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ABSTRACT OF THE THESIS

Investigation of Gas Diffusion Layer Intrusion in PEM Fuel Cell Using Physics-informed
Machine Learning

By

Vu Ly

Master of Science in Mechanical and Aerospace Engineering

University of California, Irvine, 2023

Professor Yun Wang, Chair

This research investigated the gas diffusion layer (GDL) membrane intrusion into a gas flow

channel (GFC) using physics-informed machine learning for PEM fuel cells. This study was

done to reduce the time it takes to simulate the model and find the intrusion area. To estab-

lish the training data for machine learning, different configurations of the GFC and GDL were

created using COMSOL to simulate the GDL intrusion into a gas flow channel. The data from

these simulations then get exported into Design-Expert, a statistical software to determine the

parameters with the highest impact on the % intrusion. The GDL’s Young’s Modulus (EGDL) was

found to be the parameter with the most significant impact, with an F-value of 3776.66 com-

pared to the next parameter Bipolar Plate Channel Width (CWBP ) with an F-value of 992.59, or

the lowest parameter GDL Height (HGDL) with an F-value of 159.96. Design-Expert also shows

that EGDL and the Bipolar Plate Rib (RBP ) positively affect the % intrusion area, where both will

yield lower % intrusion the higher the parameters are. Whereas higher the values are CWBP ,

HGDL , and Pressure (P) will increase the % intrusion.

With the finding from the Two-Factorial test, the simulation interval for EGDL is higher than the

other parameters to yield more accurate training data for machine learning. Then performing,

a parametric study will be done to find the x-y coordinates of the intrusion curve to export to
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MATLAB to find the intrusion area. Four machine-learning algorithms, linear regression, Deci-

sion Tree, SVR, and KNN, were deployed to train using 70% of the data set and the remaining

30% for testing. The accuracy of each model were calculated based on how close the prediction

is compared to the actual value. It was found that out of the four algorithms, Linear Regression

has the lowest model accuracy at 68.5% and the highest RMSE at 0.0751, and Decision Tree has

the highest model accuracy at 95.5% and lowest RMSE at 0.0303. Thus, Decision Tree was used

to make predictions for various ranges of the five parameters to find the optimization parame-

ters for design. This study was done to help reduce the time it takes to simulate the model and

find the intrusion area. It takes an average of 20 minutes to create the model, simulate it, and

calculate to find the intrusion. With the trained machine learning models, the intrusion area

can be found in less than a minute. The machine learning model also identifies the parameter

ranges for less than 10% and 20% intrusion to guide fuel cell material selection and design.
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Chapter 1

An Introduction to Fuel Cell

1.1 Introduction

Fossil fuels, such as coal and oil, release a large amount of carbon dioxide into the atmosphere

after they get burned. This significantly contributes to climate change and increases global

temperatures, which negatively affect the environment and the economy, including the degra-

dation of ecosystems, the loss of agricultural land, and rising sea levels. Studies have shown

that these effects could cost the global economy up to 0.5 trillion dollars annually [8], [9].

To combat these threats, the European Union has committed to reducing its greenhouse gas

emission by 80-95% by 2050 [10], which has further motivated researchers to find a better so-

lution for renewable and sustainable energy systems. While many different renewable energy

sources are available, such as solar and wind power, their intermittent nature has led to a search

for more efficient and reliable options. Began in the 1970s, fuel cells were introduced and have

gained popularity as an alternative power source and are seen as a potential replacement for

fossil fuels. Due to their high energy efficiency, and low pollutant emission, the fuel cell became

a prime candidate for this mission. It directly converts the chemical energy of a fuel, such as

1



a hydrogen, into electricity through a chemical reaction where water and heat are the byprod-

ucts, making it a clean and efficient power source. This process is called electrolysis, and the

hydrogen resulting from the process is considered green because it does not produce green-

house gas. Additionally, unlike renewable energy sources such as solar and wind power, fuel

cells can provide a consistent and reliable source of energy, making them a promising option

for meeting the increasing demand for clean and sustainable energy.

1.2 What is a Fuel Cell?

A fuel cell converts chemical energy like hydrogen into electricity through a chemical reac-

tion—Figure 1.1 shows a simple box with an input and an output, where the inputs are hydrogen

and oxygen being fed into the fuel cell at the anode and cathode. From the output side, these

chemical reactions’ byproducts are water, heat, and electricity, making them clean and efficient

energy sources. The electricity produced by the fuel cell can be used to power various devices,

including cars, portable electronics, and stationary power systems. The heat produced by the

reaction can also be harnessed to provide additional power or to heat buildings and water [11].

Due to the wide range of applications and benefits, the development of fuel cells is an active

area of research. Researchers hope to improve fuel cells’ efficiency and cost-effectiveness to

make them a more viable and sustainable energy source in the future.

Researchers and engineers developed several types of fuel cells [12]. These types include solid

oxide fuel cells (SOFC), molten carbonate fuel cells (MCFC), and phosphoric acid fuel cells

(PAFC). Among these types, polymer electrolyte membranes (PEM) are the most popular due

to their long lifetime, lower manufacturing costs and lower operating temperatures [12]. The

characteristics of each type of fuel cell are shown in Table 1.1 [12].

These fuel cells have different operating temperatures and efficiencies, and researchers are
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Figure 1.1: Simple explanation of Fuel Cell

Table 1.1: Characteristics of each type of fuel cell

Fuel Cell
Type

Operating
Temperature (°C)

Electrical
Efficiency (%) Applications

SOFC 600 – 1000 35 - 43 Electric utility
MCFC 600 - 700 45 - 47 Electric utility
PAFC 150 - 200 > 40 Distributed generation

PEMFC 50 - 100 53 - 58 Transportation

working to develop applications that take advantage of these characteristics. In fact, due to the

low operating temperatures of the PEMFC and environmentally friendly byproducts, it is being

commercialized in the automotive industry. In 2018, Japan produced 2,459 fuel cell vehicles,

and the country plans to increase production to 800,000 by 2030 [13].

