
UC Davis
IDAV Publications

Title
Light Field Duality: Concepts and Applications

Permalink
https://escholarship.org/uc/item/0fp8x522

Authors
Chen, George
Hofsetz, Christian
Liu, Yang
et al.

Publication Date
2002

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0fp8x522
https://escholarship.org/uc/item/0fp8x522#author
https://escholarship.org
http://www.cdlib.org/

Light Field Duality: Concept and Applications
George Chen, Li Hong, Kim Ng,

Peter McGuinness
Human-Computer Interface Laboratory

STMicroelectronics
4690 Executive Dr. Suite 200

San Diego, CA 92121
(01) 858 452 7715

Email: george-qian.chen@st.com

Christian Hofsetz, Yang Liu,
Nelson Max

CIPIC – Department of Computer Science
University of California Davis

One Shields Avenue,
Davis, CA 95616

(01) 530 752 2376

Email: chofsetz@ucdavis.edu

ABSTRACT
We propose to look at light fields from a dual space point of view.
The advantage, in addition to revealing some new insights, is a
framework that combines the benefits of many existing works.
Using the well known two-plane-parameterization, we derive the
duality between the 4-D light field and the 3-D world space. In the
dual light field, rays become hyper points. We introduce the
concept of hyperline. Then, cameras appear as hyperlines –
camera hyperline (CHL) – mostly heterogeneous in color; scene
points also appear as hyperlines – geometry hyperline (GHL) –
mostly homogeneous in color. CHL’s and GHL’s are independent.
The existence of one does not require or replace the other. When
both exist, they cross each other at the dual ray hyper points. Both
CHL and GHL-based light field rendering results are presented.

Categor ies and Subject Descr iptors
I.3.3 [Picture/Image Generation]: Display algorithms, Viewing
algorithms; I.3.7 [Three-Dimensional Graphics and Realism]:
Ray tracing, Virtual reality.

General Terms
Algorithms, Experimentation, Theory.

Keywords

Light field rendering, point sample rendering, dual space.

1. INTRODUCTION
Current approaches in image-based rendering fall into two main
categories: geometry based and light field based. Geometry based
approaches transfer input images to the virtual camera through the
usage of scene geometry, which can be in the form of per-pixel
depth [17] or polygonal models [2],[4],[6]. The depth value
defines a correspondence between the pixel and a point in the
scene. When the latter is warped to the virtual view, it carries over
its color from the source view. A problem here is that a
background point may leak through the foreground point cloud,
bringing the wrong color to the projected pixel. One way to
handle this is to increase the size of the scene point so that it

occupies multiple pixels [11],[13],[15] and use a Z-buffer to
resolve occlusion. Alternatively, one can ensure that the point
samples are dense enough to match the resolution of all the
desired views [8]. Often in practice, however, finding an
inexpensive way to obtain accurate and dense range data may be
problematic.

Using polygons as image transfer primitives is grounded on the
knowledge that two images of a planar facet are related by a
homography [5]. Thus source images can be piecewise warped to
the destination image and combined according to some weighting
function. To handle occlusion, image patches must be warped
following a certain order [4] if a metric model is not available;
otherwise, a Z-buffer can be utilized. Similar to the previous case,
recovering polygonal models from images using computer vision
techniques is a non-trivial task.

The light field approach [3],[7],[12] has become attractive lately
because it has been demonstrated that virtual views of reasonable
visual quality can be synthesized, almost in real time, without any
scene geometry. The idea is to think of the scene as a space full of
rays (thus the name light field), a portion of which is recorded by
the source cameras. Image synthesis then is nothing but rebinding
the recorded rays according to the geometry of the virtual camera.
Therefore, two related issues need to be addressed: how to
efficiently store the rays sampled by the source cameras and how
to quickly retrieve rays from the storage.

Two methods have been reported. The first method considers the
light field as a four-dimensional space and samples at regular grid
[7],[12] or in some uniform fashion [3]. The color of a virtual ray
is calculated by interpolating neighboring samples. When the two-
plane parameterization (2PP) is used [7],[12], rendering can be
done very fast due to support from existing hardware. Spherical
parameterization [3] was introduced to handle the discontinuity
problem that occurs when switching from one 2PP to another.
Since normally the cameras are not regularly placed, rays do not
distribute uniformly (instead, they form bundles), so input rays
must be resampled in a pre-processing stage, which may cause
aliasing effects that cannot be removed later. This method also
needs to deal with compression of the sampled 4-D light field.

