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Abstract

The convective diffusion equation for a limiting reactant
with a large Péclet number has been solved for the asymptotic
Sherwood number iﬁ a'periodically constrictéd tube (PCT). The analysis
yields a.Graetz—like eigenvalué problem which is valid for any
arbitrarily shaped PCT. Calculations have been made for an effec;ive
Sherwood number for creeping flow in a packed bed modeled as an
array of éinusoidal PCT. The results depend upon two rétios of

period length, average radius, and sinusoidal amplitude.
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- Scope

= Recenfly, Payatakes et al. (1973a,b) have introduced a new
model for the flow channels in a packed bed. Thése authors consider
‘the bed to consiét of an array of periodically constricted tubes;
This is a higher ordet approximafion to the true natufe of the
flow in a bed than thét of the straight tube capillary model. In
. part I of this éeries we have shown how. to calculate thg velocity
profiles in any_periqdic; pieécewise continuous PCT. These velocity
profiles cén: .bé used in éolving the.convectiQe diffusion
equation.

'Iﬁ the limit of high Péclet number, diffusion becomes negligible
in the streamwise difection; and for the deep sections of the bed
the Sherwood number Becomes the same in.successive periods. These
two conditions enable us to pose a Graeté—liké‘eigenvalue problem
for the asymﬁtbtic Sherwood number of a limiting reéctant.' Since

the asymptotic Sherwood ﬁuﬁberﬂis always émaller than tﬁaﬁ of tﬁe
entry region, a lower limit of performancé‘of the bed can‘be

expected g_ériori.

Conclusions_#nd Significance
At a high Péglet number and in the fully developed'mass;traﬁsfer
region, the éoﬁyéctive diffusion equafion foi éAlimiting reactant‘
in a PCT can be'sqived by a Graetzéiike eigenvalue problem. This
‘technique is valid fér laminar flow in any plecewise éoﬁtiﬂuoué PCT.
Results are presented 1n.figure 5 for the,Shérwood number of a

packed bed modeled as an array of sinusoidal PCT. The creepingéflgw



velocity profiles calculated in part I have been assumed to be
applicable. The results are correlated by the two dimensionless

geometry parameters r, and A/rA (figure 2). The bed Sherwood

A
number exhibits different behavior in the amplitude ratio A/rA

for small and large values of average radius r, . For long skinny

A

tubes (small rA) the Sherwood number increases with A/r, , whereas

A’

for larger T, this trend reverses itself.
Introduction

The flow channels iﬁ a randomly packed bed defy an analytical
expression. To predict a priori the transfer rates acrésé.a bed, it
then becomes necessary to resort to empirical correlations or,
alternatively,'to a microscopic model for the flow channels. The
appropriate rate equations can be solved within fhe framework of the
model to predict the performance of a bed. Payatakes et al. (1973a,b)
héve advanced a new model for the flow channels in a packed bed.
These workers suggest that the bed can bevconsidered as an érray of
periodically comstricted tubes.

In part I of this series we have shown how to éalculate the
creeping-flow Qelocity profiles for any céﬁtinuous PCT. The purpose
of this paper is to calculate the asymptotic Sherwood number for a
mass—transfer—limited reactanf in a packed bed modeled as an array
of sinusoidal.PCT. The reactant Péclet number is assumed to be large, ana

the creeping-flow Qelocity profile is assumed applicable.



For a deeﬁ_Bed, the effective mass~transfer coefficient becomes
independent of the_velocity. This is in contrast to the entry region
where the transfer rate is proportional to the approach velocity to
the 1/3 power. The‘entry region has an effective transfer coefficient
larger than that for the deeper sections of the bed. Calculating

. the deep—bed'aSymppbtic Sherwood number thus gives a lower limit to
the expecée& behavibf; The horizontal line of figufe 1 shows the
nature of this Sherwood numbér. The dashed lines indicate entry-
régidn coefficients for two diffgrent sized beds. "The left and
right hand sides indicate scheméfically regions where axial diffusion
and turbulent convection,respectively ,become important. |

No exﬁerimental'correlati§ns for packed beds have shown the
mass—transfer rate‘to be independent of velocity. The Wilson and
Céankoﬁolis (1966) correlation is typical. Newman and Tiedemann (1976)
discuss.in detail possible explanations for this behavior.

