
UC Davis
IDAV Publications

Title
Meshless Isosurface Generation from Multiblock Data

Permalink
https://escholarship.org/uc/item/0fp8b492

Authors
Co, Christopher S.
Porumbescu, Serban D.
Joy, Ken

Publication Date
2004

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0fp8b492
https://escholarship.org
http://www.cdlib.org/

Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2004)
O. Deussen, C. Hansen, D.A. Keim, D. Saupe (Editors)

Meshless Isosurface Generation from Multiblock Data

Christopher S. Co Serban D. Porumbescu Kenneth I. Joy

Center for Image Processing and Integrated Computing
Department of Computer Science

University of California, Davis
{co,porumbes,joy}@cs.ucdavis.edu

Abstract
We propose a meshless method for the extraction of high-quality continuous isosurfaces from volumetric data
represented by multiple grids, also called “multiblock” data sets. Multiblock data sets are commonplace in com-
putational mechanics applications. Relatively little research has been performed on contouring multiblock data
sets, particularly when the grids overlap one another. Our algorithm proceeds in two steps. In the first step, we
determine a continuous interpolant using a set of locally defined radial basis functions (RBFs) in conjunction
with a partition of unity method to blend smoothly between these functions. In the second step, we extract iso-
surface geometry by sampling points on Marching Cubes triangles and projecting these point samples onto the
isosurface defined by our interpolant. A surface splatting algorithm is employed for visualizing the resulting point
set representing the isosurface. Because of our method’s generality, it inherently solves the “crack problem” in
isosurface generation. Results using a set of synthetic data sets and a discussion of practical considerations are
presented. The importance of our method is that it can be applied to arbitrary grid data regardless of mesh layout
or orientation.

1. Introduction

Isosurfaces play an important role in scientific visualiza-
tion. Many important applications, such as geometric mod-
eling and volume segmentation, are based on isosurface ex-
traction. Much of the research in isosurface generation has
focused on regular grid data sets, but relatively little re-
search has addressed isosurfacing data represented by multi-
ple grids of arbitrary layout and orientation. We refer to such
data as multiblock data sets. Multiblock data representations
arise in many important applications. In particular, flow sim-
ulations used in computational fluid dynamics (CFD) very
frequently make use of multiple grids (see Figure 1). More-
over, these grids often overlap one another, a situation not
addressed by standard isosurfacing techniques. Multiblock
data sets appear in the form of hierarchical data representa-
tions as well, such as octrees [28] or adaptive mesh refine-
ment (AMR) [27] grids. Volumetric data represented by such
adaptive grid structures can be thought of as a specific class
of multiblock data sets.

A major issue encountered when contouring multiblock
data is the appearance of undesirable cracks or self-

intersections, which result from a naive application of meth-
ods designed for single grid data sets. There are several rea-
sons why it is important to resolve these discontinuities in
the surface. Generally, the original object being sampled is
continuous, and the cracks appear only as an artifact of a
poor reconstruction. Moreover, many applications require
watertight surface models. This issue has been treated to
some extent in the study of adaptive grids for representing
volume data, but such techniques frequently do not general-
ize to arbitrary multiblock data sets. The fundamental prob-
lem is two-fold. First, interpolation across the boundaries
of these grids is often not well-defined or not easily dealt
with. For instance, it is not well-defined how a trilinear in-
terpolant defined in one grid should incorporate data sam-
ples from another grid overlapping it (see Figure 2(d)). We
refer to this as the interpolation problem. Second, it is not
clear how to extract continuous isosurface geometry across
the grid boundaries. In particular, a direct application of the
Marching Cubes algorithm [16] to each separate grid will of-
ten produce a triangle-based surface containing triangles that
do not meet up (forming cracks) and triangles that intersect

c© The Eurographics Association 2004.

Co et al. / Meshless Isosurface Generation from Multiblock Data

Figure 1: An example of a multiblock data representa-
tion used in the simulation of flow around a space shut-
tle launch vehicle. (The data set is available online at
http://www.nas.nasa.gov/Research/. Visualization courtesy
of Edward A. Mayda of the Department of Mechanical and
Aeronautical Engineering at UC Davis.)

one another. We refer to this as the isosurface generation
problem.

