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RESEARCH ARTICLE
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Abstract
Huanglongbing (HLB; citrus greening) is the most devastating disease of citrus worldwide.

No cure is yet available for this disease and infected trees generally decline after several

months. Disease management depends on early detection of symptoms and chemical con-

trol of insect vectors. In this work, different combinations of organic compounds were tested

for the ability to modulate citrus molecular responses to HLB disease beneficially. Three

small-molecule regulating compounds were tested: 1) L-arginine, 2) 6-benzyl-adenine com-

bined with gibberellins, and 3) sucrose combined with atrazine. Each treatment contained

K-phite mineral solution and was tested at two different concentrations. Two trials were con-

ducted: one in the greenhouse and the other in the orchard. In the greenhouse study,

responses of 42 key genes involved in sugar and starch metabolism, hormone-related path-

ways, biotic stress responses, and secondary metabolism in treated and untreated mature

leaves were analyzed. TGA5 was significantly induced by arginine. Benzyladenine and gib-

berellins enhanced two important genes involved in biotic stress responses:WRKY54 and

WRKY59. Sucrose combined with atrazine mainly upregulated key genes involved in carbo-

hydrate metabolism such as sucrose-phosphate synthase, sucrose synthase, starch

synthase, and α-amylase. Atrazine also affected expression of some key genes involved in

systemic acquired resistance such as EDS1, TGA6,WRKY33, andMYC2. Several treat-
ments upregulated HSP82, which might help protect protein folding and integrity. A subset

of key genes was chosen as biomarkers for molecular responses to treatments under field

conditions.GPT2 was downregulated by all small-molecule treatments. Arginine-induced

genes involved in systemic acquired resistance included PR1,WRKY70, and EDS1. These
molecular data encourage long-term application of treatments that combine these regulat-

ing molecules in field trials.

PLOS ONE | DOI:10.1371/journal.pone.0159610 July 26, 2016 1 / 17

a11111

OPEN ACCESS

Citation: Martinelli F, Dolan D, Fileccia V, Reagan
RL, Phu M, Spann TM, et al. (2016) Molecular
Responses to Small Regulating Molecules against
Huanglongbing Disease. PLoS ONE 11(7):
e0159610. doi:10.1371/journal.pone.0159610

Editor: Zonghua Wang, Fujian Agriculture and
Forestry University, CHINA

Received: March 24, 2016

Accepted: July 6, 2016

Published: July 26, 2016

Copyright: © 2016 Martinelli et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: The research reported in this publication
was supported by grant# CATAP09-305 received
from the Citrus Research and Development
Foundation and supported the work conducted by all
of the authors except Veronica Fileccia who was
supported by the University of Palermo. It should be
noted that in either case the funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of this manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0159610&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
Plant pests and diseases threaten agricultural systems. Huanglongbing (HLB) disease endan-
gers the citrus industry and citrus cultivation worldwide [1]. Neither genetic resistance nor
short- or long-term therapeutic strategies to mitigate HLB has been found. Huanglongbing dis-
ease is associated with three Candidatus liberibacter (C. Las) species: asiaticus, americanus, and
africanus. C. Las is a member of the alpha subdivision of the proteobacteria based on ribosomal
region sequence data [2]. Symptoms have been extensively described and all citrus species are
susceptible to HLB to varying degrees [3,4].

Microarray analysis identified key genes and pathways affected by HLB at the transcriptomic
level in mature, symptomatic leaves [5,6]. RNA-seq was applied to describe molecular responses
in fruit with different degrees of HLB symptoms [7]. This allowed a comprehensive analysis of
gene regulatory networks on source and sink tissues at different developmental stages [8,9].
Effects of C. Las infection on key genes involved in sugar and starch metabolism, disrupting
source-sink relationships, was a key cause of the metabolic dysfunction. Fruits of infected plants
remained immature and photosynthesizing while mature leaves became yellow and accumulated
starch [9]. Protein expression has been linked to the nutritional condition of grapefruit plants
before and after symptom appearance. C. Las-upregulated proteins were involved in redox reac-
tions, cell wall modification, and biotic stress responses [10]. Isobaric tags for relative and abso-
lute quantitation (iTRAQ) identified which pathways are affected post-transcriptionally by
pathogen infections [11]. A predictive proteome analysis of C. Las has been conducted [12].
Because no toxins or other pathogenic substances were clearly identified in the genome [13], the
pathogenetic mechanisms of HLB disease are still unclear, nor is it clear whether the HLB-associ-
ated changes in sugar and starch metabolism are a cause or an effect of the disease [9].

Current management procedures consist mainly of visual scouting for symptoms, PCR-based
detection of the pathogen, and insecticides for vector control [14]. Although application of insecti-
cides can reduce disease spread, the disease can spread with only a few infected psyllids in the
orchard. Early disease detection and psyllid control are critical practices in areas where neither dis-
ease nor vector has yet been discovered [1]. At present, no chemical compounds have been tested
to beneficially modulate Citrus host responses and eventually extend the life and production of
HLB-infected trees, reducing high economic costs due to lost production. Research has focused
only on testing compounds targeting the pathogen. A combination of two antibiotics (penicillin
and streptomycin) applied by either root soaking or foliar spray decreased C. Las titer in infected
plants [15]. Antimicrobial compounds have been delivered through graft-based chemotherapy
[16]. Nanoemulsion formulations were evaluated for their ability to increase permeability of anti-
microbial molecules with success dependent on the citrus cultivar and degree of HLB symptoms
[17]. Small-molecule inhibitors designed by molecular docking were significantly effective in inhib-
iting SecA ATPase in vitro [18]. Extensive use of antibiotics in open fields is not desirable due to
environmental and human health concerns. Host-based treatments that modulate key genes
involved in metabolic HLB syndrome are highly desirable. Data on citrus molecular responses to
HLB can now be exploited to design small-molecule combinations to ameliorate the devastating
symptoms. The aim of this study was to determine if small molecules are effective in modulating
expression of key HLB-regulated or innate response genes after three to six days of treatment.

