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Abstract

We construct T-duality on K3 surfaces. The T-duality exchanges a 4-brane

R-R charge and a O-brane R-R charge. We study the action of the T-duality on

the moduli space of O-branes located at points of K3 and 4-branes wrapping

it. We apply the construction to F-theory compactified on a Calabi-Yau 4-fold

and study the duality of N = 2 SU(Nc) gauge theories in four dimensions.

We discuss the generalization to the N = 1 duality scenario.



1 Introduction

The string interpretation of the duality between four dimensional N = 1 supersym­

metric gauge theories has been studied recently [1-4]. It has been suggested in [1] that

the duality between four dimensional N = 1 supersymmetric gauge theories [5,6] may be

understood as a consequence of T-duality in string theory. The crucial point for under­

standing the N = 1 duality in this framework is the meaning of T-duality of a Kahler

surface which is not a torus and is embedded in a Calabi-Yau space. Our aim in this

paper is to try to gain an understanding of the required generalization of the notion of

T-duality and its implications.

The framework for studing the duality phenomena will be the same as suggested in

[1]. Consider a compactification of F-theory on a Calabi-Yau 4-fold elliptically fibered

over a 3-fold base B. This leads to an N = 1 theory in four dimensions. Let S be a

complex surface in B along which the elliptic fibration acquires singularity of the ANc-l

type. We consider a 7-brane with worldvolume R 4 x S on which we have an SU(Nc)

gauge symmetry. In addition there are h1,O(S) + h2,O(S) chiral multiplets in the adjoint

representation. We will also add Nf 3-branes with world volume R 4 which are located at

points of the surface S. The open strings stretching between the 3-branes and the 7-brane

give Nf hypermultiplets in the fundamental representation of the gauge group.

The Higgs branch of the supersymmetric gauge theory on R 4 is constructed as the

moduli space of O-branes and 4-branes on S. T-duality maps this moduli space to another

D-brane moduli space which describes the Higgs branch of the dual theory. In section 2

we will begin by defining the D-brane moduli space as a space of vector bundles on S.
In particular we will see that we are forced to generalize the notion of a vector bundle

to that of a sheaf, as suggested in [7]. We will discuss the modification for the study of

the D-brane moduli space when S is embedded in a curved space. In section 3 we will

construct a generalization of T-duality for K3 surfaces, which maps a O-brane charge to

a 4-brane charge and vice versa. We will study its properties, check its consistency with

the duality between the heterotic string on T 4 and type IIA string theory on K3, and

compare it to the mirror transform of K3. We will then study the implications to the

N = 2 duality. Finally, we will discuss the case when S is a rational surface, which is the

relevant surface for the study of N = 1 duality.
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2 D-Brane Moduli Space

Let us consider type II string theory compactified on a manifold X of real dimension

2d. We are interested in the moduli space of D-branes wrapping supersymmetric cycles in

X. BPS states are associated with the cohomology classes of the D-brane moduli space.

Consider a configuration of 2d-branes wrapped on X. It carries charges for various RR

fields which, as shown in [8, 7], takes the following form

Q = v(E) = ch(E)JA(X) .

ch(E) is the Chern character of the vector bundle E

(2.1)

(2.2)

where F is the field strength of the gauge field on the brane and B is the bulk NS-NS

2-form. It has an expansion in terms of the Chern classes

1
ch(E) = rank(E) + c1(E) + "2(ci(E) - 2C2(E)) + ....

A(X) is the A-roof genus and it has an expansion in terms of the Pontrjagin classes

A(X)=I_ P1 (X) + ....
24

(2.3)

(2.4)

v(E) is what is known as the Mukai vector of the vector bundle E on X 1. In the

following we will be interested in the case where X is a complex surface. In this case

v(E) E HO(X, Z) E9 H2(X, Z) E9 H 4 (X, Z), and expanding (2.2) using (2.3) and (2.4) we

have

v(E) = (rank(E), c1(E), ~ci(E) - c2(E) - P1~:) rank(E)) . (2.5)

Consider now one 4-brane wrapped on X. It corresponds to a flat U(I) bundle on X.

