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ABSTRACT OF THE DISSERTATION

Topics in Supersymmetric Gauge Theories

by

Jason Daniel Wright

Doctor of Philosophy in Physics

University of California, San Diego, 2007

Professor Kenneth A. Intriligator, Chair

This dissertation consists of two parts, each of which improves our understand-

ing of supersymmetric field theories. In the first part I use the technique of “a-

maximization” to study the RG flows of these theories. In doing so I find evidence

for the strongest form of Cardy’s a-theorem. In doing so we move closer to a

proof of Cardy’s a-theorem by the removal of a loophole in the argument for the

theorem. I also examine the remaining loopholes in the argument. I then apply

a-maximization in the case where the superconformal field theory has a product

gauge group. In these situations I find that the dynamics of one of the gauge

x



groups can dramatically alter the behavior of the other. I give a detailed analysis

of the possible RG flows and fixed points.

The focus of the second part of the dissertation is on extending and

furthering our understanding of a-maximization. I construct an alternative to

a-maximization, called τRR-minimization, which also determines the anomalous

dimensions of chiral operators. This technique is not as powerful as a-maximization

because τRR receives quantum corrections. This method is extendable beyond four

dimensions. I find the the geometrical analog of a-maximization, Z-minimization,

gives the same results as τRR-minimization, and show how the two techniques

are related. This allows for the computation of exact anomalous dimensions, in

theories with known AdS/CFT duals, outside of four dimensions.
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I

Introduction

In this chapter I will attempt to introduce the ideas discussed in this

dissertation to the non-expert. This chapter should be accessible to anyone who

has taken an introductory physics sequence. Those with a strong background in the

ideas discussed are encouraged to skip this chapter. This introduction covers many

topics and is necessarily incomplete. Those who are interested are encouraged to

investigate further.

Quantum mechanics is a consistent and successful theory. It explained

many phenomena, not describable by classical physics. There are, however, reasons

why we know quantum mechanics is incomplete. One problem is that quantum

mechanics is a one particle theory. By this I mean that the probability of finding

a particle somewhere is 100% at all times. Because of this, quantum mechanics

cannot describe, for example, the radioactive decay or certain nuclei. In the decay,

the nucleus in question will shoot out a particle or some sort, leaving a different

nucleus behind. Clearly, after the decay the probability of finding the original

nucleus is no longer 100%. Similarly, quantum mechanics provides no mechanism

to describe the creation of the emitted particle. Quantum mechanics is also not

compatible with Einstein’s theory of relativity, which a full description of our world

should be.

The solution to these problems is Quantum Field Theory. Fields are

1
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nothing new in physics. Anybody who has taken an introductory course on physics

has encountered the electric field. The electric field was a vector function of position

and time introduced to describe the interaction of two particles. We describe the

motion of one particle by considering its interaction with the electric field created

by the other. The basic idea of quantum field theory is that we associate a field

with every particle.

We describe the field as an infinite number of interacting harmonic oscil-

lators, or springs for those not familiar with the physics jargon. The excitations

of these oscillators are interpreted as particles of definite properties such as mass,

spin and charge. In addition to the excitations corresponding to the particles that

we can see, there will be random excitations. These random excitations will be

interpreted as what are called “virtual” particles. These are particles which we

do not observe directly, but we can infer there existence indirectly. These are

responsible for the nebulous “quantum effects” of which one often hears.

In this framework one is able to describe the creation and annihilation of

particles and hence problems like radioactive decay and the spontaneous emission

of a photon from an atom. It is compatible with special relativity. The list of

successes of quantum field theory is long. By accepting relativistic quantum field

theory we have had some rules forced on us. First, for any particle, there must

exist an antiparticle with opposite charge, but with all other properties the same.

Note that for an uncharged particle, it can be its own antiparticle. Also, particles

come in two types fermions, which have half integer spin, and bosons, which have

integer spin.

If we look at the various discovered particles we find that nature is nat-

urally divided into these two types. Fermions make up matter. Electrons are

fermions, as are quarks which make up protons and neutrons. Bosons are asso-

ciated with forces between particles; two particles will exchange a boson, which

will manifest itself as the corresponding force. The photon, the particle associated

with the electromagnetic force, is an example of the boson. Imagine two electrons
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moving along. One emits a photon, which the other absorbs. We see this as two

electrons moving along, and repelling each other. The photon in this case was

one of the previously mentioned “virtual” particles. We do not directly see it, but

we see its effects in the repulsion of the two electrons. There is one boson not

associated with a force, the Higgs boson. The Higgs boson is responsible for giving

all other particles there mass.

