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ABSTRACT OF THE THESIS

A case for effective utilization of Direct Cache Access for big data workloads

by

Harsha Basavaraj

Master of Science in Computer Science (Computer Engineering)

University of California, San Diego, 2017

Dean Tullsen, Chair

The exploration of techniques to accelerate big data applications has been an

active area of research. Although we have highly efficient computing cores and high-

speed networks, the bottleneck in most big data applications has been the latency of

data access. The foremost contributors to this latency are the network communication,

storage systems, software stack and data transfer. Heterogeneous co-processors, FPGA

accelerators, and flash based storage accelerators try to overcome this latency by of-

floading processing from the primary processor, but these cause additional overheads

to an already costly data-center server and increase the total deployment cost. With

an ever growing size of data, the need to exploit the available resources in the primary

processor while achieving the best possible performance becomes increasingly neces-

sary. A humble performance improvement of even 1% goes a long way in a typical

xii



data center environment. Consequently, this work evaluates the effectiveness of Data

Direct Input Output (DDIO) commonly known as Direct Cache Access (DCA) for I/O

intensive big data workloads. We begin with a survey of various kinds and characteris-

tics of big data workloads and then present the performance gain/loss due to DCA for

I/O intensive workloads on Xeon E5 based servers. The big data applications are con-

siderably different from the workloads traditionally used in architectural studies hence

micro-benchmarks are used to emulate workloads which could gain/lose considerable

performance when using direct cache access. Also, we present the performance of I/O

intensive tasks from state of the art Cloudsuite benchmark suite. We finally make a case

for the dynamic use of DCA in the processor for better performance of big data appli-

cations (change the percentage of cache available for DDIO to use or the cache levels

DCA can access).

xiii



Chapter 1

Introduction

The exponential growth of data [3, 4] poses a continuous challenge to effec-

tive execution of big data applications. Big data has become pervasive in business and

research; its ever increasing size has increased the complexity of methods to process, an-

alyze, extract, store and collect it. The scope of research to accelerate such applications

covers the entire stack of processing, starting from high level software optimization, to

the hardware design of the processors. The effective use of data at large scale needs

infrastructure which is flexible, while conforming to constraints of space, power and

cooling in data centers. The processor compute infrastructure lies at the heart of a data

center, hence computer architects have a crucial role to play in optimizing the data cen-

ters.

Big data workloads are characterized as data and communication intensive [5,

6, 7, 8, 9]. The prime contributors to latency in these applications are storage systems,

software stack, data movement and communication [8, 9]. Data movement is a com-

mon operation in data centers [10, 11, 12] and an integral task of big data applications

as well. The latency due to data movement accounts for around 30% of the total ap-

plication latency of an application using Linux TCP/IP stack [11]. There are several

techniques proposed and deployed to accelerate the big data workloads with most of

them using additional peripherals such as GPUs, FPGAs [13, 14] and custom ASICs

[15] along with the general purpose CPUs. While the trend of using peripheral devices

or custom architectures is prevalent, they might come with additional costs in terms of

programmability, ease of deployment and the energy footprint.
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The acceleration techniques with additional hardware and software optimization

have been at the forefront of research, but there has been less focus on effectively using

the existing micro-architectural features of the microprocessor. The concept of Direct

Cache Access [16] as introduced by Ravi, et al. overcomes latency in the I/O data

path by providing the network with direct access to the processor’s cache. The imple-

mentation of this feature in Intel Xeon processor architecture is known as Data Direct

I/O (DDIO) [17]. DDIO allows the network interface card to directly access the pro-

cessor cache, minimizing the number of main memory accesses required for network

packet processing and improves the efficiency of data delivery. Big data applications

that are I/O intensive and streaming applications will certainly see performance gains

while accessing the cache hierarchy directly, but the gains may not be uniform across

the diverse set of applications. This motivates us to evaluate the effectiveness of Direct

Cache Access (DCA) for big data workloads by demonstrating the variance of its utility

across different applications or different phases within the same application and explore

techniques for its dynamic usage.