However, if P1(X) i= 0 the 4-brane induces a O-brane charge via the term 4
1
8 Ix P1(X)A1 in

its effective action, where A1 is the RR I-form. Indeed, the Mukai vector corresponding

to a 4-brane is v(E) = (1, 0, -~). In this paper, we take the convention that the charge

vector of the O-brane is (0,0, -1). For instance, after integrating P1(X) over the surface

X the Mukai vector for a 4-brane wrapping T 4 is v(E) = (1,0,0), while the Mukai vector

for a 4-brane wrapping K3 is v(E) = (1,0,1) and induces the O-brane charge -1.

lIn [9], the Mukai vector is defined as v(E) = ch(E))Td(X). This coincides with (2.1) when X is a

Calabi-Yau space.
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The D-brane moduli space can be viewed as the moduli space of vector bundles E on

X. To be more precise, we need to consider not only vector bundles but also coherent

sheaves2
. A coherent sheaf on X is represented as a cokernel of a map of vector bundles

on X. A notable difference between coherent sheaves and vector bundles is that while the

dimension of the fiber of a vector bundle is constant as we move along the base X, the

dimension of the fiber of a coherent sheaf is allowed to jump. For illustration, consider a

configuration with one 4-brane wrapped on a K3 surface X and n O-branes at points in

X. It has the charge vector (1,0,1 - n). There is no vector bundle whose Mukai vector

is v(E) = (1,0,1 - n), namely no line bundle can have non-zero second Chern number n.

But there is indeed such a sheaf. It is a sheaf of holomorphic functions on X vanishing

at n points. (This is an element of the so called Hilbert scheme of n-points in X.) This

simple example indicates that the use of this generalized notion of a vector bundle enables

us to describe the D-brane moduli spaces of various charges on the same footing, including

those whose charge vector is not realized as the Mukai vector of a vector bundle. As to

terminology, we will still use the notion of vector bundles, although it should be clear

from the above that in some of the cases the objects are really coherent sheaves.

A O-brane looks like a zero size instanton on a 4-brane wrapping S [11-13]. While

coherent sheaves are objects of algebraic geometry, instantons are objects of differential

geometry. However, the intuitive relation between small instantons and coherent sheaves

is correct 3.

Let us consider D branes (partially) wrapped on cycles in a manifold X which is

embedded in a curved manifold. In particular, X = S in the base B of an elliptic Calabi­

Yau 4-fold defining an F-theory vacuum. Then the formula (2.1) for the RR charge

vector will be in general modified. In such a case the scalar and fermionic fields on the

worldvolume of the brane are in general twisted [15]. If X was embedded in a manifold

for type II compactification, the scalars would be sections of the normal bundle while the

fermions would be sections of the spin bundle tensored by the square root of the normal

bundle. Since the normal bundle to the worldvolume of the brane is in general non-trivial

the scalars and the fermions are twisted.

In the framework that we want to study, in which X = S embedded in the base B of

F-theory compactification, we do not know in detail how to twist the fields. Nevertheless

the twist can be uniquely determined [16]. On a fiat 7-brane, we would have the N = 1

2It has been advocated in [7] that the appropriate objects are coherent simple semistable sheaves.
3Small instantons are needed for the (Uhlenbeck) compactification of the instanton moduli space,

while the coherent sheaves are needed for the (Gieseker) compactification of the moduli space of stable

vector bundles, and on algebraic complex surfaces the two compactifications are related [14].
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supersymmetry in eight dimensions. Our requirement is to have N = 1 supersymmetry

on the uncompactified direction R 4 of the 7-brane wrapped on 8 x R 4 . On a Kahler

manifold with spin structure, spinors are (O,p) forms with values in the square root of the

canonical line bundle K!. This implies that we twist the fermions by K-! and therefore

they transform as (O,p) forms. For X being T 4 or K3 the canonical class is trivial and

therefore (2.1) is not modified. This is not the case for the rational surfaces which are

of interest to us for the case of N = 1 duality. For example, for the Hirzebruch surface

8 with PI (8) = 0, the formula (2.1) without modification would show that the 4-brane

does not induce O-brane charge and that T-duality proposed in [1] does not lead to N = 1

duality.

