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ABSTRACT 
We propose to look at light fields from a dual space point of view. 
The advantage, in addition to revealing some new insights, is a 
framework that combines the benefits of many existing works. 
Using the well known two-plane-parameterization, we derive the 
duality between the 4-D light field and the 3-D world space. In the 
dual light field, rays become hyper points. We introduce the 
concept of hyperline. Then, cameras appear as hyperlines – 
camera hyperline (CHL) – mostly heterogeneous in color; scene 
points also appear as hyperlines – geometry hyperline (GHL) – 
mostly homogeneous in color. CHL’s and GHL’s are independent. 
The existence of one does not require or replace the other. When 
both exist, they cross each other at the dual ray hyper points. Both 
CHL and GHL-based light field rendering results are presented. 

Categor ies and Subject Descr iptors 
I.3.3 [Picture/Image Generation]: Display algorithms, Viewing 
algorithms; I.3.7 [Three-Dimensional Graphics and Realism]: 
Ray tracing, Virtual reality. 

General Terms 
Algorithms, Experimentation, Theory. 

Keywords 

Light field rendering, point sample rendering, dual space. 

1. INTRODUCTION 
Current approaches in image-based rendering fall into two main 
categories: geometry based and light field based. Geometry based 
approaches transfer input images to the virtual camera through the 
usage of scene geometry, which can be in the form of per-pixel 
depth [17] or polygonal models [2],[4],[6]. The depth value 
defines a correspondence between the pixel and a point in the 
scene. When the latter is warped to the virtual view, it carries over 
its color from the source view. A problem here is that a 
background point may leak through the foreground point cloud, 
bringing the wrong color to the projected pixel. One way to 
handle this is to increase the size of the scene point so that it 

occupies multiple pixels [11],[13],[15] and use a Z-buffer to 
resolve occlusion. Alternatively, one can ensure that the point 
samples are dense enough to match the resolution of all the 
desired views [8]. Often in practice, however, finding an 
inexpensive way to obtain accurate and dense range data may be 
problematic.  

Using polygons as image transfer primitives is grounded on the 
knowledge that two images of a planar facet are related by a 
homography [5]. Thus source images can be piecewise warped to 
the destination image and combined according to some weighting 
function. To handle occlusion, image patches must be warped 
following a certain order [4] if a metric model is not available; 
otherwise, a Z-buffer can be utilized. Similar to the previous case, 
recovering polygonal models from images using computer vision 
techniques is a non-trivial task. 

The light field approach [3],[7],[12] has become attractive lately 
because it has been demonstrated that virtual views of reasonable 
visual quality can be synthesized, almost in real time, without any 
scene geometry. The idea is to think of the scene as a space full of 
rays (thus the name light field), a portion of which is recorded by 
the source cameras. Image synthesis then is nothing but rebinding 
the recorded rays according to the geometry of the virtual camera. 
Therefore, two related issues need to be addressed: how to 
efficiently store the rays sampled by the source cameras and how 
to quickly retrieve rays from the storage.  

Two methods have been reported. The first method considers the 
light field as a four-dimensional space and samples at regular grid 
[7],[12] or in some uniform fashion [3]. The color of a virtual ray 
is calculated by interpolating neighboring samples. When the two-
plane parameterization (2PP) is used [7],[12], rendering can be 
done very fast due to support from existing hardware. Spherical 
parameterization [3] was introduced to handle the discontinuity 
problem that occurs when switching from one 2PP to another. 
Since normally the cameras are not regularly placed, rays do not 
distribute uniformly (instead, they form bundles), so input rays 
must be resampled in a pre-processing stage, which may cause 
aliasing effects that cannot be removed later. This method also 
needs to deal with compression of the sampled 4-D light field.  

