, vn)) − g(x, (α,u, v))| = Op(n
−1/2) , where gn(x, (αn,un, vn)) =∫

R2 αn(W
(1), b)[⟨W(1),x⟩+ b]+ dµn(W

(1), b) + ⟨un,x⟩+ vn is the function represented by a

network with n hidden neurons and skip connections after training, and g(x, (α,u, v)) =∫
R2 α(W

(1), b)[⟨W(1),x⟩ + b]+ dµ(W(1), b) + ⟨u,x⟩ + v is the function represented by the

infinite-width network with skip connections.

The proof of Theorem 40 is provided at the end of the section. In Section 2.6 and

Section 2.7, we show that the optimization problem (2.148) is equivalent to (2.24) in univariate
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case and equivalent to (2.37) in multivariate case. Then we can prove our main theorems for

networks with skip connections without adjusting the training data.

Theorem 41 (Implicit bias of networks with skip connections, univariate). Consider a two-

layer feedforward network with skip connections (2.143). Assume parameter initialization (2.3),

which means for each hidden unit the input weight and bias are initialized from a sub-Gaussian

(W ,B) with joint density pW,B. Then, for any finite data set {(xj, yj)}Mj=1 and sufficiently

large n, the optimization of the mean squared error on the training data {(xj, yj)}Mj=1 by

gradient descent iterations (2.144) with learning rate ηs ≤ M
4λmax(Ψ)

, ηr ≤ n−1.5ηs converges to

a parameter θ∗ for which the output function f(x, θ∗) attains zero training error. Furthermore,

letting ζ(x) =
∫
R |W |

3pW,B(W,−Wx) dW and S = supp(ζ) ∩ [minj xj,maxj xj], we have

supx∈S ∥f(x, θ∗) − g∗(x)∥2 = Op(n
− 1

2 )over the random initialization θ0, where g∗ solves

following variational problem:

min
g∈C2(S)

∫
S

1

ζ(x)
(g′′(x)− f ′′(x, θ0))

2 dx

subject to g(xj) = yj − uxj − v, j = 1, . . . ,M.

(2.149)

Theorem 42 (Implicit bias of networks with skip connections, multivariate). Consider

the same network settings as in Theorem 41 except with d input units instead of a single

input unit. Assume that W is a random vector with P(∥W∥ = 0) = 0 and B is a random

variable; the distribution of (W ,B) is symmetric, i.e., (W ,B) and (−W ,−B) have the

same distribution; and ∥W∥2 and B are both sub-Gaussian. Then, for any finite data set

{(xj, yj)}Mi=1 and sufficiently large n, the optimization of the mean squared error on the training

data {(xj, yj)}Mj=1 by gradient descent iterations (2.144) with learning rate ηs ≤ M
4λmax(Ψ)

, ηr ≤

n−1.5ηs converges to a parameter θ∗ for which f(x, θ∗) attains zero training error. Furthermore,

let U = ∥W∥2, V = W/∥W∥2, C = −B/∥W∥2 and ζ(V , c) = pV,C(V , c)E(U2|V = V , C =

c), where pV,C is the joint density of (V , C). Then, for any compact set D ⊂ Rd, we have

supx∈D ∥f(x, θ∗) − g∗(x)∥2 = Op(n
− 1

2 ) over the random initialization θ0, where g∗ solves
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following variational problem:

min
g∈Lip(Rd)

∫
supp(ζ)

(
R{(−∆)(d+1)/2(g − f(·, θ0))}(V , c)

)2
ζ(V , c)

dV dc

subject to g(xj) = yj, j = 1, . . . ,M

R{(−∆)(d+1)/2(g − f(·, θ0))}(V , c) = 0, (V , c) ̸∈ supp(ζ)

(−∆)(d+1)/2(g − f(·, θ0)) ∈ Lp(Rd), 1 ≤ p < d/(d− 1).

(2.150)

Proof of Theorem 40. The Lagrangian of problem (2.147) is

L((αn,un, vn), λ
(n))

=

∫
R2

α2
n(W

(1), b) dµn(W
(1), b) +

nηr
ηs

(
∥un∥22 + v2n

)
+

M∑
j=1

λ
(n)
j (gn(xj, αn)− yj).

The optimal condition is ∇αnL = 0, which means

2αn(W
(1), b) +

M∑
j=1

λ
(n)
j [⟨W(1),xj⟩+ b]+ = 0 when (W(1), b) = (W

(1)
i , bi), i = 1, . . . , k

2nηr
ηs

un +
M∑
j=1

λ
(n)
j xj = 0

2nηr
ηs

vn +
M∑
j=1

λ
(n)
j = 0.

Since only function values on (W
(1)
i , bi)

M
i=1 are taken into account in problem (2.147), we can

let

αn(W
(1), b) = −1

2

M∑
j=1

λ
(n)
j [⟨W(1),xj⟩+ b]+ ∀(W(1), b) ∈ Rd+1 (2.151)

without changing
∫
R2 α

2
n(W

(1), b) dµn(W
(1), b) and gn(x, αn).

Here λ(n)j , j = 1, . . . ,M are chosen to make gn(xi, αn) = yi, i = 1, . . . ,M . So we get a
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system of linear equations in variables {λ(n)j }Mj=1,un and vn:

−1

2

M∑
j=1

λ
(n)
j

∫
R2

[⟨W(1),xj⟩+ b]+[⟨W(1),xi⟩+ b]+ dµn(W
(1), b) + ⟨un,xi⟩+ vn = yi,

M∑
j=1

λ
(n)
j xj +

2nηr
ηs

un = 0,

M∑
j=1

λ
(n)
j +

2nηr
ηs

vn = 0.

(2.152)

for any i = 1, . . . ,M . Similarly, the Lagrangian of problem (2.148) is

L̃(α, λ) =

∫
R2

α2(W(1), b) dµ(W(1), b) +
M∑
j=1

λj(g(xj, α)− yj).

The optimality condition is ∇αL̃ = 0, which means

2α(W(1), b) +
M∑
j=1

λ
(n)
j [⟨W(1),xj⟩+ b]+ = 0 ∀(W(1), b) ∈ Rd+1

0 · u+
M∑
j=1

λ
(n)
j xj = 0

0 · v +
M∑
j=1

λ
(n)
j = 0.

Then we get

α(W(1), b) = −1

2

M∑
j=1

λj[⟨W(1),xj⟩+ b]+ ∀(W(1), b) ∈ R2. (2.153)
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Here λj, j = 1, . . . ,M are chosen to make g(x, α) = yi, i = 1, . . . ,M . This means that

−1

2

M∑
j=1

λj

∫
R2

[⟨W(1),xj⟩+ b]+[⟨W(1),xi⟩+ b]+ dµ(W(1), b) + ⟨u,xi⟩+ v = yi, i = 1, . . . ,M

M∑
j=1

λjxj + 0 · u = 0

M∑
j=1

λj + 0 · v = 0

.

(2.154)

Compare (2.152) and (2.154). Since the number of samples is finite, xi is also bounded.

Then by the assumption thatW and B have finite fourth moments, we have that [⟨W(1),xj⟩+

b]+[⟨W(1),xi⟩ + b]+ has finite variance. According to central limit theorem, as n → ∞,∫
R2 [⟨W(1),xj⟩ + b]+[⟨W(1),xi⟩ + b]+ dµn(W

(1), b) tends to a Gaussian distribution with

variance O(n−1). This implies that ∀i = 1, . . . ,M, ∀j = 1, . . . ,M ,

|
∫
R2

[⟨W(1),xj⟩+ b]+[⟨W(1),xi⟩+ b]+ dµn(W
(1), b)

−
∫
R2

[⟨W(1),xj⟩+ b]+[⟨W(1),xi⟩+ b]+ dµ(W(1), b)|

= Op(n
−1/2)

Also according to the assumption ηr ≤ n−1.5ηs, we have 2nηr
ηs

= O(n−1/2). So coefficients of

(2.152) converge to coefficients of (2.154) at the rate of Op(n
−1/2), then we get

|λnj − λj| = Op(n
−1/2), j = 1, . . . ,M. (2.155)

Compare (2.151) and (2.153). Given (W(1), b), we have

|αn(W(1), b)− α(W(1), b)| = Op(n
−1/2). (2.156)

Next we want to prove that supx∈D |gn(x, (αn,un, vn))− g(x, (α,u, v))| = Op(n
−1/2). Firstly,

110



we prove that supx∈D |gn(x, (α,u, v))−g(x, (α,u, v))| = Op(n
−1/2). Note that |gn(x, (α,u, v))−

g(x, (α,u, v))| = |gn(x, (α,0, 0))− g(x, (α,0, 0))|. According to (2.96) in the proof of Theo-

rem 12 in Appendix 2.G, we have supx∈D |gn(x, (α, 0, 0))− g(x, (α, 0, 0))| = Op(n
−1/2). Then

we have

sup
x∈D
|gn(x, (α,u, v))− g(x, (α,u, v))| = Op(n

−1/2). (2.157)

Finally, we prove that supx∈D |gn(x, (αn,un, vn)) − gn(x, (α,u, v))| = Op(n
−1/2). Since

∀x ∈ D

|gn(x, (αn,un, vn))− gn(x, (α,u, v))|

≤
∫
R2

∣∣αn(W(1), b)[⟨W(1),x⟩+ b]+ − α(W(1), b)[⟨W(1),x⟩+ b]+
∣∣ dµn(W(1), b)

+ ∥x∥2∥un − u∥2 + |vn − v|

≤
∫
R2

∣∣αn(W(1), b)− α(W(1), b)
∣∣[⟨W(1),x⟩+ b]+ dµn(W

(1), b) + ∥x∥2∥un − u∥2 + |vn − v|

≤
∫
R2

∣∣∣∣∣−1

2

M∑
j=1

(λnj − λj)[⟨W(1),xj⟩+ b]+

∣∣∣∣∣[⟨W(1),x⟩+ b]+ dµn(W
(1), b)

+ ∥x∥2∥un − u∥2 + |vn − v|

≤1

2

M∑
j=1

|λnj − λj|
∫
R2

[⟨W(1),xj⟩+ b]+[⟨W(1),x⟩+ b]+ dµn(W
(1), b)

+ ∥x∥2∥un − u∥2 + |vn − v|

≤1

2

(
max
x∈D

∫
R2

[⟨W(1),xj⟩+ b]+[⟨W(1),x⟩+ b]+ dµn(W
(1), b)

) M∑
j=1

|λnj − λj|

+max
x∈D
∥x∥2∥un − u∥2 + |vn − v|.

Because D is compact and
∫
R2 [⟨W(1),xj⟩ + b]+[⟨W(1),x⟩ + b]+ dµn(W

(1), b) converges ac-

cording to the law of large numbers, we have that maxx∈D
∫
R2 [⟨W(1),xj⟩+ b]+[⟨W(1),x⟩+

b]+ dµn(W
(1), b) and maxx∈D ∥x∥2 is bounded by a finite number independent of n. Then
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according to (2.155),

sup
x∈D
|gn(x, (αn,un, vn))− gn(x, (α,u, v))| = Op(n

−1/2).

Combined with (2.157), we have

sup
x∈D
|gn(x, (αn,un, vn))− g(x, (α,u, v))| = Op(n

−1/2).

This concludes the proof.

2.M Equivalence of Our Characterization and NTK Norm Mini-

mization for Univariate Regression

In this section we demonstrate that NTK norm minimization [ZXL20], which characterizes

the implicit bias of training a linearized model by gradient descent, is equivalent to our

characterization in Section 2.5 and Section 2.6. For simplicity, we only consider univariate

regression in this section. Following [JGH18a], [ZXL20] show that gradient descent can be

regarded as a kernel gradient descent in function space, whereby the kernel is given by the

NTK. Then for a linearized model, gradient descent finds the global minimum that is closest

to the initial output function in the corresponding reproducing kernel Hilbert space (RKHS).

Let Θ̃n be the empirical neural tangent kernel of training only the output layer, i.e.,

Θ̃n(x1, x2) =
1

n
∇W (2)f(x1, θ0)∇W (2)f(x2, θ0)

T

=
1

n

n∑
i=1

∇
W

(2)
i
f(x1, θ0)∇W

(2)
i
f(x2, θ0)

=
1

n

n∑
i=1

[W
(1)
i x1 + b

(1)
i ]+[W

(1)
i x2 + b

(1)
i ]+.
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As n→∞, Θ̃n → Θ̃, where

Θ̃(x1, x2) =

∫
R2

[W (1)x1 + b(1)]+[W
(1)x2 + b(1)]+ dµ(W (1), b). (2.158)

Equivalently, using the notation in Section 2.6, we have

Θ̃(x1, x2) =

∫
R2

[W (1)(x1 − c)]+[W (1)(x2 − c)]+ dν(W (1), c). (2.159)

Next, [ZXL20] construct a RKHS HΘ̃(S) by kernel Θ̃, and the inner product of the RKHS

is denoted by ⟨·, ·⟩Θ̃. Then HΘ̃(S) satisfies:

(i) ∀x ∈ S, Θ̃(·, x) ∈ HΘ̃(S); (2.160)

(ii) ∀x ∈ S,∀f ∈ HΘ̃, ⟨f(·), Θ̃(·, x)⟩Θ̃ = f(x); (2.161)

(iii) ∀x, y ∈ S, ⟨Θ̃(·, x), Θ̃(·, y)⟩Θ̃ = Θ̃(x, y). (2.162)

Here the domain is S = supp(ζ) ∩ [mini xi,maxi xi], which is the same as in Theorem 1 and

Theorem 13. Using the reproducing kernel Hilbert space, [ZXL20] prove that f lin(x, ω̃∞)

(defined in Section 2.4.2) is the solution of the following optimization problem:

min
g∈HΘ̃(S)

∥g∥Θ̃n
s.t. g(xj) = yj, j = 1, . . . ,M.

As the width n tends to infinity, the above optimization problem becomes

min
g∈HΘ̃(S)

∥g∥Θ̃ s.t. g(xj) = yj, j = 1, . . . ,M. (2.163)

In Section 2.5, we show that f lin(x, ω̃∞) is the solution of the optimization problem (2.19) in

function space. As width n tends to infinity, the optimization problem (2.19) becomes (2.20),
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which we repeat below:

min
α∈C(R2)

∫
R2

α2(W (1), b) dµ(W (1), b)

subject to
∫
R2

α(W (1), b)[W (1)xj + b]+ dµ(W (1), b) = yj, j = 1, . . . ,M.

(2.164)

Since optimization problems (2.163) and (2.164) both characterize the implicit bias of training

a linearized model by gradient descent, they must have the same solution in function space.

We express this formally in the following theorem:

Theorem 43 (Equivalence of our variational problem and NTK norm minimization). Assume

that optimization problems (2.163) and (2.164) are both feasible. Suppose α is the solution of

(2.164), and consider the corresponding output function:

g(x) =

∫
R2

α(W (1), b)[W (1)x+ b]+ dµ(W (1), b). (2.165)

Then g(x) restricted on S is the solution of the optimization problem (2.163).

Next, we give a standalone proof of this theorem using the property of kernel norm. The

proof gives us an idea of what the kernel norm actually looks like.

Proof of Theorem 43. Since α(W (1), b) is the solution of (2.164), according to (2.91) in the

proof of Theorem 12,

α(W (1), b) = −1

2

M∑
j=1

λj[W
(1)xj + b]+ ∀(W (1), b) ∈ R2

for some constants λj, j = 1, . . . ,M . Then we write α(W (1), b) in the following form:

α(W (1), b) =

∫
S

h(x)[W (1)x+ b]+dx, (2.166)

where h(x) can be a combination of Dirac delta functions. Then substitute (2.166) into the
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expression of g(x) (2.165) to obtain

g(x) =

∫
R2×S

h(x̃)[W (1)x̃+ b]+[W
(1)x+ b]+ dµ(W (1), b)dx̃

=

∫
S

h(x̃)Θ̃(x, x̃)dx̃,

(2.167)

where we use the expression of the NTK in equation (2.158). Then we get

⟨g(x), g(x)⟩Θ̃ = ⟨g(x),
∫
S

h(x̃)Θ̃(x, x̃)dx̃⟩Θ̃dx̃

=

∫
S

h(x̃)⟨g(x), Θ̃(x, x̃)⟩Θ̃dx̃

=

∫
S

h(x̃)g(x̃)dx̃ (here we use the property of RKHS norm (2.161))

=

∫
S×S

h(x̃)h(x̄)Θ̃(x̃, x̄)dx̃dx̄ (use (2.167)).

(2.168)

On the other hand, using (2.166), the objective of (2.164) becomes

∫
S2

α2(W (1), b) dµ(W (1), b)

=

∫
S×S×R2

h(x̃)[W (1)x̃+ b]+h(x̄)[W
(1)x̄+ b]+ dx̃dx̄dµ(W (1), b)

=

∫
S×S

h(x̃)h(x̄)

∫
R2

[W (1)x̃+ b]+[W
(1)x̄+ b]+dµ(W

(1), b) dx̃dx̄

=

∫
S×S

h(x̃)h(x̄)Θ̃(x̄, x̃) dx̃dx̄ (use (2.158)).

(2.169)

Comparing (2.168) and (2.169), we have that optimization problems (2.163) and (2.164) are

equivalent if α(W (1), b) has the form (2.166) and g(x) has the form (2.167). Moreover, if every

function g ∈ HΘ̃(S) can be approximated by the shallow network, we can find α(W (1), b) in

form of (2.166) such that g(x) is expressed in the form of (2.167). In this sense we show that

optimization problems (2.163) and (2.164) are equivalent.

In Section 2.6, we relax the optimization problem (2.21) to (2.22) in order to characterize

the implicit bias in function space. This relaxation can also be done in the NTK norm
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minimization setting. It means that we can equivalently relax the problem (2.163) to the

following problem:

min
g∈HΘ̃(S),u∈R,v∈R

∥g − ux− v∥Θ̃ s.t. g(xj) = yj, j = 1, . . . ,M. (2.170)

Then the optimization problems (2.22) and (2.170) are equivalent. Theorem 13 shows that

(2.22) and (2.24) have the same solution on the set S = supp(ζ) ∩ [mini xi,maxi xi]. Then

we have that optimization problems (2.170) and (2.24) are equivalent, which means that

min
u∈R,v∈R

∥g − ux− v∥Θ̃ =

∫
S

(g′′(x))2

ζ(x)
dx, ∀g ∈ HΘ̃(S). (2.171)

Next, we directly prove the above equation (2.171). Given function g ∈ HΘ̃(S), let h =

argminh∈HΘ̃(S) ∥h∥Θ̃, s.t. h = g−ux− v for some u ∈ R, v ∈ R. Then according to optimality

of h, we have ⟨h, x⟩Θ̃ = 0 and ⟨h, 1⟩Θ̃ = 0. Consider the space G = {h ∈ HΘ̃(S) : ⟨h, x⟩Θ̃ =

0, ⟨h, 1⟩Θ̃ = 0}, which is the orthogonal complement of span{1, x}. Then h is the projection

of g on G. Since h = g − ux− v, h′′ = g′′. So we can reformulate the equation (2.171) which

we want to prove in the following theorem:

Theorem 44 (Explicit form of the kernel norm). The kernel norm on the space G = {h ∈

HΘ̃(S) : ⟨h, x⟩Θ̃ = 0, ⟨h, 1⟩Θ̃ = 0} is given as follows:

∥h∥2
Θ̃
=

∫
S

(h′′(x))2

ζ(x)
dx, ∀h ∈ G. (2.172)

This theorem gives the explicit form of the kernel norm in a subspace of HΘ̃(S). Next we

prove the above theorem using the property of kernel norm.

Proof of Theorem 44. Let Θ̃x(·) = Θ̃(·, x). We can find the orthogonal projection of Θ̃x

on space G, which is denoted by Θ̃x,G. Then we only need to prove that ⟨h, Θ̃x,G⟩Θ̃ =∫
S

h′′(y)Θ̃′′
x,G(y)

ζ(y)
dy for any h ∈ G and x ∈ S.

First, Θ̃x,G = Θ̃x − ux − v for some constant u, v ∈ R. Since h ∈ G, ⟨h, 1⟩Θ̃ = 0 and
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⟨h, x⟩Θ̃ = 0. Then we have

⟨h, Θ̃x,G⟩Θ̃ = ⟨h, Θ̃x − ux− v⟩Θ̃

= ⟨h, Θ̃x⟩Θ̃ − u⟨h, x⟩Θ̃ − v⟨h, 1⟩Θ̃

= ⟨h, Θ̃x⟩Θ̃

= h(x) (use the reproducing property of the kernel (2.161)).

(2.173)

Next, using the notation from Section 2.6 we have

Θ̃′′
x,G(y) = (Θ̃x(y)− uy − v)′′ = Θ̃x(y)

′′ =
∂2

∂y2
Θ̃(x, y)

=
∂2

∂y2

∫
R2

[W (1)(x− c)]+[W (1)(y − c)]+ dν(W (1), c) (use (2.159))

=
∂2

∂y2

∫
R2

(W (1))2[sign(W (1))(x− c)]+[sign(W (1))(y − c)]+ dνW|C=c(W
(1))dνC(c)

=
∂2

∂y2

∫
R

(
E(W2

1(W ≥ 0)|C = c)[x− c]+[y − c]+

+E(W2
1(W < 0)|C = c)[c− x]+[c− y]+

)
pC(c) dc

=

∫
R

(
E(W2

1(W ≥ 0)|C = c)[x− c]+
∂2

∂y2
[y − c]+

+E(W2
1(W < 0)|C = c)[c− x]+

∂2

∂y2
[c− y]+

)
pC(c) dc

=

∫
R

(
E(W2

1(W ≥ 0)|C = c)[x− c]+δ(y − c)

+E(W2
1(W < 0)|C = c)[c− x]+δ(y − c)

)
pC(c) dc

=
(
E(W2

1(W ≥ 0)|C = y)[x− y]+ + E(W2
1(W < 0)|C = y)[y − x]+

)
pC(y).
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Then we have

∫
S

h′′(y)Θ̃′′
x,G(y)

ζ(y)
dy

=

∫
S

h′′(y)(E(W2
1(W ≥ 0)|C = y)[x− y]+ + E(W2

1(W < 0)|C = y)[y − x]+)pC(y)
ζ(y)

dy

=

∫
S

h′′(y)(E(W2
1(W ≥ 0)|C = y)[x− y]+ + E(W2

1(W < 0)|C = y)[y − x]+)
E(W2|C = y)

dy

=

∫
S

E(W2
1(W ≥ 0)|C = y)

E(W2|C = y)
h′′(y)[x− y]+ +

E(W2
1(W < 0)|C = y)

E(W2|C = y)
h′′(y)[y − x]+ dy.

Now, if we regard
∫
S

h′′(y)Θ̃′′
x,G(y)

ζ(y)
dy as a function of x, then we get

∂2

∂x2

∫
S

h′′(y)Θ̃′′
x,G(y)

ζ(y)
dy

=
∂2

∂x2

∫
S

E(W2
1(W ≥ 0)|C = y)

E(W2|C = y)
h′′(y)[x− y]+ +

E(W2
1(W < 0)|C = y)

E(W2|C = y)
h′′(y)[y − x]+ dy

=

∫
S

E(W2
1(W ≥ 0)|C = y)

E(W2|C = y)
h′′(y)δ(x− y) + E(W2

1(W < 0)|C = y)

E(W2|C = y)
h′′(y)δ(y − x) dy

=
E(W2

1(W ≥ 0)|C = x)

E(W2|C = x)
h′′(x) +

E(W2
1(W < 0)|C = x)

E(W2|C = x)
h′′(x)

=h′′(x).

From the definition of the space G, we see that the second derivative uniquely determines the

element in G. Since h ∈ G, in order to show that
∫
S

h′′(y)Θ̃′′
x,G(y)

ζ(y)
dy = h(x), we only need to

show
∫
S

h′′(y)Θ̃′′
x,G(y)

ζ(y)
dy ∈ G, i.e., ⟨

∫
S

h′′(y)Θ̃′′
x,G(y)

ζ(y)
dy, 1⟩Θ̃ = 0 and ⟨

∫
S

h′′(y)Θ̃′′
x,G(y)

ζ(y)
dy, x⟩Θ̃ = 0.
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Then we get

⟨
∫
S

h′′(y)Θ̃′′
x,G(y)

ζ(y)
dy, 1⟩Θ̃ =⟨

∫
S

h′′(y) ∂
2

∂y2
Θ̃(x, y)

ζ(y)
dy, 1⟩Θ̃

=⟨
∫
S

h′′(y) limh→0
Θ̃(x,y+h)−2Θ̃(x,y)+Θ̃(x,y−h)

h2

ζ(y)
dy, 1⟩Θ̃

= lim
h→0
⟨
∫
S

h′′(y) Θ̃(x,y+h)−2Θ̃(x,y)+Θ̃(x,y−h)
h2

ζ(y)
dy, 1⟩Θ̃

= lim
h→0

∫
S

h′′(y)
⟨Θ̃(x,y+h),1⟩Θ̃−2⟨Θ̃(x,y),1⟩Θ̃+⟨Θ̃(x,y−h),1⟩Θ̃

h2

ζ(y)
dy

= lim
h→0

∫
S

h′′(y)y+h−2y+y−h
h2

ζ(y)
dy

=0.

Similarly we can show that ⟨
∫
S

h′′(y)Θ̃′′
x,G(y)

ζ(y)
dy, x⟩Θ̃ = 0. This concludes the proof.

2.N Gradient Descent Trajectory and Trajectory of Smoothing

Splines for Univariate Regression

In the following we discuss the relation between the trajectory of functions obtained by

gradient descent training of a neural network and a trajectory of solutions to the variational

problem with the data fitting constraints replaced by a MSE for decreasing smoothness

regularization strength. This Lagrange version of the variational problem is solved by so-

called smoothing splines. Smoothing splines have been studied intensively in the literature

and in particular they can be written explicitly. We give the explicit form of the solution for

the trajectory in the context of our discussion.

2.N.1 Regularized Regression and Early Stopping

[Bis95] shows that for linear regression with quadratic loss, early stopping and L2 regularization

lead to similar solutions. Let us recall some details of his analysis, before proceeding
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with our particular setting. He considers the loss function E(w) = ∥Xw − y∥22, where

X = [x1, . . . ,xM ]T is the matrix of training inputs, y = [y1, . . . , yM ]T is the vector of training

outputs, and w is the weight vector of the linear model. Next the loss function can be written

in the form of a quadratic function:

E(W ) = ∥Xw − y∥22

= wTXTXw − 2yTXw + yTy

= wTXTXw − 2yTXw + yTy

=
1

2
(w −w∗)TH(w −w∗) + E0,

where H = 2XTX, E0 is the minimum of the loss function, and w∗ is the minimizer. The

eigenvalues and eigenvectors of H are as follows:

Huj = λjuj.

Then expand w and w∗ in terms of the eigenvectors of H:

w =
∑
j

wjuj, w∗ =
∑
j

w∗
juj.

For the L2 regularized regression problem, consider the regularized loss function Ẽ(w) =

E(w) + c∥w∥22. Denote the minimizer by w = w̃ and consider its expansion as w̃ =
∑

j w̃juj .

[Bis95] shows that

w̃j =
λj

λj + c
w∗
j . (2.174)

For early stopping, consider the gradient descent on E(w) with zero initial weight vector:

w(τ) = w(τ−1) − η∇E

= w(τ−1) − ηH(w(τ−1) −w∗),

w(0) = 0.
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Writing w(τ) =
∑

j w
(τ)
j uj, we have

w
(τ)
j = (1− (1− ηλj)τ )w∗

j .

Note that 1− (1− ηλj)τ → 1− e−ητλj as η → 0. Hence choosing a sufficiently small learning

rate, approximately we have

w
(τ)
j = (1− e−ητλj)w∗

j . (2.175)

From (2.174) and (2.175), [Bis95] observes that if c is much larger than λj , then the regularized

solution has coordinate w̃j close to 0, and similarly if 1/(ητ) is much larger than λj, then

the early-stopping solution has coordinate w(τ)
j close to the initial value 0. We note that

analogous observations apply when the regularization term has a reference point different

from zero, c∥w −w∥22, and the gradient descent iteration is initialized at a point different

from zero, w(0) = w.

Now we want to take a closer look at the trajectories. Consider the following two functions:

h1(x) =
λj

λj + x
, h2(x) = 1− e−λj/x.

Actually we can verify that h1(0) = h2(0) = 1 and limx→∞
h1(x)
h2(x)

= 1. It implies that these

two functions are close to each other on [0,∞). Figure 2.13 shows the plot of functions h1(x)

and h2(x).

Now we choose the coefficient of regularization c = 1
ητ

. Comparing (2.174) and (2.175),

and using the fact that h1(x) and h2(x) are close to each other on [0,∞), we show that early

stopping and L2 regularization lead to similar solutions across different values of c = 1
ητ

.

Back to our problem, we repeat the gradient descent procedures (2.17) here:

W̃
(2)
0 = W

(2)
, W̃

(2)
t+1 = W̃

(2)
t − η∇W (2)Llin(ω̃t).
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Figure 2.13: Plot of functions h1(x) and h2(x). The left panel plots the two function when
λj = 1. The right panel plots the two function when λj = 5.

It is actually minimizing the following loss function of W (2) −W :

E(W (2) −W ) =
M∑
j=1

(
n∑
i=1

(W
(2)
i −W

(2)

i )[W
(1)
i xj + bi]+ − (yj − f(xj, θ0))

)2

.

Here we change the variable from W (2) to W (2) −W . Then W
(2)
t −W = 0 when t = 0, so

that gradient descent starts from the zero initial weight vector. Since the above model is

linear with respect to W (2) −W , we can apply the above argument about early stopping

and L2 regularization. Suppose that we use learning rate µn for the neural network of width

n. We show that the solution W̃
(2)
t at iteration t is close to the minimizer of the following

regularized optimization problem:

min
W (2)

M∑
j=1

(
n∑
i=1

(W
(2)
i −W

(2)

i )[W
(1)
i xj + bi]+ − (yj − f(xj, θ0))

)2

+ c∥W (2) −W∥22, (2.176)

where c = 1
ηnt

. Using the same approach and notation as in Section 2.5, the optimization

problem (2.176) is equivalent to

min
αn∈C(R2)

M∑
j=1

(∫
R2

αn(W
(1), b)[W (1)xj + b]+ dµn(W

(1), b)− yj
)2

+
1

nηnt

∫
R2

α2
n(W

(1), b) dµn(W
(1), b),

(2.177)
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where we use the ASI trick (see Appendix 2.B.2). Here (2.177) has an extra factor 1
n

compared

to (2.176). This is because we define αn(W
(1)
i , bi) = n(W

(2)
i −W

(2)

i ). According to Theorem

20, ηn ≤ M

Knλmax(Θ̂n)
is sufficient in order to ensure convergence. Then we suppose that

ηn = η̄/n, where η̄ is a constant so that the requirement on the learning rate in Theorem 20

is satisfied. The limit of the optimization problem (2.177) as the width n tends to infinity is:

min
α∈C(R2)

M∑
j=1

(∫
R2

α(W (1), b)[W (1)xj + b]+ dµ(W (1), b)− yj
)2

+
1

η̄t

∫
R2

α2(W (1), b) dµ(W (1), b).

(2.178)

Following the same reasoning of Section 2.6, we relax the optimization problem (2.178) to

the following one:

min
α∈C(R2),u∈R,v∈R

M∑
j=1

(
uxj + v +

∫
R2

α(W (1), b)[W (1)xj + b]+ dµ(W (1), b)− yj
)2

+
1

η̄t

∫
R2

α2(W (1), b) dµ(W (1), b).

(2.179)

Using the same technique and notation as in Theorem 13, we can prove that the solution of

(2.179) actually solves the following optimization problem:

min
h∈C2(S)

M∑
j=1

[h(xj)− yj]2 +
1

η̄t

∫
S

(h′′(x))2

ζ(x)
dx. (2.180)

Then in order to study the trajectory of gradient descent, we can study the optimization

problem (2.180) with varying t. Figure 2.14 illustrates smoothing spline and gradient descent

trajectories. The solution of (2.180) is called spatially adaptive smoothing spline. Here the

curvature penalty function is 1
η̄t

1
ζ(x)

, with time dependent smoothness regularization coefficient
1
η̄t

. Next, we give out the solution of (2.180) in the following two cases: (1) uniform case (ζ

is constant over domain S); (2) spatially adaptive case (ζ is not constant over domain S).

Remark 45 (Spectral bias). We have thus that the gradient descent optimization trajectory
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Figure 2.14: Trajectories of functions obtained by gradient descent training a neural network
and by smoothing splines of the training data with decreasing regularization strength (from
dark to bright). The left panel plots 20 functions along each trajectory. The right panel shows
the same functions in a two dimensional PCA representation. With asymmetric initialization
of the network parameters and adjusting the training data by ordinary linear regression, both
trajectories start at the zero function. The trajectories are not equivalent, but are close,
and both converge to the same (spatially adaptive) cubic spline interpolation of the training
data (in the limit of infinite wide networks). Here we used a large network with n = 2000
hidden units and Gaussian initialization W ∼ N (0, 1), B ∼ N (0, 1). The results are similar
for smaller networks and different initializations.
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can be described approximately by a trajectory of smoothing splines which gradually relaxes the

smoothness regularization (relative to initialization) until perfectly fitting the training data. If

the function at initialization is at the zero function, e.g., by ASI, then the regularization is

on the function itself. Hence the result provides a theoretical explanation for the spectral bias

phenomenon that has been observed by [RBA19b]. The spectral bias is that lower frequencies

are learned first.

2.N.2 Trajectory of Smoothing Splines with Uniform Curvature Penalty

Suppose the reciprocal curvature penalty is constant ζ(x) ≡ z on the domain S. Let λ = 1
η̄tz

.

Then (2.180) becomes the following optimization problem:

min
h∈C2(S)

M∑
j=1

[h(xj)− yj]2 + λ

∫
S

(h′′(x))2 dx. (2.181)

[Ger01] gives the explicit form of the minimizer ĥ of (2.181), which is called a smoothing

spline. The minimizer ĥ is a natural cubic spline with knots at the sample points x1, . . . , xM .

The smoothing spline does not fit the training data exactly, but rather it balances fitting

and smoothness. The smoothing parameter λ ≥ 0 controls the trade off between fitting and

roughness. The values of the smoothing spline at the knots can be obtained as

(ĥ(x1), . . . , ĥ(xM))⊤ = (I + λA)−1Y. (2.182)

The matrix A has entries Aij =
∫
S
h′′i (x)h

′′
j (x) dx, where hi are spline basis functions which

satisfy hi(xj) = 0 for j ≠ i and hi(xj) = 1 for j = i. [Ger01] gives out a rather explicit form

of matrix A, which is an M ×M matrix given by A = ∆TW−1∆. Here ∆ is an (M − 2)×M

matrix of second differences with elements:

∆ii =
1

hi
, ∆i,i+1 = −

1

hi
− 1

hi+1

, ∆i,i+2 =
1

hi+1

.
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And W is an (M − 2)× (M − 2) symmetric tri-diagonal matrix with elements:

Wi−1,i = Wi,i−1 =
hi
6
, Wi,i =

hi + hi+1

3
, here hi = xi+1 − xi.

As λ → 0, the smoothing spline converges to the interpolating spline, and as λ → ∞, it

converges to the linear least squares estimate.

2.N.3 Trajectory of Spatially Adaptive Smoothing Splines

Let the curvature penalty ρ(x) = 1
η̄t

1
ζ(x)

1
M

. Then (2.180) can be written as

min
h∈W2(S)

1

M

M∑
i=1

[h(xj)− yj]2 +
∫
S

ρ(x)(h′′(x))2 dx, (2.183)

where W2(S) = {f : f, f ′ absolutely continuous and f ′′ ∈ L2(S)}, with L2(S) the square

integrable functions over the domain S. [AS96a, PSH06] give out the solution of (2.183)

explicitly, which is called a spatially adaptive smoothing spline.

According to [PSH06], the solution can be derived in terms of an appropriate RKHS

representation of W 0
2 with inner product ⟨f, g⟩ρ =

∫
f ′′(x)g′′(x)ρ(x) dx. Here W 2

0 (S) =

W2(S) ∩B2(S), where W2(S) is defined above, and B2(S) = {f : f(0) = f ′(0) = 0}. Notice

that when defining B2(S) we need 0 ∈ S. Actually we can choose any point in S. [PSH06]

define B2(S) in this way just for simplicity. Then the kernel of the space W 2
0 (S) is given by

Kρ(x1, x2) =

∫
S

ρ(u)−1[x1 − u]+[x2 − u]+du. (2.184)

Then the minimizer ĥ of (2.183) is given by

ĥ(x) =
M∑
j=1

cjKρ(xj, x) + a+ bx. (2.185)
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Now define the M ×M matrix

Σρ = {Kρ(xi, xj)}i,j=1,...,M , (2.186)

and the M × 2 matrix

T =


1 x1

1 x2
...

...

1 xM

. (2.187)

Denote the vector of coefficients c = (c1, . . . , cM)T and the vector of output values y =

(y1, . . . , yM)T . Then the coefficients in (2.185) satisfy the following conditions:

Σρ

(Σρ +MI)c+ T

a
b

 = Σρy and T⊤

Σρc+ T

a
b

 = T⊤y. (2.188)

After solving for (2.188), we get the values of c, a and b. Plug them into (2.185), then we get

the exact form of the minimizer of (2.183).

2.O Solution to the Variational Problems for Univariate Regression

after Training

2.O.1 Interpolating Splines with Uniform Curvature Penalty

Theorem 2 (b) and (c) show that for certain distributions of (W ,B), ζ is constant. In this

case problem (2.5) with ASI is solved by the cubic spline interpolation of the data with

natural boundary conditions [ANW67].

Theorem 46 ([ANW67]). For training samples {(xi, yi)}Mi=1, suppose xj ∈ S, j = 1, . . . ,M .

Then cubic spline interpolation of data {(xi, yi)}Mi=1 with natural boundary condition is the
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solution of

min
h∈C2(S)

∫
S

(h′′(x))2dx

subject to h(xj) = yj, j = 1, . . . ,m.

As already mentioned in Appendix 2.N, cubic spline interpolation is a finite dimensional

linear problem and can be solved exactly. A cubic spline is a piecewise polynomial of

order 3 with (M − 1) pieces. The j-th piece has the form Sj(x) = aj + bjx + cjx
2 + djx

3,

j = 1, . . . ,M − 1. These (M − 1) pieces satisfy equations Si(xi) = yi, Si(xi+1) = yi+1,

i = 1, . . . ,M − 1 and S ′
i(xi+1) = S ′

i+1(xi+1), S ′′
i (xi+1) = S ′′

i+1(xi+1), i = 1, . . . ,M − 2, and

S ′′
1 (x1) = S ′′

M−1(xM) = 0. Hence computing the spline amounts to solving a linear system in

4(M − 1) indeterminates.

2.O.2 Spatially Adaptive Interpolating Splines

In the case that ζ is not constant, we can still give out the form of the solution to the variational

problem (2.5) with ASI by using the result in Appendix 2.N. We multiply by a coefficient λ

the regularization term in the optimization problem (2.183) and choose ρ(x) = 1
ζ(x)

. Then we

get

min
h∈W2(S)

1

M

M∑
i=1

[h(xj)− yj]2 + λ

∫
S

1

ζ(x)
(h′′(x))2 dx. (2.189)

As λ→ 0, the minimizer of (2.189) converges to the solution of the following optimization

problem:

min
h∈W 2(S)

∫
S

(h′′(x))2

ζ(x)
dx s.t. h(xj) = yj, j = 1, . . . ,m,

which is the variational problem (2.5) with ASI. According to Appendix 2.N, the solution of

(2.189) is given by:

ĥ(λ)(x) =
M∑
j=1

c
(λ)
j Kλ

ζ
(xj, x) + a(λ) + b(λ)x. (2.190)
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And the vector c(λ) = (c
(λ)
1 , . . . , c

(λ)
M )T , a(λ) and b(λ) satisfy the following conditions:

Σλ
ζ

(Σλ
ζ
+MI)c(λ) + T

a(λ)
b(λ)

 = Σλ
ζ
y and T⊤

Σλ
ζ
c(λ) + T

a(λ)
b(λ)

 = T⊤y, (2.191)

where Kλ
ζ
, Σλ

ζ
and T are defined in (2.184), (2.186) and (2.187). Next we show that Kλ

ζ
is

inversely proportional to λ:

Kλ
ζ
(x1, x2) =

∫
S

(
λ

ζ

)−1

[x1 − u]+[x2 − u]+du

= λ−1

∫
S

(
1

ζ

)−1

[x1 − u]+[x2 − u]+du

= λ−1K 1
ζ
(x1, x2).

