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Abstract 

 

Development of Deep Learning Methods for Magnetic 

Resonance Phase Imaging of Neurological Disease 

Yicheng Chen 

 

Magnetic resonance imaging (MRI) is a high-resolution, non-invasive medical imaging modality 

that is widely used in human brain. In recent years, susceptibility weighted imaging (SWI) and 

quantitative susceptibility mapping (QSM) have been proposed to utilize MR phase signal to 

generate contrast from tissue magnetic susceptibility and even quantify the property. On the 

other hand, deep learning, especially deep convolutional neural networks (DCNNs), have 

achieved state-of-the-art performances in numerous computer vision tasks and gained 

significant attention in the field of medical imaging in the recent years. This dissertation 

combined the idea of deep learning with the two MR phase imaging methods.  

To combined deep learning with SWI, we designed and trained a 3D deep residual network that 

can distinguish false positive detected candidates from cerebral microbleeds (CMBs) and built 

an automatic CMB detection pipeline with high performance. We further confirmed the 

generalizability of this deep learning-based pipeline using multiple datasets with different scan 

parameters and pathologies and provided lessons for application and generalization of generic 

deep learning based medical imaging methods. 

To combine deep learning with QSM, we developed a 3D U-Net based network that learned to 

perform dipole inversion from gold standard QSM acquired from data with multiple orientations. 
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The model was further improved with an adversarial training strategy and achieved significantly 

lower reconstruction error than traditional QSM algorithms. In addition, we also performed 

various background removal and dipole inversion algorithms on both brain tumor patients and 

healthy volunteers to study and compare their performance. The results can provide guidance 

on future applications of QSM in different clinical scenarios. 
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Chapter 1. Introduction 

Magnetic resonance imaging (MRI) is a powerful non-invasive medical imaging modality that is 

widely used due to its flexibility, non-radioactivity, high spatial resolution and tunable contrast for 

soft tissue. MRI has been used in various clinical applications, especially diseases related to the 

human brain, including different types of cancers, neurodegenerative diseases, ischemic stroke, 

and many others. 

Currently, most clinical MRI applications acquire information and generate contrast from the 

difference in signal magnitude. However, the MRI signal is inherently complex-valued, and the 

phase of the signal also carries useful information that can be utilized to perform quantitative 

imaging. Among various sources that lead to differences in MR phase images, magnetic 

susceptibility is the property gaining most interest due to its clinical relevance and potential to be 

a biomarker.  

Susceptibility weighted imaging (SWI) is a MR phase imaging technique that utilizes the T2* 

phase by filtering it in order to further weight the magnitude image to highlight susceptibility 

differences. SWI has been widely used in clinical applications, especially neurovascular 

diseases. However, one major limitation of SWI is that it is qualitative. Quantitative susceptibility 

mapping (QSM) is a recent method to quantify the distribution of magnetic susceptibility from 

the MR phase signal. 

In recent years, deep learning is an emerging branch of machine learning developed to tackle 

computer vision problems such as image classification, image segmentation, and object 

detection. Deep learning has also gained much attention in the field of MRI due to its 

performance and great potential. It has been shown that deep learning could facilitate clinical 

MRI in various tasks, from signal acquisition, to image reconstruction, to image post-processing 

and assisted diagnosis.  
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In this dissertation, we investigated the techniques of susceptibility imaging using MR, 

developed deep learning methods combined with these techniques, and analyzed them on 

clinical applications: 

Chapter 2 introduced the background information for this dissertation. First, the basic principles 

of MRI are described, then the methods of SWI and QSM and their clinical applications are 

introduced. Finally, this chapter includes an overview of machine learning and the development 

of deep learning. 

Chapter 3 presents the development of a novel 3D deep convolutional neural network (DCNN) 

for automatic detection of radiotherapy-induced cerebral microbleeds (CMBs) based on SWI 

images. The technique significantly reduced the number of false positives and nearly automates 

the CMB detection and segmentation process. 

Chapter 4 investigates the automatic CMB detection method developed in Chapter 3 in further 

detail by applying it on different datasets to test its generalizability. We found that the model 

could be well generalized to data with different scan parameters and pathology without severe 

overfitting. This project could also inform generic medical imaging tasks using deep learning on 

the development and optimization of deep neural networks. 

Chapter 5 compares different background removal and dipole inversion algorithms for QSM 

processing and evaluated the methods on volunteers and patients with radiation-induced CMBs 

using various metrics, including noise, white matter homogeneity, vein and CMB contrast, 

whole-brain image metrics and basal ganglia ROI metrics. This chapter could provide guidance 

for future application of QSM in different pathologies.  

Chapter 6 develops a learning-based QSM dipole inversion algorithm by training a generative 

adversarial network (GAN) with 3D U-Net architecture. This new method supersedes the 

traditional dipole inversion algorithms in accuracy, robustness and speed.  
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Chapter 7 summarizes the work presented in this dissertation and outlines the future directions 

of related research topics. 
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Chapter 2. Background 

2.1. Basics of magnetic resonance imaging 

2.1.1. Magnetic resonance physics and signals 

Magnetic resonance imaging or MRI, is a tomographic imaging technique that produces images 

of internal physical and chemical characteristics of an object from externally measured nuclear 

magnetic resonance signals. [1] Although a rigorous and accurate description of the basic MR 

physics requires quantum mechanics, the classical treatment is sufficient to describe the 

macroscopic behaviors in most cases, including the scope of this dissertation. Therefore, we will 

introduce the classical description of MR and MR physics in this section. 

Atoms with odd numbers of protons/neutrons (for example the hydrogen 1H in water, most 

abundant in biological specimens) have spin angular momentum. [2] In a strong static magnetic 

field 𝐵𝐵0����⃗  (usually 0.5~7 Tesla in modern medical MRI scanners), spins tend to align with 𝐵𝐵0����⃗  and 

generate a net magnetization. At a certain frequency called Larmor frequency, 𝑓𝑓, the nuclear 

spins exhibit resonance. The Larmor frequency relates to the applied magnetic field by the 

following equation: 

𝑓𝑓 =
𝛾𝛾

2𝜋𝜋
𝐵𝐵 (2. 1) 

where 𝛾𝛾 is gyromagnetic ratio and for 1H atoms, 𝛾𝛾/2𝜋𝜋 = 42.58MHz/T.  

Applying a radiofrequency magnetic field 𝐵𝐵1����⃗  at the Larmor frequency calculated using Equation 

2.1 will excite the spin/magnetization. Following the excitation, the magnetization will precess 

about the direction of the applied field and create a transverse component 𝑀𝑀𝑥𝑥𝑥𝑥 of the 

magnetization as Figure 2.1 demonstrates. According to Faraday’s law of induction, the 

oscillation results in a signal called a free induction decay (FID) and represents the basic MR 

signal to be recorded.  
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Figure 2.1 Excitation of magnetization.  
(a) in the lab frame. (b) in the rotation frame of Larmor frequency.  

 

Following the excitation, the transverse component of the magnetization decays away and the 

longitudinal component returns to its thermal equilibrium. Classically, these behaviors can be 

described by:  

• Longitudinal relaxation 

𝑑𝑑𝑀𝑀𝑧𝑧 
𝑑𝑑𝑑𝑑

= −
𝑀𝑀𝑧𝑧 −𝑀𝑀0 

𝑇𝑇1
(2. 2) 

• Transverse relaxation 

𝑑𝑑𝑀𝑀𝑥𝑥𝑥𝑥 
𝑑𝑑𝑑𝑑

= −
𝑀𝑀𝑥𝑥𝑥𝑥 
𝑇𝑇2

(2. 3) 

Where 𝑀𝑀0 is the equilibrium magnetization, 𝑇𝑇1 is spin-lattice time constant, and 𝑇𝑇2 is the spin-

spin time constant. [3] These time constants vary among different tissue components and are 

used to generate image contrast in MRI. 

More generically, the dynamics of nuclear magnetization is described by the Bloch equation: [2] 

𝑑𝑑𝑀𝑀��⃗
𝑑𝑑𝑑𝑑

= 𝑀𝑀��⃗ × 𝛾𝛾𝐵𝐵�⃗ −
𝑀𝑀𝑥𝑥𝚤𝚤 + 𝑀𝑀𝑥𝑥𝚥𝚥

𝑇𝑇2
−

(𝑀𝑀𝑧𝑧 −𝑀𝑀0)𝑘𝑘�⃗
𝑇𝑇1

(2. 4) 

where 𝚤𝚤, 𝑗𝑗 and 𝑘𝑘�⃗  are unit vectors in the 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 directions.  

A compact form of the general solution for the transverse component at position r⃗ and time t for 

an inhomogeneous object and nonuniform field Δω(𝑟𝑟, τ) is: 
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𝑀𝑀(𝑟𝑟, 𝑑𝑑) = 𝑀𝑀0(𝑟𝑟)𝑒𝑒−𝑡𝑡/𝑇𝑇2(𝑟𝑟)𝑒𝑒−𝑖𝑖𝜔𝜔0𝑡𝑡𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑖𝑖� 𝛥𝛥𝛥𝛥(𝑟𝑟, 𝜏𝜏)𝑑𝑑
𝑡𝑡

0
� (2. 5) 

The total signal received is the sum of all magnetization in the imaging field of view (FOV): 

𝑠𝑠𝑟𝑟(𝑑𝑑) = � � �𝑀𝑀(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑑𝑑)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧
𝑧𝑧𝑥𝑥𝑥𝑥

(2. 6) 

With the following simplifications and application of time-varying gradient magnetic fields G��⃗ (τ) 

that: 

1) ignore the relaxation term e−t/T2(r�⃗ ), 

2) assume a plane centered at z = z0 of thickness Δz and let 𝑚𝑚(𝑥𝑥,𝑦𝑦) =

∫ 𝑀𝑀0(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑧𝑧𝑧𝑧0+Δ𝑧𝑧/2
𝑧𝑧0−Δ𝑧𝑧/2 , 

3) drop the 𝑒𝑒−𝑖𝑖ω0𝑡𝑡 by demodulation, 

the signal equation 2.6 can be simplified as: 

𝑠𝑠(𝑑𝑑) = ��𝑚𝑚(𝑥𝑥,𝑦𝑦)𝑒𝑒−𝑖𝑖2𝜋𝜋�𝑘𝑘𝑥𝑥(𝑡𝑡)𝑥𝑥+𝑘𝑘𝑦𝑦(𝑡𝑡)𝑥𝑥�

𝑥𝑥𝑥𝑥
𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 (2. 7) 

where 𝑘𝑘𝑥𝑥(𝑑𝑑) = γ
2π ∫ 𝐺𝐺𝑥𝑥(τ)𝑑𝑑𝜏𝜏𝑡𝑡

0  and 𝑘𝑘𝑥𝑥(𝑑𝑑) = γ
2π ∫ 𝐺𝐺𝑥𝑥(τ)𝑑𝑑𝜏𝜏𝑡𝑡

0 . 

 

2.1.2. Imaging principles and parallel imaging 

The simplified signal equation 2.7 has the form of a 2D Fourier transform of 𝑚𝑚(𝑥𝑥,𝑦𝑦). Because 𝑘𝑘𝑥𝑥 

and 𝑘𝑘𝑥𝑥 are integrals of time-varying gradient magnetic fields �⃗�𝐺, by applying a certain gradient 

field, we can acquire the signal to cover the Fourier transform space (or k-space) of the image. 

A most commonly used signal encoding method is demonstrated in Figure 2.2. By applying the 

𝐺𝐺𝑥𝑥 on the middle, we can acquire the signal 𝑠𝑠 that corresponds to the k-space data shown on 

the right.  
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Figure 2.2 1D signal encoding. 
Left: an example object to be imaged. Middle: the imaging sequence. Right: k-space trajectory. 

 

Applying different gradient fields in the 𝑦𝑦 direction as shown in Figure 2.3 traverses different 

positions in k-space. Once we acquired enough k-space data points according the Nyquist 

sampling theorem [4], we can reconstruct the image/object by inverse 2D Fourier transform.  

 

Figure 2.3 2D signal encoding.  
Left: 2D imaging sequence. Right: k-space trajectories. 

 

Although the above is a simple example of MRI signal encoding in the 2D scenario, many other 

k-space trajectories have been developed such as radial [5] and spiral [6] trajectories, that can 

also be easily extended to 3D by adding a gradient field along the 𝑧𝑧-direction. 
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Despite the flexibility of MRI signal encoding, it is also time consuming because of the phase-

encoding step [1], which applies a certain 𝐺𝐺𝑥𝑥 to sample one line of k-space according to the 

Nyquist sampling theorem as shown in the right panel of Figure 2.3. A method to accelerate this 

scan time is parallel imaging [7], [8], which acquires the signal using multiple receiver coils 

(sometimes called phased-array) at different spatial locations and “unwraps” the aliasing due to 

reduced phase-encoding steps by incorporating the spatial sensitivity information of the coils.  

Nowadays, a widely implemented and commonly used parallel imaging method in clinical MRI to 

accelerate the image acquisition is called Generalized autocalibrating partially parallel 

acquisitions or GRAPPA [7]. In GRAPPA, lines through the center part of the k-space are fully 

sampled and constitute the autocalibration signal (ACS) region. These fully sampled k-space 

data are used to calculate weighting factors for each coil. The weighting factors reflect how each 

coil distorts or displaces spatial frequencies within the full field-of-view k-space. In the outer 

region of k-space, missing or skipped k-space lines are estimated using the calibrated weighting 

factors combined with local known data for each small region (known as a block or kernel). 

Figure 2.4 illustrates how the missing k-space data points are filled. 

 

Figure 2.4 GRAPPA. 
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2.2. Using phase MRI to image differences in magnetic susceptibility 

2.2.1. Susceptibility weighted imaging 

Magnetic susceptibility is an intrinsic physical property that measures how much a material or 

tissue will become magnetized in an applied magnetic field. When being imaged in MRI, tissues 

themselves will generate an induced magnetic field in addition to the original field and thus 

cause field inhomogeneity and affect the surrounding tissue. [2] This field inhomogeneity leads 

to dephasing and generates T2*-weighted contrast on magnitude images when using gradient 

echo sequences in MRI. It can be also combined with the phase information to create useful 

contrast by a technique called susceptibility-weighted imaging or SWI. [9]–[11]  

 

Figure 2.5 Processing pipeline of SWI. 
(adapted from http://mriquestions.com/making-an-sw-image.html) 

 

A typical processing pipeline to reconstruct SWI from gradient-echo sequences is illustrated in 

Figure 2.5. The raw phase image as well as the magnitude image are acquired. The raw phase 

http://mriquestions.com/making-an-sw-image.html
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is then high-pass filtered to remove the low frequency phase fluctuations and phase wraps. 

Next, a phase mask is calculated that scales data from the filtered phase image over a 0-1 

range to enhance tissues with negative susceptibilities. This phase mask is then element-wisely 

multiplied with the magnitude image for several times until the desired mix of phase information 

is incorporated. [10] In order to better visualize vascular structures, a minimum intensity 

projection (mIP) is typically performed on the 3D SWI image volume. [12] The SWI processing 

can be extended to multi-echo GRE sequences by applying filters that are adjusted according to 

the TE on phase images and then taking a weighted combination of the SWI images from each 

individual echo to obtain the final SWI [13].  

 

2.2.2. Foundations of quantitative susceptibility mapping 

Although SWI utilizes the phase induced by magnetic susceptibility and generates high contrast 

with different tissue susceptibilities, it is inherently only a qualitative imaging method. Recently, 

quantitative susceptibility mapping (QSM) [14] is an emerging MR technique that can quantify 

the intrinsic magnetic susceptibility from gradient-echo phases and provide useful information 

for various clinical applications.  

In the presence of an applied magnetic field H��⃗ , an isotropic, non-ferromagnetic material with 

susceptibility χ will generate a magnetization M���⃗ = χ ∙ H��⃗ . The distribution of M���⃗ (r⃗) causes the field 

variation: [15] 

𝛥𝛥𝐵𝐵�⃗ (𝑟𝑟) =
𝜇𝜇0
4𝜋𝜋

���𝛻𝛻 × �
𝑀𝑀��⃗ �𝑟𝑟′���⃗ � × �𝑟𝑟 − 𝑟𝑟′���⃗ �

�𝑟𝑟 − 𝑟𝑟′���⃗ �
3 �d3𝑟𝑟′���⃗ (2. 8) 

Assuming that the main field B0����⃗  is oriented in the z direction and using the vector identity, the 

above equation can be simplified to: 
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𝛥𝛥𝐵𝐵𝑧𝑧(𝑟𝑟) ≈
𝜇𝜇0
4𝜋𝜋

����
3𝑀𝑀𝑧𝑧�𝑟𝑟′���⃗ �(𝑧𝑧 − 𝑧𝑧′)

�𝑟𝑟 − 𝑟𝑟′���⃗ �
5 (𝑧𝑧 − 𝑧𝑧′) −

𝑀𝑀𝑧𝑧�𝑟𝑟′���⃗ �

�𝑟𝑟 − 𝑟𝑟′���⃗ �
3�d3𝑟𝑟′���⃗ (2. 9) 

This equation can be written as a convolution between Mz(r⃗) and the z-component of the point-

dipole response dz(r⃗) = 1
4π

3 cos2(θ)−1
|r�⃗ |3  as: 

𝛥𝛥𝐵𝐵𝑧𝑧(𝑟𝑟) = 𝜇𝜇0 �𝑀𝑀𝑧𝑧�𝑟𝑟′���⃗ �𝑑𝑑𝑧𝑧�𝑟𝑟 − 𝑟𝑟′���⃗ �d3𝑟𝑟′���⃗ (2. 10) 

In dz(r⃗), θ is the angle between the z direction and r⃗. With a condition that χ ≪ 1, Mz(r⃗) ≈

χ(r⃗)B0/μ0, the above equation can be written in the following form: 

𝛥𝛥𝐵𝐵𝑧𝑧(𝑟𝑟) = 𝐵𝐵0 �𝜒𝜒�𝑟𝑟′���⃗ �𝑑𝑑𝑧𝑧�𝑟𝑟 − 𝑟𝑟′���⃗ �d3𝑟𝑟′���⃗ (2. 11) 

which in the frequency domain takes the form: 

𝛥𝛥𝐵𝐵𝑧𝑧�𝑘𝑘�⃗ � = �𝜒𝜒�𝑘𝑘�⃗ � ∙ 𝑑𝑑𝑧𝑧�𝑘𝑘�⃗ ��𝐵𝐵0 (2. 12) 

 

where 

𝑑𝑑𝑧𝑧�𝑘𝑘�⃗ � =
1
3
−

𝑘𝑘𝑧𝑧2

�𝑘𝑘�⃗ �
2 (2. 13) 

In frequency domain, the convolution becomes a more computationally efficient element-wise 

multiplication. 