Materials and Methods

Plant material
Greenhouse trial. In 2011, Valencia orange scions on Kuharske Carrizo rootstocks were

grown in one-gallon plastic nursery containers and kept in the greenhouse under natural light
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at 17 to 25°C. Graft inoculations were performed using a standard inverted “T” budding tech-
nique with C. Las-infected budwood tested as described [19]. Starting three months after bud-
ding, each plant was tested monthly using quantitative RT-PCR for C. Las species as described
[19]. Each control or treatment was represented by nine to 10 trees. The control consisted of
trees sprayed with distilled water. The first treatment consisted of a Silwet (0.12%), DKP3XTRA
(32.5 mL/20 L) and LK-phite spray (2 mL/20 L). The other six spray treatments were composed
of three different small-molecule combinations at two different concentrations each: 1) L-argi-
nine at 1 mM or 0.5 mM, 2) 120 μM6-benzyl adenine in combination with 15 or 30 μM gibberel-
lin, and 3) 80 mM sucrose combined with the herbicide atrazine (2 μM or 1 μM). All seven
treatments contained the surfactant Silwet and LK-phite at the same concentration used for the
first treatment. Phenotypes were evaluated to determine any phytotoxic effects of these sprays.
All treatments were sprayed on the citrus foliage; the volume sprayed per tree was enough to wet
both upper and lower leaf surfaces just to the point of runoff. Gene expression analyses were con-
ducted on RNA extracted three days following treatment. Three biological replicates of nine
mature leaves harvested from three trees (three leaves per tree) were analyzed for each treatment.
Collected leaves were immediately frozen in liquid nitrogen and kept at -80°C until RNA was
extracted. Forty-two host genes were analyzed in mature symptomatic leaves of treated and
untreated trees.

Field trial. The same treatments were applied during the field experiments, which were
conducted in a commercial citrus orchard in Indian Ricer County, FL, composed of Valencia
orange scions on Swingle rootstocks. The study was conducted on private land and the owner
of the land gave permission to conduct the study on the site of our experiments. We also con-
firm that the field studies did not involve endangered or protected species. Twenty-four trees
of medium height, 12 trees per row, were selected. These trees were mildly HLB-symptomatic
and confirmed infected by C. Las through the same qPCR assay used for the greenhouse trial.
The experimental design was a completely randomized blocks. There were eight treatments
with three single-tree replicates. Samples were collected at three and six days following treat-
ment. Each replicate was a pool of 10 mature symptomatic leaves per tree.

RNA extraction and qRT-PCR analysis. Total RNA was extracted from mature, fully-
expanded leaves of plants grown in the greenhouse or orchard using the Rneasy Plant RNA
Isolation kit (Qiagen Inc., Germany). The RNA concentration and purity were assessed by
Nanodrop (Thermo Fischer Scientific Inc., MA, USA). RNA was stored at −80°C until ana-
lyzed. For each target gene, PCR primers were designed using Primer Express software
(Applied Biosystems, Foster City, CA; S1 Table). DNase treatment and cDNA synthesis were
completed following a combined protocol based on the Quantitect Reverse Transcription Kit
(Qiagen Inc., Germany). A standard curve determined the linearity of amplicon quantity vs.
initial cDNA quantity for each gene. Five μL cDNA at five ng/μL was diluted to a 12-μL final
volume using Sybr Green Master Mix (Bio Rad Laboratories, Hercules, CA, USA). Amplifica-
tions were performed using standard conditions: 2 min at 50°C, 10 min at 95°C, 40 cycles of 15
s at 95°C, and 60 s at 60°C. Fluorescent signals were collected during the annealing temperature
and ΔCT was calculated. Elongation factor 1 alpha (EF-1a, accession AY498567) was used as
reference gene. ΔΔCT was determined by subtracting the average EF-1a CT from the average
CT of the studied gene [9].

Phenotypic measurements
Four phenotypic parameters for all treated and untreated trees were measured in the field:
trunk diameter (mm), trunk height (m), width drill (m), and width row (m). These measure-
ments were taken on 5/21/2014 and 6/28/2014 during the vegetative season.
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Statistical analysis
All statistical analyses of gene expression and phenotypic data were performed using SAS II (2008)
SAS/STAT software (SAS Institute). Gene expression and phenotypic data were analyzed using
ANOVA and a post-hoc test to identify significant differences among treatments. Principal compo-
nent analysis (PCA) was used to reduce the dimensionality of the gene expression data. Data analy-
sis was performed to alleviate possible bias caused by the collected material for each class or by
other confounding factors. Principal component analysis was applied to the ratio matrix of gene
expression data to examine the contribution of each target parameter to the separation of the sam-
ple classes. A biplot was constructed based on the first two principal components.

