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Abstract 

The convective diffusion equation for a limiting reactant 

with a large Peclet number has been solved for the asymptotic 

Sherwood number in a periodically constricted tube (PCT). The analysis 

yields a Graetz-like eigenvalue problem which is valid for any 

arbitrarily shaped PCT. Calculations have been made for an effective 

Sherwood number for creeping flow in a packed bed modeled as an 

array of sinusoidal PCT. The results depend upon two ratios of 

period length, average radius, and sinusoidal amplitude. 
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Scope 

Recently, Payatakes et al. (l973a,b) have introduced a new 

model for the flow channels in a packed bed. These authors consider 

the bed to consist of an array of periodically constricted tubes. 

This is a higher order approximation to the true nature of the 

flow in a bed than that of the straight tube capillary model. In 

part I of this series we have shown how to calculate the velocity 

profiles in any periodic~ piecewise continuous peT. These velocity 

profiles can be used in solving the convective diffusion 

equation. 

In the limit of high Peclet number, diffusion becomes negligible 

in the streamwise direction,' and for the deep sections of the bed 

the Sherwood number becomes the same in successive periods. These 

two conditions enable us to pose a Graetz-like eigenvalue problem 

for the asymptotic Sherwood number of a limiting reactant. Since 
, 

the asymptotic Sherwood number is always smaller than that of the 

entry region, a lower limit of performance of the bed can be 

expected ~ priori. 

Conclusions and Significance 

At a high Peclet number and in the fully developed mass-transfer 

region, the convective diffusion equation for a limiting reactant 

in a PCT can be solved by a Graetz-like eigenvalue problem. This 

technique is valid for laminar flow il1 any piecewise continuous PCT. 

Results are presented in figure 5 for the Sherwood number of a 

packed bed modeled as an array of sinusoidal PCT. The creeping-flow 
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velocity profiles calculated in part I have been assumed to be 

applicable. The results are correlated by the two dimensionless 

geometry parameters r A and A/r
A 

(figure 2). The bed Sherwood 

number exhibits different behavior in the amplitude ratio A/r
A 

for small and large values of average radius r
A

. For long skinny 

tubes (small r A) the Sherwood number increases with A/rA, whereas 

for larger r A this trend reverses itself. 

Introduction 

The flow channels in a randomly packed bed defy an analytical 

expression. To predict ~ priori the transfer rates across a bed, it 

then becomes necessary to resort to empirical correlations or, 

alternatively, to a microscopic model for the flow channels. The 

appropriate rate equations can be solved within the framework of the 

model to predict the performance of a bed. Payatakes et al. (l973a,b) 

have advapced a new model for the flow channels in a packed bed. 

These workers suggest that the bed can be considered as an array of 

periodically constricted tubes. 

In part I of this series we have shown how to calculate the 

creeping-flow velocity profiles for any continuous PCT. The purpose 

of this paper is to calculate the asymptotic Sherwood number for a 

mass-transfer-limited reactant in a packed bed modeled as an array 

of sinusoidal PCT. The reactant Peclet number is assumed to be lar·ge, and 

the creeping-flow velocity profile is assumed applicable. 
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For a deep bed, the effective mass-transfer coefficient becomes 

independent of the velocity. This is in contrast to the entry region 

where the transfer rate is proportional to the approach velocity to 

the 1/3 power. The entry region has an effective transfer coefficient 

larger than that for the deeper sections of the bed. Calculating 

the deep-bed asymptotic Sherwood number thus gives a lower limit to 

the expected behavior. The horizontal line of figure 1 shows the 

nature of this Sherwood number. The dashed lines indicate entry­

region coefficients for two different sized beds. The left and 

right hand sides indicate schematically regions where axial diffusion 

and turbulent convection,respectively,become important. 

No experimental correlations for packed beds have shown the 

mass-transfer rate to be independent of velocity. The Wilson and 

Geankopolis (1966) correlation is typical, Newman and Tiedemann (1976) 

discuss in detail possible explanations for this behavior. 