The second method uses the input images directly without 
resorting to the intermediate resampling step and allows free-form 
camera placement. There are three issues involved: camera 
selection, ray selection (in the selected cameras) and blending of 
the chosen rays. In [16], for example, a convex camera mesh 
whose vertices are the camera projection centers is formed. Given 
a virtual ray from a virtual camera, the triangle that intersects the 
ray is determined and the three cameras at the vertices are chosen. 
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To determine the ray in each chosen camera, the virtual ray is 
further intersected with its image plane and the ray corresponding 
to the intersection is selected. Alternatively, if scene geometry is 
available, the ray that has the common intersection with the 
virtual ray at the geometry is selected. Finally, the blending 
weights are set proportional to the inverse distance between the 
virtual ray/triangle intersection and the triangle vertices. In [6], a 
different camera selection criterion is used based on the 
triangulation of the projection of the camera centers at the virtual 
image plane. In [2], the calculation of the blending weights is 
based on a list of desirable properties that an ideal image-based 
rendering should have.  

1.1 Overview of our  approach 
We model scene objects as point clouds. The points are called 
scene points. A light field is the set of rays either recorded by the 
cameras, or emitted from scene points. Both cameras (actually, 
projection centers) and scene points can be thought of as bundles 
of rays. Their roles are symmetric with respect to the rays. The 
essence of the proposed framework is treating the 4-D light field 
as a dual space of the 3-D world space so that the point-ray-
camera relationship has a dual appearance. We introduce the 
concept of hyperline which is the intersection of two 4-D hyper 
planes in the dual light field, with two degrees of freedom (it is 
called a “ line”  because two hyperlines intersect into a hyper 
point). Then, both cameras and scene points appear as hyperlines, 
and rays appear as hyper points on hyperlines. Hyperlines 
representing cameras obtain their colors from the images, 
therefore, they are mostly heterogeneous. Hyperlines representing 
scene points inherit their colors from the latter, thus are mostly 
homogeneous. In the proposed framework, ray selection becomes 
hyper point selection from hyperlines (either kind or both), as 
opposed to 3-D line selection. 

1.2 Contr ibutions 
The proposed light field rendering framework combines the 
advantages of many previous works. For example, it allows for 
implementing both geometry based and light field based 
algorithms; it uses the 4-D light field parameterization but 
removes the need of resampling, thus avoids dealing with the 
follow-on issues such as anti-aliasing and compression; it allows 
for free-form camera placement; it incorporates nicely the 
dynamic focal plane scheme [10]; finally, the resulting rendering 
algorithm can be efficiently implemented as projective texture 
mapping.  

To our knowledge, light field has not been studied as a dual space 
before. There are three practically meaningful cases: cameras are 
dense, scene points are dense, and both are sparse. This paper 
addresses the first two. But we believe our framework has the 
potential to address the third one because it makes easier using the 
camera and geometry information concurrently, as a result of 
having a single representation for both. Our second intent is to 
stimulate some interest into looking at light fields from a dual 
space point of view, which might lead to some new insights into 
this increasingly popular topic. 

1.3 Paper organization 
Section 2 derives the dual relationship between the light field and 
the world space. It then introduces the concept of hyperline. 
Section 3 and section 4 propose algorithms for light field 

rendering using hyperlines. Section 5 presents some experimental 
results. Finally, in section 6, conclusions are offered. 

In this paper, an image plane is considered continuous and 
infinite. A pixel is any point on the image plane. A ray is a line 
that passes through the camera center-of-projection and a pixel. 
On a camera, since pixels and rays are uniquely paired, they are 
used interchangeably in this paper. 

2. A DUAL REPRESENTATION OF THE 
LIGHT FIELD 

2.1 Der ivation of the duality 
Using the two-plane parameterization (2PP) [7],[12], a ray has a 
quadruple representation { s, t, u, v}  where (s, t) and (u, v) 
respectively are the coordinates of intersections of the ray with the 
two parameterization planes (Figure 1). This suggests a dual 
relationship between the world space where rays appear as lines 
and a 4-D space where rays appear as points. From now on, the 
phrase light field means the 2PP parameterized 4-D dual space.  
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Figure 1: The two-plane- parameter ization and der ivation of 
dual relationship. 