Results
Gene expression analyses were conducted in the greenhouse and orchard. First, in greenhouse-
grown plants, we quantified transcript abundance of 42 genes selected for their link with for
being strongly up- or down-regulated by HLB syndrome [7,9] or for having a well-known role
in plant responses to pathogen attacks [20]. Second, we selected a subset of five particularly
representative genes to be analyzed in field-grown trees, to which we added an additional two
genes previously linked with HLB syndrome in published data [5,9]. The presence of leaf drop
or discoloration and other morphological features of trees were measured to check whether
these treatments had deleterious effects on important vegetative parameters.

At advanced stages, HLB blocks sugar transport out of leaves, leading to starch accumula-
tion in leaves, reduced photosynthesis and disrupted source-sink relationships [9]. Anatomical
analysis showed that HLB caused phloem disruption, increased sucrose, and plugged sieve
pores [6]. The disease also negatively modifies JA-SA crosstalk, leading to an ineffective innate
immune response [7,9]. The three small-molecule treatments were selected for the potential to
beneficially modulate these negative HLB-regulated responses. The combination of atrazine
and sucrose upregulates genes associated with reactive-oxygen-species (ROS) defense mecha-
nisms and sucrose metabolism [21,22]. We postulated that this treatment might upregulate
genes that reduce sucrose and starch accumulation. Because L-arginine is the precursor of
nitric oxide, which is involved in the SAR response and upregulates genes involved in second-
ary metabolism [23], we designed a second treatment consisting of two concentrations of L-
arginine to induce upregulation of genes for secondary metabolic pathways such as phenols
and terpenoids. Gibberellins boost systemic acquired resistance [20], favoring the resistance
response against biotrophs such as C. Las [20]. Benzyladenine downregulates hexose transport
in leaves, based on data deposited in the Genevestigator database. Indeed, we postulated that
the combination of gybberellins and L-benzyladenine should have two synergistic effecs: 1) it
should beneficially induce genes involved in the innate response against C. Las such as
WRKYs,MYC2 and salycilic acid methyl transferase, and 2) it should repress the expression of
GPT2 in symptomatic leaves, mitigating the deleterious HLB-driven upregulation [9].

Greenhouse trial
Atrazine combined with sucrose treatment. The transcript abundance of genes related to

carbohydrate metabolism varied significantly in response to atrazine combined with sucrose
(Table 1).

The sucrose synthase (Susy) and starch synthase transcripts were more abundant in 1 μM atra-
zine-treated plants. Sucrose-phosphate-synthase and water dikinase starch degradation (GWD)
gene were upregulated by 2 μM atrazine + sucrose. Taken together, these findings highlight that
activation of sucrose synthase should counter the accumulation of sucrose in symptomatic leaves,
while the upregulation ofGWD should promote degradation of accumulated starch.
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PLOS ONE | DOI:10.1371/journal.pone.0159610 July 26, 2016 4 / 17



Defense responses and hormone-related genes were affected by atrazine + sucrose treat-
ments.WRKY33 was upregulated by 1 μM atrazine + sucrose (Table 2).

A zinc ion binding transcription factor, heat shock protein 82 (HSP82) and ERF1 were
strongly induced by 2 μM atrazine (Tables 2 and 3).

JIN1 was induced by 1 μM atrazine + sucrose (Table 4).
Salicylic acid methyl transferase and 12-oxophytodienoate reductase 1-like were upregulated

by 2 μM atrazine + sucrose.
Gibberellin and benzyl-adenine treatment. GA + BA treatments were tested to deter-

mine their effects on key genes involved in plant innate immune responses and carbohydrate
metabolism. Among carbohydrate metabolism genes, alpha-amylase was significantly induced
by 120 μM gibberellins combined with 30 μM benzyl-adenine (Table 1). Among innate im-
mune response genes,WRKY54 was upregulated in response to 120 μM gibberellins + 15 μM

Table 1. Relative transcript abundance of genes involved in carbohydrate metabolism.

Genes Untreated Control
K-phite

1 μMAtrazine +
sucrose

2 μMAtrazine +
sucrose

120 μMBA +
30 μMGA

120 μMBA +
15 μMGA

1mM
Arginine

0.5 mM
Arginine

Starch metabolism

Alpha- amylase 0.470 b 4.950 ab 3.320 ab 4.860 ab 87.140 a 5.210 ab 8.520 ab 3.880 ab

Water dikinase
starch degrad.

0.317 d 0.087 d 0.063 d 1.096 a 0.185 d 0.732 b 0.635 bc 0.364 cd

GPT2 0.569 a 0.012 b 0.219 b 0.171 b 0.025 b 0.107 b 0.243 b 0.119 b

Starch synthase 0.672 b 2.429 ab 4.256 a 1.886 ab 0.792 b 2.870 ab 2.016 ab 3.029 ab

Sucrose metabolism

Invertase 0.839 a 0.766 a 0.351 a 0.274 a 0.296 a 0.851 a 0.758 a 0.611 a

Sugar signaling 0.546 a 2.116 a 0.937 a 2.769 a 7.359 a 1.763 a 1.750 a 3.209 a

Susy 2.310 b 4.218 ab 5.573 a 2.131 b 2.795 b 3.412 ab 4.296 ab 2.022 b

Sps 0.729 b 2.023 b 5.700 b 13.486 a 1.031 b 3.393 b 2.637 b 5.966 b

Means of three replicates were indicated. Letters means significant differences using ANOVA (P < = 0.05) and post-hoc test.

doi:10.1371/journal.pone.0159610.t001

Table 2. Relative transcript abundance of genes involved in plant innate immune responses.