The second method uses the input images directly without
resorting to the intermediate resampling step and allows free-form
camera placement. There are three issues involved: camera
selection, ray selection (in the selected cameras) and blending of
the chosen rays. In [16], for example, a convex camera mesh
whose vertices are the camera projection centers is formed. Given
a virtual ray from a virtual camera, the triangle that intersects the
ray is determined and the three cameras at the vertices are chosen.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VRST’02, November 11-13, 2002, Hong Kong.
Copyright 2002 ACM 1-58113-530-0/02/0011…$5.00.

To determine the ray in each chosen camera, the virtual ray is
further intersected with its image plane and the ray corresponding
to the intersection is selected. Alternatively, if scene geometry is
available, the ray that has the common intersection with the
virtual ray at the geometry is selected. Finally, the blending
weights are set proportional to the inverse distance between the
virtual ray/triangle intersection and the triangle vertices. In [6], a
different camera selection criterion is used based on the
triangulation of the projection of the camera centers at the virtual
image plane. In [2], the calculation of the blending weights is
based on a list of desirable properties that an ideal image-based
rendering should have.

1.1 Overview of our approach
We model scene objects as point clouds. The points are called
scene points. A light field is the set of rays either recorded by the
cameras, or emitted from scene points. Both cameras (actually,
projection centers) and scene points can be thought of as bundles
of rays. Their roles are symmetric with respect to the rays. The
essence of the proposed framework is treating the 4-D light field
as a dual space of the 3-D world space so that the point-ray-
camera relationship has a dual appearance. We introduce the
concept of hyperline which is the intersection of two 4-D hyper
planes in the dual light field, with two degrees of freedom (it is
called a “ line” because two hyperlines intersect into a hyper
point). Then, both cameras and scene points appear as hyperlines,
and rays appear as hyper points on hyperlines. Hyperlines
representing cameras obtain their colors from the images,
therefore, they are mostly heterogeneous. Hyperlines representing
scene points inherit their colors from the latter, thus are mostly
homogeneous. In the proposed framework, ray selection becomes
hyper point selection from hyperlines (either kind or both), as
opposed to 3-D line selection.

1.2 Contr ibutions
The proposed light field rendering framework combines the
advantages of many previous works. For example, it allows for
implementing both geometry based and light field based
algorithms; it uses the 4-D light field parameterization but
removes the need of resampling, thus avoids dealing with the
follow-on issues such as anti-aliasing and compression; it allows
for free-form camera placement; it incorporates nicely the
dynamic focal plane scheme [10]; finally, the resulting rendering
algorithm can be efficiently implemented as projective texture
mapping.

To our knowledge, light field has not been studied as a dual space
before. There are three practically meaningful cases: cameras are
dense, scene points are dense, and both are sparse. This paper
addresses the first two. But we believe our framework has the
potential to address the third one because it makes easier using the
camera and geometry information concurrently, as a result of
having a single representation for both. Our second intent is to
stimulate some interest into looking at light fields from a dual
space point of view, which might lead to some new insights into
this increasingly popular topic.

1.3 Paper organization
Section 2 derives the dual relationship between the light field and
the world space. It then introduces the concept of hyperline.
Section 3 and section 4 propose algorithms for light field

rendering using hyperlines. Section 5 presents some experimental
results. Finally, in section 6, conclusions are offered.

In this paper, an image plane is considered continuous and
infinite. A pixel is any point on the image plane. A ray is a line
that passes through the camera center-of-projection and a pixel.
On a camera, since pixels and rays are uniquely paired, they are
used interchangeably in this paper.

2. A DUAL REPRESENTATION OF THE
LIGHT FIELD

2.1 Der ivation of the duality
Using the two-plane parameterization (2PP) [7],[12], a ray has a
quadruple representation { s, t, u, v} where (s, t) and (u, v)
respectively are the coordinates of intersections of the ray with the
two parameterization planes (Figure 1). This suggests a dual
relationship between the world space where rays appear as lines
and a 4-D space where rays appear as points. From now on, the
phrase light field means the 2PP parameterized 4-D dual space.