(2.192)

Also Σλ
ζ
= λ−1Σ 1

ζ
. Then we let c̄(λ)j = λ−1c

(λ)
j and c̄(λ) = λ−1c(λ). So we can rewrite (2.190)

and (2.191) as

ĥ(λ)(x) =
M∑
j=1

c̄
(λ)
j K 1

ζ
(xj, x) + a(λ) + b(λ)x, (2.193)

where c̄(λ), a(λ) and b(λ) satisfy the following conditions:

Σ 1
ζ

(Σ 1
ζ
+ λMI)c̄(λ) + T

a(λ)
b(λ)

 = Σ 1
ζ
y and T⊤

Σ 1
ζ
c̄(λ) + T

a(λ)
b(λ)

 = T⊤y,

(2.194)

Now, as λ→ 0, (2.193) and (2.194) become:

ĥ(0
+)(x) =

M∑
j=1

c̄
(0+)
j K 1

ζ
(xj, x) + a(0

+) + b(0
+)x, (2.195)

where c̄(0
+), a(0+), and b(0+) satisfy the following conditions:

Σ 1
ζ

Σ 1
ζ
c̄(0

+) + T

a(0+)

b(0
+)

 = Σ 1
ζ
y and T⊤

Σ 1
ζ
c̄(λ) + T

a(0+)

b(0
+)

 = T⊤y. (2.196)
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The expressions (2.195) and (2.196) give the solution of (2.189) as λ→ 0, which is also the

solution to the variational problem (2.24).

2.P Possible Generalizations

2.P.1 Deep Networks and Other Architectures

For deep networks with L layers, if we only train the output layer, then we actually train a

linear model. We can actually write down the exact form of the NTK. However it is unclear

whether we can write the explicit form of implicit bias in this case.

In the case of shallow networks, we show that training only the output layer is similar

to training all parameters. Our analysis of shallow networks is based on this. However, in

the case of a deep network, training only the output layer is no longer similar to training all

parameters. If we train all model parameters, the results from [LXS19b] show that the model

still is approximated by a linearized model. The result on kernel norm minimization [ZXL20]

holds in this case. It will be interesting to study the explicit form of the kernel norm, and

extensions of our analysis to the case of training all parameters of deep networks.

2.P.2 Other Loss Functions

We have focused on the implicit bias of gradient descent for regression. For this type of

problems, one often considers a loss function (per example) which has a single finite minimum.

Roughly speaking, our description of the bias is in terms of smoothness properties of the

solution functions. There are various works on the implicit bias of gradient descent for

classification problems, e.g., [SHN18]. In this case, the implicit bias is often formulated in

terms of maximum margins.

In our analysis, some theorems require that the loss function is mean square error (MSE).

In Theorem 10, the gradient flow is a linear differential equation if we use MSE. If we use

a different loss, this will be more complicated. However, we think that the results can be
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generalized. We are also using the result from [LSP18], which is based on MSE. According to

them it is not clear whether their result will still apply for other loss functions. Theorems 12

and 13 are about a variational problem that is derived from Theorem 20, in relation to the

minimization of ∥θ− θ2∥2. Theorem 20 remains valid for other loss functions beside MSE. To

sum up, if we can generalize the Theorem 10 and the result of [LSP18] to other loss functions,

then we can generalize our main result in Theorem 1 to other loss functions as well.

2.P.3 Other Optimization Procedures

It would be interesting to extend the analysis to modifications of the basic gradient descent

optimization procedure. The implicit bias of different optimization methods has been studied

by [GLS18a] covering some instances of mirror descent, natural gradient descent, Adam, and

steepest descent with respect to different potentials and norms. In particular, they show that

the implicit bias of coordinate descent corresponds to the minimization of the 1-norm of the

weights. It will be interesting to work out the explicit form of these descriptions in function

space.
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CHAPTER 3

Learning Curves for Gaussian Process Regression with

Power-law Priors and Targets *

3.1 Introduction

Gaussian processes (GPs) provide a flexible and interpretable framework for learning and

adaptive inference, and are widely used for constructing prior distributions in non-parametric

Bayesian learning. From an application perspective, one crucial question is how fast do

GPs learn, i.e., how much training data is needed to achieve a certain level of generalization

performance. Theoretically, this is addressed by analyzing so-called “learning curves”, which

describe the generalization error as a function of the training set size n. The rate at which

the curve approaches zero determines the difficulty of learning tasks and conveys important

information about the asymptotic performance of GP learning algorithms. In this chapter,

we study the learning curves for Gaussian process regression. Our main result characterizes

the asymptotics of the generalization error in cases where the eigenvalues of the GP kernel

and the coefficients of the eigenexpansion of the target function have a power-law decay. In

the remainder of this introductory section, we review related work and outline our main

contributions.

Gaussian processes A GP model is a probabilistic model on an infinite-dimensional

parameter space [WR06,OT10]. In GP regression (GPR), for example, this space can be the

set of all continuous functions. Assumptions about the learning problem are encoded by way
∗This chapter is adapted from [JBM22], with the permission from coauthors.
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of a prior distribution over functions, which gets transformed into a posterior distribution

given some observed data. The mean of the posterior is then used for prediction. The model

uses only a finite subset of the available parameters to explain the data and this subset can

grow arbitrarily large as more data are observed. In this sense, GPs are “non-parametric”

and contrast with parametric models, where there is a fixed number of parameters. For

regression with Gaussian noise, a major appeal of the GP formalism is that the posterior

is analytically tractable. GPs are also one important part in learning with kernel machines

[KHS18] and modeling using GPs has recently gained considerable traction in the neural

network community.

Neural networks and kernel learning From a GP viewpoint, there exists a well known

correspondence between kernel methods and infinite neural networks (NNs) first studied by

[Nea96a]. Neal showed that the outputs of a randomly initialized one-hidden layer neural

network (with appropriate scaling of the variance of the initialization distribution) converges to

a GP over functions in the limit of an infinite number of hidden units. Follow-up work extended

this correspondence with analytical expressions for the kernel covariance for shallow NNs

by [Wil97], and more recently for deep fully-connected NNs [LSP18,GHR18], convolutional

NNs with many channels [NXB19,GRA19], and more general architectures [Yan19]. The

correspondence enables exact Bayesian inference in the associated GP model for infinite-width

NNs on regression tasks and has led to some recent breakthroughs in our understanding of

overparameterized NNs [JGH18b,LXS19a,ADH19b,BMM18,DFS16a,YS19a,BM19]. The

most prominent kernels associated with infinite-width NNs are the Neural Network Gaussian

Process (NNGP) kernel [LSP18,GHR18], and the Neural Tangent Kernel (NTK) [JGH18b].

Empirical studies have shown that inference with such infinite network kernels is competitive

with standard gradient descent-based optimization for fully-connected architectures [LSP20].

Learning curves A large-scale empirical characterization of the generalization performance

of state-of-the-art deep NNs showed that the associated learning curves often follow a power

law of the form n−β with the exponent β ranging between 0.07 and 0.35 depending on the data
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and the algorithm [HNA17,SGW20]. Power-law asymptotics of learning curves have been

theoretically studied in early works for the Gibbs learning algorithm [AFS92,AM93,HKS96]

that showed a generalization error scaling with exponent β = 0.5, 1 or 2 under certain

assumptions. More recent results from statistical learning theory characterize the shape of

learning curves depending on the properties of the hypothesis class [BHM21]. In the context

of GPs, approximations and bounds on learning curves have been investigated in several works

[Sol99,SH02,Sol01,OV99,OM02,WV00,MO01b,MO01a,SKF08,VV11,LG15], with recent

extensions to kernel regression from a spectral bias perspective [BCP20,CBP21]. For a review

on learning curves in relation to its shape and monotonicity, see [LVM19,VML19,VL21]. A

related but complementary line of work studies the convergence rates and posterior consistency

properties of Bayesian non-parametric models [Bar98,SKF08,VV11].

Power-law decay of the GP kernel eigenspectrum The rate of decay of the eigenvalues

of the GP kernel conveys important information about its smoothness. Intuitively, if a process

is “rough” with more power at high frequencies, then the eigenspectrum decays more slowly.

On the other hand, kernels that define smooth processes have a fast-decaying eigenspectrum

[Ste12,WR06]. The precise eigenvalues (λp)p≥1 of the operators associated to many kernels

and input distributions are not known explicitly, except for a few special cases [WR06].

Often, however, the asymptotic properties are known. The asymptotic rate of decay of

the eigenvalues of stationary kernels for input distributions with bounded support is well

understood [Wid63,RWW95]. [RJK19] showed that for inputs distributed uniformly on a

hypersphere, the eigenfunctions of the arc-cosine kernel are spherical harmonics and the

eigenvalues follow a power-law decay. The spectral properties of the NTK are integral to

the analysis of training convergence and generalization of NNs, and several recent works

empirically justify and rely on a power law assumption for the NTK spectrum [BDK21,

CBP21,LSP20,NS21]. [VY21b] showed that the asymptotics of the NTK of infinitely wide

shallow ReLU networks follows a power-law that is determined primarily by the singularities

of the kernel and has the form λp ∝ p−α with α = 1 + 1
d
, where d is the input dimension.

134



Asymptotics of the generalization error of kernel ridge regression (KRR) There is

a well known equivalence between GPR and KRR with the additive noise in GPR playing the

role of regularization in KRR [KHS18]. Analysis of the decay rates of the excess generalization

error of KRR has appeared in several works, e.g, in the noiseless case with constant regulariza-

tion [BCP20,SGW20,JCO19], and the noisy optimally regularized case [CD07,SHS09,FS20]

under the assumption that the kernel eigenspectrum, and the eigenexpansion coefficients of

the target function follow a power law. These assumptions, which are often called resp. the

capacity and source conditions are related to the effective dimension of the problem and the

difficulty of learning the target function [CD07,BM18]. [CLK21] present a unifying picture of

the excess error decay rates under the capacity and source conditions in terms of the interplay

between noise and regularization illustrating their results with real datasets.

Contributions In this chapter, we characterize the asymptotics of the generalization error

of GPR and KRR under the capacity and source conditions. Our main contributions are as

follows:

• When the eigenspectrum of the prior decays with rate α and the eigenexpansion coefficients

of the target function decay with rate β, we show that with high probability over the

draw of n input samples, the negative log-marginal likelihood behaves as Θ(nmax{ 1
α
, 1−2β

α
+1})

(Theorem 53) and the generalization error behaves as Θ(nmax{ 1
α
−1, 1−2β

α
}) (Theorem 55).

In the special case that the model is correctly specified, i.e., the GP prior is the true

one from which the target functions are actually generated, our result implies that the

generalization error behaves as O(n
1
α
−1) recovering as a special case a result due to [SH02]

(vide Remark 56).

• Under similar assumptions as in the previous item, we leverage the equivalence between GPR

and KRR to show that the excess generalization error of KRR behaves as Θ(nmax{ 1
α
−1, 1−2β

α
})

(Theorem 58). In the noiseless case with constant regularization, our result implies that

the generalization error behaves as Θ(n
1−2β

α ) recovering as a special case a result due to
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[BCP20]. Specializing to the case of KRR with Gaussian design, we recover as a special

case a result due to [CLK21] (vide Remark 60).

For the unrealizable case, i.e., when the target function is outside the span of the eigen-

functions with positive eigenvalues, we show that the generalization error converges to a

constant.

• We present a few toy experiments demonstrating the theory for GPR with arc-cosine

kernel without biases (resp. with biases) which is the conjugate kernel of an infinitely wide

shallow network with two inputs and one hidden layer without biases (resp. with biases)

[CS09,RJK19].

3.2 Bayesian Learning and Generalization Error for GPs

In GP regression, our goal is to learn a target function f : Ω 7→ R between an input x ∈ Ω and

output y ∈ R based on training samples Dn = {(xi, yi)}ni=1. We consider an additive noise

model yi = f(xi)+ ϵi, where ϵi
i.i.d.∼ N (0, σ2

true). If ρ denotes the marginal density of the inputs

xi, then the pairs (xi, yi) are generated according to the density q(x, y) = ρ(x)q(y|x), where

q(y|x) = N (y|f(x), σ2
true). We assume that there is a prior distribution Π0 on f which is

defined as a zero-mean GP with continuous and bounded covariance function k : Ω× Ω→ R,

i.e., f ∼ GP(0, k). This means that for any finite set x = (x1, . . . , xn)
T , the random

vector f(x) = (f(x1), . . . , f(xn))
T follows the multivariate normal distribution N (0, Kn) with

covariance matrix Kn = (k(xi, xj))
n
i,j=1 ∈ Rn×n. By Bayes’ rule, the posterior distribution

over f given the training data is given by

dΠn(f |Dn) =
1

Z(Dn)

n∏
i=1

N (yi|f(xi), σ2
model)dΠ0(f),

where Π0 is the prior distribution, Z(Dn) =
∫ ∏n

i=1N (yi|f(xi), σ2
model)dΠ0(f) is the marginal

likelihood or model evidence and σmodel is the sample variance used in GPR. In practice, we

do not know the exact value of σtrue and so our choice of σmodel can be different from σtrue.
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The GP prior and the Gaussian noise assumption allows for exact Bayesian inference and the

posterior distribution over functions is again a GP with mean and covariance function given

by

m̄(x) = KT
xx(Kn + σ2

modelIn)
−1y, x ∈ Ω (3.1)

k̄(x, x′) = k(x, x′)−KT
xx(Kn + σ2

modelIn)
−1Kxx′ , x, x

′ ∈ Ω, (3.2)

where Kxx = (k(x1, x), . . . , k(xn, x))
T and y = (y1, . . . , yn)

T ∈ Rn [WR06, Eqs. 2.23-24].

The performance of GPR depends on how well the posterior approximates f as the number

of training samples n tends to infinity. The distance of the posterior to the ground truth can be

measured in various ways. We consider two such measures, namely the Bayesian generalization

error [SKF08,HO97,OV99] and the excess mean squared error [SH02,LG15,BCP20,CLK21].

Definition 47 (Bayesian generalization error). The Bayesian generalization error is defined

as the Kullback-Leibler divergence between the true density q(y|x) and the Bayesian predictive

density pn(y|x,Dn) =
∫
N (y|f(x), σ2

model)dΠn(f |Dn),

G(Dn) =

∫
q(x, y) log

q(y|x)
pn(y|x,Dn)

dxdy. (3.3)

A related quantity of interest is the stochastic complexity (SC), also known as the free

energy, which is just the negative log-marginal likelihood. We shall primarily be concerned

with a normalized version of the stochastic complexity which is defined as follows:

F 0(Dn) = − log
Z(Dn)∏n
i=1 q(yi|xi)

= − log

∫ ∏n
i=1N (yi|f(xi), σ2

model)dΠ0(f)∏n
i=1 q(yi|xi)

. (3.4)

The generalization error (3.3) can be expressed in terms of the normalized SC as follows

[Wat09, Theorem 1.2]:

G(Dn) = E(xn+1,yn+1)F
0(Dn+1)− F 0(Dn), (3.5)
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where Dn+1 = Dn∪{(xn+1, yn+1)} is obtained by augmenting Dn with a test point (xn+1, yn+1).

If we only wish to measure the performance of the mean of the Bayesian posterior, then

we can use the excess mean squared error:

Definition 48 (Excess mean squared error). The excess mean squared error is defined as

M(Dn) = E(xn+1,yn+1)(m̄(xn+1)− yn+1)
2 − σ2

true = Exn+1(m̄(xn+1)− f(xn+1))
2. (3.6)

Proposition 49 (Normalized stochastic complexity for GPR). Assume that σ2
model = σ2

true =

σ2. The normalized SC F 0(Dn) (3.4) for GPR with prior GP(0, k) is given as

F 0(Dn) =
1
2
log det(In +

Kn

σ2 ) +
1

2σ2y
T (In +

Kn

σ2 )
−1y − 1

2σ2 (y − f(x))T (y − f(x)), (3.7)

where ϵ = (ϵ1, . . . , ϵn)
T . The expectation of the normalized SC w.r.t. the noise ϵ is given as

EϵF
0(Dn) =

1
2
log det

(
In +

Kn

σ2

)
− 1

2
Tr
(
In −

(
In +

Kn

σ2

)−1
)
+ 1

2σ2f(x)
T
(
In +

Kn

σ2

)−1
f(x).

(3.8)

This is a basic result and has applications in relation to model selection in GPR [WR06].

For completeness, we give a proof of Proposition 49 in Appendix 3.B. [SKF08, Theorem 1]

gave an upper bound on the normalized stochastic complexity for the case when f lies in the

reproducing kernel Hilbert space (RKHS) of the GP prior. It is well known, however, that

sample paths of GP almost surely fall outside the corresponding RKHS [VV11] limiting the

applicability of the result.

We next derive the asymptotics of EϵF
0(Dn), the expected generalization error EϵG(Dn) =

EϵE(xn+1,yn+1)F
0(Dn + 1)− EϵF

0(Dn), and the excess mean squared error EϵM(Dn).
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3.3 Asymptotic Analysis of GP Regression with Power-law Priors

3.3.1 Notations and Assumptions

We assume that f ∈ L2(Ω, ρ). By the generalization of Mercer’s theorem [SS12, Corollary 3.2],

the covariance function of the GP prior can be decomposed as k(x1, x2) =
∑∞

p=1 λpϕp(x1)ϕp(x2)

ρ-almost surely, where (ϕp(x))p≥1 are the eigenfunctions of the operator Lk : L2(Ω, ρ) 7→

L2(Ω, ρ); (Lkf)(x) =
∫
Ω
k(x, s)f(s)dρ(s), and (λp)p≥1 are the corresponding positive eigenval-

ues. We index the sequence of eigenvalues in decreasing order, that is λ1 ≥ λ2 ≥ · · · > 0. The

target function f(x) is decomposed into the orthonormal set (ϕp(x))p≥1 and its orthogonal

complement {ϕp(x) : p ≥ 1}⊥ as

f(x) =
∞∑
p=1

µpϕp(x) + µ0ϕ0(x) ∈ L2(Ω, ρ), (3.9)

where µ = (µ0, µ1, . . . , µp, . . .)
T are the coefficients of the decomposition, and ϕ0(x) satisfies

∥ϕ0(x)∥2 = 1 and ϕ0(x) ∈ {ϕp(x) : p ≥ 1}⊥. For given sample inputs x, let ϕp(x) =

(ϕp(x1), . . . , ϕp(xn))
T , Φ = (ϕ0(x), ϕ1(x), . . . , ϕp(x), . . .) and Λ = diag{0, λ1, . . . , λp, . . .}.

Then the covariance matrix Kn can be written as Kn = ΦΛΦT , and the function values on

the sample inputs can be written as f(x) = Φµ.

We shall make the following assumptions in order to derive the power-law asymptotics of

the normalized stochastic complexity and the generalization error of GPR:

Assumption 50 (Power law decay of eigenvalues). The eigenvalues (λp)p≥1 follow the power

law

Cλp
−α ≤ λp ≤ Cλp

−α, ∀p ≥ 1 (3.10)

where Cλ, Cλ and α are three positive constants which satisfy 0 < Cλ ≤ Cλ and α > 1.

As mentioned in the introduction, this assumption, called the capacity condition, is fairly

standard in kernel learning and is adopted in many recent works [BCP20,CBP21,JCO19,

BVB21,CLK21]. [VY21b] derived the exact value of the exponent α when the kernel function
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has a homogeneous singularity on its diagonal, which is the case for instance for the arc-cosine

kernel.

Assumption 51 (Power law decay of coefficients of decomposition). Let Cµ, Cµ > 0 and

β > 1/2 be positive constants and let {pi}i≥1 be an increasing integer sequence such that

supi≥1(pi+1 − pi) < ∞. The coefficients (µp)p≥1 of the decomposition (3.9) of the target

function follow the power law

|µp| ≤ Cµp
−β, ∀p ≥ 1 and |µpi | ≥ Cµpi

−β, ∀i ≥ 1. (3.11)

Since f ∈ L2(Ω, ρ), we have
∑∞

p=0 µ
2
p < ∞. The condition β > 1/2 in Assumption 51

ensures that the sum
∑∞

p=0 µ
2
p does not diverge. When the orthonormal basis (ϕp(x))p is the

Fourier basis or the spherical harmonics basis, the coefficients (µp)p decay at least as fast

as a power law so long as the target function f(x) satisfies certain smoothness conditions

[BM19]. [VY21b] gave examples of some natural classes of functions for which Assumption

51 is satisfied, such as functions that have a bounded support with smooth boundary and are

smooth on the interior of this support, and derived the corresponding exponents β.

Assumption 52 (Boundedness of eigenfunctions). The eigenfunctions (ϕp(x))p≥0 satisfy

∥ϕ0∥∞ ≤ Cϕ and ∥ϕp∥∞ ≤ Cϕp
τ , p ≥ 1, (3.12)

where Cϕ and τ are two positive constants which satisfy τ < α−1
2

.

The second condition in (3.12) appears, for example, in [Val18, Hypothesis H1] and is less

restrictive than the assumption of uniformly bounded eigenfunctions that has appeared in

several other works in the GP literature, see, e.g., [Bra06,CPB19,VKP21].

140



Define

T1(Dn) =
1
2
log det

(
In +

ΦΛΦT

σ2

)
− 1

2
Tr

(
In −

(
In +

ΦΛΦT

σ2

)−1
)
, (3.13)

T2(Dn) =
1

2σ2f(x)
T
(
In +

ΦΛΦT

σ2

)−1

f(x), (3.14)

G1(Dn) = E(xn+1,yn+1)(T1(Dn+1)− T1(Dn)), (3.15)

G2(Dn) = E(xn+1,yn+1)(T2(Dn+1)− T2(Dn)). (3.16)

Using (3.8) and (3.5), we have EϵF
0(Dn) = T1(Dn) + T2(Dn) and EϵG(Dn) = G1(Dn) +

G2(Dn). Intuitively, G1 corresponds to the effect of the noise on the generalization error

irrespective of the target function f , whereas G2 corresponds to the ability of the model to fit

the target function. As we will see next in Theorems 55 and 57, if α is large, then the error

associated with the noise is smaller. When f is contained in the span of the eigenfunctions

{ϕp}p≥1, G2 decreases with increasing n, but if f contains an orthogonal component, then

the error remains constant and GP regression is not able to learn the target function.

3.3.2 Asymptotics of the Normalized Stochastic Complexity

We derive the asymptotics of the normalized SC (3.8) for the following two cases: µ0 = 0 and

µ0 > 0. When µ0 = 0, the target function f(x) lies in the span of all eigenfunctions with

positive eigenvalues.

Theorem 53 (Asymptotics of the normalized SC, µ0 = 0). Assume that µ0 = 0 and

σ2
model = σ2

true = σ2 = Θ(1). Under Assumptions 50, 51 and 52, with probability of at least

1− n−q over sample inputs (xi)
n
i=1, where 0 ≤ q < min{ (2β−1)(α−1−2τ)

4α2 , α−1−2τ
2α
}, the expected

normalized SC (3.8) has the asymptotic behavior:

EϵF 0(Dn) =
[
1
2
log det(I + n

σ2Λ)− 1
2
Tr
(
I − (I + n

σ2Λ)
−1
)
+ n

2σ2µ
T (I + n

σ2Λ)
−1µ

]
(1 + o(1))

= Θ(nmax{ 1
α
,
1−2β
α

+1}). (3.17)
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The complete proof of Theorem 53 is given in Appendix 3.D.1. We give a sketch of the

proof below. In the sequel, we use the notations O and Θ to denote the standard mathematical

orders and the notation Õ to suppress logarithmic factors.

Proof sketch of Theorem 53. By (3.8), (3.13) and (3.14) we have EϵF
0(Dn) = T1(Dn) +

T2(Dn). In order to analyze the terms T1(Dn) and T2(Dn), we will consider truncated

versions of these quantities and bound the corresponding residual errors. Given a truncation

parameter R ∈ N, let ΦR = (ϕ0(x), ϕ1(x), . . . , ϕR(x)) ∈ Rn×R be the truncated matrix of

eigenfunctions evaluated at the data points, ΛR = diag(0, λ1, . . . , λR) ∈ R(R+1)×(R+1) and

µR = (µ0, µ1, . . . , µR) ∈ RR+1. We define the truncated version of T1(Dn) as follows:

T1,R(Dn) =
1
2
log det

(
In +

ΦRΛRΦT
R

σ2

)
− 1

2
Tr
(
In − (In +

ΦRΛRΦT
R

σ2 )−1
)
. (3.18)

Similarly, define Φ>R = (ϕR+1(x), ϕR+2(x), . . . , ϕp(x), . . .), Λ>R = diag(λR+1, . . . , λp, . . .),

fR(x) =
∑R

p=1 µpϕp(x), fR(x) = (fR(x1), . . . , fR(xn))
T , f>R(x) = f(x)−fR(x), and f>R(x) =

(f>R(x1), . . . , f>R(xn))
T . The truncated version of T2(Dn) is then defined as

T2,R(Dn) =
1

2σ2fR(x)
T (In +

ΦRΛRΦT
R

σ2 )−1fR(x)
T . (3.19)

The proof consists of three steps:

• Approximation step: In this step, we show that the asymptotics of T1,R resp. T2,R domi-

nates that of the residuals, |T1,R(Dn)− T1(Dn)| resp. |T2,R(Dn)− T2(Dn)| (see Lemma 78).

This builds upon first showing that ∥Φ>RΛ>RΦ
T
>R∥2 = Õ(max{nR−α, n

1
2R

1−2α
2 , R1−α})

(see Lemma 71) and then choosing R = n
1
α
+κ where 0 < κ < α−1−2τ

2α2 when we have

∥Φ>RΛ>RΦ
T
>R∥2 = o(1). Intuitively, the choice of the truncation parameter R is governed

by the fact that λR = Θ(R−α) = n−1+κα = o(n−1).

• Decomposition step: In this step, we decompose T1,R into a term independent of ΦR

and a series involving ΦT
RΦR − nIR, and likewise for T2,R (see Lemma 80). This builds
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upon first showing using the Woodbury matrix identity [WR06, §A.3] that

T1,R(Dn) =
1
2
log det(IR + 1

σ2ΛRΦ
T
RΦR)− 1

2
TrΦR(σ

2IR + ΛRΦ
T
RΦR)

−1ΛRΦ
T
R, (3.20)

T2,R(Dn) =
1

2σ2µ
T
RΦ

T
RΦR(σ

2IR + ΛRΦ
T
RΦR)

−1µR, (3.21)

and then Taylor expanding the matrix inverse (σ2IR + ΛRΦ
T
RΦR)

−1 in (3.20) and (3.21) to

show that the ΦR-independent terms in the decomposition of T1,R and T2,R are, respectively,
1
2
log det(IR + n

σ2ΛR)− 1
2
Tr
(
IR − (IR + n

σ2ΛR)
−1
)
, and n

2σ2µ
T
R(IR + n

σ2ΛR)
−1µR.

• Concentration step: Finally, we use concentration inequalities to show that these ΦR-

independent terms dominate the series involving ΦT
RΦR − nIR (see Lemma 81) when we

have

T1,R(Dn) =
(
1
2
log det(IR + n

σ2ΛR)− 1
2
Tr
(
IR − (IR + n

σ2ΛR)
−1
))
(1 + o(1)) = Θ(n

1
α ),

T2,R(Dn) =
(
n

2σ2µ
T
R(IR + n

σ2ΛR)
−1µR

)
(1 + o(1)) =


Θ(nmax{0, 1−2β

α
+1}), α ̸= 2β − 1,

Θ(log n), α = 2β − 1.

The key idea is to consider the matrix Λ
1/2
R (I + n

σ2ΛR)
−1/2ΦT

RΦR(I +
n
σ2ΛR)

−1/2Λ
1/2
R and

show that it concentrates around nΛR(I + n
σ2 )

−1 (see Corollary 68). Note that an ordinary

application of the matrix Bernstein inequality to ΦT
RΦR − nIR yields ∥ΦT

RΦR − nI∥2 =

O(R
√
n), which is not sufficient for our purposes, since this would give O(R

√
n) = o(n)

only when α > 2. In contrast, our results are valid for α > 1 and cover cases of practical

interest, e.g., the NTK of infinitely wide shallow ReLU network [VY21b] and the arc-cosine

kernels over high-dimensional hyperspheres [RJK19] that have α = 1 +O(1
d
), where d is

the input dimension.

For µ0 > 0, we note the following result:

Theorem 54 (Asymptotics of the normalized SC, µ0 > 0). Assume µ0 > 0 and σ2
model =

σ2
true = σ2 = Θ(1). Under Assumptions 50, 51 and 52, with probability of at least 1 − n−q
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over sample inputs (xi)
n
i=1, where 0 ≤ q < min{2β−1

2
, α} · min{α−1−2τ

2α2 , 2β−1
α2 }. the expected

normalized SC (3.8) has the asymptotic behavior: EϵF 0(Dn) =
1

2σ2µ
2
0n+ o(n).

The proof of Theorem 54 is given in Appendix 3.D.1 and follows from showing that when

µ0 > 0, T2,R(Dn) =
(
n

2σ2µ
T
R(IR + n

σ2ΛR)
−1µR

)
(1 + o(1)) = 1

2σ2µ
2
0n + o(n) (see Lemma 84),

which dominates T1(Dn) and the residual |T2,R(Dn)− T2(Dn)|.

3.3.3 Asymptotics of the Bayesian Generalization Error

In this section, we derive the asymptotics of the expected generalization error EϵG(Dn) by

analyzing the asymptotics of the components G1(Dn) and G2(Dn) in resp. (3.15) and (3.16)

for the following two cases: µ0 = 0 and µ0 > 0. First, we consider the case µ0 = 0.

Theorem 55 (Asymptotics of the Bayesian generalization error, µ0 = 0). Let Assumptions

50, 51, and 52 hold. Assume that µ0 = 0 and σ2
model = σ2

true = σ2 = Θ(nt) where 1 −
α

1+2τ
< t < 1. Then with probability of at least 1 − n−q over sample inputs (xi)

n
i=1 where

0 ≤ q < [α−(1+2τ)(1−t)](2β−1)
4α2 , the expectation of the Bayesian generalization error (3.3) w.r.t.

the noise ϵ has the asymptotic behavior:

EϵG(Dn) =
1+o(1)
2σ2

(
Tr(I + n

σ2Λ)
−1Λ− ∥Λ1/2(I + n

σ2Λ)
−1∥2F + ∥(I + n

σ2Λ)
−1µ∥22

)
= 1

σ2Θ(nmax{ (1−α)(1−t)
α

,
(1−2β)(1−t)

α
}). (3.22)

The proof of Theorem 55 is given in Appendix 3.D.2. Intuitively, for a given t, the

exponent (1−α)(1−t)
α

in (3.22) captures the rate at which the model suppresses the noise, while

the exponent (1−2β)(1−t)
α

captures the rate at which the model learns the target function. A

larger β implies that the exponent (1−2β)(1−t)
α

is smaller and it is easier to learn the target.

A larger α implies that the exponent (1−α)(1−t)
α

is smaller and the error associated with the

noise is smaller as well. A larger α, however, also implies that the exponent (1−2β)(1−t)
α

is

larger (recall that α > 1 and β > 1/2 by Assumptions 50 and 51, resp.), which means that it

is harder to learn the target.
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Remark 56. If f ∼ GP(0, k), then using the Karhunen-Loève expansion we have f(x) =∑∞
p=1

√
λpωpϕp(x), where (ωp)

∞
p=1 are i.i.d. standard Gaussian variables. We can bound ωp

almost surely as |ωp| ≤ C log p, where C = supp≥1
|ωp|
log p

is a finite constant. Comparing with

the expansion of f(x) in (3.9), we find that µp =
√
λpωp = O(p−α/2 log p) = O(p−α/2+ε) where

ε > 0 is arbitrarily small. Choosing β = α/2− ε in (3.22), we have EϵG(Dn) = O(n
1
α
−1+ 2ε

α ).

This rate matches that of an earlier result due to [SH02], where it is shown that the asymptotic

learning curve (as measured by the expectation of the excess mean squared error, EfM(Dn))

scales as n
1
α
−1 when the model is correctly specified, i.e., f is a sample from the same Gaussian

process GP(0, k), and the eigenvalues decay as a power law for large i, λi ∼ iα.

For µ0 > 0, we note the following result:

Theorem 57 (Asymptotics of the Bayesian generalization error, µ0 > 0). Let Assumptions

50, 51, and 52 hold. Assume that µ0 > 0 and σ2
model = σ2

true = σ2 = Θ(nt) where 1 −
α

1+2τ
< t < 1. Then with probability of at least 1 − n−q over sample inputs (xi)

n
i=1, where

0 ≤ q < [α−(1+2τ)(1−t)](2β−1)
4α2 , the expectation of the Bayesian generalization error (3.3) w.r.t.

the noise ϵ has the asymptotic behavior: EϵG(Dn) =
1

2σ2µ
2
0 + o(1).

In general, if µ0 > 0, then the generalization error remains constant when n→∞. This

means that if the target function contains a component in the kernel of the operator Lk, then

GP regression is not able to learn the target function. The proof of Theorem 57 is given in

Appendix 3.D.2.

3.3.4 Asymptotics of the Excess Mean Squared Error

In this section we derive the asymptotics of the excess mean squared error in Definition 48.

Theorem 58 (Asymptotics of excess mean squared error). Let Assumptions 50, 51, and 52

hold. Assume σ2
model = Θ(nt) where 1− α

1+2τ
< t < 1. Then with probability of at least 1−n−q

over sample inputs (xi)
n
i=1, where 0 ≤ q < [α−(1+2τ)(1−t)](2β−1)

4α2 , the excess mean squared error
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(3.6) has the asymptotic:

EϵM(Dn) = (1 + o(1))

[
σ2
true

σ2
model

(
Tr(I + n

σ2
model

Λ)−1Λ− ∥Λ1/2(I + n
σ2
model

Λ)−1∥2F
)

+ ∥(I + n
σ2
model

Λ)−1µ∥22
]
= Θ

(
max{σ2

truen
1−α−t
α , n

(1−2β)(1−t)
α }

)

when µ0 = 0, and EϵM(Dn) = µ2
0 + o(1), when µ0 > 0.

The proof of Theorem 58 uses similar techniques as Theorem 55 and is given in Ap-

pendix 3.D.3.

Remark 59 (Correspondence with kernel ridge regression). The kernel ridge regression

(KRR) estimator arises as a solution to the optimization problem

f̂ = argmin
f∈Hk

1

n

n∑
i=1

(f(xi)− yi)2 + λ∥f∥2Hk
, (3.23)

where the hypothesis space Hk is chosen to be an RKHS, and λ > 0 is a regularization

parameter. The solution to (3.23) is unique as a function, and is given by f̂(x) = KT
xx(Kn +

nλIn)
−1y, which coincides with the posterior mean function m̄(x) of the GPR (3.1) if

σ2
model = nλ [KHS18, Proposition 3.6]. Thus, the additive Gaussian noise in GPR plays the

role of regularization in KRR. Leveraging this well known equivalence between GPR and KRR

we observe that Theorem 58 also describes the generalization error of KRR as measured by

the excess mean squared error.

Remark 60. [CLK21] derived the asymptotics of the expected excess mean-squared error for

different regularization strengths and different scales of noise. In particular, for KRR with

Gaussian design where Λ
1/2
R (ϕ1(x), . . . , ϕR(x))) is assumed to follow a Gaussian distribution

N (0,ΛR), and regularization λ = nt−1 where 1− α ≤ t, [CLK21, Eq. 10] showed that

E{xi}ni=1
EϵM(Dn) = O

(
max{σ2

truen
1−α−t

α , n
(1−2β)(1−t)

α }
)
. (3.24)

Let δ = n−q, where 0 ≤ q < [α−(1+2τ)(1−t)](2β−1)
4α2 . By Markov’s inequality, this im-
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plies that with probability of at least 1− δ, EϵM(Dn) = O(1
δ
max{σ2

truen
1−α−t

α , n
(1−2β)(1−t)

α }) =

O(nqmax{σ2
truen

1−α−t
α , n

(1−2β)(1−t)
α }). Theorem 58 improves upon this by showing that with prob-

ability of at least 1−δ, we have an optimal bound EϵM(Dn) = Θ(max{σ2
truen

1−α−t
α , n

(1−2β)(1−t)
α }).

Furthermore, in contrast to the approach by [CLK21], we have no requirement on the distribu-

tion of ϕp(x), and hence our result is more generally applicable. For example, Theorem 58 can

be applied to KRR with the arc-cosine kernel when the Gaussian design assumption is not valid.

In the noiseless setting (σtrue = 0) with constant regularization (t = 0), Theorem 58 implies

that the mean squared error behaves as Θ(n
1−2β

α ). This recovers a result in [BCP20, §2.2].

Our upper bound in Theorem 58 matches with the ones derived in [SHS09,FS20]. [SHS09]

and [FS20] also derived algorithm independent minmax lower bounds. In contrast to their

results, our Theorem 58 gives lower bounds for different regularization strengths λ.

3.4 Experiments

We illustrate our theory on a few toy experiments. We let the input x be uniformly distributed

on a unit circle, i.e., Ω = S1 and ρ = U(S1). The points on S1 can be represented by

x = (cos θ, sin θ) where θ ∈ [−π, π). We use the first order arc-cosine kernel function without

bias, k(1)w/o bias(x1, x2) =
1
π
(sinψ + (π − ψ) cosψ), where ψ = ⟨x1, x2⟩ is the angle between x1

and x2. Hence Assumption 50 is satisfied with α = 4. We consider the target functions in

Table 3.1, which satisfy Assumption 51 with the indicated β, and µ0 indicates whether the

function lies in the span of eigenfunctions of the kernel. For each target we conduct GPR 20

times and report the mean and standard deviation of the normalized SC and the Bayesian

generalization error in Figure 3.1, which agree with the asymptotics predicted in Theorems 53

and 55. The details of the experiments appear in Appendix 3.A, where we also show more

experiments confirming our theory for zero- and second- order arc-cosine kernels, with and

without biases.

147



function value β µ0 EϵF
0(Dn) EϵG(Dn)

f1 cos 2θ +∞ 0 Θ(n1/4) Θ(n−3/4)

f2 θ2 2 > 0 Θ(n) Θ(1)

f3 (|θ| − π/2)2 2 0 Θ(n1/4) Θ(n−3/4)

f4

{
π/2− θ, θ ∈ [0, π)

−π/2− θ, θ ∈ [−π, 0)
1 0 Θ(n3/4) Θ(n−1/4)

Table 3.1: Target functions used in the experiments for the first order arc-cosine kernel
without bias k(1)w/o bias, their values of β and µ0, and theoretical rates for the normalized SC
and the Bayesian generalization error from our theorems.

Figure 3.1: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with
the kernel k(1)w/o bias and the target functions in Table 3.1. The orange curves show the linear
regression fit for the experimental values (in blue) of the log Bayesian generalization error as
a function of log n.
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3.5 Conclusion

We described the learning curves for GPR for the case that the kernel and target function

follow a power law. This setting is frequently encountered in kernel learning and relates

to recent advances on neural networks. Our approach is based on a tight analysis of the

concentration of the inner product of empirical eigenfunctions ΦTΦ around nI. This allowed

us to obtain more general results with more realistic assumptions than previous works.

In particular, we recovered some results on learning curves for GPR and KRR previously

obtained under more restricted settings (vide Remarks 56 and 60).

We showed that when β ≥ α/2, meaning that the target function has a compact rep-

resentation in terms of the eigenfunctions of the kernel, the learning rate is as good as in

the correctly specified case. In addition, our result allows us to interpret β from a spectral

bias perspective. When 1
2
< β ≤ α

2
, the larger the value of β, the faster the decay of the

generalization error. This implies that low-frequency functions are learned faster in terms of

the number of training data points.