In Figure 1, ),,( zyxP = is a scene point. Let ),,,( vutsQ =  be 

the light field coordinate of a line through P. Without loss of 
generality, assume the x-y plane is parallel to the s-t plane at zst 
and the u-v plane at zuv. It follows from similar triangles or simple 
trigonometry calculation that   
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which has two equivalent matrix forms: 
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(2b) 

Since (2b) describes the intersection of two 4-D hyper planes, 
defining a two dimensional subspace of R4, the resulting linear 
entity is called a hyperline. A general form of (2b) is 
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where a and b cannot be zero at the same time, or equivalently, 
a2+b2≠0. From now on, we use a quadruple (a, b, c, d) to represent 
a hyperline. Obviously, a hyperline represented by (3) has two 
degrees of freedom (2-DOF). The intersection of two hyperlines is 
that of four hyper planes, thus a hyper point (0-DOF), unless the 
hyperlines are parallel. 

The dual relationship between world space and light field is 
described by the following three remarks: 

i). World space and light field are dual spaces: points in one space 
correspond to lines or hyperlines in the other space, and vice 
versa. For example, the point P in world space corresponds to the 
hyperline in the light field whose equation is given by (2b); and 
the point Q in the light field corresponds to the line in world space 
whose equation is given by (2a). 

ii). A bundle of lines in world space correspond to a set of co-
hyperlinear points in the light field. For example, when x, y, z are 
fixed while s, t, u, v are varying, (2a) describes a bundle of lines in 
world space all passing through P, and (2b) describes a set of co-
hyperlinear points in R4.  

iii). A set of collinear points in world space corresponds to a 
bundle of hyperlines in the light field. For example, when s, t, u, v 
are fixed while x, y, z are varying, (2a) describes a set of collinear 
points and (2b) describes a bundle of hyperlines all passing 
through the 4-D point Q. 

We would like to point out the relationship between the slope k of 
a hyperline and the depth z of the corresponding 3-D point: k = 
−a/b =    (z−zuv)/(z−zst). Particularly, for two 3-D points of same 
depth, their hyperlines are parallel. This observation was also 
made by Gu et al. in [9] where they characterized a bundle of 
lines in the world space as a 2-D affine subspace in the light field. 
They did not explicitly make use of the duality between the 3-D 
line bundle and the 4-D hyperline. 

2.2 Camera hyper lines and geometry 
hyper lines  

In world space, a ray is a vector with color, starting from a scene 
point and ending at a camera projection center. Rays form two 
kinds of bundles: one around the camera centers, which is mostly 
heterogeneous in color; the other around scene points, which is 
mostly homogeneous in color. In the dual space, or light field, the 
bundles transform into two types of hyperlines: the first type – 
camera hyperline (CHL) – representing bundles of rays collected 

by the cameras, is mostly heterogeneous. The second type – 
geometry hyperline (GHL) – representing bundles of rays emitted 
from the scene points, is mostly homogeneous. Based on our 
definition, the existence of a light field requires either the CHL’s 
or the GHL’s, not necessarily both. This allows for developing 
rendering algorithms using either kind of hyperlines. When both 
exist, their intersections are the dual ray hyper points. In our 
framework, camera placement does not have to be coplanar [12] 
or in some uniform fashion [3]. Consequently, unstructured light 
field rendering can be achieved. 

From now on, a camera and its basic elements – center-of-
projection, image plane, ray, pixel – all have dual appearances. 
However, we do not phrase them differently. For instance, a ray 
can be either a 3-D line of a 4-D point, but is unvaryingly called a 
“ ray” . Readers are expected to figure out the actual appearance 
from the context. 

3. UNSTRUCTURED LIGHT FIELD 
RENDERING USING CHL 
Light field rendering using CHL’s is rather straightforward. First, 
convert input images to CHL’s. Second, for each virtual ray, 
select hyperlines by minimizing a cost function. Third, for the 
same virtual ray, choose and then blend rays from the just selected 
hyperlines. Notice since there is a one-to-one mapping between a 
CHL and an image plane, there is no need to perform resampling 
on CHL’s. 