From the principles of MRI we know that the measured local frequency 𝑓𝑓(𝑟𝑟) = 𝛾𝛾
2𝜋𝜋

[𝑏𝑏0 + 𝛥𝛥𝐵𝐵𝑧𝑧(𝑟𝑟)]. 

In GRE sequences, the frequency variation between the local resonance frequency and the 

scanner’s reference frequency caused by 𝛥𝛥𝐵𝐵𝑧𝑧(𝑟𝑟) accumulates as phase. Thus, by measuring 

the phase we can invert the above equations to map the susceptibility distribution χ(𝑟𝑟). 

The above representation is a simple phase-susceptibility model where the magnetization is 

treated as a magnetic dipole. Recent studies have revealed more complex properties of 

magnetization and susceptibility, leading to the development of susceptibility tensor imaging 



12 
 

(STI) [16]. STI is beyond the scope of this dissertation, and a detailed explanation could be 

found in [15]. 

 

2.2.3. QSM processing methods 

Although the link between tissue phase and intrinsic susceptibility seems clear and simple in 

equation 2.12, in practice, careful processing is required to correctly solve for the susceptibility 

distribution from measured total phase. A typical QSM pipeline is illustrated in Figure 2.6.  

 

Figure 2.6 A typical QSM processing pipeline. 
(Adapted from [9]) 

 

The raw phase acquired from a GRE sequence is within the range of [−π,π]; any phase signal 

outside this range gets wrapped and 2π phase jumps occur as the first image in Figure 2.6 

demonstrates. Therefore, usually we first need to remove the phase aliasing, or “unwrap” the 

raw phase to restore the full-range phase map. The phase unwrapping step can be performed in 

either the spatial domain or frequency domain. In the frequency domain, path following, 

minimum norm solving, or filtering methods [17] have been developed. In the spatial domain, a 

Laplacian-based phase unwrapping has been proposed by [18] and it is more frequently used in 

QSM due to its numerical simplicity and robustness to noise.  
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The next step in QSM is usually called background field removal. The magnetic field 

perturbation in a given region-of-interest (ROI), e.g. the brain, not only originates from the 

susceptibility sources inside of the ROI, but also includes added susceptibilities outside of the 

ROI such as the air-tissue interface in the sinuses, the human torso, main field inhomogeneities, 

and shimming fields. These sources outside of the ROI (also known as background field) are 

much larger than the tissue susceptibilities we are interested in, confounding the solution of 

QSM. Therefore, the background field is usually removed before solving the linear equation 

2.12. Various approaches have been developed to separate the background field from the total 

field. [19] A common solution to this problem currently involves solving the Laplacian equation 

using the spherical mean value property [20] of the background field or by assuming a boundary 

value [21]. Chapter 5 introduces some of these methods and compares their performances.  

The final step of QSM is to solve the linear equation in 2.12, also known as dipole inversion. 

The major challenge in directly inverting the equation to solve for 𝜒𝜒 is that when 3𝑘𝑘𝑧𝑧2 ≈ �𝑘𝑘�⃗ �
2
, 

𝑑𝑑𝑧𝑧�𝑘𝑘�⃗ � is close to zero, making the linear equation an ill-posed inverse problem. In the frequency 

domain, the zero coefficients locate on a double-cone region as Figure 2.7 demonstrates. A 

theoretically feasible solution to this ill-posed issue is to acquire data N times where the subject 

has different orientations relative to the main field and fill in the missing data near or at the zero 

cone. The computational solution for this multi-orientation scheme called Calculation of 

Susceptibility Through Multiple Orientation Sampling (COSMOS) was proposed in [22]. 

However, it is rarely used in practice because it requires N ≥ 3 repeated acquisition of the same 

sequence and changing the subject’s orientation between scans, greatly prolonging the total 

scan time. Therefore, modern QSM dipole inversion algorithms are usually based on a single 

acquisition and approach the ill-posed problem by supplementing additional information through 

regularization [15]. A simple and efficient idea is to threshold the dipole kernel 𝑑𝑑𝑧𝑧�𝑘𝑘�⃗ � and 

replace the coefficients close to zero. This method is called thresholded k-space division (TKD) 
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[23]. Morphological-enabled dipole inversion (MEDI) [24] incorporates prior information from the 

magnitude image, assuming the anatomical structure have similar edges. More recent 

algorithms are introduced and compared in Chapter 5.  

 

Figure 2.7 Zero cone region in QSM inverse problem. 
(Adapted from [9]) 

 

2.3. Clinical applications of magnetic susceptibility imaging 

2.3.1. Clinical applications of SWI 

The unique contrast of SWI has played an important role in many clinical applications, 

especially neurovascular diseases including ischemic stroke, cerebral amyloid angiopathy, 

cerebral cavernous malformations [25] and cerebral microbleeds (CMB) [10]. CMBs are defined 

as small foci of chronic blood products in normal or near normal brain tissue. These small 

lesions are prevalent in various diseases such as stroke, neurodegenerative disorders, 

traumatic brain injury, and irradiated brain tumors and can serve as biomarkers of complications 

in these pathologies.  

Due to its sensitivity to tissue of different susceptibilities and high spatial resolution, SWI has 

been shown to be much more sensitive than standard GRE sequence in detecting cerebral 

microbleeds. On SWI, CMBs usually appear as round hypointense lesions with high contrast 

with normal brain tissues, as Figure 2.8 illustrates. 
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Figure 2.8 Cerebral microbleeds on SWI. 
CMBs highlighted by red arrows. 

 

In order to understand the impact of CMBs on various diseases, large-scale detection and 

quantification of the lesion burden is an essential step. [26] Traditionally, this process was 

conducted manually by trained radiologists by visually examining the SWI images. However, 

despite the high contrast SWI provides on CMBs, visual inspection of CMBs is difficult and 

labor-intensive due to their small sizes and wide distribution across the entire brain. Another 

disadvantage of manual labeling is that it requires domain-related expertise. As a result, various 

computer-aided detection methods have been developed to automate the CMB detection 

problem. [27] assumed the Gaussian distribution of the background normal tissue in a small 

region and proposed a method of intensity-based local statistical thresholding that detects 

CMBs as outliers. The false positive detections are then further removed by a support vector 

machine based on manually designed features. [28] adapted the fast radial symmetry transform 

(FRST) that could enhance objects with spherical geometry and improved detection accuracy. 

[29] proposed a fully-automated segmentation algorithm based on 2D FRST and combined it 

with a user-guided CMB classification tool to further reduce false positive detections, achieving 

a 5-fold reduction in the user’s time spent on evaluating CMB burden. 
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In recent years, deep convolutional neural networks (DCNNs) have been applied to CMB 

detection [30]–[32] and achieved better performances than traditional methods and models 

based on image processing and hand-crafted features. Chapter 3 of this dissertation describes 

one approach to this problem. Details of DCNN and deep learning are introduced in Chapter 

2.4. 

 

2.3.2. Clinical applications of QSM 

A wide range of physiologically important molecules could change the tissue magnetic 

susceptibility and be quantified using QSM. Among them, iron is the most common component 

investigated through QSM [33]. Two major sources that contribute to iron content changes are 

iron deposition and blood components. 

Iron deposition is thought to be linked with many neurodegenerative diseases such as 

Alzheimer’s disease (AD) [34], Parkinson’s disease (PD) [35] and Huntington’s disease (HD) 

[36]. Although it is unknown whether the excessive iron accumulation is the cause or the 

consequence of the disease, monitoring the spatial deposition and temporal changes of iron 

could help understand the pathology of these diseases [34]. In AD, increased iron milieu has 

been suggested to facilitate the proliferation and perpetuation of β-amyloid [37], a protein 

thought to be toxic and influences the development of AD. [34] used QSM to compared the 

susceptibility in deep brain nuclei in a cross-sectional study and found that AD patients have 

significantly higher susceptibility in putamen, posterior grey and white matter regions. In PD, it is 

known that iron deposition occurs when dopaminergic neurons in substantia nigra (SN) dies, 

which associate with the disease. [35] found an increase in susceptibility of the pars compacta 

in PD patients compared with healthy controls, and a rostral-caudal gradient in susceptibility in 

both patients and controls. [38] demonstrated that QSM has a higher sensitivity and specificity 
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than R2 and R2* MRI in differentiating the PD patients and healthy controls. In HD, elevated 

iron deposition has been found in the striatum, which is believed to activate free radicals and 

cause neuronal loss [39]. Detection of iron increase could enable earlier diagnosis of HD. [36] 

demonstrated that QSM could detect increased iron levels in caudate nucleus, putamen and 

globus pallidus in premanifest HD patients and the measured susceptibility is correlated with 

genetic burden scores. [40] also found that the iron deposition measured by QSM is significantly 

associated with HD severity.  

 

Figure 2.9 Depictions of deep brain nuclei on various MRI methods. 
(Adapted from https://www.ncbi.nlm.nih.gov/pubmed/23674786) 

 

Although T2*-weighted MRI and SWI are sensitive to intracerebral hemorrhage, it suffers from 

blooming artifacts that will enlarge the volume of the lesion and highly dependent on the 

imaging parameters. QSM has become a more accurate technique to quantify both the 

magnetic susceptibility and volume of brain hemorrhages [41].(Figure 2.9) Since calcification is 

diamagnetic and hemosiderin is paramagnetic [42], QSM could easily differentiate them. [43] 

demonstrated that QSM achieved significantly better detection performance than GRE phase 

image in diagnosis of hemorrhage or calcium. [44] applied QSM to detection and measurement 

of cerebral microbleeds.  

https://www.ncbi.nlm.nih.gov/pubmed/23674786
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2.4. Deep convolutional neural networks 

2.4.1. Machine learning 

Computers can solve many problems by algorithms. An algorithm is defined as a sequence of 

instructions to be carried out to transform the input to output. [45] However, for some tasks we 

do not have an algorithm, or it is very difficult to come up with an algorithm that works well – for 

example, to distinguish spam emails from legitimate emails [46], or to detect and classify brain 

tumors on MR images. [47] In these cases, the technique of machine learning has been proved 

to be powerful. Machine learning uses the theory of statistics to build mathematical models that 

could “learn” from examples (data). [45] In other words, we train the computer/machine to 

automatically extract the algorithm for the task. A more formal definition of machine learning is 

described in [48]: 

A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E. 

As an example, consider building a deep convolutional neural network (a modern deep learning 

model, see following section for details) to distinguish pictures of cats and dogs (task T) and 

measure the performance P by the percentage of pictures that are correctly classified, or 

classification accuracy. We can feed the network with thousands of cat and dog images 

(experience E) and then train the model to classify these example pictures using proper 

methods. After exposure to enough samples, we will find that the model can classify the pictures 

with higher accuracy.  

Common types of machine learning algorithms include supervised learning, unsupervised 

learning, and reinforcement learning.  
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Supervised learning refers to the approach of building a model with a set of data containing both 

the inputs 𝑋𝑋 and the correct outputs or labels 𝑌𝑌. [49] The algorithm learns a mapping from the 

input to the output. Assume the model is defined up to a set of parameters 𝜃𝜃: 

𝑦𝑦 = 𝑔𝑔(𝑥𝑥|𝜃𝜃) (2. 14) 

where 𝑔𝑔(∙) is the model function, regression (output continuous values), or classification (output 

discrete values). Supervised learning algorithms optimizes the parameters θ such that the 

approximation error of the model is minimized. That is, our estimates are as close as possible to 

the correct values given by the training dataset. 

On the other hand, in unsupervised learning, no correct outputs or labels 𝑌𝑌 are given in the 

dataset and we only have the input data. The aim of unsupervised learning is to find the 

regularities or unknown patterns in the input data. It is also known as self-organization and 

allows modeling probability densities of given inputs. [50] Principle component and clustering 

are two main methods used in unsupervised learning. Generative adversarial network (GAN) is 

a modern approach developed for unsupervised learning based on neural networks and game 

theory. [51] We will introduce the principles of GAN in the following section. 

Reinforcement learning (RL) applies to the cases where the desired output is a sequence of 

actions in an environment. The target of RL algorithms is to learn a policy that can conduct the 

sequence of correct actions to reach the goal or optimize some notion of cumulative reward. 

[52] Although RL is beyond the scope of this dissertation, it is gaining research interest in the 

field of MRI. [53], [54] 

The central component of a machine learning algorithm is the model. Various types of models 

have been developed and used for machine learning system, some of the useful categories are: 

• Support vector machines (SVM) [55] 

• Decision trees [56] 
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• Neural networks [57] 

• K-means clustering [45] 

2.4.2. Neural networks and deep learning 

2.1.1.1. Feedforward neural networks 

In this section, we will take an in-depth review in (artificial) neural networks (NN) because it is 

the essential backbone of deep learning [58], a modern branch of machine learning that is 

extensively utilized in this dissertation. 

The human brain is an excellent information processing device in many domains such as vision, 

speech recognition, and learning. [45] If we can understand how the brain performs these 

functions, we can formulate the solutions as computer algorithms and implement them on 

machines. This idea inspired the first artificial neural networks models. An NN contains a 

collection of connected units called artificial neurons, which are simplified models of neurons in 

the biological brain. Each connection mimics the synapses in the biological brain and transmits 

a signal to other neurons. The neuron that receives these signals processes them by 

computation and then signals other neurons. The most commonly used NN model architecture 

in computer vision is a feedforward neural network, in which connections between the nodes do 

not form a cycle. A simple 2-layer feedforward neural network is shown in Figure 2.10. The red 

layer on the left receiving input data is the input layer, the green layer on the right producing the 

final result is the output layer. The blue layer in between conducts intermediate processing and 

is called a hidden layer. A network with more than one hidden layer is usually called a deep 

neural network and is an important category of models in deep learning. [59] 
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Figure 2.10 A 2-layer feedforward neural network. 

 

Linear combination is commonly used in NN neurons. Mathematically, the neural network in 

Figure 2.10 with linear combination can be represented as: 

𝑦𝑦𝑘𝑘(𝑥𝑥,𝑤𝑤) = 𝜎𝜎��𝑤𝑤𝑘𝑘𝑘𝑘
(2)ℎ��𝑤𝑤𝑘𝑘𝑖𝑖

(1)𝑥𝑥𝑖𝑖

𝐷𝐷

𝑖𝑖=1

�
𝑀𝑀

𝑘𝑘=0

� (2. 15) 

Where 𝑥𝑥,𝑦𝑦 are input and output of the network, 𝑤𝑤 is the set of linear combination weights, 𝐷𝐷,𝑀𝑀 

are number of neurons in the hidden layer and output layer respectively, σ(∙) and ℎ(∙) are 

nonlinear functions called activation functions that enable the network to compute nontrivial 

(nonlinear) problems. [60] Some commonly used activation functions are: 

• Sigmoid function: 𝑠𝑠(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

 

• Rectified linear unit (ReLU): 𝑠𝑠(𝑥𝑥) = max(0,𝑥𝑥) 

 

Figure 2.11 Sigmoid function. 
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Figure 2.12 ReLU function. 

 

2.1.1.2. Convolutional neural networks 

When applied to computer vision tasks that involve understanding images, a few limitations of 

traditional feedforward NN emerges: 1) An image usually contains thousands even millions of 

pixels. Directly feeding the pixel values to a fully connected NN (each neuron is connected with 

all neurons in the previous layer) dramatically increases the number of weights 𝑤𝑤 of the network 

and increases the risk of overfitting. [61] 2) The feed forward network could not capture the 

spatial dependencies and shift invariance in images.  

Convolutional Neural Network (CNN) [62] is a class of deep neural networks that was developed 

to mitigate the above problems in image-related learning tasks. The name “convolutional” 

indicates that the network employs a mathematical operation called a convolution. CNNs are 

simply neural networks that use convolutions in place of general linear combinations in at least 

one of their layers. [59] 

Convolution is a specialized kind of linear operation defined as follows. Consider the discrete 

convolution between a two-dimensional image 𝐼𝐼 and a two-dimensional matrix 𝐾𝐾 (also known as 

the kernel); the operation can be represented using the following equation (visually illustrated in 

Figure 2.13): 

𝑆𝑆(𝑖𝑖, 𝑗𝑗) = (𝐼𝐼 ∗ 𝐾𝐾)(𝑖𝑖, 𝑗𝑗) = ��𝐼𝐼(𝑚𝑚,𝑛𝑛)𝐾𝐾(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)
𝑛𝑛𝑚𝑚

#(2. 16) 
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Figure 2.13 2D convolution. 
Blue squares: convolution input, 3x3 gray blocks: convolutional kernel; green blocks: 

convolution output 

 

Another critical component of CNN is pooling layers. Pooling layers reduce the spatial 

dimensions of the input data by combining outputs of neurons clusters at one layer into a single 

neuron in the next layer. [63] There are two basic types of pooling layers: local pooling 

combines small clusters, typically 2x2 blocks. Global pooling acts on all the neurons of a layer 

and aggregate them into a single output. Figure 2.14 demonstrates two commonly used pooling: 

max pooling and average pooling. 