Meshless techniques for scientific computation have been
introduced to alleviate mesh generation requirements by
supplying robust interpolation methods that do not rely heav-
ily on mesh connectivity. We use principles of meshless
methods to address the interpolation problem by defining a
continuous interpolation across grid boundaries. This con-
tinuous interpolation is used in conjunction with a flexible
point-based surface sampling approach to solve the isosur-
face generation problem.

Our contribution is a general approach for the construc-
tion of isosurfaces from arbitrary multiblock data through
the use of meshless techniques. We define a continuous in-
terpolation scheme based on a set of radial basis functions,
discussed in Section 3. The isosurface generation problem
is addressed by first computing the triangles of a Marching
Cubes surface in each grid. Inside the generated triangles,
points are sampled and then projected onto the isosurface
of interest using our continuous interpolant and principles
of the iso-splatting method [4]. Isosurface generation is dis-
cussed in Section 4. What results is a point set representation
suitable for rendering and geometry processing.

2. Related Work

Lorensen and Cline [16] greatly popularized isosurface vi-
sualization by introducing the Marching Cubes technique.
Their method generates triangles to approximate an isosur-
face of interest for regular grid data sets using a case-driven
approach. The elegance and relative simplicity of the March-
ing Cubes method make it a desirable technique to apply
to data sets composed of hexahedral cells, such as multi-
block data sets. However, few have successfully managed
to extract continuous isocontours from arbitrary multiblock

data. Although few have addressed this issue directly, sev-
eral have treated a similar problem in attempting to reduce
the amount of geometry generated by the standard March-
ing Cubes approach. Namely, the use of adaptive resolu-
tion volumetric representations [24, 22, 28, 13] often intro-
duces discontinuities in the interpolation that ultimately re-
sult in surface cracks that must be patched. This area of re-
search essentially addresses a specific instance of a broader
class of multiblock isosurfacing problems. Solutions to the
“crack problem” resolve discontinuities in situations where
two grids semi-conform at the interface where the grids meet
(see Figure 2(b)).

Several strategies exist to address the crack problem.
Polygons residing in the plane of the crack can be com-
puted to cover the hole [24]. Cracks can be patched by align-
ing vertices of triangles obtained from the high-resolution
grid to the contour of the lower-resolution grid [22]. Coarse
triangles can be replaced with an alternative triangulation
that stitches the triangles from the two resolutions together
[28, 13]. Another option is to avoid the generation of a vol-
umetric mesh that would introduce a discontinuity in the
volume [27, 8]. In this way, the interpolation and isosurface
generation remain continuous.

These methods work well for conforming and semi-
conforming grids, where all or some of the sample points
along the interface between the grids are shared. These meth-
ods do not address problems with non-conforming or over-
lapping grids, sometimes called overset grids in computa-
tional mechanics. The fundamental issue here is that grid-
based interpolants are not well defined in these domains, or,
in the case of overlapping grids, it is not clear how to ex-
tract continuous geometry from this irregularly sampled sub-
domain. Our method specifically addresses non-conforming
and overlapping grids and generalizes to conforming and
semi-conforming grids without modification. Figure 2 shows
various possible grid layouts for multiblock data.

Meshless methods for processing scientific data are be-
coming popular, particularly in the world of computational
mechanics. Idelsohn et al. [12] pointed out that “3D mesh
generation remains one of the most time-consuming tech-
niques,” and therefore, techniques that are independent of
a mesh are attractive as an alternative. Floater and Reimers
[5] have developed a meshless parameterization scheme suit-
able for surface reconstruction. Sukumar [26] advocates the
use of meshless methods based on natural neighbor inter-
polation for finite element analysis. Many of these mesh-
less techniques are based on scattered data interpolants, such
as Sibson’s interpolant [25], which is based on an under-
lying Voronoi decomposition of the domain. Radial basis
functions (RBFs) have been popular for hole fixing and
surface reconstruction [3], surface approximation [6, 10],
and surface modeling [17]. Hardy’s multiquadric interpolant
[11] belongs to the class of RBF scattered data interpolants
and has been successfully applied in scientific visualization.

c© The Eurographics Association 2004.

http://www.nas.nasa.gov/Research/

Co et al. / Meshless Isosurface Generation from Multiblock Data

(a) (b)

(c) (d)

Figure 2: Grid layouts in multiblock data sets. Many tech-
niques exist to generate isocontours from (a) conforming
grids and (b) semi-conforming grids, where some sample
points are shared among grids at the interface. Relatively
few techniques exist to generate isocontours from (c) non-
conforming grids or from (d) overlapping grids. In these en-
vironments, common methods for interpolation are not well
defined, and it is unclear how to extract a continuous isosur-
face representation.