S!6renson and Stewart (1974) have solved the creeping~flow 

hydrodynamics and the convective diffusion equation in an array of 

simple cubic packed spheres for an arbitrary Pee let number. Their 

results are an aid in predicting the behavior through a randomly 

packed bed. Also of relevance is the work of Young and Finlayson (1976). 

They present a collocation technique to calculate'the asymptotic 

Sherwood number for an arbitrarily shaped, constant cross section 

duct. Sherwood numbers for various geometries and wall boundary 

conditions have been compiled by Shah and London (1971). 
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. Convective Diffusion Equation at High Peclet Numbers 

The bed is modeled as an array of sinusoidal PCT (figure 2). 

As shown in part I, the average velocity at the length averaged 

radius through each tube is related to the superficial approach 

velocity v 
s 

as 

v 
S 

£ 
(1) 

The convective diffusion equation need be solved in only one period 

due to the assumed homogeneity and periodicity of the structure. 

The dimensionless, steady-state convective diffusion equation 

for a limiting reactant can be written in generalized vector notation 

as 

v-VC 
2rA 2 
-V C 
Pe 

(2) 

This equation is to be solved in the far downstream region of a PCT 

for the asymptotic solution as Pe -+ 00. Solving this equation in a 

straight tube after neglecting diffusion in the axial direction 

results in the well-known Graetz solution. At high Pe it is also 

valid to neglect diffusion parallel to the streamwise velocity in a 

PCT. 

It is convenient to solve equation 2 in a transformed 

coordinate system (~,~,e) (figure 3). The ~ coordinate is 

constant along streamlines and is found directly from the stream 

function. The E, direction is parallel to the streamwise velocity 
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at all positions and is scaled such that ~ = 0 at the beginning of 

c 
a period and ~= I at the end. It is defined implicitly by (V~)· 

(V~) = o. The angular coordinate e has its usual meaning. In this 

coordinate system, diffusion will be important in the ~ direction 

and negligible in the ~ direction, at high Peclet numbers. 

With neglect of diffusion in the ~ direction, equation 2 can 

be written as 

Explicit forms for two of the metric factors san be determined. By 

inspection he = r Since 'the stream function represents the amount 

of fluid flowing in a stream tube bet~een a point and the axis, 

(4) 

after appropriate normalization. It follows that the metric factor 

h~ is related to the streamwise velocity v~ : 

(5) 

Equation 3 now becomes 

(6) 
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which applies to any PCT. 

Unfortunately, equation 6 cannot be solved by a separation of 

variables technique. One can, however, formulate a perturbation 

solution to equation 6 in the deep region of the bed where the entrance 

effects have been damped. Equation 6 suggests as a.first approximation 

that 

ac 
~= 0 (7) 

at large Pe. This would imply that the concentration is a function 

of ~ only and is constant along a streamline. Any function of ~ 

will suffice. The first order term in the perturbation solution 

should then be a function only of ~. The second order term will 

then be a diffusive correction function to take into account that 

the concentration must also be changing in the ~ direction. Assume 

a solution of the form 

(8) 

Substitution of equation 8 into equation 6 yields 

(9) 

after neglect of the diffusive term in C2 • 

In the far downstr.eam region of a PCT, the fractional decrease 

of concentration through each period must be the same, that is 
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C(l/J,~ + 1) (10) 

(11) 

. Equatign 9 can now be integrated from ~ = 0 to ~ = 1 , to obtain 

a Sturm-LioUVille eigenvalue problem for the function C
1

(l/J) 

d 
dl/J 

1 

. G(l/J) = f (r/r A)2v~h~d~ 
o 

(12) 

(13) 

(14) 

The integral in equation 13 is carried out over the arc length for 

a constant value of l/J in the integrand. The second identification 

of A to SJl. in equation 14 is possible since Pe -+ 00 • 

~quation 12 is to be solved subject to the conditions 

C1 (0) = 1 

C1 (1) = 0 

-A/G' (0) 

Condition (i) is a norrilalization for the first order solution. 