By leveraging the equivalence between GPR and KRR, we obtained a result on the

generalization error of KRR. In the infinite-width limit, training fully-connected deep NNs

with gradient descent and infinitesimally small learning rate under least-squared loss is

equivalent to solving KRR with respect to the NTK [JGH18b,LXS19a,Dom20], which in

several cases is known to have a power-law spectrum [VY21b]. Hence our methods can be

applied to study the generalization error of infinitely wide neural networks. In future work, it

would be interesting to estimate the values of α and β for the NTK and the NNGP kernel of

deep fully-connected or convolutional NNs and real data distributions and test our theory in

these cases. Similarly, it would be interesting to consider extensions to finite width kernels.
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Appendix

3.A Experiments for Arc-Cosine Kernels of Different Orders

In our experiment, the input space and input distribution are Ω = S1 and ρ = U(S1), and we

use the first order arc-cosine kernel function. [CS09] showed that this kernel is the conjugate

kernel of an infinitely wide shallow ReLU network with two inputs and no biases in the hidden

layer. GP regression with prior GP(0, k) corresponds to Bayesian training of this network

[LSP18]. Under this setting, the eigenvalues and eigenfunctions are λ1 = 4
π2 , λ2 = λ3 =

1
4
,

λ2p = λ2p+1 = 4
π2((2p−2)2−1)2

, p ≥ 2 and ϕ1(θ) = 1, ϕ2(θ) =
√
2
2
cos θ, ϕ3(θ) =

√
2
2
sin θ,

ϕ2p(θ) =
√
2
2
cos(2p− 2)θ,ϕ2p+1(θ) =

√
2
2
sin(2p− 2)θ, p ≥ 2. Hence Assumption 50 is satisfied

with α = 4, and the second part of Assumption 52 is satisfied with ∥ϕp∥ ≤
√
2
2

, p ≥ 1.

The training and test data are generated as follows: We independently sample training

inputs x1, . . . , xn and test input xn+1 from U(S1) and training outputs yi, i = 1, . . . , n from

N (f(xi), σ
2), where we choose σ = 0.1. The Bayesian predictive density conditioned on

the test point xn+1 N (m̄(xn+1), k̄(xn+1, xn+1)) is obtained by (3.1) and (3.2). We compute

the normalized SC by (3.7) and the Bayesian generalization error by the Kullback-Leibler

divergence between N (f(xn+1), σ
2) and N (m̄(xn+1), k̄(xn+1, xn+1)).

Next we present experiment results for arc-cosine kernels of different orders and arc-cosine

kernels with biases. Consider the first order arc-cosine kernel function with biases,

k
(1)
w/ bias(x1, x2) =

1
π
(sin ψ̄ + (π − ψ̄) cos ψ̄), where ψ̄ = arccos

(
1
2
(⟨x1, x2⟩+ 1)

)
. (3.25)

[RJK19] showed that this kernel is the conjugate kernel of an infinitely wide shallow ReLU

network with two inputs and one hidden layer with biases, whose eigenvalues satisfy Assump-

tion 50 with α = 4. The eigenfunctions of this kernel are the same as that of the first-order

arc-cosine kernel without biases, k(1)w/o bias in Section 3.4. We consider the target functions in

Table 3.3, which satisfy Assumption 5 with the indicated β, and µ0 indicates whether the

function lies in the span of eigenfunctions of the kernel. For each target we conduct GPR 20
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times and report the mean and standard deviation of the normalized SC and the Bayesian

generalization error in Figure 3.2, which agree with the asymptotics predicted in Theorems 53

and 55.

Table 3.2 summarizes all the different kernel functions that we consider in our experiments

with pointers to the corresponding tables and figures.

kernel function α activation bias pointer
k
(1)
w/o bias

1
π (sinψ + (π − ψ) cosψ) 4 max{0, x} no Table 3.1/Figure 3.1

k
(1)
w/ bias

1
π (sin ψ̄ + (π − ψ̄) cos ψ̄) 4 max{0, x} yes Table 3.3/Figure 3.2

k
(2)
w/o bias

1
π (3 sinψ cosψ + (π − ψ)(1 + 2 cos2 ψ)) 6 (max{0, x})2 no Table 3.4/Figure 3.3

k
(2)
w/ bias

1
π (3 sin ψ̄ cos ψ̄ + (π − ψ̄)(1 + 2 cos2 ψ̄)) 6 (max{0, x})2 yes Table 3.5/Figure 3.4

k
(0)
w/o bias

1
π (sinψ + (π − ψ) cosψ) 2 1

2 (1 + sign(x)) no Table 3.6/Figure 3.5

k
(0)
w/ bias

1
π (sin ψ̄ + (π − ψ) cos ψ̄) 2 1

2 (1 + sign(x)) yes Table 3.7/Figure 3.6

Table 3.2: The different kernel functions used in our experiments, their values of α, the
corresponding neural network activation function along with a pointer to the tables showing
the target functions used for the kernels and the corresponding figures.

Summarizing the observations from these experiments, we see that the smoothness of the

activation function (which is controlled by the order of the arc-cosine kernel) influences the

decay rate α of the eigenvalues. In general, when the activation function is smoother, the

decay rate α is larger. Theorem 55 then implies that smooth activation functions are more

capable in suppressing noise but slower in learning the target. We also observe that networks

with biases are more capable at learning functions compared to networks without bias. For

example, the function cos(2θ) cannot be learned by the zero order arc-cosine kernel without

biases (see Table 3.6 and Figure 3.5), but it can be learned by the zero order arc-cosine kernel

with biases (see Table 3.7 and Figure 3.6).
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function value β µ0 EϵF
0(Dn) EϵG(Dn)

f1 cos 2θ +∞ 0 Θ(n1/4) Θ(n−3/4)

f2 θ2 2 0 Θ(n1/4) Θ(n−3/4)

f3 (|θ| − π/2)2 2 0 Θ(n1/4) Θ(n−3/4)

f4

{
π/2− θ, θ ∈ [0, π)

−π/2− θ, θ ∈ [−π, 0)
1 0 Θ(n3/4) Θ(n−1/4)

Table 3.3: Target functions used in the experiments for the first order arc-cosine kernel with
bias k(1)w/ bias, their values of β and µ0, and theoretical rates for the normalized SC and the
Bayesian generalization error from our theorems.

Figure 3.2: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with
kernel k(1)w/ bias and the target functions in Table 3.3. The orange curves show the linear
regression fit for the experimental values (in blue) of the log Bayesian generalization error as
a function of log n.
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function value β µ0 EϵF
0(Dn) EϵG(Dn)

f1 cos 2θ +∞ 0 Θ(n1/6) Θ(n−5/6)

f2 sign(θ) 1 0 Θ(n5/6) Θ(n−1/6)

f3 π/2− |θ| 2 0 Θ(n1/2) Θ(n−1/2)

f4


π/2− θ, θ ∈ [0, π)

−π/2− θ, θ ∈ [−π, 0)
1 > 0 Θ(n) Θ(1)

Table 3.4: Target functions used in the experiments for the second order arc-cosine kernel
without bias k(2)w/o bias, their values of β and µ0, and theoretical rates for the normalized SC
and the Bayesian generalization error from our theorems.

Figure 3.3: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with
kernel k(2)w/o bias and the target functions in Table 3.4.
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function value β µ0 EϵF
0(Dn) EϵG(Dn)

f1 cos 2θ +∞ 0 Θ(n1/6) Θ(n−5/6)

f2 θ2 2 0 Θ(n1/2) Θ(n−1/2)

f3 (|θ| − π/2)2 2 0 Θ(n1/2) Θ(n−1/2)

f4


π/2− θ, θ ∈ [0, π)

−π/2− θ, θ ∈ [−π, 0)
1 0 Θ(n5/6) Θ(n−1/6)

Table 3.5: Target functions used in the experiments for the second order arc-cosine kernel
with bias k(2)w/ bias, their values of β and µ0, and theoretical rates for the normalized SC and
the Bayesian generalization error from our theorems.

Figure 3.4: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with
kernel k(2)w/ bias and the target functions in Table 3.5.
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function value β µ0 EϵF
0(Dn) EϵG(Dn)

f1 cos 2θ +∞ > 0 Θ(n) Θ(1)

f2 sign(θ) 1 0 Θ(n1/2) Θ(n−1/2)

f3 π/2− |θ| 2 0 Θ(n1/2) Θ(n−1/2)

f4


π/2− θ, θ ∈ [0, π)

−π/2− θ, θ ∈ [−π, 0)
1 > 0 Θ(n) Θ(1)

Table 3.6: Target functions used in the experiments for the zero order arc-cosine kernel
without bias k(0)w/o bias, their values of β and µ0, and theoretical rates for the normalized SC
and the Bayesian generalization error from our theorems.

Figure 3.5: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with
kernel k(0)w/o bias and the target functions in Table 3.6.
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function value β µ0 EϵF
0(Dn) EϵG(Dn)

f1 cos 2θ +∞ 0 Θ(n1/2) Θ(n−1/2)

f2 θ2 2 0 Θ(n1/2) Θ(n−1/2)

f3 (|θ| − π/2)2 2 0 Θ(n1/2) Θ(n−1/2)

f4


π/2− θ, θ ∈ [0, π)

−π/2− θ, θ ∈ [−π, 0)
1 0 Θ(n1/2) Θ(n−1/2)

Table 3.7: Target functions used in the experiments for the zero order arc-cosine kernel with
bias k(0)w/ bias, their values of β and µ0, and theoretical rates for the normalized SC and the
Bayesian generalization error from our theorems.

Figure 3.6: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with
kernel k(0)w/ bias and the target functions in Table 3.7.

3.B Proofs Related to the Marginal Likelihood

Proof of Proposition 49. Let ȳ = (ȳ1, . . . , ȳn)
T be the outputs of the GP regression model on

training inputs x. Under the GP prior, the prior distribution of ȳ is N (0, Kn). Then the
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evidence of the model is given as follows:

Zn =

∫
Rn

(
n∏
i=1

1√
2πσ

e−
(ȳi−yi)

2

2σ2

)
1

(2π)n/2 det(Kn)1/2
e−

1
2
ȳTK−1

n ȳdȳ

=
1

(2π)nσn det(Kn)1/2

∫
Rn

e−
1
2
ȳT (K−1

n + 1
σ2 I)ȳ+

1
σ2 ȳ

Ty− 1
2σ2 y

Tydȳ.

(3.26)

Letting K̃−1
n = K−1

n + 1
σ2 I and µ = 1

σ2 K̃ny, we have

Zn =
1

(2π)nσn det(Kn)1/2

∫
Rn

e−
1
2
(ȳ−µ)T K̃−1

n (ȳ−µ)− 1
2σ2 y

Ty+ 1
2
µT K̃−1

n µdȳ

=
1

(2π)nσn det(Kn)1/2
(2π)n/2 det(K̃n)

1/2e−
1

2σ2 y
Ty+ 1

2
µT K̃−1

n µ

=
det(K̃n)

1/2

(2π)n/2σn det(Kn)1/2
e−

1
2σ2 y

Ty+ 1
2
µT K̃−1

n µ.

(3.27)

The normalized evidence is

Z0
n =

Zn

(2π)−n/2σ−ne−
1

2σ2 (y−f(x))T (y−f(x))

=
det(K̃n)

1/2

det(Kn)1/2
e−

1
2σ2 y

Ty+ 1
2
µT K̃−1

n µ+ 1
2σ2 (y−f(x))T (y−f(x)).

(3.28)
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So the normalized stochastic complexity is

F 0(Dn) = − logZ0
n

= −1

2
log det(K̃n)

1/2 +
1

2
log det(Kn)

1/2 +
1

2σ2
yTy − 1

2
µT K̃−1

n µ

− 1

2σ2
(y − f(x))T (y − f(x))

= −1

2
log det(K−1

n +
1

σ2
I)−1 +

1

2
log det(Kn) +

1

2σ2
yTy − 1

2σ4
yT (K−1

n +
1

σ2
I)−1y

− 1

2σ2
(y − f(x))T (y − f(x))

=
1

2
log det(I +

Kn

σ2
) +

1

2σ2
yT (I +

Kn

σ2
)−1y − 1

2σ2
(y − f(x))T (y − f(x)).

=
1

2
log det(I +

Kn

σ2
) +

1

2σ2
f(x)T (I +

Kn

σ2
)−1f(x) +

1

2σ2
ϵT (I +

Kn

σ2
)−1ϵ− 1

2σ2
ϵTϵ

+
1

2σ2
ϵT (I +

Kn

σ2
)−1f(x)

.

(3.29)

After taking the expectation over noises ϵ, we get

EϵF
0(Dn) =

1

2
log det(I +

Kn

σ2
) +

1

2σ2
f(x)T (I +

Kn

σ2
)−1f(x)− 1

2
Tr(I − (I +

Kn

σ2
)−1).

(3.30)

This concludes the proof.

3.C Helper Lemmas

Lemma 61. Assume that m → ∞ as n → ∞. Given constants a1, a2, s1, s2 > 0, if s1 > 1

and s2s3 > s1 − 1 , we have that

R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
= Θ(m

1−s1
s2 ). (3.31)
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If s1 > 1 and s2s3 = s1 − 1, we have that

R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
= Θ(m−s3 logm). (3.32)

If s1 > 1 and s2s3 < s1 − 1, we have that

R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
= Θ(m−s3). (3.33)

Overall, if s1 > 1 and m→∞,

R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
=


Θ(m

max{−s3, 1−s1
s2

}
), s2s3 ̸= s1 − 1,

Θ(m
1−s1
s2 logm), s2s3 = s1 − 1.

(3.34)

Proof of Lemma 61. First, when s1 > 1 and s2s3 > s1 − 1, we have that

R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
≤ a1

(1 + a2m)s3
+

∫
[1,+∞]

a1x
−s1

(1 + a2mx−s2)s3
dx

=
a1

(1 + a2m)s3
+m

1−s1
s2

∫
[1,+∞]

a1(
x

m1/s2
)−s1

(1 + a2(
x

m1/s2
)−s2)s3

d
x

m1/s2

=
a1

(1 + a2m)s3
+m

1−s1
s2

∫
[1/m1/s2 ,+∞]

a1x
−s1

(1 + a2x−s2)s3
dx

= Θ(m
1−s1
s2 ).

On the other hand, we have

R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
≥
∫
[1,R+1]

a1x
−s1

(1 + a2mx−s2)s3
dx

= m
1−s1
s2

∫
[1,R+1]

a1(
x

m1/s2
)−s1

(1 + a2(
x

m1/s2
)−s2)s3

d
x

m1/s2

= m
1−s1
s2

∫
[1/m1/s2 ,(R+1)/m1/s2 ]

a1x
−s1

(1 + a2x−s2)s3
dx

= Θ(m
1−s1
s2 ).
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Second, when s1 > 1 and s2s3 = s1 − 1, we have that

R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
≤ a1

(1 + a2m)s3
+m

1−s1
s2

∫
[1/m1/s2 ,+∞]

a1x
−s1

(1 + a2x−s2)s3
dx

≤ a1
(1 + a2m)s3

+m
1−s1
s2 O(logm(1/s2))

= Θ(m
1−s1
s2 log n).

On the other hand, we have

R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
≥
∫
[1,R+1]

a1x
−s1

(1 + a2mx−s2)s3
dx

= m
1−s1
s2

∫
[1,R+1]

a1(
x

m1/s2
)−s1

(1 + a2(
x

m1/s2
)−s2)s3

d
x

m1/s2

= m
1−s1
s2

∫
[1/m1/s2 ,(R+1)/m1/s2 ]

a1x
−s1

(1 + a2x−s2)s3
dx

= Θ(m
1−s1
s2 log n).

Third, when s1 > 1 and s2s3 < s1 − 1, we have that

R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
≤ a1

(1 + a2m)s3
+m

1−s1
s2

∫
[1/m1/s2 ,+∞]

a1x
−s1

(1 + a2x−s2)s3
dx

≤ a1
(1 + a2m)s3

+m
1−s1
s2 Θ(m(−1/s2)(1−s1+s2s3))

= Θ(m−s3).

On the other hand, we have

R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
≤ a1

(1 + a2m)s3
+m

1−s1
s2

∫
[2/m1/s2 ,(R+1)/m1/s2 ]

a1x
−s1

(1 + a2x−s2)s3
dx

≤ a1
(1 + a2m)s3

+m
1−s1
s2 Θ(m(−1/s2)(1−s1+s2s3))

= Θ(m−s3).
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Overall, if s1 > 1,

R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
=


Θ(m

max{−s3, 1−s1
s2

}
), s2s3 ̸= s1 − 1,

Θ(m−s3 log n), s2s3 = s1 − 1.

(3.35)

Lemma 62. Assume that R = m
1
s2

+κ for κ > 0. Given constants a1, a2, s1, s2 > 0 , if s1 ≤ 1,

we have that
R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
= Õ(max{m−s3 , R1−s1}). (3.36)

Proof of Lemma 62. First, when s1 ≤ 1 and s2s3 > s1 − 1, we have that

R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
≤ a1

(1 + a2m)s3
+

∫
[1,R]

a1x
−s1

(1 + a2mx−s2)s3
dx

=
a1

(1 + a2m)s3
+m

1−s1
s2

∫
[1,R]

a1(
x

m1/s2
)−s1

(1 + a2(
x

m1/s2
)−s2)s3

d
x

m1/s2

=
a1

(1 + a2m)s3
+m

1−s1
s2

∫
[1/m1/s2 ,R/m1/s2 ]

a1x
−s1

(1 + a2x−s2)s3
dx

=
a1

(1 + a2m)s3
+ Õ(m

1−s1
s2 ( R

m1/s2
)1−s1)

= Õ(max{m−s3 , R1−s1}).

Second, when s1 ≤ 1 and s2s3 ≤ s1 − 1, we have that

R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
≤ a1

(1 + a2m)s3
+m

1−s1
s2

∫
[1/m1/s2 ,R/m1/s2 ]

a1x
−s1

(1 + a2x−s2)s3
dx

≤ a1
(1 + a2m)s3

+m
1−s1
s2 Õ(m(−1/s2)(1−s1+s2s3) + ( R

m1/s2
)1−s1)

= Õ(max{m−s3 , R1−s1}).

Overall, if s1 ≤ 1,
R∑
i=1

a1i
−s1

(1 + a2mi−s2)s3
= Õ(max{m−s3 , R1−s1}). (3.37)
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Lemma 63. Assume that f ∈ L2(Ω, ρ). Consider the random vector f(x) = (f(x1), . . . ,

f(xn))
T , where x1, . . . , xn are drawn i.i.d from ρ. Then with probability of at least 1− δ1, we

have

∥f(x)∥22 =
n∑
i=1

f 2(xi) = Õ
(
( 1
δ1
+ 1)n∥f∥22

)
,

where ∥f∥22 =
∫
x∈Ω f

2(x)dρ(x).

Proof of Lemma 63. Given a positive number C ≥ ∥f∥22, applying Markov’s inequality we

have

P(f 2(X) > C) ≤ 1

C
∥f∥22.

Let A be the event that for all sample inputs (xi)
n
i=1, f 2(xi) ≤ C. Then

P(A) ≥ 1− nP(f 2(X) > C) ≥ 1− 1

C
n∥f∥22. (3.38)

Define f̄ 2(x) = min{f 2(x), C}. Then Ef̄ 2(X) ≤ Ef 2(X) = ∥f∥22. So |f̄ 2(X) − Ef̄ 2(X)| ≤

max{C, ∥f∥22} = C Since 0 ≤ f̄ 2(x) ≤ C, we have

E(f̄ 4(X)) ≤ CE(f̄ 2(X)) ≤ C∥f∥22. (3.39)

So we have

E|f̄ 2(X)− Ef̄ 2(X)|2 ≤ E(f̄ 4(X)) ≤ C∥f∥22. (3.40)

Applying Bernstein’s inequality, we have

P(
n∑
i=1

f̄ 2(xi) > t+ nEf̄ 2(X)) ≤ exp

(
− t2

2(nE|f̄ 2(X)− Ef̄ 2(X)|2) + Ct
3
)

)

≤ exp

(
− t2

2(nC∥f∥22 + Ct
3
)

)

≤ exp

(
− t2

4max{nC∥f∥22, Ct3 }

)
.
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Hence, with probability of at least 1− δ1/2 we have

n∑
i=1

f̄ 2(xi) ≤max

{√
4C log

2

δ1
n∥f∥22,

4C

3
log

2

δ1

}
+ nEf̄ 2(X)

≤max

{√
4C log

2

δ1
n∥f∥22,

4C

3
log

2

δ1

}
+ n∥f∥22.

(3.41)

When event A happens, f 2(xi) = f̄ 2(xi) for all sample inputs. According to (3.38) and (3.41),

with probability at least 1− 1
C
n∥f∥22 − δ1/2, we have

n∑
i=1

f 2(xi) =
n∑
i=1

f̄ 2(xi) ≤ max

{√
4C log

2

δ1
n∥f∥22,

4C

3
log

2

δ1

}
+ n∥f∥22.

Choosing C = 2
δ1
n∥f∥22, with probability of at least 1− δ1 we have

n∑
i=1

f 2(xi) =
n∑
i=1

f̄ 2(xi) ≤ max

{√
8

δ1
log

2

δ1
n2∥f∥42,

8

3δ1
n∥f∥22 log

2

δ1

}
+ n∥f∥22

= Õ
(
( 1
δ1
+ 1)n∥f∥22

)
.

Lemma 64. Assume that f ∈ L2(Ω, ρ). Consider the random vector f(x) = (f(x1), . . . ,

f(xn))
T , where x1, . . . , xn are drawn i.i.d from ρ. Assume that ∥f∥∞ = supx∈Ω f(x) ≤ C.

With probability of at least 1− δ1, we have

∥f(x)∥22 = Õ

(√
C2n∥f∥22 + C2

)
+ n∥f∥22,

where ∥f∥22 =
∫
x∈Ω f

2(x)dρ(x).

Proof of Lemma 64. We have |f 2(X)−Ef 2(X)| ≤ max{C2, ∥f∥22} = C2 Since 0 ≤ f 2(x) ≤ C,

we have

E(f 4(X)) ≤ C2E(f 2(X)) ≤ C2∥f∥22. (3.42)
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So we have

E|f 2(X)− Ef 2(X)|2 ≤ E(f 4(X)) ≤ C2∥f∥22. (3.43)

Applying Bernstein’s inequality, we have

P(
n∑
i=1

f 2(xi) > t+ nEf 2(X)) ≤ exp

(
− t2

2(nE|f 2(X)− Ef 2(X)|2) + C2t
3
)

)

≤ exp

(
− t2

2(nC2∥f∥22 + C2t
3
)

)

≤ exp

(
− t2

4max{nC2∥f∥22, C
2t
3
}

)
.

Hence, with probability of at least 1− δ1 we have

n∑
i=1

f 2(xi) ≤max

{√
4C2 log

1

δ1
n∥f∥22,

4C2

3
log

1

δ1

}
+ nEf 2(X)

≤Õ
(
max

{√
C2n∥f∥22, C2

})
+ n∥f∥22

≤Õ
(√

C2n∥f∥22 + C2

)
+ n∥f∥22.

(3.44)

For the proofs in the reminder of this section, the definitions of the relevant quantities

are given in Section 3.3.

Corollary 65. With probability of at least 1− δ1, we have

∥f>R(x)∥22 = Õ
(
( 1
δ1
+ 1)nR1−2β

)
.

Proof of Corollary 65. The L2 norm of f>R(x) is given by ∥f>R∥22 =
∑∞

p=R+1 µ
2
p ≤

Cµ

2β−1
R1−2β.

Applying Lemma 63 we get the result.
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Corollary 66. For any ν ∈ RR, with probability of at least 1− δ1 we have

∥ΦRν∥22 = Õ
(
( 1
δ1
+ 1)n∥ν∥22

)
.

Proof of Corollary 66. Let g(x) =
∑R

p=1 νpϕp(x). Then ΦRν = g(x). The L2 norm of g(x) is

given by ∥g∥22 =
∑R

p=1 ν
2
p = ∥ν∥22. Applying Lemma 63 we get the result.

Next we consider the quantity, ΦT
RΦR − nI. The key tool that we use is the matrix

Bernstein inequality that describes the upper tail of a sum of independent zero-mean random

matrices.

Lemma 67. Let D = diag{d1, . . . , dR}, d1, . . . , dR > 0 and dmax = max{d1, . . . , dR}. Let

M = max{
∑R

p=0 d
2
p∥ϕp∥2∞, d2max}. Then with probability of at least 1− δ, we have

∥D(ΦT
RΦR − nI)D∥2 ≤ max

{√
nd2maxM log R

δ
,M log R

δ
)

}
. (3.45)

Proof of Lemma 67. Let Yj = (ϕ1(xj), . . . , ϕR(xj))
T and Zj = DYj. It is easy to verify that

E(ZjZT
j ) = D2. Then the left hand side of (3.45) is

∑n
j=1[ZjZ

T
j − E(ZjZT

j )]. We note that

∥ZjZT
j − E(ZjZT

j )∥2 ≤ max{∥ZjZT
j ∥2, ∥E(ZjZT

j )∥2} ≤ max{∥Zj∥22, d2max}.

For ∥Zj∥22, we have

∥Zj∥22 =
R∑
p=0

d2pϕ
2
p(xj) ≤

R∑
p=0

d2p∥ϕp∥2∞, (3.46)

we have

∥ZjZT
j − E(ZjZT

j )∥2 ≤ max{
∑R

p=0 d
2
p∥ϕp∥2∞, d2max}.

On the other hand,

E[(ZjZT
j − E(ZjZT

j ))
2] = E[∥Zj∥22ZjZT

j ]− (E(ZjZT
j ))

2.
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Since

E[∥Zj∥22ZjZT
j ] ≼ E[

R∑
p=0

d2p∥ϕp∥2∞ZjZT
j ], (by (3.46))

=
R∑
p=0

d2p∥ϕp∥2∞E[ZjZT
j ],

we have

∥E[(ZjZT
j − E(ZjZT

j ))
2]∥2 ≤ max{

∑R
p=0 d

2
p∥ϕp∥2∞∥E[ZjZT

j ]∥2, d4max}

≤ max{
∑R

p=0 d
2
p∥ϕp∥2∞d2max, d

4
max}

≤ d2maxmax{
∑R

p=0 d
2
p∥ϕp∥2∞, d2max}.

Using the matrix Bernstein inequality [Tro12, Theorem 6.1], we have

P(∥
n∑
j=1

[ZjZ
T
j − E(ZjZT

j )]∥2 > t)

≤R exp

 −t2

2(n∥E[(ZjZT
j − E(ZjZT

j ))
2]∥2 +

tmaxj ∥ZjZT
j −E(ZjZT

j )∥2
3

)


≤R exp

 −t2

2(nd2maxmax{
∑R

p=0 d
2
p∥ϕp∥2∞, d2max}+

tmax{
∑R

p=0 d
2
p∥ϕp∥2∞,d2max}
3

)


=R exp

(
−t2

O(max{nd2maxmax{
∑R

p=0 d
2
p∥ϕp∥2∞, d2max}, tmax{

∑R
p=0 d

2
p∥ϕp∥2∞, d2max}})

)
.

Then with probability of at least 1− δ, we have

∥
n∑
j=1

[ZjZ
T
j − E(ZjZT

j )]∥2

≤ max

{√
nd2maxmax{

∑R
p=0 d

2
p∥ϕp∥2∞, d2max} log R

δ
,max

{∑R
p=0 d

2
p∥ϕp∥2∞, d2max

}
log R

δ

}
.

Corollary 68. Suppose that the eigenvalues (λp)p≥1 satisfy Assumption 50, and the eigen-

functions satisfy Assumption 52. Assume σ2 = Θ(nt) where 1 − α
1+2τ

< t < 1 Let γ be a
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positive number such that 1+α+2τ−(1+2τ+2α)t
2α(1−t) < γ ≤ 1. Then with probability of at least 1− δ,

we have
∥ 1
σ2 (I +

n
σ2ΛR)

−γ/2Λ
γ/2
R (ΦT

RΦR − nI)Λγ/2R (I + n
σ2ΛR)

−γ/2∥2

≤ O

(
n

1+α+2τ−(1+2τ+2α)t
2α

−γ(1−t)
√
log R

δ

)
.

(3.47)

Proof of Corollary 68. Use the same notation as in Lemma 67. Let D = (I + n
σ2ΛR)

−γ/2Λ
γ/2
R .

Then d2max ≤ σ2γ

nγ and
∑R

p=0 d
2
p∥ϕp∥2∞ ≤

∑R
p=0C

2
ϕ

λγpp
2τ

(1+ n
σ2 λp)

γ = O(( n
σ2 )

1−γα+2τ
α ), where the first

inequality follows from Assumptions 50 and 52 and the last equality from Lemma 61. Then

M = max{
∑R

p=0 d
2
p∥ϕp∥2∞, d2max} = O(( n

σ2 )
1−γα+2τ

α ). Applying Lemma 67, we have

∥ 1
σ2 (I +

n
σ2ΛR)

−γ/2Λ
γ/2
R (ΦT

RΦR − nI)Λγ/2R (I + n
σ2ΛR)

−γ/2∥2

≤ 1
σ2 max

{√
nσ

2γ

nγ O((
n
σ2 )

1−γα+2τ
α ) log R

δ
, O(( n

σ2 )
1−γα+2τ

α ) log R
δ

}
= O( 1

σ2 (
n
σ2 )

1−2γα+2τ
2α n

1
2 ) = O(

√
log R

δ
n

(1−2γα+2τ)(1−t)
2α

+ 1
2
−t)

= O

(√
log R

δ
n

1+α+2τ
2α

− (1+2τ+2α)t
2α

−γ(1−t)
)
.

(3.48)

Corollary 69. Suppose that the eigenvalues (λp)p≥1 satisfy Assumption 50, and the eigen-

functions satisfy Assumption 52. Let Λ̃1,R = diag{1, λ1, . . . , λR}. Assume σ2 = Θ(nt) where

t < 1 Let γ be a positive number such that 1+2τ
α

< γ ≤ 1. Then with probability of at least

1− δ, we have

∥(I + n
σ2ΛR)

−γ/2Λ̃
γ/2
1,R(Φ

T
RΦR − nI)Λ̃γ/21,R(I +

n

σ2
ΛR)

−γ/2∥2 ≤ O

(√
log R

δ
n

1
2

)
. (3.49)

Proof of Corollary 69. Use the same notation as in Lemma 67. Let D = (I + n
σ2ΛR)

−γ/2Λ̃
γ/2
1,R.

Then d2max ≤ 1 and
∑R

p=0 d
2
p∥ϕp∥2∞ ≤ C2

ϕ+
∑R

p=1C
2
ϕ

λγpp
2τ

(1+ n
σ2 λp)

γ = C2
ϕ+O(n

(1−γα+2τ)(1−t)
α ) = O(1)

where the first inequality follows from Assumptions 50 and 52 and the second equality from
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Lemma 61. Then M = max{
∑R

p=0 d
2
p∥ϕp∥2∞, d2max} = O(1). Applying Lemma 67, we have

∥(I + n
σ2ΛR)

−γ/2Λ
γ/2
R (ΦT

RΦR − nI)Λγ/2R (I + n
σ2ΛR)

−γ/2∥2

≤ max

{√
log R

δ
nO(1), log R

δ
O(1)

}
= O

(√
log R

δ
n

1
2

)
.

(3.50)

Corollary 70. Suppose that the eigenvalues (λp)p≥1 satisfy Assumption 50, and the eigenfunc-

tions satisfy Assumption 52. Let ΦR+1:S = (ϕR+1(x), . . . , ϕS(x)), and ΛR+1:S = (λR+1, . . . , λS).

Then with probability of at least 1− δ, we have

∥Λ1/2
R+1:S(Φ

T
R+1:SΦR+1:S − nI)Λ1/2

R+1:S∥2 ≤ O
(
log S−R

δ
max{n

1
2R

1−2α+2τ
2 , R1−α+2τ}

)
. (3.51)

Proof of Corollary 70. Use the same notation as in Lemma 67. Let D = Λ
1/2
R+1:S. Then d2max ≤

CλR
−α = O(R−α) and

∑S
p=R+1C

2
ϕd

2
pp

2τ ≤
∑S

p=R+1C
2
ϕCλp

−αp2τ = O(R1−α+2τ ), where the

first inequality follows from Assumptions 50 and 52. ThenM = max{
∑S

p=R+1C
2
ϕd

2
pp

2τ , d2max} =

O(R1−α+2τ ). Applying Lemma 67, we have

∥(I + n

σ2
ΛR)

−γ/2Λ
γ/2
R (ΦT

RΦR − nI)Λγ/2R (I +
n

σ2
ΛR)

−γ/2∥2

≤ max

{√
log S−R

δ
nO(R−α)O(R1−α+2τ ), log S−R

δ
O(R1−α+2τ ))

}
= O

(
log S−R

δ
max{n

1
2R

1−2α+2τ
2 , R1−α+2τ}

)
.

(3.52)

Lemma 71. Under the assumptions of Corollary 70, with probability of at least 1− δ, we

have

∥Φ>RΛ>RΦ
T
>R∥2 = Õ(max{nR−α, n

1
2R

1−2α+2τ
2 , R1−α+2τ}).
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Proof of Lemma 71. For S ∈ N, we have

∥Φ>SΛ>SΦ
T
>S∥2 ≤

∞∑
p=S+1

∥Λpϕp(x)ϕp(x)T∥2

=
∞∑

p=S+1

λp∥ϕp(x)∥22

≤
∞∑

p=S+1

λpnC
2
ϕp

2τ

=O(nS1−α+2τ ).

Let S = R
α

α−1−2τ . Then we get ∥Φ>SΛ>SΦ
T
>S∥2 = O(nR−α).

Let ΦR+1:S = (ϕR+1(x), . . . , ϕS(x)), ΛR+1:S = (λR+1, . . . , λS). We then have

∥Φ>RΛ>RΦ
T
>R∥2 ≤∥Φ>SΛ>SΦ

T
>S∥2 + ∥ΦR+1:SΛR+1:SΦ

T
R+1:S∥2

≤O(nR−α) + ∥Λ1/2
R+1:SΦ

T
R+1:SΦR+1:SΛ

1/2
R+1:S∥2

≤O(nR−α) + n∥ΛR+1:S∥2 + ∥Λ1/2
R+1:S(Φ

T
R+1:SΦR+1:S − nI)Λ1/2

R+1:S∥2

≤O(nR−α) +O(nR−α) +O(log
R

α
α−1 −R
δ

max{n
1
2R

1−2α+2τ
2 , R1−α+2τ})

=Õ(max{nR−α, n
1
2R

1−2α+2τ
2 , R1−α+2τ}),

where in the fourth inequality we use Corollary 70.

Corollary 72. Assume that σ2 = Θ(1). If R = n
1
α
+κ where 0 < κ < α−1−2τ

α(1+2τ)
, then with

probability of at least 1− δ, we have

∥(I + ΦRΛRΦT
R

σ2 )−1 Φ>RΛ>RΦT
>R

σ2 ∥2 ≤ ∥
Φ>RΛ>RΦT

>R

σ2 ∥2 = Õ(n−κα) = o(1).
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Proof of Corollary 72. By Lemma 71 and the assumption R = n
1
α
+κ, we have

∥(I + ΦRΛRΦT
R

σ2 )−1 Φ>RΛ>RΦT
>R

σ2 ∥2 ≤∥
Φ>RΛ>RΦT

>R

σ2 ∥2

≤Õ(max{nR−α, n
1
2R

1−2α+2τ
2 , R1−α+2τ})

=Õ(n−κα).

Lemma 73. Assume that ∥ 1
σ2 (I+

n
σ2ΛR)

−γ/2Λ
γ/2
R (ΦTRΦR−nI)Λ

γ/2
R (I+ n

σ2ΛR)
−γ/2∥2 < 1 where

1+2τ
α

< γ ≤ 1. We then have

(I + 1
σ2ΛRΦ

T
RΦR)

−1

= (I + n
σ2ΛR)

−1 +
∞∑
j=1

(−1)j
(

1
σ2 (I +

n
σ2ΛR)

−1ΛR(Φ
T
RΦR − nI)

)j
(I + n

σ2ΛR)
−1.

Proof of Lemma 73. First note that

∥ 1
σ2 (I +

n
σ2ΛR)

−1/2Λ
1/2
R (ΦT

RΦR − nI)Λ1/2
R (I + n

σ2ΛR)
−1/2∥2

< ∥ 1
σ2 (I +

n
σ2ΛR)

−γ/2Λ
γ/2
R (ΦT

RΦR − nI)Λγ/2R (I + n
σ2ΛR)

−γ/2∥2 < 1.

Let Λ̃ϵ,R = diag{ϵ, λ1, . . . , λR}. Since ΛR = diag{0, λ1, . . . , λR}, we have that when ϵ is

sufficiently small, ∥ 1
σ2 (I +

n
σ2 Λ̃ϵ,R)

−1/2Λ̃
1/2
ϵ,R(Φ

T
RΦR − nI)Λ̃1/2

ϵ,R(I +
n
σ2 Λ̃ϵ,R)

−1/2∥2 < 1. Since all
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diagonal entries of Λ̃ϵ,R are positive, we have

(I + 1
σ2 Λ̃ϵ,RΦ

T
RΦR)

−1

= (I + n
σ2 Λ̃ϵ,R + 1

σ2 Λ̃ϵ,R(Φ
T
RΦR − nI))−1

= Λ̃
1/2
ϵ,R(I +

n
σ2 Λ̃ϵ,R)

−1/2
[
I + 1

σ2 (I +
n
σ2 Λ̃ϵ,R)

−1/2Λ̃
1/2
ϵ,R(Φ

T
RΦR − nI)Λ̃1/2

ϵ,R(I +
n
σ2 Λ̃ϵ,R)

−1/2
]−1

(I + n
σ2 Λ̃ϵ,R)

−1/2Λ̃
−1/2
ϵ,R

= (I + n
σ2 Λ̃ϵ,R)

−1

+
∞∑
j=1

[
(−1)jΛ̃1/2

ϵ,R(I +
n
σ2 Λ̃ϵ,R)

−1/2
(

1
σ2 (I +

n
σ2 Λ̃ϵ,R)

−1/2Λ̃
1/2
ϵ,R(Φ

T
RΦR − nI)Λ̃1/2

ϵ,R

(I + n
σ2 Λ̃ϵ,R)

−1/2
)j
(I + n

σ2 Λ̃ϵ,R)
−1/2Λ̃

−1/2
ϵ,R

]

= (I + n
σ2 Λ̃ϵ,R)

−1 +
∞∑
j=1

(−1)j
(

1
σ2 (I +

n
σ2 Λ̃ϵ,R)

−1Λ̃ϵ,R(Φ
T
RΦR − nI)

)j
(I + n

σ2 Λ̃ϵ,R)
−1.

Letting ϵ→ 0, we get

(I + 1
σ2ΛRΦ

T
RΦR)

−1

=(I + n
σ2ΛR)

−1 +
∞∑
j=1

(−1)j
(

1

σ2
(I + n

σ2ΛR)
−1ΛR(Φ

T
RΦR − nI)

)j
(I + n

σ2ΛR)
−1.

This concludes the proof.

Lemma 74. If ∥(I + ΦRΛRΦT
R

σ2 )−1 Φ>RΛ>RΦT
>R

σ2 ∥2 < 1, then we have

(I + ΦΛΦT

σ2 )−1 − (I +
ΦRΛRΦT

R

σ2 )−1 =
∞∑
j=1

(−1)j
(
(I +

ΦRΛRΦT
R

σ2 )−1 Φ>RΛ>RΦT
>R

σ2

)j
(I +

ΦRΛRΦT
R

σ2 )−1.