 P

z

y

x

zuv

zst

t

s

u

v

Q

Figure 1: The two-plane- parameter ization and der ivation of
dual relationship.

In Figure 1,),,(zyxP = is a scene point. Let),,,(vutsQ = be

the light field coordinate of a line through P. Without loss of
generality, assume the x-y plane is parallel to the s-t plane at zst
and the u-v plane at zuv. It follows from similar triangles or simple
trigonometry calculation that

uv

st

zz

zz

yv

yt

xu

xs

−
−=

−
−=

−
−

 (1)

which has two equivalent matrix forms:

�
�

�
�
�

�

−
−

=
�
�
�

�

�

�
�
�

�

�

�
�

�
�
�

�

−−
−−

stuv

stuv

stuv

stuv

vztz

uzsz

z

y

x

vtzz

uszz

0

0
 (2a)

�
�

�
�
�

�

−
−

=
�
�
�
�

�

�

�
�
�
�

�

�

�
�

�
�
�

�

−−
−−

)(

)(

00

00

uvst

uvst

stuv

stuv

zzy

zzx

v

u

t

s

zzzz

zzzz
.

(2b)

Since (2b) describes the intersection of two 4-D hyper planes,
defining a two dimensional subspace of R4, the resulting linear
entity is called a hyperline. A general form of (2b) is

�
�

�
�
�

�
=

�
�
�
�

�

�

�
�
�
�

�

�

�
�

�
�
�

�

d

c

v

u

t

s

ba

ba

00

00
, (3)

where a and b cannot be zero at the same time, or equivalently,
a2+b2≠0. From now on, we use a quadruple (a, b, c, d) to represent
a hyperline. Obviously, a hyperline represented by (3) has two
degrees of freedom (2-DOF). The intersection of two hyperlines is
that of four hyper planes, thus a hyper point (0-DOF), unless the
hyperlines are parallel.

The dual relationship between world space and light field is
described by the following three remarks:

i). World space and light field are dual spaces: points in one space
correspond to lines or hyperlines in the other space, and vice
versa. For example, the point P in world space corresponds to the
hyperline in the light field whose equation is given by (2b); and
the point Q in the light field corresponds to the line in world space
whose equation is given by (2a).

ii). A bundle of lines in world space correspond to a set of co-
hyperlinear points in the light field. For example, when x, y, z are
fixed while s, t, u, v are varying, (2a) describes a bundle of lines in
world space all passing through P, and (2b) describes a set of co-
hyperlinear points in R4.

iii). A set of collinear points in world space corresponds to a
bundle of hyperlines in the light field. For example, when s, t, u, v
are fixed while x, y, z are varying, (2a) describes a set of collinear
points and (2b) describes a bundle of hyperlines all passing
through the 4-D point Q.

We would like to point out the relationship between the slope k of
a hyperline and the depth z of the corresponding 3-D point: k =
−a/b = (z−zuv)/(z−zst). Particularly, for two 3-D points of same
depth, their hyperlines are parallel. This observation was also
made by Gu et al. in [9] where they characterized a bundle of
lines in the world space as a 2-D affine subspace in the light field.
They did not explicitly make use of the duality between the 3-D
line bundle and the 4-D hyperline.

2.2 Camera hyper lines and geometry
hyper lines

In world space, a ray is a vector with color, starting from a scene
point and ending at a camera projection center. Rays form two
kinds of bundles: one around the camera centers, which is mostly
heterogeneous in color; the other around scene points, which is
mostly homogeneous in color. In the dual space, or light field, the
bundles transform into two types of hyperlines: the first type –
camera hyperline (CHL) – representing bundles of rays collected

by the cameras, is mostly heterogeneous. The second type –
geometry hyperline (GHL) – representing bundles of rays emitted
from the scene points, is mostly homogeneous. Based on our
definition, the existence of a light field requires either the CHL’s
or the GHL’s, not necessarily both. This allows for developing
rendering algorithms using either kind of hyperlines. When both
exist, their intersections are the dual ray hyper points. In our
framework, camera placement does not have to be coplanar [12]
or in some uniform fashion [3]. Consequently, unstructured light
field rendering can be achieved.

From now on, a camera and its basic elements – center-of-
projection, image plane, ray, pixel – all have dual appearances.
However, we do not phrase them differently. For instance, a ray
can be either a 3-D line of a 4-D point, but is unvaryingly called a
“ ray” . Readers are expected to figure out the actual appearance
from the context.