Genes Untreated Control
K-phite

1 μM Atrazine +
sucrose

2 μMAtrazine +
sucrose

120 μMBA +
30 μMGA

120 μMBA +
15 μMGA

1mM
Arginine

0.5 mM
Arginine

RAD51 D 0.197 b 0.175 b 0.690 ab 1.878 a 0.335 b 0.350 b 0.272 b 1.362 ab

BZIP45 5.781 ab 7.650 ab 10.216 ab 11.644 ab 13.370 a 5.197 a 8.997 ab 4.983 ab

TGA5 2.391 b 3.107 ab 4.370 ab 3.366 ab 2.203 b 3.026 ab 6.010 a 2.201 b

RGA1 3.537 a 4.092 a 5.953 a 5.301 a 5.540 a 4.968 a 3.562 a 13.320 a

WRKY33 1.752 b 1.099 b 6.372 a 2.891 b 2.425 b 1.128 b 1.510 b 1.074 b

WRKY48 8.133 ab 4.783 b 6.387 ab 13.873 a 10.300 ab 3.918 b 3.405 b 1.928 b

WRKY54 1.701 a 4.708 a 4.753 a 6.452 a 3.576 a 6.850 a 2.723 a 1.808 a

EDS1 1.491 a 1.905 a 11.022 a 9.360 a 6.914 a 8.289 a 6.561 a 4.319 a

ERF1 7.064 b 6.616 b 17.691 ab 29.435 a 18.566 ab 9.641 b 5.636 b 11.654 b

MYC2 5.369 cd 3.872 d 10.282 abcd 6.505 bcd 17.029 ab 18.585 a 4.134 d 6.320 bcd

PR1 0.053 b 0.229 ab 0.078 b 0.970 ab 0.454 ab 0.119 ab 0.832 ab 2.27 ab

SR1 1.670 a 2.690 a 6.680 a 4.720 a 46.630 a 5.590 a 6.950 a 5.210 a

WRKY59 1.376 b 1.653 b 1.709 b 2.632 b 8.332 a 1.366b 2.996 ab 1.035 b

Means of three replicates were indicated. Letters means significant differences using ANOVA (P < = 0.05) and post-hoc test.

doi:10.1371/journal.pone.0159610.t002
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benzyl-adenine whileWRKY59 was enhanced by 120 μM gibberellins + 30 μM benzyl-adenine
(Table 2). Sulfotransferase1 was enhanced by both gibberellin and benzyl-adenine treatments.
MYC2 was upregulated by benzyladenine + gibberellin.

Among the secondary metabolism and stress response genes, 120 μM gibberellins + 15 μM
benzyl-adenine enhanced expression of HSP82 and two genes encoding pectate lyases involved
in cell wall metabolism (Table 3). β-amyrin was enhanced by 30 μM gibberellins combined
with benzyl-adenine.

Table 3. Relative transcript abundance of genes involved in stress responses and secondary metabolism.

Genes Untreated Control
K-phite

1 μMAtrazine +
sucrose

2 μMAtrazine +
sucrose

120 μMBA +
30 μMGA

120 μM BA +
15 μMGA

1mM
Arginine

0.5 mM
Arginine

Stress-related and cell wall

HSP21 23.350 c 308.390 a 24.110 c 106.950 bc 27.670 c 83.290 bc 97.860 bc 288.346 a

HSP82 1.688 c 5.208 ab 0.729 c 5.585 a 3.364 abc 5.448 ab 4.332 ab 0.920 c

ABC Transporter 2.189 de 1.110 de 0.537 e 15.798 b 6.580 cd 24.822 a 9.245 c 1.229 de

ATPtranslocase2 0.022 a 0.052 a 0.032 a 11.499 a 0.012 a 0.148 a 0.125 a 0.029 a

Sulfotransfer. 1 0.298 c 0.008 c 0.6987 c 0.6015 c 2.678 b 6.932 a 0.483 c 0.136 c

NNLTP 0.022 a 0.052 a 0.032 a 11.499 a 0.012 a 0.148 a 0.125 a 0.029 a

PSBW 2.394 c 3.178 c 8.020 b 6.470 bc 2.287 c 6.226 bc 2.539 c 12.839 a

Pectate lyase 5 0.427 b 0.242 b 0.169 b 0.919 ab 0.231 b 4.233 a 0.817 ab 0.589 ab

Secondary metabolism

Terpene synthase
14

0.198 b 0.184 b 0.402 b 0.112 b 0.101 b 0.345 b 0.051 b 1.944 a

Terpene synthase
21

3.472 a 1.309 a 1.026 a 5.870 a 4.891 a 1.849 a 1.543 a 6.564 a

Terpene synthase
3

0.76 a 0.53 a 4.92 a 38.40 a 0.64 a 1.37 a 0.32 a 0.19 a

B-Amyrin 1.457 b 2.300 ab 2.178 b 3.504 ab 22.614 a 9.651 ab 3.253 ab 6.649 ab

Means of three replicates were indicated. Letters means significant differences using ANOVA (P < = 0.05) and post-hoc test.

doi:10.1371/journal.pone.0159610.t003

Table 4. Relative transcript abundance of genes involved in hormone-related pathways.