The electrochemical reactions that occur on the anode and cathode of the fuel cell are shown
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in the equations of the chemical reactions below [14].

Anode : H2 (g) → 2H+ (aq)+2e−

C athode :
1

2
O2 (g)+2H+ (aq)+2e− → H2O (l)

Over al l : H2 (g)+ 1

2
O2 (g) → H2O (l)+electric energy+waste heat

The system’s byproducts are heat and water, as seen in the overall reaction. It is essential to

continue removing these byproducts from the system because their accumulation can reduce

the fuel cell’s lifespan and decrease its efficiency. For example, the fuel cell can overheat and

lead to thermal damage if the excess heat is not removed, or the water build-up can flood the

inside and corrode the components. Studies have shown that water management is essential

to achieve high performance and durability in a PEM fuel cell [15], [16]. To prevent these prob-

lems, fuel cells are designed with mechanisms for removing the water and heat byproducts.

For example, some fuel cells use water-management systems that circulate coolant through the

cell to remove excess heat [17] and prevent flooding. The heat can also be transported through

conduction in the solid phase or through convection and conduction in the fluid phase [14].

Other fuel cells use mechanical systems or passive mechanisms to remove the water and heat

byproducts.

1.3 Fuel Cell Efficiency

Fuel cell efficiency is generally higher than internal combustion engines because fuel cells di-

rectly convert chemical energy into electricity. In comparison, internal combustion engines will

convert chemical energy into heat and mechanical energy. This means that some of the energy

from the fuel is lost as heat, which lowers the engine’s overall efficiency. This is one of the rea-

sons why internal combustion engine often has an efficiency of 30% or lower [18]. On the other
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hand, PEMFCs, have a theoretical efficiency as high as 80% at room temperature. This means

that about 80% of the chemical energy from the fuel is converted into usable electricity, with

the remaining 20% being lost as heat or other forms of waste. Equation 1.1 below shows the

theoretical efficiency of the PEMFC at room temperature:

µ= ∆G

∆H
= 237.34

286.02
= 83% (1.1)

Where∆G is the Gibbs free energy and∆H is the enthalpy difference between the products and

reactants. Gibbs’s free energy is a measure of the potential for a chemical reaction to occur, and

enthalpy is the total heat content of the system. Both values are temperature dependent, and

Gibbs free energy will decrease faster than enthalpy as the temperature increase. This means

the efficiency of PEMFC is lower at a higher temperature. For this reason, PEMFC operates be-

tween 50 - 100◦C. However, the actual efficiency of a PEMFC in real-world conditions is lower

than this theoretical value due to various factors, such as activation and ohmic losses. Addition-

ally, the efficiency of a PEMFC can be reduced by the production of entropy, which is a measure

of the disorder or randomness in a system, and it is produced when chemical reactions occur in

the fuel cell. Entropy is being considered when calculating the theoretical potential of a PEMFC

using the change in Gibbs free energy, ∆G , change in enthalpy, ∆H , and temperature as shown

in equation 1.2 below:

∆G =∆H −T∆ (1.2)

In the case of a PEMFC, the potential can be calculated by rearranging the equation above and

substituting the appropriate values. For example, suppose that the reaction occurs at a room

temperature of 25 degrees Celsius and a pressure of 1 bar; the potential can be calculated as

seen in equation 1.3 [19]:
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E = −∆G

nF
= 237340

(2)(96485)
= 1.23V (1.3)

Where F is Faraday’s constant (the amount of electric charge per mole of electrons), and n is

the number of electrons per molecule of hydrogen, which is 2. The theoretical potential of a

PEMFC is an important parameter that determines the efficiency of the fuel cell and the amount

of electricity it can generate. Higher potential values indicate a more significant potential for

the fuel cell to generate electricity, while lower potential values indicate a lower potential for

electricity generation. With the current technologies, the peak PEMFC efficiency is about 65%,

which is expected to reach 70% in the near future [20].

1.4 Proton Exchange Membrane Fuel Cell

A polymer electrolyte membrane fuel cell (PEMFC) is a type of fuel cell that uses a proton ex-

change membrane as the electrolyte, as shown in Figure 1.2, [1]. A typical PEMFC operates

under specific conditions, such as a certain pressure, temperature, and flow rate of hydrogen,

oxygen, and air, as shown in Table 1.2 [21]. The humidity of the reactants is also carefully con-

trolled to ensure optimal fuel cell performance. As the name implies, the heart of the fuel cell is

a membrane separating hydrogen and oxygen, preventing electrons from passing through and

only allowing protons to pass through via diffusion [21]. A common material used for the mem-

brane is DuPont Nafion®, and it is the most reliable ionomer used for PEMFC [22]. The left side

of the PEMFC consists of negatively charged electrodes, where hydrogen is oxidized, while the

right side consists of positively charged electrodes, where oxygen is oxidized. When hydrogen

and oxygen come in contact with the electrolyte, they react to form water and release energy in

the form of heat and electricity [23].

Sandwiching between the membrane of the PEMFC are the catalyst layers (CLs), which usually
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Figure 1.2: PEMFC Layout [1]

Table 1.2: Typical PEMFC operating conditions

Pressure H2/O2: 1 - 3 bar
Temperature 20◦C −90◦C

Stochastic ratio H2: 1.2-1.5
O2: 1.5 - 2

Relative Humidity of reactants H2: 0% to 100%
O2/Air: 0% to 100%

use platinum or its alloys as the catalyst. The purpose of the CLs is to catalyze the electrochem-

ical reaction that occurs in the fuel cell, allowing it to produce electricity, heat, and water at

low temperatures [21]. In figure 1.2, the CL is part of the Membrane Electrode Assembly (MEA).