Sgrenson and Stewart (1974) have solved the creeping-flow
hydrodynamics and the convective diffusion equation in an array bf»
simple cubic packed spheres for aﬁ arbitrary Péclet number. Their
results are an aid iﬁ predictiﬁg the beﬁavior through a randomly
packed bed. Also of rele?ance is the work of Young and Finlayson (1976).
They present a collocatioﬁ technique to calculate the asymptotic
,Sherwood number for an arbifrarily shaped, constant cross section
duct. Sherwood numbers.for vario;s geometries and wall.boundéry

’

conditions have been compiled by Shah and London (1971).



- Convective Diffusion'Equation at High Péclet Numbers
The bed is modeled as an array of sinusoidal PCT (figure 2).
As shown in part I, the average velocity at the length averaged-
_radius through each tube is related to the superficial approach

velocity v, as

v : '
Vag =-2§ [} +-% (A/rA)z] . (1)

The convective diffusion equation need be solved in only one period
due to the assumed homogeneity and periodicity of the structure.

The dimensionless, steady-state convective diffusion equation
for a'limiting reactant caﬁ be written in generalized vector notation

as

veVC = — V°C . | 2)

This equation is to be sélved in the fér downstream region of a PCT
for the asymptotic solution as Pe > o . Solving this equation in a
straight tube after'neglecting diffusion in the axial direction
results in thé.well—known Graetz solution; At high Pe it is also
vélid to negléct diffusion parallei to the streamwise velocity in a
PCT.

It is convenient to solve equation 2 in a transformed
coordinate system (Y,£,0) (figure 3). The ¥ coordinate is
constant along streamlines and is foﬁnd directly from the stream

function. The & ldirection is parallel to the streamwise velocity
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at all positions qnd is scaled su;h thét £ = 0 at the beginning of
a period and '£ = 1 at the end. It is defined implicitly by (VW);
(VE) = 0 . The angular coordinate 8 has its usual meaning. In this
coordinate system, diffusion)will_be important ;n the Y direction
and negligible in tﬁe g directioh, at high Péclet numbers.

With neglect of diffusion in thé £ direction, equation 2 can

be written as

Ve 3¢ r, e Be 3¢ 3)
B % Pe hehwhg aw , W

Explicit forms for two of the metric factbrs qah be determined. By

inspection h, =71 . Since the stream function'fepresents the amount

)

of fluid flowing in a stream tube between a point and the axis,

v .
=%f rhdy W)
A0 .

after appropriate normalization. It follows that the metric factor

h, 1is related to the streamwise velocity vg :

v
r2 :
_ A1 : y
hw.— E;.;E . | (5)
Equation 3 now becomes
3¢ 8 3
3~ r,Pe 3y ((r/ Y "ahe; aw) ®



"which applies to any PCT.

Unfortunately,equation 6 cannot be solved by a separation of
variables technique. One can, however, formulate a perturbation
solution to equation 6 in the deep region of the bed where the entrance
effects have been damped. Equation 6 suggests as a.first approximation

that

(7

o)lo)

taatle]
]
o

at large Pe . This would imply that the conceﬁtration is a function
of P only and is constant along a streamline. .Any functioh of
will suffice. The first order term in the perturbation solution
sﬁouldvthen be a function only of { . The second order term will
then be a diffusive correction function to take into account that

thé concentration must also be changing in the £ direction. Assume

a solution of the form
COWLE) = C ) + C,W,E) - ®

Substitution of equation 8 into equation 6 yields

aC

ac
2.8 @ 2 1
3~ T,Pe o) ((r/rA) Vel 59 ) 9)

after neglect of the diffusive term in C2 .
In the far downstream region of a PCT, the fractional decrease

of concentration through each period must be the same, that is



£,

LI 9040025009

CW,E + 1) = Cy,E)e X o)

where f 1is independent of position. If we set 'Cz(w,O) =0,

this means that C2 and Cl are related:

o, @0 = e -1y . . av

"Equation 9 can now be integrated from £ =0 to & =1, to obtain

a Sturm-Liouville eigenvalue problem for the function Cl(w) .

d ¢, |
E'u'; (G(\D) Eu')—-) + )\'Cl = 0 12)
G =.l.(r/rA)2v£h dE (13)

r Pe r Pe
R (14)

The integral in equation 13 is carried out over the arc length for
a constant value of Yy 1in the integrand. The second identification
of XA to BL in equation 14 is possible since Pe » « .