(3.53)

In particular, assume that σ2 = Θ(1). Let R = n
1
α
+κ where 0 < κ < α−1−2τ

α(1+2τ)
. Then with

probability of at least 1− δ, for sufficiently large n, we have ∥(I+ ΦRΛRΦT
R

σ2 )−1 Φ>RΛ>RΦT
>R

σ2 ∥2 < 1

and (3.53) holds.
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Proof of Lemma 74. Define Φ>R = (ϕR+1(x), ϕR+2(x), . . .), Λ>R = diag(λR+1, λR+2, . . .).

Then we have

(I + ΦΛΦT

σ2 )−1 − (I +
ΦRΛRΦT

R

σ2 )−1

=(I +
ΦRΛRΦT

R

σ2 +
Φ>RΛ>RΦT

>R

σ2 )−1 − (I +
ΦRΛRΦT

R

σ2 )−1

=

((
I + (I +

ΦRΛRΦT
R

σ2 )−1 Φ>RΛ>RΦT
>R

σ2

)−1

− I
)
(I +

ΦRΛRΦT
R

σ2 )−1.

By Corollary 72, for sufficiently large n, ∥(I + ΦRΛRΦT
R

σ2 )−1 Φ>RΛ>RΦT
>R

σ2 ∥2 < 1 with probability

of at least 1− δ. Hence

(I + ΦΛΦT

σ2 )−1 − (I +
ΦRΛRΦT

R

σ2 )−1

=

((
I + (I +

ΦRΛRΦT
R

σ2 )−1 Φ>RΛ>RΦT
>R

σ2

)−1

− I
)
(I +

ΦRΛRΦT
R

σ2 )−1

=
∞∑
j=1

(−1)j
(
(I +

ΦRΛRΦT
R

σ2 )−1 Φ>RΛ>RΦT
>R

σ2

)j
(I +

ΦRΛRΦT
R

σ2 )−1.

Lemma 75. Assume that µ0 = 0 and σ2 = Θ(nt) where 1− α
1+2τ

< t < 1. Let R = n( 1
α
+κ)(1−t)

where 0 < κ < α−1−2τ+(1+2τ)t
α2(1−t) . Then when n is sufficiently large, with probability of at least

1− 2δ we have

∥(I + 1
σ2ΦRΛRΦ

T
R)

−1fR(x)∥2 = Õ

(√
(1
δ
+ 1)n · nmax{−(1−t), (1−2β)(1−t)

2α
}
)
. (3.54)

Proof of Lemma 75. Let Λ1:R = diag{λ1, . . . , λR}, Φ1:R = (ϕ1(x), ϕ1(x), . . . , ϕR(x)) and

µ1:R = (µ1, . . . , µR). Since µ0 = 0, we have

(I +
1

σ2
ΦRΛRΦ

T
R)

−1fR(x) = (I +
1

σ2
Φ1:RΛ1:RΦ

T
1:R)

−1Φ1:Rµ1:R. (3.55)
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Using the Woodbury matrix identity, we have that

(I + 1
σ2Φ1:RΛ1:RΦ

T
1:R)

−1Φ1:Rµ1:R =
[
I − Φ1:R(σ

2I + Λ1:RΦ
T
1:RΦ1:R)

−1Λ1:RΦ
T
1:R

]
Φ1:Rµ1:R

=Φ1:Rµ1:R − Φ1:R(σ
2I + Λ1:RΦ

T
1:RΦ1:R)

−1Λ1:RΦ
T
1:RΦ1:Rµ1:R

=Φ1:R(I +
1
σ2Λ1:RΦ

T
1:RΦ1:R)

−1µ1:R.

(3.56)

Let A = (I + n
σ2Λ1:R)

−1/2Λ
1/2
1:R(Φ

T
1:RΦ1:R − nI)Λ

1/2
1:R(I + n

σ2Λ1:R)
−1/2.By Corollary 68, with

probability of at least 1− δ, we have ∥ 1
σ2A∥2 =

√
log R

δ
n

1−α+2τ
2α

− (1+2τ)t
2α . When n is sufficiently

large, ∥ 1
σ2A∥2 = o(1) is less than 1 because 1− α

1+2τ
< t < 1. By Lemma 73, we have

(I + 1
σ2Λ1:RΦ

T
1:RΦ1:R)

−1

=(I + n
σ2Λ1:R)

−1 +
∞∑
j=1

(−1)j
(

1
σ2 (I +

n
σ2Λ1:R)

−1Λ1:R(Φ
T
1:RΦ1:R − nI)

)j
(I + n

σ2Λ1:R)
−1.

We then have

∥(I + 1

σ2
Λ1:RΦ

T
1:RΦ1:R)

−1µ1:R∥2

=

∥∥∥∥∥∥
(I + n

σ2Λ1:R)
−1 +

∞∑
j=1

(−1)j
(

1
σ2 (I +

n
σ2Λ1:R)

−1Λ1:R(Φ
T
1:RΦ1:R − nI)

)j
(I + n

σ2Λ1:R)
−1

µ1:R

∥∥∥∥∥∥
2

≤∥(I + n
σ2Λ1:R)

−1µ1:R∥2 +
∞∑
j=1

∥∥∥( 1
σ2 (I +

n
σ2Λ1:R)

−1Λ1:R(Φ
T
1:RΦ1:R − nI)

)j
(I + n

σ2Λ1:R)
−1µ1:R

∥∥∥
2
.

(3.57)

By Lemma 61 and Assumption 51, assuming that supi≥1 pi+1 − pi = h, we have

∥(I + n
σ2Λ1:R)

−1µ1:R∥2 ≤

√√√√ R∑
p=1

C2
µp

−2β

(1 + nCλp−α/σ2)2
= Θ(nmax{−(1−t), (1−2β)(1−t)

2α
} logk/2 n),

∥(I + n
σ2Λ1:R)

−1µ1:R∥2 ≥

√√√√⌊R
h
⌋∑

i=1

C2
µi

−2β

(1 + n
σ2Cλ(hi)−α)2

= Θ(nmax{−(1−t), (1−2β)(1−t)
2α

} logk/2 n)
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where k =


0, 2α ̸= 2β − 1,

1, 2α = 2β − 1.

. Overall we have

∥(I + n
σ2Λ1:R)

−1µ1:R∥2 = Θ(n(1−t)max{−1,
1−2β
2α

} logk/2 n). (3.58)

Using the fact that ∥ 1
σ2A∥2 =

√
log R

δ
n

1−α+2τ
2α

− (1+2τ)t
2α and ∥(I + n

σ2Λ1:R)
−1Λ1:R∥2 ≤ n−1, we

have ∥∥∥( 1
σ2 (I +

n
σ2Λ1:R)

−1Λ1:R(Φ
T
1:RΦ1:R − nI)

)j
(I + n

σ2Λ1:R)
−1µ1:R

∥∥∥
2

=

∥∥∥∥(I + n
σ2Λ1:R)

−1
2Λ

1
2
1:R(

1
σ2A)

j(I + n
σ2Λ1:R)

−1
2Λ

1
2
1:Rµ1:R

∥∥∥∥
2

≤ Õ(n− 1−t
2 )∥ 1

σ2A∥j2∥(I + n
σ2Λ1:R)

−1
2Λ

−1
2

1:Rµ1:R∥2

(3.59)

By Lemma 62 and the assumption R = n( 1
α
+κ)(1−t),

∥(I + n
σ2Λ1:R)

− 1
2Λ

− 1
2

1:Rµ1:R∥2 ≤

√√√√ R∑
p=1

(Cλp−α)−1C2
µp

−2β

(1 + nCλp−α/σ2)1

=Õ(max{n−(1−t)/2, R1/2−β+α/2})

=Õ(max{n−(1−t)/2, n( 1
2
+ 1−2β

2α
+κ(1/2−β+α/2))(1−t)})

(3.60)

We then have ∥∥∥( 1
σ2 (I +

n
σ2Λ1:R)

−1Λ1:R(Φ
T
1:RΦ1:R − nI)

)j
(I + n

σ2Λ1:R)
−1µ1:R

∥∥∥
2

=∥ 1
σ2A∥j2Õ(max{n−(1−t), n( 1−2β

2α
+κ(1/2−β+α/2))(1−t)})

(3.61)

By (3.57), (3.58) and (3.61), we have

∥(I + 1
σ2Λ1:RΦ

T
1:RΦ1:R)

−1µ1:R∥2

=Θ(n(1−t)max{−1, 1−2β
2α

} logk/2 n) +

∞∑
j=1

∥ 1

σ2
A∥j2Õ(max{n−(1−t), n(1−t)

1−2β
2α

+κ(1−t)(1/2−β+α/2)})

=Θ(n(1−t)max{−1, 1−2β
2α

} logk/2 n) + Õ(n
1−α+2τ

2α
− (1+2τ)t

2α )Õ(max{n−(1−t), n(1−t)
1−2β
2α

+κ(1−t)(1/2−β+α/2)}).
(3.62)
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By assumption κ < α−1−2τ+(1+2τ)t
α2(1−t) , we have that

κ(1− t)(1/2− β + α/2) +
1− α + 2τ

2α
− (1 + 2τ)t

2α

< κα(1− t)/2 + 1− α + 2τ

2α
− (1 + 2τ)t

2α
< 0.

Using (3.62), we then get

∥(I + 1
σ2Λ1:RΦ

T
1:RΦ1:R)

−1µ1:R∥2 = Θ(n(1−t)max{−1, 1−2β
2α

} logk/2 n)

=
1 + o(1)

σ2
∥(I + n

σ2
Λ1:R)

−1µ1:R∥2.
(3.63)

By Corollary 66, with probability of at least 1− δ, we have

∥Φ1:R(I +
1
σ2Λ1:RΦ

T
1:RΦ1:R)

−1µ1:R∥2 =Õ(
√

(1
δ
+ 1)n∥(I + 1

σ2Λ1:RΦ
T
1:RΦ1:R)

−1µ1:R∥2)

=Õ(
√
(1
δ
+ 1)n · n(1−t)max{−1, 1−2β

2α
}).

(3.64)

From (3.56), we get ∥(I + 1
σ2Φ1:RΛ1:RΦ

T
1:R)

−1Φ1:Rµ1:R∥2 = Õ(
√
(1
δ
+ 1)n · n(1−t)max{−1, 1−2β

2α
}).

This concludes the proof.

Lemma 76. Assume that µ0 > 0 and σ2 = Θ(nt) where 1 − α
1+2τ

< t < 1. Let R = n
1
α
+κ

where 0 < κ < α−1−2τ+(1+2τ)t
α2 . Then when n is sufficiently large, with probability of at least

1− 2δ, we have

∥(I + 1
σ2ΦRΛRΦ

T
R)

−1fR(x)∥2 = Õ

(√
(1
δ
+ 1)n

)
. (3.65)

Proof of Lemma 76. Using the Woodbury matrix identity, we have that

(I + 1
σ2ΦRΛRΦ

T
R)

−1fR(x) =
[
I − ΦR(σ

2I + ΛRΦ
T
RΦR)

−1ΛRΦ
T
R

]
ΦRµR

=ΦRµR − ΦR(σ
2I + ΛRΦ

T
RΦR)

−1ΛRΦ
T
RΦRµR

=ΦR(I +
1
σ2ΛRΦ

T
RΦR)

−1µR.

(3.66)

175



Let µR,1 = (µ0, 0, . . . , 0) and µR,2 = (0, µ1, . . . , µR). Then µR = µR,1 + µR,2. Then we have

∥(I + 1
σ2ΛRΦ

T
RΦR)

−1µR∥2 = ∥(I + 1
σ2ΛRΦ

T
RΦR)

−1µR,1∥2 + ∥(I + 1
σ2ΛRΦ

T
RΦR)

−1µR,2∥2.

(3.67)

According to (3.63) in the proof of Lemma 75, we have ∥(I + 1
σ2ΛRΦ

T
RΦR)

−1µR,2∥2 =

Õ(nmax{−(1−t), (1−t)(1−2β)
2α

}). Next we estimate ∥(I + 1
σ2ΛRΦ

T
RΦR)

−1µR,1∥2.

Let

A = (I +
n

σ2
Λ1:R)

−γ/2Λ
γ/2
1:R(Φ

T
1:RΦ1:R − nI)Λγ/21:R(I +

n

σ2
Λ1:R)

−γ/2

where 1
1−t(

1+α+2τ
2α

− (1+2τ+2α)t
2α

) < γ < 1. Since 1− α
1+2τ

< t < 1, 1
1−t(

1+α+2τ
2α

− (1+2τ+2α)t
2α

) < 1

so the range for γ is well-defined.By Corollary 68, with probability of at least 1− δ, we have

∥ 1
σ2A∥2 = Õ(

√
log R

δ
n

1+α+2τ
2α

− (1+2τ+2α)t
2α

−γ(1−t)) = o(1). When n is sufficiently large, ∥ 1
σ2A∥2 is

less than 1 because 1− α
1+2τ

< t < 1. By Lemma 73, we have

(I + 1
σ2ΛRΦ

T
RΦR)

−1

=(I + n
σ2ΛR)

−1 +
∞∑
j=1

(−1)j
(

1
σ2 (I +

n
σ2ΛR)

−1ΛR(Φ
T
RΦR − nI)

)j
(I + n

σ2ΛR)
−1.

We then have

∥(I + 1
σ2ΛRΦ

T
RΦR)

−1µR,1∥2

=

∥∥∥∥∥
(
(I + n

σ2ΛR)
−1 +

∞∑
j=1

(−1)j
(

1
σ2 (I +

n
σ2ΛR)

−1ΛR(Φ
T
RΦR − nI)

)j
(I + n

σ2ΛR)
−1

)
µR,1

∥∥∥∥∥
2

≤

(
∥(I + n

σ2ΛR)
−1µR,1∥2 +

∞∑
j=1

∥∥∥( 1
σ2 (I +

n
σ2ΛR)

−1ΛR(Φ
T
RΦR − nI)

)j
(I + n

σ2ΛR)
−1µR,1

∥∥∥
2

)
.

(3.68)

By Lemma 61,

∥(I + n

σ2
ΛR)

−1µR,1∥2 ≤

√√√√µ2
0 +

R∑
p=1

C2
µp

−2β

(1 + nCλp−α/σ2)2
= O(1). (3.69)
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Let Λ̃1,R = diag{1, λ1, . . . , λR} and I0,R = (0, 1, . . . , 1). Then ΛR = Λ̃1,RI0,R. Let B =

(I + n
σ2ΛR)

−γ/2Λ̃
γ/2
1,R(Φ

T
RΦR − nI)Λ̃

γ/2
1,R(I +

n
σ2ΛR)

−γ/2. According to Corollary 69, we have

∥B∥2 = O
(√

log R
δ
n

1
2

)
. Using the fact that ∥ 1

σ2A∥2 = Õ
(√

log R
δ
n

1+α+2τ
2α

− (1+2τ+2α)t
2α

−γ(1−t)) ,

we have∥∥∥( 1
σ2 (I +

n
σ2ΛR)

−1ΛR(Φ
T
RΦR − nI)

)j
(I + n

σ2ΛR)
−1µR,1

∥∥∥
2

=
1

σ2j

∥∥∥∥(I + n
σ2ΛR)

−1+
γ
2Λ

1−γ
2

R

(
A(I + n

σ2ΛR)
−1+γΛ1−γ

R

)j−1
B(I + n

σ2ΛR)
−1+

γ
2µR,1

∥∥∥∥
2

≤ 1

σ2
(n(−1+ γ

2
+(−1+γ)(j−1))(1−t)Õ(

√
log R

δ
n(j−1)( 1+α+2τ

2α
− (1+2τ+2α)t

2α
−γ(1−t)))

√
log R

δ
n

1
2∥µR,1∥2

≤ n(−1+ γ
2
)(1−t)+ 1

2
−tÕ(n

[1−α+2τ−(1+2τ)t](j−1)
2α )

√
log R

δ
∥µR,1∥2

= Õ(n− 1
2
+ γ

2
(1−t)+ [1−α+2τ−(1+2τ)t](j−1)

2α ).

(3.70)

Since 1
1−t(

1+α+2τ
2α

− (1+2τ+2α)t
2α

) < γ < 1 and −1
2
+ 1

1−t(
1+α+2τ

2α
− (1+2τ+2α)t

2α
)1−t

2
< 0, we can let

γ be a little bit larger than 1
1−t(

1+α+2τ
2α

− (1+2τ+2α)t
2α

) and make −1
2
+ γ

2
(1− t) < 0 holds. By

(3.68), (3.69), (3.70), we have

∥(I + 1
σ2ΛRΦ

T
RΦR)

−1µR,1∥2

≤ O(1) +
∞∑
j=1

Õ(n− 1
2
+ γ

2
(1−t)+ [1−α+2τ−(1+2τ)t](j−1)

2α )

≤ O(1) + o(1) = O(1).

(3.71)

According to (3.67), we have ∥(I + 1
σ2ΛRΦ

T
RΦR)

−1µR∥2 = Õ(nmax{−(1−t), (1−t)(1−2β)
2α

}) +O(1) =

O(1). By Corollary 66, with probability of at least 1− δ, we have

∥ΦR(I +
1
σ2ΛRΦ

T
RΦR)

−1µR∥2 =Õ(
√

(1
δ
+ 1)n∥(I + 1

σ2ΛRΦ
T
RΦR)

−1µR∥2)

=Õ

(√
(1
δ
+ 1)n

)
.

From (3.66), we get ∥(I + 1
σ2ΦRΛRΦ

T
R)

−1fR(x)∥2 = Õ
(√

(1
δ
+ 1)n

)
. This concludes the

proof.
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Lemma 77. Assume that σ2 = Θ(1). Let R = n
1
α
+κ where 0 < κ < α−1−2τ

α2 . Assume that

µ0 = 0. Then when n is sufficiently large, with probability of at least 1− 3δ we have

∥(I + ΦΛΦT

σ2 )−1fR(x)∥2 = Õ(
√
(1
δ
+ 1)n · nmax{−1, 1−2β

2α
}). (3.72)

Assume that µ0 > 0. Then when n is sufficiently large, with probability of at least 1− 3δ we

have

∥(I + ΦΛΦT

σ2 )−1fR(x)∥2 = Õ(
√

(1
δ
+ 1)n). (3.73)

Proof of Lemma 77. We have

(I + ΦΛΦT

σ2 )−1fR(x)

=(I +
ΦRΛRΦT

R

σ2 )−1fR(x) +
(
(I + ΦΛΦT

σ2 )−1 − (I +
ΦRΛRΦT

R

σ2 )−1
)
fR(x).

(3.74)

When µ0 = 0, by Lemma 75, with probability of at least 1− 2δ, we have

∥(I + 1
σ2ΦRΛRΦ

T
R)

−1fR(x)∥2 = Õ(
√

(1
δ
+ 1)n · nmax{−1, 1−2β

2α
}).

Since α−1−2τ
α2 < α−1−2τ

α(1+2τ)
, we apply Lemma 74 and Corollary 72 and get that with probability

of at least 1− δ, the second term in the right hand side of (3.74) is estimated as follows:

∥
(
(I + ΦΛΦT

σ2 )−1 − (I +
ΦRΛRΦT

R

σ2 )−1
)
fR(x)∥2

= ∥
∞∑
j=1

(−1)j
(
(I +

ΦRΛRΦT
R

σ2 )−1 Φ>RΛ>RΦT
>R

σ2

)j
(I +

ΦRΛRΦT
R

σ2 )−1fR(x)∥2

=
∞∑
j=1

∥∥∥((I + ΦRΛRΦT
R

σ2 )−1 Φ>RΛ>RΦT
>R

σ2

)∥∥∥j
2
∥(I + ΦRΛRΦT

R

σ2 )−1fR(x)∥2

=
∞∑
j=1

Õ(n−jκα)Õ(
√

(1
δ
+ 1)n · nmax{−1,

1−2β
2α

})

= o(
√

(1
δ
+ 1)n · nmax{−1,

1−2β
2α

}).
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Overall, from (3.74), we have that with probability 1− 3δ,

∥(I + ΦΛΦT

σ2 )−1fR(x)∥2 = Õ(
√
(1
δ
+ 1)n · nmax{−1,

1−2β
2α

}).

When µ0 > 0, using the same approach and Lemma 76, we can prove that ∥(I+ΦΛΦT

σ2 )−1fR(x)∥2 =

Õ(
√

(1
δ
+ 1)n). This concludes the proof.

3.D Proof of the Main Results

3.D.1 Proofs Related to the Asymptotics of the Normalized Stochastic Com-

plexity

Lemma 78. Under Assumptions 50, 51 and 52, with probability of at least 1− 2δ we have,

we have

|T1,R(Dn)− T1(Dn)| = Õ
(

1
σ2 (nR

1−α + n1/2R1−α+τ +R1−α+2τ )
)

(3.75)

If R = n
1
α
+κ where κ > 0, we have |T1,R(Dn) − T1(Dn)| = o

(
1
σ2n

1
α

)
. If we further assume

that 0 < κ < α−1−2τ
α2 , µ0 = 0 and σ2 = Θ(1), then for sufficiently large n with probability of

at least 1− 4δ we have

|T2,R(Dn)− T2(Dn)| = Õ
(
(1
δ
+ 1)nmax{( 1

α
+κ) 1−2β

2
,1+ 1−2β

α
+

(1−2β)κ
2

,−1−κα,1+ 1−2β
α

−κα}
)
. (3.76)

Proof of Lemma 78. Define Φ>R = (ϕR+1(x), ϕR+2(x), . . . , ϕp(x), . . .), and Λ>R = diag(λR+1,

. . . , λp, . . .). We then have

|T1(Dn)− T1,R(Dn)| =
∣∣∣∣12 log det(I +

1

σ2
ΦΛΦT )− 1

2
log det(I +

1

σ2
ΦRΛRΦ

T
R)

∣∣∣∣
+

1

2

∣∣∣∣Tr(I + ΦΛΦT

σ2
)−1 − Tr(I +

ΦRΛRΦ
T
R

σ2
)−1

∣∣∣∣. (3.77)
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As for the first term in the right hand side of (3.77), we have

∣∣∣∣12 log det(I +
1

σ2
ΦΛΦT )− 1

2
log det(I +

1

σ2
ΦRΛRΦ

T
R)

∣∣∣∣
=

∣∣∣∣12 log det

(
(I +

1

σ2
ΦRΛRΦ

T
R)

−1(I +
1

σ2
ΦRΛRΦ

T
R +

1

σ2
Φ>RΛ>RΦ

T
>R)

)∣∣∣∣
=

∣∣∣∣12 log det

(
I +

1

σ2
(I +

1

σ2
ΦRΛRΦ

T
R)

−1Φ>RΛ>RΦ
T
>R

)∣∣∣∣
=
1

2

∣∣∣∣Tr log(I + 1

σ2
(I +

1

σ2
ΦRΛRΦ

T
R)

−1Φ>RΛ>RΦ
T
>R

)∣∣∣∣.
(3.78)

Given a concave function h and a matrix B ∈ Rn×n whose eigenvalues ζ1, . . . , ζn are all

positive, we have that

Trh(B) =
∑n

p=1 h(ζi) ≤ nh( 1
n

∑n
p=1 ζi) ≤ nh( 1

n
TrB), (3.79)

where we used Jensen’s inequality. Using h(x) = log(1 + x) in (3.79), with probability 1− δ,

we have ∣∣1
2
log det(I + 1

σ2ΦΛΦ
T )− 1

2
log det(I + 1

σ2ΦRΛRΦ
T
R)
∣∣

≤ n
2
log(1 + 1

n
Tr( 1

σ2 (I +
ΦRΛRΦT

R

σ2 )−1Φ>RΛ>RΦ
T
>R))

≤ n
2
log(1 + 1

nσ2∥(I +
ΦRΛRΦT

R

σ2 )−1∥2Tr(Φ>RΛ>RΦ
T
>R))

≤ n
2
log(1 + 1

nσ2

∑∞
p=R+1 λp∥ϕp(x)∥22) ≤

1
2σ2

∑∞
p=R+1 λp∥ϕp(x)∥22

= 1
2σ2

∑∞
p=R+1 λp

(
C2
ϕÕ
(√

p2τn∥ϕp∥22 + p2τ
)
+ n∥ϕp∥22

)
= Õ( 1

σ2n
∑∞

p=R+1 λp + n1/2
∑∞

p=R+1 λpp
τ +

∑∞
p=R+1 λpp

2τ )

= Õ
(

1
σ2 (nR

1−α + n1/2R1−α+τ +R1−α+2τ )
)
= o

(
1
σ2n

1
α

)
,

(3.80)

where in the second inequality we use the fact that TrAB ≤ ∥A∥2TrB when A and B are

symmetric positive definite matrices, and in the last inequality we use Lemma 64.

As for the second term in the right hand side of (3.77), let A = (I +
ΦRΛRΦT

R

σ2 )−1/2. Then
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we have

1
2

∣∣∣Tr(I + ΦΛΦT

σ2 )−1 − Tr(I +
ΦRΛRΦT

R

σ2 )−1
∣∣∣

= 1
2

∣∣∣∣TrA[I − (I + A(
Φ>RΛ>RΦ

T
>R

σ2
)A)−1

]
A

∣∣∣∣
≤ 1

2
Tr
[
I − (I + A(

Φ>RΛ>RΦT
>R

σ2 )A)−1
]

≤ n
2
(1− (1 + 1

n
TrA(

Φ>RΛ>RΦT
>R

σ2 )A)−1) ≤ n
2
(1− (1 + 1

n
Tr(

Φ>RΛ>RΦT
>R

σ2 ))−1)

≤ n
2
(1− (1 + 1

nσ2

∑∞
p=R+1 λp∥ϕp(x)∥22))−1) ≤ 1

2σ2

∑∞
p=R+1 λp∥ϕp(x)∥22

= Õ
(

1
σ2 (nR

1−α + n1/2R1−α+τ +R1−α+2τ )
)
= o

(
1
σ2n

1
α

)
,

where in the first inequality we use the fact that ∥A∥2 < 1 and TrABA ≤ ∥A∥22TrB

when A and B are symmetric positive definite matrices, in the second inequality we use

h(x) = 1 − 1/(1 + x) in (3.79) and in the last equality we use the last few steps of (3.80).

This concludes the proof of the first statement.

As for |T2(Dn)− T2,R(Dn)|, we have

|T2(Dn)− T2,R(Dn)| =
∣∣∣f(x)T (I + ΦΛΦT

σ2 )−1f(x)− fR(x)T (I + ΦΛΦT

σ2 )−1fR(x)
∣∣∣

+
∣∣∣fR(x)T (I + ΦΛΦT

σ2 )−1fR(x)− fR(x)T (I +
ΦRΛRΦT

R

σ2 )−1fR(x)
∣∣∣. (3.81)

For the first term on the right-hand side of (3.81), we have

∣∣∣f(x)T (I + ΦΛΦT

σ2 )−1f(x)− fR(x)T (I + ΦΛΦT

σ2 )−1fR(x)
∣∣∣

≤ 2
∣∣∣f>R(x)T (I + ΦΛΦT

σ2 )−1fR(x)
∣∣∣+ ∣∣∣f>R(x)T (I + ΦΛΦT

σ2 )−1f>R(x)
∣∣∣

≤ 2∥f>R(x)∥2∥(I + ΦΛΦT

σ2 )−1fR(x)∥2 + ∥f>R(x)∥2∥(I + ΦΛΦT

σ2 )−1∥2∥f>R(x)∥2

≤ 2∥f>R(x)∥2∥(I + ΦΛΦT

σ2 )−1fR(x)∥2 + ∥f>R(x)∥22.
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Applying Corollary 65 and Lemma 77, with probability of at least 1− 4δ, we have

∣∣∣f(x)T (I + ΦΛΦT

σ2 )−1f(x)− fR(x)T (I + ΦΛΦT

σ2 )−1fR(x)
∣∣∣

≤ 2Õ

(√
(1
δ
+ 1)nR1−2β

)
Õ(
√
(1
δ
+ 1)n · nmax{−1,

1−2β
2α

}) + Õ((1
δ
+ 1)nR1−2β)

= 2Õ

(
(1
δ
+ 1)n1+(

1
α
+κ)

1−2β
2

+max{−1,
1−2β
2α

}
)
+ Õ((1

δ
+ 1)n1+(

1
α
+κ)(1−2β))

= 2Õ

(
(1
δ
+ 1)n1+(

1
α
+κ)

1−2β
2

+max{−1,
1−2β
2α

}
)
,

where the last equality holds because ( 1
α
+ κ)1−2β

2
< 1−2β

2α
when κ > 0.

As for the second term on the right-hand side of (3.81), according to Lemma 74, Corollary

72 and Lemma 75, we have

∣∣∣fR(x)T (I + ΦΛΦT

σ2 )−1fR(x)− fR(x)T (I +
ΦRΛRΦT

R

σ2 )−1fR(x)
∣∣∣

=

∣∣∣∣∣
∞∑
j=1

(−1)jfR(x)T
(
(I +

ΦRΛRΦT
R

σ2 )−1 Φ>RΛ>RΦT
>R

σ2

)j
(I +

ΦRΛRΦT
R

σ2 )−1fR(x)

∣∣∣∣∣
≤

∞∑
j=1

∥(I + ΦRΛRΦT
R

σ2 )−1∥j−1
2 · ∥

Φ>RΛ>RΦ
T
>R

σ2
∥j2 · ∥(I +

ΦRΛRΦT
R

σ2 )−1fR(x)∥22

=
∞∑
j=1

Õ(n−jκα)Õ((1
δ
+ 1)n1+max{−2,

1−2β
α

})

= Õ((1
δ
+ 1)n1+max{−2,

1−2β
α

}−κα).

(3.82)

By (3.81), we have

|T2(Dn)− T2,R(Dn)| = Õ

(
(1
δ
+ 1)n1+(

1
α
+κ)

1−2β
2

+max{−1,
1−2β
2α

}
)

+ Õ

(
(1
δ
+ 1)n1+max{−2,

1−2β
α

}−κα
)

= Õ

(
(1
δ
+ 1)nmax{( 1

α
+κ) 1−2β

2
,1+

1−2β
α

+
(1−2β)κ

2
,−1−κα,1+1−2β

α
−κα}

)
.

This concludes the proof of the second statement.
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In Lemma 78, we gave a bound for |T2,R(Dn)− T2(Dn)| when n
1
α < R < n

1
α
+α−1−2τ

α2 . For

R > n, we note the following lemma:

Lemma 79. Let R = nC and σ2 = nt. Assume that C ≥ 1 and C(1−α+2τ)− t < 0. Under

Assumptions 50, 51 and 52, for sufficiently large n and with probability of at least 1− 3δ we

have

|T2,R(Dn)− T2(Dn)| = Õ
(
(1
δ
+ 1) 1

σ2nR
max{1/2−β,1−α+2τ}). (3.83)

Proof of Lemma 79. Define Φ>R = (ϕR+1(x), ϕR+2(x), . . . , ϕp(x), . . .), and Λ>R = diag(λR+1,

. . . , λp, . . .). Then we have

|T2(Dn)− T2,R(Dn)| =
∣∣∣∣f(x)T (I + ΦΛΦT

σ2
)−1f(x)− fR(x)T (I +

ΦΛΦT

σ2
)−1fR(x)

∣∣∣∣
+

∣∣∣∣fR(x)T (I + ΦΛΦT

σ2
)−1fR(x)− fR(x)T (I +

ΦRΛRΦ
T
R

σ2
)−1fR(x)

∣∣∣∣.
(3.84)

For the first term on the right-hand side of (3.84), with probability 1− 3δ we have

∣∣∣∣f(x)T (I + ΦΛΦT

σ2
)−1f(x)− fR(x)T (I +

ΦΛΦT

σ2
)−1fR(x)

∣∣∣∣
≤2
∣∣∣∣f>R(x)T (I + ΦΛΦT

σ2
)−1fR(x)

∣∣∣∣+ ∣∣∣∣f>R(x)T (I + ΦΛΦT

σ2
)−1f>R(x)

∣∣∣∣
≤2∥f>R(x)∥2∥(I +

ΦΛΦT

σ2
)−1∥2∥fR(x)∥2 + ∥f>R(x)∥2∥(I +

ΦΛΦT

σ2
)−1∥2∥f>R(x)∥2

≤2∥f>R(x)∥2∥fR(x)∥2 + ∥f>R(x)∥22

≤2Õ

(√
(
1

δ
+ 1)nR1−2β

)
Õ(

√
(
1

δ
+ 1)n · ∥f∥2) + Õ((

1

δ
+ 1)nR1−2β)

=Õ

(
(
1

δ
+ 1)nR1/2−β

)
,

where we used Corollary 65 and Lemma 63 for the last inequality.

The assumption C(1− α+ 2τ)− t < 0 means that R1−α+2τ

σ2 = o(1). For the second term
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on the right-hand side of (3.84), by Lemmas 74 and 71, we have

∣∣∣∣fR(x)T (I + ΦΛΦT

σ2
)−1fR(x)− fR(x)T (I +

ΦRΛRΦ
T
R

σ2
)−1fR(x)

∣∣∣∣
=

∣∣∣∣∣
∞∑
j=1

(−1)jfR(x)T
(
(I +

ΦRΛRΦ
T
R

σ2
)−1Φ>RΛ>RΦ

T
>R

σ2

)j
(I +

ΦRΛRΦ
T
R

σ2
)−1fR(x)

∣∣∣∣∣
≤

∞∑
j=1

∥(I + ΦRΛRΦ
T
R

σ2
)−1∥j+1

2 · ∥
Φ>RΛ>RΦ

T
>R

σ2
∥j2 · ∥fR(x)∥22

=
∞∑
j=1

Õ(
1

σ2
Rj(1−α+2τ))Õ((

1

δ
+ 1)n∥f∥22)

=Õ((
1

δ
+ 1)

1

σ2
nR1−α+2τ ).

(3.85)

Using (3.84), we have

|T2(Dn)− T2,R(Dn)| = Õ

(
(
1

δ
+ 1)nR1/2−β

)
+ Õ((

1

δ
+ 1)n

1

σ2
R1−α+2τ )

= Õ

(
(
1

δ
+ 1)n

1

σ2
Rmax{1/2−β,1−α+2τ}

)
.

Next we consider the asympototics of T1,R(Dn) and T2,R(Dn).

Lemma 80. Let A = (I + n
σ2ΛR)

−γ/2Λ
γ/2
R (ΦT

RΦR − nI)Λ
γ/2
R (I + n

σ2ΛR)
−γ/2. Assume that

∥A∥2 < 1 where 1+2τ
α

< γ ≤ 1. Then we have

T2,R(Dn) =
n

2σ2µ
T
R(I +

n
σ2ΛR)

−1µR + 1
2

∑∞
j=1(−1)j+1Ej,

where

Ej = µT
R

1
σ2 (I +

n
σ2ΛR)

−1(ΦT
RΦR − nI)

(
1
σ2 (I +

n
σ2ΛR)

−1ΛR(Φ
T
RΦR − nI)

)j−1
(I + n

σ2ΛR)
−1µR.

Proof of Lemma 80. Let Λ̃ϵ,R = diag{ϵ, λ1, . . . , λR}. Since ΛR = diag{0, λ1, . . . , λR}, we have

that when ϵ is sufficiently small, ∥ 1
σ2 (I+

n
σ2 Λ̃ϵ,R)

−1/2Λ̃
1/2
ϵ,R(Φ

T
RΦR−nI)Λ̃

1/2
ϵ,R(I+

n
σ2 Λ̃ϵ,R)

−1/2∥2 < 1.
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Since all diagonal entries of Λ̃ϵ,R are positive, we have

1

2σ2
µT
RΦ

T
R(I +

1

σ2
ΦRΛ̃ϵ,RΦ

T
R)

−1ΦRµR

=
1

2σ2
µT
RΦ

T
R

[
I − ΦR(σ

2I + Λ̃ϵ,RΦ
T
RΦR)

−1Λ̃ϵ,RΦ
T
R

]
ΦRµR

=
1

2σ2
µT
RΦ

T
RΦRµR −

1

2σ2
µT
RΦ

T
RΦR(σ

2I + Λ̃ϵ,RΦ
T
RΦR)

−1Λ̃ϵ,RΦ
T
RΦRµR

=
1

2
µT
RΦ

T
RΦR(σ

2I + Λ̃ϵ,RΦ
T
RΦR)

−1µR

=
1

2
µT
RΛ̃

−1
ϵ,RΛ̃ϵ,RΦ

T
RΦR(σ

2I + Λ̃ϵ,RΦ
T
RΦR)

−1µR

=
1

2
µT
RΛ̃

−1
ϵ,RµR −

1

2
µT
RΛ̃

−1
ϵ,R(I +

1

σ2
Λ̃ϵ,RΦ

T
RΦR)

−1µR.

(3.86)

Using Lemma 73, we have

1

2
µT
RΛ̃

−1
ϵ,RµR −

1

2
µT
RΛ̃

−1
ϵ,R(I +

1

σ2
Λ̃ϵ,RΦ

T
RΦR)

−1µR

=
1

2
µT
RΛ̃

−1
ϵ,RµR −

1

2
µT
RΛ̃

−1
ϵ,R(I +

n

σ2
Λ̃ϵ,R)

−1µR

+
1

2

∞∑
j=1

(−1)j+1µT
RΛ̃

−1
ϵ,R

(
1

σ2
(I +

n

σ2
Λ̃ϵ,R)

−1Λ̃ϵ,R(Φ
T
RΦR − nI)

)j
(I +

n

σ2
Λ̃ϵ,R)

−1µR

=
n

2σ2
µT
R(I +

n

σ2
Λ̃ϵ,R)

−1µR

+
1

2

∞∑
j=1

(−1)j+1µT
R

1

σ2
(I +

n

σ2
Λ̃ϵ,R)

−1(ΦT
RΦR − nI)

(
1

σ2
(I +

n

σ2
Λ̃ϵ,R)

−1Λ̃ϵ,R(Φ
T
RΦR − nI)

)j−1

(I +
n

σ2
Λ̃ϵ,R)

−1µR

(3.87)
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Letting ϵ→ 0, we get

T2,R(Dn)

=
1

2σ2
µT
RΦ

T
R(I +

1

σ2
ΦRΛRΦ

T
R)

−1ΦRµR

=
n

2σ2
µT
R(I +

n

σ2
ΛR)

−1µR

+
1

2

∞∑
j=1

[
(−1)j+1µT

R

1

σ2
(I +

n

σ2
ΛR)

−1(ΦT
RΦR − nI)

(
1

σ2
(I +

n

σ2
ΛR)

−1ΛR(Φ
T
RΦR − nI)

)j−1

(I +
n

σ2
ΛR)

−1µR

]

This concludes the proof.

Lemma 81. Assume that σ2 = Θ(1). Let R = n
1
α
+κ where 0 < κ < α−1−2τ

2α2 . Under

Assumptions 50, 51 and 52, with probability of at least 1− δ, we have

T1,R(Dn) =
(
1
2
log det(I + n

σ2ΛR)− 1
2
Tr
(
I − (I + n

σ2ΛR)
−1
))
(1 + o(1)) = Θ(n

1
α ). (3.88)

Furthermore, if we assume µ0 = 0, we have

T2,R(Dn) =
(
n

2σ2µ
T
R(I +

n
σ2ΛR)

−1µR

)
(1 + o(1)) =


Θ(nmax{0,1+1−2β

α
}), α ̸= 2β − 1,

Θ(log n), α = 2β − 1.