Genes Untreated Control
K-phite

1 μMAtrazine +
sucrose

2 μMAtrazine +
sucrose

120 μMBA +
30 μMGA

120 μM BA +
15 μMGA

1 mM
Arginine

0.5 mM
Arginine

Gibberellins

GA2-oxidase 0.395 a 0.676 a 0.556 a 5.276 a 2.718 a 1.752 a 0.199 a 1.379 a

Gibberelin-
2-oxygenase

0.765 a 0.357 a 0.793 a 1.367 a 2.629 a 3.965 a 1.158 a 0.487 a

Auxins and Benzyl-adenine

GH3.1 0.077 b 0.021 b 0.135 b 0.511 a 0.048 b 0.070 b 0.118 b 0.255 ab

Ka02 2.837 ab 3.661 a 2.532 ab 3.608 a 0.139 b 4.164 a 0.929 ab 2.794 ab

Jasmonic acid

12-oxophytodi.
reductase 1-like

0.444 b 0.290 b 0.322 b 1.986 a 0.174 b 1.063 ab 1.964 a 0.732 ab

Salicylic acid methyl transferase

SA-methyl transferase 0.033 b 0.015 b 0.052 b 0.277 a 0.314 a 0.091 a 0.360 a 0.434 b

Ethylene

ACS-1 3.960 a 3.580 a 5.039 a 6.202 a 2.025 a 1.723 a 4.595 a 4.247 a

Means of three replicates were indicated. Letters means significant differences using ANOVA (P < = 0.05) and post-hoc test.

doi:10.1371/journal.pone.0159610.t004
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BA + GA treatments induced SA methyl transferase (Table 4). BA + GA partially induced
HLB-related changes to SA-mediated defense response, but EDS1 was not altered by the treat-
ment, so the plant probably still can’t downregulate jasmonic antagonistic signaling. Ka02
involved in cytokinin metabolism was higher in response to 15 μM than to 30 μM benzyl-
adenine.

Arginine treatment and K-phite treatments. 0.5 mM L-arginine upregulated HSP21 and
terpene synthase3 (Table 3). Arginine treatments did not alter the expression of terpene
synthase14 and terpene synthase21, so the treated plant is still unable produce important ter-
pene compounds. TGA5 and HSP82 were enhanced by 1 mM L-arginine. K-phite treatment
repressed glucose-phosphate-transporter2 (GPT2). This downregulation may have a beneficial
effect since this gene allows glucose import into the chloroplast and starch accumulation.
K-phite significantly inducedHSP21, a chaperone involved in functional protein stability.

Principal component analysis. Two principal component analyses were conducted to
independently assess two gene subsets: 1) genes involved in sucrose and starch metabolism
(PCA-1; Figs 1 and 2) genes involved in hormone-related proteins and biotic stress responses
(PCA-2; Fig 2).

In PCA-1, the first two principle components explained 47 and 28% of data variability,
respectively. The 2 μM atrazine + sucrose treatment separated from the rest of the treatments.
SPS greatly contributed to this separation. 120 μM BA + 30 μMGA was also highly discrimi-
nated from the rest of the treatments. The other treatments were not distinct from the
untreated controls.

PC 1 and PC 2 of PCA-2 (Fig 2) explained 36 and 17% of data variability, respectively. The
1 mM L-arginine treatment was not distinct from untreated conditions, but the 2 μM atrazine
+ sucrose treatment was highly distant. GA2-oxidase, zinc ion binding, and cysteine-histine rich
domain C1 gene contributed significantly to the separation of 2 μM atrazine + sucrose treat-
ment.WRKY33 highly contributed to the separation of the 1 μM atrazine + sucrose treatment.

Field trial
Small-molecule regulating treatments investigated in the greenhouse were also applied to HLB-
symptomatic trees in a young orchard where disease symptoms were frequently present. The
aim of this trial was to determine whether the same treatments used in the greenhouse could
modulate the expression of key host genes at three and six days after their application. Seven
key genes were selected to monitor the transcriptomic regulation of the treatments for two rea-
sons: 1) previous data found them highly characteristic of an HLB-induced response [7,9] and
2) they play a key role in innate immune responses. A gibberellin responsive gene was used as a
marker to determine the efficacy of GA + BA treatments to modulate gene expression under
field conditions. GPT2 is a key HLB-regulated gene involved in glucose import into the chloro-
plast and is linked to the increased accumulation of starch in symptomatic leaves. The other
genes were involved in plant defense and hormonal-mediated innate responses.WRKY70 and
EDS1 are key points of regulation of JA-SA crosstalk. PR1 upregulation is a beneficial against
C. Las since this gene is involved in the systemic acquired resistance response.WRKY48 and
WRKY54 were induced by HLB in previous studies [7,9].

At three days after treatment, 1 μM atrazine + sucrose induced the gibberellin-responsive
protein and PR1 and repressedWRKY48 (Fig 3).