Scattered data interpolation schemes can have global and lo-
cal formulations. Franke and Nielson [7] and Renka [20] dis-
cuss strategies for combining locally defined interpolants to
obtain a globally smooth approximating function.

A field related to meshless methods is the area of point-
based computer graphics. Researchers exploring this area
have studied the use of raw point samples without explicit
mesh connectivity information as an alternative to other pop-
ular geometric primitives. The point-based rendering com-
munity has focused primarily on the display and manipu-
lation of complex surfaces represented by point primitives
[15, 9, 19, 21, 1, 29, 2, 18]. Isosurfaces have been extracted
in a point-based manner using the iso-splatting technique
[4]. Much of this research has benefited from work in the
meshless community, such as the use of moving least squares
[14, 1, 18] to define the surface described by an arbitrary set
of possibly noisy point samples.

We overcome the interpolation problem by disregarding
the grid connectivity and defining a continuous RBF inter-
polant over the data points. In order to generate geometry to
represent the isosurface, we extend principles from the iso-
splatting method [4] to obtain a set of oriented points. The
resulting point set is rendered using a surface splatting algo-
rithm [21, 29, 2, 18] and is suitable for further geometry pro-
cessing. The simplicity and generality of our method make it
an attractive solution for obtaining high-quality isosurfaces
from arbitrary grid data.

3. Interpolation

Radial basis functions (RBFs) provide effective and high-
quality tools for interpolating arbitrary multivariate data. We

first discuss the RBF interpolation scheme we use in Section
3.1. How we build and later evaluate these local interpolants
to form a single global function is described in Section 3.2.

3.1. RBF Interpolation

Given a set of sample points S defined by a set of points
pi = (xi,yi,zi), i = 1,2, . . . , |S|, let Fi be the scalar value as-
sociated with pi. We interpolate a value H at p = (x,y,z)
using a multiquadric method [11, 10, 6].

To compute a function value, we utilize an interpolation
of the form

H(x,y,z) =
N

∑
j=1

a j B j(x,y,z), (1)

where each B j is a multiquadric function defined as

B j(x,y,z) = [(x j − x)2 +(y j − y)2 +(z j − z)2 +R2]1/2,

subject to the constraints

H(x j,y j,z j) = Fj j = 1,2, . . . ,N . (2)

The gradient of this function is given by

∇H(x,y,z) =
(δH

δx
,

δH
δy

,
δH
δz

)

,

where the partial derivative δH
δx is computed as

δH
δx

=
N

∑
j=1

x− x j

B j(x,y,z)
. (3)

The partial derivative of H(x,y,z) with respect to y and z take
a similar form as in Equation (3). We note that Equations (1)
and (3) make use of the evaluation of the basis functions
B j , and so the function value and gradient can be computed
simultaneously.

We call R the multiquadric parameter and a j the blend-
ing coefficients. The multiquadric parameter is usually fixed.
The appropriate value for R is still an open problem, how-
ever, we have found that using a value of 0.025 works very
well for many of the volumetric scalar fields we have used.
The blending coefficients are determined by solving a linear
system of equations given by the constraints of Equation (2).
The value of N is the number of data points used for value
approximation. Classically, a global fit is performed by set-
ting N to be the same as |S|, which can be computationally
expensive for large data sets. A local scheme can be adopted
by considering only the N points around p within a certain
neighborhood.

A local interpolation defined in a piecewise fashion is not
guaranteed to be continuous and thus must be blended. Par-
tition of unity methods [7, 20, 26, 17] are usually applied to
blend locally defined interpolation functions into one smooth
global interpolant. Partition of unity functions φk have the

c© The Eurographics Association 2004.