Analyzing big data workloads across the big data application landscape to eval-

uate the effectiveness of DDIO is a difficult task given the scale, size and diversity of

these applications. To do so, we develop few I/O intensive micro benchmarks which

are representative of the characteristics that can benefit due to DDIO. We also evaluate

DDIO with data caching benchmark of Cloudsuite [18] as it is a network I/O inten-

sive application. The same set of benchmarks are used to demonstrate the variation in

performance across different kinds of applications, and different phases of the same ap-

plication, with help of hardware performance counters. The performance counters track

metrics such as LLC misses, instructions executed and number of cycles consumed to

evaluate the behavior of the application with DDIO enabled and disabled. Finally we

conclude with a case for dynamic usage of DDIO based on the utility variance.

The thesis is organized as follows: Chapter 2 builds a background on the dif-

ferent communication mechanisms between network, memory and compute subsys-

tems, details of DDIO and related work on big data application acceleration. Chapter 3

presents details of the experiments and evaluation. The results of the experiments are

presented in chapter 4, we conclude and present future directions in chapter 5.



Chapter 2

Background and Related work

This section gives a high level overview of network infrastructure of the data

center, memory hierarchy of the processor, how data is transferred from network I/O

subsystem to the compute subsystem and the Big Data workload characteristics.

2.1 Network, Memory and Computation

Network, storage, memory and compute are the fundamental building blocks

of a data center [19, 20]. The communication networks in data centers have evolved

rapidly over the past decade with 10GbE and 40GbE infrastructure being widely used,

and devices supporting 100GbE making inroads into commercial market. The memory

subsystem, while lagging in speed, has caught up with the latest commercially avail-

able DDR4 DRAM technology that can support speeds up-to 48GBps, while alternate

memory technologies such as NVM, MTTRAM, etc. [21] continue to emerge. Speed

of computation has been the dominant among these three fundamental subsystems, and

reached abilities to process at frequencies greater than 3GHz. With the end of Dennard

scaling, multi-core scaling vowing to Moore’s law has maintained the proportional in-

crease in computation capacity, but may not continue to do so [22]. Here in this chapter

we recall some of the important interaction techniques between these components, dis-

cuss characteristics of big data workloads and related work in big data acceleration. The

data centers built with commodity components and running commodity software incur

huge latency penalties despite all the different mechanisms discussed further. In this

3
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work we are concerned about the communication latency due to the OS network stacks

and data transfers between the processor and the network interface cards (NICs).

2.1.1 MMIO and DMA

Memory mapped I/O (MMIO) is a mechanism in which the I/O devices com-

municate using a preassigned memory address mapped to the I/O device [23]. MMIO

is a protocol where the CPU reads and writes to specific memory address but the mem-

ory address is an I/O device. The behavior of any MMIO device is similar to that of

the DRAM or any other memory subsystem expect that its managed by a special I/O

instruction or a control signal.

DMA is a very common technique used by network interface cards (NIC) for

transferring of packets arriving from the network to memory. The data transfer mecha-

nism uses a dedicated DMA controller bypassing the CPU. The DMA controller offloads

data transfer (memory) operations from the CPU and makes data transfers cheap with-

out needing any processor time. Figure 2.1 shows the high level view of the transactions

during DMA I/O.

Figure 2.1: Typical Direct Memory Access I/O



5

2.1.2 Direct Cache Access

Direct Cache Access (DCA) is an enhancement to the system interconnect co-

herency protocol to move the incoming data through network I/O directly to processor

cache bypassing the main memory [16]. The prime motive of DCA is to overcome the

latency due to visits to main memory while processing the data obtained through net-

work I/O. DCA provides mechanism for incoming and outgoing data through network

I/O to be streamed directly from the processor’s cache. The primary benefit of DCA is

reduction in average latency of network packet processing and effective utilization of

memory bandwidth. For a typical TCP/IP based application the number of memory ac-

cesses with DCA is just one memory access for a N cacheline payload whereas in case

of DMA it requires 2N+5 [11, 12] memory accesses. The growing network speeds with

400GbE being standardized and 100GbE, 40GbE being commercially deployed makes

it important to process the packets at the same speed as they are transmitted or received

to achieve optimum utilization of the network speed and processor speed. Apart from of-

fload engines, DCA can also help us achieve optimum utilization by minimizing number

of visits to the main memory. Figure 2.2 shows the high level view of the transactions

during DCA I/O.

Figure 2.2: Transactions in typical Direct Cache Access I/O
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2.1.3 Intel Data Direct I/O

Intel Data Direct I/O (DDIO) is the only commercially available implementa-

tion of DCA. The terms DDIO and DCA have been used interchangably in this thesis.