(15i) 

(15H) 

(15iH) 

Condition (ii) satisfies the limiting reactant constraint of a zero 
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wall concentration. Condition (iii) results from the finite 

concentration on the centerline. 

The first eigenvalue of equation 12 can be related to the 

effective Sherwood number for a deep porous bed which is modeled as 

an array of PCT. A macroscopic mass balance on the reactant over 

the length of the period can be written in terms of an effective 

mass-transfer coefficient k (Newman and Tiedemann, 1976; Bennion 
m 

and Newman, 1972). The B in equation 11 can then be related to 

this coefficient as 

B k a/v . m s 
(16) 

With equation 16 and 14, the Sherwood number for a limiting reactant 

in a deep bed with creeping flow and high Peclet number can be 

written as 

(17) 

Equations 17 and 12 are the main resul~of this paper. By means 

of the perturbation approach, we have demonstrated how the two-

dimensional convective-diffusion equation in a PCT can be reduced to 

a Graetz-like eigenvalue problem at high Pec1et numbers. The first 
J 

eigenvalue of this problem is simply related to the bed Sherwood 

number as given in equation 17. 
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The eigenfunction Cl(~) generated by the perturbation analysis 

is a first order approximation to the concentration distribution. 

It identically satisfies equation 7, and gives the correct integral 

properties to the correction function C2(~'~) The local transfer 

rate to the wall can be found by differentiation of this profile 

with respect to the normal distance from the wall. Aft~r a change 

in coordinate system (see next section), the analysis yields 

~I dn 
w 

j __ B (_z_) _r w_(_z_)dC 11 

2rA dp p=l 
(18) 

where 

B(z) ~I· dn w 

The local wall flux is thus proportional to the square root of the 

local shear rate. The integral of equation 18 over the surface area 

of a period is related to the eigenvalue. 

The left side of equation 17 depends upon the macroscopic 

bed quantities a and €. The right side is a function of PCT 

geometry and flow regime through A. The eigenvalues of equation 12 

are independent of the Peclet number in creeping flow. Thus, irrespective 

of curvature effects, the asymptotic Sherwood number is a constant 

independent of the Peclet number for a deep bed. 
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Method of Solution 

The eigenvalue problem as posed in equations 12 thru 15 is 

ill suited numerically to the 1jJ coordinate. Equation 12 has two 

singular points, one at 1jJ = 0 , the other at 1jJ = 1. The singularity 

at 1jJ = 0 presents no problems; however that at 1jJ = 1 does. An 

analysis of equation 12 near the point 1jJ = 1 indicates that the 

first derivative of Cl approaches infinity. A change in coordinate 

will eliminate this singularity. Define a length-like transformation 

variable p as 

4 
p 

Equation 12 and its boundary conditions then transform as 

(de) 2 ~ G(p(p» _1. + 4AP (1 P )Cl 
0 

dp 4p (l_p2) dp 

Cl (p 0) 1 

Cl(p 1) 0 

d 
dp Cl(p 0) o . 

Equations 20 and 21 were solved by the method suggested by Newman 

(1973) for eigenvalue problems. 

All calculations were done on a CDC 7600 computer. Further 

details of the analysis and numerical programs have been compiled 

by Fedkiw. 

(19) 

(20) 

(21i) 

(2lii) 

(2liii) 
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Results and Discussion 

The analysis presented in this work can be used to calculate 

the high Peclet number asymptotic Sherwood number for any continuous, 

periodic tube. Only the stream function need be known. Calculated 

results are presented for the sinusoidal PCT of figure 2 in creeping 

flow. Toe results are a function of the two dimensionless geometry 

parameters r A and A/rA • 

Figure 4 presents the first eigenvalue of equation 12 normalized 

with respect to the first eigenvalue of the straight-tube Graetz 

problem (~G = 0.91419) ~ 

Figure 5 presents the Sherwood number for a packed bed modeled 

as an array of sinusoidal PCT. The concentration drop across the 

bed can be written as 

aLB 6 
ShB -E--P e B 

(21) 

Figure 4 shows a monotonic behavior of the eigenvalues with r
A 

and A/rA . However, the bed Sherwood number shows different trends 

for small and large r A . For small r A , ShB increases with A/rA , 

whereas for larger r A this trend reverses itself. This effect is 

caused by the geometrical term in equation 17. 