Co et al. / Meshless Isosurface Generation from Multiblock Data

(a) (b) (c) (d)

Figure 3: Local RBF Construction. (a) The input is multiblock data. (b) The grid connectivity is disregarded. (c) Data points
(shown as black dots) are binned into RBF grid cells. (d) Local RBFs are computed with centers placed at the center of the
cells. An RBF center is shown here as a square point, and its radius of influence is shown as a shaded circle. To avoid visual
clutter, only the three middle RBFs are shown.

feature that across the domain of the function

∑
k

φk(x,y,z) ≡ 1.

Given M nonnegative compactly supported functions Wq, we
can define a set of partition of unity functions by

φk(x,y,z) = Wk(x,y,z)
/ M

∑
q=1

Wq(x,y,z).

Our choice of Wk is discussed in Section 3.2. To define a
globally continuous interpolant F(x,y,z), we define

F(x,y,z) =
M

∑
k=1

φk(x,y,z)Hk(x,y,z),

where Hk is a local RBF defined as in Equation (1).

3.2. Local RBF Construction

To define a local interpolation Hk, we first disregard the con-
nectivity of the grid and consider only the data points. These
data points are then binned into a global regular grid, which
we call the RBF grid, defined by the bounding box around
the data points. We associate a local interpolant Hk with each
cell center point ck of this grid. This point is often referred to
as an RBF center. We define a radius of influence Rw around
each RBF center to be

Rw = 2
√

sx2 + sy2 + sz2,

where (sx,sy,sz) are the dimensions of a single cell in the
RBF grid. The coefficients of the local RBF associated with
ck are computed by considering all points within the sphere
defined by the RBF center ck and the radius of influence Rw.
The points necessary to compute these parameters are ob-
tained by checking each point in the neighboring 26 cells–
the eight vertex neighbors, twelve edge neighbors, and six
face neighbors–to see if the point is inside the sphere. If this
region happens to be empty, we do not construct an RBF
center there. The RBF construction process is illustrated in
Figure 3.

In creating the RBF grid, we attempt to make the cells

as close to cubes in shape as possible. This is achieved by
computing the RBF grid’s dimensions nx ×ny ×nz using

s =
(

m
wxwywz

n

)1/3
,

nx = round
(wx

s

)

,

ny = round
(wy

s

)

,

nz = round
(wz

s

)

,

where n is the number of data points in the entire data set,
(wx,wy,wz) is the size of the bounding box enclosing all the
data grids, and m is a user-defined parameter roughly spec-
ifying the number of data points to place in each cell. We
refer to m as the binning constant. These equations are com-
monly used to create a grid for the accelerated ray tracing of
complex scenes [23].

When evaluating the function at an arbitrary point p =
(x,y,z), we determine in which RBF grid cell the point p
resides to obtain the local RBF interpolant Hk. We collect the
26 neighboring local RBF interpolants adjacent to this cell
in the RBF grid. At the point p, these 27 local interpolants
are evaluated and blended together using a partition of unity
function to obtain a final function value and gradient. We
utilize the inverse distance functions

Wk(x,y,z) =

(

(Rw −dk)+
Rwdk

)2

(Rw −dk)+ =

{

Rw −dk if dk < Rw

0 if dk ≥ Rw

as weight functions to generate our partition of unity func-
tion, where dk is the Euclidean distance between the RBF
center point ck and the point p [20]. If a cell does not have
an associated local interpolant, we do not consider it for our
calculation.

4. Isosurface Generation

To generate geometry to represent the isosurface, we first
compute triangles inside each cell of the original multiblock

c© The Eurographics Association 2004.

Co et al. / Meshless Isosurface Generation from Multiblock Data

(a)

(b)

(c)

(d)

Figure 4: Illustration of our isosurface generation method.
(a) Marching Cubes triangles are generated inside each cell.
(b) The point samples are generated in each triangle and
then (c) projected onto the isosurface. (d) The point set is
rendered using a surface splatting algorithm.

grids according to the Marching Cubes algorithm. Inside
these triangles, we compute a set of points at which we sam-
ple our volume for function value and gradient using our in-
terpolation scheme. We generate a uniform lattice of samples
inside the triangle using barycentric coordinates and deter-
mine the number of samples to generate by specifying the
number of samples to compute in the u- and v-directions.
We take care not to sample along the edge of a given tri-
angle to avoid redundant computation, since the triangle’s
edge neighbor could duplicate the same exact points. Each
sample point, its function value, and associated gradient are
used as input to a Newton-Raphson root-finding procedure
to project the point onto the isosurface of interest. Newton-
Raphson iteration finds approximate roots of a function by
using function value and first derivative information to move
an initial guess closer to the actual solution. The Newton-
Raphson procedure converges to the isosurface quadratically
when given a reasonably good initial guess, which the trian-
gles inside cells intersected by the isosurface provide. The
result is a set of points and normals which collectively define
the isosurface. Figure 4 illustrates our isosurface generation
scheme for a small example.