With increasing cache sizes (>20MB), DDIO became a practical and realistic feature

to gain performance. DDIO enables direct communication between last level cache of

the processor and the network interface card there by reducing the number of hops to

main memory and back while performing I/O operations. DDIO not only improves the

latency of the processor but also improves the power consumption of the processor by

reducing the number of trips to main memory. DDIO is analogous to DCA but limits

the access of the NICs to the last level cache of the processor. The path of the packets

from the NIC to processor is similar to that of the concept of DCA and the packets are

available in the last level cache of the processor. DDIO is limited to use 10% of the total

last level cache size and restricted to use only two ways in a multi-way set associative

cache.

DDIO can improve the efficiency of both data consumption and data delivery

through I/O devices. The network data structures such as packet buffers, transmit and

receive queues are all allocated in the LLC of the processor and the corresponding in-

formation is shared with the NIC as RX and TX descriptors. The NIC is triggered by

the core to read the updated packet buffers during data transmission, whereas in DDIO

the data to be transmitted is forwarded from the cache without any cache misses or evic-

tions. Similarly when the data is received on the NIC, the NIC does a look up in its RX

queue (generally based on a hash function) to find the corresponding RX queue on the

core and the data is forwarded to the LLC with DDIO. The data is updated or allocated

space in LLC based on the existence of memory addresses (eg., RX descriptors) in the

cache hierarchy. The processor may be notified via an interrupt after the completion of

transfer. When DDIO is not available, a similar set of operations are performed however,

in this case, the data structures are all in main memory. All data receive operations with

DMA invalidates the addresses if present in caches and delivers the data to main mem-

ory. Thus with DDIO, trips to main memory are not needed for both data consumption

and data delivery operations of the NIC.

As mentioned earlier, DDIO has access to only 10% of the last level cache but
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Figure 2.3: A system with write-allocate-write-update Direct Cache Access (wuaDCA)/ Intel DDIO

it is not dedicated for DDIO alone and available to other applications, the allocation

is fixed and tracked by the system interconnect and cache management protocol. In

cases when DDIO have used up the entire allocation or in case of set conflicts with new

incoming data, the new incoming packets are allocated space in cache by evicting the old

data onto the main memory according to the write-allocate, write-update cache policy.

All Intel processors based on Haswell and newer architectures have DDIO enabled by

default with no software or hardware dependencies. Figure 2.3 depicts the high level

overview of system with DDIO as elaborated by Li, et al. in [24].
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2.2 Yet Another Resource Negotiator

Figure 2.4: YARN Scheduler Architecture as described by Vavilapalli, et al. [1]

Big data frameworks, such as Hadoop and Spark, are most commonly used for

developing big data applications. These frameworks employ a resource management

framework called Yet Another Resource Negotiator (YARN). YARN is a scalable and

efficient version of Hadoop which also provides services to manage the shared cluster

[1]. YARN is composed of a Resource Manager (RM) per cluster that runs on the

master node of the cluster and a Node Manager (NM) per worker node that manages the

availability of resources, fault monitoring, and scheduling on each worker node.

The details of YARN architecture are well documented by Vavilapalli, et al. in

[1], and the skeleton of the same is shown in Figure 2.4. A brief description of functions

of the different components of YARN are as follows:

• Application Manager (AM) is an application which runs on the cluster, and co-

ordinates the resources for execution of a particular application on the cluster. AM
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is composed of set of static processes or a logical description of work or a service.

It communicates periodically with the RM to maintain the records on the RM and

to dynamically request resources for applications when necessary.

• Resource Manager is an arbiter which has interface to AM and NM. RM commu-

nicates with clients needing to run applications on the cluster via AM and com-

municates with NMs for cluster and resource access management. RM maintains

a global cluster state against the digest of the applications running on the cluster.

• Node Manager runs on the worker nodes, its primary functions involve managing

the containers, dependencies and monitoring the execution of the applications on

the worker nodes. NM also maintains a heartbeat connection with RM for status

updates and receiving instructions. NM also provides auxiliary services for data

transfers, if the data is needed after the lifetime of the application. The auxiliary

services can be requested by the AM on need basis.

YARN’s architecture is particularly interesting as a potential target for enhancement for

supporting dynamic usage of DDIO as explored in this thesis.