3 N = 2 Duality

3.1 Fourier-Mukai Transform for K3

Our aim is to generalize the concept of T-duality to surfaces other than T 4 . In this

section we will construct a generalization of T-duality for K3 surfaces. The generalization

will be a natural extension of the Nahm transform [17,18] which is a way of viewing T­

duality on T 4 in the differential geometric language, and is known as the Fourier-Mukai

transform [10] in the algebraic geometry framework.

Let us first discuss T-duality on T 4 and the action of T-duality on the moduli space

of D-branes on T 4
. In particular we are interested in the action of T-duality on O-branes

located at points on the T4 and 4-branes wrapping it. In the language of the previous

section the torus is the moduli space of a O-brane on T4 with charge vector (0,0, -1).

The dual torus T 4 is the moduli space of flat U(l) bundles on T 4 or line bundles on T4

with Mukai vector v = (1,0,0). In other words, the dual torus T4 is the moduli space of

a 4-brane wrapping T 4 . Given a vector bundle E on T 4 which describes a configuration

of D-branes on T4, the dual bundle E on T4 is constructed as the (negative) index bundle

- IndD of a family of Dirac operators Di associated with the twisted vector bundles

Ei = E ® Li' Li are line bundles on T 4 with Mukai vector (1,0,0) parametrized by the

dual torus, i E T4• One can compute the Mukai vector of E by using the family index

theorem

ch(IndD) = r ch(E ® Q)A(T4
) ,JT4 (3.1)

where Q is the so called Poincare bundle over T4x T4 such that its restriction on T4 x {i}
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is Lt. As computed explicitly in [17,19]' for C1 (E) = 0 we have

(3.2)

This is what we expect from T-duality under which O-branes and 4-branes are exchanged.

In order to generalize the above construction of T-duality to K3 we first have to define

the dual K3. There are many ways to define the dual K3 [9] but only one corresponds

to the required T-duality on all four coordinates.1 Later we will construct for comparison

the dual K3 that is obtained by a mirror transform.

We can view K3 as the moduli space of a O-brane on K3 with RR charge vector

(0,0, -1). Naively we may think that the dual K3 is the moduli space of a 4-brane

wrapping K3. This cannot be correct on dimensional ground. The complex dimension of

the moduli space of vector bundles on K3 with Mukai vector v = (r, l, s) is l2 - 2rs + 2

[9]. As we saw in the previous section, the Mukai vector of a 4-brane wrapping K3 is

v = (1,0,1) and the dimension of the moduli space of a 4-brane wrapping K3 is zero,

thus it cannot be a dual to K3.

Indeed, in analogy with the torus case, the correct dual should be the moduli space of

sheaves with Mukai vector v = (1,0,0). Such a Mukai vector corresponds to one O-brane

and one 4-brane. This means that T-duality on K3 does not map a O-brane to a 4-brane,

but rather a O-brane to a 4-brane plus a O-brane. In other words T-duality on K3 does

not map a physical O-brane to a physical4-brane but rather a O-brane charge to a 4-brane

charge, and vice versa. A sheaf with Mukai vector (1,0,0) has rank one, C1 = 0 and

C2 = 1. It cannot be a vector (line) bundle. Rather, as remarked previously, it is a sheaf

of holomorphic functions vanishing at a point. By assigning such a point to each sheaf,

we obtain a bijection of the moduli space of sheaves with Mukai vector (1,0,0) to the

original K3. This is the Hilbert scheme of one point on K3.