3. UNSTRUCTURED LIGHT FIELD
RENDERING USING CHL
Light field rendering using CHL’s is rather straightforward. First,
convert input images to CHL’s. Second, for each virtual ray,
select hyperlines by minimizing a cost function. Third, for the
same virtual ray, choose and then blend rays from the just selected
hyperlines. Notice since there is a one-to-one mapping between a
CHL and an image plane, there is no need to perform resampling
on CHL’s.

3.1 Selection by 4-D distance
Here, camera selection and ray selection are done in one step. The
main issue is deciding the source ray),,,(iiiii vuts=r on a

given camera hyperline),,,(iiiii dcba=l close to a virtual ray

),,,(rrrr vuts=r in some optimal sense. The cost then

determines which cameras and rays should be selected. One
intuitive criterion is to minimize the squared 4-D distance
between ri and r:

22222)()()()(riririri vvuuttssd −+−+−+−= subject

to aisi+biui=ci and aiti+bivi=di. The solution is

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

+
+−

+
+−

+
+−

+
+−

=

22

2

22

2

22

2

22

2

,

,

,

ii

iiriiri

ii

iiriiri

ii

iiriiri

ii

iiriiri

i

ba

dbtbava

ba

cbsbaua

ba

davbatb

ba

caubasb

r

and

() ()
.

22

22
2
min

ii

iririiriri

ba

dvbtacubsa
d

+
−++−+

= (4)

Based on (4), the first few source rays with the shortest 4-D
distance are chosen, and blended according to the inverse
distance.

To see the geometrical meaning of this solution, place all cameras
on the s-t plane, i.e., zc=zst, or bi=0. As a result, xc=si, yc=ti. The
ray with the shortest distance is ri=(ci/ai, di/ai, ur, vr) = (sc, tc, ur,
vr) which coincides with r on the u-v plane as they have the same
u-v coordinates. Since all selected rays pass through (ur, vr, zuv),
their costs are really dependent on their locations on the s-t plane.
This is the basis for the quadrilinear interpolation adopted in [7].

3.2 Incorporating the dynamic focal plane
An alternative cost function is to require additionally that the
selected source ray have a direction similar to the virtual one. We
therefore minimize

{ }+−+−+−+−= 22222)()()()(riririri vvuuttssd

{ }22)()(riririri vvttuuss +−−++−−β (5)

subject to aisi+biui=ci and aiti+bivi=di. The first term accounts for
the light field distance as before. The second term accounts for
orientation difference in world space. For example, it becomes
zero when ri and r are parallel. β is the balancing factor. Solving
(5) results in

() () ()

() () ()

() () ()

() () ()
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

+++
+++−+−−+

+++
+++−+−−+

+++
+++−+−−+

+++
+++−+−−+

=

222

2

222

2

222

2

222

2

)(

)1()1()1(
)(

)1()1()1(

)(

)1()1()1(

)(

)1()1()1(

iiii

iiirriirri

iiii

iiirriirri

iiii

iiirriirri

iiii

iiirriirri

i

baba

abdvtbatva

baba

abcusbasua

baba

badtvbavtb

baba

bacsubausb

β
ββββββ

β
ββββββ

β
ββββββ

β
ββββββ

r

and

=2
mind

()
()222

22

)(2

)()()21(

iiii

iririiriri

baba

dvbtacubsa

+++
−++−++

β
β

. (6)

It can be shown that ri and r actually intersect. Let us analyze the
role of β by looking at the depth of the intersection, which is

.
)(

)(
2

ii

stuvstiuvi

ba

zzzbza
z

−
−−−

=
ββ

First, since each CHL contributes an equation like (5), multiple
balancing factors are introduced. All of them become linearly
related if the selected source rays ri and r intersect at the same
depth. Thus only one of these factors needs to be designated. The
rest can be automatically computed. Second, β can be chosen so
that the intersection is at a desired depth. Said differently, with a
given β, objects at depth z(β) appear sharp in the virtual image,
while those at different depths have ghost images. In this way, the
plane at z(β) performs a similar role to the dynamic focal plane of
[10] but is derived from quite a different motivation here. Third, if
β=0, it is not hard to deduce that the sufficient and necessary
condition for z(0)=zuv is bi=0 which is consistent with the
conclusion drawn previously. Fourth, z(∞)=∞. This is equivalent
to say that the selected source ray is parallel to the virtual one, a
result of assigning the orientation term infinite weight.