2.3 Big data workload characteristics

Characterizing the workload leads to a better understanding of the trade offs in-

volved, and in turn aids better system design. This section talks more about the behavior

of some of the workloads from the big-data applications that give us interesting insights

into designing optimal systems. The workload characterization is carried out using the

benchmarks of a particular area of applications and those characteristics of the bench-

marks are used to drive system design. Big data as a field is very diverse in nature and

the figure 2.5 derived from [2] gives an insight into the different kinds of data analyzed

in big data applications.

Big data systems are continuously evolving and with the classification as dis-

cussed by IBM and as shown in figure 2.5 the numerous types of data makes it very

difficult to come up with benchmarks which are comprehensive of all the characteris-

tics of such applications. Over the last few years various benchmark suites have been
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Figure 2.5: Big data classification as described by Mysore, et al. [2]
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released such as Cloudsuite, Hibench, LinkBench, Hive and BigDataBench. Big data

applications are generally built upon the MapReduce, Hadoop and Spark frameworks

and characterizing these frameworks can give greater insights on techniques to optimize

computing platform’s performance.

The big data workloads are considered to be scale out workloads [18] and differ

from the traditional computing workloads. Though tailoring the processor design to

a specific set of applications is not desirable in a general computing environment, the

knowledge of characteristics of workloads to which the systems cater to will help gain

maximum performance out the system. The scale-out workloads are a diverse set of

non-overlapping application and management software for the distributed infrastructure

operating on large data sets which are stored in distributed file systems. The examples

of scale out workloads (essentially different kind of applications which run in the cloud)

are:

• Data Serving workloads comprising of web applications which store data and

retrieve the data based on the requested key (using Key-value store frameworks).

• Analytic applications use map-reduce frameworks. These applications are limited

by communication resources as the tasks perform intensive data read/write oper-

ations in a distributed file system. Analytic applications are dominated by branch

instructions (with more than 90%) [25].

• Streaming applications such as online media streaming occupy close to 50% of the

internet traffic. These applications continuously fetch, encode/decode, packetize

and transmit relevant data at high speeds to support high bandwidth, and high

quality subscriptions [26].

• Search engine and other web services make use of the cloud infrastructure to pro-

vide the requested service. The important criteria in such applications is latency

and load balancing in the back end for optimum usage of available resources.

The frameworks mentioned earlier have significant differences and also noticeable im-

pact on performance of a particular application. Big Data applications are data intensive

and significant disparities exist in the instruction footprints of different sub-classes of
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applications using different software stacks/frameworks. The summary of observations

on the big data workload characteristics as made in [6, 7, 18, 25, 27, 28] are as follows:

• Read operations in HBase (a non-relational and distributed database) are I/O in-

tensive as reads are converted into get operations using a key, and use the map-

reduce framework to traverse through the data.

• Hive based interactive analysis determine set differences over E-commerce trans-

actions data-set, this is observed to be I/O intensive as each record is a key-value

pair.

• Filtering of data is an important operation in interactive data analysis, and uses

queries to filter data. With E-commerce dataset, such filtering operations are ob-

served to be I/O intensive.

• Sorting the E-commerce transactions data-set, projecting implications of the data

using relational algebra is also an I/O intensive task when done using Shark and

CPU intensive using Spark.

• Counting of words in a data-set is a basic and foremost operation in data analysis

and statistics. Implementing counting on a huge data-set like Wikipedia, where

each record is a 64KB key-value pair is observed to be I/O intensive with Spark

and CPU intensive with Hadoop.

• Finding relevant information from Wikipedia data-set using grep is I/O inten-

sive when implemented using Spark and CPU intensive when implemented using

Hadoop.

Thus to summarize even similar operations on similar data-sets differ in their system

behavior when implemented with different framework. The frameworks used have a big

impact on the performance of applications on same underlying hardware infrastructure.

The software stacks used also have a significant impact on the characteristics such as

CPI, LLC, Icache and Dcache behavior. Most applications have intense data movement

operations and analytical applicatons are dominated with branches. The disparate nature

of big data workloads thus calls for more innovative co-design of the hardware and

software infrastructure to derive maximum possible performance.
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2.4 Related work

The growing application of big data analytics calls for an overhaul of all the

different subsystems and more coherent design of the data centers where most of these

applications reside . This section gives insight into different methods propounded for

accelerating big data applications and frameworks.

