
UC Berkeley
Building Efficiency and Sustainability in the Tropics 
(SinBerBEST)

Title
Modeling of End-Use Energy Profile: An Appliance-Data-Driven Stochastic Approach

Permalink
https://escholarship.org/uc/item/0fq344zr

Authors
Kang, Zhaoyi
Jin, Ming
Spanos, Costas J

Publication Date
2014-11-17

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0fq344zr
https://escholarship.org
http://www.cdlib.org/


Modeling of End-Use Energy Profile: An
Appliance-Data-Driven Stochastic Approach

Zhaoyi Kang, Ming Jin, Costas J Spanos
Dept. of Electrical Engineering & Computer Sciences, UC Berkeley, Berkeley, CA 94709

{kangzy, jinming, spanos}@berkeley.edu

Abstract—In this paper, the modeling of building end-use
energy profile is comprehensively investigated. Top-down and
Bottom-up approaches are discussed with a focus on the latter
for better integration with occupant information. Compared
to the Time-Of-Use (TOU) data used in previous Bottom-up
models, this work utilizes high frequency sampled appliance
power consumption data from wireless sensor network, and hence
builds an appliance-data-driven probability based end-use energy
profile model. ON/OFF probabilities of appliances are used in this
model, to build a non-homogeneous Markov Chain, compared to
the duration statistics based model that is widely used in other
works. The simulation results show the capability of the model
to capture the diversity and variability of different categories of
end-use appliance energy profile, which can further help on the
design of a modern robust building power system.

I. INTRODUCTION

Buildings account for more than 40% of the total power con-

sumption in the US, and can play a critical role in addressing

the current energy and climate issues [1]. Significant effort

has been invested in this topic, from benchmarking, to control

and monitoring. In this paper, we will discuss the modeling

of end-use energy profile of the commercial building power

system.

The modeling of end-use energy profile is an important task,

and is of particular interests especially in recent years because

of the following reasons. Nowadays, building energy usually

depends greatly on occupant behavior, especially at fine-

grained metering level, such as plug-in loads, user-controlled

lighting, user-adjusted HVAC, etc. [2], which brings about

significant amount of diversity and fluctuation. End-use profile

is believed to be able to capture, quantify and predict those

variability and complicated relationships.

Moreover, as people endeavor to integrate renewable energy

resources to traditional building power system, and the wide

adoption of energy-efficient appliances and policies, we need

accurate and robust models to understand the feasibility of

such schemes and to evaluate the effects of such innovations.

Last but not least, as an important potential input of building

energy & indoor climate simulation software, end-use energy

profile can be widely used in early-stage building environmen-

tal design and energy system planning.

This paper is organized as follows. In Section II, a liter-

ature review is given. In Section III, the data collection and

processing methods in this work is described. In Section IV,

the key modules in the model are illustrated and investigated.

In Section V, we run simulation and discuss the results. Finally,

conclusions are drawn and discussed in Section VI.

II. LITERATURE REVIEW

The models of end-use energy profile can be divided into

two categories, the Top-down approach and the Bottom-up

approach, with reference to the hierarchical structure of data

inside the whole system [3], as illustrated in Figure 1 [4].
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Fig. 1: Two types of approaches: Top-down and Bottom-up

The Top-down approach treats building as a black-box,

and calculate the collective demand of the building. Usually,

the variability of the energy profile is captured as a linear

model based on macro-scale extraneous variables such as

macroeconomic indicators (gross domestic product (GDP),

income, price rate), climate, building construction, etc. [4].

The parameters of the model are estimated from training data

and the energy profile of a new building can be extrapolated.
The Bottom-up approach, on the contrary, takes into consid-

eration the contribution of each individual sector. Specifically,

the occupant-oriented energy consumption is included, and the

variability is captured either as a statistical model of the users

based on macro-scale information, or stochastic sequences of

the user patterns. The parameters of the models are estimated

from a group of building energy consumption data or Time-

Of-Use (TOU) survey data.
Bottom-up approaches are more recent and attracting atten-

tion, because of the following reasons:

• The building energy performance becomes more and

more sensitive to occupant behaviors. The occupant-

dependent variability is better captured by Bottom-up

approach, whereas Top-down approach does not typically

have the flexibility to model that.