Next to the CLs is the gas diffusion layer (GDL), which is usually based on carbon paper or car-

bon cloth, as shown in Figure 1.3 [2]. The GDL is a porous structure that is in the millimeter

range, allowing the flow of reactant gases and water. The GDL porosity is typically 60-80% open

to ensure sufficient gas flow [24]. The CLs and GDLs are essential components of a PEMFC, as
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(a) (b)

Figure 1.3: a) SEM image of carbon cloth (E-Tek), b) SEM image of carbon paper (Toray 060) [2]

they facilitate the electrochemical reaction and enable the fuel cell to produce electricity, heat,

and water efficiently. The structure and composition of these layers are carefully designed to

optimize fuel cell performance.

The bipolar plates (BPs) in a PEMFC are two plates that provide gas flow channels to distribute

gas reactants and thermal/electrical pathways for heat removal, and current collection [25].

The BPs are used to separate different fuel cell stacks in a multi-cell configuration. The BPs are

exposed to a corrosive environment with a pH range of 2-3 and temperatures between 60-80

degrees Celsius [26]. Because of this, BPs are often made of graphite, polymer blended with

carbon, and metal and are a significant contributor to the weight and cost of a PEMFC [27].

They account for 80% of the total weight of the fuel cell and 45% of the stack manufacturing cost

[26]. As such, it is essential to carefully design and select materials for the BPs to ensure they

are durable and cost-effective. Effective BP design can increase the performance of a PEMFC

by nearly 50% [28], making it an important area of study. Several studies have been conducted

on the different types of gas channel configurations, as shown in Figure 1.4 [3]. Additionally,

Shimpalee assessed the geometry of the gas channels, such as their length, width, or height,

and has been studied to determine its impact on PEMFC performance [29].

This thesis focuses on the GDL of PEMFC, an essential fuel cell component that provides liquid
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Figure 1.4: Different types of gas channel configurations for BPs: (a) straight parallel; (b) in-
terdigitated; (c) pin-type; (d) spiral; (e) single-channel serpentine; (f) multiple-channel (triple)
serpentine [3]

water, heat removal, electric conductance, and reactant transport [4]. It is a porous layer, which

is subject to deformation and then intrusion into the gas flow channel upon BP compression.

1.5 GDL Intrusion

During fuel cell assembly, the GDL, membranes, BPs, and gasket are clamped together using

bolts as shown in Figure 1.5 [4], [30], [31]. BPs will impose compressive stress on the GDL,

which causes it to deform and intrude into the gas flow channels (GFC), whose purpose is to

remove products from PEMFC and distribute fuel to the whole cell. The GDL intrusion will

reduce the channel space for gas distribution, raising the gas flow pressure drop and pumping

power and risks of flow maldistribution [32], [33]. A 5% intrusion of the GDL into the GFC

can reduce the reactant flow inside the channel by 20% [5]. Chi-Hui Chien found that when

bolt loading onto the GDL reaches 7 MPa, it will reduce the volume flow of the GFC by 8.35%
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and decrease the efficiency of the PEMFC [34]. Wei Sun found that compression in GDL will

reduce the porosity but increase the electronic conductivity [35]. Bazylak’s research illustrates

the degradation of the GDL under varying compression pressures [36]. Figure 1.6 [5] shows

the intrusion at different pressures exerted on the top face of the BP. As expected, the intrusion

increases as pressure increases.

Figure 1.5: Fuel Cell Assembly [4]

1.6 Objective

The GDL intrusion into the GFC of a PEMFC can significantly reduce the reactant flow and de-

crease the efficiency of the fuel cell. Alex found that the contact resistance between the BP ad

GDL degrades the PEMFC performance [37]. Lianhong found that 59% of the total power loss

in PEMFC is due to the contact resistance [38]. By performing parametric studies and using

simulation and machine learning techniques, it is possible to investigate and predict the effects

of different GDL and rib parameters on the intrusion of the GDL into the GFC. The paramet-

ric studies will involve varying parameters related to the GDL and rib configuration, such as the
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Figure 1.6: GDL intrusion in GFC at four different pressures [5]

material, thickness, and composition, as well as the geometry and loading of the BP. These stud-

ies will help to identify the parameters that have the most significant impact on GDL intrusion.

The results of the simulations can then be used to train different regression machine learning al-

gorithms, such as Linear Regression, SVR, KNN, and Decision Trees. These algorithms can learn

the relationships between the rib and GDL parameters and the intrusion of the GDL to make

predictions for new input parameters. Finally, using these trained machine learning models,

recommend the best rib and GDL parameters for different inputs to minimize the intrusion of

the GDL into the GFC. This can help improve the performance of PEMFCs and make them more

practical for real-world applications.
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Chapter 2

Methods and Approach

2.1 Governing Equations

The 2D model of the rib configuration and GDL in the PEMFC is created and analyzed using

the COMSOL software’s static simulations. Static simulations are used to study the behavior of

a system at an equilibrium, where the forces and deformations are independent of time. For

this thesis, the simulations will examine how the GDL deforms under the clamping pressure

produced by the bolts. It will analyze the deformation of the GDL into the channel by using

the Lagrangian formulation, which tracks the body as it rotates, translates, and deforms. The

formulation is built upon the continuum assumptions, which assume the materials to be ho-

mogeneous, isotropic, continuous, and independent of any particular coordinate system [39].

The deformation of the body or strain is created when it experiences external force applied to it.