2.4.1 Storage systems optimization

High performance storage system which scales and supports the characteristics

of scale out workloads is essential for latency sensitive applications. One such solution

is RAMcloud [29] where clusters are built with high DRAM capacities distributed over

a high-speed interconnect network. The state of the art distributed memory mechanisms

such as memcached which needs the infrastructure to be scalable are shown to be served

well by RAMcloud’s approach. RAMCloud is distinct in the way that all the storage is

in the DRAMs which are distributed over numerous servers. With innovations in DRAM

technology the TCO of such architecture would be cheaper than any other mechanisms

to accelerate storage. The duplicates needed to handle the refresh of each DRAM cell

increases the overall cost for every bit to be stored in RAMCloud. The high cost and

energy usage per bit in RAMcloud makes it worse than the HDD based systems when

the application is not latency sensitive.

Triple-A [30], a flash array based storage solution for sustaining low latency I/O

workloads proposed by Jung, et al. aim to address the issues with SSD based solutions

by using NAND flash clusters, that can be optimized and reshaped based on the resource

contentions of the application it caters to. Moon, et al. demonstrated in [31] the critical

system configurations in Hadoop based systems for optimal use of SSD performance

and also show that SSDs as temporary storage devices and HDDs as permanent storage

for Hadoop Distributed file system is most cost-effective configuration.

Another idea which has gained traction is in-store processing which provides

low latency and scalable architectures. One of the recent proposals is Blue DBM[32]

which proposes to use flash storage for storing large data-sets of size 5TB to 20TB for

sustaining high performance random accesses instead of traditional HDD based storage.
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BlueDBM will not need 1000s of servers to hold the data as in case of RAMcloud, but

can hold a equivalent large dataset in a rack with 20 servers. The custom architecture

of BlueDBM with integrated network and flash design which provides uniform access

latency. The power consumption of each server node in BlueDBM is 20% greater than

the typical data center servers. The software modifications to effectively use in-store

processing infrastructure restricts its usage.

2.4.2 Re-configurable optimization

FPGA based memcached acceleration proposed in [33] pushes the functionality

of the software based key-value caching mechanism onto the FPGA to provide low la-

tency access which is critical for web services. The FPGA based solution is to accelerate

Memcached [13] and provides performance benefits with advantage of tightly integrate

network, memory and compute onto one appliance. High performance FPGA solutions

come with higher cost as compared to traditional server infrastructure. Lavasani, et al.

[34] propose a hybrid architecture with FPGA based accelerator to process the network

packets and for speculative execution based on traces obtained from the profiling of the

application. When the speculation is wrong then the packet is forwarded to CPU for

processing.

MemcachedGPU [35] by Hetherington, et al. propose a GPU-based apparatus

for low latency and high throughput network processing. The solution is shown to ser-

vice line rates close to 10GbE conforming to the latency requirements of key-value store

applications. Exploiting the parallelism available on GPUs for accelerating key value

stores and hiding the latency is compelling but the reliance on CPU for I/O, high pro-

grammability and energy costs of GPU is restrictive. MegaKV [36] proposed by Zhang,

et al. also makes a case for GPUs to be used to accelerate the data and network I/O

intensive operations in key-value stores.

Tsai, et al. propose Jenga [37], a configurable memory hierarchy which can spe-

cialize itself to needs of the application and show significant improvements in EDP up

to 85%. The software defined hierarchies in Jenga are built using a simple hardware

mechanism to provide flexible hardware substrate and changes to the OS run-time to

configure the hierarchy. The technique is also shown to improve performance by elimi-
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nating unnecessary accesses due to rigid hierarchies.

2.4.3 Holistic optimization

Scale-Out NUMA [38] proposed by Daglis, et al. facilitates the interaction be-

tween application, OS and the networking infrastructure for distributed in-memory pro-

cessing with a new hardware remote memory controller architecture, communication

protocol and programming model. The enhancements are shown to improve the latency

and bandwidth performance of the remote data access by 5x while eliminating the ker-

nel, network and bus overloads.

MICA [39] proposes software centric improvements to Key-value store opera-

tions to provide high throughput rates. MICA explores the design choices to exploit

the parallelism in multi-core systems, reducing overhead of network stack and optimum

memory management for fast data access. MICA reports consistent performance across

different kinds of applications and one major drawback is for the optimization to be

carried out holistically else the performance degrades if there is a missing component.

Similarly Li, et al. [24] provide an insight into holistic software and hardware

optimization for achieving high speed key-value stores(KVS) and propose design prin-

ciples for full system architecture, widely used software such as key value stores in data

center services. This explores the design space to reduce the round trip delay while

achieving higher throughput by profiling the workloads and optimizing the network, I/O

subsystem and memory hierarchy.