• Bottom-up approach helps to understand the occupant-

dependent demand profile, which is useful in designing

building demand-response system [5].

• The Bottom-up approaches better adapt to the changes

in the building infrastructure and new technologies &

policies, while the Top-down approach relies a lot on

historical data.

One of the earliest works of Bottom-up approach is by A.

Capasso et al. [6]. They use availability probability to model

presence of each member in a house, and activity probability to

model presence of each activity. The probabilities are learned

from TOU data. Together with duration statistics obtained

from prior knowledge, power stream can be generated by

Monte Carlo (MC) simulation. In [7], TOU data is also

used, and nine synthetic activity patterns are defined. Non-

homogeneous Markov Chain is used to model the ON/OFF

of activities. Duration and ON events are sampled randomly.

In [8], activity probability is trained from TOU data and other

extraneous data, so that is non-homogeneous. In [9], effort is

put purely in estimating activity probability patterns based on

TOU survey and duration statistics.

The existing methods that employ the Bottom-up approach

provide great insights into the building end-use profile. How-

ever, there are some issues that need to be addressed:

• Previous works mostly used TOU data to obtain activity

probability, and then convert the activity to appliance pat-

tern. Sometimes this is problematic, since the conversion

is usually not rigorously defined.

• Cross-correlation among appliances are not captured be-

cause of the conversion. A random Markov Chain model

could under-estimate the demand. Moreover, most previ-

ous works mentioned about modeling shared activities,

whereas validation of those models is difficult.

• In commercial buildings, variation among buildings is not

of significant interest since their infrastructures can vary a

lot. However, the variation caused by occupant fluctuation

becomes especially important.

In this work, we will directly estimate probability patterns

of appliances in commercial building, thanks to the large-scale

wireless sensor network and distributed data storage system.

Thus, we developed a model based on the ON/OFF probability

to quantify the variation of building end-use energy profile.

III. DATA

A. Building Profile

Our experimental space is in 406 Cory Hall at University

of California Berkeley, an office shared by 25 occupants.

Depending on the sets of appliances that each user owns, we

can divide the users into six categories: A) 1 laptop, 1 monitor,

1 desktop; B) 1 desktop, 1 monitor; C) 1 laptop, 1 monitor;

D) 1 laptop, 2 monitors; E) 2 laptops, 1 monitor; F) 1 laptop.

The category can be changed if the sets of appliances change

among users. With this categorization, we now have a profile

that can describe the building’s basic occupancy.

B. Data Collection

We collect appliance energy consumption through a large-

scale wireless sensor network (WSN). WSN have been im-

plemented in many different scenarios to facilitate the system

estimation, conditioning, diagnosis [2] [10] [11].

DENT meter [12] is used to collect whole space real-time

power consumption data. The DENT meter has 18 channels,

each one monitoring a subset of appliances, e.g. plug loads,

lights, kitchenware etc. ACme sensors are used to collect real-

time power consumption of each occupant [13]. The data is

handled using the sMAP protocol [14]. We implement one

ACme sensor for each occupant to optimize the cost and

experiment performance. The states of each appliance are

filtered out by the power dis-aggregation algorithm from the

aggregated occupant-level power consumption [15].
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Fig. 2: Schematic of the model: Building Profile Model (BPM)

C. Power Dis-aggregation

In power dis-aggregation, we decode the ON/OFF state

of individual appliance from an observed aggregated power

stream. Let pt, ∀t = 1, · · · , T be the aggregated power stream

from n appliances. Let St be the state vector of the n
appliances at step t. Our task is to infer St from pt. St is

a vector of n binary variables, one for each appliance, i.e.

St ∈ {0, 1}
n

, in which 1 for ON, 0 for OFF. There are in

total 2n combinations of ON/OFF states.

Several models have been used to solve this problem,

including Hidden Markov Model [16], change detection [17],

sparse coding [18]. In this work, we use a method based on

multiple hypothesis testing [15]. It should be noted that, when

an appliance has more than one states, e.g. washing machine,

the appliance can be modeled in mixture model, as in [16].