Fermions and bosons clearly have very different properties, but are both

necessary to the operation of our universe. Supersymmetry is a proposed symmetry

between these two very different types of particles. If we require our quantum field

theory to be supersymmetric then the particles will come in groups, generally

called multiplets. The simplest multiplets contain one boson and one fermion,

which have equal mass and charge. More complicated multiplets will have several

of each, but the idea is the same. This may seem an odd symmetry to propose.

As mentioned above, bosons and fermions play very different roles. We also know

that the universe does not appear to be supersymmetric. That is we do not see

any particles with the same mass and charge, but different spin, which is what

would be required for them to form a multiplet. Despite these facts, there are

many reasons to study supersymmetric theories.

There are two approaches one can take when studying supersymmetric

theories. The first is that supersymmetry is a real symmetry of nature. Despite

the fact that we do not see supersymmetry, this is not completely crazy. Since

it is not observed, it must be a “broken” symmetry. That is, at the energies

which we look at the universe, there is no supersymmetry, but the universe may

be supersymmetric at higher energies. Once we understand that supersymmetry is

possible, the question now becomes: what benefits does supersymmetry provide?

There are many nice features of supersymmetric theories. One exciting feature

is unification. If one modifies the current standard model of particle physics by

adding a partner for each particle we see, making it supersymmetric, then at some

energy scale the strong, weak and electromagnetic force will be equal in strength.
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There is also a problem in the standard model. Above it was mentioned that

the Higgs particle gives mass to other particles, but the higgs can have any mass.

The problem is that when you take quantum effects into account the higgs mass

becomes infinite. Supersymmetry fixes this because the quantum effects due the

supersymmetric partners to the standard model particles are equal in magnitude,

but with the opposite sign. The mass would no longer be driven to infinity. This

type of cancellation is a generic feature of supersymmetric theories.

The second approach one can take to supersymmetric theories is that

maybe supersymmetry is not a symmetry of nature, but it introduces many sim-

plifications which enables us to extract a lot more information than we can from

a non-supersymmetric theory. We can then think of supersymmetric theories as a

“warm-up” to attacking the real world. By introducing this extra symmetry into

the problem we dramatically restrict the answers to many questions that we might

ask. This allows us to extract much more information than we would be able to

had we not introduced supersymmetry. One particularly intriguing simplification

provided by supersymmetric models is that there are many quantities that we can

calculate exactly, where as in a non-supersymmetric theory we would only be able

to calculate the same quantity to a certain precision and in some limit. When tak-

ing this approach, we expect some of the details to be different in the real world

theory and the supersymmetric theory, but we also expect that a lot of the “big

picture” will be similar. In this way we learn something about the real world, by

studying theory which does not describe our world.

In chapters II and III of this dissertation we use sypersymmetry to study

renormalization group (RG) flows. Renormalization is a procedure which allows

us to determine what interactions and processes are important at different length

scales and what the appropriate fields that describe the system are. The idea

behind renormalization is fairly simple to understand. Consider the air in the room

you are in. If we are interested in describing the motion of the electrons in the

molecules of air, then we are looking at a length scale which is the size of the atoms,
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since the electrons are confined within the atom. This length scale is much larger

than the size of the nucleus. The equations describing the motion of the electrons

will contain parameters depending on the details of what happens at scales the

size of the nucleus. However, most of the information about what happens at the

nuclear scale is unimportant. The exact details of how the protons and neutrons,

which make up the nucleus, move and interact within the nucleus is not terribly

important. What is relevant is a few parameters, such as the total charge of the

nucleus and a few other “over-all” features. We could also ask about the speed of

sound in the air. Here we are still studying the same system, but it seems very

different. Now the important length scale is going to be larger than the distances

we expect individual molecules to travel. At this scale the motion of the electrons

is no longer important. The appropriate fields to describe the system are now the

familiar thermodynamic fields of pressure and temperature. The equation for the

speed of sound depends on a couple of parameters which encompass the details,

which are important at the larger scale, of what happens on the smaller scales. As

we varied the length scale at which we looked, the parameters, equations, and even

the fields we use to describe it change dramatically. The idea of the renormalization

group is to continuously change the length scale of the problem and see how the

equations and parameters morph from those describing the protons and neutrons

all the way to those describing the speed of sound in air.