3.1 Selection by 4-D distance 
Here, camera selection and ray selection are done in one step. The 
main issue is deciding the source ray ),,,( iiiii vuts=r on a 

given camera hyperline ),,,( iiiii dcba=l  close to a virtual ray 

),,,( rrrr vuts=r in some optimal sense. The cost then 

determines which cameras and rays should be selected. One 
intuitive criterion is to minimize the squared 4-D distance 
between ri and r: 
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to aisi+biui=ci and aiti+bivi=di. The solution is  
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Based on (4), the first few source rays with the shortest 4-D 
distance are chosen, and blended according to the inverse 
distance.  



 

To see the geometrical meaning of this solution, place all cameras 
on the s-t plane, i.e., zc=zst, or bi=0. As a result, xc=si, yc=ti. The 
ray with the shortest distance is ri=(ci/ai, di/ai, ur, vr) = (sc, tc, ur, 
vr) which coincides with r on the u-v plane as they have the same 
u-v coordinates. Since all selected rays pass through (ur, vr, zuv), 
their costs are really dependent on their locations on the s-t plane. 
This is the basis for the quadrilinear interpolation adopted in [7]. 

3.2 Incorporating the dynamic focal plane 
An alternative cost function is to require additionally that the 
selected source ray have a direction similar to the virtual one. We 
therefore minimize 
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{ }22 )()( riririri vvttuuss +−−++−−β     (5) 

subject to aisi+biui=ci and aiti+bivi=di. The first term accounts for 
the light field distance as before. The second term accounts for 
orientation difference in world space. For example, it becomes 
zero when ri and r are parallel. β is the balancing factor. Solving 
(5) results in  
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It can be shown that ri and r actually intersect. Let us analyze the 
role of β by looking at the depth of the intersection, which is  
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First, since each CHL contributes an equation like (5), multiple 
balancing factors are introduced. All of them become linearly 
related if the selected source rays ri and r intersect at the same 
depth. Thus only one of these factors needs to be designated. The 
rest can be automatically computed. Second, β can be chosen so 
that the intersection is at a desired depth. Said differently, with a 
given β, objects at depth z(β) appear sharp in the virtual image, 
while those at different depths have ghost images. In this way, the 
plane at z(β) performs a similar role to the dynamic focal plane of 
[10] but is derived from quite a different motivation here. Third, if 
β=0, it is not hard to deduce that the sufficient and necessary 
condition for z(0)=zuv is bi=0 which is consistent with the 
conclusion drawn previously. Fourth, z(∞)=∞. This is equivalent 
to say that the selected source ray is parallel to the virtual one, a 
result of assigning the orientation term infinite weight.  

3.3 Implementation as projective texture 
mapping 

The fact that the virtual rays and the selected source rays intersect 
at the dynamic focal plane indicates that the virtual camera is 
related to the source ones by homographies induced by the plane. 
Following is a brief derivation. 

Denote the virtual camera projection matrix as C. A point X on the 
plane z=zβ is projected to 
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Similarly, in a source camera Ci, X is projected to b=Hi x. 

Therefore bba )(1
βzHHH io == − . The 3×3 matrix H(zβ) is the 

aforementioned homography. 

Consequently, the virtual image can be synthesized via direct 
projective texture mapping and alpha blending. The blending 
weights can be computed from the inverse 4-D distance, or any 
other methods such as [2],[14]. In fact, any 3-D plane induces a 
homography relating two cameras [5]. Thus any plane can serve 
as a dynamic focal plane. 

4. L IGHT FIELD RENDERING USING 
GHL 
Due to the symmetric role of GHL with respect to CHL, when the 
scene consists of only colored points, light field rendering can be 
implemented using GHL’s. This is equivalent to point cloud 
rendering in the 3-D space. Currently, our 3-D data are obtained 
from either laser scan or stereovision. In both cases, scene points 
have single colors. We thus assume in the following that GHL’s 
are homogeneous in color, and leave dealing with viewpoint 
dependent colors as a future work.  