IV. MODEL FRAMEWORK

A. Big Picture

In our work, we build a Building Profile Model (BPM)

to estimate end-use profile. BPM generates energy profile

through a parametric model. The parameters include the oc-

cupants’ information, the appliance categories, the ON/OFF-

probabilities, user presence probability, overnight probability,

and/or appliance duration statistics, generalized from historical

sensor recorded data and prior knowledge. The BPM has

potential of model re-use to a similar building which share



some parameters with the building under study in this work.

The schematic of the BPM is illustrated in Figure 2. In this

section, we will start from the three widely used basic models,

discuss their potential benefits in our scenario, and eventually

arrive at our comprehensive BPM.

To facilitate the analysis, for certain appliance, given that

we have M days of observations, we define S
(m)
t as its state

of m-th day, i.e. S
(m)
t ∈ {0, 1} and 1 stands for ON.

B. Rate-of-Use Statistics

One of the basic models describing the appliance usage

utilizes the Rate-Of-Use (ROU) statistics.

Definition 1 (Rate-Of-Use). Rate-Of-Use (ROU) is the portion

of time that the appliance is ON in each time-of-day:

ROUt =
1

M

M∑

m=1

S
(m)
t = St (1)

For example, in the 80 days of experiment, the monitor is

ON at 12:00PM in 16 days, the ROU would be 16/80 = 0.2 at

12:00PM. The ROU is plotted for monitor, laptop and desktop

in Figure 3. Strong daily pattern is observed. ROU indicates

the average energy consumption, but it doesn’t indicate the

usage pattern of the appliance.
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Fig. 3: Rate-Of-Use of three types of appliances: monitor

(left), laptop (middle) and desktop (right)

C. ON/OFF-Probability Statistics

Another model utilizes the ON/OFF-probability [8] [9], i.e.

the probability of turning-ON/OFF at each time step.

Definition 2 (ON/OFF Probability). For certain appliance at

t, the empirical ON/OFF probability is defined as P̂
ON/OFF

t :

P̂ON

t =

∑M
m=1 S

(m)
t (1− S

(m)
t−1 )∑M

m=1(1− S
(m)
t−1 )

=
St − StSt−1

1− St−1

(2)

P̂OFF

t =

∑M
m=1 S

(m)
t−1 (1− S

(m)
t )

∑M
m=1 S

(m)
t−1

=
St−1 − St−1St

St−1

(3)

with which we can do MC simulation to obtain the state

sequences of all the appliances that we are interested in.

Definition 3. After we run J MC simulations, we defined the

simulated state in the j-th MC run as Ŝj
1:T , j = 1, · · · , J .

Compared to ROU model, ON/OFF probability model can

capture the usage pattern [2] [8] [9]. Previously this model

is built upon some time slots, e.g. "0∼8AM", "8∼9AM",

"9∼11:30AM", "11:30∼1:30PM", "1:30∼5PM", "5∼7PM",

"7∼9:30PM" and "9:30PM∼0AM". The ON/OFF probability

is assumed to be constant within each time slots.
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The time-slot-based ON-probability P̃ON
t is shown in Fig-

ure 4, for desktop, monitor and laptop. Note that in Figure 3

the desktop pattern seems to be at constant line, which is

due to the limited number of desktops in our test space, and

because some of them are kept on overnight (i.e, their P̃OFF
t

is small once they are ON). To simulate turning-ON, we use

the probability of P̃ON
t /TSLOT, in which TSLOT is the length

the time slots. For example, at time interval "8∼9AM", if we

use 5 min interval step, TSLOT = 12.

One concern about the time-slot-based model is that the

probability inside each slot is not well captured. According to

a simple Poisson model assuming independent events, within

each time slot, the ON events are geometrically distributed.

However, as shown in Figure 5 where we take monitor as

example, most of them do not follow the model. The pattern

of laptop and desktop can also demonstrate such discrepancy.