In addition, 30 μMGA + 120 μM BA inducedWRKY48 andWRKY54. This finding may
have positive effects on infected Citrus since the two genes are involved in salicylic acid-medi-
ated responses against biotrophs. 0.5 mM L-Arginine upregulatedWRKY48 and EDS1.
WRKY70 was enhanced by 1 mM arginine and 15 μMGA combined with 120 μM BA.
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At six days following treatment, some important changes in expression of the seven host
biomarkers were observed. 1 μM atrazine upregulated PR1. 2 μM atrazine and 0.5 mM L-argi-
nine repressedWRKY48. A general inhibition of GPT2 was observed in all treated trees at both
three and six days after treatment. This repression was particularly evident in leaves sprayed
with gibberellins + benzyladenine.

Phenotypic measurements and pathogen qPCR detection. No obvious symptoms of a
harmful spray as leaf drop or discoloration was observed in treated trees. The tree trunk diame-
ter, height, width drill, and width row of the treated trees grown under field conditions were
measured in May and June 2014 (Table 5).

The aim of this analysis was to determine whether treatments were detrimental to tree
growth or had undesirable phenotypic effects. No significant phenotypic differences were
observed among untreated and treated trees except width row, which was significantly lower in

Fig 1. Overall analysis of HLB-regulated changes in carbohydrate metabolism. Principal component analysis of treated and untreated Citrus
categories in relation to genes involved in sucrose and starch pathways. UNT = Untreated with hormones (Control), CK = treated with K-phite,
30G = 30 μM gibberellin, 15G = 15 μM gibberellin, 1R = 1 mM L-arginine, 0.5R = 0.5 mM L-arginine, 2AS = sucrose combined with 2 μM atrazine,
1AS = sucrose combined with 2 μM atrazine. SPS = sucrose-phosphate-synthase.

doi:10.1371/journal.pone.0159610.g001
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untreated trees than in trees treated with 30 μMGA + 120 μMBA. There were no visible discol-
orations or other signs of plant distress from the spraying. No set of trees had visibly different
vegetative vigor.

The quantification of pathogen titer was performed after three months from treatments as
previously indicated to check if it was not changed in response to treatments.

Discussion
Our objective was to test the ability of six combinations of small-molecule compounds to mod-
ulate expression of key genes involved in HLB syndrome and innate immune responses shortly
after treatment. We did not pretend to reduce pathogen titers or cure the plants with only one
treatment. Before performing a long-term study, we wanted to evaluate the ability of the treat-
ments to modulate expression of a subset of key genes that are altered during HLB syndrome.
As we expected pathogen titers did not significantly differ among treated and control trees. A
long-term study will reveal if repetitive and continuous applications will reduce pathogen con-
centrations and symptom severity.

Fig 2. Overall analysis of HLB-regulated changes in biotic stress response. Principal component analysis of treated and untreated Citrus
categories in relation to genes involved in biotic stress responses. UNT = Untreated with hormones (Control), CK = treated with K-phite,
30G = 30 μM gibberellin, 15G = 15 μM gibberellin, 1R = 1 mM L-arginine, 0.5R = 0.5 mM L-arginine, 2AS = sucrose combined with 2 μM atrazine,
1AS = sucrose combined with 2 μM atrazine. GA20 = Ga2-oxidase, HSP21 = Heat shock protein 21.

doi:10.1371/journal.pone.0159610.g002
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Fig 3. Expression of seven host genes in response to spray treatments in field conditions. Relative expression of
each gene and treatment was shown as average of three biological replicates. Standard deviations were indicated.

doi:10.1371/journal.pone.0159610.g003
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Treatments were designed based on previously proposed hypotheses. Sucrose-induced pro-
tection against atrazine effects was linked to upregulation of reactive oxygen species (ROS)
defence and repair mechanisms [21].

Nitric oxide (NO) is produced by l-arginine. Treatment with arginine provoked resistance
against Botrytis cinerea in tomato at three to six days after treatment. Endogenous NO concen-
trations correlated positively with induction of key enzymes involved in biotic stress responses
such as phenylalanine ammonia-lyase, chitinase, β-1,3-glucanase and polyphenoloxidase [23].

Gibberellins regulate plant growth by modulating degradation of growth-repressing DELLA
proteins that promote susceptibility to biotrophic pathogens and resistance to necrotrophic
pathogens [24]. This is accomplished by modulating the relative strength of the SA and JA sig-
naling pathways [24]. Through regulation of DELLA stability, gibberellins affect the SA-JA-ET
network and plant immune response. Genevestigator showed that benzyl-adenine downregu-
lated the glucose-phosphate transporter in Arabidopsis. Since this gene is induced by HLB met-
abolic syndrome [5,9], benzyl-adenine treatments might help mitigate the negative effects of
HLB on leaf metabolism. In combination, the two hormones may beneficially modulate key
HLB-regulated genes involved in carbohydrate metabolism [7,9].

K-phite mineral solution was also tested, alone or in combination with the three small mole-
cule compounds. This treatment was considered because of contrasting published reports on
the effects of nutrient solutions such as K-phite [25]. Mineral solutions increased the concen-
trations of important N, Mn, Zn and B ions in leaves and long-term application reduced patho-
gen titer, leaf size, and leaf weight [25]. Although enhanced nutritional solutions composed of
essential micronutrients did not improve fruit production and quality of C. Las-infected trees
[26], others results support the hypothesis that the pathogen severely affects nutrient patterns
[27]. In addition, foliar nutrition and soil conditioners helped reduce economic and production
losses due to HLB [28,29].