 

Figure 2.14 2D pooling. 
Max pooling takes the maximum value inside the cluster, and average pooling calculates the 

average value. 

 

A pioneering CNN is LeNet-5 proposed by [62] in 1998. It contains 7 layers and achieved state-

of-the-art performance on recognizing 32x32 digital images of hand-written digits (Figure 2.15).  
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Figure 2.15 LeNet-5. 

 

AlexNet [63] (Figure 2.16) was the first GPU-accelerated large scale CNN that achieved close-

to-human performance in recognizing natural images and won the 2012 ImageNet Large Scale 

Visual Recognition Challenge [64] by a large margin. Key improvements introduced by AlexNet 

were: 1) use of ReLU instead of tanh as activation function to accelerate the speed, 2) use of 

dropout instead of weight regularization to reduce overfitting, 3) use of overlap pooling to reduce 

the size of the network.  

 

Figure 2.16 AlexNet 

 

In 2015, ResNet [65] further pushed the limit of CNN in image classification by introducing the 

idea of an “identity shortcut connection” or “skip connection” that skips one or more layers, as 

shown in Figure 2.17. The skip connection helps avoid the problem of vanishing gradients 

observed in very deep CNNs by reusing activations from a previous layer until the adjacent 
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layer learns its weights. This simple modification of a CNN architecture enables the ability to 

train much deeper CNNs and significantly improves the model capacity. Since the emergence of 

ResNet, the idea of the skip connection has been incorporated into various CNN architectures 

and has achieved state-of-the-art performances in numerous domains. 

 

Figure 2.17 Skip connection. 

 

In the domain of image segmentation and image reconstruction, especially biomedical imaging-

related tasks, where the output is an image of the same size of the input image instead of a 

class label, the U-Net is the most useful backbone network architecture. [66] Based on the fully 

convolutional network [67], a U-Net consists of three basic sections: the contraction path, the 

bottleneck, and the expansion path. The architecture looks like a ‘U’ as Figure 2.18 shows that 

justifies its name.  
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Figure 2.18 U-Net. 

 

The key to U-Net’s capability of predicting a high resolution output lies in the expansion path. 

The convolutional layers not only take an input from the upsampled features from the previous 

level, but also combine the feature maps from the corresponding layer in the contraction path, 

indicated by the gray horizontal arrows in Figure 2.18. This ensures that the features learned 

while contracting the image will be used to reconstruct the output, and therefore the network 

gains back the high-resolution detail of the input image.  

 

2.1.1.3. Generative adversarial networks 

A Generative Adversarial Network (GAN) is a class of machine learning systems proposed by 

[51]. In a GAN, two neural networks (the generator and discriminator) contest with each other in 

a game. The aim of the generator (G) is to learn to generate new data with the same statistics 

as the training set that can ‘fool’ the discriminator, while the aim of the discriminator (D) is to 

distinguish the data generated by G from the true training data (Figure 2.19). 
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Figure 2.19 Mechanism of GAN. 

 

Mathematically, GAN is often defined as a minimax game with cross-entropy loss objective: 

𝑚𝑚𝑖𝑖𝑛𝑛
𝐺𝐺

𝑚𝑚𝑚𝑚𝑥𝑥
𝐷𝐷

𝑉𝑉 (𝐷𝐷,𝐺𝐺) = 𝐸𝐸𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑧𝑧)[𝑙𝑙𝑙𝑙𝑔𝑔𝐷𝐷 (𝑥𝑥)] + 𝐸𝐸𝑧𝑧~𝑝𝑝𝑧𝑧(𝑧𝑧) �𝑙𝑙𝑙𝑙𝑔𝑔 �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��� (2. 17) 

where 𝑥𝑥 is the real sample from the training set and 𝑧𝑧 is the random input for the generator. 

Although GANs were originally invented for unsupervised learning, they have also proved useful 

in semi-supervised learning [68] and supervised learning [69].  

Combining with deep convolutional neural networks, a GAN can achieve state-of-the-art 

performance in image-related tasks. DCGAN [70] is one of the most popular architectures in 

image generation. Figure 2.20 illustrates the generator architecture of DCGAN. 

 

Figure 2.20 DCGAN. 
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Despite the success of GAN, it is also notoriously difficult to train. Models may never converge, 

and mode collapse is common. Wasserstein GAN (WGAN) [71] is an approach to facilitate the 

training of GAN by using a Wasserstein distance metric that has a smoother gradient 

everywhere and the loss function reflects the image quality, which is more desirable when 

monitoring the training process. However, in WGAN, the 1-Lipschitz constraint needs to be 

enforced: 

|𝑓𝑓(𝑥𝑥1)− 𝑓𝑓(𝑥𝑥2)| ≤ |𝑥𝑥1 − 𝑥𝑥2| (2. 18) 

Although this condition is ensured by weight clipping in the original WGAN, it can still cause 

problems in convergence and mode collapse. WGAN with gradient penalty (WGAN-GP) [72] is 

an approach to enforce the constraint by adding a gradient penalty to the loss function. It further 

enhances training stability and has been widely adapted in recent GAN related research. 

 

2.4.3. Examples of Deep learning in MRI 

The success of deep convolutional neural networks and deep learning in the field of computer 

vision inspired the research of these state-of-the-art techniques combining with MRI [73]. Many 

MRI-related tasks such as MR-based diagnosis, MRI segmentation, MR image reconstruction, 

can be regarded as specific subdomains of generic computer vision tasks and therefore suitable 

for CNNs. AUTOMAP [74] is a network with fully connected layers acting on k-space data 

followed by convolutional layers to formulate MRI image reconstruction as a data-driven 

learning task. In [75], the authors designed an approach to synthesize abnormal MRI images 

with brain tumors by training a GAN based on pix2pix [69]. QSMnet is a three-dimensional CNN 

based on U-Net that could solve the ill-posed phase-susceptibility dipole inversion from single 

orientation data and reconstruct high quality quantitative susceptibility maps. Many MRI 

segmentation could also be improved by deep learning, such as brain tumor segmentation [76], 

kidney segmentation [77], and ischemic lesion segmentation in DWI [78].   
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Chapter 3. Automatic detection of cerebral microbleeds 

using 3D deep convolutional neural networks 

3.1. Introduction 

As introduced in Chapter 2.3.1, Cerebral microbleeds (CMBs) are small chronic brain 

hemorrhages that are prevalent in various diseases such as cerebral amyloid angiopathy [79], 

stroke [80], neurodegenerative disorders [81], traumatic brain injury [82] as well as following 

radiation therapy for brain and head and neck tumors [83]. CMBs have been found to serve as 

biomarkers of complications in these various pathologies. As understanding the role of CMBs is 

critical, new methods to rapidly detect and quantify CMBs could help shed light on their 

evolution and correlation with disease status. 

The most commonly used medical imaging modality to detect CMBs is susceptibility weighted 

magnetic resonance imaging (SWI). SWI is highly sensitive to paramagnetic tissues such as 

hemosiderin, which is abundant in most CMBs, and therefore can provide high contrast between 

normal brain parenchyma and veins or vascular injury such as CMBs [84]. To understand the 

impact of CMBs in various diseases, large scale detection, segmentation, and quantification of 

CMB burden is necessary, the most challenging aspect of which is the efficient and accurate 

detection of CMBs on SWI. Typically, CMB detection requires not only intense human labor but 

domain-related expertise, making the job time-consuming and laborious, which inevitably affects 

the detection accuracy and performance. As a result, much effort has been devoted to 

developing computer vision algorithms to automatically aid in the detection of CMBs. [27], [28], 

[30], [85] Although these recent advances have improved automatic or semi-automatic detection 

of CMBs, all existing methods suffer from low specificity with a large number of false positives 

(FPs) that ultimately reduces their value and widespread adoption in both the clinical and 

research settings.  
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Since AlexNet [63] won the ImageNet Large Scale Visual Recognition Challenge [64] in 2012 by 

achieving a 40% lower image classification error rate than traditional computer vision methods, 

deep convolutional neural networks (DCNNs) have demonstrated their superiority in a wide 

range of computer vision tasks such as semantic segmentation, object detection, and natural 

image classification. Although the idea of DCNNs was first proposed more than 30 years ago, 

they have only recently achieved huge successes due to the availability of parallel computing 

hardware such as GPUs and large datasets. With the emergence of advanced network 

structures and techniques such as residual unit [65], DenseNet [86], batch normalization [87], 

and dropout [63], DCNNs can reach performance superior to humans in some tasks. 

The goal of this study was to develop a fully automatic pipeline for the identification and labeling 

of CMBs by combining our previously developed base detection method [88] that used a series 

of traditional computer vision algorithms with a novel 3D deep residual neural network [65] 

architecture to reduce the FPs that remain after initial CMB detection and improve specificity. 

This pipeline uses 3D SWI images as the input to the initial detection algorithm in order to 

identify the position of potential CMB candidates. These candidates are then passed to a trained 

3D deep residual network to both remove definitive CMB mimics and assign a likelihood score 

for each CMB included in the final detection result. Although this pipeline was trained on 7T SWI 

images from patients diagnosed with radiation-induced CMBs after receiving treatment for 

glioma, our framework is flexible for other imaging acquisitions and readily generalizable to 

other diseases that result in the formation of CMBs. 
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3.2. Methods 

3.2.1. Subjects and Image Acquisition 

Seventy-three patients with gliomas were recruited for the study. All patients had previously 

undergone radiation therapy with a maximum dose ranging from 50 to 60 Gy and had confirmed 

radiation-induced CMBs. Thirty-one patients were scanned with a 4-echo 3D TOF-SWI 

sequence (TE=2.4/12/14.3/20.3ms, TR=40ms, FA=25°, image resolution=0.5x0.5x1mm, axial 

plane matrix size=512x512) [89], while 49 patients were scanned with a standard SWI 

sequence (3D-SPGR sequence with flow compensation along the readout direction, 

TE/TR=16/50ms, FA=20°, image resolution=0.5x0.5x2mm, axial matrix size=512x512). Serial 

imaging was performed on 12 patients, resulting in a total of 91 scans. Patients were scanned 

using either an 8- or 32-channel phased-array coil on a 7T scanner (GE Healthcare 

Technologies, Milwaukee, WI, USA). A GRAPPA-based parallel image acquisition was 

implemented with an acceleration factor of 3 and 16 auto-calibration lines [90]. 

 

3.2.2. SWI Processing 

The raw k-space data were transferred to a Linux workstation and all image processing was 

performed using in-house software developed using Matlab 2015b (MathWorks Inc., Natick, MA, 

USA). The following steps were performed to obtain SWI images from the multi-echo sequence: 

(1) Auto-calibrating Reconstruction for Cartesian sampling (ARC) algorithm was applied to 

restore the missing k-space lines of each channel [90]. (2) Magnitude images from each 

individual channel were combined using the root sum of squares and the skull was stripped 

using FMRIB Software Library (FSL) Brain Extraction Tool (BET) [91]. (3) The complex data of 

each coil of echo 2-4 were homodyne filtered with Hanning filter sizes of 72, 88 and 104 for the 

2nd, 3rd and 4th echo respectively. [89] (4) The resulting high pass filtered phase images from 
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echo 2-4 were averaged to produce a mean phase image and used to construct a negative 

phase mask by scaling the phase values to between 0 to 1. (5) The final composite SWI image 

was calculated by multiplying the mean magnitude image of three echoes with the phase mask 

4 times. SWI images were reconstructed from the single-echo scans using the same pipeline 

but without the multi-echo averaging and the filter size of 96 was selected empirically [83].  

 

3.2.3. Identification of Candidate CMBs & Labeling of False Positives 

An example of multiple CMBs is shown in Figure 3.1. A computer-aided detection method based 

on traditional image processing techniques previously developed in our group [88] was adopted 

to propose candidates for the following neural networks. The method first performs a 2D fast 

radial symmetry transform on the entire input SWI image volume slice by slice. Candidate 

voxels will then go through a series of processing and filtering such as vessel mask screening, 

3D region growing, and 2D geometric feature extraction (area, circularity, number of spanned 

slices, centroid shift distance). The output is a set of voxels that satisfy the predetermined 

thresholds as CMB candidates. Although this initial algorithm has been shown to detect 86% of 

all CMBs, many structural mimics or FPs are also incorrectly identified as CMBs. In order to 

achieve a higher sensitivity, we reduced the number of missing CMBs by lowering the threshold 

in this algorithm and subsequently applied an interactive graphical user interface (GUI) where 

the user was asked a series of questions surrounding potential CMBs in order to individually 

label all FPs identified by the original automated approach. The coordinates of the candidates 

were then used to extract 3D patches of size 16x16x8 to use as the input of the deep neural 

networks. An experienced research scientist with several years’ experience in identifying 

microbleeds was asked to use this system to examine all candidates and generate labels used 

as ground truth after prior guidance by a neuroradiologist. The entire dataset contained 19,762 

candidates, 2,835 of which were true CMBs, as detailed in Table 3.1. 
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Figure 3.1 CMBs on SWI. 
(a) An example SWI slice showing multiple cerebral microbleeds (red arrows). (b) Serial slices 
in the axial direction demonstrating the difference in 3D structure between a CMB (green box) 

and a vertical vein (red box) with CMB-like appearance on one slice. 

 

Table 3.1 Number of patches used in all dataset splits.  
Numbers in parentheses are the number of subjects in each dataset 

 CMB FP Total 

Train (54) 2,243 14,669 16,912 

Validation (7) 215 1,023 1,238 

Test (12) 377 1,235 1,612 

Total 2,835 16,927 19,762 

 

3.2.4. 3D Deep Residual Network 

The network we proposed to refine the detection result is the patch-based 3D deep residual 

network described in Figure 3.2. The network takes a three-dimensional patch of the SWI image 

centered at the coordinate of the candidate discovered by the CMB candidate identification step 

as input and outputs a likelihood score of the candidate being real CMBs. The network contains 

a total of 12 3D residual blocks [65] at 3 different resolution levels connected by 2x2x2 max 
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pooling layers. After the residual blocks, a global average pooling layer was used to integrate 

the global information of each channel and the output was fed to a series of fully connected 

layers for binary classification. ReLU [92] was used as an activation function for all layers except 

for the last one, where a sigmoid was used to generate a likelihood score that ranged from 0 to 

1. Binary cross entropy was selected as loss function of the network. For final classification of 

candidate patches, we selected a relatively low threshold of 0.1 for CMB/FP decision as a 

tradeoff for high detection sensitivity. The total number of parameters of the network is about 

244,000. Figure 3.2 shows the data pipeline of the CMB candidate labeler and the detailed 

architecture of the 3D deep residual network.  

 

Figure 3.2 Processing pipeline and network architecture. 
Human labeling of CMB candidates was performed during the training phase to obtain the input 
and output pairs for this supervised network. During the test phase, all candidates were fed into 

the network for false positive reduction. 

 

3.2.5. Implementation 

Our CNN was implemented using Keras 2.1 [93] with Tensorflow 1.3 [94] backend. The 

computation was accelerated using an Nvidia Titan Xp GPU with 12GB memory. The “Adam” 
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algorithm [95] with a learning rate of 1e-4, beta1=0.9, and beta2=0.999 was used for parameter 

updating. The network was trained for 200,000 iterations with a batch size of 16. Among the 49 

patients with a single-echo acquisition, 7 were randomly selected as a validation set, 12 as a 

test set, while the remaining were used for training. The multi-echo scans were all included in 

the training set to enlarge the dataset. In the validation and test sets, only the most recent scan 

was used if the patient had multiple scans. Because our dataset was relatively small compared 

to modern deep learning tasks, we improved the generalizability of the network by implementing 

the following data augmentation techniques during training: A) rotating the input patch around 

the axial axis by a random degree; B) shifting the input patch by 1 voxel in the axial plane; and 

C) flipping the patch. This greatly extended the capacity of the training set. Imbalance between 

classes during training was accounted for by weighting the network loss by the proportion of 

CMBs to FPs. The model with lowest validation loss was selected as the model for testing. 

 

3.3. Results 

The benefits of using a 3D-patch based deep residual network with data augmentation over a 

simple CNN for our application are shown in Figure 3.3. The performance of the network as 

characterized by the AUC score of the validation set improved with each of the three proposed 

data augmentation strategies. Although random rotation of patches had the most significant 

effect the combination all augmentation techniques significantly outperformed applying each 

separately. The addition of Gaussian noise or random constant patches as forms of data 

augmentation did not affect the network performance. 

In the 12 test patients, the 3D deep residual network successfully classified 90.1% of the 

candidate patches. Three hundred fifty seven out of 377 candidate patches or 94.7% of true 

CMBs were correctly identified by the network, while the number of FPs were reduced by 89.1% 
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(1096 out of 1235) compared to prior studies. The average precision of the network on test 

patients was 72%, substantially higher than all previously published methods.   
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Table 3.2 shows the confusion matrix of the classification by the network. On average, the 

number of FPs per patient were reduced significantly from 103 to only 11.6, and only 1.7 true 

CMBs per patient were missed by the network. The entire detection pipeline successfully 

detected 90% of CMBs with only an average of 11.6 remaining FPs per scan within 2 minutes 

(Intel i7-6700K CPU with 16GB RAM and 12GB GPU installed), providing a practical automatic 

detection algorithm for clinical and research applications.  