3.3 Implementation as projective texture
mapping

The fact that the virtual rays and the selected source rays intersect
at the dynamic focal plane indicates that the virtual camera is
related to the source ones by homographies induced by the plane.
Following is a brief derivation.

Denote the virtual camera projection matrix as C. A point X on the
plane z=zβ is projected to

xa)(

1

100

00

010

001

1

β
ββ

zHy

x

z
C

z

y

x

CCX o=
�
�
�

�

�

�
�
�

�

�

�
�
�
�
�

�

	

�

�

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

== .

Similarly, in a source camera Ci, X is projected to b=Hi x.

Therefore bba)(1
βzHHH io == − . The 3×3 matrix H(zβ) is the

aforementioned homography.

Consequently, the virtual image can be synthesized via direct
projective texture mapping and alpha blending. The blending
weights can be computed from the inverse 4-D distance, or any
other methods such as [2],[14]. In fact, any 3-D plane induces a
homography relating two cameras [5]. Thus any plane can serve
as a dynamic focal plane.

4. L IGHT FIELD RENDERING USING
GHL
Due to the symmetric role of GHL with respect to CHL, when the
scene consists of only colored points, light field rendering can be
implemented using GHL’s. This is equivalent to point cloud
rendering in the 3-D space. Currently, our 3-D data are obtained
from either laser scan or stereovision. In both cases, scene points
have single colors. We thus assume in the following that GHL’s
are homogeneous in color, and leave dealing with viewpoint
dependent colors as a future work.

In its simplest form, GHL rendering can be described as:

Convert all scene points into GHL’s
For each virtual ray r

Compute its 4-D coordinate [sr, tr, ur, vr]
For each GHL g

Compute dmin according to (4)
Choose g’ s with minimum cost
Blend colors of the just chosen g’ s

This naive implementation however will not handle occlusion
correctly. In Figure 2, (a) and (c) show a vicinity of a virtual ray
going through a point cloud sampled from two object surfaces; (b)
and (d) show the same vicinity in the light field. Notice how
points and lines change appearances in the dual image pairs. For
the scenario of Figure 2(a), we would like the ray to have the
color of the foreground. However, as depicted in Figure 2(b), our
selection criterion wrongly assigns the background color to the
ray. This is the background leakage problem. For Figure 2(c), the
ray should have the background color. But according to Figure
2(d), it is closer to the foreground in the light field. This is the
foreground expansion problem.

Our solution to the above problems is based on two observations.
First, in general, the dense point cloud in the vicinity of a ray is
clustered around the same depth. This is equivalent to say, without
creating a polygon mesh of the object surfaces, we agree that a 2-
D step waveform of piecewise constant depth is still a reasonable
approximation. As a result, GHL’s are clustered according to their
slope (recall k=(z-zuv)/(z-zst)). The second observation is that if a
ray passes through a cluster, it is surrounded by GHL’s in the
vicinity. If it passes by a cluster, all GHL’s are at one side. We
thus conclude that we should search for the cluster that has the
minimum slope (also minimum depth) and at the same time is
surrounding the virtual ray.

x

z

ray

s

u

CHL

(a) (b)

x

z

ray

s

u

CHL

(c) (d)
Figure 2: (a) A ray goes through both foreground and
background. (b) The distance cr iter ion selects the wrong
GHL. (c) A ray goes by the foreground. (d) The distance
cr iter ion again selects the wrong GHL.

4.1 Determining ray vicinity
Conceptually, the light field vicinity of a virtual ray r, denoted as
G(r), is a circular region on the virtual camera hyperline centered
at r. We are interested in the set of GHL’s that intersect with the
region. Let Vs be a vicinity threshold, then, G(r)={ g | dmin(g, r) <
Vs} where dmin(g, r) is the shortest 4-D distance as defined in (4).

In implementation, G(r) is computed in a pre-rendering stage. A
GHL g is registered to G(r) if dmin(g, r)<Vs. Deciding a proper
value for Vs requires some trial-and-error. One hint is that it must
be big enough so that some foreground GHL’s are included in
G(r).