To determine how the treatments affected the metabolism of infected trees, 42 genes were
selected from previously published Citrus transcriptome data [7,9]. These genes fell into three
subsets involved in: 1) carbohydrate metabolism and signaling, 2) innate immune responses,
including key players in JA-SA signaling, crosstalk and induced responses, or 3) other genes
involved in biotic stress responses such as those involved in hormone-related pathways, sec-
ondary metabolism and stress-preventing factors. From these biomarkers, we chose seven rep-
resentative biomarkers to be followed under field conditions in response to the same

Table 5. Phenotypic measurements in response to the seven treatments and control (untreated).

1st Measurement
(5.21.14)

Untreated 120 μMBA +
30 μMGA

120 GA +
15 μMBA

1 μM
Atrazine

2 μM
Atrazine

.12% Siluet
K-Phite +

0.5 mM
L-Arginine

1.0 mM
L-Arginine

Trunk Diameter (mm) 90.770 a 91.537 a 82.280 a 96.097 a 88.197 a 83.827 a 96.427 a 98.747 a

Tree Height (m) 2.9533 ab 3.0000 ab 2.5533 b 3.1667 ab 3.1900 ab 2.8133 ab 3.2567 ab 3.3200 a

Width Drill (m) 2.4167 a 2.7400 a 2.4733 a 2.7000 a 2.6767 a 2.4433 a 2.7467 a 2.6233 a

Width Row (m) 2.4767 a 2.7667 a 2.4400 a 2.7400 a 2.5267 a 2.5533 a 2.7400 a 2.6800 a

2nd Measurement
(6.28.13)

Untreated 120 μM BA +
30 μMGA

120 GA +
15 μM BA

1 μM
Atrazine

2 μM
Atrazine

.12% Siluet
K-Phite +

0.5 mM
L-Arginine

1.0 mM
L-Arginine

Trunk Diameter (mm) 70.940 a 77.427 a 70.503 a 80.813 a 75.207 a 72.513 a 82.293 a 83.617 a

Tree Height (m) 2.5500
abc

2.6833 ab 2.3533 bc 2.7067 ab 2.6733 abc 2.3100 c 2.7267 a 2.7700 a

Width Drill (m) 2.1767 a 2.5400 a 2.3133 a 2.4233 a 2.4000 a 2.4200 a 2.6533 a 2.4400 a

Width Row (m) 2.0700 c 2.6167 ab 2.2733 bc 2.4900 abc 2.3033 abc 2.2667 bc 2.7267 a 2.4267 abc

Means of three replicates were indicated. Letters means significant differences using ANOVA (P < = 0.05) and post-hoc test.

doi:10.1371/journal.pone.0159610.t005
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treatments. Treated plants were tested for the presence of C. Las using qPCR and showed clear
HLB symptoms.

QRT-PCR analyses were conducted at three to six days after treatment. As expected, we
observed no significant changes in pathogen titer. Repeated applications of treatments (at least
weekly) should eventually affect the titer. Since we only treated infected trees once, an analysis
of pathogen titer after treaments was outside the scope of this study. Long-term studies on the
effects of repeated applications of these treatments should test pathogen titer using qPCR.

Atrazine combined with sucrose
The first small-molecule treatment tested was the combination of sucrose and the herbicide
atrazine. Atrazine is a well-known photosystem II inhibitor that affects plant gene expression,
seedling physiology, and potentiality impairs protein translation and the ROS defense mecha-
nism [30]. However, in combination with sucrose, atrazine induces xenobiotic and ROS signal-
ing. In addition, this treatment upregulated important classes of antioxidant enzymes [21,22].
These findings were consistent with our unpublished findings that glutathione-S-transferases
are upregulated in more tolerant Citrus genotypes.

Here we observed that atrazine combined with sucrose drastically affected some key genes
responsible for HLB-induced carbohydrate changes. Increased sucrose concentrations have
been found in in C. Las-infected leaves [6,11]. 1 μM atrazine + sucrose enhanced sucrose
synthase while 2 μM atrazine + sucrose upregulated the water dikinase starch degradation gene
and sucrose-phosphate-synthase. Atrazine upregulated alpha-amylase, which was repressed in
mature HLB-infected Citrus leaves [9] but upregulated in infected Citrus stems [31]. Taken
together, these findings lead us to speculate that atrazine + sucrose might help sucrose degrada-
tion by activating sucrose synthase. In addition, upregulation of alpha-amylasemay increase
starch degradation in HLB-infected plants where its accumulation is advanced.

Atrazine (1 μM) combined with sucrose upregulatedWRKY33. Brassica napus plants over-
expressing BnWRKY33 had increased resistance to Sclerotinia sclerotiorum infection [32]. This
effect was mediated by SA [32].WRKY33 upregulation allowed resistance to the necrotroph
Botrytis cinerea in Arabidopsis [33]. Loss ofWRKY33 function induces salicylic acid (SA)-
mediated responses, increases salicylic acid and represses jasmonic acid (JA)-mediated
responses [34].

Overall, our results support the hypothesis that this treatment could beneficially modulate
key HLB-regulated genes associated with the well-known HLB carbohydrate metabolic syn-
drome [9]. The changes to expression of some key genes involved in sugar and starch metabo-
lism could beneficially modulate the metabolic responses of HLB disease in photosynthesizing
Citrus leaves, restoring a more normal source-sink relationship and potentially inhibiting the
characteristic and deleterious syndrome in the fruit.