Equation 12 is to be so1véd subject to the conditions

¢ =1 - (151)

c (1) =0 (1511)
Ci(0) = -A/G'(0) . (15141)

Condition (i) is a normalizatibn for the first order solution.

Condition (ii) satisfies the limiting reactant constraint of a zero



wall concentration. Condition (iii) results from the finite
concentration 6n the centerline.

The first eigenvalue of equation 12 can be related to the
effective Sherwood number for a deep porous bed which is modeled as
an array‘of PCT. A macroscopic mass balance on the reactant over
the length of the period can be written in terms of an effective
mass-transfer coefficieﬁt km‘ (Newman and Tiedemann, 1976; Bennion
and Newman, 1972). The B' in equatioﬁ 11 can then be related to.

this coefficient as

B=1k_alv . | (16)

With equation 16 and 14, the Sherwood number for a limiting reactant
in a deep bed with creeping flow and high Péclet number can be
written as

k o 2

Lo 2€

D . 2

arAd\/& + 1/2(A/rA)

Sh

(17)

0
w o

Equations 17 and 12 afe the main results of this paper. By means
of the perturbation approach, we have demonstrated how the two-
dimensional convective-diffusion equation in a PCT can be reduced to
a Graetz—%ike eigenvalue problem at high Péciet numbers. - The first
eigenvalue of this problem is simply related to the bed Sherwood

number as given in equation 17.



The eigenfunction Cl(w) geherated by tﬁe perturbation analysis
is a first order approximation to the concentration distribution.
It identicaliy satisfies equation 7, and gives the correct integral
properties to thé correction function cz(w,g) . The local transfer
raté)to the wall can be found by differentiationvof this profile

with respect to the normal distance from the wall. After a change

in coordinate system (see next section), the analysis yields

ac L B(z)rw(z) dC1 18
an w 2rA | dp o=1
where
©oov
_
B(z) on

The local wall flux is thus proportional to the square root of the
local shear rate. The integrél of equation 18 over the surface area
of a périod.is related to the eigenvélue.b
The left side of equation 17 depends uﬁbn the macroscopic
bed quantities a :and € ; The right side is a function of PCT
geometry and flow regime through X . The eigenvélues'of equation 12
are independent of the Péclet number in.creeping flow. Thus, irrespective
of curvature effects, the asymptotic Sherwood number is a constant

-independent of the Péclet humber for a deep bed.
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| Method of Solﬁtion
The eigenvalué problem as posed in equations 12 thru 15 is
111 suited numerically to the Y coordinate. Equation 12 has two
singular points, one at. Y = 0 , the other at Y =1 . The singularity
at Y =0 preseﬁts no problems; however that at Y = 1 does. An
analysis Qf eqﬁation 12 near the poiﬁt Y = 1 indicates that the
first derivative éf Cl apprbaches infinity. A change in coordinate

will eliminate this singularity. Define a length-like transformation

variablé p as

p=20"-p%. a9

Equation 12 and its boundary conditions then transform as

’ 4c |
460 1) 4 4o - p%)e, = 0 (20)
dp(;o<14p2> a0 ) ot '

Ci(p=0) =1 ()
¢,(p=1) =0 (2111)
L o-0-0 S (2L4d)
dp "1 : ' ,

Equations 20 and 21 were solved by the method suggested bbeewman
(1973) for eigenvalue problems.

All calculations were done on a CDC 7600‘computer.'_Further E
details’of the analyéis and numerical progfams have been compiled

by Fedkiw.
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Results and Discussion
The analysis presented in this work can be used to cal;ulate
the high Péclet number asymptotic Sherwood number for any continuous,
periodic tube. Only the stream function need be known. Calculated
results are presented for the sinusoidal PCT of figure 2 in creeping
flow. Thevfesults are a function of the two dimensionless geometry

parameters r, and A/rAf.