D. Duration Statistics

Previously, duration statistics are used to characterize the

duration time of each activity [8] [9]. We extracted the duration

statistics from sensor data after power dis-aggregation. The

results are shown in Figure 6 for office appliances. A potential

problem is the limited capability to model the turn-off events

of the appliances.

E. Our Model

In our model, we use an appliance-data-driven high resolu-

tion ON/OFF probability model.

• We extract the probability that an appliance is present in

some day, marked as PPRES, as well as the probability

that an appliance is ON overnight, marked as PINIT,

from the data. At the same time, we extract the appliance
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ON/OFF probabilities P̂
ON/OFF

t from those days that

the user is present. From wireless sensor network, we

collect the appliance power data, we can build the model

based on appliance information, instead of on activities

as in other works, in which an often problematic activity-

to-appliance transformation is needed [4].

• Both ON/OFF probabilities are included and are formu-

lated in a Markov Chain framework, whereas duration

statistics are not included. Therefore, we can better model

the turning-OFF events of the appliances.
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Fig. 7: FSM interpretation of the model

• Instead of the time-slot model in Figure 4, we use a non-

homogeneous Markov Chain model for both ON/OFF

probabilities. For each appliance, the model can be

interpreted as a two-state Finite State Machine (FSM)

at each step (Figure 7), with P̂
ON/OFF

t as switching

probabilities. Based on this FSM, we can use Monte Carlo

to simulate the usage patterns of all the appliances in the

space, and we can summarize statistical properties from

the Monte Carlo simulations.

The MC simulated appliance ON/OFF sequences (a) can

capture non-homogeneous stochasticity of appliance usage

patterns and is easily extended to analyze new techniques

& policies; (b) statistically converges to the ROU model

in estimating states, which means this method is essentially

reasonable in end-use energy profile modeling. This can be

shown in the theorem below:

Theorem 1 (Convergence of MC Simulation). If Ŝj
1:T is the

jth MC simulated time series from the FSM as in Figure 7

and we have J such MC simulations, then E[ 1J
∑

j Ŝ
j
t ] = St,

in which St is the ROU, and limJ→∞ Var( 1
J

∑
j Ŝ

j
t ) → 0. In

other words, MC simulation converges a.s. to ROU.

Proof. Let Ŝ1, · · · , Ŝt be the states at different time steps

from MC simulation. Assume that the states follows Markov

Property, s.t. Pr(Ŝt|Ŝt−1, · · · , Ŝ1) = Pr(Ŝt|Ŝt−1). Then by

the chain rule of expectation [19], we have:

E[Ŝt] = E[E[Ŝt|Ŝt−1]] (4)

Since we have:

E[Ŝt|Ŝt−1] = Pr(Ŝt = 1|Ŝt−1)

= P̂ON

t (1 − Ŝt−1) + (1− P̂OFF

t )Ŝt−1

= P̂ON

t + (1− P̂ON

t − P̂OFF

t )Ŝt−1 (5)

Let Gt = 1 − P̂ON
t − P̂OFF

t = StSt−1−St·St−1

(1−St−1)St−1

, combining

(4) and (5) we obtain:

E[Ŝt] = P̂ON

t +GtE[Ŝt−1] (6)

Therefore, we can iteratively write E[Ŝt] as:

E[Ŝt] = P̂ON

t +

t∑

τ=3

P̂ON

τ−1

t∏

i=τ

Gi +E[Ŝ1]

t∏

i=2

Gi (7)

The initial state at t = 1 in MC simulation is generated from

a Bernoulli process p1 = E[Ŝ1] = S1. We put the expression

of P̂
ON/OFF

t as (2) and (3) in (7).

P̂ON

2

t∏

i=3

Gi + S1

t∏

i=2

Gi = S2

t∏

i=3

Gi (8)

Then we have the following equation:

E[Ŝt] = P̂ON

t +

t∑

τ=4

P̂ON

τ−1

t∏

i=τ

Gi + S2

t∏

i=3

Gi

Therefore, we can simply equation (7) as:

E[Ŝt] = P̂ON

t + St−1Gt

=
St − StSt−1

1− St−1

+
StSt−1 − St · St−1

1− St−1

= St (9)

Since Ŝj
t s are all binary sequences, Var(Ŝj

t ) = St(1−St) and

naturally limJ→∞ Var( 1
J

∑
j Ŝ

j
t ) = limJ→∞

1
JVar(Ŝ

j
t ) → 0.