Gibberelllins combined with benzyl adenine treatments
Amixture of gibberellin (GA3) and 6-benzyladenine (BA) was tested to modulate jasmonic
acid-salicylic acid (JA-SA) crosstalk in favor of responses to biotrophs such as C. Las. Our
hypothesis was that gibberellin treatments may activate SAR responses through positive regula-
tion of hormone-mediated crosstalk regulating biotic stress responses [19]. Some key genes in
hormone-related pathways and JA-SA crosstalk were chosen as indicators of treatment effects.

MYC2 was significantly induced by both 15 and 30 μM gibberellin treatments.MYC2 is a
transcription factor composed of a basic helix-loop-helix (bHLH) domain that activates and
represses specific JA-responsive gene expression in Arabidopsis [35].MYC2 also induced
responses to abiotic stress mediated by abscissic acid in Arabidopsis [36] and suppressed
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salicylic acid-mediated responses in Arabidopsis [37]. Upregulation ofWRKY54 in gibberellin-
treated field trees is also interesting because this gene is a positive regulator of resistance against
Erwinia amylovora, the agent of fire blight in the Rosaceae family.

The plant immune regulator EDS1 (Enhanced Disease Susceptibility1) plays a fundamental
role in resistance mechanisms to biotrophs and hemi-biotrophs [38,39]. This role is due to the
formation of complexes with PAD4 and SAD101 in both cytoplasm and nucleus [40]. The
15 μMGA + BA treatment enhanced EDS1 at six days after treatment in the field. The increase
in EDS1 transcripts after application of these small molecules could help activate SAR response
against pathogen infections. Mutant screening showed that upregulation of EDS1 induces non-
host resistance against E. amylovora in Arabidopsis by activatingWRKY46 andWRKY54 genes
[41].

Our hypothesis was partially confirmed. GA + BA may beneficially increase innate
responses by inducing EDS1 andMYC2. Although long-term field trials are required, we specu-
late that continuous application of this small molecule mixture could stimulate improved
SA-JA crosstalk

L-arginine treatments
The third small-molecule treatment was composed of L-arginine, used in two concentrations.
L-arginine positively regulates key genes involved in innate immune responses [23]. L-arginine
may act on nitric oxide and directly upregulate key genes in salicylic acid signaling. Increased
endogenous NO concentrations after L-arginine treatment in pre-harvest tomatoes correlated
positively with increased defensive enzyme activity and postharvest disease resistance [15].
PR1,WRKY70 andWRKY54 were upregulated by 1 mM L-arginine under field conditions.
WRKY transcription factors are important regulators of responses to abiotic and biotic stresses.
WRKY54 andWRKY70 play a key role in a regulatory network that affects leaf senescence by
interacting with another WRKY factor [42].

In our field trial, arginine induced some key important gene regulation that should benefit
SAR responses.

Common effects among treatments
Glucose accumulation induced by C. Las infection is transported to the plastid by hexose trans-
porters [5,9,43]. GPT2 is a key player in HLB-mediated starch accumulation in leaves because
this gene mediates glucose import into the chloroplast in infected leaves [5,9]. GPT2 was signif-
icantly repressed by all spray applications at both three and six days after treatment under field
conditions. This inhibition may reduce the amount of glucose carried into the plastid and thus
starch accumulation, with consequent improvement of disrupted source-sink relationships.

Gene expression changes observed in this work corroborated the hypothesis that these
spray treatments may help stimulate systemic acquired resistance responses by activating key
genes involved in innate responses (Fig 4).

PR gene induction is mediated through interaction with TGA transcription factors [15].
The observed upregulation of TGA5 and TGA6 by L-arginine and 2 μM atrazine + sucrose,
respectively, might help stimulate defense responses against C. Las infection.

Arginine and atrazine sprays upregulated the PR1 gene under field conditions. PR1 protein
is the hallmark of the defense response induction mediated by salicylic acid through systemic
acquired resistance [44]. Molecular action of this protein against pathogens is still unclear,
although antifungal properties have been attributed to it [45]. PR1 also interacted with fungal
toxin activities, mediating necrosis in sensitive wheat [31]. This gene was not activated in
response to C. Las infections in orchard trees [9].
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Fig 4. Key differentially regulated genes in response to treatments involved in biotic stress
responses.

doi:10.1371/journal.pone.0159610.g004
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Interestingly, all three treatments upregulatedHSP82. Previous data on C. Las-infected cit-
rus leaves and fruits showed that C. Las caused a significant repression of genes encoding chap-
erones [7–9]. Modified expression of these genes plays a key role in general stress conditions
[46, 47]. A link between reduced HSP protein amount and HLB symptoms was also confirmed
by analysis [10].

Conclusions
Present data confirmed our hypothesis that these small-molecule sprays may affect transcript
abundance of key genes involved in HLB carbohydrate metabolic syndrome and innate
responses. As expected, there were no phenotypic changes in response to treatments at one to
two months after treatment. Treatment sprays did not cause negative effects such as leaf drop
or discoloration. As expected, tree measurements showed almost no differences between
treated and untreated trees in field conditions. We believe that beneficial effects are likely to be
seen only if treatments are applied frequently before or at the onset of visible HLB symptoms.
Here, our aim was to analyze the molecular effects of these treatments on gene expression sev-
eral days after treatment. Future studies should examine long-term molecular and phenotypic
improvements associated with ongoing applications to young trees infected with C. Las.
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