 

Figure 3.3 AUC comparison of different models and data augmentations. 
(a) AUC scores of a simple CNN model compared to our proposed 3D deep residual model, 
both trained with the same configuration and data augmentations. (b) AUC scores of the 3D 

deep residual model trained with different data augmentation schemes. Combining all 
augmentation schemes provided the best performance. 
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Table 3.2 Confusion matrix of the classification results of the test set. 
The network removed over 88% of FPs and only missed 5% of CMBs. The numbers in 

parentheses refer to the average number of candidates per test subject. 
 Predicted CMB Predicted FP 

Actual CMB TP=357(29.8) FN=20(1.7) 

Actual FP FP=139(11.6) TN=1,096(91.3) 

 

Since we used a sigmoid function in the last fully connected layer in the network as the 

activation function, the prediction of the network for each candidate CMB is a number between 0 

to 1 and can be regarded as the likelihood of the candidate being a true CMB. Figure 3.4 shows 

likelihood values for representative true CMBs (panel (a) of Figure 3.4) and the difference 

between a true and FP CMB (panel (b) of Figure 3.4), overlaid on the corresponding SWI 

images. In this example the FP CMB was mis-classified as a true CMB due to its likelihood 

score of .4 even though it is a FP.  This is because we set our classification threshold to be .1 in 

order to maximize sensitivity. If the classification threshold was set to 0.5 as in common 

classification tasks, it would have been correctly classified, however, the overall sensitivity of 

our network would have been reduced. The advantage of this approach over binary 

classification is that it could be used as a soft detection algorithm that guides the users to 

quickly locate the potential CMBs in patients and distinct thresholds can easily be applied for 

different populations and applications.  
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Figure 3.4 Likelihood scores of representative candidates from the test set overlaid on SWI. 
(a) shows the three correctly identified CMBs by the network with high likelihood scores close to 

one, while (b) demonstrates two remaining FPs with lower likelihood scores. Since the 
classification threshold was empirically selected to be 0.1 instead of 0.5 as in most tasks to 
maintain high sensitivity, the candidate with likelihood score of .4, which would have been 

correctly classified if we use the usual 0.5 threshold, was mistakenly classified as CMB by the 
network. 

 

Figure 3.5 demonstrates the network classification results on some representative CMB 

candidates from the test patients. The missing CMBs (false negatives of the network) were less 

clear visually than the correctly identified ones and had more complex structure that likely 

interfered with the classification. In general, the false negatives tended to be located on the 

upper or lower edges of the entire image volume (example 4, 5 and 8 in Figure 3.5 ‘Failed-

CMB’), resulting in incomplete patches that likely negatively affect the decision process. We 

also observed that the remaining FPs (‘Failed FP’ set: # 1, 4 and 8 in Figure 3.5) might actually 

be CMBs but were mistakenly labeled as FPs by the human rater, and the network correctly 

labels them as CMBs. To further verify this hypothesis, we compared the likelihood scores 

predicted by the network with a neuroradiologist’s (J.E.V.) scoring of the candidates from two 

randomly chosen patients. Figure 3.6 shows the scatter plot of likelihood scores v.s. 

neuroradiologist’s ratings (normalized to 0~1 range) for the two patients, with higher scores 

representing a higher likelihood of the candidate being a true CMB. For both patients, the 
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neuroradiologist score was significantly correlated with the network likelihood score (r=.85,.84 

for patient 1,2; p<0.0001).  These results demonstrate the potential of our network to correct 

minor errors in the dataset labeled by raters. 

 

Figure 3.5 Example of classification results for representative CMBs in the test subjects. 
Each small square shows a slice of a patch centered on a candidate CMB, and each row 
contains eight consecutive slices in the z-direction for a given 3D patch. Red rectangles 

highlighted the centered candidates of each patch. The examples shown in the green box on 
the left were correctly classified as CMBs and false positives, while the orange box on the right 

illustrates examples where errors are made by the network. ‘Failed-CMBs’ are true CMBs 
classified as FPs, while ‘Failed-FP’ are false positives that were incorrectly identified as CMBs 

by the network. 
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Figure 3.6 The likelihood score predicted by the network compared to a neuroradiologist’s 
scoring of all candidates. 

Two panels show all of the candidate CMBs from two randomly selected patients with >20 and 
<60 CMBs.  

 

3.4. Discussion and conclusions 

We have demonstrated the capability of using a deep residual CNN architecture for the 

detection and classification of CMBs, small chronic brain hemorrhages, from their mimics on 

SWI images. The network was designed to both remove FPs and refine CMB detection by 

adopting several modern features of CNNs in addition to special designs in order to achieve 

significantly improved performance. The 3D patch input facilitated the learning of 3D features 

necessary to classify CMBs and structural mimics as demonstrated in panel (b) of Figure 3.1, 

where 2D information from a single slice was not enough to distinguish true CMB and veins 

vertical to the image plane. A deep residual network architecture was selected for this task 

because of its superior performance in classification, detection tasks, and patch-based image 

segmentation by enabling training of deeper architectures where the layers learn residual 
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functions with reference to the layer inputs rather than learning unreferenced functions. This 

framework eases the training of CNNs by simplifying a network’s optimization while requiring a 

similar number of parameters or weights. By building a deeper network with the help of residual 

connections, we were able to observe significant improvements in classification performance. 

To demonstrate the strength of incorporating residual units in our network, the 3D patch 

classification network used in Dou, et al. [30] was also implemented for comparison. Both 

networks were trained using the same dataset and configuration. Panel (a) of Figure 3.3 

demonstrated that in the validation dataset, we observed a 0.029 increase in AUC score with 

our 3D residual network. In order to balance the size of the dataset with the task complexity, we 

limited the capacity of our network to 244,000 trainable parameters to avoid overfitting. Although 

this number is considered small in comparison to modern architectures based on large scale 

image datasets such as VGG16 [96], Inception [97], and ResNet101 [65], we believed that it is 

sufficient for the task of distinguishing true CMBs and FPs because good convergence on 

training set was observed. 

Although the proposed 3D residual DCNN model has the potential to largely refine the detection 

of CMBs, approximately 10 FPs still remained for each patient. While this number is well within 

the range of human counting error and less relevant clinically for patients with over 100 CMBs, 

patients with only a handful of CMBs would still require manual removal of FPs, though at a 

considerable time savings. Although adding Gaussian noise as a form of data augmentation 

during training did not help improve the performance of our network, one approach to further 

reduce the number of FPs would be to apply a denoising filter or other image pre-processing 

steps to improve SWI image quality before inputting these images into the network. While the 

individual layers of our network were carefully optimized, new CNN model architectures that 

have since come to fruition might be able to further reduce the remaining FPs. Our current 

network was constructed based on data from 73 patients with radiation-induced CMBs that 
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resulted in less than 20,000 candidate patches. Compared to other modern deep learning-

based computer vision tasks, the size of our dataset is still relatively small. Including additional 

patients with more CMBs that are caused by other diseases might also facilitate the learning of 

additional features that the network can use to distinguish CMBs and FPs, as well as improve its 

generalizability. 

Although the goal of this study was to use DCNNs to focus on the most challenging part of CMB 

detection and segmentation, ultimately, we want to implement an end-to-end learning-based 

approach for complete detection and segmentation that does not rely on a base detection 

algorithm whose parameters were empirically defined, or further image processing for automatic 

segmentation once the CMB centers are identified by our network. Incorporating these more 

advanced approaches [98] that have recently achieved success in other applications into our 

pipeline, holds promise for full automation of the entire detection and segmentation process. As 

in many applications of DCNNs, our 3D deep residual network approach can accurately detect 

CMBs, but the network itself lacks transparency. In order for DCNNs to be routinely adopted by 

clinicians, future exploration of their interpretation is necessary in order to provide a more 

concrete explanation for the rationale behind different network design strategies and increase 

confidence in their results. 

In conclusion, we have successfully implemented a 3D patch-based deep residual network that 

was specifically tailored to differentiate true CMBs from their mimics on 7T SWI images. The 3D 

residual network was able to achieve 90% sensitivity overall on the 12 patients and reduced the 

number of FPs to only 11.6 per scan, suggesting that this new approach could greatly facilitate 

research of various diseases that present with CMBs and potentially increase the benefit of their 

evaluation in the clinic.  
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Chapter 4. Generalization and analysis of cerebral 

microbleed detection algorithm 

4.1. Introduction 

 

Figure 4.1 Appearance of CMBs on SWI axial slices.  
a) A brain tumor patient who developed CMBs after radiation therapy. CMBs are highlighted by 

red arrows. b) A CCM patient with numerous CMBs and larger hemorrhages. 

 

In the previous chapter, we developed a 3D patch-based deep residual network that could 

differentiate true CMBs from their mimics on 7T SWI images. The 3D residual network was able 

to achieve very high detection sensitivity without few false positives per patient on test set. 

However, the model was trained and evaluated on a dataset of a single disease with similar 

image quality. Since DCNNs are susceptible to overfitting, especially in the case of medical 

imaging where the training dataset size is usually limited [99], the ability of the models to be 

transferred to unseen pathologies with different imaging strategies is unknown. Therefore, in 

this study, we aim to investigate the performance and generalizability of various strategies for 

adapting the previously developed DCNN-based CMB detection model that was originally 

trained on 7T SWI datasets from brain tumor patients who developed radiation-induced CMBs 
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to images comprised of different scan parameters such as magnetic field strength and image 

resolution, and an unseen pathology: patients with CCM. (Figure 4.1) 

 

4.2. Methods 

4.2.1. DCNN-based algorithm 

We investigated the method and model we developed in Chapter 3, which is an automatic CMB 

detection and segmentation pipeline that uses a 3D SWI scan and is based on a fast radial 

symmetry transform for initial detection [88] for the initial detection step of all potential candidate 

CMBs, which are then segmented automatically using automated in house software [29]. A 

DCNN [31] was then utilized to distinguish remaining false positive (FP) mimics from true 

microbleeds and generate a binary mask of the final detected microbleeds. The detailed 

processing pipeline is shown in Figure 4.2. This present study, focused on evaluating the 

generalizability of the DCNN, a 3D deep residual neural network (3D-DRNN), in reducing the 

false positives generated by our detection algorithm on a more diverse dataset through 

establishing a systematic framework for which to assess different strategies for training and 

testing on unseen data. 



46 
 

 

Figure 4.2 Pipeline of automatic CMB detection algorithm. 
Red box highlights the 3D deep residual neural network we investigated in this study. Black 

dashed box illustrates the detailed architecture of 3D residual block in the neural network, and 
“C” represents number of channels of the convolutional layer. The dataset was labeled by 

experienced staff using a GUI. 

 

4.2.2. Subjects and data acquisition 

We acquired data from three groups of patients with different pathologies and/or MRI scan 

parameters: 

(1) 80 brain tumor patients with radiation-induced CMBs were recruited and scanned using 

a 7T MRI scanner (GE Healthcare Technologies, Milwaukee, WI, USA). 49 of these 

patients were scanned with a standard 3D gradient-echo flow-compensated SWI 

sequence (resolution=0.5x0.5x2mm, in-plane matrix size=512x512, TE/TR=16/50ms, 
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FA=20°, 8 receiver channels) and 31 patients were scanned with a 4-echo 3D 

simultaneous time-of-flight MR angiography and SWI sequence 

(resolution=0.5x0.5x1mm, axial matrix size=512x512, TE=2.4/12/14.3/20.3ms, 

TR=40ms, FA=25°, 32 receiver channels). 12 patients underwent serial imaging, 

resulting in a total of 122 scans. All of the scans were accelerated using a GRAPPA-

based parallel imaging with an acceleration factor of 3 and 16 auto-calibration lines [90]. 

This dataset will be referred to as “7T RT”. 

(2) Another 97 brain tumor patients with radiation-induced CMBs were scanned using a 3T 

MRI scanner (GE Healthcare Technologies, Milwaukee, WI, USA) with a similar 3D 

gradient-echo SWI sequence as used in 7T RT cohort (resolution=0.5x0.5x2mm, axial 

matrix size=512x512, TE/TR=25/56ms, FA=20°, 8 receiver channels). This dataset will 

be referred to as “3T RT”. 

(3) 48 patients with CCM, that had multiple CMBs in addition to larger hemorrhagic lesions, 

were scanned using a 3T MRI scanner (Siemens, Erlangen, Germany) with a standard 

SWI sequence (resolution=1x1x1.5mm, in-plane matrix size=256x192, TE/TR=20/28ms). 

18 of these patients were scanned serially, resulting in a total of 66 scans. This dataset 

will be referred to as “3T CCM”. 
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Table 4.1 Comparison of performance of the 3D-DRNN on different datasets. 
The AUC scores shown are mean and standard deviation of AUC scores of all 5-fold networks 

in the test set. 

Dataset 7T RT 3T RT 3T CCM 

#Subjects 80 97 48 

#Scans (train+val/test) 122 (110/12) 97 (61/36) 66 (45/21) 

Image Resolution(mm) 0.5x0.5x1 or 
2 0.5x0.5x2 1x1x1.5 

#CMB (#/scan) 3824 (31.3) 1626 (16.8) 3912 (59.3) 

#FP (#/scan) 24085 
(197.4) 12163 (125.4) 5651 (85.6) 

#Total 27909 13789 9563 

#CMB/#FP 0.159 0.133 0.694 

Note: # is short for “number of”. CMB: cerebral microbleeds, FP: false positives/mimics, val: 
validation. 
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4.2.3. Data processing and labeling 

The k-space data of the 7T RT and 3T RT datasets were transferred to a Linux workstation and 

SWI images were reconstructed using an in-house software developed using Matlab 2015b 

(MathWorks, Inc., Natick, MA, USA) following the steps described in [31]. For the 3T CCM 

dataset, the SWI images were transferred from the scanner for further processing and analysis. 

All of the SWI images were fed into the automatic CMB detection algorithm to generate potential 

CMB candidates (11). These candidates were then divided into four subsets and labeled by four 

experienced researchers respectively using the false positive (FP) labeling GUI developed in 

our laboratory [29] (see Figure 4.2 for illustration of processing pipeline). These CMB/FP binary 

labels were regarded as ground truth labels for evaluation and analysis. Summary data (i.e. 

number of subjects, image acquisition scheme, number of CMB candidates) for the three 

datasets (i.e. 7T RT, 3T RT, 3T CCM) are listed in Table 4.1.  

 

4.2.4. Training and evaluation 

To test and compare the performance of the automatic CMB detection algorithm, we set aside 

12 patients from the 7T RT dataset (370 CMBs and 1203 FPs), 16 patients from the 3T RT 

dataset (362 CMBs and 2367 FPs) and 21 patients from the 3T CCM dataset (1512 CMBs and 

2076 FPs) as the test set. If serial scanning was performed on a patient, the latest time point 

was included in the test set. The remaining datasets were used as training and validation 

datasets with 5-fold cross-validation for the 3D-DRNN for each of the different training strategies 

demonstrated in Figure 4.3. In this study, “train from scratch” refers to initializing the 3D-DRNN 

with random weights and training the model until its convergence, while “fine-tune” indicates 

transferring of weights from a previously trained 3D-DRNN to the new model and training the 

loaded model with another dataset using a smaller learning rate. We used an Adam optimizer 

(𝛽𝛽1 = 0.9, 𝛽𝛽2 = 0.999) to train all of the 3D-DRNNs for 200,000 iterations with a batch size of 16. 
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The initial learning rates were set to 10−4 for the model trained from scratch and 10−5 for the 

fine-tuned model and gradually reduced to 10−6 when validation loss plateaued. Area-under-

curve (AUC) of the receiver operating characteristics (ROC), classification sensitivity, precision, 

and mean number of remaining FPs/scan were calculated to evaluate model performance. 

During the testing phase, CMB likelihood values were generated for all candidates by averaging 

the result from each 5-fold-model. A threshold of 0.1 was selected to maximize detection 

sensitivity in all datasets except for the 3T CCM dataset where 0.1 and 0.3 were tested and 

compared. 

 

Figure 4.3 Training strategies for the deep convolutional neural network using different datasets 
and weight initializations. 

Top Row: train the model from scratch (with random weight initialization). Bottom Row: first 
transfer the weights from another trained model and fine-tune the model using a new dataset. 

  



51 
 

Table 4.2 Comparison of performance of the 3D-DRNN on different datasets. 
The AUC scores shown are mean and standard deviation of AUC scores of all 5-fold networks 

in the test set. 

# Trained on Test on Sensitivity Precision AUC score 
(5-fold) 

Remaining 
FPs/scan 

1 7T RT 7T RT 96.2% 68.5% 0.971±0.003 13.7 

2 7T RT + 3T RT 7T RT 96.2% 73.6% 0.972±0.001 10.7 

3 7T RT 3T RT 96.1% 38.7% 0.964±0.001 20.7 

4 3T RT (finetune #1) 3T RT 94.5% 51.5% 0.969±0.001 12.0 

5 3T RT (train from 
scratch) 3T RT 93.6% 44.6% 0.958±0.005 15.8 

6 7T RT + 3T RT 3T RT 95.7% 46.0% 0.969±0.002 15.2 

7 7T RT 3T CCM 85.7% 62.8% 0.820±0.015 36.8 

8 3T RT (finetune #1) 3T CCM 84.7% 66.5% 0.825±0.010 30.8 

9 3T RT (train from 
scratch) 3T CCM 86.2% 62.5% 0.779±0.026 37.3 

10 7T RT + 3T RT 3T CCM 88.0% 64.6% 0.843±0.009 34.7 

11 3T CCM (finetuned 
#10) 3T CCM 97.8% 59.0% 0.888±0.004 48.9 

12 3T CCM (finetuned #8) 3T CCM 98.0% 58.5% 0.888±0.004 50.1 

13 3T CCM (train from 
scratch) 3T CCM 97.9% 58.3% 0.887±0.004 50.3 

14 3T CCM (finetuned 
#10) 3T CCM 92.3% 67.9% 0.888±0.004 31.5 

15 3T CCM (finetuned #8) 3T CCM 92.9% 67.5% 0.888±0.004 32.2 

16 3T CCM (train from 
scratch) 3T CCM 92.9% 68.0% 0.887±0.004 31.5 
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4.3. Results 

Table 4.2 compares the performance of the 3D-DRNN on different datasets among the various 

training strategies. The AUC scores shown are the mean and standard deviation of AUC scores 

of all 5-fold networks in the test set. Figure 4.4 illustrates the ROC curves for each training 

strategy on the three test datasets. 