(3.89)

Proof of Lemma 81. Let

A = (I +
n

σ2
ΛR)

−γ/2Λ
γ/2
R (ΦT

RΦR − nI)Λγ/2R (I +
n

σ2
ΛR)

−γ/2, (3.90)

where 1+α+2τ
2α

< γ ≤ 1. By Corollary 68, with probability of at least 1− δ, we have

∥A∥2 = Õ(n
1−2γα+α+2τ

2α ). (3.91)

When n is sufficiently large, ∥A∥2 is less than 1. Let B = (I + n
σ2ΛR)

−1/2Λ
1/2
R (ΦT

RΦR −

nI)Λ
1/2
R (I+ n

σ2ΛR)
−1/2. Then ∥B∥2 = σ2(1−γ)

n1−γ ∥A∥2 = Õ(n
1−α+2τ

2α ). Using the Woodbury matrix
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identity, we compute T1,R(Dn) as follows:

T1,R(Dn)

= 1
2
log det(I + 1

σ2ΛRΦ
T
RΦR)− 1

2
TrΦR(σ

2I + ΛRΦ
T
RΦR)

−1ΛRΦ
T
R

= 1
2
log det(I + n

σ2ΛR)

+ 1
2
log det[I + 1

σ2 (I +
n
σ2ΛR)

−1/2Λ
1/2
R (ΦT

RΦR − nI)Λ1/2
R (I + n

σ2ΛR)
−1/2]

− 1
2
Tr(σ2I + ΛΦT

RΦR)
−1ΛΦT

RΦR

= 1
2
log det(I + n

σ2ΛR) +
1
2
Tr log[I + 1

σ2B]− 1
2
Tr(I − σ2(σ2I + ΛΦT

RΦR)
−1))

= 1
2
log det(I +

n

σ2
ΛR) +

1
2
Tr

∞∑
j=1

(−1)j−1

j
( 1
σ2B)j

− 1
2
Tr

(
I − (I + n

σ2ΛR)
−1 +

∞∑
j=1

(−1)j
(

1
σ2 (I +

n
σ2ΛR)

−1ΛR(Φ
T
RΦR − nI)

)j
(I + n

σ2ΛR)
−1

)

=
(
1
2
log det(I + n

σ2ΛR)− 1
2
Tr
(
I − (I + n

σ2ΛR)
−1
))

+ 1
2
Tr

∞∑
j=1

(−1)j−1

j
( 1
σ2B)j

− 1
2
Tr

(
∞∑
j=1

(−1)j 1
σ2j (I +

n
σ2ΛR)

−1/2Bj(I + n
σ2ΛR)

−1/2

)
,

(3.92)

where in the last equality we apply Lemma 73.

Let h(x) = log(1 + x)− (1− 1
1+x

). It is easy to verify that h(x) is increasing on [0,+∞).
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As for the first term on the right hand side of (3.92), we have

1
2
log det(I + n

σ2ΛR)− 1
2
Tr
(
I − (I + n

σ2ΛR)
−1
)

=1
2

R∑
p=1

(
log(1 + n

σ2λp)− (1− 1
1+ n

σ2 λp
)
)

=1
2

R∑
p=1

h( n
σ2λp) ≤ 1

2

R∑
p=1

h(
n

σ2
Cλp

−α)

≤1
2
h( n

σ2Cλ) +
1
2

∫
[1,R]

h( n
σ2Cλx

−α)dx

=1
2
h(
n

σ2
Cλ) +

1
2
n1/α

∫
[1/n1/α,R/n1/α]

h(Cλ

σ2 x
−α)dx

=Θ(n1/α),

where in the last equality we use the fact that
∫
[0,+∞]

h(x−α)dx <∞. On the other hand, we

have

1
2
log det(I + n

σ2ΛR)− 1
2
Tr
(
I − (I + n

σ2ΛR)
−1
)

=1
2

R∑
p=1

h( n
σ2λp) ≥ 1

2

R∑
p=1

h( n
σ2Cλp

−α)

≥1
2

∫
[1,R+1]

h( n
σ2Cλx

−α)dx

=1
2
n1/α

∫
[1/n1/α,(R+1)/n1/α]

h( 1
σ2Cλx

−α)dx

=Θ(n1/α).

Overall, we have 1
2
log det(I + n

σ2ΛR)− 1
2
Tr
(
I − (I + n

σ2ΛR)
−1
)
= Θ(n1/α).

As for the second term on the right hand side of (3.92), we have

∣∣∣∣∣Tr
∞∑
j=1

(−1)j−1

j
( 1
σ2B)j

∣∣∣∣∣ ≤ R

∞∑
j=1

∥ 1
σ2B∥j2 = R

∞∑
j=1

1
σ2j Õ(n

j(1−α+2τ)
2α )

= RÕ(n
1−α+2τ

2α ) = Õ(n
1
α
+κ+ 1−α+2τ

2α ).
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As for the third term on the right hand side of (3.92), we have

∣∣∣∣∣Tr
(

∞∑
j=1

(−1)j 1
σ2j (I +

n
σ2ΛR)

−1/2Bj(I + n
σ2ΛR)

−1/2

)∣∣∣∣∣
≤

∞∑
j=1

∣∣Tr( 1
σ2j (I +

n
σ2ΛR)

−1/2Bj(I + n
σ2ΛR)

−1/2
)∣∣

≤R
∞∑
j=1

∥∥ 1
σ2j (I +

n
σ2ΛR)

−1/2Bj(I + n
σ2ΛR)

−1/2
∥∥
2

≤R
∞∑
j=1

∥∥ 1
σ2j (I +

n
σ2ΛR)

−1/2Bj(I + n
σ2ΛR)

−1/2
∥∥
2

≤R
∞∑
j=1

∥∥ 1
σ2jB

j
∥∥
2
= Õ(n

1
α
+κ+

1−α+2τ
2α ).

Then the asymptotics of T1,R(Dn) is given by

T1,R(Dn)

=1
2
log det(I + n

σ2ΛR)− 1
2
Tr
(
I − (I + n

σ2ΛR)
−1
)
+ Õ(n

1
α
+κ+

1−α+2τ
2α ) + Õ(n

1
α
+κ+

1−α+2τ
2α )

=Θ(n1/α) + Õ(n
1
α
+κ+

1−α+2τ
2α )

=Θ(n
1
α ),

where in the last inequality we use the assumption that κ < α−1−2τ
2α

. Since Õ(n
1
α
+κ+ 1−α+2τ

2α )

is lower order term compared to Θ(n
1
α ), we further have

T1,R(Dn) =
(
1
2
log det(I + n

σ2ΛR)− 1
2
Tr
(
I − (I + n

σ2ΛR)
−1
))
(1 + o(1)).

This concludes the proof of the first statement.

Let Λ1:R = diag{λ1, . . . , λR}, Φ1:R = (ϕ1(x), ϕ1(x), . . . , ϕR(x)) and µ1:R = (µ1, . . . , µR).

Since µ0 = 0, we have T2,R(Dn) =
1

2σ2µ
T
1:RΦ

T
1:R(I +

1
σ2Φ1:RΛ1:RΦ

T
1:R)

−1Φ1:Rµ1:R. According to
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Lemma 80, we have

T2,R(Dn) =
n

2σ2
µT

1:R(I +
n

σ2
Λ1:R)

−1µ1:R

+
1

2

∞∑
j=1

[
(−1)j+1µT

1:R

1

σ2
(I +

n

σ2
Λ1:R)

−1(ΦT
1:RΦ1:R − nI)

(
1

σ2
(I +

n

σ2
Λ1:R)

−1Λ1:R(Φ
T
1:RΦ1:R − nI)

)j−1
]

=
n

2σ2
µT

1:R(I +
n

σ2
Λ1:R)

−1µ1:R

+
1

2

∞∑
j=1

[
(−1)j+1 1

σ2j
µT

1:R(I +
n

σ2
Λ1:R)

−1+γ/2Λ
−γ/2
1:R A

(
(I +

n

σ2
Λ1:R)

−1+γΛ1−γ
1:R A

)j−1

(I +
n

σ2
Λ1:R)

−1+γ/2Λ
−γ/2
1:R µ1:R

]
(3.93)

where in the second to last equality we used the definition of A (3.90). As for the first term

on the right hand side of (3.93), by Lemma 61, Assumption 50 and Assumption 51, we have

n

2σ2
µT

1:R(I +
n

σ2
Λ1:R)

−1µ1:R ≤
n

2σ2

R∑
p=1

C2
µp

−2β

1 + n
σ2Cλp−α

=


Θ(nmax{0,1+ 1−2β

α
}), α ̸= 2β − 1,

Θ(log n), α = 2β − 1.

On the other hand, by Assumption 51, assuming that supi≥1 pi+1 − pi = h, we have

n

2σ2
µT

1:R(I +
n

σ2
Λ1:R)

−1µ1:R ≥
n

2σ2

⌊R
h
⌋∑

i=1

C2
µp

−2β
i

1 + n
σ2Cλp

−α
i

≥ n

2σ2

⌊R
h
⌋∑

i=1

C2
µi

−2β

1 + n
σ2Cλ(hi)−α

=


Θ(nmax{0,1+ 1−2β

α
}), α ̸= 2β − 1,

Θ(log n), α = 2β − 1.

190



Overall, we have

n

2σ2
µT

1:R(I +
n

σ2
Λ1:R)

−1µ1:R = Θ(nmax{0,1+ 1−2β
α

} logk n), where k =


0, α ̸= 2β − 1,

1, α = 2β − 1.

By Lemma 62, we have

∥(I + n

σ2
Λ1:R)

−1+γ/2Λ
−γ/2
1:R µ1:R∥22 ≤

R∑
p=1

C2
µp

−2β(Cλp
−α)−γ

(1 + n
σ2Cλp−α)2−γ

=Õ(max{n−2+γ, R1−2β+αγ})

=Õ(nmax{−2+γ, 1−2β
α

+γ+κ(1−2β+αγ)}).

(3.94)

Using (3.91), the second term on the right hand side of (3.93) is computed as follows:

1

2

∞∑
j=1

[
(−1)j+1 1

σ2j
µT

1:R(I +
n

σ2
Λ1:R)

−1+γ/2Λ
−γ/2
1:R A

(
(I +

n

σ2
Λ1:R)

−1+γΛ1−γ
1:R A

)j−1

(I +
n

σ2
Λ1:R)

−1+γ/2Λ
−γ/2
1:R µ1:R

]
≤1

2

∞∑
j=1

1

σ2j
∥A∥j

( n
σ2

)(−1+γ)(j−1)

∥(I + n

σ2
Λ1:R)

−1+γ/2Λ
−γ/2
1:R µ1:R∥22

≤1

2

∞∑
j=1

1

σ2j
Õ(n

j(1−2γα+α+2τ)
2α )

( n
σ2

)(−1+γ)(j−1)

Õ(nmax{−2+γ, 1−2β
α

+γ+κ(1−2β+αγ)})

=Õ(nmax{−2+γ+ 1−2γα+α+2τ
2α

, 1−2β
α

+γ+ 1−2γα+α+2τ
2α

+κ(1−2β+αγ)})

=Õ(nmax{−2+ 1+α+2τ
2α

, 1−2β
α

+ 1+α+2τ
2α

+κ(1−2β+αγ)}).

(3.95)
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Since 1+α+2τ
2α

< 1+α+2τ
α+1+2τ

= 1, we have −2 + 1+α+2τ
2α

< 0.Also we have

1− 2β

α
+

1 + α + 2τ

2α
+ κ(1− 2β + αγ)

=
1− 2β

α
+ 1 +

1− α + 2τ

2α
+ κ(1− 2β + αγ)

≤1− 2β

α
+ 1 +

1− α + 2τ

2α
+ καγ

<
1− 2β

α
+ 1,

(3.96)

where the last inequality holds because κ < α−1−2τ
2α2 and γ ≤ 1. Hence we have

T2,R(Dn) =
n

2σ2
µT

1:R(I +
n

σ2
Λ1:R)

−1µ1:R + Õ(nmax{−2+ 1+α+2τ
2α

, 1−2β
α

+ 1+α+2τ
2α

+κ(1−2β+αγ)})

=Θ(nmax{0,1+ 1−2β
α

} logk n) + Õ(nmax{−2+ 1+α+2τ
2α

, 1−2β
α

+ 1+α+2τ
2α

+κ(1−2β+αγ)})

=Θ(nmax{0,1+ 1−2β
α

} logk n).

where k =


0, α ̸= 2β − 1,

1, α = 2β − 1.

. Since Õ(nmax{−2+ 1+α+2τ
2α

, 1−2β
α

+ 1+α+2τ
2α

+κ(1−2β+αγ)}) is lower order

term compared to Θ(nmax{0,1+ 1−2β
α

} logk n), we further have

T2,R(Dn) =
( n

2σ2
µT

1:R(I +
n

σ2
Λ1:R)

−1µ1:R

)
(1 + o(1))

This concludes the proof of the second statement.

Lemma 82. Under Assumptions 50, 51 and 52, with probability of at least 1− 5δ, we have

T1(Dn) =

(
1

2
log det(I +

n

σ2
Λ)− 1

2
Tr
(
I − (I +

n

σ2
Λ)−1

))
(1 + o(1)) = Θ(n

1
α ), (3.97)

Furthermore, let δ = n−q where 0 ≤ q < min{ (2β−1)(α−1−2τ)
4α2 , α−1−2τ

2α
}. If we assume µ0 = 0,
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we have

T2(Dn) =
( n

2σ2
µT (I +

n

σ2
Λ)−1µ

)
(1 + o(1)) =


Θ(nmax{0,1+ 1−2β

α
}), α ̸= 2β − 1,

Θ(log n), α = 2β − 1.

(3.98)

Proof of Lemma 82. Let R = n
1
α
+κ where 0 ≤ κ < α−1−2τ

2α2 . By Lemmas 78 and 81, with

probability of at least 1− 5δ we have

|T1,R(Dn)− T1(Dn)| = Õ(n
1
α
+κ(1−α)), (3.99)

and

|T2,R(Dn)− T2(Dn)| = Õ

(
(
1

δ
+ 1)nmax{( 1

α
+κ) 1−2β

2
,1+ 1−2β

α
+

(1−2β)κ
2

,−1−κα,1+ 1−2β
α

−κα}
)

(3.100)

as well as

T1,R(Dn) =

(
1

2
log det(I +

n

σ2
ΛR)−

1

2
Tr
(
I − (I +

n

σ2
ΛR)

−1
))

(1+ o(1)) = Θ(n
1
α ), (3.101)

and

T2,R(Dn) =
( n

2σ2
µT (I +

n

σ2
Λ)−1µ

)
(1 + o(1)) =


Θ(nmax{0,1+ 1−2β

α
}), α ̸= 2β − 1,

Θ(log n), α = 2β − 1.

(3.102)

We then have

T1(Dn) = T1,R(Dn) + T1,R(Dn)− T1(Dn) = Θ(n
1
α ) + Õ(n

1
α
+κ(1−α)) = Θ(n

1
α ).

Since Õ(n
1
α
+κ(1−α)) is lower order term compared to Θ(n

1
α ), we further have

T1(Dn) =

(
1

2
log det(I +

n

σ2
ΛR)−

1

2
Tr
(
I − (I +

n

σ2
ΛR)

−1
))

(1 + o(1)) = Θ(n
1
α )
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Besides, we have

log det(I +
n

σ2
Λ)− log det(I +

n

σ2
ΛR)

=
∞∑

p=R+1

log(1 +
n

σ2
λp) ≤

n

σ2

∞∑
p=R+1

λp ≤
n

σ2

∞∑
p=R+1

Cλp
−α =

n

σ2
O(R1−α)

=
n

σ2
O(n(1−α)( 1

α
+κ))

= o(n
1
α ).

Then we have log det(I + n
σ2ΛR) = log det(I + n

σ2Λ)(1 + o(1)). Similarly we can prove

Tr
(
I − (I + n

σ2Λ)
−1
)
= Tr

(
I − (I + n

σ2ΛR)
−1
)
(1 + o(1)). This concludes the proof of the first

statement.

As for T2(Dn), we have

T2(Dn)

= T2,R(Dn) + T2,R(Dn)− T2(Dn)

= Θ(nmax{0,1+ 1−2β
α

} logk n) + Õ

(
(
1

δ
+ 1)nmax{( 1

α
+κ) 1−2β

2
,1+ 1−2β

α
+

(1−2β)κ
2

,−1−κα,1+ 1−2β
α

−κα}
)

= Θ(nmax{0,1+ 1−2β
α

} logk n) + Õ
(
nq+max{( 1

α
+κ) 1−2β

2
,1+ 1−2β

α
+

(1−2β)κ
2

,−1−κα,1+ 1−2β
α

−κα}
)

where we use δ = n−q, k =


0, α ̸= 2β − 1,

1, α = 2β − 1.

.

Since 0 ≤ κ < α−1−2τ
2α2 and 0 ≤ q < min{ (2β−1)(α−1−2τ)

4α2 , α−1−2τ
2α
}, we can choose κ < α−1−2τ

2α2

and κ is arbitrarily close to α−1−2τ
2α2 such that 0 ≤ q < min{ (2β−1)κ

2
, κα}. Then we have

( 1
α
+ κ)1−2β

2
+ q < 0, −1− κα + q < 0, (1−2β)κ

2
+ q < 0 and −κα + q < 0. So we have

T2,R(Dn) = Θ(nmax{0,1+ 1−2β
α

} logk n).

Since Õ
(
(1
δ
+ 1)nmax{( 1

α
+κ) 1−2β

2
,1+ 1−2β

α
+

(1−2β)κ
2

,−1−κα,1+ 1−2β
α

−κα}
)

is lower order term compared
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to Θ(nmax{0,1+ 1−2β
α

} logk n), we further have

T2(Dn) = T2,R(Dn)(1 + o(1)) =
( n

2σ2
µT
R(I +

n

σ2
ΛR)

−1µR

)
(1 + o(1)).

Furthermore, we have

µT (I +
n

σ2
Λ)−1µ− µT

R(I +
n

σ2
ΛR)

−1µR

=
∞∑

p=R+1

µ2
p

(1 + n
σ2λp)

≤
∞∑

p=R+1

µ2
p ≤

n

σ2

∞∑
p=R+1

C2
µp

−2β = O(R1−2β)

= O(n(1−2β)( 1
α
+κ))

= o(n
1−2β

α ).

Then we have µT (I + n
σ2Λ)

−1µ = µT
R(I +

n
σ2ΛR)

−1µR(1 + o(1)). This concludes the proof of

the second statement.

Proof of Theorem 53. Using Lemma 82 and noting that 1
α
> 0, with probability of at least

1− 5δ̃, we have

EϵF 0(Dn) = T1(Dn) + T2(Dn)

=

[
1

2
log det(I +

n

σ2
ΛR)−

1

2
Tr
(
I − (I +

n

σ2
ΛR)

−1
)

+
n

2σ2
µT
R(I +

n

σ2
ΛR)

−1µR

]
(1 + o(1))

= Θ(nmax{ 1
α
, 1−2β

α
+1})

Letting δ = 5δ̃, we get the result.

In the case of µ0 > 0, we have the following lemma:

Lemma 83. Assume that σ2 = Θ(1). Let R = n
1
α
+κ where 0 < κ < α−1−2τ

α2 . Assume that

µ0 > 0. Under Assumptions 50, 51 and 52, for sufficiently large n with probability of at least
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1− 4δ we have

|T2,R(Dn)− T2(Dn)| = Õ

(
(
1

δ
+ 1)nmax{1+( 1

α
+κ) 1−2β

2
,1−κα}

)
.. (3.103)

Proof of Lemma 83. As for |T2(Dn)− T2,R(Dn)|, we have

|T2(Dn)− T2,R(Dn)| =
∣∣∣∣f(x)T (I + ΦΛΦT

σ2
)−1f(x)− fR(x)T (I +

ΦΛΦT

σ2
)−1fR(x)

∣∣∣∣
+

∣∣∣∣fR(x)T (I + ΦΛΦT

σ2
)−1fR(x)− fR(x)T (I +

ΦRΛRΦ
T
R

σ2
)−1fR(x)

∣∣∣∣.
(3.104)

For the first term on the right-hand side of (3.104), we have

∣∣∣∣f(x)T (I + ΦΛΦT

σ2
)−1f(x)− fR(x)T (I +

ΦΛΦT

σ2
)−1fR(x)

∣∣∣∣
≤2
∣∣∣∣f>R(x)T (I + ΦΛΦT

σ2
)−1fR(x)

∣∣∣∣+ ∣∣∣∣f>R(x)T (I + ΦΛΦT

σ2
)−1f>R(x)

∣∣∣∣
≤2∥f>R(x)∥2∥(I +

ΦΛΦT

σ2
)−1fR(x)∥2 + ∥f>R(x)∥2∥(I +

ΦΛΦT

σ2
)−1∥2∥f>R(x)∥2

≤2∥f>R(x)∥2∥(I +
ΦΛΦT

σ2
)−1fR(x)∥2 + ∥f>R(x)∥22.

Applying Corollary 65 and Lemma 77, with probability of at least 1− 4δ, we have

∣∣∣∣f(x)T (I + ΦΛΦT

σ2
)−1f(x)− fR(x)T (I +

ΦΛΦT

σ2
)−1fR(x)

∣∣∣∣
≤2Õ

(√
(
1

δ
+ 1)nR1−2β

)
Õ(

√
(
1

δ
+ 1)n) + Õ((

1

δ
+ 1)nR1−2β)

=2Õ

(
(
1

δ
+ 1)n1+( 1

α
+κ) 1−2β

2

)
+ Õ((

1

δ
+ 1)n1+( 1

α
+κ)(1−2β))

=2Õ

(
(
1

δ
+ 1)n1+( 1

α
+κ) 1−2β

2

)
.

As for the second term on the right-hand side of (3.81), according to Lemma 74, Corollary
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72 and Lemma 76, we have

∣∣∣∣fR(x)T (I + ΦΛΦT

σ2
)−1fR(x)− fR(x)T (I +

ΦRΛRΦ
T
R

σ2
)−1fR(x)

∣∣∣∣
=

∣∣∣∣∣
∞∑
j=1

(−1)jfR(x)T
(
(I +

ΦRΛRΦ
T
R

σ2
)−1Φ>RΛ>RΦ

T
>R

σ2

)j
(I +

ΦRΛRΦ
T
R

σ2
)−1fR(x)

∣∣∣∣∣
≤

∞∑
j=1

∥(I + ΦRΛRΦ
T
R

σ2
)−1∥j−1

2 · ∥
Φ>RΛ>RΦ

T
>R

σ2
∥j2 · ∥(I +

ΦRΛRΦ
T
R

σ2
)−1fR(x)∥22

=
∞∑
j=1

Õ(n−jκα)Õ((
1

δ
+ 1)n)

=Õ((
1

δ
+ 1)n1−κα).

(3.105)

By (3.81), we have

|T2(Dn)− T2,R(Dn)| = Õ

(
(
1

δ
+ 1)n1+( 1

α
+κ) 1−2β

2

)
+ Õ((

1

δ
+ 1)n1−κα)

= Õ

(
(
1

δ
+ 1)nmax{1+( 1

α
+κ) 1−2β

2
,1−κα}

)
.

Lemma 84. Assume that σ2 = Θ(1). Let R = n
1
α
+κ where 0 < κ < min{α−1−2τ

2α2 , 2β−1
α2 }.

Assume that µ0 > 0. Under Assumptions 50, 51 and 52, with probability of at least 1− δ, we

have

T2,R(Dn) =
n

2σ2
µ2
0 + Õ(nmax{ 1+7α+2τ

8α
,1+ 1−2β

α
}). (3.106)

Proof of Lemma 84. Let

A = (I +
n

σ2
ΛR)

−γ/2Λ
γ/2
R (ΦT

RΦR − nI)Λγ/2R (I +
n

σ2
ΛR)

−γ/2, (3.107)

where 1+α+2τ
2α

< γ ≤ 1. By Corollary 68, with probability of at least 1− δ, we have

∥A∥2 = Õ(n
1−2γα+α+2τ

2α ). (3.108)
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When n is sufficiently large, ∥A∥2 is less than 1. Let µR,1 = (µ0, 0, . . . , 0) and µR,2 =

(0, µ1, . . . , µR). Then µR = µR,1+µR,2. Let Λ̃1,R = diag{1, λ1, . . . , λR} and I0,R = (0, 1, . . . , 1).

Then ΛR = Λ̃1,RI0,R. Let B = (I + n
σ2ΛR)

−1/2Λ̃
1/2
1,R(Φ

T
RΦR − nI)Λ̃

1/2
1,R(I + n

σ2ΛR)
−1/2. By

Corollary 69, we have ∥B∥2 = O(
√

log R
δ
n

1
2 ). By Lemma 80, we have

T2,R(Dn)

=
n

2σ2
µT
R(I +

n

σ2
ΛR)

−1µR

+
1

2

∞∑
j=1

[
(−1)j+1µT

R

1

σ2
(I +

n

σ2
ΛR)

−1(ΦT
RΦR − nI)

(
1

σ2
(I +

n

σ2
ΛR)

−1ΛR(Φ
T
RΦR − nI)

)j−1

(I +
n

σ2
ΛR)

−1µR

]
(3.109)

As for the first term on the right hand side of (3.109), by Lemma 61, we have

n

2σ2
µT (I +

n

σ2
Λ)−1µ ≤ n

2σ2

(
µ2
0 +

R∑
p=1

C2
µp

−2β

1 + n
σ2Cλp−α

)
=

n

2σ2
µ2
0 + Õ(nmax{0,1+ 1−2β

α
}).

We define Q1,j, Q2,j and Q3,j by

Q1,j = µT
R,1

1

σ2
(I +

n

σ2
ΛR)

−1(ΦT
RΦR − nI)

(
1

σ2
(I +

n

σ2
ΛR)

−1ΛR(Φ
T
RΦR − nI)

)j−1

(I +
n

σ2
ΛR)

−1µR,1

Q2,j = µT
R,1

1

σ2
(I +

n

σ2
ΛR)

−1(ΦT
RΦR − nI)

(
1

σ2
(I +

n

σ2
ΛR)

−1ΛR(Φ
T
RΦR − nI)

)j−1

(I +
n

σ2
ΛR)

−1µR,2

Q3,j = µT
R,2

1

σ2
(I +

n

σ2
ΛR)

−1(ΦT
RΦR − nI)

(
1

σ2
(I +

n

σ2
ΛR)

−1ΛR(Φ
T
RΦR − nI)

)j−1

(I +
n

σ2
ΛR)

−1µR,2

(3.110)

The quantity Q3,j actually shows up in the case of µ0 = 0 in the proof of Lemma 81. By
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(3.93), (3.95) and (3.96), we have that

|
∞∑
j=1

(−1)j+1Q3,j| = |
∞∑
j=1

(−1)j+1Õ(n
(j−1)(1−α+2τ)

2α )o(nmax{0,1+ 1−2β
α

})| = o(nmax{0,1+ 1−2β
α

}).

(3.111)

For Q1,j, we have

Q1,1 =
1

σ2j
µT
R,1(I +

n

σ2
ΛR)

−1+ γ
2B(I +

n

σ2
ΛR)

−1+ γ
2µR,1

≤ 1

σ2j
∥µR,1∥22∥(I +

n

σ2
ΛR)

−1+ γ
2 ∥22∥B∥2

= O(

√
log

R

δ
n

1
2 ),

where in the last equality we use ∥B∥2 = O(
√

log R
δ
n

1
2 ). For j ≥ 2, we have

Q1,j =
1

σ2j
µT
R,1(I +

n

σ2
ΛR)

−1+ γ
2B
(
(I +

n

σ2
ΛR)

−1+γΛ1−γ
R A

)j−2

(I +
n

σ2
ΛR)

−1+γΛ1−γ
R

B(I +
n

σ2
ΛR)

−1+ γ
2µR,1

≤ 1

σ2j
∥µR,1∥22∥(I +

n

σ2
ΛR)

−1+ γ
2 ∥22∥B∥22∥A∥

j−2
2 ∥(I +

n

σ2
ΛR)

−1+γΛ1−γ
R ∥

j−1
2

= O(log
R

δ
n · n

(j−2)(1−2γα+α+2τ)
2α · n−(1−γ)(j−1))

= O(log
R

δ
nγ · n

(j−2)(1−α+2τ)
2α ).

Then we have

|
∞∑
j=1

(−1)j+1Q1,j| ≤ O(

√
log

R

δ
n

1
2 ) +

∞∑
j=2

O(log
R

δ
nγ · n

(j−2)(1−α+2τ)
2α ) = O(log

R

δ
nγ) (3.112)

For Q2,j, we have

Q2,j =
1

σ2j
µT
R,1(I +

n

σ2
ΛR)

−1+ γ
2B
(
(I +

n

σ2
ΛR)

−1+γΛ1−γ
R A

)j−1

(I +
n

σ2
Λ)−1+ γ

2 Λ̃
− γ

2
1,RµR,2

≤ 1

σ2j
∥µR,1∥2∥B∥2∥A∥j−1

2 ∥(I +
n

σ2
ΛR)

−1+γΛ1−γ
R ∥

j−1
2 ∥(I +

n

σ2
Λ)−1+ γ

2 Λ̃
− γ

2
1,RµR,2∥2

= O(

√
log

R

δ
n

1
2 · n

(j−1)(1−α+2τ)
2α )∥(I + n

σ2
Λ)−1+ γ

2 Λ̃
− γ

2
1,RµR,2∥2.
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Since ∥(I + n
σ2Λ)

−1+ γ
2 Λ̃

− γ
2

1,RµR,2∥2 is actually the case of µ0 = 0, we can use (3.94) in the proof

of Lemma 81 and get

∥(I + n

σ2
Λ)−1+ γ

2 Λ̃
− γ

2
1,RµR,2∥22 =∥(I +

n

σ2
Λ1:R)

−1+γ/2Λ
−γ/2
1:R µ1:R∥22

=Õ(nmax{−2+γ, 1−2β
α

+γ+κ(1−2β+αγ)}

=Õ(nmax{−2+γ, 1−2β
α

+γ+κ(1−2β+αγ)})

=o(nγ),

(3.113)

where in the last equality we use κ < 2β−1
α2 . Then we have

|
∞∑
j=1

(−1)j+1Q2,j| ≤
∞∑
j=1

o(

√
log

R

δ
n

1+γ
2 · n

(j−1)(1−α+2τ)
2α ) = o(

√
log

R

δ
n

1+γ
2 ) (3.114)

Choosing γ = 1
2
(1 + 1+α+2τ

2α
) = 1+3α+2τ

4α
< 1, we have

T2,R(Dn) =
n

2σ2
µT
R(I +

n

σ2
ΛR)

−1µR +
∞∑
j=1

(−1)j+1(Q1,j +Q2,j +Q3,j)

=
n

2σ2
µ2
0 + Õ(nmax{0,1+ 1−2β

α
}) + o(nmax{0,1+ 1−2β

α
}) +O(log

R

δ
nγ) + o(

√
log

R

δ
n

1+γ
2 )

=
n

2σ2
µ2
0 + Õ(nmax{ 1+γ

2
,1+ 1−2β

α
})

=
n

2σ2
µ2
0 + Õ(nmax{ 1+7α+2τ

8α
,1+ 1−2β

α
}).

Proof of Theorem 54. Let R = n
1
α
+κ where 0 < κ < min{α−1−2τ

2α2 , 2β−1
α2 }. Since 0 ≤ q <

min{2β−1
2
, α} ·min{α−1−2τ

2α2 , 2β−1
α2 }, we can choose κ < min{α−1−2τ

2α2 , 2β−1
α2 } and κ is arbitrarily

close to κ < min{α−1−2τ
2α2 , 2β−1

α2 } such that 0 ≤ q < min{ (2β−1)κ
2

, κα}. Then we have ( 1
α
+
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κ)1−2β
2

+ q < 0, and −κα + q < 0. As for T2(Dn), we have

T2(Dn) ≤ T2,R(Dn) + |T2,R(Dn)− T2(Dn)|

=
n

2σ2
µ2
0 + Õ(nmax{ 1+7α+2τ

8α
,1+ 1−2β

α
}) + Õ

(
(1
δ
+ 1)nmax{1+( 1

α
+κ) 1−2β

2
,1−κα}

)
=

n

2σ2
µ2
0 + Õ(nmax{ 1+7α+2τ

8α
,1+ 1−2β

α
}) + Õ

(
nq+max{1+( 1

α
+κ) 1−2β

2
,1−κα}

)
=

n

2σ2
µ2
0 + o(n).

By Lemma 82, we have T1(Dn) = O(n
1
α ). Hence EϵF 0(Dn) = T1(Dn) + T2(Dn) =

n
2σ2µ

2
0 +

o(n).

3.D.2 Proofs Related to the Asymptotics of the Generalization Error

Lemma 85. Assume σ2 = Θ(nt) where 1 − α
1+2τ

< t < 1. Let R = n( 2α−1
α(α−1)

+1)(1−t). Under

Assumptions 50, 51 and 52, with probability of at least 1− δ over sample inputs (xi)
n
i=1, we

have

G1(Dn) =
1+o(1)
2σ2

(
Tr(I + n

σ2ΛR)
−1ΛR − ∥Λ1/2

R (I + n
σ2ΛR)

−1∥2F
)
= 1

σ2Θ

(
n

(1−α)(1−t)
α

)
.

(3.115)

Proof of Lemma 85. Let G1,R(Dn) = E(xn+1,yn+1)(T1,R(Dn+1)− T1,R(Dn)), where R = nC for

some constant C. By Lemma 78, we have that

|G1(Dn)−G1,R(Dn)| =
∣∣E(xn+1,yn+1)[T1(Dn+1)− T1,R(Dn+1)]− [T1(Dn)− T1,R(Dn)]

∣∣
=
∣∣E(xn+1,yn+1)O((n+ 1)R1−α)

∣∣+ ∣∣O(nR1−α)]
∣∣

= O( 1
σ2nR

1−α).

(3.116)

Define ηR = (ϕ0(xn+1), ϕ1(xn+1), . . . , ϕR(xn+1))
T and Φ̃R = (ΦT

R, ηR)
T . As for G1,R(Dn), we
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have

G1,R(Dn) = E(xn+1,yn+1)(T1,R(Dn+1)− T1,R(Dn))

= E(xn+1,yn+1)

(
1

2
log det(I +

Φ̃RΛRΦ̃
T
R

σ2
)− 1

2
Tr(I − (I +

Φ̃RΛRΦ̃
T
R

σ2
)−1)

)

−
(
1

2
log det(I +

ΦRΛRΦ
T
R

σ2
)− 1

2
Tr(I − (I +

ΦRΛRΦ
T
R

σ2
)−1)

)
=

1

2

(
E(xn+1,yn+1) log det(I +

Φ̃RΛRΦ̃R

T

σ2
)− log det(I +

ΦRΛRΦ
T
R

σ2
)

)

− 1

2

(
E(xn+1,yn+1)Tr(I − (I +

Φ̃RΛRΦ̃
T
R

σ2
)−1)− Tr(I − (I +

ΦRΛRΦ
T
R

σ2
)−1)

)
.

(3.117)

As for the first term in the right hand side (3.117), we have

1

2

(
E(xn+1,yn+1) log det(I +

Φ̃RΛRΦ̃
T
R

σ2
)− log det(I +

ΦRΛRΦ
T
R

σ2
)

)

=
1

2

(
E(xn+1,yn+1) log det(I +

ΛRΦ̃
T
RΦ̃R

σ2
)− log det(I +

ΛRΦ
T
RΦR

σ2
)

)

=
1

2

(
E(xn+1,yn+1) log det(I +

ΛRΦ
T
RΦR + ηRη

T
R

σ2
)− log det(I +

ΛRΦ
T
RΦR

σ2
)

)
=

1

2

(
E(xn+1,yn+1) log det

(
(I +

ΛRΦ
T
RΦR

σ2
)−1(I +

ΛRΦ
T
RΦR

σ2
+

ΛRηRη
T
R

σ2
)

))
=

1

2

(
E(xn+1,yn+1) log det

(
I + (I +

ΛRΦ
T
RΦR

σ2
)−1ΛRηRη

T
R

σ2

))
=

1

2

(
E(xn+1,yn+1) log

(
1 +

1

σ2
ηTR(I +

ΛRΦ
T
RΦR

σ2
)−1ΛRηR

))

Let

A = (I +
n

σ2
ΛR)

−1/2Λ
1/2
R (ΦT

RΦR − nI)Λ1/2
R (I +

n

σ2
ΛR)

−1/2. (3.118)

According to Corollary 68, with probability of at least 1− δ, we have

∥ 1
σ2
A∥2 = O(

√
log

R

δ
n

1−α+2τ
2α

− (1+2τ)t
2α ) = o(1).
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When n is sufficiently large, ∥ 1
σ2A∥2 is less than 1. By Lemma 73, we have

ηTR(I +
ΛRΦ

T
RΦR
σ2

)−1ΛRηR

=ηTR(I +
n

σ2
ΛR)

−1ΛRηR +

∞∑
j=1

(−1)jηTR
(

1

σ2
(I +

n

σ2
ΛR)

−1ΛR(Φ
T
RΦR − nI)

)j
(I +

n

σ2
ΛR)

−1ΛRηR

=ηTR(I +
n

σ2
ΛR)

−1ΛRηR +
∞∑
j=1

(−1)j 1

σ2j
ηTR(I +

n

σ2j
ΛR)

−1/2Λ
1/2
R Aj(I +

n

σ2
ΛR)

−1/2Λ
1/2
R ηR

≤ηTR(I +
n

σ2
ΛR)

−1ΛRηR +
∞∑
j=1

∥ 1

σ2
A∥j2∥(I +

n

σ2
ΛR)

−1/2Λ
1/2
R ηR∥22

≤
R∑
p=1

ϕ2p(xn+1)
Cλp

−α

1 + nCλp−α/σ2
+

∞∑
j=1

∥ 1

σ2
A∥j2

R∑
p=1

ϕ2p(xn+1)
Cλp

−α

1 + nCλp−α/σ2

≤
R∑
p=1

Cλp
−αp2τ

1 + nCλp−α/σ2
+

∞∑
j=1

∥ 1

σ2
A∥j2

R∑
p=1

Cλp
−αp2τ

1 + nCλp−α/σ2

≤O(n
(1−α+2τ)(1−t)

α ) +

∞∑
j=1

∥ 1

σ2
A∥j2O(n

(1−α+2τ)(1−t)
α )

=O(n
(1−α+2τ)(1−t)

α ) = o(1),

(3.119)

where we use Lemma 61 in the last inequality. Next we have

1

2

(
E(xn+1,yn+1) log det(I +

Φ̃RΛRΦ̃
T
R

σ2
)− log det(I +

ΦRΛRΦ
T
R

σ2
)

)

=
1

2

(
E(xn+1,yn+1) log

(
1 +

1

σ2
ηTR(I +

ΛRΦ
T
RΦR

σ2
)−1ΛRηR

))
=

1

2

(
E(xn+1,yn+1)

(
1

σ2
ηTR(I +

ΛRΦ
T
RΦR

σ2
)−1ΛRηR

)
(1 + o(1))

)
=

1

2σ2

(
Tr(I +

ΛRΦ
T
RΦR

σ2
)−1ΛR

)
(1 + o(1)),
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where in the last equality we use the fact that E(xn+1,yn+1)ηRη
T
R = I. By Lemma 73, we have

Tr(I +
ΛRΦ

T
RΦR

σ2
)−1ΛR

=Tr(I +
n

σ2
ΛR)

−1ΛR +
∞∑
j=1

(−1)j Tr
(

1

σ2
(I +

n

σ2
ΛR)

−1ΛR(Φ
T
RΦR − nI)

)j
(I +

n

σ2
ΛR)

−1ΛR

=Tr(I +
n

σ2
ΛR)

−1ΛR +
∞∑
j=1

(−1)j Tr 1

σ2j
(I +

n

σ2
ΛR)

−1/2Λ
1/2
R Aj(I +

n

σ2
ΛR)

−1/2Λ
1/2
R .

By Lemma 61, we have

Tr(I +
n

σ2
ΛR)

−1ΛR ≤
R∑
p=1

Cλp
−α

1 + nCλp−α/σ2
= Θ(n

(1−α)(1−t)
α )

Tr(I +
n

σ2
ΛR)

−1ΛR ≥
R∑
p=1

Cλp
−α

1 + nCλp−α/σ2
= Θ(n

(1−α)(1−t)
α ).