For rendering and geometry processing, we define the ra-
dius of each point sample to be proportional to the area of
the triangle in which it was sampled and the distance it trav-
eled from the original point sample taken. Let A denote the
area of the triangle, n be the number of samples taken uni-
formly in the u- and v-directions inside the triangle, l be the
length of the diagonal of the cell in which the triangle exists,
and d be the Euclidean distance between the original sample
point and its final computed location. The number of points
sampled inside a triangle is n(n+1)

2 . The radius r of a point
sample is computed to be

r = 2
(

1+
d
l

)

√

2A
πn(n+1)

.

We effectively compute the size of each point to be large
enough so that if no displacement of the points occur, the
original triangle is rendered without holes. However, when
the point is displaced from the original sample location, we
scale the size of the point linearly with respect to the dis-
tance it travels from that point. The premise is that as a point
moves further from its original sample location, the surface
sampling becomes less dense, and thus the point must be
made larger to compensate for gaps evolving between it and
the neighboring points.

5. Results

To test the effectiveness of our approach, we used a set of
synthetic data sets created by sampling available scalar data
sets on multiple grids. The “bucky ball” data set was sam-
pled using semi-conformal grids. The “fuel injection” and
“neghip” data sets were sampled using multiple overlapping
grids. Our test machine was a 2.8 GHz P4 PC with 2 GB of

c© The Eurographics Association 2004.

Co et al. / Meshless Isosurface Generation from Multiblock Data

memory. We fixed the multiquadric parameter to 0.025. The
binning constant was set to 5. The RBF construction com-
putation is dominated by the linear system solver for com-
puting the blending coefficients. The time complexity of this
computation is O(n3), where n is the number of data points
used to compute the local interpolant. Each local RBF used
an average of approximately 150-300 data points. Informa-
tion about the data sets as well as the RBF construction per-
formance are provided in Table 1.

Figure 5 demonstrates how our method can be used on
semi-conformal multiblock data sets, such as those which re-
sult from octree subdivisions. Again, the cracks exhibited by
a naive application of Marching Cubes (seen in the top and
middle images) are not realized in the isosurface extracted
using our approach (bottom-most image).

Figure 6 shows the neghip data set sampled by two over-
lapping grids. The rendering of the isosurfaces obtained
from a naive application of Marching Cubes are color-coded
to match the color of the grids. Cracks and self-intersections
in the isosurface are observed, since the blue surface inter-
sects the pink one, and vice versa. This shows that the tri-
linear interpolant of one grid does not agree with the other
grid as to the location of the isosurface. The bottom im-
ages of Figure 6 provide a side-by-side quality comparison
of Marching Cubes versus our method.

Figure 7 illustrates our approach applied to the fuel in-
jection data set consisting of several overlapping grids. The
isosurfaces are color-coded to match the grid in which the
geometry was sampled. Note that the Marching Cubes result
(middle image) also contains several self-intersections and
cracks. Again, this is an indication of a discontinuous in-
terpolation scheme combined with an isosurface generation
method that makes it difficult to extract a continuous surface.
The same isosurface using our approach (right-most image)
offers improved representation quality by using a continuous
interpolation scheme along with a flexible geometry genera-
tion method.

6. Discussion and Future Work

Our method has several advantages and offers many interest-
ing avenues for future work. Specifically, the use of points
for sampling our implicit surface is well-suited to the case
of overlapping grids. Also, one can imagine many other in-
teresting ways to generate point samples on the isosurface of
interest.