 

Figure 4.4 Comparison of ROC curves of different models. 
a) 7T RT dataset, b) 3T RT dataset, and c) 3T CCM dataset. d-f) demonstrate zoomed in views 

of a-c). 

 

4.3.1. Direct application of pre-trained models 

Row 3 in Table 4.2 shows the performance of the 7T RT trained model directly applied to the 3T 

RT test set. Compared to row 5 where the model was trained using only 3T RT data, direct 

application of the pre-trained model on the 3T RT achieved even higher AUC (0.964 vs. 0.958) 
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and sensitivity (96.1% vs 93.6%). However, despite this higher model performance, there were 

more remaining FPs per scan (lower precision) when using the same classification threshold.  

 

4.3.2. The effects of fine-tuning and training using combined RT dataset 

Fine-tuning the model that was trained using the 7T RT dataset with 3T RT dataset (Table 4.2, 

row 4) further improved the performance of direct application in row 3: AUC score of 0.969 vs. 

0.964, remaining FPs/scan 12.0 vs. 20.7. Figure 4.5 shows several FP candidates in the 3T RT 

test dataset that were falsely predicted as CMBs using the 7T RT trained model but were 

successfully removed by fine-tuning the model using 3T RT data. The fine-tuned model also 

achieved similar AUC score as the model trained using the 7T and 3T RT dataset together 

(Table 4.2, row 6). Training a new model using only the 3T RT data had the worst performance, 

even when compared to directly applying the 7T RT model, while both the fine-tuned model and 

3T + 7T RT trained model provided the best classification power on the 3T RT dataset. (b) and 

(e) of Figure 4.4 compares the of ROC curves of each model strategy applied on the 3T RT 

dataset. Even on the 7T RT test dataset, the 3T + 7T RT jointly trained model had a slightly 

higher AUC than the original 7T RT trained dataset, with the remaining FPs/scan further 

reduced to only 10.7/scan, a 21.8% reduction. (a) and (d) of Figure 4.4 shows the comparison of 

ROC curves on the 7T RT test dataset. 
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Figure 4.5 Examples of false positive candidates in 3T RT test subjects. 
Examples of false positive candidates in 3T RT test subjects that were falsely classified as 

CMBs by the model pre-trained on the 7T RT dataset (predicted likelihood shown in red) and 
corrected by fine-tuning the model using 3T RT training set (predicted likelihood shown in 

green). Each row on the left shows consecutive axial slices of a candidate. 

 

4.3.3. Application of the algorithm to CCM 

Rows 7 to 10 of Table 4.2 list the performance of models applied to the 3T CCM test dataset 

without including the CCM dataset during the training phase (using only the 3T or 7T RT 

dataset). Among the four models, the model trained with combined 3T and 7T RT dataset 

achieved the highest AUC score (0.843). The 7T RT trained model and fine-tuned model 

provided slightly lower AUC score (0.820 and 0.825) than the jointly trained model, while the 

model trained using only 3T RT dataset has a much lower AUC score (0.779). Rows 11 to 13 

show the comparison of models trained using CCM dataset. Both training from scratch using 

only CCM (row 13) and fine-tuning previously RT trained models (row 11 and 12) resulted in a 

0.044-0.045 AUC score improvement. We observed that in these three models, the sensitivities 
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were relatively high (~98%), but the remaining FPs were much higher than in the RT dataset. 

This might be due to the much higher CMB/FP ratio (see Table 4.1) and improper selection of 

threshold of 0.1 for classification. With an increased classification threshold of 0.3 for 3T CCM 

test data (rows 14-16), the remaining FPs/scan was lowered to ~32/scan without sacrificing too 

much detection sensitivity (still higher than 92%). Although the AUC score did not change for 

each pair because the threshold does not affect the likelihood predicted by the model, a better 

balance between sensitivity and precision was achieved. (c) and (f) of Figure 4.4 shows the 

comparison of ROC curves for the 3T CCM test dataset. 

 

4.4. Discussion and conclusions 

4.4.1. Generalization to 3T RT dataset 

Although the original 3D-DRNN automatic CMB detection algorithm was developed and tested 

using 7T data only, direct application of this 7T RT trained model to a 3T RT dataset with 

different scan parameters preserved the high performance. The good generalizability of the 

method to different acquisitions was likely because a similar MR sequence was used to acquire 

the 3T dataset as most of the 7T dataset (which the model had already seen during the training 

stage), despite the fact that the 3T RT dataset was acquired using a lower magnetic field 

strength scanner. Directly applying the 7T RT model achieved even better results than training a 

separate model using 3T RT dataset, suggesting that the contrast and intensity distributions of 

the two datasets are relatively quite similar despite variations in parameters. 

 

4.4.2. Generalization to CCM 

The generalization of the automatic detection algorithm to CCM could be regarded as a 

relatively difficult task compared to the 3T RT dataset because: 1) the pathology of CCM-CMBs 
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is substantially different from radiation-induced CMBs, with various-sized larger lesions co-

existing with CMBs (see Figure 4.1 for comparison of appearance); 2) the image acquisition 

parameters are vastly different from RT subjects (0.5mm vs. 1mm in-plane resolution, TE/TR, 

scanner manufacturers); 3) the RT datasets underwent the same offline SWI processing 

pipeline while for the CCM patients SWI was performed on the scanner; and 4) a much higher 

CMB/FP ratio (0.694 vs. 0.133 existed) in the 3T CCM dataset. Still, the model trained using 7T 

and 3T RT dataset combined without seeing CCM data could still perform relatively well with 

88% detection sensitivity and 64.6% precision. This provides evidence that the model has the 

ability to learn the inherent features of CMBs and FPs and distinguish them when different 

underlying diseases are present and under a wide variety of imaging conditions. Although we 

have shown that the model is still applicable if a CCM training set is not available, model re-

training and threshold tuning is still required to improve the performance in this population. In 

the case of 3T CCM, this approach elevated the AUC score by ~0.045, or 5% improvement and 

provided a better balance between detection sensitivity and precision. By comparing row 11 to 

13 in Table 4.2, we also found that pre-training the network with RT dataset for CCM does not 

improve the performance in 3T CCM test dataset. This is likely due to the fact that the 3T CCM 

dataset was acquired using very different parameters from the 7T and 3T RT dataset, and 

suggests that the optimal model parameters for the 3T CCM dataset are less likely to be learned 

from the model that performed well on RT dataset.  

 

4.4.3. Limitations 

There are a few potential limitations of this study. Although the size of the CMB patch-based 

dataset we acquired and used is relatively large compared to other medical imaging related 

deep learning investigations, it is still limited compared to typical large-scale computer vision 

tasks such as ImageNet [100]. Although we validated the generalizability of the DCNN by 
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measuring and comparing the macroscopic metrics such as AUC score, sensitivity, precision, 

the interpretability of the CMB detection algorithm, or how the network makes decision on 

certain candidates, remains unclear. This has been an important issue under active research for 

deep learning methods, especially in the field of medical imaging where clinical use of a tool 

requires more interpretation for wide-scale adoption. To further probe the DCNN used for 

automatic CMB detection and confirm its performance in a larger variety of conditions, more 

advanced approaches to analyze deep neural networks are still needed. 

 

4.4.4. Conclusion 

In conclusion, we evaluated the DCNN-based automatic CMB detection algorithm that was 

developed for brain tumor patients with radiation-induced CMBs scanned at 7T by generalizing 

the model to other scan environments, imaging parameters, and a previously unseen pathology. 

We demonstrated that the deep convolutional neural network could learn the intrinsic features of 

the target lesions without severe overfitting and be applicable to various conditions when 

properly trained. The framework provided can also inform on the development and optimization 

of deep neural network-based methods for other detection and object recognition tasks in 

medical imaging. 
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Chapter 5. Comparison of Quantitative Susceptibility 

Mapping Methods at 3T and 7T 

5.1. Introduction 

As introduced in Chapter 2.2, Despite the encouraging results obtained using QSM, the 

methodology itself suffers from several limitations that are still the topic of ongoing investigation 

and limit its widespread adoption in the clinic. Most pipelines for generating QSM images are 

comprised of 2 main processes: background field removal and dipole inversion. The first step in 

generating a uniform QSM image of brain tissue involves the accurate removal of the 

background phase comes from susceptibility sources outside the brain, such as the 

environment and air-tissue interfaces [9]. Since in most cases the background phase is 1 to 2 

order of magnitude stronger than the tissue phase, a robust background removal algorithm is 

required to extract tissue phase from the total phase signal [101]–[104]. The second step 

typically involves employing a method to efficiently perform dipole inversion whereby the 

magnetic field perturbation of any given voxel is a superposition of all dipole fields generated by 

all voxels. This step is the most computationally intensive because it is calculated by a point-

wise multiplication in frequency space followed by solving the inverse problem (∆𝐵𝐵𝑧𝑧(𝒌𝒌) = 𝐵𝐵0(1
3
−

𝑘𝑘𝑧𝑧2

|𝒌𝒌|2)𝜒𝜒(𝒌𝒌)) to estimate the susceptibility field, where ∆𝐵𝐵𝑧𝑧 is the local field perturbation, 𝐵𝐵0 is the 

main magnetic field, χ represents the tissue susceptibility, 𝒌𝒌 is the frequency space vector and 

𝑘𝑘𝑧𝑧 is the z-component. When 𝑘𝑘𝑧𝑧2/|𝒌𝒌|2 ≈ 1/3, which is commonly referred as the “zero-cone 

region”, the bracket term on the right-hand side becomes close to zero, causing either missing 

measurements or noise amplification when solving the inverse problem. One approach to avoid 

this inherently ill-posed problem is to acquire phase data with 3 or more different 𝐵𝐵𝑧𝑧 direction 

and fill in the missing data near the zero-cone. [105] Although this method, known as COSMOS, 

is considered the gold-standard for producing highly accurate artifact-free, it clinically impractical 
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because of the prolonged scan times, uncomfortable head positioning, and computational 

requirements. As a result, modern QSM methods typically rely on either 1) dipole inversion 

algorithms to solve the ill-posed inversion problem after background field removal [104], [106]–

[108], or 2) algorithms that integrate the two steps to reduce the error propagation between 

consecutive processing steps [109], [110]. 

 

Figure 5.1 QSM processing pipeline adopted in this study.  
Blue dashed box only applied on group 2 subjects with multiple orientation scans to reconstruct 

COSMOS QSM. 

 

Despite its promise as quantitative biomarker in the diagnosis and monitoring numerous 

pathologies, the technical challenges faced by background removal and dipole inversion in 

QSM, the lengthy computation times, like of widespread algorithm availability, and need for fine-

tuning of parameters for a given acquisition and set up, have limited their adoption in clinical 

practice. Although a variety of algorithms and approaches have been proposed to tackle these 

challenges, the accuracy of these methods and the resulting QSM image quality have not been 

quantitatively assessed in a clinical setting.  The goal of this study was to evaluate the effects of 

applying different background field removal and dipole inversion algorithms on noise 

characteristics, image uniformity, and structural contrast for CMB quantification of QSM images 

acquired at 3T and 7T field strengths. To accomplish this, we selected eight widely used 
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background phase removal and dipole field inversion algorithms for QSM and applied them to 

11 patients with CMBs and 8 volunteers with ground truth QSM reference calculated using 

multiple-orientation scans.  

 

5.2. Methods 

5.2.1. Subjects and Image Acquisitions 

Two groups of subjects were recruited for this study. The first consisted of eleven (11) patients 

with high grade gliomas who received radiation therapy between 2 and 15 years before imaging 

and developed cerebral microbleeds. This group of patients were scanned on both 3T and 7T 

MRI scanners (GE Healthcare Technologies, Milwaukee, WI, USA) on the same day less than 

30 minutes apart. The second group consisted of eight (8) healthy volunteers (average age=28, 

M/F=3/5) scanned only on a 7T MRI scanner. This study was approved by our Committee of 

Human Research, and written informed consent was obtained from all subjects. The image 

acquisition parameters for the two groups were as follows: 

1) Group 1: High resolution T2*-weighted spoiled gradient (SPGR) echo sequence with 3D 

flow-compensation was performed using whole-body 3T and 7T MRI scanners with 8-

channel phased array coils. TE/TR was 28/46ms at 3T and 16/50ms at 7T. A two-

fold(3T)/three-fold(7T) generalized auto-calibrating partial parallel acquisition (GRAPPA) 

parallel imaging acquisition with 16 auto-calibrating lines was implemented to keep the 

total acquisition within 7min. A 24cm FOV, 0.5×0.5×2mm resolution and flip angle of 

20°were used at both field strength. 

2) Group 2: 3D multi-echo gradient-recalled sequence (4 echoes, TE= 6/9.5/13/16.5ms, 

TR=50ms, FA=20°, bandwidth=50kHz, 0.8mm isotropic resolution, FOV=24x24x15cm) 

was performed using a 32-channel phase-array coil on the 7T MRI scanner. The 
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sequence was repeated three times on each volunteer with different head orientations 

(normal position, head tilted forward and tilted left) to acquire data for COSMOS 

reconstruction. GRAPPA-based parallel imaging [111] with an acceleration factor of 3 

and 16 auto-calibration lines were also adopted to reduce the scan time of each 

orientation to about 17 minutes. 

 

5.2.2. Image Reconstruction and Preprocessing 

The raw complex k-space data were transferred from the scanner off-line to a Linux workstation, 

where image reconstruction was performed using an in-house program based on MATLAB 

2015b (MathWorks, Natick, MA). The reconstruction pipeline for the single-echo SPGR and 

multi-echo sequences are demonstrated in Figure 5.1. Missing phase-encoding lines were filled 

in using the auto-calibrating reconstruction for Cartesian sampling (ARC) method for each 

individual coil [111] and then a channel-wise inverse Fourier transform was applied to obtain the 

coil magnitude and phase images. Coil images were combined using the MCPC-3D-S method 

[112] to obtain robust magnitude and raw phase images for each echo. For the multi-echo 

sequence used for group 2, this process was performed individually on each echo and repeated 

orientation scan. Skull stripping and brain mask extraction were performed on the magnitude 

image using FMRIB Software Library (FSL) Brain Extraction Tool (BET) [91]. For the multi-echo 

sequence, BET was applied on all four echoes and the final brain mask was generated by 

calculating the intersection of all the masks. Since the raw phases acquired from k-space data is 

constrained to -π-+π range, a 3D Laplacian phase unwrapping method [113] was applied on the 

phase image and both the unwrapped phase image and Laplacian image were saved for 

subsequent QSM processing. 
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5.2.3. QSM processing 

5.2.3.1. Background field removal algorithms 

The background removal and dipole inversion algorithms selected for comparison in this study 

are summarized in Table 5.1. From the variety of background phase removal algorithms, we 

selected the following four commonly used and readily available methods for evaluation and 

comparison: 

1) PDF: Projection onto Dipole Fields [101], included in MEDI toolbox provided by Cornell 

MRI Research Lab (http://pre.weill.cornell.edu/mri/pages/qsm.html) and applied on 

unwrapped phase images. 

2) RESHARP: Regularization-Enabled Sophisticated Harmonic Artifact Reduction for 

Phase data [102], implemented in Matlab 2015b according to the published paper and 

applied on unwrapped phase images. We chose the radius of the spherical convolution 

kernel as 6 voxels. 

3) iHARPERELLA: Improved HARmonic (background) PhasE REmovaL using the 

LAplacian operator [103], included in STISuite Matlab toolbox provided by UC Berkeley 

(https://people.eecs.berkeley.edu/~chunlei.liu/software.html) and applied on Laplacian 

phase images obtained using 3D Laplacian phase unwrapping. 

4) VSHARP: Sophisticated Harmonic Artifact Reduction for Phase data with varying 

spherical kernel [104], included in STISuite Matlab toolbox and applied on unwrapped 

phase images. 

To acquire the final susceptibility maps, tissue phase images obtained using the above 

algorithms were further processing using iLSQR dipole inversion algorithm (see below) for 

comparison. For the multi-echo sequence performed on group 2 volunteers, background 

removal algorithms were applied on each echo individually. The resulting tissue phase images 
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were then divided by their corresponding echo time and averaged to get a single tissue phase 

image for dipole inversion.  

5.2.3.2. Phase-susceptibility dipole inversion 

To compare the effects of different dipole inversion algorithms, three methods were selected, 

processed, and analyzed after performing background field removal with VSHARP: 

1) MEDI: Morphology-Enabled Dipole Inversion [114], included in MEDI toolbox and 

required magnitude image, phase image and brain mask. We selected the regularization 

parameter of data fidelity to be  𝜆𝜆 = 2000. 

2) CSC: Compressed Sensing Compensated QSM method [104], implemented in Matlab 

2015b according to the published paper and required phase image and brain mask. We 

selected the k-space threshold as 0.0875, regularization parameters of the total variation 

term 𝜆𝜆𝑇𝑇 = 0.001 and the wavelet term 𝜆𝜆𝑊𝑊 = 0.01. 

3) iLSQR: a method for estimating and removing streaking artifacts in QSM using improved 

LSQR algorithm [107], included in STISuite toolbox and required phase image and brain 

mask. 