Overall,

Tr(I +
n

σ2
ΛR)

−1ΛR = Θ(n
(1−α)(1−t)

α ). (3.120)

Since ∥ 1
σ2A∥j2 = o(1), we have that the absolute values of diagonal entries of 1

σ2jA
j are at

most o(1). Let (Aj)p,p denote the (p, p)-th entry of the matrix Aj. Then we have

∣∣∣∣Tr 1

σ2j
(I +

n

σ2
ΛR)

−1/2Λ
1/2
R Aj(I +

n

σ2
ΛR)

−1/2Λ
1/2
R

∣∣∣∣
=

∣∣∣∣∣
R∑
p=1

λp
1
σ2j (A

j)p,p

1 + nλp/σ2

∣∣∣∣∣ ≤
R∑
p=1

λp∥ 1
σ2jA∥j2

1 + nλp/σ2
= Θ(n

(1−α)(1−t)
α )Õ(n

j(1−α+2τ−(1+2τ)t)
2α (logR)j/2),

(3.121)

204



where in the last step we used (3.120). According to (3.120) and (3.121), we have

1

2

(
E(xn+1,yn+1) log det(I +

Φ̃RΛRΦ̃
T
R

σ2
)− log det(I +

ΦRΛRΦ
T
R

σ2
)

)

=
1

2σ2

(
Tr(I +

ΛRΦ
T
RΦR

σ2
)−1ΛR

)
(1 + o(1))

= 1
σ2Θ(n

(1−α)(1−t)
α ) + 1

σ2

∞∑
j=1

Θ(n
(1−α)(1−t)

α )Õ(n
j(1−α+2τ−(1+2τ)t)

2α (logR)j/2)

= 1
σ2Θ(n

(1−α)(1−t)
α ) + 1

σ2Θ(n
(1−α)(1−t)

α )o(1) = 1
σ2Θ(n

(1−α)(1−t)
α )

=
1

2σ2

(
Tr(I +

n

σ2
ΛR)

−1ΛR

)
(1 + o(1)).

(3.122)

Using the Woodbury matrix identity, the second term in the right hand side (3.117) is given

by

1

2

(
E(xn+1,yn+1)Tr(I − (I +

Φ̃RΛRΦ̃
T
R

σ2
)−1 − Tr(I − (I +

ΦRΛRΦ
T
R

σ2
)−1

)

=
1

2

(
E(xn+1,yn+1) Tr(

1

σ2
Φ̃R(I +

1

σ2
ΛRΦ̃

T
RΦ̃R)

−1ΛRΦ̃
T
R − Tr(

1

σ2
ΦR(I +

1

σ2
ΛRΦ

T
RΦR)

−1ΛRΦ
T
R

)
=

1

2

(
E(xn+1,yn+1) Tr(

1

σ2
(I +

1

σ2
ΛRΦ̃

T
RΦ̃R)

−1ΛRΦ̃
T
RΦ̃R − Tr(

1

σ2
(I +

1

σ2
ΛRΦ

T
RΦR)

−1ΛRΦ
T
RΦR

)
= −1

2

(
E(xn+1,yn+1) Tr(I +

1

σ2
ΛRΦ̃

T
RΦ̃R)

−1 − Tr(I +
1

σ2
ΛRΦ

T
RΦR)

−1

)
= −1

2

(
E(xn+1,yn+1) Tr(I +

1

σ2
ΛRΦ

T
RΦR +

1

σ2
ΛRηRη

T
R)

−1 − Tr(I +
1

σ2
ΛRΦ

T
RΦR)

−1

)
=

1

2σ2

(
E(xn+1,yn+1)Tr

(I + 1
σ2ΛRΦ

T
RΦR)

−1ΛRηRη
T
R(I +

1
σ2ΛRΦ

T
RΦR)

−1

1 + 1
σ2ηTR(I +

1
σ2ΛRΦT

RΦR)−1ΛRηR

)
,
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where the last equality uses the Sherman–Morrison formula. According to (3.119), we get

1

2σ2

(
E(xn+1,yn+1) Tr

(I + 1
σ2ΛRΦ

T
RΦR)

−1ΛRηRη
T
R(I +

1
σ2ΛRΦ

T
RΦR)

−1

1 + 1
σ2ηTR(I +

1
σ2ΛRΦT

RΦR)−1ΛRηR

)
=

1

2σ2

(
E(xn+1,yn+1) Tr(I +

1

σ2
ΛRΦ

T
RΦR)

−1ΛRηRη
T
R(I +

1

σ2
ΛRΦ

T
RΦR)

−1(1 + o(1))

)
=

1 + o(1)

2σ2
Tr(I +

1

σ2
ΛRΦ

T
RΦR)

−1ΛR(I +
1

σ2
ΛRΦ

T
RΦR)

−1

=
1 + o(1)

2σ2
TrΛ

1/2
R (I +

1

σ2
Λ

1/2
R ΦT

RΦRΛ
1/2
R )−1Λ

1/2
R (I +

1

σ2
ΛRΦ

T
RΦR)

−1

=
1 + o(1)

2σ2
Tr(I +

1

σ2
Λ

1/2
R ΦT

RΦRΛ
1/2
R )−1Λ

1/2
R (I +

1

σ2
ΛRΦ

T
RΦR)

−1Λ
1/2
R

=
1 + o(1)

2σ2
Tr(I +

1

σ2
Λ

1/2
R ΦT

RΦRΛ
1/2
R )−1ΛR(I +

1

σ2
Λ

1/2
R ΦT

RΦRΛ
1/2
R )−1

=
1 + o(1)

2σ2
∥Λ1/2

R (I +
1

σ2
Λ

1/2
R ΦT

RΦRΛ
1/2
R )−1∥2F

=
1 + o(1)

2σ2
∥Λ1/2

R (I +
n

σ2
ΛR)

−1/2(I +
1

σ2
A)−1(I +

n

σ2
ΛR)

−1/2∥2F ,

where in the penultimate equality we use Tr(BBT ) = ∥B∥2F , ∥B∥F is the Frobenius norm of

A, and in the last equality we use the definition of A (3.118). Then we have

1 + o(1)

2σ2
∥Λ1/2

R (I +
n

σ2
ΛR)

−1/2(I +
1

σ2
A)−1(I +

n

σ2
ΛR)

−1/2∥2F

=
1 + o(1)

2σ2
∥Λ1/2

R (I +
n

σ2
ΛR)

−1/2(I +
∞∑
j=1

(−1)j 1

σ2j
Aj)(I +

n

σ2
ΛR)

−1/2∥2F

=
1 + o(1)

2σ2
∥Λ1/2

R (I +
n

σ2
ΛR)

−1 +
∞∑
j=1

(−1)j 1

σ2j
Λ

1/2
R (I +

n

σ2
ΛR)

−1/2Aj(I +
n

σ2
ΛR)

−1/2∥2F .

(3.123)

By Lemma 61, we have

∥Λ1/2
R (I +

n

σ2
ΛR)

−1∥F ≤

√√√√ R∑
p=1

Cλp−α

(1 + nCλp−α/σ2)2
= Θ(n

(1−α)(1−t)
2α )

∥Λ1/2
R (I +

n

σ2
ΛR)

−1∥F ≥

√√√√ R∑
p=1

Cλp−α

(1 + nCλp−α/σ2)2
= Θ(n

(1−α)(1−t)
2α ).
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Overall, we have

∥Λ1/2
R (I +

n

σ2
ΛR)

−1∥F = Θ(n
(1−α)(1−t)

2α ). (3.124)

Since ∥ 1
σ2A∥2 = O(

√
log R

δ
n

1−α+2τ
2α

− (1+2τ)t
2α ) = o(1), we have

∥ 1

σ2j
Λ

1/2
R (I +

n

σ2
ΛR)

−1/2Aj(I +
n

σ2
ΛR)

−1/2∥F

≤ ∥Λ1/2
R (I +

n

σ2
ΛR)

−1/2∥F∥
1

σ2
A∥j2∥(I +

n

σ2
ΛR)

−1/2∥2

= O(n
(1−α)(1−t)

2α )Õ(n
j(1−α+2τ−(1+2τ)t)

2α (logR)j/2),

(3.125)

where in the first inequality we use the fact that ∥AB∥F ≤ ∥A∥F∥B∥2 when B is symmetric.

By Lemma 61, we have

1

σ2j

∣∣∣TrΛ1/2
R (I +

n

σ2
ΛR)

−1Λ
1/2
R (I +

n

σ2
ΛR)

−1/2Aj(I +
n

σ2
ΛR)

−1/2
∣∣∣

=

∣∣∣∣∣
R∑
p=1

λp((
1
σ2A)

j)p,p

(1 + nλp/σ2)2

∣∣∣∣∣ ≤
R∑
p=1

λp∥ 1
σ2A∥j2

(1 + nλp/σ2)2
= Θ(n

(1−α)(1−t)
α )Õ(n

j(1−α+2τ−(1+2τ)t)
2α (logR)j/2),

(3.126)
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According to (3.124), (3.125) and (3.126), we have

1

2

(
E(xn+1,yn+1)Tr(I − (I +

Φ̃RΛRΦ̃
T
R

σ2
)−1 − Tr(I − (I +

ΦRΛRΦ
T
R

σ2
)−1

)

=
1 + o(1)

2σ2
Tr(I +

1

σ2
ΛRΦ

T
RΦR)

−1ΛR(I +
1

σ2
ΛRΦ

T
RΦR)

−1

=
1 + o(1)

2σ2
∥Λ1/2

R (I +
n

σ2
ΛR)

−1 +
∞∑
j=1

(−1)j 1

σ2j
Λ

1/2
R (I +

n

σ2
ΛR)

−1/2Aj(I +
n

σ2
ΛR)

−1/2∥2F

=
1 + o(1)

2σ2

(
∥Λ1/2

R (I +
n

σ2
ΛR)

−1∥2F +
∞∑
j=1

∥∥∥∥ 1

σ2j
Λ

1/2
R (I +

n

σ2
ΛR)

−1/2Aj(I +
n

σ2
ΛR)

−1/2

∥∥∥∥2
F

+ 2TrΛ
1/2
R (I +

n

σ2
ΛR)

−1

∞∑
j=1

(−1)j 1

σ2j
Λ

1/2
R (I +

n

σ2
ΛR)

−1/2Aj(I +
n

σ2
ΛR)

−1/2

)

=
1 + o(1)

2σ2

(
Θ(n

(1−α)(1−t)
α ) +

∞∑
j=1

1

σ2j
O(n

(1−α)(1−t)
α )Õ(n

j(1−α+2τ−(1+2τ)t)
2α (logR)j/2)

+ 2
∞∑
j=1

1

σ2j
Θ(n

(1−α)(1−t)
α )Õ(n

j(1−α+2τ−(1+2τ)t)
2α (logR)j/2)

)
= 1
σ2Θ(n

(1−α)(1−t)
α ) =

1 + o(1)

2σ2
∥Λ1/2

R (I +
n

σ2
ΛR)

−1∥2F .
(3.127)

Combining (3.122) and (3.127) we get that G1,R(Dn) =
1+o(1)
2σ2 (Tr(I + n

σ2ΛR)
−1ΛR + ∥Λ1/2

R (I +

n
σ2ΛR)

−1∥2F ) = 1
σ2Θ(n

(1−α)(1−t)
α ). From (3.116) we have that G1(Dn) ≤ G1,R(Dn) + |G1(Dn)−

G1,R(Dn)| = 1
σ2Θ(n

(1−α)(1−t)
α ) + O(n 1

σ2R
1−α). Choosing R = n( 2α−1

α(α−1)
+1)(1−t) we conclude the

proof.

Lemma 86. Assume σ2 = Θ(nt) where 1− α
1+2τ

< t < 1. Let S = nD. Assume that ∥ξ∥2 = 1.

When n is sufficiently large, with probability of at least 1− 2δ we have

∥(I + 1
σ2ΦSΛSΦ

T
S )

−1ΦSΛSξ∥2 = O(
√

(1
δ
+ 1)n · n−(1−t)). (3.128)
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Proof of Lemma 86. Using the Woodbury matrix identity, we have that

((I +
1

σ2
ΦSΛSΦ

T
S )

−1ΦSΛSξ =
[
I − ΦS(σ

2I + ΛSΦ
T
SΦS)

−1ΛSΦ
T
S

]
ΦSΛSξ

=ΦSΛSξ − ΦS(σ
2I + ΛSΦ

T
SΦS)

−1ΛSΦ
T
SΦSΛSξ

=ΦS(I +
1
σ2ΛSΦ

T
SΦS)

−1ΛSξ.

(3.129)

Let A = (I+ n
σ2ΛS)

−γ/2Λ
γ/2
S (ΦTSΦS−nI)Λ

γ/2
S (I+ n

σ2ΛS)
−γ/2, where γ > 1+α+2τ−(1+2τ+2α)t

2α(1−t) . By

Corollary 68, with probability of at least 1− δ, we have ∥ 1
σ2A∥2 = Õ(n

1+α+2τ−(1+2τ+2α)t
2α

−γ(1−t)).

When n is sufficiently large, ∥ 1
σ2A∥2 is less than 1. By Lemma 73, we have

(I +
1

σ2
ΛSΦ

T
SΦS)

−1

=(I +
n

σ2
ΛS)

−1 +
∞∑
j=1

(−1)j
(

1

σ2
(I +

n

σ2
ΛS)

−1ΛS(Φ
T
SΦS − nI)

)j
(I +

n

σ2
ΛS)

−1.

Then we have

∥(I + 1
σ2ΛSΦ

T
SΦS)

−1ΛSξ∥2

=

∥∥∥∥∥
(
(I +

n

σ2
ΛS)

−1 +
∞∑
j=1

(−1)j
(

1

σ2
(I +

n

σ2
ΛS)

−1ΛS(Φ
T
SΦS − nI)

)j
(I +

n

σ2
ΛS)

−1

)
ΛSξ

∥∥∥∥∥
2

≤

(
∥(I + n

σ2
ΛS)

−1ΛSξ∥2 +
∞∑
j=1

∥∥∥∥∥
(

1

σ2
(I +

n

σ2
ΛS)

−1ΛS(Φ
T
SΦS − nI)

)j
(I +

n

σ2
ΛS)

−1ΛSξ

∥∥∥∥∥
2

)
.

(3.130)

For the first term in the right hand side of the last equation, we have

∥(I + n

σ2
ΛS)

−1ΛSξ∥2 ≤ ∥(I +
n

σ2
ΛS)

−1ΛS∥2∥ξ∥2 ≤
σ2

n
= O(n−(1−t)). (3.131)

Using the fact that ∥ 1
σ2A∥2 = Õ(n

1+α+2τ−(1+2τ+2α)t
2α

−γ(1−t)) and ∥(I + n
σ2ΛS)

−1ΛS∥2 ≤ n−1, we
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have ∥∥∥∥∥
(

1

σ2
(I +

n

σ2
ΛS)

−1ΛS(Φ
T
SΦS − nI)

)j
(I +

n

σ2
ΛS)

−1ΛSξ

∥∥∥∥∥
2

=
1

σ2j

∥∥∥∥(I + n

σ2
ΛS)

−1+ γ
2Λ

1− γ
2

S

(
A(I +

n

σ2
ΛS)

−1+γΛ1−γ
S

)j−1

A(I +
n

σ2
ΛS)

−1+ γ
2Λ

− γ
2

S ΛSξ

∥∥∥∥
2

≤n(1−t)(−1+ γ
2
+(−1+γ)(j−1))Õ(n

j(1+α+2τ−(1+2τ+2α)t)
2α

−jγ(1−t))∥(I + n

σ2
ΛS)

−1+ γ
2Λ

1− γ
2

S ξ∥2

=Õ(n− γ
2
(1−t)+ (1−α+2τ−(1+2τ)t)j

2α )∥(I + n

σ2
ΛS)

−1+ γ
2Λ

1− γ
2

S ∥2∥ξ∥2

=Õ(n− γ
2
(1−t)+ (1−α+2τ−(1+2τ)t)j

2α )O(n(−1+γ/2)(1−t))

=Õ(n−(1−t)+ (1−α+2τ−(1+2τ)t)j
2α ).

(3.132)

Using (3.130), (3.131) and (3.132), we have

∥(I + 1
σ2ΛSΦ

T
SΦS)

−1ΛSξ∥2

=

(
Õ(n−(1−t)) +

∞∑
j=1

Õ(n−1+
(1−α+2τ−(1+2τ)t)j

2α )

)

=
(
Õ(n−(1−t)) + Õ(n−1+

1−α+2τ−(1+2τ)t
2α )

)
=Õ(n−(1−t)).

(3.133)

By Corollary 66, with probability of at least 1− δ, we have

∥ΦS(I +
1
σ2ΛSΦ

T
SΦS)

−1ΛSξ∥2 =Õ(
√

(
1

δ
+ 1)n∥(I + 1

σ2ΛSΦ
T
SΦS)

−1ΛSξ∥2)

=Õ(

√
(
1

δ
+ 1)n · n−(1−t)).

From (3.129) we get ∥(I + 1
σ2ΦSΛSΦ

T
S )

−1fS(x)∥2 = Õ(
√
(1
δ
+ 1)n · n−(1−t)). This concludes

the proof.

Lemma 87. Assume σ2 = Θ(nt) where 1 − α
1+2τ

< t < 1. Let δ = n−q where 0 ≤

q < [α−(1+2τ)(1−t)](2β−1)
4α2 . Under Assumptions 50, 51 and 52, assume that µ0 = 0. Let

R = n( 1
α
+κ)(1−t) where 0 < κ < α−1−2τ+(1+2τ)t

2α2(1−t) . Then with probability of at least 1− 6δ over
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sample inputs (xi)
n
i=1, we have

G2(Dn) =
(1 + o(1))

2σ2
∥(I + n

σ2
ΛR)

−1µR∥22 = 1
σ2Θ(nmax{−2(1−t), (1−2β)(1−t)

α
} logk/2 n),

where k =


0, 2α ̸= 2β − 1,

1, 2α = 2β − 1.

.

Proof of Lemma 87. Let S = nD. Let G2,S(Dn) = E(xn+1,yn+1)(T2,S(Dn+1) − T2,S(Dn)). By

Lemma 79, when S > nmax{1, −t
(α−1−2τ)

} with probability of at least 1− 3δ we have that

|G2(Dn)−G2,S(Dn)| = |E(xn+1,yn+1)[T2(Dn+1)− T2,S(Dn+1)]− [T2(Dn)− T2,S(Dn)]|

=
∣∣∣E(xn+1,yn+1)Õ

(
(1
δ
+ 1) 1

σ2 (n+ 1)Smax{1/2−β,1−α+2τ})− Õ((1
δ
+ 1) 1

σ2nS
max{1/2−β,1−α+2τ})∣∣∣

= Õ
(
(1
δ
+ 1) 1

σ2nS
max{1/2−β,1−α+2τ}) (3.134)

(3.135)

Let Λ1:S = diag{λ1, . . . , λS}, Φ1:S = (ϕ1(x), ϕ1(x), . . . , ϕS(x)) and µ1:S = (µ1, . . . , µS). Since

µ0 = 0, we have T2,S(Dn) = 1
2σ2µ

T
1:SΦ

T
1:S(I + 1

σ2Φ1:SΛ1:SΦ
T
1:S)

−1Φ1:Sµ1:S. Define η1:S =

(ϕ1(xn+1), . . . , ϕS(xn+1))
T and Φ̃1:S = (ΦT

1:S, η1:S)
T . In the proof of Lemma 80, we showed

that
T2,S(Dn) =

1

2σ2
µT

1:SΦ
T
1:S(I +

1

σ2
Φ1:SΛ1:SΦ

T
1:S)

−1Φ1:Sµ1:S

=
1

2
µT

1:SΛ
−1
1:Sµ1:S −

1

2
µT

1:SΛ
−1
1:S(I +

1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1µ1:S.
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We have

G2,S(Dn)

= E(xn+1,yn+1)(T2,S(Dn+1)− T2,S(Dn))

= E(xn+1,yn+1)

(
1

2
µT

1:SΛ
−1
1:Sµ1:S −

1

2
µT

1:SΛ
−1
1:S(I +

1

σ2
Λ1:SΦ̃

T
S Φ̃S)

−1µ1:S

)
−
(
1

2
µT

1:SΛ
−1
1:Sµ1:S −

1

2
µT

1:SΛ
−1
1:S(I +

1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1µ1:S)

)
= E(xn+1,yn+1)

(
1

2
µT

1:SΛ
−1
1:S(I +

1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1µ1:S −
1

2
µT

1:SΛ
−1
1:S(I +

1

σ2
Λ1:SΦ̃

T
S Φ̃S)

−1µ1:S

)
= E(xn+1,yn+1)

(
1

2σ2
µT

1:SΛ
−1
1:S

(I + 1
σ2Λ1:SΦ

T
1:SΦ1:S)

−1Λ1:Sη1:Sη
T
1:S(I +

1
σ2Λ1:SΦ

T
1:SΦ1:S)

−1

1 + 1
σ2ηT1:S(I +

1
σ2Λ1:SΦT

1:SΦ1:S)−1Λ1:Sη1:S
µ1:S)

)
= E(xn+1,yn+1)

(
1

2σ2

µT
1:S(I +

1
σ2Φ

T
1:SΦ1:SΛ1:S)

−1η1:Sη
T
1:S(I +

1
σ2Λ1:SΦ

T
1:SΦ1:S)

−1µ1:S

1 + 1
σ2ηT1:S(I +

1
σ2Λ1:SΦT

1:SΦ1:S)−1Λ1:Sη1:S
)

)
= E(xn+1,yn+1)

(
1 + o(1)

2σ2
µT

1:S(I +
1

σ2
ΦT

1:SΦ1:SΛ1:S)
−1η1:Sη

T
1:S(I +

1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1µ1:S

)
=

1 + o(1)

2σ2
µT

1:S(I +
1

σ2
ΦT

1:SΦ1:SΛ1:S)
−1(I +

1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1µ1:S

=
1 + o(1)

2σ2
∥(I + 1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1µ1:S∥22,
(3.136)

where in the fourth to last equality we used the Sherman–Morrison formula, in the third

inequality we used (3.119) , and in the last equality we used the fact that E(xn+1,yn+1)η1:Sη
T
1:S =

I.

Let µ̂1:R = (µ1, . . . , µR, 0, . . . , 0) ∈ RS. Then we have

∥(I + 1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1µ1:S∥2

≤ ∥(I + 1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1µ̂1:R∥2 + ∥(I +
1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1(µ1:S − µ̂1:R)∥2,

∥(I + 1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1µ1:S∥2

≥ ∥(I + 1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1µ̂1:R∥2 − ∥(I +
1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1(µ1:S − µ̂1:R)∥2.

(3.137)

Let R = n( 1
α
+κ)(1−t) where 0 < κ < α−1−2τ+(1+2τ)t

2α2(1−t) . In Lemma 75, (3.63), we showed that
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with probability of at least 1− δ,

∥(I + 1
σ2Λ1:RΦ

T
1:RΦ1:R)

−1µ1:R∥2 = Θ(n(1−t)max{−1, 1−2β
2α

} logk/2 n)

= (1 + o(1))∥(I + n

σ2
Λ1:R)

−1µ1:R∥2,
(3.138)

where k =


0, 2α ̸= 2β − 1,

1, 2α = 2β − 1.

. The same proof holds if we replace Φ1:R with Φ1:S, Λ1:R with

Λ1:S, and µ1:R with µ̂1:R. We have

∥(I + 1
σ2Λ1:SΦ

T
1:SΦ1:S)

−1µ̂1:R∥2 = Θ(n(1−t)max{−1, 1−2β
2α

} logk/2 n)

= (1 + o(1))∥(I + n

σ2
Λ1:S)

−1µ̂1:R∥2.
(3.139)

Next we bound ∥(I + 1
σ2Λ1:SΦ

T
1:SΦ1:S)

−1(µ1:S − µ̂1:R)∥2. By Assumption 51, we have that

∥µ1:S − µ̂1:R∥2 = O(R
1−2β

2 ). For any ξ ∈ RS and ∥ξ∥2 = 1, using the Woodbury matrix

identity, with probability of at least 1− 2δ we have

|ξT (I + 1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1(µ1:S − µ̂1:R)|

= |ξT
(
I − 1

σ2
Λ1:SΦ

T
1:S(I +

1

σ2
Φ1:SΛ1:SΦ

T
1:S)

−1Φ1:S

)
(µ1:S − µ̂1:R)|

= |ξT (µ1:S − µ̂1:R)−
1

σ2
ξTΛ1:SΦ

T
1:S(I +

1

σ2
Φ1:SΛ1:SΦ

T
1:S)

−1Φ1:S(µ1:S − µ̂1:R)|

≤ ∥ξ∥2∥µ1:S − µ̂1:R∥2 +
1

σ2
|ξTΛ1:SΦ

T
1:S(I +

1

σ2
Φ1:SΛ1:SΦ

T
1:S)

−1Φ1:S(µ1:S − µ̂1:R)|

≤ O(R
1−2β

2 ) +
1

σ2
∥(I + 1

σ2
Φ1:SΛ1:SΦ

T
1:S)

−1Φ1:SΛ1:Sξ∥2∥Φ1:S(µ1:S − µ̂1:R)∥2

= O(R
1−2β

2 ) +
1

σ2
O(

√
(
1

δ
+ 1)n · n−(1−t))O(

√
(
1

δ
+ 1)nR

1−2β
2 )

= O((
1

δ
+ 1)R

1−2β
2 ),

where in the second to last step we used Corollary 66 to show ∥Φ1:S(µ1:S − µ̂1:R)∥2 =

O(
√

(1
δ
+ 1)nR

1−2β
2 ) with probability of at least 1 − δ, and Lemma 86 to show that ∥(I +

1
σ2Φ1:SΛ1:SΦ

T
1:S)

−1Φ1:SΛ1:Sξ∥2 = O(
√
(1
δ
+ 1)n · n−1) with probability of at least 1− δ. Since
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R = n( 1
α
+κ)(1−t), we have

|ξT (I + 1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1(µ1:S − µ̂1:R)| = O((
1

δ
+ 1)n

(1−2β)(1−t)
2α

+
(1−2β)(1−t)κ

2 ).

Since ξ is arbitrary, we have

∥(I + 1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1(µ1:S − µ̂1:R)∥2 = O((
1

δ
+ 1)n

(1−2β)(1−t)
2α

+
(1−2β)(1−t)κ

2 ).

Since 0 ≤ q < [α−(1+2τ)(1−t)](2β−1)
4α2 and 0 < κ < α−1−2τ+(1+2τ)t

2α2(1−t) , we can choose κ < α−1−2τ+(1+2τ)t
2α2(1−t)

and κ is arbitrarily close to κ < α−1−2τ+(1+2τ)t
2α2(1−t) such that 0 ≤ q < (2β−1)(1−t)κ

2
. Then we have

(1−2β)(1−t)κ
2

+ q < 0. From (3.137) and (3.139), we have

∥(I + 1

σ2
Λ1:SΦ

T
1:SΦ1:S)

−1µ1:S∥2

=Θ(nmax{−(1−t), (1−2β)(1−t)
2α

} logk/2 n) +O((
1

δ
+ 1)n

(1−2β)(1−t)
2α

+
(1−2β)(1−t)κ

2 )

=Θ(nmax{−(1−t), (1−2β)(1−t)
2α

} logk/2 n) +O((nq+
(1−2β)(1−t)

2α
+

(1−2β)(1−t)κ
2 )

=Θ(nmax{−(1−t), (1−2β)(1−t)
2α

} logk/2 n)

=(1 + o(1))∥(I + n

σ2
Λ1:S)

−1µ̂1:R∥2

=(1 + o(1))∥(I + n

σ2
ΛR)

−1µR∥2.

(3.140)

Hence G2,S(Dn) = 1+o(1)
2σ2 ∥(I + 1

σ2Λ1:SΦ
T
1:SΦ1:S)

−1µ1:S∥22 = 1
σ2Θ(n(1−t)max{−2, 1−2β

α
} logk/2 n).

Then by (3.134), we have

G2(Dn) =
1
σ2Θ(nmax{−2(1−t), (1−2β)(1−t)

α
} logk/2 n) + Õ

(
(
1

δ
+ 1)

n

σ2
Smax{1/2−β,1−α+2τ}

)
.

Choosing S = n
max

{
1, −t

(α−1−2τ)
,

(
1+q+min{2, 2β−1

α }
min{β−1/2,α−1−2τ}+1

)
(1−t)

}
, we get the result.

Proof of Theorem 55. From Lemmas 85 and 87 and 1
α
−1 > −2, we have that with probability
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of at least 1− 7δ̃,

EϵG(Dn) =
1 + o(1)

2σ2
(Tr(I +

n

σ2
ΛR)

−1ΛR − ∥Λ1/2
R (I +

n

σ2
ΛR)

−1∥2F + ∥(I + n

σ2
ΛR)

−1µR∥22)

= 1
σ2Θ(n

(1−α)(1−t)
α ) + 1

σ2Θ(nmax{−2(1−t), (1−2β)(1−t)
α

} logk/2 n)

= 1
σ2Θ(nmax{ (1−α)(1−t)

α
,
(1−2β)(1−t)

α
})

(3.141)

where k =


0, 2α ̸= 2β − 1

1, 2α = 2β − 1

, and R = n( 1
α
+κ)(1−t), κ > 0.

Furthermore, we have

Tr(I +
n

σ2
Λ)−1Λ− Tr(I +

n

σ2
ΛR)

−1ΛR

=
∞∑

p=R+1

λp
1 + n

σ2λp
≤

∞∑
p=R+1

Cλp
−α

1 + n
σ2Cλp−α

≤
∞∑

p=R+1

Cλp
−α =

n

σ2
O(R1−α)

= O(n(1−α)(1−t)( 1
α
+κ))

= o(n
(1−α)(1−t)

α ).

Then we have

Tr(I +
n

σ2
ΛR)

−1ΛR = Tr(I +
n

σ2
Λ)−1Λ(1 + o(1)). (3.142)

Similarly we can prove

∥Λ1/2
R (I +

n

σ2
ΛR)

−1∥2F = ∥Λ1/2(I +
n

σ2
Λ)−1∥2F (1 + o(1)) (3.143)

∥(I + n

σ2
ΛR)

−1µR∥22 = ∥(I +
n

σ2
Λ)−1µ∥22(1 + o(1)) (3.144)

Letting δ = 7δ̃, the proof is complete.

In the case of µ0 > 0, we have the following lemma:

Lemma 88. Let δ = n−q where 0 ≤ q < [α−(1+2τ)(1−t)](2β−1)
4α2 . Under Assumptions 50, 51 and

52, assume that µ0 > 0. Then with probability of at least 1− 6δ over sample inputs (xi)
n
i=1,
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we have G2(Dn) =
1

2σ2µ
2
0 + o(1).

Proof of Lemma 88. Let S = nD. Let G2,S(Dn) = E(xn+1,yn+1)(T2,S(Dn+1) − T2,S(Dn)). By

Lemma 79, when S > nmax{1, −t
(α−1−2τ)

}, with probability of at least 1− 3δ we have that

|G2(Dn)−G2,S(Dn)| = |E(xn+1,yn+1)[T2(Dn+1)− T2,S(Dn+1)]− [T2(Dn)− T2,S(Dn)]|

=
∣∣∣E(xn+1,yn+1)Õ

(
(1
δ
+ 1) 1

σ2 (n+ 1)Smax{1/2−β,1−α+2τ})− Õ((1
δ
+ 1) 1

σ2nS
max{1/2−β,1−α+2τ})∣∣∣

= Õ
(
(1
δ
+ 1) 1

σ2nS
max{1/2−β,1−α+2τ})

Let ΛS = diag{λ1, . . . , λS}, ΦS = (ϕ1(x), ϕ1(x), . . . , ϕS(x)) and µS = (µ1, . . . , µS). Define

ηS = (ϕ0(xn+1), ϕ1(xn+1), . . . , ϕS(xn+1))
T and Φ̃S = (ΦT

S , ηS)
T . By the same technique as in

the proof of Lemma 80, we replace ΛR by Λ̃ϵ,R = diag{ϵ, λ1, . . . , λR}, let ϵ→ 0 and show the

counterpart of the result (3.136) in the proof of Lemma 87:

G2,S(Dn) = E(xn+1,yn+1)(T2,S(Dn+1)− T2,S(Dn))

= E(xn+1,yn+1)

(
1

2σ2

µT
S (I +

1
σ2Φ

T
SΦSΛS)

−1ηSη
T
S (I +

1
σ2ΛSΦ

T
SΦS)

−1µS

1 + 1
σ2ηTS (I +

1
σ2ΛSΦT

SΦS)−1ΛSηS
)

)
= E(xn+1,yn+1)

(
1 + o(1)

2σ2
µT
S (I +

1

σ2
ΦT
SΦSΛS)

−1ηSη
T
S (I +

1

σ2
ΛSΦ

T
SΦS)

−1µS

)
=

1 + o(1)

2σ2
µT
S (I +

1

σ2
ΦT
SΦSΛS)

−1(I +
1

σ2
ΛSΦ

T
SΦS)

−1µS

=
1 + o(1)

2σ2
∥(I + 1

σ2
ΛSΦ

T
SΦS)

−1µS∥22,
(3.145)

where in the fourth to last equality we used the Sherman–Morrison formula, in the third

inequality we used (3.119) , and in the last equality we used the fact that E(xn+1,yn+1)η1:Sη
T
1:S =

I.

Let µ̂R = (µ0, µ1, . . . , µR, 0, . . . , 0) ∈ RS. Then we have

∥(I + 1

σ2
ΛSΦ

T
SΦS)

−1µS∥2 ≤ ∥(I +
1

σ2
ΛSΦ

T
SΦS)

−1µ̂R∥2 + ∥(I +
1

σ2
ΛSΦ

T
SΦS)

−1(µS − µ̂R)∥2,

∥(I + 1

σ2
ΛSΦ

T
SΦS)

−1µS∥2 ≥ ∥(I +
1

σ2
ΛSΦ

T
SΦS)

−1µ̂R∥2 − ∥(I +
1

σ2
ΛSΦ

T
SΦS)

−1(µS − µ̂R)∥2.
(3.146)
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Choose R = n( 1
α
+κ)(1−t) where 0 < κ < α−1−2τ+(1+2τ)t

α2(1−t) . In Lemma 75, (3.63), we showed that

with probability of at least 1− δ,

∥(I + 1
σ2Λ1:RΦ

T
1:RΦ1:R)

−1µ1:R∥2 = Θ(n(1−t)max{−1, 1−2β
2α

} logk/2 n)

= (1 + o(1))∥(I + n

σ2
Λ1:R)

−1µ1:R∥2,
(3.147)

where k =


0, 2α ̸= 2β − 1,

1, 2α = 2β − 1.

. The same proof holds if we replace Φ1:R with Φ1:S, Λ1:R with

Λ1:S, and µ1:R with µ̂1:R. We have

∥(I + 1
σ2Λ1:SΦ

T
1:SΦ1:S)

−1µ̂1:R∥2 = Θ(n(1−t)max{−1, 1−2β
2α

} logk/2 n)

= (1 + o(1))∥(I + n

σ2
Λ1:S)

−1µ̂1:R∥2.
(3.148)

So we have

∥(I + 1
σ2ΛSΦ

T
SΦS)

−1µ̂R∥2 = µ0 +Θ(n(1−t)max{−1, 1−2β
2α

} logk/2 n)

= µ0 + o(1).
(3.149)

Next we bound ∥(I + 1
σ2ΛSΦ

T
SΦS)

−1(µS − µ̂R)∥2. By Assumption 51, we have that ∥µS −

µ̂R∥2 = O(R
1−2β

2 ). For any ξ ∈ RS and ∥ξ∥2 = 1, using the Woodbury matrix identity, with

217



probability of at least 1− 2δ we have

|ξT (I + 1

σ2
ΛSΦ

T
SΦS)

−1(µS − µ̂R)|

= |ξT
(
I − 1

σ2
ΛSΦ

T
S (I +

1

σ2
ΦSΛSΦ

T
S )

−1ΦS

)
(µS − µ̂R)|

= |ξT (µS − µ̂R)−
1

σ2
ξTΛSΦ

T
S (I +

1

σ2
ΦSΛSΦ

T
S )

−1ΦS(µS − µ̂R)|

≤ ∥ξ∥2∥µS − µ̂R∥2 +
1

σ2
|ξTΛSΦT

S (I +
1

σ2
ΦSΛSΦ

T
S )

−1ΦS(µS − µ̂R)|

≤ O(R
1−2β

2 ) +
1

σ2
∥(I + 1

σ2
ΦSΛSΦ

T
S )

−1ΦSΛSξ∥2∥ΦS(µS − µ̂R)∥2

= O(R
1−2β

2 ) +
1

σ2
O(

√
(
1

δ
+ 1)n · n−(1−t))O(

√
(
1

δ
+ 1)nR

1−2β
2 )

= O((
1

δ
+ 1)R

1−2β
2 ),

where in the second to last step we used Corollary 66 to show ∥ΦS(µS−µ̂R)∥2 = O(
√

(1
δ
+ 1)n

R
1−2β

2 ) with probability of at least 1−δ, and Lemma 86 to show that ∥(I+ 1
σ2ΦSΛSΦ

T
S )

−1ΦSΛSξ∥2

= O(
√
(1
δ
+ 1)n · n−(1−t)) with probability of at least 1− δ. Since R = n( 1

α
+κ)(1−t), we have

|ξT (I + 1

σ2
ΛSΦ

T
SΦS)

−1(µS − µ̂R)| = O((
1

δ
+ 1)n

(1−2β)(1−t)
2α

+
(1−2β)(1−t)κ

2 ).

Since ξ is arbitrary, we have ∥(I+ 1
σ2ΛSΦ

T
SΦS)

−1(µS−µ̂R)∥2 = O((1
δ
+1)n

(1−2β)(1−t)
2α

+
(1−2β)(1−t)κ

2 ).

Since 0 ≤ q < [α−(1+2τ)(1−t)](2β−1)
4α2 and 0 < κ < α−1−2τ+(1+2τ)t

2α2(1−t) , we can choose κ < α−1−2τ+(1+2τ)t
2α2(1−t)

and κ is arbitrarily close to κ < α−1−2τ+(1+2τ)t
2α2(1−t) such that 0 ≤ q < (2β−1)(1−t)κ

2
. Then we have

(1−2β)(1−t)κ
2

+ q < 0. From (3.146) and (3.149), we have

∥(I + 1
σ2ΛSΦ

T
SΦS)

−1µS∥2

=µ0 +Θ(n(1−t)max{−1, 1−2β
2α

} logk/2 n) +O((
1

δ
+ 1)n

(1−2β)(1−t)
2α

+
(1−2β)(1−t)κ

2 )

=µ0 +Θ(n(1−t)max{−1, 1−2β
2α

} logk/2 n)

=µ0 + o(1).

(3.150)

Hence G2,S(Dn) =
1+o(1)
2σ2 ∥(I+ 1

σ2ΛSΦ
T
SΦS)

−1µS∥22 = 1
2σ2µ

2
0+o(1). Then by (3.145), G2(Dn) =
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1
2σ2µ

2
0 + o(1) + Õ

(
(1
δ
+ 1)nSmax{1/2−β,1−α}).

Choosing S = n
max

{
1, −t

(α−1−2τ)
,

(
1+q+min{2, 2β−1

α }
min{β−1/2,α−1−2τ}+1

)
(1−t)

}
, we get the result.

Proof of Theorem 57. According to Lemma 88, G2(Dn) =
1

2σ2µ
2
0 + o(1). By Lemma 85, we

have G1(Dn) = Θ(n
(1−α)(1−t)

α ). Then EϵG(Dn) = G1(Dn) +G2(Dn) =
1

2σ2µ
2
0 + o(1).

3.D.3 Proofs Related to the Excess Mean Squared Generalization Error

Proof of Theorem 58. For µ0 = 0, we can show that

EϵM(Dn) = EϵExn+1 [m̄(xn+1)− f(xn+1)]
2

= EϵExn+1 [Kxn+1x(Kn + σ2
modelIn)

−1y − f(xn+1)]
2

= EϵExn+1 [η
TΛΦT [ΦΛΦT + σ2

modelIn)
−1(Φµ+ ϵ)− ηTµ]2

= EϵExn+1 [η
TΛΦT (ΦΛΦT + σ2

modelIn)
−1ϵ]2

+ Exn+1

[
ηT
(
ΛΦT (ΦΛΦT + σ2

modelIn)
−1Φ− I

)
µ
]2

= σ2
trueTrΛΦ

T (ΦΛΦT + σ2
modelIn)

−2ΦΛ

+ µT
(
I + 1

σ2
model

ΦTΦΛ
)−1(

I + 1
σ2
model

ΛΦTΦ
)−1

µ

=
σ2
true

σ2
model

Tr(I + ΛΦTΦ
σ2
model

)−1Λ− Tr(I + ΛΦTΦ
σ2
model

)−2Λ + ∥(I + 1
σ2
model

ΛΦTΦ)−1µ∥22.