Given a vector bundle E on a K3 surface X which describes a configuration of D­

branes on X, we wish to construct the dual bundle E as the (negative) index bundle of

a Dirac operator associated with Ex = E ® Lx where Lx are sheaves on X with Mukai

vector (1,0,0) parametrized by x E X. However, as Lx is not locally free (i.e. not

a vector bundle), it is not obvious how to define the Dirac operator. Now we recall

that on a K3 surface, the positive and negative spin bundles are S+ = no,o E9 nO,2 and

S_ = nO,l respectively, where n°,p is the bundle of anti-holomorphic p-forms, and the

Dirac operator is essentially the aoperator. Thus, the index bundle of the Dirac operator

1A Fourier-Mukai transform for reflexive K3 surfaces has been derived in a rigorous way in [20].

However, the case studied in that paper does not correspond to the required T-duality.
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can be considered as the bundle of Dolbeault cohomology groups HO,o - HO,l +HO,2. With

a twisted coefficient E, this is the same as the bundle of cohomology groups HO(X, E) ­
Hl(X, E) + H2(X, E), which can be extended to the case where E is not locally free.

Applying to the case E = Ex, we can define the dual bundle E as such an index bundle

with its sign inverted.

Applying the Grothendieck-Riemann-Roch theorem, which is an analog of the family

index theorem, we can compute the Chern character of E:

ch(-E) = fx ch(E ® Q)Td(X). (3.3)

The Poincare bundle Q is a bundle on X x X such that the restriction to X x {x} is Lx.
It is a sheaf of holomorphic functions on X x X vanishing on the diagonal 6. ~ X (recall

that X is canonically isomorphic to X). Since the restriction of Q to X x {x} is Lx whose

Chern character is 1 - Wx where Wx is the 4-form of X with volume one, ch(Q) must

have the term 1 - Wx (pulled back to X x X). Similarly, it must have 1 - Wx and thus,

it must contain the term 1 - Wx - wx' For the purpose of our calculation, we want to

know the coefficient of the term wxwx in ch(Q). Note that we have an exact sequence

of sheaves

o----* Q ----* 0 Xxx ----* 0 Do ----* 0 , (3.4)

where 0 Xxx is the sheaf of holomorphic functions on X x X, and 0 Do is the sheaf of

holomorphic functions supported on 6.. From this we obtain x(X x X,O) = X(X, 0) +
X(X x X, Q). Since hO,o = hO,2 = 1 and hO,l = 0 for X ~ X, we have X(X,O) = 2, and

thus, we see that X(X x X, Q) = 2. Applying the Riemann-Roch formula X(X x X, Q) =
Jxxxch(Q)Td(X x X), and using Td(X) = 1 + 2wx and Td(X) = 1 + 2wx together

with the property Td(X x X) = Td(X)Td(X), we see that

ch(Q) = 1 - Wx - Wx + 2wxwx (3.5)

up to a possible term in H 2 (X) 1\ H2 (X) which does not contribute to the index for

cl(E) = O. Then, the formula (3.3) yields -ch(E) = ch2(E) + rank(E) - wx ch2(E) in

the case cl(E) = O. Namely, we have seen that

rank(E) = c2(E) - rank(E), (3.6)

Equation (3.6) describes the action of T-duality on the moduli space of 4-branes wrap­

ping the K3 surface and O-branes located at points on it.

It is instructive, for a comparison with T-duality, to define mirror symmetry of K3

surfaces in the above language. Following [21-24], we define the mirror of K3 as the
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moduli space of 2-branes wrapping supersymmetric 2-cyc1es with a topology of T 2 in

K3 (holomorphically embedded elliptic curves). The Mukai vector for such a brane is

v = (0, u, 0) where u2 = 0 is the self-intersection number of T 2 in K3. Since K3 can be

viewed as the moduli space of a O-brane on it, with Mukai vector v = (0,0, -1) we see

that mirror symmetry transforms v = (0,0, -1) ~ v = (0, u, 0), u2 = O. Given a bundle

Eon K3 describing a configuration of D-branes, the dual bundle E can be constructed as

before as the index bundle of Ex and has a rank(E) = -Cl (E)u. For instance the 2-brane

with Mukai vector (0, u, 0), u2 = -2, wrapping a rational curve (supersymmetric 2-cycle

3 2) which intersect with the T2 transversally is mapped to a 4-brane with Mukai vector

(1,0,0).