5.2.3.3. Integrated QSM algorithm 

We also included a QSM algorithm known as QSIP, or Quantitative Susceptibility mapping by 

Inversion of a Perturbation field model [110] that performs background removal and dipole 

inversion in an integrated way by updating the calculation of background field during dipole 

inversion. The code was developed in Matlab 2012b and provided by the author. For our 

analyses, we regarded QSIP as a dipole inversion method and compared it with the other three 

dipole inversion algorithms mentioned in the previous section. 
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5.2.3.4. COSMOS calculation 

For the subjects in group 2, COSMOS QSM images (Liu et al., 2009) were calculated as the 

ground truth susceptibility map. Magnitude images acquired at 3 different head orientations 

were co-registered with FSL FLIRT [91] and the resulting transformations applied to the 

corresponding phase images from each orientation. The dipole field inversion was solved using 

the algorithm proposed in Liu et al., 2009 after background field removal with VSHARP.  

Table 5.1 Summary of selected QSM algorithms. 
The computation speed was measured on single echo sequence from group 1 patients using a 

work station with an AMD Opteron 6380 CPU (single core used) and 256GB memory. 
Approximate numbers were listed. 

Background removal 
Name Input Speed Summary 

PDF U, B 500s 
Projects the total field onto a subspace spanned by 

background fields. 

RESHARP U, B 200s 
Uses Tikhonov regularization to promote a harmonic 

internal field with small norm. 

iHARPERELLA L, B 50s 

Uses the inverse Laplacian kernel that to project the 

solution of harmonic equation onto the subspace 

spanned by all external fields. 

VSHARP U, B 20s 
Uses a combination of small and large sphere kernels 

when applying the SHARP property. 

Dipole inversion 

MEDI 
M, T, 

B 
2,000s 

Inverts the dipole convolution with regularization with 

anatomic image. 

CSC T, B 8,000s 
Promotes image sparsity in the wavelet domain when 

inverting the dipole convolution. 

iLSQR T, B 100s 
Uses an iterative approach to estimate the streaking 

artifact from ill-conditioned k-space regions only. 

Integrated 

QSIP U, B 6,000s 

Inverts a perturbation model that relates phase to 

susceptibility in spatial domain with a tissue/air 

susceptibility atlas to estimate field inhomogeneity. 
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5.2.4. Image Analysis and Comparison 

All the reconstructed QSM were zero-mean normalized by subtracting the mean susceptibility 

inside the brain mask before further analysis and comparison. The following 2 sections describe 

the metrics used for comparing techniques for each group. Figure 5.2 illustrates visually the 

definition of these quantified metrics used for comparison. 

5.2.4.1. Group 1 (brain tumor patients with CMBs) 

1) Noise level and white matter homogeneity.10 square ROIs of 150-250 voxels with 

relatively homogeneous susceptibility values in normal-appearing white matter were 

manually selected on each patient as in Figure 5.2A. Noise level was defined as the 

standard deviation of susceptibility values inside each ROI. White matter homogeneity 

was defined as the standard deviation of the mean susceptibility values of each ROI on 

each patient and is a proxy measure of residual background phase and low frequency 

artifacts. 

2) Vein contrast. To measure the QSM reconstruction performance on veins, which have 

high susceptibility values due to the abundance of deoxyhemoglobin, we drew line 

profiles through transverse sections of veins on axial maximum intensity projected 

(8mm) susceptibility maps in order to quantify vein contrast as height divided by full 

width half height (FWHH) of the line profile (Figure 5.2B).  

3) Microbleed contrast. Radiation-induced CMBs from each patient were segmented on 

reconstructed susceptibility weighted images (SWI) using in-house software [29], [31]. 

Each resulting CMB mask was eroded by 1 voxel in the axial plane to remove the 

blooming artifact present on SWI. The periphery of a microbleed was calculated as the 

original mask subtracting the eroded mask. CMB contrast (C) was then calculated as the 
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difference between mean susceptibilities of the CMB and its immediate periphery (𝐶𝐶 =

𝜒𝜒CMB − 𝜒𝜒periphery). 

 

Figure 5.2 Definition of metrics used for brain tumor patients with microbleeds. 
(a) An example square ROI drawn on white matter to measure noise level and white matter 

homogeneity. (b) An example line profile perpendicular to a vein on maximum intensity 
projected QSM and the definition of line profile height and FWHH is shown on the right. (c) Left: 

a CMB on iLSQR-VSHARP QSM. Right: blue area defines the CMB mask and the red area 
defines its peripheral region. 

 

5.2.4.2. Group 2 (healthy volunteers) 

1) Whole-brain susceptibility. To numerically compare the QSM reconstruction accuracy 

of the whole brain, we adopted three metrics used in the 2016 QSM reconstruction 

challenge [115]  described as follows: 

o Root mean squared error (RMSE), which measures the relative residual error 

of the reconstructed QSM as: 
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RMSE = 100 ×
�|𝜒𝜒 − �̂�𝜒|�2
�|𝜒𝜒|�2

(5.1) 

where 𝜒𝜒 represents the ground truth susceptibility map and �̂�𝜒 represents the 

reconstructed susceptibility map. 

o High-frequency error norm (HFEN). This metric described by [116] estimates 

the fidelity of reconstructed QSM at high spatial frequencies. It is computed by 

applying a LoG (Laplacian of a Gaussian) filter of the reconstructed and 

reference QSM volumes and calculating the L2 norm of their difference 

normalized by the norm of the filtered reference. 

o Structural similarity index (SSIM). Described in Simoncelli et al., 2004, this 

metric quantifies the “visual” similarity between the reconstructed QSM and the 

reference by combining three similarity components (luminance, contrast, 

structural).  

2) Basal ganglia ROI susceptibility. Since QSM is commonly used to investigate iron 

deposition in deep gray matter, we compared the mean susceptibility of different QSM 

methods on the following five ROIs (with left and right ROIs measured separately): red 

nucleus (RN), substantia nigra (SN), caudate nucleus (CN), putamen (PU), globus 

pallidus (GP). The ROIs were defined by warping a QSM atlas and its predefined whole 

brain segmentation [118] to individual COSMOS QSM using FSL non-linear registration 

tool FNIRL [91]. Figure 5.3 shows the resulting ROI segmentations of a healthy 

volunteer. Linear regression was also conducted on mean susceptibility values of basal 

ganglia ROIs between different dipole inversion algorithms and COSMOS mapping. 
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Figure 5.3 Segmentation of basal ganglia ROIs of a healthy volunteer acquired by applying the 
QSM atlas.  

 

5.2.4.3. Statistical methods 

Kruskal-Wallis test and Wilcoxon signed rank tests were used to identify statistically significant 

differences pairwise among methods. Mann-Whitney (Wilcoxon rank-sum) tests were used to 

test for significant differences between samples of unequal sizes. A Bonferroni correction was 

adopted to reduce type I error (false positive results) from multiple comparisons. 

 

5.3. Results 

5.3.1. Noise level 

Among the four background removal algorithms being compared, PDF had higher noise level 

than RESHARP and VSHARP (p=0.006 and 0.004) at 3T, while at 7T, VSHARP had lower 

noise level than PDF and iHARPERELLA (Figure 5.4a). Among the four dipole inversion 

algorithms, MEDI had significantly higher noise levels than the other three algorithms at both 

field strengths (p<0.01; Figure 5.4b). At 7T, iLSQR generated QSM images with the lowest 

noise (p<0.05). As expected, all background field removal and dipole inversion algorithms 
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achieved a lower noise level at 7T than 3T (all p<0.01), corresponding to the higher SNR 

available at 7T.   

 

Figure 5.4 Boxplots of noise level at 3T and 7T. 
(a) Background removal algorithms. (b) Dipole inversion algorithms. 

 

5.3.2. White matter homogeneity 

At both field strengths, VSHARP and RESHARP had the highest white matter homogeneity 

(lowest standard deviation of mean susceptibility of the 10 ROIs within each patient) followed by 

PDF and iHARPERELLA (Figure 5.5a). Among the dipole inversion algorithms, QSIP and 

iLSQR had significantly improved white matter homogeneity compared to CSC and MEDI at 3T 

(p<0.05; Figure 5.5b). Although similar trends were observed at 7T, QSIP had the most 

homogenous images compared to the other techniques, while MEDI had statistically significant 

worse white matter inhomogeneity compared to the other 3 techniques (both p<0.05).  No 

statistically significant differences were observed between 3T and 7T for all background removal 

and dipole inversion algorithms. 
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Figure 5.5 Boxplots of white matter homogeneity.  
(a) Background removal algorithms. (b) Dipole inversion algorithms. 

 

5.3.3. Vein contrast 

Figure 5.6 shows the boxplots of vein contrast of all evaluated methods. VSHARP provided 

higher vein contrast than all other three background removal algorithms at both field strengths 

(p<0.05). Of the four dipole inversion algorithms, iLSQR and QSIP had higher vein contrast than 

CSC and MEDI at 3T(p<0.0001 for iLSQR vs CSC, p<0.003 for iLSQR vs MEDI, p=0.03 for 

QSIP vs MEDI). At 7T, QSIP had higher vein contrast than all the other dipole inversion 

algorithms (p<0.05), with iLSQR also having significantly higher vein contrast than CSC and 

MEDI (p=0.0008). When algorithms were compared between field strengths, only MEDI has 

significantly elevated vein contrast at 7T compared to 3T (p=0.001). Figure 5.7 provides a visual 

comparison of a vein processed by different algorithms at both field strength. Note that the 

images at 3T and 7T were not coregistered in order to avoid alterations in image quality caused 

by interpolation during alignment, so the orientation of the vein varies slightly between field 

strengths.  
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Figure 5.6 Boxplots of vein contrast.  
(a) Background removal algorithms. (b) Dipole inversion algorithms. 

 

 

Figure 5.7 Visual comparison of a vein of different algorithms at 3T and 7T.  
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Top left: background removal algorithms at 3T. Top right: dipole inversion algorithms at 3T. 
Bottom left: background removal algorithms at 7T. Bottom right: dipole inversion algorithms at 

7T. 

 

5.3.4. CMB Contrast 

No significant differences were observed in CMB contrast among all of the background field 

removal algorithms (Kruskal-Wallis p=0.52 and 0.22 for 3T and 7T respectively, boxplots in 

Figure 5.8a) Among the dipole inversion algorithms, QSIP had significantly higher CMB contrast 

than other methods at both field strengths (p < 0.01, Figure 5.8b). No significant differences 

were found between field strengths for all background removal and dipole inversion algorithms 

(p > 0.3) Figure 5.9 demonstrates a visual comparison of three CMBs computed using different 

background field removal algorithms at 3T and 7T. Similar to the measurement and display of 

vein contrast, the orientations of CMBs shown in Figure 5.9 are displayed without co-registration 

between field strengths. 

 

Figure 5.8 Boxplots of CMB contrast.  
(a) Background removal algorithms. (b) Dipole inversion algorithms. 
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Figure 5.9 Visual comparison of CMBs of different algorithms at 3T and 7T. 
Top left: background removal algorithms at 3T. Top right: dipole inversion algorithms at 3T. 

Bottom left: background removal algorithms at 7T. Bottom right: dipole inversion algorithms at 
7T. 

 

5.3.5. Whole-brain QSM metrics 

RMSE, HFEN, and SSIM of the four dipole inversion algorithms compared to COSMOS are 

listed in Table 5.2. iLSQR had significantly lower RMSE and HFEN compared to other methods 

(p < 0.01) except for QSIP. For HFEN, iLSQR and QSIP were significantly reduced compared to 

CSC and MEDI (p < 0.01), indicating less deviation from COSMOS for these algorithms. MEDI 

achieved the highest SSIM to COSMOS among all the dipole inversion algorithms (p < 0.01), 

followed by QSIP and iLSQR. Figure 5.10 visually compares all the dipole inversion algorithms 

against COSMOS QSM (with VSHARP for background field removal). Although all algorithms 

achieved relatively low residual streaking artifacts, they have distinct appearances due to 

different regularization approaches.  
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Table 5.2 Comparison of whole-brain metrics from 2016 QSM challenge of different dipole 
inversion algorithms. 

The best algorithm under each metric is highlighted in bold. 
Method RMSE HFEN SSIM 

iLSQR 83.56±5.49 75.54±5.76 0.863±0.027 

MEDI 101.43±5.81 97.08±7.49 0.892±0.017 

CSC 93.85±4.92 92.34±6.06 0.848±0.025 

QSIP 96.49±4.68 78.92±6.34 0.869±0.011 

 

 

Figure 5.10 Visual comparison of QSM dipole inversion algorithms of a healthy volunteer 
(subject #5). 

 

5.3.6. Basal Ganglia ROIs 

Figure 5.11 shows the boxplot of mean susceptibilities within different basal ganglia ROIs for the 

different dipole inversion algorithms. All algorithms overestimated susceptibility in the left 

substantia nigra and underestimated susceptibility values in the striatum (caudate nucleus, 
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putamen, and globus pallidus), especially QSIP. Figure 5.10 row 1 shows an axial slice of the 

striatum confirming these findings. Figure 5.12 displays scatter plots of susceptibility values 

within each ROI for each dipole inversion algorithm compared to COSMOS. The ideal algorithm 

would achieve a regression line close to identity with low residual error (or a coefficient of 

determination R close to 1). iLSQR achieved a slope closest to 1 and the highest correlation 

coefficient, while QSIP had a more dispersed scatter plot and lower R2 than the other three 

methods. However, because COSMOS used the same VSHARP algorithm for background field 

removal as iLSQR, CSC, and MEDI while QSIP integrated background removal into its 

processing, the lower performance might in part be explained by differences in background field 

removal rather than dipole inversion approaches. 

 

Figure 5.11 Comparison of mean susceptibility within basal ganglia ROIs using different dipole 
inversion algorithms.  
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Figure 5.12 Scatter plot and regression plot. 
Blue: identity, red: linear regression. 

 

5.4. Discussion and conclusions 

The results of this study highlight the importance of carefully selecting a QSM processing 

strategy based on the anatomy and question of interest. Susceptibility values can vary based on 

the method selected for both background field removal and dipole inversion and depending on 

whether the goal is to visualize vascular injury, accurately quantify susceptibility or iron 

deposition within a given region or take on a more global whole brain approach for analysis, a 

different strategy may be preferred. 
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To simplify the comparison process, we selected iLSQR for all background field removal 

methods and VSHARP for all dipole inversion methods, except for QSIP, which is an integrated 

algorithm. These two methods were selected as base algorithms for three main reasons: 1) 

better visual quality of reconstructed QSM 2) better performance in many numerical metrics we 

compared, and 3) relatively high computational efficiency as shown in Table 5.1. Two different 

groups of subjects were scanned with different parameters in this study in order to cover the 

majority of use cases of QSM. Group 1 was comprised of brain tumor patients who developed 

radiation-induced CMBs, an ideal example of abnormal susceptibility. This group of patients 

were scanned with higher axial-plane resolution sequence to maximize the detection ability of 

small brain lesions and cerebrovascular structures such as veins. Group 2, on the other hand, 

consisted of healthy volunteers that were scanned using a multi-echo sequence with isotropic 

resolution designed for the investigation of iron deposition within the basal ganglia, where 

research of most neurodegenerative diseases involving QSM have been heavily studied. As the 

spatial resolution was not as critical as in patients with CMB, we could reduce the axial-plane 

resolution to match the z-direction resolution to achieve an isotropic configuration. This isotropic 

setting could also facilitate the processing of COSMOS QSM, which requires the co-registration 

of scans conducted at different head orientations. 

In patients with CMBs, we observed that QSM at 7T has a lower noise level than at 3T. Besides 

the intrinsic benefit of higher signal-to-noise ratio inherent with increasing field strength, the 

sequence used at 7T could have potentially induced more phase accumulation than that 

employed at 3T. At 7T, TE=16ms, so 𝐵𝐵0 × 𝑇𝑇𝐸𝐸 = 112, and at 3T, TE=28ms, so 𝐵𝐵0 × 𝑇𝑇𝐸𝐸 = 84. In 

this study, we defined a metric called white matter homogeneity by calculating the standard 

deviation of mean susceptibility measured in ten different square ROIs drawn on pure white 

matter under the assumption that the resulting QSM of white matter should be relatively 

homogeneous if the processing pipeline is robust. A high standard deviation or low homogeneity 
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likely indicates either more residual background phase components or other low spatial 

frequency artifacts. The fact that QSIP images were the most homogeneous regardless of field 

strength, suggests that imperfect background field removal may be the largest contributor to the 

inhomogeneity present in the other dipole inversion methods.   

The rationale for comparing vein and CMB contrast among algorithms was to 1) examine the 

residual low spatial frequency artifacts, and 2) validate the algorithms on tissue and lesions with 

relatively high susceptibility values. QSIP produced the highest vein and CMB contrast at both 

field strengths and may be the optimal method for applications requiring the segmentation of 

these structures. The lower vein contrast of MEDI might be due to 1) higher brain tissue 

susceptibility and 2) blurrier vein structure caused by regularization. Although we favored higher 

contrast in this comparison, our results cannot be translated to higher accuracy of reconstructed 

QSM because ground truth susceptibility maps or COSMOS scans were not obtained. 

Although QSIP outperformed the other dipole inversion algorithms on the majority of metrics, it 

resulted in values that were the most different from the gold standard COSMOS images. This 

was demonstrated by susceptibility values within the striatal regions being significantly lower 

than those derived from COSMOS, as well as weaker correlation coefficients observed across 

all regions. More inferiorly in the substantia nigra and red nuclei, however, QSIP resulted in 

susceptibility values that were the most similar to those quantified by COSMOS. iLSQR, on the 

other hand, consistently resulted in the most similar susceptibility values to COSMOS across all 

basal ganglia analyses, making it the preferred method for local absolute quantification of 

susceptibility within smaller structures.   