4.2 GHL cluster ing based on slope
A clustering of G(r) is a set { G1, G2, …, Gn} such that ∪Gi =G(r),
and Gi∩Gj =Φ for i≠j. Each Gi is called a GHL cluster. The
observation that a cluster is around the same slope implies that,
for a given dataset, there exists a threshold Vd such that the slope
variance of each cluster is no greater than Vd. More formally, a
slope based clustering of G(r), denoted as C(G(r)), is defined to
satisfy the following additional constraints:

1) Compactness: max(Gi)−min(Gi) ≤ Vd where max(Gi) and
min(Gi) are respectively the maximal and minimal slope of Gi;

2) Enclosure: for ∀g, if min(Gi)≤ slope(g) ≤ max(Gi), then g∈Gi;

3) Maximum: for ∀g∈G(r), but g∉Gi,
max(Gi∪{ g})−min(Gi∪{ g}) > Vd.

The uniqueness of such a clustering is guaranteed by the above
constraints provided that one exists at all for the chosen Vd. In
practice, it is not hard to find an appropriate Vd because in most
cases the clusters are well separated, as shown in Figure 2.

A quick way of computing C(G(r)) is to sort all GHL’s according
to their slope in a pre-processing stage; then, in ascending order,
each g∈G(r) belongs to a cluster Gi either if Gi is empty or
slope(g)–slope(g0)<Vd where g0 is the first GHL of Gi.

4.3 Opacity of a GHL cluster
We now define a boolean function opacity(Gi) that indicates
whether or not all gj∈Gi∈C(G(r)) are on one side of r. Let us
switch our minds to the world space, and think of r and gj as 3-D
entities. The necessary and sufficient condition for all gj∈Gi to be
on one side of r is that there exists a plane containing r such that
all gj’ s are on side of this plane. This says that there exists a
wedge whose ridge is r, covering all gj’ s. The existence of such a
wedge can be examined on a plane parallel to the parameterization
planes. This is depicted in Figure 3 which is a top view of Figure
2. In Figure 3, d is the 2-D vector starting from r, pointing to gj,
constrained to the plane containing gj and parallel to the 2PP. We
thus define

�

�

�

=
otherwise.

;180 angreater th

span vectors theif

)(

false

true

Gopacity i
�

d

When opacity(Gi) is true, we say the cluster is opaque, meaning
that the color of r should come from Gi because it is surrounded
by GHL’s in Gi. Otherwise, the cluster is transparent, meaning the
color of r should come from another cluster farther back.

x

y

ray

x

y

r

g

d

Figure 3: Understanding the opacity function in wor ld space.
Left: both clusters are opaque. The closer one is selected.
Right: foreground cluster is transparent. The background one
is selected.

It turns out that if gj=(ag, bg, cg, dg) and r=(sr, tr, ur, vr), then
d=(agsr+bgur−cg, agtr+bgvr−dg). Notice that both components of d
appear in dmin(gj, r). Therefore no extra computation is required
for d. This also reveals a relationship between the 4-D hyper
point/hyperline distance and the constrained 3-D line/point
distance. In fact, there exists a 4-D cone that covers the 4-D lines
passing the hyper point r and perpendicular to the hyperline gj’ s.
This 4-D cone and the previous 3-D wedge are equivalent

constructs. Below is the pseudo code of the modified GHL
rendering algorithm:

Convert all scene points into GHL’s
Sort all GHL’s in ascending order of slope.
Virtual view rendering starts:

Compute G(r) for all virtual rays.
For each virtual ray r

Compute C(G(r)).
Find the first Gi∈C(G(r)) such that
opacity(Gi) is true.
Blend colors of g∈Gi, weighted by 1/ dmin(g, r).

5. EXPERIMENTAL RESULTS
First, we use a very simple example to illustrate CHL-based
rendering and the effect of the β factor. The scene consists of two
rectangles at depth 0, one red, and the other blue, and a green
background. The two input cameras are at (-0.75, 0, 6) and (0.65,
0, 6), both looking at the negative z direction. The virtual camera
is placed at (0, 0, 6), also looking at negative z. The two
parameterization planes are zst = 4 and zuv = 1. Results are
displayed in Figure 4. Observe that changing β in effect rotates
the black line in the first column. This is like guessing the slope of
the GHL corresponding to a point on the central ray (or its depth).
When the guess is correct, the black line has the correct slope,
which implies correct correspondence. As a result, the correct
image is synthesized. Otherwise ghost images are generated. The
light field slice shown in the left column is similar to the Epipolar-
Plane-Image (EPI), a common tool used in computer vision for
motion analysis [1].