A
| Figure 4 presents the firét eigeqvalue of equation 12 normalized
with respect to the first éigenvalue of the straight~tube Graetz
.problem (AG = 0.91419) .
Figure 5 presents the Sherwood number for a packed bed modeled

‘as an array of sinusoidal PCT. The concentration drop across the

bed can be written as

=

6
Pe

1n CO/FL = Sh —E*———; . ‘ (21)

Figure 4 shows a monotonic behavior of the eigenvalues with r,
and A/fA . However, the bed Sherwood number shows different trends

For smali

for small and lafge_ r Sh, 1increases with A/rA',

A Tpa » °0p

whereas for larger r this trend reverses itself. This effect is

A
caused by the geometrical ferm in equation 17.

| - The quantity ‘Ze/a " in equation l7Iis the standard definition
for the equivalent radius of the bed. Ihis‘defines the bed in terms
of a stréight cyliﬂder network of radius req,d ;héving the same

surface area to empty volume ratio. The quantity rid[l + 1/2(A/rA)2] -
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in the denomenator of equation 17 defines another equivalent radius
Eeq,d . This is the radius of a straight cylinder network through
which the average velocity is given by vs/e . For long skinny
PCT (small r,), the ratio (req/'feq)2 is gfeater than one and
increases with A/rA-. Thus for a bed compoéed of these tubes, the
‘SherWQOd-hﬁmber increases as A/rA is incfeased. However, as rA
becomes larger ' the ratio (red/}eq)z becomes less than one
and Shy decreases with A/rA .

| For most beds r, will be bounded appréxiﬁately by 0.3 < T, < 0.5
while the A/rA ratio will be in the range 0}2 < A/rA < 0.5 , perhaps
close to 0.33. Payatakes et al. report thesé;parameters for a
randomly packed bed of glass'spheres.as r, = 0.3, A/rA = 0.36 ,

A
Sgrenson and Stewart (1974) have calculated the asymptotic

and for a bed of sand as r, = 0.31 , A/r, = 0.41 .

value of the Sherwood number in a simple cubic éacked bed of uniform
sized sphéres. Their results yield ShB = 0.619 . This information
can be used in conjunction with the friction féctor, Reynolds number
product calculated by these same authors. This suggests that the
PCT parameters for a simple cubic packing of spheres are r, = 0.5
and A/rA ~ 0.33 . We expect this r, vvalue to be an upper
limit for uniform spheres since the simple cubic packing has the

‘highest porosity of all sphere packing configurationms.
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Notation
a specific interfacial area of bed, cm.—1
A dimensionlesé wa}l oscillation amplitudg?FAd/Q
c concentration of limiting reactant enteriﬁg bed, mole/cm
concentration of limiting reactant leaving bed, mole/cm
c dimensionless reactant concentratiop,(Cd 4P§ampb - Co)
D diffusion coefficignt of reactant, cmz/séc :
G function of Y defined by equation 13 |
hw,hg,he d;mensionless metric factors
km effective mass transfer coeffiéient of a bed, cm/sec
LB length of bed, cm
L length:of PCT period; cm
Pe reactant Péclet ngmber in a PCT, ZrAd<§Ad?/D
Pe, bed Péclet number, 6vs/aD o
r dimensionless radial coordinate, rd/Z
dimensionless average PCT radius, rAd/R

T dimesnionless wall radius, rwd/zk

Teq,d equivalent radius, 2c/a

b3

eq,d equivalent radius, Tad 1+ 1/2(A/FA)

Rey ‘bed Reynolds number, 6vs/av
Shy bed Sherwood number, €k /aD
vy superficial approach velocity, cm/sec

Ad

>
Ve dimensionless streamwise velocity, ng/<VAd

<v, .> ‘average velocity in a tube of constant radius LIVE cm/sec

z dimensionless axial coordinate, z&/l
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Greek -
B constant defined by equation 10, cm t
€ bed porosity

\Y kinematic viscosity, cm2/sec

streamwise coordinate

wm

transformation coordinate of equation 17
polar coordinate

eigenvélué of equation 12

< » o© v

dimensionless normalized stream function, —de/r§d<vAd>

Subscripts
d dimensional quantity

b bulk
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Greek
B constant defined by equation 10, cm-l
€ bed porosity
\Y kinematic viscosity, cm2/sec
3 streamwise coordinate
p transformation coordinate of equation 17
8 polar coordinate
A eigenvalue of equation 12
. oo 2

. . _ S
Y dimensionless normalized stream function, de/rAd<vAd
Subscripts
d dimensional quantity
b bulk
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Figure 2. The wall of a PCT generated by rw(z)‘= r, - A cos (2mz)

All lengths are dimensionless with respect to the period
length £ . ‘
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Figure 4. Eigenvélues for the mass transfer problem in a
PCT normalized with respect to the Graetz problem.
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Figure 5. Sherwood number for-a'p?cked bed modeled as an array of PCT.
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