Thus, MC simulation converges to the ROU. It should, how-

ever, be noted that Theorem 1 holds only if the ON/OFF proba-

bilities are consistent between simulation and observation.

F. Modeling of Cross-Correlation

In our experimental space, we have 11 monitors, 5 desktops,

14 laptops. Assuming that devices in the same category are

the same, we can simulate each appliance independently and

aggregate them. The mean of the aggregation, as a corollary

of Theorem 1, is unbiased. The variance, however, could be

underestimated. Cross-correlation among appliances needs to

be addressed. In MC simulation, cross-correlation between

Bernoulli sequences is difficult. Instead, we propose a way

to theoretically correct the variance estimation as follow.

Let St,i be the state of i-th single appliance, its variance

Var (St,i) = σ2
D we already know, D = desktop, monitor,

laptop is the appliance type, then the aggregated variance of

N different appliances is:

Var

(
N∑

i=1

St,i

)
=

N∑

i=1

σ2
t,a(i) +

∑

i6=j

cov (St,i, St,j) (10)

a(i) is the type of the i-th appliance, and
∑N

i=1 σ
2
t,a(i) =∑

d∈D σ2
t,dNd, d is the number of appliances in type d.

The term
∑N

i=1 σ
2
t,a(i) is the uncorrelated variance, and the

other term in RHS of (11) can be simplified as below:

cov (St,i, St,j) =
∑

d∈D

σ2
t,dNd(Nd − 1)ρd

+
∑

d1,d2∈D

σt,d1
σt,d2

Nd1
Nd2

ρd1,d2
(11)

where ρd is the correlation within each types of appliance,

and ρd1,d2
is the average correlation between different types

of appliances, both extracted from measurement.

V. RESULTS AND DISCUSSIONS

A. ON/OFF Probability Model Estimation

As we estimate the ON/OFF probabilities, when the data

points are sparse, we smooth the empirical probability function

in (2) and (3) by a Kernel Smoother as below:

P̃
ON/OFF

t =

∑T
i=1 K(t, i)P̂

ON/OFF

i∑T
i=1 K(t, i)

(12)

in which K(t, i) = exp
(
− (i−t)2

2h2

)
as Gaussian kernel, and

bandwidth was chosen as the plug-in bandwidth (hpi) [20].

Remark 1. If we use P̃
ON/OFF

i instead of P̂
ON/OFF

i ,

Theorem 1 no longer holds. However, under reasonably chosen

bandwidth of the function K(·), since (6) is in closed form,

and generated state will also be a smoothed version of ROU.

It should be noted here that a strict analysis on the condition

of the bandwidth would be required to fully understand the

performance of smoothing, and because of the length and

scope of this work, this will be a subject of future work.
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Fig. 8: ON/OFF Probability in 5 min interval for Monitor,

Laptop, and Desktop. Gray lines: Measurement; Colored lines:

Kernel smoothed

1) Office Appliances: The office appliances include moni-

tor, laptop, and desktop. The estimated ON/OFF Probabilities

for the three kinds of appliances are shown in 8. It is observed

that the ON probability peaks at early morning and decreases

during the day, whereas OFF probability peaks at late in the

day. It should be noted that the data regarding to desktop is

sparse and the ON/OFF probabilities contain more uncertainty.

We only include weekdays in our study.

2) Pathway/Room Lighting: The lighting power consump-

tion is a major contributor to building energy profile. In our test

space in Cory 406 at UC Berkeley, we have pathway lighting

and room lighting. Pathway lighting is shared in large working

area and is more standard in schedule. Room lighting has

motion sensor so that it is more adaptive to occupant behavior.

The PowerScout data we collected contains the aggregated

signal of lighting power in 7 rooms. For model simplicity, we

assumes that the 7 rooms are the same. The result is shown

in Figure 9.