In the second example, twenty-five cameras spanning a 45-degree
arc are equally placed around a teapot. β is set so that the focal
plane is located at the teapot body. For images in the top row of
Figure 5, each pixel is blended from 6 input rays from 6 closest
CHL’s. Notice how occlusion caused by the sprout appears
correct although slight blurring is observed along the edges. For
the lower left image, each pixel is copied from the single best
CHL (different pixels may be copied from different CHL’s). As a
result, it looks sharp. For comparison, a ground truth image is
displayed at lower right.

Figure 6 demonstrates the effect of a large aperture coupled with a
dynamic focal plane. The foreground of the scene is a shiny
teapot; the background is a texture-mapped plane. There are 50
source views. Each virtual pixel is selected and equally blended
from the 25 closest CHL’s. Notice how the background becomes
blurry in the lower left image, and the teapot almost disappears in
the lower right image.

Using hardware support for projective texture mapping, we have
reached 15fps average frame rate at the 512×512 resolution on a
2Gz Pentium IV with a NVIDA GeForce2 MX graphics card.

β=4.5

β=1.4

β=0.1

Figure 4: I llustration of CHL-based render ing and the effect
of ββββ. . . . The first column shows a slice of the light field at t=v=0,
which consists of three tilted CHL’s. The central one comes
from the vir tual camera. The black line indicates rays selected
to synthesize the central pixel. The second column shows the
synthesized image. (This figure is reproduced in color on page
000)

Figure 5: CHL-based render ing of a teapot. (This figure is
reproduced in color on page 000)

Ground truth

Focus at foreground

Focus at background

Figure 6: Dynamic focal plane by adjusting ββββ. . . . (This figure is
reproduced in color on page 000)
Next, results from GHL-based rendering are presented. Figure 7
depicts the use of the slope threshold. If Vd=0 as in (a), the
solution is aliased. This happens because each cluster contains
only one GHL. If Vd is too large (b), two clusters are mixed. As a
result, we can see through the tower. (Notice the outline of the
base circle continuing behind the solid tower.) Using a proper Vd
as in (c), the image looks smooth and occlusion is handled.

Figure 8 shows the effect of changing the vicinity size Vs. If Vs is
too small (a), G(r) may be empty for some r, generating a hole
there. Also, if G(r) contains only background GHL’s, then there is
a background leakage at r. If Vs is large and the opacity check is
turned off (b), the image becomes blurry and the silhouettes look
fattened. When the opacity check is turned on (c), a good-looking
solution is reached.

Figure 9 compares rendering results of the “car wreck scene”
between a polygonal renderer and our GHL renderer (range data
courtesy of University of North Carolina at Chapel Hill IBR
group). Not all the differences are noticeable in the printed images,
so a few are pointed out here. On the left car, notice the window,
the hubcap and the seam between the front and back doors. On the
right car, notice the areas around the real wheel and the ridge on
the hood. In all these areas, the GHL rendered image looks
smoother and more visually pleasant.

Compared to CHL rendering, GHL rendering is slower due to the
occlusion handling. On a 2Gz Pentium IV, current frame rate is
about 0.2~2fps at the 512×512 resolution depending on the
number of hyperlines used.

(a) Vd =0 (b) Vd =100 (c) Vd =3

Figure 7: The “ Pisa Tower” , using 6 images and 467260
GHL’s.

(a) Vs=0.3

(b) Vs=3, without opacity

(c) Vs=3, with opacity

Figure 8: The “ Mate” , using 4 images (300××××300) and their
depth maps.