One major advantage to sampling the isosurface using
points is that the point samples are not adversely affected by
the overlap of nearby samples. For instance, triangles gener-
ated in one grid may be extremely close to triangles gener-
ated in an overlapping grid. When we sample these triangles
for points and project them onto the isosurface, it is likely
that many points will end up overlapping one another sig-
nificantly. While this usually causes problems when using

other geometric primitives, such as triangles, point geometry
is less sensitive to this redundancy. Since all of these points
snap to the same surface, redundancy is not a problem. As
long as there is consistency among the point samples as to
where the isosurface exists, no cracks or self-intersections
will appear. This consistency is provided by our continu-
ous interpolation scheme. The right-most image of Figure
7 shows an example where significant point sample overlap
occurs because of overlapping grids.

Another major advantage to sampling the isosurface using
points is that we can adjust our sampling in a flexible manner
to meet application-specific requirements. The surface onto
which we wish to map points is implicitly known and can be
sampled less densely, for instance, in areas of low curvature
and more densely in areas of high curvature. Similarly, it
is possible to steer the generation of point samples based
on viewing parameters, as in the point-set-surface method
by Alexa et al. [1], where a moving least squares surface is
dynamically sampled to meet screen space resolution. While
this feature is not a major focus of our work, we feel that this
added flexibility is a key advantage that makes our approach
usable in a variety of application domains.

Our future work will focus on more effective strategies for
isosurface generation. In certain situations, uniformly sam-
pling the triangles using barycentric coordinates may pro-
duce more point samples than is really necessary to represent
the desired isosurface. On the other hand, although March-
ing Cubes triangles offer an excellent framework within
which to sample our continuous isosurface, there is still
no guarantee that these triangles will provide enough ini-
tial samples to adequately represent the desired isosurface.
Other methods for inserting initial guesses for the placement
of isosurface geometry must be explored. We intend to inves-
tigate alternative sampling patterns and methods that analyze
surface characteristics to achieve a more optimal distribution
of surface samples.

Other future work will include investigating optimal
placement of the RBF centers and the application of our
technique to data sets consisting of other types of cells. We
use a uniform placement of RBF centers in our work. A
more optimal placement of RBF centers may be achieved
by using, for instance, octrees and error estimates to guide
the process. We have primarily discussed the application of
our method to hexahedral data sets. However, our method
has its foundation in scattered data analysis, and thus eas-
ily generalizes to various types of volumetric meshes, such
as tetrahedral meshes. The use of other scattered data inter-
polation schemes and more efficient methods for evaluating
these interpolants are issues of great importance and deserve
a thorough investigation.

7. Conclusion

We have presented the first technique for generating con-
tinuous isosurfaces from arbitrary multiblock data. Using

c© The Eurographics Association 2004.

Co et al. / Meshless Isosurface Generation from Multiblock Data

Data Set # of Grids # of Data Points # of RBF Centers RBF Construction Time

bucky ball 2 21,114 4,096 1 min 42 s
fuel injection 5 2,688 496 5 s

neghip 2 16,000 3,060 50 s

Table 1: RBF construction statistics performed on a 2.8 GHz P4 with 2 GB of memory.

local radial basis functions and partition of unity methods
for interpolation, we defined a continuous interpolant across
grid boundaries, regardless of grid resolution, grid overlap
and regardless of whether or not the grids conform. We use
Marching Cubes as a framework for generating point sam-
ples near the isosurface. These point samples are projected
onto the isosurface through Newton-Raphson iteration. The
result is a point set describing a continuous surface. The
main contribution of this work is that arbitrary grid data can
be handled in a general way, making our method applicable
to a wide variety of data sets without any specialization.

Acknowledgments

This work was supported by the National Science Foun-
dation under contracts ACR 9982251 and ACR 0222909,
through the National Partnership for Advanced Comput-
ing Infrastructure (NPACI); the Lawrence Livermore Na-
tional Laboratory under contract B523818, and by Lawrence
Berkeley National Laboratory. We thank N. Sukumar of the
Department of Civil and Environmental Engineering at UC
Davis for many useful discussions with respect to mesh-
less methods for scientific computation. We are grateful to
Edward A. Mayda of the Department of Mechanical and
Aeronautical Engineering at UC Davis for his help un-
derstanding issues in computational mechanics. We thank
Oliver Kreylos of the Center for Image Processing and In-
tegrated Computing (CIPIC) at UC Davis for supplying
the bucky ball data set. The neghip and fuel injection data
sets may be obtained online at http://www.volvis.org/. The
space shuttle lauch vehicle data set can be obtained online at
http://www.nas.nasa.gov/Research/. We thank the members
of the Visualization and Graphics Group of the Center for
Image Processing and Integrated Computing (CIPIC) at UC
Davis.