The body will try to resist the external force by developing the internal force or stress. The ma-

terial will fail if the stress exceeds the material properties. The deformation of the body can be

measured by the second-order tensor, deformation gradient, F, as shown in equation 2.1 below:
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F = ∂x

∂X
= I+ ∂u

∂X
= I+∇u (2.1)

Where X is the original location of the material particle, x is the new location after a certain

time, t, u is the displacement vector, and I is the identity tensor. X and x are in two different

coordinate systems, where X is in the material frame, which is fixed to the body, and x is in the

spatial frame, which is fixed in space. The displacement, u, provides the transformation from

the material frame to the spatial frame through equation 2.2 shown below:

x = X+u (2.2)

The deformation gradient, F, contains information about the material’s rotation and deforma-

tion. Which can be separated into either pure rotation or deformation using the Polar decom-

position theorem as shown in equation 2.3 below [39]:

F = RU (2.3)

Where U is the right stretch tensor, and R is the pure rotation matrix R. In this equation, the de-

formation is described first, then followed by the rotation. On the other hand, the deformation

gradient can also be decomposed into equation 2.4:

F = VR (2.4)

Where V is the deformation described by the left stretch tensor after the body rotation. From

these two stretch tensors in equation 2.3 and 2.4, it is possible to compute the deformation of

the material without knowing the rotation matrix, as shown in equation 2.5 and 2.6 below:
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FT F = (RU)T RU = UT RT RU = UT U = U2 =C (2.5)

FFT = VR(VR)T = VRRT VT = VVT = V2 = B (2.6)

Where C is the right Cauchy-Green deformation tensor, and B is the left Cauchy-Green defor-

mation tensor. Both also describe the deformation in two different coordinate systems: C is in

the material coordinate, and B is in the spatial coordinate system. From these two tensors, it is

possible to compute the principal stretches or eigenvalues to determine the material’s change

in length or volume. However, the software COMSOL will solve the deformation by using C

rather than B, and the change in volume can be found as shown below in equation 2.7:

V

V0
=λ2

1λ
2
2λ

2
3 (2.7)

Prior to any rotation, the Green-Lagrange strain tensor, E, can be calculated by using equation

2.8:

E = 1

2
(C− I) (2.8)

Or using the displacement components and in Cartesian coordinates in equation 2.9 below:

ϵi j = 1

2

(
∂ui

∂X j
+ ∂u j

∂Xi
+ ∂uk

∂Xi

∂uk

∂X j

)
(2.9)

The Green-Lagrange strain tensor is important in finite element analysis because it computes

the strain at different points inside a material. Then the result at each individual point is then

assembled to obtain the overall strain distribution of the body. The strain is a measurement of

the change in the shape of the material that occurs after experiencing an external load. In finite
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element analysis, it is used in conjunction with the Cauchy stress tensor to analyze the behavior

of the materials. The Cauchy stress tensor is a symmetric tensor that describes the stress state

of any point in the body, and it is defined in equation 2.10 [39]:

tn = Tn (2.10)

Where tn is the stress vector, T is the stress tensor, and n is the unit normal vector. Similar

to the Green-Lagrange strain tensor, the Cauchy stress tensor is computed at each element in

the body and then assembled at the end to determine the stress distribution within the body.

Together, these two tensors will calculate the deformation and stress the GDL is experiencing

in COMSOL.

2.2 Numerical Implementation

Using COMSOL, a single channel of fuel cell with two lands, which are the ridges present on

both sides of the BP and GDL was developed, similar to Figure 2.1. The bottom surface of the

GDL was fixed to constrain all degrees of freedom to prevent it from displacing. A positive as-

sembly pressure P is applied on the top boundary of the BP. Lee found that performance of the

PEMFC is a function of the compression pressure and GDL materials [40]. Ge, Escribano, Zhou,

and Wu found that fuel cell performance decreases as the compression force increases [41],

[42], [43]. Khajeh studied different parameters and how varying them will affect the efficiency

of the PEMFC [44]. Nitta found that the GDL compressed very little under the channel, but the

GDL under the lands is compressed to the gasket thickness [45]. This study aims to vary five

different parameters in the model: the pressure (P), the bipolar plate channel width (CWBP ),

the bipolar plate rib (RBP ), the gas diffusion layer height (HGDL), and the Young’s Modulus of

the GDL (EGDL) and see which parameter will affect the PEMFC the most.
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Both the BP and GDL were modeled as a linear elastic, isotropic material with a mesh size of

0.02mm. To make sure the mesh size will not affect the result greatly, a study varied the sizes

ranging from 50% to 200% of the employed mesh size to find the intrusion height only varied by

less than 1.5% [5]. This suggests that the mesh size of 0.02mm is sufficiently small to represent

the materials’ behavior accurately. The BP is made of carbon graphite, and the GDL is made of

carbon paper. Their material properties are shown in Table 2.1.

Figure 2.1: Schematic of BP and GDL
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Table 2.1: Material properties of BP and GDL

Parameters Value

BP Young’s Modulus [GPa] [46] 185
BP Poisson’s Ratio [37] 0.29

GDL Young’s Modulus [GPA] [47] 6.3
GDL Poisson’s Ratio [47] 0.09

2.3 Design of Experiments

Before performing parametric studies to gather training data for machine learning, it is nec-

essary to evaluate whether each chosen parameter will affect the PEMFC and determine the

primary parameter that affects the PEMFC. This can be done using the two-factorial design

process in Design-Expert, a software package that is used exclusively on experimental design

[48]. The software will use different statistical techniques to determine the effects of multiple

variables on a particular output by calculating the P and F values. The P-value is the measure of

the probability that the result occurred by chance. A P-value of less than 0.05 (5%) is commonly

used to determine whether or not the result is statistically significant. This means that there is

less than a 5% chance that the result happened by chance or 95% confidence that the result is

significant [49]. On the other hand, the F-value is used to determine whether the result is sig-

nificant [49]. A higher F-value indicates that the parameter has a stronger relationship with the

result and, therefore, has a greater impact on the result. These two values can then be used to

determine the interval of each parameter for the parametric studies. The parameters that affect

the output the most will have a more extensive interval than those that do not. This is to help

ensure that the models are accurate and effective at predicting the results.