According to (3.140) from the proof of Lemma 87, the truncation procedure (3.134) and

(3.144), with probability of at least 1− δ we have

∥(I+ 1
σ2
model

ΛΦTΦ)−1µ∥22 = Θ(nmax{−2(1−t),
(1−2β)(1−t)

α
} logk/2 n) = (1+o(1))∥(I+ n

σ2
model

Λ)−1µ∥22,

where k =


0, 2α ̸= 2β − 1,

1, 2α = 2β − 1.

.

According to (3.122) and (3.127) from the proof of Lemma 85, the truncation procedure
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(3.116), (3.142) and (3.143), with probability of at least 1− δ we have

Tr(I + ΛΦTΦ
σ2
model

)−1Λ− Tr(I + ΛΦTΦ
σ2
model

)−2Λ

=
(
Tr(I + n

σ2
model

Λ)−1Λ
)
(1 + o(1))− ∥Λ1/2(I + n

σ2
model

Λ)−1∥2F (1 + o(1))

= Θ(n
(1−α)(1−t)

α ).

Combining the above two equations we get

EϵM(Dn)

=(1 + o(1))
(

σ2
true

σ2
model

(
Tr(I + n

σ2
model

Λ)−1Λ− ∥Λ1/2(I + n
σ2
model

Λ)−1∥2F
)
+ ∥(I + n

σ2
model

Λ)−1µ∥22
)

=
σ2
true

σ2
model

Θ(n
(1−α)(1−t)

α ) + Θ(nmax{−2(1−t),
(1−2β)(1−t)

α
} logk/2 n)

=σ2
trueΘ(n

1−α−t
α ) + Θ(nmax{−2(1−t),

(1−2β)(1−t)
α

} logk/2 n)

=Θ

(
max{σ2

truen
1−α−t
α , n

(1−2β)(1−t)
α }

)

When µ0 > 0, according to (3.150) in the proof of Lemma 88 and the truncation procedure

(3.134), with probability of at least 1− δ we have

EϵM(Dn) =Θ(n
(1−α)(1−t)

α ) + µ2
0 + o(1)

=µ2
0 + o(1).
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CHAPTER 4

Asymptotic Spectrum of the NTK via a Power Series

Expansion *

4.1 Introduction

The spectrum of the NTK is fundamental to both the optimization and generalization of

wide networks. In chapter 3, we show that the asymptotic generalization error of kernel ridge

regression is closely related to the asymptotic spectrum. Moreover, bounding the smallest

eigenvalue of the NTK Gram matrix is a staple technique for establishing convergence

guarantees for the optimization [DLL19,DZP19,OS20]. Furthermore, the full spectrum of the

NTK Gram matrix governs the dynamics of the empirical risk [ADH19c], and the eigenvalues

of the associated integral operator characterize the dynamics of the generalization error

outside the training set [BM22b,BM22a].

The importance of the spectrum of the NTK has led to a variety of efforts to characterize

its structure via random matrix theory and other tools [YS19b,FW20]. There is a broader

body of work studying the closely related Conjugate Kernel, Fisher Information Matrix,

and Hessian [PLR16b,PW17,PW18,LLC18,KAA20]. [VY21a] demonstrated that for ReLU

networks the spectrum of the NTK integral operator asymptotically follows a power law,

which is consistent with our results for the uniform data distribution. [BJK19] calculated

the NTK spectrum for shallow ReLU networks under the uniform distribution, which was
∗This chapter is adapted from [MJB23], with the permission from coauthors. Michael Murray proposed

the idea of NTK power series and gave out the expression of power series coefficients. Benjamin Bowman
studied the effective rank of the NTK by its power series. I studied and computed the asymptotic spectrum
of the NTK by its power series.
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then expanded to the nonuniform case by [BGG20]. [GYK20] and [BB21] analyzed the

reproducing kernel Hilbert spaces of the NTK for ReLU networks and the Laplace kernel via

the decay rate of the spectrum of the kernel. [MJB23] characterize a variety of attributes of

the spectrum for fixed input dimension using the power series expansion of NTK.

In this chapter, we analyze the asymptotic spectrum of dot-product kernel using the power

series. In Theorem 91 we derive coefficients for the power series expansion of the NTK under

unit variance initialization, see Assumption 90. Consequently we are able to derive insights

into the NTK spectrum, notably concerning the outlier eigenvalues as well as the asymptotic

decay. In Theorem 94 we characterize the asymptotic behavior of the NTK spectrum for

uniform data distributions on the sphere. Our result shows that faster decay in the NTK

power series coefficients implies a faster decay in its spectrum. Moreover, for NTK of shallow

ReLU networks, our result recover the result of [BJK19]. At the end, we comment on how

the activation function of the shallow networks influences the RKHS of the NTK. In the

remainder of this introductory section, we review some related work.

Analysis of NTK Spectrum: theoretical analysis of the NTK spectrum via random

matrix theory was investigated by [YS19b,FW20] in the high dimensional limit. [VY21a]

demonstrated that for ReLU networks the spectrum of the NTK integral operator asymp-

totically follows a power law, which is consistent with our results for the uniform data

distribution. [BJK19] calculated the NTK spectrum for shallow ReLU networks under the

uniform distribution, which was then expanded to the nonuniform case by [BGG20]. [GYK20]

and [BB21] analyzed the reproducing kernel Hilbert spaces of the NTK for ReLU networks

and the Laplace kernel via the decay rate of the spectrum of the kernel. In contrast to

previous works, we are able to address the spectrum in the finite dimensional setting and

characterize the impact of different activation functions on it.

Hermite Expansion: [DFS16b] used Hermite expansion to the study the expressivity of

the Conjugate Kernel. [SAD22] used this technique to demonstrate that any dot product

kernel can be realized by the NTK or Conjugate Kernel of a shallow, zero bias network.

[OS20] use Hermite expansion to study the NTK and establish a quantitative bound on the
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smallest eigenvalue for shallow networks. This approach was incorporated by [NM20] to

handle convergence for deep networks, with sharp bounds on the smallest NTK eigenvalue for

deep ReLU networks provided by [NMM21]. The Hermite approach was utilized by [PSG20]

to analyze the smallest NTK eigenvalue of shallow networks under various activations. Finally,

in a concurrent work [HZL22] use Hermite expansions to develop a principled and efficient

polynomial based approximation algorithm for the NTK and CNTK. In contrast to the

aforementioned works, here we employ the Hermite expansion to characterize both the outlier

and asymptotic portions of the spectrum for both shallow and deep networks under general

activations.

4.2 Notations and Preliminaries

For our notation, lower case letters, e.g., x, y, denote scalars, lower case bold characters,

e.g., x,y are for vectors, and upper case bold characters, e.g., X,Y, are for matrices. For

natural numbers k1, k2 ∈ N we let [k1] = {1, . . . , k1} and [k2, k1] = {k2, . . . , k1}. If k2 > k1

then [k2, k1] is the empty set. We use ∥·∥p to denote the p-norm of the matrix or vector in

question and as default use ∥·∥ as the operator or 2-norm respectively. We use 1m×n ∈ Rm×n

to denote the matrix with all entries equal to one. We define δp=c to take the value 1 if

p = c and be zero otherwise. We will frequently overload scalar functions ϕ : R → R by

applying them elementwise to vectors and matrices. The entry in the ith row and jth column

of a matrix we access using the notation [X]ij. The Hadamard or entrywise product of two

matrices X,Y ∈ Rm×n we denote X⊙Y as is standard. The pth Hadamard power we denote

X⊙p and define it as the Hadamard product of X with itself p times,

X⊙p := X⊙X⊙ · · · ⊙X.
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Given a Hermitian or symmetric matrix X ∈ Rn×n, we adopt the convention that λi(X)

denotes the ith largest eigenvalue,

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

Finally, for a square matrix X ∈ Rn×n we let Tr(X) =
∑n

i=1[X]ii denote the trace.

4.2.1 Hermite Expansion

We say that a function f : R→ R is square integrable with respect to the standard Gaussian

measure γ(z) = 1√
2π
e−z

2/2 if EX∼N (0,1)[f(X)2] <∞. We denote by L2(R, γ) the space of all

such functions. The normalized probabilist’s Hermite polynomials are defined as

hk(x) =
(−1)kex2/2√

k!

dk

dxk
e−x

2/2, k = 0, 1, . . .

and form a complete orthonormal basis in L2(R, γ) [OD14, §11]. The Hermite expan-

sion of a function ϕ ∈ L2(R, γ) is given by ϕ(x) =
∑∞

k=0 µk(ϕ)hk(x), where µk(ϕ) =

EX∼N (0,1)[ϕ(X)hk(X)] is the kth normalized probabilist’s Hermite coefficient of ϕ.

4.2.2 NTK Parametrization

In what follows, for n, d ∈ N let X ∈ Rn×d denote a matrix which stores n points in Rd

row-wise. Unless otherwise stated, we assume d ≤ n and denote the ith row of Xn as xi.

In this chapter we consider fully-connected neural networks of the form f (L+1) : Rd → R

with L ∈ N hidden layers and a linear output layer. For a given input vector x ∈ Rd, the

activation f (l) and preactivation g(l) at each layer l ∈ [L+ 1] are defined via the following
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recurrence relations,

g(1)(x) = γwW
(1)x+ γbb

(1), f (1)(x) = ϕ
(
g(1)(x)

)
,

g(l)(x) =
σw√
ml−1

W(l)f (l−1)(x) + σbb
(l), f (l)(x) = ϕ

(
g(l)(x)

)
, ∀l ∈ [2, L],

g(L+1)(x) =
σw√
mL

W(L+1)f (L)(x), f (L+1)(x) = g(L+1)(x).

(4.1)

The parameters W(l) ∈ Rml×ml−1 and b(l) ∈ Rml are the weight matrix and bias vector at the

lth layer respectively, m0 = d, mL+1 = 1, and ϕ : R→ R is the activation function applied

elementwise. The variables γw, σw ∈ R>0 and γb, σb ∈ R≥0 correspond to weight and bias

hyperparameters respectively. Let θl ∈ Rp denote a vector storing the network parameters

(W(h),b(h))lh=1 up to and including the lth layer. The Neural Tangent Kernel [JGH18c]

Θ̃(l) : Rd × Rd → R associated with f (l) at layer l ∈ [L+ 1] is defined as

Θ̃(l)(x,y) := ⟨∇θlf
(l)(x),∇θlf

(l)(y)⟩. (4.2)

We will mostly study the NTK under the following standard assumptions.

Assumption 89. NTK initialization.

1. At initialization all network parameters are distributed as N (0, 1) and are mutually

independent.

2. The activation function satisfies ϕ ∈ L2(R, γ), is differentiable almost everywhere and its

derivative, which we denote ϕ′, also satisfies ϕ′ ∈ L2(R, γ).

3. The widths are sent to infinity in sequence, m1 →∞,m2 →∞, . . . ,mL →∞. We refer to

this regime as the sequential infinite width limit.

Under Assumption 89, for any l ∈ [L + 1], Θ̃(l)(x,y) converges in probability to a

deterministic limit Θ(l) : Rd × Rd → R [JGH18c] and the network behaves like a kernelized

linear predictor during training; see, e.g., [ADH19c,LXS19c,WGL20]. Given access to the
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rows (xi)
n
i=1 of X the NTK matrix at layer l ∈ [L + 1], which we denote Kl, is the n × n

matrix with entries defined as

[Kl]ij =
1

n
Θ(l)(xi,xj), ∀(i, j) ∈ [n]× [n]. (4.3)

4.3 Expressing the NTK as a Power Series

We derive a power series for the NTK under the following assumptions on the network

initialization hyperparameters.

Assumption 90. The hyperparameters of the network satisfy γ2w+γ2b = 1, σ2
wEZ∼N (0,1)[ϕ(Z)

2]

≤ 1 and σ2
b = 1− σ2

wEZ∼N (0,1)[ϕ(Z)
2]. The data is normalized so that ∥xi∥ = 1 for all i ∈ [n].

Recall under Assumption 89 that the preactivations of the network are centered Gaussian

processes [Nea96b,LBN18]. Assumption 90 ensures the preactivation of each neuron has unit

variance and thus is reminiscent of the [LBO12], [GB10] and [HZR15] initializations, which are

designed to avoid vanishing and exploding gradients. We refer the reader to Appendix 4.A.3

for a thorough discussion. Under Assumption 90 we will also show it is possible to write the

NTK not only as a dot-product kernel, but also as an analytic power series on [−1, 1]. In order

to state this result recall, given a function f ∈ L2(R, γ), that we denote the pth normalized

probabilist’s Hermite coefficient of f as µp(f), we refer the reader to Appendix 4.A.4 for an

overview of the Hermite polynomials and their properties. Furthermore, letting ā = (aj)
∞
j=0

denote a sequence of real numbers, then for any p, k ∈ Z≥0 we define

F (p, k, ā) =


1, k = 0 and p = 0,

0, k = 0 and p ≥ 1,∑
(ji)∈J (p,k)

∏k
i=1 aji , k ≥ 1 and p ≥ 0,

(4.4)
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where

J (p, k) :=
{
(ji)i∈[k] : ji ≥ 0 ∀i ∈ [k],

k∑
i=1

ji = p
}

for all p ∈ Z≥0, k ∈ N.

Here J (p, k) is the set of all k-tuples of nonnegative integers which sum to p and F (p, k, ā)

is therefore the sum of all ordered products of k elements of ā whose indices sum to p. We

are now ready to state the key result of this section, Theorem 91, whose proof is provided in

Appendix 4.B.1.

Theorem 91. Under Assumptions 89 and 90, for all l ∈ [L+ 1]

nKl =
∞∑
p=0

κp,l
(
XXT

)⊙p
. (4.5)

The series for each entry n[Kl]ij converges absolutely and the coefficients κp,l are nonnegative

and can be evaluated using the recurrence relationships

κp,l =


δp=0γ

2
b + δp=1γ

2
w, l = 1,

αp,l +
∑p

q=0 κq,l−1υp−q,l, l ∈ [2, L+ 1],

(4.6)

where

αp,l =


σ2
wµ

2
p(ϕ) + δp=0σ

2
b , l = 2,∑∞

k=0 αk,2F (p, k, ᾱl−1), l ≥ 3,

(4.7)

and

υp,l =


σ2
wµ

2
p(ϕ

′), l = 2,∑∞
k=0 υk,2F (p, k, ᾱl−1), l ≥ 3,

(4.8)

are likewise nonnegative for all p ∈ Z≥0 and l ∈ [2, L+ 1].

To compute the coefficients of the NTK as per Theorem 91, the Hermite coefficients of

both ϕ and ϕ′ are required. Under Assumption 92 below, which has minimal impact on the

generality of our results, this calculation can be simplified. In short, under Assumption 92
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υp,2 = (p+ 1)αp+1,2 and therefore only the Hermite coefficients of ϕ are required. We refer

the reader to Lemma 102 in Appendix 4.B.2 for further details.

Assumption 92. The activation function ϕ : R→ R is absolutely continuous on [−a, a] for

all a > 0, differentiable almost everywhere, and is polynomially bounded, i.e., |ϕ(x)| = O(|x|β)

for some β > 0. Further, the derivative ϕ′ : R→ R satisfies ϕ′ ∈ L2(R, γ).

We remark that ReLU, Tanh, Sigmoid, Softplus and many other commonly used activation

functions satisfy Assumption 92. In order to understand the relationship between the Hermite

coefficients of the activation function and the coefficients of the NTK, we first consider the

simple two-layer case with L = 1 hidden layers. From Theorem 91

κp,2 = σ2
w(1 + γ2wp)µ

2
p(ϕ) + σ2

wγ
2
b (1 + p)µ2

p+1(ϕ) + δp=0σ
2
b . (4.9)

As per Table 4.1, a general trend we observe across all activation functions is that the first

few coefficients account for the large majority of the total NTK coefficient series.

Table 4.1: Percentage of
∑∞

p=0 κp,2 accounted for by the first T +1 NTK coefficients assuming
γ2w = 1, γ2b = 0, σ2

w = 1 and σ2
b = 1− E[ϕ(Z)2].

T = 0 1 2 3 4 5

ReLU 43.944 77.277 93.192 93.192 95.403 95.403

Tanh 41.362 91.468 91.468 97.487 97.487 99.090

Sigmoid 91.557 99.729 99.729 99.977 99.977 99.997

Gaussian 95.834 95.834 98.729 98.729 99.634 99.634

However, the asymptotic rate of decay of the NTK coefficients varies significantly by

activation function, due to the varying behavior of their tails. In Lemma 93 we choose ReLU,

Tanh and Gaussian as prototypical examples of activations functions with growing, constant,

and decaying tails respectively, and analyze the corresponding NTK coefficients in the two

layer setting. For typographical ease we denote the zero mean Gaussian density function

with variance σ2 as ωσ(z) := (1/
√
2πσ2) exp(−z2/(2σ2)).
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Lemma 93. Under Assumptions 89 and 90,

1. if ϕ(z) = ReLU(z), then κp,2 = δ(γb>0)∪(p even)Θ(p−3/2),

2. if ϕ(z) = Tanh(z), then κp,2 = O
(
exp
(
−π

√
p−1
2

))
,

3. if ϕ(z) = ωσ(z), then κp,2 = δ(γb>0)∪(p even)Θ(p1/2(σ2 + 1)−p).

The trend we observe from Lemma 93 is that activation functions whose Hermite coeffi-

cients decay quickly, such as ωσ, result in a faster decay of the NTK coefficients. We remark

that analyzing the rates of decay in the deep setting is challenging due to the calculation of

F (p, k, ᾱl−1) (4.4) and therefore leave this study to future work.

4.4 Analyzing the Asymptotic Spectrum of the NTK via its Power

Series

We analyze the spectrum of kernel function K which is a dot-product kernel of the form

K(x1, x2) =
∑∞

p=0 cp⟨x1, x2⟩p. Assuming the training data is uniformly distributed on a

hypersphere it was shown by [BJK19,BM19] that the eigenfunctions of K are the spherical

harmonics. The following theorem gives the eigenvalues of the kernel K in this setting.

Theorem 94. Suppose that the training data are uniformly sampled from the unit hypersphere

Sd, d ≥ 2. If the dot-product kernel function has the expansion K(x1, x2) =
∑∞

p=0 cp⟨x1, x2⟩p

where cp ≥ 0, then the eigenvalue of every spherical harmonic of frequency k is given by

λk =
πd/2

2k−1

∑
p≥k

p−k is even

cp
Γ(p+ 1)Γ(p−k+1

2
)

Γ(p− k + 1)Γ(p−k+1
2

+ k + d/2)
,

where Γ is the gamma function.

A proof of Theorem 94 is provided in Appendix 4.C.2. This theorem connects the

coefficients cp of the kernel power series with the eigenvalues λk of the kernel. In particular,

229



given a specific decay rate for the coefficients cp one may derive the decay rate of λk as

illustrated in the following Corollary.

Corollary 95. Under the same setting as in Theorem 94,

1. if cp = Θ(p−a) where a ≥ 1, then λk = Θ(k−d−2a+2),

2. if cp = δ(p even)Θ(p−a), then λk = δ(k even)Θ(k−d−2a+2),

3. if cp = O
(
exp
(
−a√p

))
, then λk = O

(
k−d+1/2 exp

(
−a
√
k
))

,

4. if cp = Θ(p1/2a−p), then λk = O
(
k−d+1a−k

)
and λk = Ω

(
k−d/2+12−ka−k

)
.

A proof of Corollary 95 is provided in Appendix 4.C.2. For the NTK of a two-layer ReLU

network with γb > 0, then according to Lemma 3.2 of [MJB23], we have cp = κp,2 = Θ(p−3/2)

. Therefore using Corollary 95 λk = Θ(k−d−1). Notice here that k refers to the frequency, and

the number of spherical harmonics of frequency at most k is Θ(kd). Therefore, for the lth

largest eigenvalue λl we have λl = Θ(l−(d+1)/d). This rate agrees with [BJK19] and [VY21a].

For the NTK of a two-layer ReLU network with γb = 0, the eigenvalues corresponding to

the even frequencies are 0, which also agrees with [BJK19]. Corollary 95 and Lemma 3.2

of [MJB23] also shows the decay rates of eigenvalues for the NTK of two-layer networks

with Tanh activation and Gaussian activation. We observe that when the coefficients of the

kernel power series decay quickly then the eigenvalues of the kernel also decay quickly. As

faster decay of the eigenvalues of the kernel implies a smaller RKHS [GYK20], Corollary 95

demonstrates that using ReLU results in a larger RKHS relative to using either Tanh or

Gaussian activations. We numerically illustrate Corollary 95 in Figure 4.1, Appendix 4.C.1.

Appendix

The appendix is organized as follows.

• Appendix 4.A gives background material on Gaussan kernels, NTK, unit variance intitial-

ization, and Hermite polynomial expansions.
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• Appendix 4.B provides details for Section 4.3.

• Appendix 4.C provides details for Section 4.4.

4.A Background Material

4.A.1 Gaussian Kernel

Observe by construction that the flattened collection of preactivations at the first layer

(g(1)(xi))
n
i=1 form a centered Gaussian process, with the covariance between the αth and βth

neuron being described by

Σ(1)
αβ
(xi,xj) := E[g(1)α (xi)g

(1)
β (xj)] = δα=β

(
γ2wx

T
i xj + γ2b

)
.

Under the Assumption 89, the preactivations at each layer l ∈ [L + 1] converge also in

distribution to centered Gaussian processes [Nea96b,LBN18]. We remark that the sequential

width limit condition of Assumption 89 is not necessary for this behavior, for example the

same result can be derived in the setting where the widths of the network are sent to infinity

simultaneously under certain conditions on the activation function [dHR18]. However, as

our interests lie in analyzing the limit rather than the conditions for convergence to said

limit, for simplicity we consider only the sequential width limit. As per [LBN18, Eq. 4], the

covariance between the preactivations of the αth and βth neurons at layer l ≥ 2 for any input

pair x,y ∈ R are described by the following kernel,

Σ(l)
αβ
(x,y) := E[g(l)α (x)g

(l)
β (y)]

= δα=β

(
σ2
wEg(l−1)∼GP(0,Σl−1)[ϕ(g

(l−1)
α (x))ϕ(g

(l−1)
β (y))] + σ2

b

)
.

We refer to this kernel as the Gaussian kernel. As each neuron is identically distributed

and the covariance between pairs of neurons is 0 unless α = β, moving forward we drop the

subscript and discuss only the covariance between the preactivations of an arbitrary neuron
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given two inputs. As per the discussion by [LBN18, Section 2.3], the expectations involved

in the computation of these Gaussian kernels can be computed with respect to a bivariate

Gaussian distribution, whose covariance matrix has three distinct entries: the variance of

a preactivation of x at the previous layer, Σ(l−1)(x,x), the variance of a preactivation of

y at the previous layer, Σ(l)(y,y), and the covariance between preactivations of x and y,

Σ(l−1)(x,y). Therefore the Gaussian kernel, or covariance function, and its derivative, which

we will require later for our analysis of the NTK, can be computed via the the following

recurrence relations, see for instance [LBN18,JGH18c,ADH19c,NMM21],

Σ(1)(x,y) = γ2wx
Tx+ γ2b ,

A(l)(x,y) =

Σ(l−1)(x,x) Σ(l−1)(x,y)

Σ(l−1)(y,x) Σ(l−1)(x,x)


Σ(l)(x,y) = σ2

wE(B1,B2)∼N (0,A(l)(x,y))[ϕ(B1)ϕ(B2)] + σ2
b ,

Σ̇(l)(x,y) = σ2
wE(B1,B2)∼N (0,A(l)(x,y))[ϕ

′(B1)ϕ
′(B2)].

(4.10)

4.A.2 Neural Tangent Kernel (NTK)

Under Assumption 89 Θ̃(l) converges in probability to a deterministic limit, which we denote

Θ(l). This deterministic limit kernel can be expressed in terms of the Gaussian kernels and their

derivatives from Section 4.A.1 via the following recurrence relationships [JGH18c, Theorem

1],

Θ(1)(x,y) = Σ(1)(x,y),

Θ(l)(x,y) = Θ(l−1)(x,y)Σ̇(l)(x,y) + Σ(l)(x,y)

= Σ(l)(x,y) +
l−1∑
h=1

Σ(h)(x,y)

(
l∏

h′=h+1

Σ̇(h′)(x,y)

)
∀l ∈ [2, L+ 1].

(4.11)

A useful expression for the NTK matrix, which is a straightforward extension and

generalization of [NMM21, Lemma 3.1], is provided in Lemma 96 below.
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Lemma 96. (Based on Lemma 3.1 in [NMM21]) Under Assumption 89, a sequence of

positive semidefinite matrices (Gl)
L+1
l=1 in Rn×n, and the related sequence (Ġl)

L+1
l=2 also in

Rn×n, can be constructed via the following recurrence relationships,

G1 = γ2wXXT + γ2b1n×n,

G2 = σ2
wEw∼N (0,Id)[ϕ(Xw)ϕ(Xw)T ] + σ2

b1n×n,

Ġ2 = σ2
wEw∼N (0,In)[ϕ

′(Xw)ϕ′(Xw)T ],

Gl = σ2
wEw∼N (0,In)[ϕ(

√
Gl−1w)ϕ(

√
Gl−1w)T ] + σ2

b1n×n, l ∈ [3, L+ 1],

Ġl = σ2
wEw∼N (0,In)[ϕ

′(
√

Gl−1w)ϕ′(
√

Gl−1w)T ], l ∈ [3, L+ 1].

(4.12)

The sequence of NTK matrices (Kl)
L+1
l=1 can in turn be written using the following recurrence

relationship,

nK1 = G1,

nKl = Gl + nKl−1 ⊙ Ġl

= Gl +
l−1∑
i=1

(
Gi ⊙

(
⊙lj=i+1Ġj

))
.

(4.13)

Proof. For the sequence (Gl)
L+1
l=1 it suffices to prove for any i, j ∈ [n] and l ∈ [L+ 1] that

[Gl]i,j = Σ(l)(xi,xj)

and Gl is positive semi-definite. We proceed by induction, considering the base case l = 1

and comparing (4.12) with (4.10) then it is evident that

[G1]i,j = Σ(1)(xi,xj).

In addition, G1 is also clearly positive semi-definite as for any u ∈ Rn

uTG1u = γ2w∥XTu∥2 + γ2b∥1Tnu∥2 ≥ 0.
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We now assume the induction hypothesis is true for Gl−1. We will need to distinguish slightly

between two cases, l = 2 and l ∈ [3, L+ 1]. The proof of the induction step in either case is

identical. To this end, and for notational ease, let V = X, w ∼ N (0, Id) when l = 2, and

V =
√
Gl−1, w ∼ N (0, In) for l ∈ [3, L+ 1]. In either case we let vi denote the ith row of V.

For any i, j ∈ [n]

[Gl]ij = σ2
wEw[ϕ(v

T
i w)ϕ(vTj w)] + σ2

b .

Now let B1 = vTi w, B2 = vTj w and observe for any α1, α2 ∈ R that α1B1 + α2B2 =∑n
k(α1vik + α2vjk)wk ∼ N (0, ∥α1vi + α2vj∥2). Therefore the joint distribution of (B1, B2) is

a mean 0 bivariate normal distribution. Denoting the covariance matrix of this distribution

as Ã ∈ R2×2, then [Gl]ij can be expressed as

[Gl]ij = σ2
wE(B1,B2)∼Ã[ϕ(B1)ϕ(B2)] + σ2

b .

To prove [Gl]i,j = Σ(l) it therefore suffices to show that Ã = A(l) as per (4.10). This follows

by the induction hypothesis as

E[B2
1 ] = vTi vi = [Gl−1]ii = Σ(l−1)(xi,xi),

E[B2
2 ] = vTj vj = [Gl−1]jj = Σ(l−1)(xj,xj),

E[B1B2] = vTi vj = [Gl−1]ij = Σ(l−1)(xi,xj).

Finally, Gl is positive semi-definite as long as Ew[ϕ(Vw)ϕ(Vw)T ] is positive semi-definite. Let

M(w) = ϕ(Vw) ∈ Rn×n and observe for any w that M(w)M(w)T is positive semi-definite.

Therefore Ew[M(w)M(w)T ] must also be positive semi-definite. Thus the inductive step is

complete and we may conclude for l ∈ [L+ 1] that

[Gl]i,j = Σ(l)(xi,xj). (4.14)

For the proof of the expression for the sequence (Ġl)
L+1
l=2 it suffices to prove for any i, j ∈ [n]
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and l ∈ [L+ 1] that

[Ġl]i,j = Σ̇(l)(xi,xj).

By comparing (4.12) with (4.10) this follows immediately from (4.14). Therefore with (4.12)

proven (4.13) follows from (4.11).

4.A.3 Unit Variance Initialization

The initialization scheme for a neural network, particularly a deep neural network, needs

to be designed with some care in order to avoid either vanishing or exploding gradients

during training [GB10, HZR15, MM16, LBO12]. Some of the most popular initialization

strategies used in practice today, in particular [LBO12] and [GB10] initialization, first model

the preactivations of the network as Gaussian random variables and then select the network

hyperparameters in order that the variance of these idealized preactivations is fixed at one.

Under Assumption 89 this idealized model on the preactivations is actually realized and if we

additionally assume the conditions of Assumption 90 hold then likewise the variance of the

preactivations at every layer will be fixed at one. To this end, and as in [PLR16c,MAT22],

consider the function V : R≥0 → R≥0 defined as

V (q) = σ2
wEZ∼N (0,1)

[
ϕ(
√
qZ)2

]
+ σ2

b . (4.15)

Noting that V is another expression for Σ(l)(x,x), derived via a change of variables as per

[PLR16c], the sequence of variances (Σ(l)(x,x))Ll=2 can therefore be generated as follows,

Σ(l)(x,x) = V (Σ(l−1)(x,x)). (4.16)

The linear correlation ρ(l) : Rd × Rd → [−1, 1] between the preactivations of two inputs

x,y ∈ Rd we define as

ρ(l)(x,y) =
Σ(l)(x,y)√

Σ(l)(x,x)Σ(l)(y,y)
. (4.17)
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Assuming Σ(l)(x,x) = Σ(l)(y,y) = 1 for all l ∈ [L + 1], then ρ(l)(x,y) = Σ(l)(x,y). Again

as in [MAT22] and analogous to (4.15), with Z1, Z2 ∼ N (0, 1) independent, U1 := Z1,

U2(ρ) := (ρZ1 +
√

1− ρ2Z2)
1 we define the correlation function R : [−1, 1]→ [−1, 1] as

R(ρ) = σ2
wE[ϕ(U1)ϕ(U2(ρ))] + σ2

b . (4.18)

Noting under these assumptions that R is equivalent to Σ(l)(x,y), the sequence of correlations

(ρ(l)(x,y))Ll=2 can thus be generated as

ρ(l)(x,y) = R(ρ(l−1)(x,y)).

As observed in [PLR16c, SGG17], R(1) = V (1) = 1, hence ρ = 1 is a fixed point of R.

We remark that as all preactivations are distributed as N (0, 1), then a correlation of one

between preactivations implies they are equal. The stability of the fixed point ρ = 1 is of

particular significance in the context of initializing deep neural networks successfully. Under

mild conditions on the activation function one can compute the derivative of R, see e.g.,

[PLR16c,SGG17,MAT22], as follows,

R′(ρ) = σ2
wE[ϕ′(U1)ϕ

′(U2(ρ))]. (4.19)

Observe that the expression for Σ̇(l) and R′ are equivalent via a change of variables [PLR16c],

and therefore the sequence of correlation derivatives may be computed as

Σ̇(l)(x,y) = R′(ρ(l)(x,y)).

With the relevant background material now in place we are in a position to prove

Lemma 97.

Lemma 97. Under Assumptions 89 and 90 and defining χ = σ2
wEZ∼N (0,1)[ϕ

′(Z)2] ∈ R>0,

1We remark that U1, U2 are dependent and identically distributed as U1, U2 ∼ N (0, 1).
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then for all i, j ∈ [n], l ∈ [L+ 1]

• [Gn,l]ij ∈ [−1, 1] and [Gn,l]ii = 1,

• [Ġn,l]ij ∈ [−χ, χ] and [Ġn,l]ii = χ.

Furthermore, the NTK is a dot product kernel, meaning Θ(xi,xj) can be written as a function

of the inner product between the two inputs, Θ(xTi xj).

Proof. Recall from Lemma 96 and its proof that for any l ∈ [L + 1], i, j ∈ [n] [Gn,l]ij =

Σ(l)(xi,xj) and [Ġn,l]ij = Σ̇(l)(xi,xj). We first prove by induction Σ(l)(xi,xi) = 1 for all

l ∈ [L+ 1]. The base case l = 1 follows as

Σ(1)(x,x) = γ2wx
Tx+ γ2b = γ2w + γ2b = 1.

Assume the induction hypothesis is true for layer l − 1. With Z ∼ N (0, 1), then from (4.15)

and (4.16)

Σ(l)(x,x) = V (Σ(l−1)(x,x))

= σ2
wE
[
ϕ2

(√
Σ(l−1)(x,x)Z

)]
+ σ2

b

= σ2
wE
[
ϕ2(Z)

]
+ σ2

b

= 1,

thus the inductive step is complete. As an immediate consequence it follows that [Gl]ii = 1.

Also, for any i, j ∈ [n] and l ∈ [L+ 1],

Σ(l)(xi,xj) = ρ(l)(xi,xj) = R(ρ(l−1)(xi,xj)) = R(...R(R(xTi xj))).

Thus we can consider Σ(l) as a univariate function of the input correlation Σ : [−1, 1]→ [−1, 1]

and also conclude that [Gl]ij ∈ [−1, 1]. Furthermore,

Σ̇(l)(xi,xj) = R′(ρ(l)(xi,xj)) = R′(R(...R(R(xTi xj)))),
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which likewise implies Σ̇ is a dot product kernel. Recall now the random variables introduced

to define R: Z1, Z2 ∼ N (0, 1) are independent and U1 = Z1, U2 = (ρZ1 +
√
1− ρ2Z2).

Observe U1, U2 are dependent but identically distributed as U1, U2 ∼ N (0, 1). For any

ρ ∈ [−1, 1] then applying the Cauchy-Schwarz inequality gives

|R′(ρ)|2 = σ4
w|E[ϕ′(U1)ϕ

′(U2)]|2 ≤ σ4
wE[ϕ′(U1)

2]E[ϕ′(U2)
2] = σ4

wE[ϕ′(U1)
2]2 = |R′(1)|2.

As a result, under the assumptions of the lemma Σ̇(l) : [−1, 1]→ [−χ, χ] and Σ̇(l)(xi,xi) = χ.

From this it immediately follows that [Ġl]ij ∈ [−χ, χ] and [Ġl]ii = χ as claimed. Finally, as

Σ : [−1, 1]→ [−1, 1] and Σ̇ : [−1, 1]→ [−χ, χ] are dot product kernels, then from (4.11) the

NTK must also be a dot product kernel and furthermore a univariate function of the pairwise

correlation of its input arguments.

The following corollary, which follows immediately from Lemma 97 and (4.13), character-

izes the trace of the NTK matrix in terms of the trace of the input gram.

Corollary 98. Under the same conditions as Lemma 97, suppose ϕ and σ2
w are chosen such

that χ = 1. Then

Tr(Kn,l) = l. (4.20)

4.A.4 Hermite Expansions

We say that a function f : R→ R is square integrable w.r.t. the standard Gaussian measure

γ = e−x
2/2/
√
2π if Ex∼N (0,1)[f(x)

2] < ∞. We denote by L2(R, γ) the space of all such

functions. The probabilist’s Hermite polynomials are given by

Hk(x) = (−1)kex2/2 d
k

dxk
e−x

2/2, k = 0, 1, . . . .

The first three Hermite polynomials are H0(x) = 1, H1(x) = x, H2(x) = (x2 − 1). Let

hk(x) =
Hk(x)√

k!
denote the normalized probabilist’s Hermite polynomials. The normalized

Hermite polynomials form a complete orthonormal basis in L2(R, γ) [OD14, §11]: in all that
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follows, whenever we reference the Hermite polynomials, we will be referring to the normalized

Hermite polynomials. The Hermite expansion of a function ϕ ∈ L2(R, γ) is given by

ϕ(x) =
∞∑
k=0

µk(ϕ)hk(x), (4.21)

where

µk(ϕ) = EX∼N (0,1)[ϕ(X)hk(X)] (4.22)

is the kth normalized probabilist’s Hermite coefficient of ϕ. In what follows we shall make

use of the following identities.

∀k ≥ 1, h′k(x) =
√
khk−1(x), (4.23)

∀k ≥ 1, xhk(x) =
√
k + 1hk+1(x) +

√
khk−1(x). (4.24)

hk(0) =

 0, if k is odd
1√
k!
(−1) k

2 (k − 1)!! if k is even
,

where k!! =


1, k ≤ 0

k · (k − 2) · · · 5 · 3 · 1, k > 0 odd

k · (k − 2) · · · 6 · 4 · 2, k > 0 even .

(4.25)

We also remark that the more commonly encountered physicist’s Hermite polynomials,

which we denote H̃k, are related to the normalized probablist’s polynomials as follows,

hk(z) =
2−k/2H̃k(z/

√
2)√

k!
.

The Hermite expansion of the activation function deployed will play a key role in deter-

mining the coefficients of the NTK power series. In particular, the Hermite coefficients of

ReLU are as follows.
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Lemma 99. [DFS16b] For ϕ(z) = max{0, z} the Hermite coefficients are given by

µk(ϕ) =



1/
√
2π, k = 0,

1/2, k = 1,

(k − 3)!!/
√
2πk!, k even and k ≥ 2,

0, k odd and k > 3.

(4.26)

4.B Expressing the NTK as a Power Series

4.B.1 Deriving a Power Series for the NTK

We will require the following minor adaptation of [NM20, Lemma D.2]. We remark this result

was first stated for ReLU and Softplus activations in the work of [OS20, Lemma H.2].

Lemma 100. For arbitrary n, d ∈ N, let A ∈ Rn×d. For i ∈ [n], we denote the ith row of A

as ai, and further assume that ∥ai∥ = 1. Let ϕ : R→ R satisfy ϕ ∈ L2(R, γ) and define

M = Ew∼N (0,In)[ϕ(Aw)ϕ(Aw)T ] ∈ Rn×n.

Then the matrix series

SK =
K∑
k=0

µ2
k(ϕ)

(
AAT

)⊙k
converges uniformly to M as K →∞.

The proof of Lemma 100 follows exactly as in [NM20, Lemma D.2], and is in fact slightly

simpler due to the fact we assume the rows of A are unit length and w ∼ N (0, Id) instead of
√
d and w ∼ N (0, 1

d
Id) respectively. For the ease of the reader, we now recall the following

definitions, which are also stated in Section 4.3. Letting ᾱl := (αp,l)
∞
p=0 denote a sequence of
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real coefficients, then

F (p, k, ᾱl) :=


1 k = 0 and p = 0,

0 k = 0 and p ≥ 1,∑
(ji)∈J (p,k)

∏k
i=1 αji,l k ≥ 1 and p ≥ 0,

(4.27)

where

J (p, k) := {(ji)i∈[k] : ji ≥ 0 ∀i ∈ [k],
k∑
i=1

ji = p}

for all p ∈ Z≥0, k ∈ Z≥1.

We are now ready to derive power series for elements of (Gl))
L+1
l=1 and (Ġl))

L+1
l=2 .

Lemma 101. Under Assumptions 89 and 90, for all l ∈ [2, L+ 1]

Gl =
∞∑
k=0

αk,l(XXT )⊙k, (4.28)

where the series for each element [Gl]ij converges absolutely and the coefficients αp,l are

nonnegative. The coefficients of the series (4.28) for all p ∈ Z≥0 can be expressed via the

following recurrence relationship,

αp,l =


σ2
wµ

2
p(ϕ) + δp=0σ

2
b , l = 2,∑∞

k=0 αk,2F (p, k, ᾱl−1), l ≥ 3.