References

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and
C. T. Silva. Point set surfaces. In IEEE Visualization ’01 (VIS
’01), pages 21–28, Washington - Brussels - Tokyo, October
2001. IEEE. 3, 6

[2] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high
quality rendering of point sampled geometry. In S. Gibson
and P. Debevec, editors, Proceedings of the 13th Eurographics
Workshop on Rendering (RENDERING TECHNIQUES-02),

pages 53–64, Aire-la-Ville, Switzerland, June 26–28 2002.
Eurographics Association. 3

[3] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.
Fright, B. C. McCallum, and T. R. Evans. Reconstruction and
representation of 3d objects with radial basis functions. In Pro-
ceedings ACM SIGGRAPH 2001, pages 67–76, Los Angeles,
CA, August 2001. ACM SIGGRAPH. 2

[4] C. S. Co, B. Hamann, and K. I. Joy. Iso-splatting: A Point-
based Alternative to Isosurface Visualization. In Proceedings
of the Eleventh Pacific Conference on Computer Graphics and
Applications - Pacific Graphics 2003, pages 325–334, October
8–10 2003. 2, 3

[5] M. S. Floater. Meshless parameterization and surface re-
construction. Computer Aided Geometric Design, 18:77–92,
2001. 2

[6] R. Franke and H. Hagen. Least squares surface approximation
using multiquadrics and parametric domain distortion. Com-
puter Aided Geometric Design, 16:177–196, 1999. 2, 3

[7] R. Franke and G. Nielson. Smooth interpolation of large sets
of scattered data. International Journal for Numerical Meth-
ods in Engineering, 15(11):1691–1704, 1980. 3

[8] B. F. Gregorski, M. A. Duchaineau, P. Lindstrom, V. Pascucci,
and K. I. Joy. Interactive view-dependent rendering of large
isosurfaces. In Proceedings of the IEEE Visualization 2002.
IEEE, IEEE, 10 2002. 2

[9] J. P. Grossman and W. J. Dally. Point sample rendering.
In G. Drettakis and N. Max, editors, Rendering Techniques
’98, Eurographics, pages 181–192. Springer-Verlag Wien New
York, 1998. 3

[10] H. Hagen, R. Franke, and G. Nielson. Repeated knots in least
squares multiquadric functions. Computing Suppl. 10, pages
177–187, 1995. 2, 3

[11] R. L. Hardy. Theory and applications of the multiquadric-
biharmonic method: 20 years of discovery 1968–1988. Com-
puters and Mathematics with Applications, 19:163–208, 1990.
2, 3

[12] S. R. Idelsohn, E. Oñate, N. Calvo, and F. Del Pin. The mesh-
less finite element method. International Journal for Numeri-
cal Methods in Engineering, 58:893–912, 2003. 2

[13] R. S. Laramee and R. D. Bergeron. An Isosurface Continuity
Algorithm for Super Adaptive Resolution Data. In J. Vince
and R. Earnshaw, editors, Advances in Modelling, Anima-
tion, and Rendering: Computer Graphics International (CGI
2002), pages 215–237, Bradford, UK, July 1-5 2002. Com-
puter Graphics Society, Springer. 2

[14] D. Levin. The approximation power of moving least-squares.
Mathematics of Computation, 67(224):1517–1531, October
1998. 3

[15] M. Levoy and T. Whitted. The use of points as a display prim-
itive. Technical Report 85-022, University of North Carolina
at Chapel Hill, 1985. 3

[16] W. E. Lorensen and H. E. Cline. Marching Cubes: A high res-
olution 3D surface reconstruction algorithm. In M. C. Stone,

c© The Eurographics Association 2004.

http://www.volvis.org/
http://www.nas.nasa.gov/Research/

Co et al. / Meshless Isosurface Generation from Multiblock Data

editor, Siggraph 1987, Computer Graphics Proceedings, vol-
ume 21, pages 163–169. ACM Press / ACM SIGGRAPH / Ad-
dison Wesley Longman, July 1987. 1, 2