As the name two factorial implies, each parameter will have two values, a low and a high, as

shown in Table 2.2 [50]. The purpose is to determine each parameter’s effect over a range of

values. In addition, each parameter will be classified as either continuous or categorical. A

continuous variable can take on any value within a given range; for example, the pressure range
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is continuous because it can take on any value. A categorical is one with each value representing

a different category; for example, the BP can be either graphite, polymer blended with carbon

or metal. All five parameters are continuous in this study. The experiment will require 2k runs,

where "k" is the number of parameters. Thus, our study will require 32 different results that vary

for each of the five parameters. After completing the two-factor experimental design study, the

Design-Expert software will generate various plots and data to identify the parameter that has

the most significant impact on the performance of the PEMFC and the parameter that does not

affect the result, if there is one. These results can be used to design the range of values for each

parameter in the study’s machine-learning portion.

Table 2.2: Inputs for two-factorial design

Input Type Low High

HGDL [mm] Cont. 0.2 0.6
EGDL [MPa] Cont. 6.3 31.5
CWBP [mm] Cont. 1.0 1.5

RBP [mm] Cont. 0.5 1.0
P [MPa] Cont. 0.5 5.0

2.4 Machine Learning

Similar to the way machine learning has been widely applied in many different fields, varying

from something as simple tasks like creating an email spam filter to complex ones like predict-

ing stock market trends or to image detection of cancer. Many researchers in PEMFC have also

started integrating machine learning to analyze and improve the performance of fuel cell tech-

nology [51], [52], [53]. Kannan used the Monte Carlo machine learning approach to achieve 90%

accuracy in predicting the performance of fuel cells [54]. Saco used different algorithms to en-

hance the performance of PEMFC by varying different humidification processes [55]. Machine

learning algorithms use many different mathematical models to learn from a large volume of
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training data, make predictions, find patterns, and classify data or optimize based on given pa-

rameters. There are two different types of machine learning, and each has different applications

and usage:

• Supervised Learning - the algorithm has access to a labeled set of inputs and outputs;

then, it will be able to make predictions based on these data.

– Regression - make predictions on the continuous variables, as mentioned in section

2.3

– Classification - classify data sets to their correct category

• Unsupervised Learning - the algorithm does not have access to labeled data or output.

Instead, it learns the patterns from the data to understand the relationship between each

parameter

– Clustering - grouping unlabeled data based on the relationships that appear in the

data set

– Association - finding the relationship between different parameters within the data

set

– Dimensionality reduction - reduce the dimension of the data while maintaining the

integrity of the data set

In this study, supervised regression learning will be used to make predictions of the intrusion

area into the GFC. Four different algorithms, Linear Regression, Decision Tree, Support Vector

Regressor (SVR), and K-nearest neighbors (KNN), will be explored to find the algorithm with the

highest accuracy and lowest Mean Square Error (MSE). The performance and interpretability of

these different machine learning algorithms can be seen in Figure 2.2 [6].
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Figure 2.2: Plot showing the performance vs. Interpretability of each machine learning algo-
rithm [6]

From the list of different algorithms above, linear regression is the simplest and most straight-

forward approach for predicting the relationship between the dependent variable (Y) and one

or more independent variables (X), which can be shown below in equation 2.11 [7]:

Y ≈β0 +β1X1 + ...+βb Xn (2.11)

Where β0, β1, and βn are the unknown constants representing the intercept and slope terms of

the linear model, the goal of the linear regression is to find the values for the unknown constants

to minimize the difference between the dependent variable and the independent variable. The

advantage of the linear regression model is that it is easy to understand and implement due

to the assumption that the relationship between the dependent and independent variables is

linear. However, this assumption may not be true for many real-world problems, leading to

lower accuracy in the result.
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Next is the decision tree, where the algorithm works by recursively partitioning the data into

subsets based on the input values, creating a flowchart-like tree structure. The algorithm will

start as one node at the top; then, it will branch out to multiple sub-nodes by selecting the best

feature and threshold. If the value of the input is below a certain threshold, the left branch is

followed; otherwise, the right branch is followed, as shown in Figure 2.3. The algorithm will

recursively spit the data until specific criteria are met, and each tree node presents a prediction

[7]. The advantage of a decision tree is that it is easy to understand and can handle missing

values well. However, it is prone to overfitting and is sensitive to changes in the data.

Figure 2.3: Decision Tree

The basic idea behind SVR is to find a hyperplane in p-dimensional space that will separate the

data into two classes and maximizes the margin. This hyperplane can be found by subtracting

one from the p-dimension. For example, in two dimensions, the hyperplane is simply a line.

In Figure 2.4 [7], the solid line represents the hyperplane, while the margin is the distance from

either side to the dashed lines, the blue and purple points are called support vectors. In a re-

gression problem, the dashed lines are the margin of tolerance (ϵ), which allows the algorithm

to tolerate a certain amount of errors while still maximizing the margin. The advantage of SVR
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is that it will perform well if there is a clear margin in the data, effective in high dimensional

space. However, the disadvantage of SVR is that it is not good for problems with a large amount

of data or a lot of noise in the data set.