The pathway lighting has little overnight activity, and the

estimation has more bias, since in (3), St is zero for some t.
We give those data point a probability of 0.5.

3) Shared Appliances: Shared appliances include a mi-

crowave, a water heater, a coffee maker, and a refrigerator. The

water heater and refrigerator have strong periodic patterns, and

are less dependent on occupants. The microwave and coffee

maker shows spike-like patterns and the records of usage are
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Fig. 9: ON/OFF Probability in 5 min interval for Room

lighting, Pathway lighting and Microwave. Gray lines: Mea-

surement; Colored lines: Kernel smoothed

sparse. The estimated probability densities for the Microwave

are also shown in Figure 9. Notice that the OFF probability is

very high since the duration of each ON is usually very short,

compared to our 5-minute estimation interval.

B. Monte Carlo Simulation

We use 10’000 runs of MC simulations. In each run, we

follow the steps described here:

Firstly, we generate random sample with probability

PPRES, if the outcome is 0, the appliance is not present. If the

outcome is 1, then we generate startup state S1 = Ber(PINIT).
Secondly, we simulate all the appliances of certain type and

sum them up. After that, we correct the sample variance term

with the cross-correlation terms as in (10) and (11).

The simulated end-use energy profiles are shown in Fig-

ure 10, Figure 11, and Figure 12, for office appliances,

lighting, and representative shared appliances (we pick the

microwave, other shared appliances work similarly), respec-

tively. Both mean and standard deviation are extracted from

MC simulation and only the upper bound of standard deviation

is plotted since it is of more interest in early-stage demand

estimation. Generally speaking, the model performs in all three

categories of appliances. At the same time, we also have some

interesting findings.

• Note that in Figure 10, cross correlation is shown to better

capture the standard deviation level, which means that
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Fig. 10: MC Simulation for office appliances (11 monitors,

14 laptops and 5 desktops). Sim. stands for simulation; Mea.

stands for measurement. Both mean and std are shown here,

with corr. stands for simulation results with correction from

Equation (10), uncorr. stands for simulation without the cor-

rection from (10).

0
.2

0
.6

1
.0

p
o
w

e
r/

k
W

4am 8am 12pm 4pm 8pm

Sim. mean
Mea. mean
Sim. mean + std
Mea. mean + std

Room Lighting
0

.0
0

.2
0

.4
0

.6

p
o
w

e
r/

k
W

4am 8am 12pm 4pm 8pm

Sim. mean
Mea. mean
Sim. mean + std
Mea. mean + std

Pathway Lighting

Fig. 11: MC Simulation Results for Room and Pathway Light-

ing. Sim. stands for simulation; Mea. stands for measurement.

in the end-use profile modeling, the correlations among

appliances have large impact on the overall variability.

• The standard deviation is poorly captured for microwave

(not shown in Figure 12) and other appliances with

spiking patterns, because of the sparse pattern. Variation-

reduction techniques such as importance sampling or
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Fig. 12: MC Simulation Results for Microwave. Sim. stands

for simulation; Mea. stands for measurement.

Markov Chain Monte Carlo (MCMC) could be used in

the future to reduce the fluctuation.

It should be expected that, in a larger office building, when

more appliances are present, our model can be more capable

to capture the overnight patterns. Moreover, it should be noted

that, when the building occupancy schematic changes, the only

thing that needs to be tuned is the building profile. As long as

we have a reasonable category of users, we can evaluate the

building energy performance accordingly.

VI. CONCLUSION

In this paper, the modeling of end-use energy profile is

comprehensively investigated. The two categories Top-down

and Bottom-up approaches are discussed and the latter is

preferred because of the better integration with occupant-

oriented information. Compared to the Time-Of-Use (TOU)

data used in previous Bottom-up model, this work utilizes

high frequency sampled data from wireless sensor network,

and builds an appliance-data-driven end-use model. ON/OFF

probabilities of appliances are extracted, and a theoretically

unbiased FSM Markov Chain model is developed, with cross-

correlation correction. The simulation results show the capabil-

ity of the model to capture diversity and variability of building

end-use energy profile, which can further help on the design

of robust building power system.
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