[17] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Sei-
del. Multi-level partition of unity implicits. In J. Hart, editor,
Siggraph 2003, Computer Graphics Proceedings, volume 22,
pages 463–470, July 2003. 2, 3

[18] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross. Shape
modeling with point-sampled geometry. In J. Hart, editor,
Siggraph 2003, Computer Graphics Proceedings, volume 22,
pages 641–650, July 2003. 3

[19] H. Pfister, J. van Baar, M. Zwicker, and M. Gross. Surfels:
Surface elements as rendering primitives. In S. Hoffmeyer, ed-
itor, Proceedings of the Computer Graphics Conference 2000
(SIGGRAPH-00), pages 335–342, New York, July 23–28
2000. ACMPress. 3

[20] R. J. Renka. Multivariate interpolation of large sets of scat-
tered data. ACM Transactions on Mathematical Software,
14(2):139–148, June 1988. 3, 4

[21] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution
point rendering system for large meshes. In K. Akeley, ed-
itor, Siggraph 2000, Computer Graphics Proceedings, pages
343–352. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 2000. 3

[22] R. Shekhar, E. Fayyad, R. Yagel, and J. F. Cornhill. Octree-
based decimation of marching cubes surfaces. In R. Yagel
and G. M. Nielson, editors, Proceedings of the Conference
on Visualization, pages 335–344, Los Alamitos, October 27–
November 1 1996. IEEE. 2

[23] P. Shirley. Realistic Ray Tracing. AK Peters Limited, first
edition, 2000. 4

[24] R. Shu, C. Zhou, and M. S. Kankanhalli. Adaptive march-
ing cubes. The Visual Computer, 11(4):202–217, 1995. ISSN
0178-2789. 2

[25] R. Sibson. A vector identity for the dirichlet tessellation.
Mathematical Proceedings of the Cambridge Philosophical
Society, 87(1):151–155, 1980. 2

[26] N. Sukumar. Meshless methods and partition of unity finite
elements. In V. Brucato, editor, Proceedings of the Sixth Inter-
national ESAFORM Conference on Material Forming, pages
603–606, Salerno, Italy, April 2003. 2, 3

[27] G. H. Weber, O. Kreylos, T. J. Ligocki, J. M. Shalf, H. Ha-
gen, B. Hamann, and K. I. Joy. Extraction of crack-free iso-
surfaces from adaptive mesh refinement data. In D. S. Ebert,
J. M. Favre, and R. Peikert, editors, Data Visualization 2001
(Proceedings of “VisSym ’01”), pages 25–34, Vienna, Austria,
2001. Springer-Verlag. 1, 2

[28] R. Westermann, L. Kobbelt, and T. Ertl. Real-time explo-
ration of regular volume data by adaptive reconstruction of
iso-surfaces. The Visual Computer, 15(2):100–111, 1999. 1,
2

[29] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Sur-
face splatting. In E. Fiume, editor, Siggraph 2001, Computer
Graphics Proceedings, pages 371–378. ACM Press / ACM
SIGGRAPH, 2001. 3

Figure 5: Isosurface visualization of a semi-conformal
multiblock representation of the bucky ball data set. Top:
View showing two grid resolutions. Middle: Marching Cubes
results in cracks at the coarse-fine boundary. Bottom: Our
method applied to the same data set produces a continuous
closed isosurface representation.

c© The Eurographics Association 2004.

Co et al. / Meshless Isosurface Generation from Multiblock Data

Figure 6: Isosurface visualization of a multiblock representation of the neghip data set. Top-left: Axis-aligned view showing two
overlapping grids representing the data. Top-right: Marching Cubes triangles color-coded by grid. Notice the self-intersections
and cracks in the isosurface. Bottom: Side-by-side comparison of Marching Cubes versus our approach.

Figure 7: A fuel injection data set represented by five overlapping grids. Left: A visualization of the five grids. Middle: A
naive application of Marching Cubes produces several cracks and self-intersections in regions of overlap. Right: Our method
generates a single continuous surface. Overlapping points are not a problem, as they project to a globally defined isosurface.

c© The Eurographics Association 2004.