In its simplest form, GHL rendering can be described as: 

 

Convert all scene points into GHL’s 
For each virtual ray r 

Compute its 4-D coordinate [sr, tr, ur, vr] 
For each GHL g  

Compute dmin according to (4) 
Choose g’ s with minimum cost 
Blend colors of the just chosen g’ s 

  
This naive implementation however will not handle occlusion 
correctly. In Figure 2, (a) and (c) show a vicinity of a virtual ray 
going through a point cloud sampled from two object surfaces; (b) 
and (d) show the same vicinity in the light field. Notice how 
points and lines change appearances in the dual image pairs. For 
the scenario of Figure 2(a), we would like the ray to have the 
color of the foreground. However, as depicted in Figure 2(b), our 
selection criterion wrongly assigns the background color to the 
ray. This is the background leakage problem. For Figure 2(c), the 
ray should have the background color. But according to Figure 
2(d), it is closer to the foreground in the light field. This is the 
foreground expansion problem.  



 

Our solution to the above problems is based on two observations. 
First, in general, the dense point cloud in the vicinity of a ray is 
clustered around the same depth. This is equivalent to say, without 
creating a polygon mesh of the object surfaces, we agree that a 2-
D step waveform of piecewise constant depth is still a reasonable 
approximation. As a result, GHL’s are clustered according to their 
slope (recall k=(z-zuv)/(z-zst) ). The second observation is that if a 
ray passes through a cluster, it is surrounded by GHL’s in the 
vicinity. If it passes by a cluster, all GHL’s are at one side. We 
thus conclude that we should search for the cluster that has the 
minimum slope (also minimum depth) and at the same time is 
surrounding the virtual ray.  
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Figure 2: (a) A ray goes through both foreground and 
background. (b) The distance cr iter ion selects the wrong 
GHL. (c) A ray goes by the foreground. (d) The distance 
cr iter ion again selects the wrong GHL. 

4.1 Determining ray vicinity 
Conceptually, the light field vicinity of a virtual ray r, denoted as 
G(r), is a circular region on the virtual camera hyperline centered 
at r. We are interested in the set of GHL’s that intersect with the 
region. Let Vs be a vicinity threshold, then, G(r)={ g | dmin(g, r) < 
Vs}  where dmin(g, r) is the shortest 4-D distance as defined in (4).  

In implementation, G(r) is computed in a pre-rendering stage. A 
GHL g is registered to G(r) if dmin(g, r)<Vs. Deciding a proper 
value for Vs requires some trial-and-error. One hint is that it must 
be big enough so that some foreground GHL’s are included in 
G(r).  

4.2 GHL cluster ing based on slope 
A clustering of G(r) is a set { G1, G2, …, Gn}  such that ∪Gi =G(r), 
and Gi∩Gj =Φ for i≠j. Each Gi is called a GHL cluster. The 
observation that a cluster is around the same slope implies that, 
for a given dataset, there exists a threshold Vd such that the slope 
variance of each cluster is no greater than Vd. More formally, a 
slope based clustering of G(r), denoted as C(G(r)), is defined to 
satisfy the following additional constraints:  

1) Compactness: max(Gi)−min(Gi) ≤ Vd where max(Gi) and 
min(Gi) are respectively the maximal and minimal slope of Gi;  

2) Enclosure: for ∀g, if min(Gi)≤ slope(g) ≤ max(Gi), then g∈Gi; 

3) Maximum: for ∀g∈G(r), but g∉Gi, 
max(Gi∪{ g} )−min(Gi∪{ g} ) > Vd. 

The uniqueness of such a clustering is guaranteed by the above 
constraints provided that one exists at all for the chosen Vd. In 
practice, it is not hard to find an appropriate Vd because in most 
cases the clusters are well separated, as shown in Figure 2.  

A quick way of computing C(G(r)) is to sort all GHL’s according 
to their slope in a pre-processing stage; then, in ascending order, 
each g∈G(r) belongs to a cluster Gi either if Gi is empty or 
slope(g)–slope(g0)<Vd where g0 is the first GHL of Gi. 