The quantity 2Ela in equation 17 is the standard definition 

for the equivalent radius of the bed. This defines the bed in terms 

of a straight cylinder network of radius 

surface area to empty volume ratio. The 

r d having the same eq, _ 

quantity r!d {1 + 1/2 (A/r A) 2] 
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in the denomenator of equation 17 defines another equivalent radius 

rd. This is the radius of a straight cylinder network through eq, 

wbich the average velocity is given by 

PCT (small r A), the ratio 

vIE. s For long skinny 

is greater than one and 

increases with A/rA • Thus for a bed composed of these tubes, the 

Sherwood number increases as A/rA is increased. However, as r A 

becomes larger the ratio (r· /r )2 becomes less than one eq eq 

and ShB decreases with A/rA • 

For most beds r A will be bounded approximately by 0.3 < r A < 0.5 

while the A/rA ratio will be in the ran~e 0.2 < A/r A < 0.5 , perhaps 

close to 0.33. Payatakes et ale report these parameters for a 

randomly packed bed of glass spheres as r A = 0.3 , A/rA = 0.36 , 

and for a bed of sand as r A = 0.31 , A/rA = 0.41 • 

S~renson and Stewart (1974) have calculated the asymptotic 

value of the Sherwood number in a simple cubic packed bed of uniform 

sized spheres. Their results yield ShB = 0.619. This information 

can be used in conjunction with the friction factor, Reynolds number 

product calculated by these same authors. This suggests that the 

PCT parameters for a simple cubic packing of spheres are r A ~ 0.5 

and A/rA ~ 0.33 • We expect this r A value to be an upper 

limit for uniform spheres since the simple cubic packing has the 

highest porosity of all sphere packing configurations. 
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Notation 

-1 specific interfacial area of bed, cm 

dimensionless wall oscillation amplitude, A~t 

3 concentration of limiting reactant entering bed, mole/cm 

3 concentration of limiting reactant leaving bed, mole/cm 

dimensionless reactant concentration, (Cd -cC~Cb - Co) 

2 ' 
diffusion coefficient of reactant, cm /sec 

G function of 1jJ defined by equation 13 

h1jJ,h~,he dimensionless metric factors 

k effective mass transfer coefficient of a bed, cm/sec 
m 

length of bed, cm 

length of PCT period, cm 

Pe reactant Peclet number in a PCT, 2rAd<vAd>/D 

PeB bed Peclet number, 6v laD s 

r dimensionless radial coordinate, rd/t 

r A dimensionless average PCT radius, rAd/t 

r dimesnionless wall radius, rwd/t w 

r eq,d equivalent radius, 2E/a 

rAd VI -r eq,d equivalent radius, 

bed Reynolds number, 6v fa\) s 

+ 
' 2 

1/2 (A/rA) 

bed Sherwood number, Ekm/aD 

superficial approach velocity, cm/sec 

<vAd> average velocity in a tube of constant 'radius r Ad , cm/sec 

v~ dimensionless streamwise velocity, v~d/<vAd> 

z dimensionless axial coordinate, zd/t 
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Greek 

e: 

v 

p 

e 

-1 
constant defined by equation 10, cm 

bed porosity 

2 kinematic viscosity, em /sec 

streamwise coordinate 

transformation coordinate of equation 17 

polar coordinate 

eigenvalue of equation 12 

2 
dimensionless normalized stream function, -2$d/rAd~vAd> 

Subscripts 

d dimensional quantity 

b bulk 

Acknowledgment 
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Figure 5. Sherwood number for a packed bed modeled as an array of PCT. 
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