Figure 2.4: Plot explaining Support Vector Machine [7]

As the name implies, the way KNN works is the algorithm will find the k-nearest data points to

a new input and use the average value of the k-nearest data points as the prediction. The pa-

rameter k is a hyperparameter that is set before the training. This hyperparameter determines

the number of nearest data points consider. Figure 2.5 [7] has six blue and six orange circles

with K = 3. The goal is to make a prediction of what the "x" mark is. The algorithm will identify

the three points nearest to the "x" and use it to make a prediction of what "x" would be. In this

case, 2/3 of the points are blue, and 1/3 of the points are orange. So the algorithm will predict
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this point to be blue. The advantage of KNN is that it is simple to understand and implement

and can handle non-linear relationships. However, KNN is sensitive to the chosen K value; if K

is too high, it can cause overfitting.

Figure 2.5: Plot explaining K-Nearest Neighbor with K = 3 [7]

When doing machine learning, it is essential to do data partitioning, which divides the dataset

into multiple subsets for training, validating, and testing the machine learning models. The

most common method is called the "validation set approach," where the data set is split into

two parts, training and testing [7]. In this method, the dataset can either be split into 80/20 or

70/30, where the majority of the data set will be used for training, and the remainder will be

used to see the performance of the prediction. In addition, data partitioning aims to determine

if the model is overfitting, a common problem in machine learning when the model is trained

too well on the training data but performs poorly on the new, unseen data. This occurs when

the model is too complex or has too many parameters, and the model is able to perfectly fit

all the noise and random fluctuations that occur in the training data but fails to generalize to

new data, as seen in Figure 2.6 [6]. One way to prevent overfitting is to do regularization, which
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reduces the number of parameters, or do data partitioning.

Figure 2.6: Plots demonstrating underfitting, good fit, and overfitting [6]

Once the model has been trained and makes a prediction on the unseen data, it is necessary to

evaluate the performance of each algorithm. This can be done by calculating the Mean Squared

Error (MSE), Root Mean Squared Error (RMSE).

The MSE measures how well the predictions actually match the observed data [6]; lower values

of MSE indicate a better fit, while higher values indicate a poorer fit. However, MSE is sensitive

to outliers, and a good fit model often has a high MSE if the data is highly skewed. MSE can be

calculated as shown in equation 2.12 [6]:

MSE = 1

n

n∑
i=1

(yi − f̂ (xi ))2 (2.12)

Where n is the number of data points, f̂ (xi ) is the prediction that f̂ gives for the ith observation.

RMSE is similar to MSE, except the equation is squared and is often used in place of MSE be-

cause it is expressed in the same units as the target variable. It is used when the target variable

has a large range of values. The equation for RMSE is shown below in equation 2.13:

p
MSE = RMSE = 1

n

n∑
i=1

(yi − f̂ (xi )) (2.13)
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Once the MSE or RMSE has been calculated and yielded low values, it is possible to use the

model to make predictions for a different range of the five parameters and perform parameters

optimization.

2.5 Optimization

Optimization is the process of finding the best solution to a problem by maximizing or minimiz-

ing an objective function. For this thesis, the objective function is to minimize the intrusion area

of GDL into the GFC. This is important because the intrusion can significantly affect the PEMFC

performance and degradation of the PEMFC. Using one of the four machine learning models

discussed in the previous section to make predictions on a larger range of parameters will allow

researchers to explore a larger range of possible parameter values and identify the combination

that yields the least intrusion area. This can help researchers avoid the time-consuming pro-

cess of experimenting with every possible combination of parameters. For example, during the

gathering data process, it takes about fifteen minutes to create a model on COMSOL, get the in-

trusion area coordinates, and calculate the % of the intrusion area. With the trained model, it is

possible to get a combination of parameters that will yield less than 10% or 20% of the intrusion

area. Figure 2.7 shows the workflow process for this experiment.
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Figure 2.7: Schematic diagram of the steps for this experiment
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Chapter 3

Results and Discussion

3.1 Simulations and Two-Factorial Results

To ensure the model is accurate before running parametric studies to obtain data for the ma-

chine learning portion, it is important to verify the model with literature data. Utilize the same

parameters as seen in Table 3.1 from the study by Wang et al. [4] to generate the model as seen

in Figure 3.1. The top portion represents the BP, and the bottom portion presents the GDL. A

mesh size of 2× 19−5 m, as seen in Figure 3.2, is employed to begin the static study. The von

Mises stress result of the static study can be seen in Figure 3.3. As evident, the GDL thickness

portion under the RBP decreases, resulting in the intrusion of the GDL into the channel.

Table 3.1: Inputs for two-factorial design

Parameters Value

HGDL 0.3×10−3m
EGDL 6.3 MPa

CWBP 1.0×10−3m
RBP 0.5×10−3 m

P 0, 1, 2, 3 MPa
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Figure 3.1: BP and GDL model from COMSOL software

Figure 3.2: Mesh size of 2×10−5 m for the model
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Figure 3.3: Schematic of BP and GDL

Once the simulation is completed, the x and y coordinates of each node of the intrusion arc

length are used to verify the data in Wang et al. study [4]. As seen in Figure 3.4, the simulation

intrusion results presented by the bold lines closely match with the literature data, represented

by the dotted lines for all four different pressures. This correlation confirms the accuracy of the

model and can be used for the parametric study.

After verifying the model results with literature data, perform parametric studies for the high

and low values as seen in Table 2.2 to determine the key parameters that affect the intrusion

area. Export the x and y coordinates of each node of the intrusion arc length from all 32 combi-

nations of the five parameters into MATLAB. Since the intrusion area is symmetrical, only half

of the arc length is used, starting from the end of the channel width to the middle of the in-

trusion arc length. This data is exported into MATLAB, where the trapz function is utilized to
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Figure 3.4: Comparison of simulation results with literature data

calculate the intrusion area. As seen in Figure 3.5, the upside-down half intrusion area of the

GDL is illustrated, with the intrusion area located in section B of the plot and the dotted rectan-

gle representing the thickness of the GDL. To find the intrusion area, the area of the rectangle

is calculated and then subtracted from the area A calculated by the trapz function, which yields

the half intrusion area which is area B. This value is then multiplied by two to obtain the en-

tire intrusion area. Then divide this intrusion area by the area of the channel to obtain the %

intrusion area into the gas channel.