Polygon-based rendering

GHL-based rendering

Figure 9: The “ car wreck scene” , using 9 images (864××××576)
and their range data. (This figure is reproduced in color on
page 000)

6. CONCLUSIONS
We have presented a new light field rendering framework that
combines the benefits of many existing approaches. It is based on
a dual representation of the world space such that 3-D points and
lines become 4-D hyperlines and hyper points respectively. We
show that our algebraic ray selection criterion is in fact
geometrical meaningful. For instance, the balancing factor in the
cost function acts as a dynamic focal plane. The latter induces a
homography which makes it possible to implement CHL
rendering as projective texture mapping. The 4-D hyper
point/hyperline distance is related to the 3-D line/point distance
constrained to planes that are parallel to the parameterization
planes. This allows us addressing the foreground expansion
problem in GHL rendering. If we view CHL rendering as using
one plane for texture mapping, and GHL as using multiple planes
(each passing through a scene point, all parallel to the
parameterization planes), we see that the real difference between
the two is the number of depth planes used. This understanding
opens up rooms for future hybrid algorithms that optimally
explore the continuous spectrum between light-field based and
geometry-based methods, and potentially address the problem
when the geometrical data is incomplete and/or inaccurate.

7. ACKNOWLEDGMENT
The authors would like to thank the University of North Carolina
IBR Group at Chapel Hill for their reading room and car wreck
models. Funding was provided in part by the “Digital Media
Innovation Program (DIMI)” from the University of California.

Hofsetz is sponsored by UNISINOS – Universidade do Vale do
Rio dos Sinos and CAPES – Fundação Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior.

8. REFERENCES

[1] R.C. Bolles, H.H. Baker, and D.H. Marimont, “Epipolar-
plane image analysis: An approach to determining structure
from motion,” International Journal of Computer Vision,
1(1):7-55, 1987.

[2] C. Buehler, M. Bosse, L. McMillan, S. Gortler, M. Cohen,
“Unstructured Lumigraph Rendering,” SIGGRAPH 2001.

[3] E. Camahort, A. Lerios, D. Fussell, “Uniformly Sampled
Light Fields,” Eurographics Rendering Workshop '98, 117-
130, 1998.

[4] Q. Chen and G. Medioni, “ Image Synthesis from A Sparse
Set of Views,” IEEE Visualization’ 97, 269-275, 1997.

[5] R. Hartley and A. Zisserman, “Multiple View Geometry,”
Cambridge University Press, 2000.

[6] B. Heigl, R. Koch, M. Pollefeys, J. Denzler, and L. Van
Gool, “Plenoptic modeling and rendering from image
sequences taken by a hand-held camera,” Mustererkennung
1999, 94-101, 1999.

[7] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen,
“The Lumigraph,” SIGGRAPH 96, 43-54.

[8] J.P. Grossman, William J. Dally, “Point Sample Rendering,”
Eurographics Rendering Workshop’98, 1-12, 1998.

[9] X. Gu, S. J. Gortler, M. F. Cohen, “Polyhedral Geometry and
the Two-Plane Parameterization,” Eurographics Rendering
Workshop’97, 181-192, 1997.

[10] A. Isaksen, L. McMillan, S. J. Gortler, “Dynamically
Reparameterized Light Field,” SIGGRAPH 2000, 297-306.

[11] M. Levoy and T. Whitted, “The Use of Points as a Display
Primitive,” Technical Report TR 85-022, Univ. of North
Carolina at Chapel Hill, 1985.

[12] M. Levoy and P. Hanrahan, “Light Field Rendering,”
SIGGRAPH 96, 31-42, 1996.

[13] H. Pfister, M. Zwicker, J. van Baar, M. Cross, “Surfels:
Surface Elements as Rendering Primitives,” SIGGRRAPH
2000, 335-342, 2001.

[14] K.Pulli, M.Cohen, T.Duchamp, H.Hoppe, L.Shapiro and
W.Stuetzle, “View-based rendering: Visualizing real objects
from scanned range and color data,” Eurographics Rendering
Workshop’97, 23-34, 1997.

[15] S. Rusinkiewicz, M. Levoy, “Qsplat: A Multiresolution Point
Rendering System for Large Meshes,” SIGGRAPH 2000,
343-352, 2000.

[16] H. Schirmacher, C. Vogelgsang, H.-P. Seidel, G. Greiner,
“Efficient Free Form Light Field Rendering,” Vision,
Modeling, and Visualization 2001, 249-256, 2001.

[17] H. Schirmacher, L. Ming, H.-P. Seidel, “On-the-Fly
Processing of Generalized Lumigraphs,” Eurographics 2001,
20(3):C165-C173, 2001.