There are a few additional limitations of this study. Although we conducted a relatively coarse 

grid-search of parameters and selected the ones that achieved the best visual correspondence 

with the other algorithms for algorithms that required regularization parameter tuning such as 

CSC and MEDI, better fine-tuning and optimization of these methods may achieve improved 
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QSM reconstruction. For our group of healthy volunteers, we chose COSMOS as the ground 

truth susceptibility map for comparison. This method ignores the susceptibility anisotropy in 

some tissues such as myelin in white matter fiber tracts. Although Langkammer et al [115] have 

suggested using the last diagonal component (χ33) in susceptibility tensor theory [16], our data 

acquisition scheme was limited to three orientations, making the calculation of χ33 impossible. 

But because basal ganglia susceptibility is relatively isotropic, COSMOS should still be a valid 

image of ground truth of susceptibility in our striatal ROI analyses. Future studies could perform 

a data acquisition that enables the reconstruction of  χ33 and use it as the ground truth for 

comparison on other brain tissue with higher susceptibility anisotropy. Finally, the complete 

processing pipeline of QSM consists of other pre-processing steps before background field 

removal, such as multi-coil phase combination and phase unwrapping, that could also affect the 

resulting QSM image quality and quantification accuracy [119] were not investigated in this 

paper. Since QSM is recently gaining traction in other organs such as liver and kidney, a similar 

evaluation should be performed in these organs.  

This work evaluated and compared a variety of commonly adopted algorithms for background 

field removal and dipole inversion of QSM. When applied to patients with CMBs scanned at both 

3T and 7T, we found that 7T MRI could provide QSM images with lower noise than 3T MRI. 

QSIP and VSHARP + iLSQR achieved the highest white matter homogeneity and vein contrast, 

with QSIP also providing the highest CMB contrast. Compared to ground truth COSMOS QSM 

images, iLSQR and QSIP had the lowest RMSE and HFEN, while MEDI achieved best SSIM. 

Although variations were observed among methods throughout the entire brain, overall good 

correlations between susceptibility values of dipole inversion algorithms and the COSMOS 

reference were observed in the basal ganglia ROIs, with VSHARP + iLSQR achieving the most 

similar susceptibility values to COSMOS. This work suggests that selection of QSM method can 

not only influence the quality of maps obtained but could potentially affect the quantification of 
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iron or CMB detection in studies that rely on precise quantification of a spatial distribution of 

susceptibility values.   
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Chapter 6. Improved Quantitative Susceptibility Mapping using 3D 

Generative Adversarial Networks 

6.1. Introduction 

The previous chapter investigated and compared various background removal and dipole 

inversion algorithms proposed for QSM. From the metric comparison in RMSE, HFEN, and 

SSIM of the four dipole inversion algorithms compared to COSMOS are listed in Table 5.2. 

iLSQR had significantly lower RMSE and HFEN compared to other methods (p < 0.01) except 

for QSIP. For HFEN, iLSQR and QSIP were significantly reduced compared to CSC and MEDI 

(p < 0.01), indicating less deviation from COSMOS for these algorithms. MEDI achieved the 

highest SSIM to COSMOS among all the dipole inversion algorithms (p < 0.01), followed by 

QSIP and iLSQR. Figure 5.10 visually compares all the dipole inversion algorithms against 

COSMOS QSM (with VSHARP for background field removal). Although all algorithms achieved 

relatively low residual streaking artifacts, they have distinct appearances due to different 

regularization approaches.  

Table 5.2 and visual comparison shown in Figure 5.10, we can see that although different dipole 

inversion algorithms try to tackle the ill-posed inverse problem using different regularization, an 

optimal QSM dipole inversion algorithm is still in need for more accurate QSM reconstruction.   

Recently, Deep Convolutional Neural Networks (DCNNs) have shown great potential in 

computer vision tasks such as image classification [65], semantic segmentation [67] and object 

detection [98]. Among various deep neural network architectures, U-Net [66] has become the 

most popular backbone for many medical image-related problems [120]–[122] due to its 

effectiveness and universality. Bollmann et al. [123] and Yoon et al. [108] adopted the U-Net 

structure and extended it to 3D to solve the dipole inversion problem of QSM by training the 

network to learn the inversion using patches of various sizes as the input. Since its inception in 
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2014, Generative Adversarial Networks (GANs) [51] have been incorporated into CNNs to 

further improve performance of segmentation, classification, and especially contrast generation 

tasks [70], [71], [124]–[127] by combining a generator that is trained to generate more realistic 

and accurate images with a discriminator that is trained to distinguish the real from the 

generated images. This idea of adversarial learning has recently been extended to applications 

in medical imaging [128]–[130]. The goals of this study were to for the first time: 1) incorporate 

the physical principles of the dipole inversion model that describes the susceptibility-phase 

relationship into the training of a deep neural network to generate QSM images and 2) harness 

the power of adversarial learning in this new application. We achieved these aims by: 1) 

modifying the structure of the 3D U-Net proposed by Bollmann et al. [123] and Yoon et al. [108] 

to incorporate an increased receptive field of the input phase image patches in conjunction with 

a cropping of resulting output in order to emulate the dipole physics within the structure of the 

model; and 2) by utilizing a GAN to regularize the model training process and further improve 

the accuracy of QSM dipole inversion. 

 

6.2. Methods 

6.2.1. Theory of QSM dipole inversion and GANs 

As described in Chapter 2.2.2, assume that the susceptibility-induced magnetization is regarded 

as a magnetic dipole and the orientation of the main magnetic field 𝐵𝐵0 is defined as the z-axis in 

the imaging Cartesian coordinate, the magnetic field perturbation and susceptibility distribution 

is related by a convolution, which can be efficiently calculated by a point-wise multiplication in 

frequency space [41]. 

∆𝐵𝐵𝑧𝑧(𝒌𝒌) = 𝐵𝐵0 �
1
3
−

𝑘𝑘𝑧𝑧2

|𝒌𝒌|2� 𝜒𝜒
(𝒌𝒌) (6. 1) 
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Where ∆𝐵𝐵𝑧𝑧 is the local field perturbation, 𝐵𝐵0 is the main magnetic field, χ represents the tissue 

susceptibility, 𝒌𝒌 is the frequency space vector and 𝑘𝑘𝑧𝑧 is the z-component. In practice, we 

measure ∆𝐵𝐵𝑧𝑧 by phase variation and solve the inverse problem for the susceptibility distribution 

χ. However, notice that when 𝑘𝑘𝑧𝑧2/|𝒌𝒌|2 ≈ 1/3, the bracket term on the right-hand side becomes 

close to zero, which causes missing measurements or noise amplification when solving the 

inverse problem, making it ill-posed.  

Assume 𝑦𝑦(𝒅𝒅) = ∆𝐵𝐵𝑧𝑧(𝒅𝒅) is the acquired tissue phase of the subject and 𝑥𝑥(𝒅𝒅) is the susceptibility 

map of the subject we want to solve in the ill-posed phase-susceptibility dipole inversion 

problem, and function 𝑓𝑓 represents the relationship between them, then we can simplify 

equation 6.1 with: 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) (6. 2) 

To solve the dipole inversion problem, we are finding a function ℎ that gives: 

𝑥𝑥� = ℎ(𝑦𝑦) (6. 3) 

where 𝑥𝑥� is an estimate of the true susceptibility map 𝑥𝑥. The idea of GANs is to define a game 

between two competing components (networks): the discriminator (D) and the generator (G). G 

takes an input and generates a sample that D receives and tries to distinguish from a real 

sample. The goal of G is to “fool” D by generating more realistic samples. In this case, we use G 

as the function ℎ: 

𝑥𝑥� = 𝐺𝐺(𝑦𝑦) (6. 4) 

The adversarial game between G and D is a minimax objective: 

𝑚𝑚𝑖𝑖𝑛𝑛
𝐺𝐺

𝑚𝑚𝑚𝑚𝑥𝑥
𝐷𝐷

𝔼𝔼𝑥𝑥~ℙ𝑞𝑞[𝑙𝑙𝑙𝑙𝑔𝑔𝐷𝐷(𝑥𝑥)] + 𝔼𝔼𝑥𝑥~ℙ𝑑𝑑[𝑙𝑙𝑙𝑙𝑔𝑔(1 − 𝐷𝐷(𝐺𝐺(𝑦𝑦))] (6. 5) 

where ℙ𝑞𝑞 is the distribution of true susceptibility maps and ℙ𝑡𝑡 is the distribution of tissue 

phases. To stabilize the training process, we adopt the method of Wasserstein GAN (WGAN) 

[71], and the value function for WGAN is: 



84 
 

𝑚𝑚𝑖𝑖𝑛𝑛
𝐺𝐺

𝑚𝑚𝑚𝑚𝑥𝑥
𝐷𝐷∈𝒟𝒟

𝔼𝔼𝑥𝑥~ℙ𝑞𝑞[𝐷𝐷(𝑥𝑥)] − 𝔼𝔼𝑥𝑥~ℙ𝑑𝑑[𝐷𝐷(𝐺𝐺(𝑦𝑦)] (6. 6) 

where 𝒟𝒟 is the set of 1-Lipschitz functions, which can be enforced by adding a gradient penalty 

(GP) term to the value function [72]: 

𝜆𝜆𝑔𝑔𝑝𝑝𝔼𝔼𝑥𝑥~ℙ𝑑𝑑[(‖𝛻𝛻𝐷𝐷(𝐺𝐺(𝑦𝑦)‖2 − 1)2] (6. 7) 

where 𝜆𝜆𝑔𝑔𝑝𝑝 is a parameter that controls the weight of the gradient penalty. Since the goal for G in 

this task is to recover/reconstruct QSM from a certain input tissue phase, we also included an 

L1 loss as content loss in the objective function of G: 

𝑚𝑚𝑖𝑖𝑛𝑛
𝐺𝐺

𝜆𝜆𝑐𝑐‖𝑥𝑥 − 𝐺𝐺(𝑦𝑦)‖1 + 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 (6. 8) 

where 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 is the adversarial loss indicated in equation 6.6. 

 

6.2.2. QSMGAN framework 

We designed a 3D U-Net architecture similar to [123] and [108] as the generator part of the 

QSMGAN framework as shown in Figure 6.1. In each U-Net block, there are two 3x3x3 Conv3d-

BatchNorm-LeakyReLU (negative slope of 0.2) layers, where Conv3d is the commonly used 3D 

convolution layer, the BatchNorm (batch normalization) accelerates and stabilizes the 

optimization and the LeakyReLU facilitates the training of the GAN. 3D average pooling was 

used to down-sample the image patch as proposed in the classic U-Net architecture, while 3D 

transpose convolution was applied to restore the resolution in the up-sampling path while 

incorporating the low frequency information back in the model. At the end of the generator, we 

applied a cropping layer to focus the training on only the center part of the patch. For the 

discriminator part of the QSMGAN, we designed a 3D patch-based convolutional neural network 

where each block of the network is composed of a 3D convolution (4x4x4 kernel size and stride 

2) and a LeakyReLU (negative slope of 0.2). The four blocks in the network lower the input 
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patch to 1/16 of the original size and the 3D convolution layer at the end converts the resulting 

patch to a binary output corresponding to the prediction of real and fake QSM patches.  

 

Figure 6.1 QSMGAN network architecture. 
a) The generator part of the GAN, which adopts a 3D U-Net with center cropping as a building 

block. b) The discriminator (“critic” in WGAN-GP) is constructed using 3D convolution with 
stride=2 to reduce image size. c) The overall GAN structure combines the generator and 

discriminator, where G is trained to generate more realistic and accurate QSM to fool D and D is 
trained to distinguish real and generated(fake) QSM. 

 

6.2.3. Subjects and data acquisition 

Eight healthy volunteers (average age 28, M/F=3/5) were recruited for this study as the training 

and validation dataset for QSMGAN. All volunteers were scanned with a 3D multi-echo gradient-

recalled sequence (4 echoes, TE= 6/9.5/13/16.5ms, TR=50ms, FA=20°, bandwidth=50kHz, 

0.8mm isotropic resolution, FOV=24x24x15cm) using a 32-channel phase-array coil on a 7T 

MRI scanner (GE Healthcare Technologies, Milwaukee, WI, USA). The sequence was repeated 
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three times on each volunteer with different head orientations (normal position, tilted forward 

and tilted left) to acquire data for COSMOS reconstruction. GRAPPA-based parallel imaging 

[111] with an acceleration factor of 3 and 16 auto-calibration lines were also adopted to reduce 

the scan time of each orientation to about 17 minutes.  

To evaluate the generalization ability of our networks, we used a cohort of 12 patients with brain 

tumors who had developed CMBs years after being treated with radiation therapy. This type of 

vascular injury was an ideal pathology to test the generalizability of our network because they 

can both be extremely small in size and difficult to detect, and have very high susceptibility 

values compared to normal brain tissue due to deposits of hemosiderin. These patients were 

scanned using the same 7T QSM protocol as the healthy volunteer subjects except the slice 

thickness was 1.0mm. Only one orientation scan was performed on each patient. After the 

GRAPPA reconstruction, the image volumes were resampled to 0.8mm isotropic resolution to 

match the input of the deep learning models.  

 

6.2.4. QSM data processing and dataset preparation 

The raw k-space data were retrieved from the scanner and processed on a Linux workstation 

using in-house software developed in Matlab 2015b (Mathworks Inc., Natick, MA, USA). The 

following processing steps (summarized in Figure 6.2) were performed to obtain the tissue 

phase maps required for input to the QSMGAN and the calculation of the gold standard 

COSMOS-QSM which was used as the learning target of the QSMGAN: 1) GRAPPA 

reconstruction was applied to interpolate the missing k-space lines due to parallel imaging 

acceleration and channel-wise inverse Fourier transform was applied to obtain the coil 

magnitude and phase images; 2) coil images were combined to obtain robust echo magnitude 

and phase images using the MCPC-3D-S method [112]; 3) raw phase was unwrapped using a 

Laplacian-based algorithm [113]; 4) FSL BET [91] was applied on magnitude images from all 
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echoes to obtain a composite brain mask from the intersection of each individual echo mask; 5) 

V-SHARP [104] was used to remove the background field phase to get the tissue phase map; 6) 

images from different orientations were co-registered using magnitude images with FSL FLIRT 

[91]; 7) the dipole field inversion was solved using the COSMOS algorithm [22]. In addition, TKD 

[23], MEDI [24] and iLSQR [107] QSM maps were also reconstructed from single orientation 

data for evaluation and comparison. A threshold of 0.15 was selected for the TKD algorithm, 

and λ=2000 was used in MEDI. The reconstructed single orientation tissue phase maps from 

the patient data were 1) used to compute iLSQR QSM and 2) fed into both the 3D U-Net and 

QSMGAN networks to generate COSMOS-like QSM.  

 

Figure 6.2 QSM data processing pipeline. 
This figure shows processing of one scan orientation. Data from the other two orientations were 
processed similarly and introduced in the gray boxes in this figure to reconstruct the COSMOS-

QSM. 

 

6.2.5. Training and validation 

The 8 healthy subjects were divided into 5 for training, 1 for validation, and 2 for testing. All 

three orientations were included in the dataset so the total number of scans in the 

training/validation/test set was 15/3/6. To build the training set, tissue phase and susceptibility 

patches were sampled by center coordinates with a gap of 8 voxels in all three spatial 

dimensions. Since background occupies most of the image volume, we sampled 90% patches 
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from inside the brain and only 10% from the background to increase the efficiency of the 

training. For validation and testing, the input tissue phase volume was divided into non-

overlapping patches according to the output patch size and the susceptibility map was 

reconstructed patch-wise by feeding the input tissue phase patch into the trained network. 

Figure 6.3 demonstrates the relationship between the receptive field and input/output patch 

size. 

 

Figure 6.3 Demonstration of the relationship between receptive field and input/output patch size. 
a) Input patch size = output patch size, red dot represents voxels near the patch center. b) Input 

patch size = output patch size, voxels near the patch edge receive only information from the 
orange region. c) Input patch size > output patch size (with center cropping), voxels near the 

edge receive more information than in b). 

 

To assist the neural network training, we multiplied the input phase by a scale factor of 100 and 

then transformed the output 𝑥𝑥 by a scaled hyperbolic tangent operation to get the surrogate 

target  �̇�𝑥: 

�̇�𝑥 = 𝑑𝑑𝑚𝑚𝑛𝑛ℎ(10𝑥𝑥) (6. 9) 

This transform not only converts the range of the target susceptibility map to [-1, 1], which aids 

in the network training, but also results in a more Gaussian distributed histogram, helping the 

network learn values in different ranges (Figure 6.4).  
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Figure 6.4 Comparison of raw QSM and tanh transformed QSM. 
An axial slice of the original QSM (top left) and its histogram (top right) compared to the tanh 

transformed QSM (bottom left) and its histogram (bottom right). We can see that the tanh 
transform distributed the susceptibility values more evenly between -1.0 and +1.0, resulting in 

better contrast and value ranges for the network training. 

 

As the baseline network, we first trained the U-Net based generator separately with the pairs of 

input and output patch sizes listed in Table 6.1. To train the generator, an Adam optimizer with a 

learning rate of 1e-4 was used and betas were set to (0.5, 0.999). The network was trained for 

40,000 iterations with a batch size of 16 that was lowered to 8 for larger input patch sizes. L1 

loss was used as the loss function for the baseline network. 