The common thread in all the proposals has been to accelerate either the frame-

work or the underlying infrastructure or re-configuring the system based on the appli-

cation’s need. The major bottlenecks identified are the data transfer overheads between

storage, network and the compute. Most proposals overcome this by additional hard-

ware, through software optimization or using a completely different system architecture

with corresponding trade offs.



Chapter 3

Evaluation and Experimentation

The study of the big data workload characteristics shows that these workloads

benefit when the network, compute and memory work in close tandem with each other.

In this work we evaluate the benefits of DDIO using simple micro-benchmarks and net-

work I/O intensive big data benchmarks. We also explore the phases of the applications

where DDIO offers a real advantage and phases where DDIO is a disadvantage. With

such identified application characteristics, we can employ a dynamic model for enabling

and disabling DDIO. When the workload is known to be CPU intensive we can disable

DDIO as its primary operation is to improve I/O performance. However, when the work-

load is I/O intensive we can use the availability of DDIO in a more effective ways such

as increasing the cache allocation DDIO can use, cache ways DDIO can access and also

the levels of cache DDIO can source/sink data from/to. Similar efforts are made to use

caches and SRAM banks in a more efficient way based on the application’s behavior,

Jenga [37] and Jigsaw [40] are early such efforts to use memory hierarchy as a resource

rather than a rigid structure.

16
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3.1 Experiment Setup

Figure 3.1: Experimental setup

Our experimental setup consists of two dual-socket systems with Intel Xeon E5-

2697 v2 processors with specifications as shown in table 3.1. The processors include

an implementation of write-allocate write-update direct cache access (wuaDCA) also

known as Intel DDIO, and thus have the ability to transact network I/O from the last

level cache. Each system has DDR3 memory of size 128GB and 4 Intel X520-QDA1

network interface cards with four 10GbE ports on each. The two systems are connected

in simple loop-back mode as we are only concerned about the network I/O characteris-

tics at the producer/consumer ends. The software infrastructure is composed of CentOS

7.0 (kernel 3.10.0-123.8.1), Intel Data Plane Development kit 2.2.0 [41] and Intel Vtune

[42] for monitoring the hardware performance counters. Figure 3.1 is a pictorial repre-

sentation of the setup and table 3.2 outlines the details of the setup.

Table 3.1: Processor Configuration

Cores 12 Cores, 2.3 GHz, Haswell Architecture
Number of threads 2 per core (2-way hyper-threading)

Frequency 2.7 GHz (3.5 GHz Turbo)
L1 Cache/s 32KB, 8-way set associative I and D-caches per core
L2 Cache/s 256KB, 8-way set associative unified cache per core
L3 Cache/s 30MB, 20-way set associative unified cache
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Table 3.2: System Configuration

Sockets 2
NUMA-Domains 2
DRAM Memory 128GB

NIC 4 x Intel 4x10GbE NIC
Storage Local 1TB HDD

3.2 Micro-Benchmark

One of the micro-benchmark which we use here is a TCP/IP based server client

application which communicates over our loopback network. The first micro-benchmark

is a ping-pong application for exchanging the messages between the two systems, and

helps determine the end to end latency with and without DDIO. The first benchmark is

ran with smallest to largest payload size possible to determine the effect of data payload

size variations on the performance.

The second micro-benchmark is a streaming application, where data is contin-

uously streamed from one machine to another. The benchmark is used with different

stride access distances on the receiving end to evaluate if there is variance in perfor-

mance due to stride distances with and without DDIO.

The OS network stack can be a major bottleneck to utilize the available network

efficiently, and can mask the performance of DDIO. Hence we developed a DPDK [41]

based server client benchmark with similar functions as previous micro-benchmarks,

to overcome the overheads of using OS network stack. DPDK is used for fast packet

processing and can complete a packet send/receive cycle in less than 100 CPU cycles.

DPDK bypasses the linux kernel network stack using DPDK libraries and poll-mode

drivers which are in user space (Figure 3.2). The DPDK based benchmarks helped to

determine the performance of DDIO with respect its function and eliminates the over-

heads due to OS.

The micro-benchmarks are all profiled with Intel’s Vtune Amplifier which uses

hardware performance counters to track the metrics important for our experiments such

as: Instructions per cycle (IPC), Last level cache (LLC) misses and hits, Instructions
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committed and CPU utilization.