The duality between the heterotic string on T4 and the type IIA string on K3 is a

useful way to gain some further understanding of the meaning of T-duality on K3. We

will now show that a particular T-duality on T 4 at the heterotic side corresponds to

the above T-duality on K3. The integer homology lattice of K3 can be decomposed as

f 3,l9 E9 fl,l where f 3,l9 corresponds to H 2 (K3, Z) and fl,l to Ho(K3, Z) E9 H 4 (K3, Z). We

can decompose that Narain lattice f 4,20 in the heterotic side in a similar way as f 3,l9E9fl ,l,

and let (PR,PL) denote the momenta in the fl,l part.

T-duality on the torus maps PR ± PL ~ PR T PL. We argued that T-duality on K3

exchanges O-brane charge and 4-brane charge. It is natural to ask whether T-duality on T 4

and T-duality on K3 are consistent with the heterotic-type IIA duality. This will be the

case if 0(PR +PL) corresponds to O-brane charge and ~(PR - PL) corresponds to 4-brane

charge, or vice versa. It is easy to see that this is correct. The product HPR+PL)(PR-PL)

is the length of a vector (PR,PL) in fl,l. This is mapped by the heterotic-type IIA duality

to the intersection number of O-branes and 4-branes on K3, or more accurately taking

into account the induced O-brane charge from a 4-brane on K3, to the product of O-brane

charge and 4-brane charge [25]. Thus we see that the dual K3 that we constructed is

natural from the viewpoint of string duality.

Note that since the construction of the dual K3 is not affecting the f 3,l9 lattice of K3,

it is natural to expect that the T-duality on K3 preserves its complex structure. We have

already observed this since the Hilbert scheme of one point on X is the same as X itself

X ~ X. Note that when constructing the mirror to K3 we also affect the f 3,l9 part of the

lattice and therefore change the complex structure, in accord with the mirror transform.

Let us now discuss what happens to the volume of K3 after T-duality. We expect

that the volume of the dual K3 will be proportional to the inverse of the original K3. In
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order to show that consider the decomposition of a vector B' E R 4,20 as [26]

B' = o:W +w* + B , (3.7)

where B E R3,19 is the NS-NS two form, and w, w* E rl,l satisfy W • W = w* . w* =

0, w* . w = 1. It is argued in [26] that 0: is the volume of the K3 surface. T-duality for

K3 as constructed above exchanges w* ~ wand indeed, as seen from (3.7), it inverts the

volume of the K3 surface 0: ---t 1/0:, as expected.

In closing this section let us comment how we can see from the orbifold viewpoint

that the T-duality maps 4-brane charge to O-brane charge and not physical 4-branes to

physical O-branes. On the surface X the coupling to the R-R I-form Ai and 5-form A 5

has the structure
Pi (X) r

(-c2(E) -~ )A l + rankE J
x

A5 , (3.8)

where the term multiplying Ai is the O-brane charge while the term multiplying Ix A5 is

the 4-brane charge. When X is an orbifold we can still use fiat coordinates. In particular,

the R-R forms are constructed using the zero modes! ('ljJf{ ± ~oJt). T-duality maps H'ljJf{ ±
~oJt) ---t H'ljJf{ =+ ~/). This exchanges the R-R fields Ai with A 5 , and since the (3.8) has

to be preserved (if T-duality is a symmetry) the 4-brane and O-brane charges must be

exchanged.

3.2 N = 2 Duality

When S = K3, since h2,0(K3) = 1 we get an N = 2 supersymmetry in the un­

compactified direction R 4 of the worldvolume of the 7-brane wrapping S x R 4 . We can

approximate the F-theory configuration near the 7-brane by a perturbative type lIB string

theory compactified on K3 with parallel N c 7-branes wrapped on K3 x R 4 . Indeed, such

a configuration yields N = 2 supersymmetry on the uncompactified direction R 4 of the

worldvolume. The gauge group is SU(Nc) and the matter content is Nf hypermultiplets

in the fundamental representation.