To train the QSMGAN, we again started with the baseline network and then: 1) fixed the 

generator G and trained D for 20,000 iterations to ensure that D was well trained, as suggested 
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by Gulrajani et al. [72]; and 2) trained G and D together for 40,000 iterations. During each 

iteration, D (the critic) was updated 5 times with the gradient penalty 𝜆𝜆𝑔𝑔𝑝𝑝 = 100. Adam 

optimizers were used for both G and D and the learning rate was lowered to 1e-5. To balance 

the content loss and adversarial loss, 𝜆𝜆𝑐𝑐 was set to 1 and 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎 to 0.01. 

 

6.2.6. Evaluation metrics 

To evaluate the quality of the predicted QSM map reconstructed by the network (𝑥𝑥�), we 

calculated and compared the following metrics: 1) L1 error = ‖𝑥𝑥 − 𝑥𝑥�‖1; 2) Peak Signal-to-Noise 

Ratio (PSNR) = 10 log10 �
R(𝑥𝑥)

MSE(𝑥𝑥,𝑥𝑥�)
�, where R() computes the voxel value range of the input 

image and MSE() computes the mean squared error between the reconstructed image and the 

target image; 3) Normalized Mean Squared Error (NMSE)= MSE(𝑥𝑥,𝑥𝑥�)
‖𝑥𝑥‖2

;  4) High-frequency error 

norm (HFEN); and 5) Structure similarity index (SSIM) as described in [115]. A Wilcoxon signed 

rank test was used to test for statistically significant differences in quality metrics between the 

optimized 3D U-Net and QSMGAN.  

Radiation-induced CMBs from each patient were segmented on reconstructed susceptibility 

weighted images (SWI) using in-house software [29], [31]. The resulting CMB masks were 

eroded by 1 voxel in all directions to remove the blooming artifact present on SWI and then 

applied to the iLSQR QSM, 3D U-Net and QSMGAN maps in order to quantify the median CMB 

susceptibility from the 3 different QSM images.  The number of CMBs were also counted for 

each patient using each of the 3 QSM maps by an experienced rater after blinded 

randomization of the images. A Kruskal-Wallis test was used to test for significant differences in 

median CMB susceptibility and CMB count among the 3 QSM methods and Bland-Altman Plots 

were used to visualize any discrepancies. 

 



91 
 

6.3. Results 

6.3.1. Baseline 3D U-Net 

We experimented with combinations of three different input patch sizes (323, 483, 643) and 5 

output patch sizes (323, 483, 643, 963, 1283, with input > output) for the baseline 3D U-Net. 

Figure 6.5 demonstrates the qualitative effects of different input-output size pairs (shown on 

axial slices) while Table 6.2 compares the quantitative metrics (L1, PSNR, NMSE) used to 

evaluate the quality of the resulting QSM maps. When the input patch size was the same as the 

output patch size, the inversion error increased towards the edge of the patch, resulting in 

visible discontinuities in a grid-like pattern in the reconstructed QSM map. The higher L1 error, 

lower PSNR and higher NMSE supports this phenomenon quantitatively. When we increased 

the input patch size and applied center cropping at the end of the U-Net as shown in Figure 6.3, 

the patch edge artifact decreased and the metrics improved. Among the different combinations 

of patch sizes, the input patch size of 643 and the output patch size of 483 (64→48) provided the 

best balance between sufficient accuracy of the U-Net dipole inversion and low computation 

burden/efficiency. Therefore, for the QSMGAN evaluation we used the 64→48 3D U-Net as a 

basic building block. 
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Table 6.1 Test set performance of U-Net baseline with different input and output patch sizes. 
3D U-Net Patch Size 

(input→output) 
L1 error (1e-3) PSNR NMSE 

32→32 1.490±0.184 42.25±1.01 0.302±0.056 

48→32 1.403±0.204 43.07±1.22 0.252±0.063 

64→32 1.316±0.230 43.39±1.37 0.237±0.072 

96→32 1.319±0.216 43.38±1.32 0.237±0.068 

48→48 1.424±0.195 42.58±1.13 0.281±0.061 

64→48 1.309±0.210 43.53±1.31 0.229±0.065 

96→48 1.310±0.212 43.37±1.28 0.237±0.067 

128→48 1.311±0.215 43.40±1.31 0.236±0.068 

64→64 1.389±0.211 42.87±1.21 0.264±0.063 

96→64 1.316±0.207 43.46±1.28 0.233±0.066 

128→64 1.322±0.211 43.32±1.27 0.240±0.067 
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Figure 6.5 Comparison of reconstructed QSM using 3D U-Net with different input/output patch 
sizes. 

The green box highlights the ground truth COSMOS QSM. Red arrows highlight the edge 
incontituity artifacts. 

 

Table 6.2 Test set performance of U-Net baseline, QSMGAN and non-learning-based 
algorithms. 

Methods L1 error (1e-3) PSNR NMSE HFEN SSIM 

TKD 2.826±0.178 38.82±1.69 0.496±0.076 99.84±4.86 0.806±0.023 

MEDI 2.909±0.194 41.24±1.71 0.539±0.059 100.99±5.02 0.912±0.027 

iLSQR 2.193±0.227 42.03±1.45 0.410±0.088 74.40±7.15 0.896±0.025 

3D U-Net 64-->48 1.309±0.210 43.53±1.31 0.229±0.065 48.45±8.30 0.944±0.018 

QSMGAN 64-->48 1.199±0.215 44.16±1.42 0.200±0.065 45.68±8.53 0.952±0.018 
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6.3.2. Effectiveness of QSMGAN 

Using the 64→48 3D U-Net as the generator, the metric-wise benefit of using QSMGAN over 

the 3D U-Net is shown by the quantitative metrics listed in Table 6.2. (p=0.03 for all metrics of 

3D U-Net vs. QSMGAN) Column 4 and 5 in Figure 6.6 and Figure 6.7 demonstrates the visual 

comparison of reconstructed QSM of 3D U-Net and QSMGAN, where the adversarial training 

further improved the quality of the reconstructed QSM map by reducing both residual blurring 

and the remaining edge discontinuity artifacts from the relatively smaller input patch size, 

providing a more accurate and detailed mapping of susceptibility compared to the 3D U-Net 

baseline. 
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Figure 6.6 Comparison of QSM of test subject 1. 
Row 1,2: sagittal view and error map. Row 3,4: coronal view and error map. Row 5,6: axial view 
and error map. Numbers at bottom of each slice show the L1 error relative to COSMOS-QSM of 

the slice. 
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Figure 6.7 Comparison of QSM of test subject 2. 
Row 1,2: sagittal view and error map. Row 3,4: coronal view and error map. Row 5,6: axial view 
and error map. Numbers at bottom of each slice show the L1 error relative to COSMOS-QSM of 

the slice. 

 

6.3.3. Comparison with non-learning-based methods 

Compared to 3 common ‘non-learning-based’ QSM dipole inversion algorithms (TKD, MEDI and 

iLSQR), our QSMGAN approach had 42-59% reductions in NMSE and L1 error in the test 

datasets while increasing PSNR by 4-13% as shown in Table 6.2. Figure 6.6 and Figure 6.7 
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show examples of QSM slices from the two test subjects generated from our QSMGAN 

compared to non-learning-based algorithms. Although TKD had the lowest computational 

complexity, it also resulted in the most streaking artifacts. Despite its smooth appearance, MEDI 

was the least uniform with relatively high L1 error and inaccurate contrast of some fine 

structures such as vessels. It also required the longest computation time of all of the methods 

(about 2 hours on a regular desktop workstation). Although iLSQR QSM had lower L1 error than 

TKD and MEDI, it was visually noisier than all other methods. QSMGAN not only resulted in the 

best L1 error, PSNR, NMSE, HFEN, and SSIM, but achieved the most similar QSM map to 

COSMOS in only 2 seconds of reconstruction time per scan, the same order of time complexity 

as with the TKD method.  

 

6.3.4. Application of networks in patients with radiation-induced CMBs  

To evaluate the generalization ability of our networks, we tested our network in a cohort of 12 

patients with brain tumors treated with prior radiation therapy. The median susceptibility values 

for each CMB and total number of CMBs per patient based on iLSQR, 3D U-Net and QSMGAN 

were not significantly different among methods (Kruskal-Wallis test p=0.149 and p=0.936, 

respectively; see Figure 6.8). This comparison demonstrates that the proposed QSMGAN could 

be well generalized to previously unseen pathology with extreme susceptibility values. Figure 

6.9 demonstrates the robustness of QSMGAN to artifacts from imperfect preprocessing steps 

such as skull stripping and background phase removal as well as its ability to generate more 

uniform susceptibility maps. Patient 8 (row 1) suffered from poor brain extraction and 

background field removal that resulted in severe susceptibility artifacts from the air-tissue 

interface in the sinuses in the iLSQR QSM image. Although 3D U-Net partially alleviated this 

problem, QSMGAN provided the most uniform and highest quality susceptibility map with the 

least amount of residual artifacts. Patient 12 (row 2) had residual background phase that 
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obscured the detection of a microbleed (denoted by the red arrow) that was correctly visualized 

on both the deep learning-based QSM maps.  

 

Figure 6.8 Comparison of median CMB susceptibilities measured from different QSM 
algorithms. 

a) box plot of median CMB susceptibilities. B) Bland-Altman plots of algorithm pairs.  
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Figure 6.9 QSM of two patients with brain tumors who had developed cerebral microbleeds due 
to prior radiation therapy. 

Subject 8 suffered from poor brain extraction and background field removal that resulted in 
severe susceptibility artifacts in the iLSQR QSM image. Both 3D U-Net and QSMGAN 

successfully removed the artifact but QSMGAN generated higher quality maps with less edge 
discontinuity artifacts. as highlighted by the red arrow. Subject 12 had residual background 

phase that obscured the detection of a microbleed (denoted by the red arrow) that was correctly 
visualized on both the deep learning-based QSM maps. The input-output size was 64-->48 for 

both subjects.  

 

6.4. Discussion and conclusions 

Although in theory the phase-susceptibility relationship in QSM is global, meaning the tissue 

phase is determined by the susceptibility of all locations in the imaging volume, we still adopted 

a patch-based deep learning approach similar to Yoon et al., 2018 for several reasons. Since 

the network is 3D, the patch-based method can significantly reduce the computation complexity 

and memory requirement compared to whole-volume based approaches, especially when 
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conducting high-resolution QSM. For example, if we needed to generate a full QSM volume with 

a 256x256x150 matrix size using the entire volume as an input to the 3D U-Net architecture, 

even the most advanced GPU with 32GB of graphics memory would not be able to fit a single 

training sample. The patch-based method also converts one single scan into hundreds of input 

images, even before data augmentation. Since COSMOS requires a relatively long scan time 

and is cumbersome to conduct, training a more generalizable deep convolutional network is 

beneficial when only a limited amount of data is available. Because the phase is mostly 

determined by nearby susceptibilities due to the properties of the susceptibility-phase 

convolutional kernel, the patch-based approach yields a good approximation of the dipole 

inversion.  

As Table 6.1 demonstrates, increasing the input patch size and applying center cropping at the 

end of the 3D U-Net significantly improved the quality of the reconstructed QSM maps. This can 

be intuitively described by Figure 6.3, where when the input patch size equaled the output patch 

size, an output voxel near the center of the patch (panel (a) of Figure 6.3) could receive 

information from the entire patch. However, a voxel near the edge of the output patch (panel (b) 

of Figure 6.3) would only receive information from the orange region and a large portion of the 

phase information from the gray region would be missing, reducing the ability of the network to 

accurately solve for the susceptibility. When we increased the input patch size (panel (c) of 

Figure 6.3) and cropped the output patch such that only the center of the patch was considered 

a valid QSM prediction, voxels near the edge of the patch regained phase input information 

thereby increasing the accuracy of the quantified susceptibility values.  

Another observation from Table 6.1 is that the medium output patch size (483) achieved the best 

QSM reconstruction performance. The smaller patch size (323) performed worse because the 

output voxels received less information, introducing more error to the patch approximation of 

global convolution. Unexpectedly, the larger patch size (643) didn’t provide any extra benefit to 
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the dipole inversion. This might be due to the fact that it introduced more variables into the 

computation process and increased the difficulty of training a good network for QSM 

reconstruction. In addition, for each output patch size, using excessively large input patches 

(such as 96-->32) did not further reduce the error but slightly downgraded the QSM quality. This 

might be due to increased information far from the output patch interfering with the dipole 

inversion.  

A disadvantage of using an excessively large input patch size is the dramatically increased 

computational complexity and GPU memory requirement. Note that the network is three-

dimensional and the computational complexity and memory requirement of training the networks 

roughly increases with the input patch size by O(n3). The center cropping we applied to ensure a 

large enough receptive field, only exacerbated this problem, greatly reducing the efficiency of 

the prediction process. For example, if we increased the input patch size from 323 to 643, the 

training/prediction time and memory became 8x as long and only 1/8 of the computed patches 

were utilized. Based on the observation that excessively large input patch sizes greatly 

increased the computational burden without improving the quality of the resulting QSM maps, 

we selected the 64→48 3D U-Net as the base network to integrate with the GAN.  

The rationale for the GAN training, which included adding a discriminator or “critic”, was to guide 

the generator (or the 3D U-Net) to further refine its result so that it could not be distinguished 

from a real COSMOS QSM patch. Although it took a long time (48 hours) to train the QSMGAN, 

once the training was finished the discriminator was no longer needed. As a result, 

reconstruction or prediction of the QSM map for a new scan/subject from tissue phase only 

required one forward pass through the 3D U-Net for each input patch, thereby resulting in a 

computational complexity that is identical to the 3D U-Net baseline.  

Although the QSMGAN was trained only on healthy volunteer data, when applying the network 

to patient data, it successfully recovered the previously unseen pathology of cerebral 
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microbleeds and assigned values similar to those obtained from iLSQR. This demonstrated that 

the networks avoided overfitting and managed to learn the underlying dipole convolution 

relationship between tissue phase and susceptibility sources. We also observed unforeseen 

robustness to imperfect preprocessing from QSMGAN. This was likely due to the fact that our 

QSMGAN was trained on carefully processed training data with little artifacts, so the generator 

would favor outputs with similar image quality and therefore tended to remove any abnormal 

susceptibility sources and remaining background phase components. Although our QSMGAN 

was trained on only brain images because QSM has been most widely utilized in the brain, the 

network can easily be trained using data from other organs of interest. 

In this study, we implemented a 3D U-Net deep convolutional neural network approach to 

improve the dipole inversion problem in QSM reconstruction. To better approximate the global 

convolution property in the phase-susceptibility relationship through patch-based neural 

networks, we enlarged the input patch size and introduced center cropping to ensure an 

increased input receptive field for all neural network outputs. This cropping technique provided 

significantly lower edge discontinuity artifacts and higher accuracy. Including a generative 

adversarial network based on the WGAN-GP technique further improved the stability of training 

process, the image quality, and the accuracy of the susceptibility quantification. Compared to 

the other traditional non-learning dipole inversion algorithms such as TKD, MEDI and iLSQR, 

our proposed method could efficiently generate more accurate, COSMOS-like QSM maps from 

single-orientation, background-field-removed, tissue phase images. When tested on patients 

with radiation-induced CMBs, QSMGAN improved the robustness of the QSM reconstruction 

without sacrificing the sensitivity of CMB detection. Future directions include investigating the 

network’s ability to generalize to other scan parameters (such as TE, TR, and image resolution) 

and evaluating the performance of QSMGAN in patients with different pathologies and in other 

organs to ultimately improve patient care.   
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Chapter 7. Conclusions and future directions 

7.1. Conclusions 

This dissertation investigated the techniques of susceptibility imaging using MR, developed 

deep learning methods combined with these techniques, and analyzed their utility in different 

neurological applications. 

Chapter 3 and Chapter 4 focused on combining the SWI technique with deep convolutional 

neural networks to facilitate automatic detection and segmentation of CMBs. Chapter 3 

proposed a deep residual neural network architecture for false positive reduction and 

demonstrated its effectiveness in a cohort of patients with brain tumors treated with 

radiotherapy. Chapter 4 further confirmed the generalizability of the model designed and trained 

in Chapter 3 by applying it to scans with different parameters and patients with CCM. Chapter 4 

also tested and compared various model training strategies with different amounts of available 

data and optimization goals. 

Chapter 5 and Chapter 6 focused on the quantitative MR phase imaging technique, QSM. 

Chapter 5 investigated multiple crucial algorithms for performing QSM, including background 

removal and dipole inversion algorithms. This chapter evaluated and compared these 

algorithms with clinically informed metrics in both volunteers and patients with brain tumors. 

Chapter 6 further focuses on improving the dipole inversion step for QSM with the aid of 3D 

DCNN and GAN. By training a WGAN with gradient penalty, the network was able to reconstruct 

COSMOS-grade QSM within seconds from single orientation scan data, greatly improving the 

accuracy, efficiency, and quality of QSM. 
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7.2. Future directions 

The automatic CMB detection algorithm using deep learning presented and evaluated in 

Chapter 3 and Chapter 4 is still based upon a candidate proposal algorithm that depends on 

traditional image processing algorithms and the manual tuning of appropriate features and 

thresholds. A future direction of this project is to train an end-to-end CMB detection and 

segmentation network to eliminate the candidate proposal algorithm and maximize the benefit of 

representation learning brought by neural networks. 

Chapter 5 compared different QSM algorithms in multiple dimensions. The next step will be 

applying the knowledge we learn from this study to different clinical and research scenarios and 

optimize the quality of the resulting QSM images, especially in cases where more extreme 

susceptibility values are observed. 

The deep neural network, or QSMGAN, developed Chapter 6 only performs dipole inversion on 

tissue phase maps, which still requires multiple steps of careful image processing. Based on the 

large model capacity a DCNN could provide, a future direction worth exploring is to build and 

train a single-step end-to-end network that can reconstruct QSM from raw phase images, which 

has the potential to further reduce propagation error between multiple steps.  
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