(4.29)

Furthermore,

Ġl =
∞∑
k=0

υk,l(XXT )⊙k, (4.30)

where likewise the series for each entry [Ġl]ij converges absolutely and the coefficients υp,l for
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all p ∈ Z≥0 are nonnegative and can be expressed via the following recurrence relationship,

υp,l =


σ2
wµ

2
p(ϕ

′), l = 2,∑∞
k=0 υk,2F (p, k, ᾱl−1), l ≥ 3.

(4.31)

Proof. We start by proving (4.28) and (4.29). Proceeding by induction, consider the base

case l = 2. From Lemma 96

G2 = σ2
wEw∼N (0,Id)[ϕ(Xw)ϕ(Xw)T ] + σ2

b1n×n.

By the assumptions of the lemma, the conditions of Lemma 100 are satisfied and therefore

G2 = σ2
w

∞∑
k=0

µ2
k(ϕ)

(
XXT

)⊙k
+ σ2

b1n×n

= α0,21n×n +
∞∑
k=1

αk,2
(
XXT

)⊙k
.

Observe the coefficients (αk,2)k∈Z≥0
are nonnegative. Therefore, for any i, j ∈ [n] using

Lemma 97 the series for [Gl]ij satisfies

∞∑
k=0

|αk,2|
∣∣⟨xi,xj⟩k∣∣ ≤ ∞∑

k=0

αk,2⟨xi,xi⟩k = [Gl]ii = 1 (4.32)

and so must be absolutely convergent. With the base case proved we proceed to assume the

inductive hypothesis holds for arbitrary Gl with l ∈ [2, L]. Observe

Gl+1 = σ2
wEw∼N (0,In)[ϕ(Aw)ϕ(Aw)T ] + σ2

b1n×n,

where A is a matrix square root of Gl, meaning Gl = AA. Recall from Lemma 96 that Gl is

also symmetric and positive semi-definite, therefore we may additionally assume, without loss

of generality, that A ∈ Rn×n is symmetric, which conveniently implies Gn,l = AAT . Under

the assumptions of the lemma the conditions for Lemma 97 are satisfied and as a result
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[Gn,l]ii = ∥ai∥ = 1 for all i ∈ [n], where we recall ai denotes the ith row of A. Therefore we

may again apply Lemma 96,

Gl+1 = σ2
w

∞∑
k=0

µ2
k(ϕ)

(
AAT

)⊙k
+ σ2

b1n×n

= (σ2
wµ

2
0(ϕ) + σ2

b )1n×n + σ2
w

∞∑
k=1

µ2
k(ϕ)(Gn,l)

⊙k

= (σ2
wµ

2
0(ϕ) + σ2

b )1n×n + σ2
w

∞∑
k=1

µ2
k(ϕ)

(
∞∑
m=0

αm,l(XXT )⊙m

)⊙k

,

where the final equality follows from the inductive hypothesis. For any pair of indices i, j ∈ [n]

[Gl+1]ij = (σ2
wµ

2
0(ϕ) + σ2

b ) + σ2
w

∞∑
k=1

µ2
k(ϕ)

(
∞∑
m=0

αm,l⟨xi,xj⟩m
)k

.

By the induction hypothesis, for any i, j ∈ [n] the series
∑∞

m=0 αm,l⟨xi,xj⟩m is absolutely

convergent. Therefore, from the Cauchy product of power series and for any k ∈ Z≥0 we have

(
∞∑
m=0

αm,l⟨xi,xj⟩m
)k

=
∞∑
p=0

F (p, k, ᾱl)⟨xi,xj⟩p, (4.33)

where F (p, k, ᾱl) is defined in (4.4). By definition, F (p, k, ᾱl) is a sum of products of positive

coefficients, and therefore |F (p, k, ᾱl)| = F (p, k, ᾱl). In addition, recall again by Assumption

90 and Lemma 97 that [Gl]ii = 1. As a result, for any k ∈ Z≥0, as |⟨xi,xj⟩| ≤ 1

∞∑
p=0

|F (p, k, ᾱl)⟨xi,xj⟩p| ≤

(
∞∑
m=0

αm,l

)k

= [Gn,l]ii = 1 (4.34)

and therefore the series
∑∞

p=0 F (p, k, ᾱl)⟨xi,xj⟩p converges absolutely. Recalling from the

proof of the base case that the series
∑∞

p=1 αp,2 is absolutely convergent and has only
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nonnegative elements, we may therefore interchange the order of summation in the following,

[Gl+1]ij = (σ2
wµ

2
0(ϕ) + σ2

b ) + σ2
w

∞∑
k=1

µ2
k(ϕ)

(
∞∑
p=0

F (p, k, ᾱl)⟨xi,xj⟩p
)

= α0,2 +
∞∑
k=1

αk,2

(
∞∑
p=0

F (p, k, ᾱl)⟨xi,xj⟩p
)

= α0,2 +
∞∑
p=0

(
∞∑
k=1

αk,2F (p, k, ᾱl)

)
⟨xi,xj⟩p.

Recalling the definition of F (p, k, l) in (4.4), in particular F (0, 0, ᾱl) = 1 and F (p, 0, ᾱl) = 0

for p ∈ Z≥1, then

[Gl+1]ij =

(
α0,2 +

∞∑
k=1

αk,2F (0, k, ᾱl)

)
⟨xi,xj⟩0 +

∞∑
p=1

(
∞∑
k=1

αk,2F (p, k, ᾱl)

)
⟨xi,xj⟩p

=

(
∞∑
k=0

αk,2F (0, k, ᾱl)

)
⟨xi,xj⟩0 +

∞∑
p=1

(
∞∑
k=0

αk,2F (p, k, ᾱl)

)
⟨xi,xj⟩p

=
∞∑
p=0

(
∞∑
k=0

αk,2F (p, k, ᾱl)

)
⟨xi,xj⟩p

=
∞∑
p=0

αp,l+1⟨xi,xj⟩p.

As the indices i, j ∈ [n] were arbitrary we conclude that

Gl+1 =
∞∑
p=0

αp,l+1

(
XXT

)⊙p
as claimed. In addition, by inspection and using the induction hypothesis it is clear that the

coefficients (αp,l+1)
∞
p=0 are nonnegative. Therefore, by an argument identical to (4.32), the

series for each entry of [Gl+1]ij is absolutely convergent. This concludes the proof of (4.28)

and (4.29).

We now turn our attention to proving the (4.30) and (4.31). Under the assumptions of

the lemma the conditions for Lemmas 96 and 100 are satisfied and therefore for the base case
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l = 2

Ġ2 = σ2
wEw∼N (0,In)[ϕ

′(Xw)ϕ′(Xw)T ]

= σ2
w

∞∑
k=0

µ2
k(ϕ

′)
(
XXT

)⊙k
=

∞∑
k=0

υk,2
(
XXT

)⊙k
.

By inspection the coefficients (υp,2)
∞
p=0 are nonnegative and as a result by an argument again

identical to (4.32) the series for each entry of [Ġ2]ij is absolutely convergent. For l ∈ [2, L],

from (4.28) and its proof there is a matrix A ∈ Rn×n such that Gl = AAT . Again applying

Lemma 100
Ġn,l+1 = σ2

wEw∼N (0,In)[ϕ
′(Aw)ϕ′(Aw)T ]

= σ2
w

∞∑
k=0

µ2
k(ϕ

′)
(
AAT

)⊙k
=

∞∑
k=0

υk,2(Gn,l)
⊙k

=
∞∑
k=0

υk,2

(
∞∑
p=0

αp,l
(
XXT

)⊙p)⊙k

Analyzing now an arbitrary entry [Ġl+1]ij, by substituting in the power series expression for

Gl from (4.28) and using (4.33) we have

[Ġl+1]ij =
∞∑
k=0

υk,2

(
∞∑
p=0

αp,l⟨xi,xj⟩p
)k

=
∞∑
k=0

υk,2

(
∞∑
p=0

F (p, k, ᾱl)⟨xi,xj⟩p
)

=
∞∑
p=0

(
∞∑
k=0

υk,2F (p, k, ᾱl)

)
⟨xi,xj⟩p

=
∞∑
p=0

υp,l+1⟨xi,xj⟩p.

Note that exchanging the order of summation in the third equality above is justified as for
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any k ∈ Z≥0 by (4.34) we have
∑∞

p=0 F (p, k, ᾱl)|⟨xi,xj⟩|p ≤ 1 and therefore

∞∑
k=0

∞∑
p=0

υk,2F (p, k, ᾱl)⟨xi,xj⟩p

converges absolutely. As the indices i, j ∈ [n] were arbitrary we conclude that

Ġl+1 =
∞∑
p=0

υp,l+1

(
XXT

)⊙p
as claimed. Finally, by inspection the coefficients (υp,l+1)

∞
p=0 are nonnegative, therefore, and

again by an argument identical to (4.32), the series for each entry of [Ġn,l+1]ij is absolutely

convergent. This concludes the proof.

We are now prove the key result of Section 4.3.

Theorem 91. Under Assumptions 89 and 90, for all l ∈ [L+ 1]

nKl =
∞∑
p=0

κp,l
(
XXT

)⊙p
. (4.5)

The series for each entry n[Kl]ij converges absolutely and the coefficients κp,l are nonnegative

and can be evaluated using the recurrence relationships

κp,l =


δp=0γ

2
b + δp=1γ

2
w, l = 1,

αp,l +
∑p

q=0 κq,l−1υp−q,l, l ∈ [2, L+ 1],

(4.6)

where

αp,l =


σ2
wµ

2
p(ϕ) + δp=0σ

2
b , l = 2,∑∞

k=0 αk,2F (p, k, ᾱl−1), l ≥ 3,

(4.7)

and

υp,l =


σ2
wµ

2
p(ϕ

′), l = 2,∑∞
k=0 υk,2F (p, k, ᾱl−1), l ≥ 3,

(4.8)
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are likewise nonnegative for all p ∈ Z≥0 and l ∈ [2, L+ 1].

Proof. We proceed by induction. The base case l = 1 follows trivially from Lemma 96. We

therefore assume the induction hypothesis holds for an arbitrary l − 1 ∈ [1, L]. From (4.13)

and Lemma 101

nKl = Gl + nKl−1 ⊙ Ġl

=

(
∞∑
p=0

αp,l
(
XXT

)⊙p)
+

(
n

∞∑
q=0

κq,l−1

(
XXT

)⊙q)⊙( ∞∑
w=0

υw,l
(
XXT

)⊙w)
.

Therefore, for arbitrary i, j ∈ [n]

[nKl]ij =
∞∑
p=0

αp,l⟨xi,xj⟩p +

(
n

∞∑
q=0

κq,l−1⟨xi,xj⟩q
)(

∞∑
w=0

υw,l⟨xi,xj⟩w
)
.

Observe n
∑∞

q=0 κq,l−1⟨xi,xj⟩q = Θ(l−1)(xi,xj) and therefore the series must converge due

to the convergence of the NTK. Furthermore,
∑∞

w=0 υw,l⟨xi,xj⟩w = [Ġn,l]ij and therefore is

absolutely convergent by Lemma 101. As a result, by Merten’s Theorem the product of these

two series is equal to their Cauchy product. Therefore

[nKl]ij =
∞∑
p=0

αp,l⟨xi,xj⟩p +
∞∑
p=0

(
p∑
q=0

κq,l−1υp−q,l

)
⟨xi,xj⟩p

=
∞∑
p=0

(
αp,l +

p∑
q=0

κq,l−1υp−q,l

)
⟨xi,xj⟩p

=
∞∑
p=0

κp,l⟨xi,xj⟩p,

from which the (4.5) immediately follows.

4.B.2 Analyzing the Coefficients of the NTK Power Series

In this section we study the coefficients of the NTK power series stated in Theorem 91.

Our first observation is that, under additional assumptions on the activation function ϕ,
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the recurrence relationship (4.6) can be simplified in order to depend only on the Hermite

expansion of ϕ.

Lemma 102. Under Assumption 92 the Hermite coefficients of ϕ′ satisfy

µk(ϕ
′) =
√
k + 1µk+1(ϕ)

for all k ∈ Z≥0.

Proof. Note for each n ∈ N as ϕ is absolutely continuous on [−n, n] it is differentiable a.e. on

[−n, n]. It follows by the countable additivity of the Lebesgue measure that ϕ is differentiable

a.e. on R. Furthermore, as ϕ is polynomially bounded we have ϕ ∈ L2(R, e−x2/2/
√
2π). Fix

a > 0. Since ϕ is absolutely continuous on [−a, a] it is of bounded variation on [−a, a]. Also

note that hk(x)e−x
2/2 is of bounded variation on [−a, a] due to having a bounded derivative.

Thus we have by Lebesgue-Stieltjes integration-by-parts (see e.g. Chapter 3 of [Fol99a])

∫ a

−a
ϕ′(x)hk(x)e

−x2/2dx

= ϕ(a)hk(a)e
−a2/2 − ϕ(−a)hk(−a)e−a

2/2 +

∫ a

−a
ϕ(x)[xhk(x)− h′k(x)]e−x

2/2dx

= ϕ(a)hk(a)e
−a2/2 − ϕ(−a)hk(−a)e−a

2/2 +

∫ a

−a
ϕ(x)
√
k + 1hk+1(x)e

−x2/2dx,

where in the last line above we have used the fact that (4.23) and (4.24) imply that xhk(x)−

h′k(x) =
√
k + 1hk+1(x). Thus we have shown

∫ a

−a
ϕ′(x)hk(x)e

−x2/2dx

= ϕ(a)hk(a)e
−a2/2 − ϕ(−a)hk(−a)e−a

2/2 +

∫ a

−a
ϕ(x)
√
k + 1hk+1(x)e

−x2/2dx.

We note that since |ϕ(x)hk(x)| = O(|x|β+k) we have that as a→∞ the first two terms above
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vanish. Thus by sending a→∞ we have

∫ ∞

−∞
ϕ′(x)hk(x)e

−x2/2dx =

∫ ∞

−∞

√
k + 1ϕ(x)hk+1(x)e

−x2/2dx.

After dividing by
√
2π we get the desired result.

In particular, under Assumption 92, and as highlighted by Corollary 103, which follows

directly from Lemmas 101 and 102, the NTK coefficients can be computed only using the

Hermite coefficients of ϕ.

Corollary 103. Under Assumptions 89, 90 and 92, for all p ∈ Z≥0

υp,l =


(p+ 1)αp+1,2, l = 2,∑∞

k=0 υk,2F (p, k, ᾱl−1), l ≥ 3.

(4.35)

With these results in place we proceed to analyze the decay of the coefficients of the

NTK for depth two networks. As stated in the main text, the decay of the NTK coefficients

depends on the decay of the Hermite coefficients of the activation function deployed. This in

turn is strongly influenced by the behavior of the tails of the activation function. To this end

we roughly group activation functions into three categories: growing tails, flat or constant

tails and finally decaying tails. Analyzing each of these groups in full generality is beyond the

scope of this chapter, we therefore instead study the behavior of ReLU, Tanh and Gaussian

activation functions, being prototypical and practically used examples of each of these three

groups respectively. We remark that these three activation functions satisfy Assumption

92. For typographical ease we let ωσ(z) := (1/
√
2πσ2) exp(−z2/(2σ2)) denote the Gaussian

activation function with variance σ2.

Lemma 93. Under Assumptions 89 and 90,

1. if ϕ(z) = ReLU(z), then κp,2 = δ(γb>0)∪(p even)Θ(p−3/2),

2. if ϕ(z) = Tanh(z), then κp,2 = O
(
exp
(
−π

√
p−1
2

))
,
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3. if ϕ(z) = ωσ(z), then κp,2 = δ(γb>0)∪(p even)Θ(p1/2(σ2 + 1)−p).

Proof. Recall (4.9),

κp,2 = σ2
w(1 + γ2wp)µ

2
p(ϕ) + σ2

wγ
2
b (1 + p)µ2

p+1(ϕ) + δp=0σ
2
b .

In order to bound κp,2 we proceed by using Lemma 99 to bound the square of the Hermite

coefficients. We start with ReLU. Note Lemma 99 actually provides precise expressions

for the Hermite coefficients of ReLU, however, these are not immediately easy to interpret.

Observe from Lemma 99 that above index p = 2 all odd indexed Hermite coefficients are 0.

It therefore suffices to bound the even indexed terms, given by

µp(ReLU) =
1√
2π

(p− 3)!!√
p!

.

Observe from (4.25) that for p even

hp(0) = (−1)p/2 (p− 1)!!√
p!

,

therefore

µp(ReLU) =
1√
2π

(p− 3)!!√
p!

=
1√
2π

|hp(0)|
p− 1

.

Analyzing now |hp(0)|,

(p− 1)!!√
p!

=

∏p/2
i=1(2i− 1)√∏p/2
i=1(2i− 1)2i

=

√√√√∏p/2
i=1(2i− 1)∏p/2

i=1 2i
=

√
(p− 1)!!

p!!
.

Here, the expression inside the square root is referred to in the literature as the Wallis ratio,

for which the following lower and upper bounds are available [Kaz56],

√
1

π(p+ 0.5)
<

(p− 1)!!

p!!
<

√
1

π(p+ 0.25)
. (4.36)
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As a result

|hp(0)| = Θ(p−1/4)

and therefore

µp(ReLU) =


Θ(p−5/4), p even,

0, p odd.

As (p+ 1)−3/2 = Θ(p−3/2), then from (4.9)

κp,2 = Θ((pµ2
p(ReLU) + δγb>0(p+ 1)µ2

p+1(ReLU)))

= Θ((δp evenp
−3/2 + δ(p odd)∩(γb>0)(p+ 1)−3/2))

= Θ
(
δ(p even)∪((p odd)∩(γb>0))p

−3/2
)

= δ(p even)∪(γb>0)Θ
(
p−3/2

)
as claimed in item 1.

We now proceed to analyze ϕ(z) = Tanh(z). From [PSG20, Corollary F.7.1]

µp(Tanh
′) = O

(
exp

(
−
π
√
p

4

))
.

As Tanh satisfies the conditions of Lemma 102

µp(Tanh) = p−1/2µp−1(Tanh
′) = O

(
p−1/2 exp

(
−π
√
p− 1

4

))
.

Therefore the result claimed in item 2. follows as

κp,2 = O((pµ2
p(Tanh) + (p+ 1)µ2

p+1(Tanh)))

= O
(
exp

(
−π
√
p− 1

2

)
+ exp

(
−
π
√
p

2

))
= O

(
exp

(
−π
√
p− 1

2

))
.

Finally, we now consider ϕ(z) = ωσ(z) where ωσ(z) is the density function of N (0, σ2).
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Similar to ReLU, analytic expressions for the Hermite coefficients of ωσ(z) are known (see

e.g., Theorem 2.9 in [Dav21]),

µ2
p(ωσ) =


p!

((p/2)!)22p2π(σ2+1)p+1 , p even,

0, p odd.

For p even

(p/2)! = p!!2−p/2.

Therefore
p!

(p/2)!(p/2)!
= 2p

p!

p!!p!!
= 2p

(p− 1)!!

p!!
.

As a result, for p even and using (4.36), it follows that

µ2
p(ωσ) =

(σ2 + 1)−(p+1)

2π

(p− 1)!!

p!!
= Θ(p−1/2(σ2 + 1)−p).

Finally, since (p+ 1)1/2(σ2 + 1)−p−1 = Θ(p1/2(σ2 + 1)−p), then from (4.9)

κp,2 = Θ((pµ2
p(ωσ) + δγb>0(p+ 1)µ2

p+1(ωσ)))

= Θ
(
δ(p even)∪((p odd)∩(γb>0))p

1/2(σ2 + 1)−p
)

= δ(p even)∪(γb>0)Θ
(
p1/2(σ2 + 1)−p

)
as claimed in item 3.

4.C Analyzing the Spectrum of the NTK via its power series

4.C.1 Experimental validation of results on the NTK spectrum

To test our theory in Section 4.4, we numerically plot the spectrum of NTK of two-layer

feedforward networks with ReLU, Tanh, and Gaussian activations in Figure 4.1. The

input data are uniformly drawn from S2. Notice that when d = 2, k = Θ(ℓ1/2). Then
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Figure 4.1: NTK spectrum of two-layer fully connected networks with ReLU, Tanh and
Gaussian activations under the NTK parameterization. The orange curve is the experimental
eigenvalue. The blue curves in the left shows the regression fit for the experimental eigenvalues
as a function of eigenvalue index ℓ in the form of λℓ = aℓ−b where a and b are unknown
parameters determined by regression. The blue curves in the middle shows the regression
fit for the experimental eigenvalues in the form of λℓ = aℓ−0.75b−l

1/4 . The blue curves in the
right shows the regression fit for the experimental eigenvalues in the form of λℓ = aℓ−0.5b−l

1/2 .

Corollary 95 shows that for the ReLU activation λℓ = Θ(ℓ−3/2), for the Tanh activation

λℓ = O
(
ℓ−3/4 exp(−π

2
ℓ1/4)

)
, and for the Gaussian activation λℓ = O(ℓ−1/22−ℓ

1/2
). These

theoretical decay rates for the NTK spectrum are verified by the experimental results in

Figure 4.1.

4.C.2 Analysis of the Asymptotic Spectrum: Uniform Data

Theorem 94. Suppose that the training data are uniformly sampled from the unit hypersphere

Sd, d ≥ 2. If the dot-product kernel function has the expansion K(x1, x2) =
∑∞

p=0 cp⟨x1, x2⟩p

where cp ≥ 0, then the eigenvalue of every spherical harmonic of frequency k is given by

λk =
πd/2

2k−1

∑
p≥k

p−k is even

cp
Γ(p+ 1)Γ(p−k+1

2
)

Γ(p− k + 1)Γ(p−k+1
2

+ k + d/2)
,

where Γ is the gamma function.

Proof. Let θ(t) =
∑∞

p=0 cpt
p, then K(x1, x2) = θ(⟨x1, x2⟩) According to Funk Hecke theorem
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[BJK19, Section 4.2], we have

λk = Vol(Sd−1)

∫ 1

−1

θ(t)Pk,d(t)(1− t2)
d−2
2 dt, (4.37)

where Vol(Sd−1) = 2πd/2

Γ(d/2)
is the volume of the hypersphere Sd−1, and Pk,d(t) is the Gegenbauer

polynomial, given by

Pk,d(t) =
(−1)k

2k
Γ(d/2)

Γ(k + d/2)

1

(1− t2)(d−2)/2

dk

dtk
(1− t2)k+(d−2)/2,

and Γ is the gamma function.

From (4.37) we have

λk = Vol(Sd−1)

∫ 1

−1

θ(t)Pk,d(t)(1− t2)
d−2
2 dt

=
2πd/2

Γ(d/2)

∫ 1

−1

θ(t)
(−1)k

2k
Γ(d/2)

Γ(k + d/2)

dk

dtk
(1− t2)k+(d−2)/2dt

=
2πd/2

Γ(d/2)

(−1)k

2k
Γ(d/2)

Γ(k + d/2)

∞∑
p=0

cp

∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt. (4.38)

Using integration by parts, we have

∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt

= tp
dk−1

dtk−1
(1− t2)k+(d−2)/2

∣∣∣∣1
−1

− p
∫ 1

−1

tp−1 d
k−1

dtk−1
(1− t2)k+(d−2)/2dt

= −p
∫ 1

−1

tp−1 d
k−1

dtk−1
(1− t2)k+(d−2)/2dt, (4.39)

where the last line in (4.39) holds because dk−1

dtk−1 (1− t2)k+(d−2)/2 = 0 when t = 1 or t = −1.
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When p < k, repeat the above procedure (4.39) p times, we get

∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt = (−1)pp!

∫ 1

−1

dk−p

dtk−p
(1− t2)k+(d−2)/2dt

= (−1)pp! d
k−p−1

dtk−p−1
(1− t2)k+(d−2)/2

∣∣∣∣1
−1

= 0. (4.40)

When p ≥ k, repeat the above procedure (4.39) k times, we get

∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt = (−1)kp(p− 1) · · · (p− k + 1)

∫ 1

−1

tp−k(1− t2)k+(d−2)/2dt.

(4.41)

When p− k is odd, tp−k(1− t2)k+(d−2)/2 is an odd function, then

∫ 1

−1

tp−k(1− t2)k+(d−2)/2dt = 0. (4.42)

When p− k is even,

∫ 1

−1

tp−k(1− t2)k+(d−2)/2dt = 2

∫ 1

0

tp−k(1− t2)k+(d−2)/2dt

=

∫ 1

0

(t2)(p−k−1)/2(1− t2)k+(d−2)/2dt2

= B

(
p− k + 1

2
, k + d/2

)
=

Γ(p−k+1
2

)Γ(k + d/2)

Γ(p−k+1
2

+ k + d/2)
, (4.43)

where B is the beta function.
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Plugging (4.43) , (4.40) and (4.42) into (4.41), we get

∫ 1

−1

tp
dk

dtk
(1− t2)k+(d−2)/2dt

=


(−1)kp(p− 1) . . . (p− k + 1)

Γ( p−k+1
2

)Γ(k+d/2)

Γ( p−k+1
2

+k+d/2)
, p− k is even and p ≥ k,

0, otherwise.
(4.44)

Plugging (4.44) into (4.38), we get

λk =
2πd/2

Γ(d/2)

(−1)k

2k
Γ(d/2)

Γ(k + d/2)

∑
p≥k

p−k is even

cp(−1)kp(p− 1) . . . (p− k + 1)
Γ(p−k+1

2
)Γ(k + d/2)

Γ(p−k+1
2

+ k + d/2)

=
πd/2

2k−1

∑
p≥k

p−k is even

cp
p(p− 1) . . . (p− k + 1)Γ(p−k+1

2
)

Γ(p−k+1
2

+ k + d/2)

=
πd/2

2k−1

∑
p≥k

p−k is even

cp
Γ(p+ 1)Γ(p−k+1

2
)

Γ(p− k + 1)Γ(p−k+1
2

+ k + d/2)
.

Corollary 95. Under the same setting as in Theorem 94,

1. if cp = Θ(p−a) where a ≥ 1, then λk = Θ(k−d−2a+2),

2. if cp = δ(p even)Θ(p−a), then λk = δ(k even)Θ(k−d−2a+2),

3. if cp = O
(
exp
(
−a√p

))
, then λk = O

(
k−d+1/2 exp

(
−a
√
k
))

,

4. if cp = Θ(p1/2a−p), then λk = O
(
k−d+1a−k

)
and λk = Ω

(
k−d/2+12−ka−k

)
.

Proof of Corollary 4.C.2, part 1. We first prove λk = O(k−d−2a+2). Suppose that cp ≤ Cp−a

for some constant C, then according to Theorem 94 we have

λk ≤
πd/2

2k−1

∑
p≥k

p−k is even

Cp−a
Γ(p+ 1)Γ(p−k+1

2
)

Γ(p− k + 1)Γ(p−k+1
2

+ k + d/2)
.
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According to Stirling’s formula, we have

Γ(z) =

√
2π

z

(z
e

)z(
1 +O

(
1

z

))
. (4.45)

Then for any z ≥ 1
2
, we can find constants C1 and C2 such that

C1

√
2π

z

(z
e

)z
≤ Γ(z) ≤ C2

√
2π

z

(z
e

)z
. (4.46)

Then

λk ≤
πd/2

2k−1

C2
2

C2
1

∑
p≥k

p−k is even

Cp−a

√
2π
p+1

(
p+1
e

)p+1
√

2π
p−k+1

2

( p−k+1
2

e

) p−k+1
2

√
2π

p−k+1

(
p−k+1

e

)p−k+1√ 2π
p−k+1

2
+k+d/2

( p−k+1
2

+k+d/2

e

) p−k+1
2

+k+d/2

=
πd/2

2k−1

C2
2C

C2
1

∑
p≥k

p−k is even

p−a
e

d
2

√
2
p+1

(p+ 1)p+1(p−k+1
2

) p−k+1
2

(p− k + 1)p−k+1
√

1
p−k+1

2
+k+d/2

(
p−k+1

2
+ k + d/2

) p−k+1
2

+k+d/2

=
πd/2

2k−1

C2
2C

C2
1

∑
p≥k

p−k is even

p−a
e

d
2 2

−p+k
2 (p+ 1)p+

1
2

(p− k + 1)
p−k+1

2
(
p−k+1

2
+ k + d/2

) p−k
2

+k+d/2

= 2πd/2
2

d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even

p−a(p+ 1)p+
1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

. (4.47)

We define

fa(p) =
p−a(p+ 1)p+

1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

. (4.48)

By applying the chain rule to elog fa(p), we have that the derivative of fa is

f ′
a(p) =

(p+ 1)p+
1
2p−a

2(p− k + 1)
p−k+1

2 (p+ k + d+ 1)
p+k+d

2

·
(
−2a

p
− k + d

(p+ 1)(p+ k + d+ 1)
+ log(1 +

k2 − d(p− k + 1)

(p− k + 1)(p+ k + d+ 1)
)

)
. (4.49)

Let ga(p) = −2a
p
− k+d

(p+1)(p+k+d+1)
+ log(1 + k2−d(p−k+1)

(p−k+1)(p+k+d+1)
). Then ga(p) and f ′

a(p) have the
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same sign. Next we will show that ga(p) ≥ 0 for k ≤ p ≤ k2

d+24a
when k is large enough.

First when p ≥ k and k2−d(p−k+1)
(p−k+1)(p+k+d+1)

≥ 1, we have

ga(p) ≥ −
2a

k
− k + d

(k + 1)(k + k + d+ 1)
+ log(2) ≥ 0, (4.50)

when k is sufficiently large.

Second when p ≥ k and 0 ≤ k2−d(p−k+1)
(p−k+1)(p+k+d+1)

≤ 1, since log(1 + x) ≥ x
2

for 0 ≤ x ≤ 1, we

have

ga(p) ≥ −
2a

p
− k + d

(p+ 1)(p+ k + d+ 1)
+

k2 − d(p− k + 1)

2(p− k + 1)(p+ k + d+ 1)

≥ −2a

p
− k + d

(p+ 1)(p+ k + d+ 1)
+

k2 − dp
2p(p+ k + d+ 1)

.

When p ≤ k2

d+24a
, we have k2 − dp ≥ 24ap. Then

k2 − dp
4p(p+ k + d+ 1)

≥ 24ap

4p(p+ k + d+ 1)
≥ 6ap

(p+ 1)(p+ k + d+ 1)
≥ k + d

(p+ 1)(p+ k + d+ 1)

when k is sufficiently large. Also we have

k2 − dp
4r(p+ k + d+ 1)

≥ 24ap

4r(p+ k + d+ 1)
≥ 6a

p+ k + d+ 1
≥ 2a

p

when k is sufficiently large.

Combining all the arguments above, we conclude that ga(p) ≥ 0 and f ′
a(p) ≥ 0 when

k ≤ p ≤ k2

d+24a
. Then when k ≤ p ≤ k2

d+24a
, we have

fa(p) ≤ fa

(
k2

d+ 24a

)
. (4.51)
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When p ≥ k2

d+24a
, we have

fa(p) =
p−a(p+ 1)p+

1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d

2

=
p−a(p+ 1)p+

1
2

((p+ 1)2 − k2 + d(p− k + 1))
p−k+1

2 (p+ k + 1 + d)
2k+d−1

2

=
p−a(p+ 1)−

d
2(

1− k2−d(p−k+1)
(p+1)2

) p−k+1
2
(
1 + k+d

p+1

) 2k+d−1
2

≤ p−a−
d
2(

1− k2−d(p−k+1)
(p+1)2

) p−k+1
2

.

If k2−d(p−k+1) < 0,
(
1− k2−d(p−k+1)

(p+1)2

) p−k+1
2 ≥ 1. If k2−d(p−k+1) ≥ 0, i.e., p ≤ k2+dk−d

d
,

for sufficiently large k, we have

(
1− k2 − d(p− k + 1)

(p+ 1)2

) p−k+1
2

≥

(
1−

k2 − d( k2

d+24a
− k + 1)

( k2

d+24a
+ 1)2

) k2+dk−d
d

−k+1

2

≥
(
1− 48a(d+ 24a)

k2

) k2

2d

≥ e−
k2

2d
48a(d+24a)

k2 = e−
48a(d+24a)

2d ,

which is a constant independent of k. Then for p ≥ k2

d+24a
, we have

fa(p) ≤ e
48a(d+24a)

2d p−a−
d
2 . (4.52)
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Finally we have

λk = 2πd/2
2

d
2 e

d
2C2

2C

C2
1

∑
p≥k
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≤ O
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≤ O
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(
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)
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∑
p≥ k2

d+24a
p−k is even

e
48a(d+24a)

2d p−a−
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2


≤ O

((
k2

d+ 24a
− k + 1

)
e
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2d

(
k2

d+ 24a

)−a− d
2

+ e
48a(d+24a)

2d
1

a+ d
2
− 1

(
k2

d+ 24a
− 1

)1−a− d
2

)
= O(k−d−2a+2).

Next we prove λk = Ω(k−d−2a+2). Since cp are nonnegative and cp = Θ(p−a), we have

that cp ≥ C ′p−a for some constant C ′. Then we have

λk ≥
πd/2

2k−1

∑
p≥k

p−k is even

C ′p−a
Γ(p+ 1)Γ(p−k+1

2
)

Γ(p− k + 1)Γ(p−k+1
2

+ k + d/2)
. (4.53)

According to Stirling’s formula (4.45) and (4.46), using the similar argument as (4.47) we
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have

λk ≥
πd/2
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1
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= 2πd/2
2
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≥ 2πd/2
2
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2 e
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2C2

1C
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C2
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∑
p≥k2

p−k is even

fa(p), (4.56)

where fa(p) is defined in (4.48). When p ≥ k2, we have

fa(p) =
p−a(p+ 1)p+

1
2

(p− k + 1)
p−k+1

2 (p+ k + 1 + d)
p+k+d
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For sufficiently large k, k2 − d(p− k + 1) < 0. Then we have
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2
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which is a constant independent of k. Also, for sufficiently large k, we have

(
1 +

k + d

p+ 1

) 2k+d−1
2

=

(
1 +

k + d

p+ 1

) p+1
k+d
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2
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2
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3
2

Then for p ≥ k2, we have fa(p) ≥ e−
d
2
− 3

2 (p+ 1)−a−
d
2 .

Finally we have
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≥ 2πd/2
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2
− 3

2
1

2(a+ d
2
− 1)

(k2 + 2)1−a−
d
2 (4.59)

= Ω(k−d−2a+2). (4.60)

Overall, we have λk = Θ(k−d−2a+2).

Proof of Corollary 4.C.2, part 2. It is easy to verify that λk = 0 when k is even because

cp = 0 when p ≥ k and p−k is even. When k is odd, the proof of Theorem 94 still applies.

Proof of Corollary 4.C.2, part 3. Since cp = O
(
exp
(
−a√p

))
, we have that cp ≤ Ce−a

√
p for

some constant C. Similar to (4.47), we have

λk ≤ 2πd/2
2

d
2 e

d
2C2

2C
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1

∑
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√
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. (4.61)
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Use the definition in (4.48) and let a = 0, we have

f0(p) =
(p+ 1)p+

1
2

(p− k + 1)
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2 (p+ k + 1 + d)
p+k+d

2

. (4.62)

Then according to (4.51) and (4.52), for sufficiently large k, we have f0(p) ≤ f0

(
k2

d

)
when

k ≤ p ≤ k2

d
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− d
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d
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d
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d
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− d
2 ≤ C3

(
k2

d

)− d
2 .

Overall, for all p ≥ k, we have

f0(p) ≤ C3

(
k2

d

)− d
2

. (4.63)

Then we have

λk ≤ 2πd/2
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= O
(
k−d+1/2 exp

(
−a
√
k
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(4.67)

Proof of Corollary 4.C.2, part 4. Since cp = Θ(p1/2a−p), we have that cp ≤ Cp1/2a−p for

some constant C. Similar to (4.47), we have

λk ≤ 2πd/2
2

d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even
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. (4.68)
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Use the definition in (4.48) and let a = 0, we have

f0(p) =
(p+ 1)p+

1
2
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p+k+d

2

. (4.69)

Then according to (4.51) and (4.52), for sufficiently large k, we have f0(p) ≤ f0
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d
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Then we have

λk ≤ 2πd/2
2

d
2 e

d
2C2

2C

C2
1

∑
p≥k

p−k is even

p1/2a−pf0(p) (4.71)

≤ 2πd/2
2

d
2 e

d
2C2

2C3C

C2
1

(
k2

d

)− d
2
+ 1

2 ∑
p≥k

p−k is even

a−p (4.72)
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= O
(
k−d+1a−k

)
. (4.74)

On the other hand, since cp = Θ(p1/2a−p), we have that cp ≥ C ′p1/2a−p for some constant C ′.
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Similar to (4.55), we have

λk ≥ 2πd/2
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Since (k + 1)k = kk(1 + 1/k)k = Θ(kk). Similarly, (k + k + 1 + d)k = Θ((2k)k). Then we

have

λk = Ω

(
k−d/2+1a−k(k + 1)k

(k + k + 1 + d)k
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(4.78)

= Ω
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CHAPTER 5

Conclusion

In previous chapters we analyze the generalization of wide neural networks through lineariza-

tion and kernel learning. This approach overcomes the drawback of the traditional statistical

learning theory and can be applied to overparametrized networks. Also the linearization and

kernel learning approach explains the phenomenon observed by [ZBH21] that deep networks

can fit randoms labels while still have good generalization performance. In Chapter 2 we

show that under gradient descent the wide neural networks would fit the training data by a

smooth function, thus the networks can fit random labels while also generalize well if the

target function is smooth. In Chapter 3 we show that the target function is learnable if it

lies in the span of the eigenfunctions with positive eigenvalues. Thus we answer the question

why wide neural networks learns a function and when a function is learnable.

Our results also have both theoretical and practical potential applications. In Chapter 2

we show that training a wide neural network by gradient descent is equivalent to fitting the

training data by some kind of splines. In reverse, if we want to fit some splines, for example,

fit a surface from a point cloud, we can use wide neural networks to do this task. This

method has already been explored in [WTB21]. In Chapter 3 we show that the decay rate of

the generalization error for kernel learning using the NTK can be characterized by the decay

rate of the NTK spectrum. This result could explain the spectral bias [RBA19b] to a certain

extent.

However, there is still a long way to go in understanding the generalization of deep

learning. We raise several issues about the liberalization and kernel learning approach and

discuss possible future works in the following.
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First, whether kernel learning can explain the performance of deep networks is still

unclear. In many practical tasks, the state-of-the-art kernel method cannot achieve the

same performance as the state-of-the-art deep learning method. [ADH19b] showed that

the performance of kernel learning with Convolutional NTK (CNTK) is 6% lower than the

performance of the corresponding finite deep net architecture. Many people believes that

kernel learning performs worse that deep learning because deep networks has the ability to

learn good feature representations while kernel learning uses fixed features. There are some

current works showing when and why the neural networks outperform the kernel method

[GMM20,AL19]. Nevertheless, the kernel learning with NTK have comparable performance

to the deep networks and understanding why the NTK is better than traditional kernels is

still an important approach to understand deep learning.

Second, our method in Chapter 2 only applies to shallow feedforward networks. Whether

we can generalize the result to more complicated architectures such as convolutional networks

remains an open question and requires future work. Our method in Chapter 3 applies to any

kernel, thus we can study convolutional networks by studying CNTK. However, the spectrum

of CNTK is not well studied and it would be interesting to show the spectrum of CNTK on

the natural image dataset in the future.

Third, it is well-known that the kernel spectrum is highly related to the data distribution,

but what is the exact relation remains an open question. In Chapter 4 the NTK power

series gives a bit of hints of the relation between the data and the NTK, but a better

understanding of that requires more future works. [PZA21] shows that natural image data

has a low-dimensional structure despite the high ambient dimension. Neural networks are

able to use this low-dimensional structure to overcome the curse of dimensionality [Bac17].

It would be interesting to explore how to use the low-dimensional structure to analyze the

spectrum of NTK and CNTK, which has a direct impact to generalization of deep networks

according to Chapter 3.
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