In the model that we consider the D-brane moduli space describes vector bundles

E with rank(E) = Nc , Cl (E) = 0, c2(E) = Nf . In principle, there is another gauge

group U(Nf ) corresponding to the Nf 3-branes. However, we are looking at worldvolume

dynamics of the 7-brane. Thus, the U(Nf ) group appears in this framework as a global

symmetry.

In the following discussion, neglecting the uncompactified direction R4 for a while, we

will use the words 4-branes and O-branes instead of 7-branes and 3-branes respectively.
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The Mukai vector describing Nc 4-branes wrapping K3 and Nf O-branes located at points

on K3 is

(3.9)

The moduli space of Nc 4-branes wrapping Sand Nf O-branes located at points on

S is the moduli space of vector bundles on K3 with Mukai vector (3.9). The complex

dimension of this space is

(3.10)

The description of O-branes on the 4-branes as instantons suggests that the moduli space

of Nf O-brane on Nc 4-branes wrapping K3 MV=(Ne ,O,Nc-N f)(K3) is closely related to the

moduli space of SU(Nc) Nrinstantons on K3.

The link between the D-branes and the supersymmetric gauge theory in R 4 is the

identification of the D-brane moduli space and the Higgs branch of the gauge theory. This

presumably requires some limit such as large volume of the surface. The Higgs branch of

N = 2 SU(Nc) gauge theory with Nf hypermultiplets in the fundamental representation

contains two kinds of branches: The Baryonic branch and the non-Baryonic branch [27].
Only in the Baryonic branch the gauge group is completely Higgsed and one has a pure

Higgs branch. The non Baryonic branch extends to a mixed branch. The Baryonic and

non-Baryonic branches intersect classically, and are separated due to instanton correction

in the quantum theory. On dimensional ground, we expect that the D-brane moduli space

describes the Baryonic branch.

Using the results of the previous section (3.6), T-duality on K3 maps the Mukai vector

(3.9) to

(3.11)

The moduli space of D-branes on K3 and the moduli space of D-branes on the dual K3

are isomorphic. Thus, the T-duality suggests that the Baryonic branch of N = 2 SU(Nc)

gauge theory with Nf hypermultiplets in the fundamental representation is identical to

the Baryonic branch of N = 2 SU(Nf - Nc) gauge theory with Nf hypermultiplets in the

fundamental representation.

The Higgs branch of N = 2 supersymmetric QCD was studied in [28] where it was

claimed that the part of the moduli space corresponding to complete Higgsing (open dense

subset of the Baryonic branch) of N = 2 SU(Nc) SQCD with Nf flavors is given by the

cotangent bundle of the total space of the determinant line bundle of the Grassmannian

Gr(Nc, Nf ) with its zero section deleted. This claim is correct up to a subtle point, which

we will clarify in the following.
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Let us denote by Q, Q the pair of N = 1 chiral superfields that constitute a hyper­

multiplet of N = 2 supersymmetry. Here we consider Qas a map from e Ne to eNf and

Q as a map from eNf to eNe . The Higgs branch is constructed as the set of SL(Ne, e)
orbits of solutions of the F-flatness equation

(3.12)

When rankQ = N e , Qdefines a non-zero point in the determinant line bundle of Gr(Ne, N f ).

Then, Q defines a linear form oQ 1-+ Tr(QoQ) vanishing on the sl(Ne , e) variation of Q,
as seen from the F-flatness (3.12). Thus, the part of the Higgs branch where the rank of

Qis Ne can be identified with the cotangent bundle of the (non-zero) determinant bundle

of Gr(Ne , N f ). This is an open dense subset of the Baryonic branch. Note, however, that

there are vacua such that rankQ < Ne and rankQ = Ne [27], and hence the above subset

is a proper subset of the moduli space corresponding to complete Higgsing.