Since the experiments were carried out on a real machine and not in a controlled

simulation environment, we use LMBench to validate off the shelf latency and band-

width performance of the CPUs, NICs and other components in the experimental setup.

Figure 3.2: Linux TCP/IP vs DPDK packet processing paths

3.3 Cloudsuite data caching benchmark

The workloads that benefit maximum by using DDIO are those that consume

data arriving through network I/O, as soon as it arrives and have very low temporal lo-

cality. Real world applications that perform such network I/O intensive tasks include

financial trading, Key-value stores, streaming and graph processing engines operating

on large data-sets. In this work we use the data caching benchmark from the Cloud-

suite benchmark suite which simulates the Twitter data caching application using Twit-

ter data-set. The metrics of interests for our experiments are the latency of each request

and requests served per second with DDIO enabled and disabled.
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The benchmark consists of a memcached data caching server, simulated using

a scaled up Twitter data-set of size 10GB. The server can be configured to use any

number of threads, but the benchmark is known not to scale well beyond four threads.

The benchmark can use multiple NICs if available by assigning different IP addresses

and starting different server processes. On the client side, the client sends a key-value

pair request to the server and waits for the server’s key-value pair response for each

connection established. The client can send requests to multiple server or to same server

through multiple ports. The though-put and the metrics are measured on the client side.

The server is warmed up with target server memory, corresponding scaling factor

for data-set and number of client worker threads. All the other experiments are carried

out after the server warms up to a stable state.



Chapter 4

Results

We evaluated the performance characteristics with and without DDIO on the

setup and with benchmarks as described in chapter 3. The results of the experiments

performed are presented in this chapter.

4.1 Experiments with server client micro-benchmark

Figure 4.1 shows the LLC miss-rate of the data transfer using Linux kernel stack

for different payload sizes. Figure 4.2 shows the LLC miss-rate of data transfer with

DPDK framework for different payload sizes.

The difference in performance metrics across different data payload sizes with

DDIO and without DDIO cases shows that: with DDIO we can overcome the trips to

main memory, which is not possible otherwise without DDIO. There is a significant

difference in LLC miss-rate and the OS kernel stack version in Figure 4.1 shows a LLC

miss-rate of close 20% which is due to the OS kernel network stack overhead. In Figure

4.2 the LLC miss-rate is of the micro-benchmark based on DPDK, the graph shows the

LLC miss-rate is close to zero with DDIO enabled (DDIO-on), and with DDIO disabled

(DDIO-off) almost all the packets to be processed are missed at LLC.

21
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Figure 4.1: LLC miss rate with 1GB data transfer of micro-benchmark using linux kernel network stack

Figure 4.2: LLC miss rate with 1GB data transfer of micro-benchmark using DPDK libraries
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Figure 4.3: LLC miss rate of different stride accesses of micro-benchmark using Linux network stack

Figure 4.4: LLC miss rate of different stride accesses of micro-benchmark using DPDK libraries

Figure 4.3 and 4.4 show the behavior of stride access micro-benchmark. This

helps us evaluate if the DDIO performance is related to the use/reuse distance of the
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data arriving from the network. There are two versions one using Linux OS network

stack and other using DPDK libraries, and the corresponding behaviors with DDIO

enabled and disabled are depicted in the graphs in Figure 4.3 and 4.4 respectively. We

can see that the overhead due to OS network plays a prominent role in LLC behavior.

We can also see that the LLC miss rate increases when the stride distance increases, this

indicates that if the data arriving from the network is not used before its pushed out the

last level cache DDIO is not effective.

4.2 Experiments with Cloudsuite data-caching bench-

mark

The Data caching benchmark is network I/O intensive and requires high network

speeds. Our setup is not network bound as it is a loop back configuration with bandwidth

of 160Gbps. The data caching application is composed of a memcached data caching

server which simulates Twitter caching server, and multiple clients with data-set ranging

from 1-30GB. The metrics measured are the latency and the LLC miss-rate on the client

side for different requests per second(RPS) rate specified by the client to the server.