4.3 Opacity of a GHL cluster  
We now define a boolean function opacity(Gi)  that indicates 
whether or not all gj∈Gi∈C(G(r)) are on one side of r. Let us 
switch our minds to the world space, and think of r and gj as 3-D 
entities. The necessary and sufficient condition for all gj∈Gi to be 
on one side of r is that there exists a plane containing r such that 
all gj’ s are on side of this plane. This says that there exists a 
wedge whose ridge is r, covering all gj’ s. The existence of such a 
wedge can be examined on a plane parallel to the parameterization 
planes.  This is depicted in Figure 3 which is a top view of Figure 
2. In Figure 3, d is the 2-D vector starting from r, pointing to gj, 
constrained to the plane containing gj and parallel to the 2PP. We 
thus define 
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When opacity(Gi) is true, we say the cluster is opaque, meaning 
that the color of r should come from Gi because it is surrounded 
by GHL’s in Gi. Otherwise, the cluster is transparent, meaning the 
color of r should come from another cluster farther back. 
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Figure 3: Understanding the opacity function in wor ld space. 
Left: both clusters are opaque. The closer  one is selected. 
Right: foreground cluster  is transparent. The background one 
is selected. 

It turns out that if gj=(ag, bg, cg, dg) and r=(sr, tr, ur, vr), then 
d=(agsr+bgur−cg, agtr+bgvr−dg). Notice that both components of d 
appear in dmin(gj, r). Therefore no extra computation is required 
for d. This also reveals a relationship between the 4-D hyper 
point/hyperline distance and the constrained 3-D line/point 
distance. In fact, there exists a 4-D cone that covers the 4-D lines 
passing the hyper point r and perpendicular to the hyperline gj’ s. 
This 4-D cone and the previous 3-D wedge are equivalent 



 

constructs. Below is the pseudo code of the modified GHL 
rendering algorithm: 

 

Convert all scene points into GHL’s  
Sort all GHL’s in ascending order of slope. 
Virtual view rendering starts: 

Compute G(r) for all virtual rays. 
For each virtual ray r 

Compute C(G(r)). 
Find the first Gi∈C(G(r)) such that  
opacity(Gi) is true. 
Blend colors of g∈Gi, weighted by 1/ dmin(g, r). 

 

5. EXPERIMENTAL RESULTS  
First, we use a very simple example to illustrate CHL-based 
rendering and the effect of the β factor. The scene consists of two 
rectangles at depth 0, one red, and the other blue, and a green 
background. The two input cameras are at (-0.75, 0, 6) and (0.65, 
0, 6), both looking at the negative z direction. The virtual camera 
is placed at (0, 0, 6), also looking at negative z. The two 
parameterization planes are zst = 4 and zuv = 1. Results are 
displayed in Figure 4. Observe that changing β in effect rotates 
the black line in the first column. This is like guessing the slope of 
the GHL corresponding to a point on the central ray (or its depth). 
When the guess is correct, the black line has the correct slope, 
which implies correct correspondence. As a result, the correct 
image is synthesized. Otherwise ghost images are generated. The 
light field slice shown in the left column is similar to the Epipolar-
Plane-Image (EPI), a common tool used in computer vision for 
motion analysis [1].  

In the second example, twenty-five cameras spanning a 45-degree 
arc are equally placed around a teapot. β is set so that the focal 
plane is located at the teapot body. For images in the top row of 
Figure 5, each pixel is blended from 6 input rays from 6 closest 
CHL’s. Notice how occlusion caused by the sprout appears 
correct although slight blurring is observed along the edges. For 
the lower left image, each pixel is copied from the single best 
CHL (different pixels may be copied from different CHL’s). As a 
result, it looks sharp. For comparison, a ground truth image is 
displayed at lower right. 

Figure 6 demonstrates the effect of a large aperture coupled with a 
dynamic focal plane. The foreground of the scene is a shiny 
teapot; the background is a texture-mapped plane. There are 50 
source views. Each virtual pixel is selected and equally blended 
from the 25 closest CHL’s. Notice how the background becomes 
blurry in the lower left image, and the teapot almost disappears in 
the lower right image.  