There is an isomorphism (as complex manifolds) between the determinant of Gr(Ne, N f )

and that of Gr(Nf - Ne , N f ). The isomorphism can be constructed as follows. Let

Gr(Ne, Nf ) be realized as the space of N e planes in a vector space V of dimension N f ,

and let Gr(Nf - N e, N f ) be realized as the space of N f - N e planes in its dual V*. We fix

an element v1 /\ ... /\ v Nf of the top exterior power /\NfV*. To an element Wl /\ ... /\ WNe

in the determinant line over the Ne plane W C V spanned by Wl, ... , WNe, we associate

an element i Wl ••• i WNe (v1 /\ ... /\ vNe ) in the determinant line over the N f - N e plane

W..L C V* orthogonal to W. Here, i v is the interior product mapping q-th exterior power

of V* to q - I-th. Thus, open dense subsets of the Baryonic branches of the SU(Ne) and

the SU(Nf - N e ) QCDs with N f flavors are holomorphically identical.

The above discussion suggests that N = 2 duality is only a duality of the Baryonic

branches. It is also clear that since the D-brane moduli space that we consider describes

only part of the Higgs branch of the SU(Ne) gauge theory, we are unable in this model to

make any predictions about the the behavior of the Coulomb branch of the N = 2 theory

under T-duality.

The complex structure of the D-brane moduli space depends on the complex structure

of the K3 surface. On the the other hand the complex structure of the Baryonic branch

of the N = 2 theory on R 4 is fixed by the D-term and F-term equations that determine

the branch as a hyperkiihler quotient. This seems puzzling, since we wish to identify

the Baryonic branch with the D-brane moduli space. To this puzzle, two resolutions

are possible. One possibility is that the supersymmetric Lagrangian field theory as we

formulate it corresponds to picking one complex structure of the D-brane moduli space

but there are other field theories that correspond to picking other complex structures.
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The other possibility is that if we appropriately take the field theory limit the dependence

on the complex structure of K3 disappears, and all will yield the same result.

3.3 Comments on N = 1 Duality

If the surface S is rational, the gauge theory on R 4 is N = 1 supersymmetric [1].

By rational surface we mean a complex surface birationally equivalent to p2. A rational

surface S satisfies h1,o(S) = h2,o(S) = O. Consider for example the Hirzebruch surfaces

Fn .

As in the K3 case, we consider Fn as the moduli space of a O-brane on Fn with charge

vector (0,0, -1). The dual to Fn is the moduli space of vector bundles with Mukai vector

v = (1,0,0). As we discussed in section 2, since the canonical class of S is non trivial, the

definition of Mukai vector (2.1) has to be modified in order to take into account the fact

that the fermions and scalars on the surface S are twisted. This implies that bundles with

Mukai vector v = (1,0,0) have rank one, C1 = 0, C2 = 1 1. The moduli space of bundles

on Fn with such a Mukai vector is the Hilbert scheme of one point and is isomorphic

(as a complex manifold) to Fn . We can now follow the same steps as in the K3 case

in order to construct T-duality. This, however, does not lead to the required exchange

of O-brane and 4-brane charges. For the required exchange of charges, it seems that we

have to define the dual Fn as the moduli space of fiat line bundles on Fn . This cannot be

the case since the latter moduli space is trivial. Similar analysis can be carried for other

rational surfaces such as blow-up of p2 at points. As in the Fn case, the results indicate

that some modification of the scenario is needed in order to make the N = 1 duality to

work.

The duality between heterotic string theory on T4 and type IIB string theory on K3

was useful in order to gain an understanding of T-duality on K3 using our knowledge of

T-duality on T 4 . Similarly, it is likely that the duality between heterotic string theory

on K3 and type IIB string theory on Fn (in the appropriate F-theory context) [29] can

be used to gain an understanding of the generalization of T-duality on K3 surfaces, as

constructed in this paper, to the required T-duality on Fn .

lWe use for the twisted case the Mukai vector v(E) = ch(E Q9 K-~h/A(X).
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