The first experiment had one server and one client application running on two

different hosts, and the application was simulated with a specified RPS rate for duration

of one minute and 100 iterations after server had warmed up. Figure 4.5 shows the

average latency and average miss-rate for different RPS values with DDIO enabled and

Figure 4.6 shows the behaviour of same experiment with DDIO disabled.
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Figure 4.5: Latency and miss rate vs RPS on client side with DDIO enabled with Cloudsuite data caching
benchmark

Figure 4.6: Latency and miss rate vs RPS on client side with DDIO disabled with Cloudsuite data caching
benchmark

Figure 4.7 shows the miss rate and Figure 4.8 shows the latency for different

RPS rates of the data caching server client with DDIO disabled and DDIO enabled. This
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shows the difference in miss rate at lower RPS rates with DDIO disabled and enabled is

not very significant, and the latency of the requests being served is almost similar. At

higher RPS rates the performance of the benchmark with DDIO enabled is worse than

of the DDIO disabled version, this is because of the older responses being replaced by

newer responses before the client could use it, increasing the last level cache misses and

in turn the latency. The data-caching benchmark uses the Linux kernel stack and the

TCP/IP packet reconstruction could also interfere with the LLC behavior.

Figure 4.7: Miss rate of Cloudsuite data caching benchmark with single server client with DDIO enabled
and disabled
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Figure 4.8: Latency of Cloudsuite data caching benchmark with single server client with DDIO enabled
and disabled

When the Latency for DDIO enabled and disabled scenarios are plotted it shows

a clear difference of DDIO enabled performance degrading at RPS rates lower than the

that of the DDIO disabled case, but at lower RPS rates system’s performance is similar

in both DDIO enabled and disabled scenarios. This shows that there is a case for DDIO

to be disabled in certain cases, for this benchmark it can be disabled with no loss in

performance at lower RPS rates, and can also obtain better performance with DDIO

disabled at higher RPS rates.

Similar behavior can be seen when there are multiple client and server processes

running in Figure 4.9 where the performance with DDIO enabled is lower than when its

disabled.
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Figure 4.9: Latency vs RPS of Data caching benchmark of Cloudsuite with multiple server-client pro-
cesses

The degradation in performance at high speed communication is because the

limited LLC allocation for DDIO cannot hold all the associated RX/TX queues and

data buffers. When the new packets arrive the LLC evictions causes memory traffic to

increase.



Chapter 5

Conclusion and Future Directions

5.1 Conclusion

The number of cloud based applications is continuously rising, and researchers

are propounding new techniques to accelerate these applications. In this thesis, we nav-

igated through a different path of evaluating whether existing features are being used

effectively. We evaluated the effectiveness of DDIO in context of big data applications

which are deployed in the cloud. DDIO is useful when there is a strong producer con-

sumer relation between the source and the destination of data. With high speed network

and high rate of network bound data to be processed, we have shown that DDIO can

cause the performance to degrade because incoming data into cache will push out un-

processed data from cache. This thrashing of cache increases the memory traffic and in

turn negates the performance gained with DCA.

Disabling and enabling of DCA is an unique feature in our setup and used in

our experiments, which can be used to avoid performance degradation caused due to

DCA (enabled by default) by statically enabling/disabling DCA. We used a set of micro-

benchmarks and Cloudsuite’s data caching benchmark to identify, and validate the sce-

narios where we lose performance due to DCA. From the results, we observe that there

is scope for DCA to be used dynamically based on the kind of application and its char-

acteristics. The usage may not be limited to just being disabled or enabled, but can also

be extended to overcome the fixed resource allocation to DCA by making it dynamic on

need basis.
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5.2 Future Directions

In order to evaluate the dynamic model of DCA, we have to use a simulation

environment with necessary changes to support it. With DCA as an example the next

step will be to evaluate the implications on overall system design and performance of

dynamically managing the micro-architectural features, and the trade-offs involved. The

targeted domain of big data applications in this thesis is one of the largest occupants of

data center infrastructure.

The behavior of DCA being dependant on the kind of software stacks used, de-

veloping benchmarks with least overheads is essential. As DCA is closely tied to cache

hierarchy, dynamically enabling and disabling it can have implications on the system

energy-delay product. The results of our evaluation serve as good starting point for

studying the trade-offs in terms of power consumption.

The other facet is to explore the support in OS runtime and other management

frameworks for a dynamic model of configuring architectural features. We briefly de-

scribe the architecture of YARN, and how it could be used but it needs more in depth

analysis. The changes to be made in the hardware design also needs to be explored.

The observations pave way for exploring other micro-architectural features which

can be used more effectively based on the workloads running on the infrastructure.
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