Together with the five parameters, the % intrusion areas are exported into Design-Expert to de-

termine key parameters using two-factorial. The results of the two factorials are shown in Table

3.2. The P-values for all the parameters are < 0.0001, which is less than 0.05; this indicates that
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Figure 3.5: Half the intrusion area of the GDL into the channel

all the parameters are important. The EGDL has the highest F-value of the five parameters. This

means that this parameter has the highest impact on the % intrusion area and, therefore, will

have the most extensive interval for the parametric studies. The software also shows a rela-

tionship between the parameters that affect the % intrusion. However, the F-values for these

relationships are much smaller than the parameter individually, meaning they do not have as

much effect. For easier visualization, the F and P values for these parameters and relationships

can also be presented in a half-normal plot as seen in Figure 3.6. The further away the parame-

ter is from the red line, the higher impact that parameter has on the % intrusion area. The plot

also indicates whether or not the parameter has a positive or negative effect on the result. It is

worth noting that the software sees the decrease in % intrusion as a negative effect, so it labeled
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the EGDL as a negative effect. However, increasing the EGDL should yield a lower % intrusion

area. So, in this case, the blue color represents increasing the value will lower the % intrusion

area, whereas the orange color will yield a larger % intrusion area.

Table 3.2: F-values and P-values obtained from Design-Expert software

Source F-value % intrusion P-value % intrusion

Model 694.16 < 0.0001
A - HGDL 159.96 < 0.0001
B - CWBP 992.59 < 0.0001

C - RBP 737.82 < 0.0001
D - EGDL 3776.66 < 0.0001

E - P 387.45 < 0.0001
AB 34.17 < 0.0001
AC 46.82 < 0.0001
BC 74.38 < 0.0001

ABC 37.57 < 0.0001

Figure 3.6: F and P values of the five parameters and relationship represented in a half-normal
plot
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Since the P-values obtained from the two-factorials test indicate that all five parameters affected

the % intrusion area, all five will be used for the parametric study. Then the interval of each pa-

rameter is chosen based on the F-value, with the parameter with the highest F-value having the

widest interval to make sure the machine learning output more accurate results. For example,

in this case, the EGDL will have six different inputs between 6.3 MPa to 31.5 MPa. The other

parameter that has a lower F-value will have smaller intervals. The range of these intervals is

chosen based on Bo et al. study [50]. In the interest of the applied pressure, it will also have

a high interval despite having a lower F-value compared to CWBP . The parametric study can

be conducted by running simulations for each combination of parameter values, as shown in

Table 3.3. The results will be used to train the machine learning models and make predictions

on the % intrusion area.

Table 3.3: Inputs for the parametric study

Parameters Value

HGDL [mm] 0.2, 0.4, 0.6
E [MPa] 6.3, 11.34, 16.36, 21.38, 26.4, 31.5

CWBP [mm] 1.0, 1.3, 1.5
RBP [mm] 0.5, 0.75, 1.0

P [MPa] 0.5, 1, 2, 3, 4, 5

3.2 Results of Different Machine Learning Algorithms

The parametric study of the five different parameters will yield 972 different combinations of

training inputs for machine learning. These data will be exported to Excel for cleaning to en-

sure that the x and y values correspond correctly to the specific parameter. The data will then be

exported to Matlab for the intrusion area calculation before being trained by different machine

learning algorithms in Python. Figure 3.7 shows the impact of each parameter on the intrusion

area. As already seen in the previous section with the half-normal plot. The EGDL and RBP pos-
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itively affect the % intrusion area, meaning as these two parameters increased, the % intrusion

area decreased. Whereas the remaining three parameters will have negative effects on the %

intrusion area, when they increase, the % intrusion area also increases.

Figure 3.7: Effects of different parameters on the intrusion area

Using different sklearn library in Python to implement the four machine learning algorithms

and obtain the accuracy of each model. Each algorithm will be trained using the same dataset,

and their accuracy will be measured using the same metric. The linear regression algorithm
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will be implemented using the LinearRegression() function, decision tree algorithm will be im-

plemented using the DecisionTreeRegressor() function, random forest algorithm will be imple-

mented using the RandomForestRegressor() function, and support vector regression algorithm

will be implemented using the SVR() function. Then use the equation from chapter 2 to calcu-

late the RMSE of each algorithm.

The models will use 70% of the data for training and the remaining 30% for testing. Figure

3.8 shows the results of the four models. The left plot represents the relationship between the

actual data and the predicted data from each model. The x-axis represents the actual data or

the test data, and the y-axis represents the predicted data from the model. The black diagonal

line is called the identity line, and it represents the model being 100% accurate. The points on

the plot show the correlation between the actual and predicted values. So the closer it is to the

identity line, the closer the predicted point to the actual value. The right plot represents the

comparison of the actual data and the predicted data. The x-axis represents the data points,

and the y-axis represents the intrusion area. The black line represents the actual data, and the

red line represents the predicted data. The plots show the correlation between the actual and

predicted values. The overlap between the two lines represents the perfect correlation between

the two values. The accuracy and RMSE of each model are shown in Table 3.4.