Using hardware support for projective texture mapping, we have 
reached 15fps average frame rate at the 512×512 resolution on a 
2Gz Pentium IV with a NVIDA GeForce2 MX graphics card. 
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Figure 4: I llustration of CHL-based render ing and the effect 
of ββββ. . . . The first column shows a slice of the light field at t=v=0, 
which consists of three tilted CHL’s. The central one comes 
from the vir tual camera. The black line indicates rays selected 
to synthesize the central pixel. The second column shows the 
synthesized image. (This figure is reproduced in color  on page 
000) 
 

 

       

   
Figure 5: CHL-based render ing of a teapot. (This figure is 
reproduced in color  on page 000) 

  



 

 
 

 
Ground truth 

 
Focus at foreground 

 
Focus at background 

Figure 6: Dynamic focal plane by adjusting ββββ. . . . (This figure is 
reproduced in color  on page 000)    
Next, results from GHL-based rendering are presented. Figure 7 
depicts the use of the slope threshold. If Vd=0 as in (a), the 
solution is aliased. This happens because each cluster contains 
only one GHL. If Vd is too large (b), two clusters are mixed. As a 
result, we can see through the tower. (Notice the outline of the 
base circle continuing behind the solid tower.) Using a proper Vd 
as in (c), the image looks smooth and occlusion is handled.  

Figure 8 shows the effect of changing the vicinity size Vs. If Vs is 
too small (a), G(r) may be empty for some r, generating a hole 
there. Also, if G(r) contains only background GHL’s, then there is 
a background leakage at r. If Vs is large and the opacity check is 
turned off (b), the image becomes blurry and the silhouettes look 
fattened. When the opacity check is turned on (c), a good-looking 
solution is reached.  

Figure 9 compares rendering results of the “car wreck scene”  
between a polygonal renderer and our GHL renderer (range data 
courtesy of University of North Carolina at Chapel Hill IBR 
group). Not all the differences are noticeable in the printed images, 
so a few are pointed out here. On the left car, notice the window, 
the hubcap and the seam between the front and back doors. On the 
right car, notice the areas around the real wheel and the ridge on 
the hood. In all these areas, the GHL rendered image looks 
smoother and more visually pleasant. 

Compared to CHL rendering, GHL rendering is slower due to the 
occlusion handling. On a 2Gz Pentium IV, current frame rate is 
about 0.2~2fps at the 512×512 resolution depending on the 
number of hyperlines used. 

 
(a) Vd =0   (b) Vd =100 (c) Vd =3 

Figure 7: The “ Pisa Tower” , using 6 images and 467260 
GHL’s.  

 

 
(a) Vs=0.3 

 
(b) Vs=3, without opacity 

 
(c) Vs=3, with opacity 

Figure 8: The “ Mate” , using 4 images (300××××300) and their  
depth maps.  



 

  
Polygon-based rendering 

 
GHL-based rendering 

Figure 9: The “ car  wreck scene” , using 9 images (864××××576) 
and their  range data. (This figure is reproduced in color  on 
page 000) 

6. CONCLUSIONS 
We have presented a new light field rendering framework that 
combines the benefits of many existing approaches. It is based on 
a dual representation of the world space such that 3-D points and 
lines become 4-D hyperlines and hyper points respectively. We 
show that our algebraic ray selection criterion is in fact 
geometrical meaningful. For instance, the balancing factor in the 
cost function acts as a dynamic focal plane. The latter induces a 
homography which makes it possible to implement CHL 
rendering as projective texture mapping. The 4-D hyper 
point/hyperline distance is related to the 3-D line/point distance 
constrained to planes that are parallel to the parameterization 
planes. This allows us addressing the foreground expansion 
problem in GHL rendering. If we view CHL rendering as using 
one plane for texture mapping, and GHL as using multiple planes 
(each passing through a scene point, all parallel to the 
parameterization planes), we see that the real difference between 
the two is the number of depth planes used. This understanding 
opens up rooms for future hybrid algorithms that optimally 
explore the continuous spectrum between light-field based and 
geometry-based methods, and potentially address the problem 
when the geometrical data is incomplete and/or inaccurate.  
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