As seen in Figure 3.8, the Linear Regression model has the worst prediction out of the four mod-

els. The model prediction deviates from the identity line at around 0.3 on the x-axis. This shows

that the model is not linear. This can also be observed in the Intrusion Area vs. Data Points plot,

where the model inaccurately predicts negative intrusion areas at certain parameters, and there

is a significant mismatch between the observed and predicted values. Additionally, as seen in

Table 3.4, the Linear Regression model has the lowest accuracy and highest RMSE. The linear

assumption in the Linear Regression model did not capture the complexities and non-linearity

in the data. In contrast, the other three models were able to handle the complexities in the data,

and their predictions from these models stay relatively linear to the identity lines but start to
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deviate a little as the x-axis increases. In the Intrusion Area vs. Data Points plots, the observed

and predicted values have a higher overlap compared to the Linear Regression model. From

Table 3.4, it is clear to conclude that out of the four models, Decision Tree will yield the high-

est accuracy and lowest RMSE compared to the other three models. Using this information,

Decision Tree will be used to optimize the parameters to yield the lowest intrusion area.
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Figure 3.8: Results of each model, a) Linear Regression, b) Decision Tree, c) KNN, d) SVR

Table 3.4: Models accuracy and RMSE

Model Model Accuracy RMSE

Linear Regression 68.5% 0.0751
Decision Tree 95.5% 0.0303

KNN 92.9% 0.0372
SVR 85.2% 0.0516
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3.3 Optimization Results

Having shown that the Decision Tree model is best, it is used to make predictions for various dif-

ferent parameters to figure out the combinations that will yield intrusion area that is lower than

10%, and 20%. The model will make predictions on a range of values for two parameters while

keeping the other three constant. The model will make predictions on a total of 100 different

combinations of each parameter then it will go through a for loop to separate the parameters

that will yield either 10% or 20% intrusion area.

To utilize the plots in Figure 3.9 and 3.10, three of the parameters are set constant while varying

the other two, as shown in the legend labeled Model Parameters. Then from there, pick any

value from the varying parameters for % intrusion area in interest. For example, in the graph in

Figure 3.9.a, the CWBP , RBP , and EGDL are fixed at 1.5 mm, 1.0 mm, and 15 MPa respectively.

When seeking intrusion area less than 10%, the HGDL can be between 0 - 0.6 mm, and the P can

be between 0 - 6 MPa.

Figure 3.9.b demonstrate the correlation between the parameters of RBP , EGDL , with the % in-

trusion area. As previously discussed, both RBP and EGDL have a positive effect on reducing the

% intrusion area, with higher values of these parameters resulting in lower % intrusion. As seen

in this figure, anything before RBP = 0.8mm, and EGDL = 14 MPa will result in % intrusion area

greater than 20%. Whereas, anything past RBP = 0.9mm, and EGDL = 16 MPa will be less than

10%. The remaining plots in Figure 3.10, depict the optimization for P, CWBP , and HGDL . Un-

like RBP and EGDL , these parameters have a negative effect on the % intrusion area, with higher

values resulting in higher % intrusion.
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Figure 3.9: Optimization results for a) Pressure vs GDL Height and b) GDL Young’s Modulus vs
Rib Configuration
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Figure 3.10: Optimization results for a) Channel Width vs GDL Height and b) GDL Height vs
Pressure
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Chapter 4

Conclusions

In this thesis, focus was placed on understanding the impact of different parameters on the

Gas Diffusion Layer (GDL) intrusion area into a gas channel for PEMFC. COMSOL was used to

model the physical behavior of the GDL deformation and gather data on the intrusion area. De-

sign Expert software was used for two-factorial tests, and Python machine-learning algorithms

were used to analyze the data from these simulations.

The parameters that were studied in this research were Bipolar Plate Rib (RBP ), GDL Young’s

Modulus (EGDL), Pressure (P), GDL Height (HGDL), and BP Channel Width (CWBP ). From both

the two factorial tests and machine learning, it was found that among these parameters, EGDL

had the greatest impact on the intrusion area. This was determined by comparing each param-

eter’s F-values, which measure how much each parameter contributes to the overall variation

in the data. It was also found that both the CWBP and the EGDL have a positive effect on the

intrusion area. This means that the intrusion area is decreased when these parameters are in-

creased. On the other hand, the other parameters P, RBP , and HGDL were found to have a nega-

tive impact on the intrusion area, which means that when these parameters are increased, the

intrusion area is also increased.
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Using the finding from the Design Expert software to design the range of each parameter for the

parametric study to train the machine learning models. Since EGDL has the highest impact, it

had larger range than the other parameters. Four machine-learning algorithms were employed

to analyze the data further and find the optimal design parameters: linear regression, Decision

Tree, SVR, and KNN. These algorithms were trained using 70% of the data set and were tested

using the remaining 30%. The results of this study found that the Decision Tree algorithm had

the highest model accuracy at 95.5% and the lowest Root Mean Squared Error (RMSE) at 0.0303.

In contrast, linear regression had the lowest model accuracy at 68.5% and the highest RMSE at

0.0751. The Decision Tree algorithm made predictions for various ranges of the five parameters

to find the optimal design parameters. This study was done to reduce the time it takes to simu-

late the model and find the intrusion area. Typically, it takes an average of 20 minutes to create

the model, simulate it, and calculate the intrusion area. However, with the trained models, the

intrusion area can be found in less than a minute. This significantly improves the efficiency and

accuracy of the design process.

Overall, this research provides valuable insights into how different parameters affect the in-

trusion area in a PEMFC. By understanding the impact of these parameters, researchers and

engineers can design PEMFCs that are more efficient from having a lower intrusion area. The

use of machine-learning algorithms in this research has proven to be suitable for predicting the

intrusion area of the gas channels in a PEMFC. It also shows the potential for machine learn-

ing to improve the design process and increase the efficiency of PEMFC research. Additionally,

through two-factorial tests and four different machine-learning algorithms, optimal design pa-

rameters were determined, and predictions were made for various ranges of the five parameters

studied. This research has provided valuable insights into the behavior of PEMFCs and shows

the benefits of using machine learning in PEMFC research.
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