As we change the length scale at which we are interested in studying a

quantum field theory, the field theory can change drastically. The strengths and

types of interactions will change, as will the fields which are present. We call this

the RG flow. One can imagine that this process becomes very complicated, and

in general we cannot determine the exact behavior of a quantum field theory as

we change the length scale. The complexity of the problem will prevent us from

changing the length scale too much. In general we refer to smaller length scales as

UV and the larger scales as IR.

It can happen that as we vary the length scale along the the RG flow that
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we find that the theory ceases changing as we continue to vary the length scale.

This is what is called a RG fixed point. Once we reach a fixed point the flow stops.

We often refer to a fixed point as UV (or IR) attractive. By this we mean that as

we go to shorter (longer) length scales we approach the fixed point.

Note that in performing the renormalization procedure we have not solved

any problems. We have just replaced an old problem with a new one. This can be

useful, however. The quantum field theories studied in this dissertation are what

are called non-Abelian gauge theories. These theories have the property that as

you decrease the length scale, the interactions in the theory become weaker. We

have tools available to study very weakly interacting field theories. We do not have

as many tools to study strongly interacting theories. Renormalization allows us to

start with a weakly coupled theory in the UV and flow to the IR, in the process

extracting information we would otherwise be unable to access.

In these theories, it is possible that we encounter an IR fixed point as we

flow. The quantum field theories at these fixed points can be either strongly and

weakly coupled. In chapters II and III of this dissertation we examine the former.

Specifically we obtain information about a strongly interacting field theory at the

IR fixed point, using information about the weakly interacting theory in the UV.

In particular we obtain what is called the scaling dimension of various fields in the

theory, which tells us how the fields and interactions behave as we alter the length

scale.

In order to extract this information we use a powerful tool known as “a-

maximization.”[14] We can use this tool in four dimensional supersymmetric field

theories. The quantity “a” is called a central charge and is defined for any con-

formal quantum field theory. Loosely speaking, conformal means that the theory

is scale invariant, it lives at a RG fixed point. For supersymmetric conformal field

theories, the central charge “a” is a cubic function of the scaling dimensions of the

fields in the theory[13]. In the days before a-maximization one could not always

exactly determine the scaling dimensions of the various fields, but one could iden-
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tify a set of possibilities. There was no way to determine which possibility was

the correct one. It was shown that the correct scaling dimensions are those which

give the maximum value of the central charge “a.” a-maximization completely de-

termines all of the scaling dimensions in the problem. The reason a-maximization

is so powerful is that we can relate the quantity “a” to what are called ’t Hooft

anomalies. These have the feature that they do not change along RG flows. This

means we can calculate at whatever energy scale is easiest, and the answer will

still be true everywhere along the RG flow.

a-maximization also plays a role in what is called the “a-theorem.” The

a-theorem states that the central charge “a” should always decrease when flowing

from the UV to the IR. The reason that this is expected to be true is that the

quantity “a” should characterize the degrees of freedom of the system. The number

of degrees of freedom is roughly the number of fields needed to characterize it. We

expect that as we flow to larger length scales, we lose some of the details of the

short length scale theory. In the example of air in the room, when we describe the

large scale properties of the gas, we lost a lot of the details about the behavior of

the protons, neutrons and electrons. We reduce all of that information to a few

numbers and constants like pressure and viscosity. There is a similar statement,

that has been proven, in two dimensions that the central charge, called “c” always

decreases when flowing from the UV to the IR. a-maximization comes very close to

proving the a-theorem. The a-theorem can be stated in several ways with differing

levels of strength. In chapter II of this thesis, we provide evidence of the strongest

form of the a-theorem.

In chapter V of this dissertation we make use of a certain aspect of string

theory called AdS/CFT. When discussing field theories above, the starting point

was that particles were point like. We then described the point particle as an

excitation of a field. In string theory we instead postulate that particles are one

dimensional objects called strings. This simple change has lead to many exciting

results. String theory naturally contains gravity and, as it turns out, contains all
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of the structure of quantum field theory. By considering one dimensional objects

instead of point particles string theory forces us to accept other objects as well.

String theory contains membrane like objects of many dimensions called Dp-branes.

These objects have D space directions; for example a D2-brane would be a sheet

and a D3-brane would have 3 spatial directions like the universe that we see. We

often say that a quantum field theory is living on a brane. By this we mean that the

physics an observer confined to the brane observes is described by that quantum

field theory.

The AdS/CFT [66] correspondence states that a supersymmetric quan-

tum field theory living on the brane is exactly equivalent to string theory in ten

dimensions. The geometry, loosely the shape and the size, of the ten dimensions

determine what field theory lives on the brane. Any quantities that we can calcu-

late in the supersymmetric field theory can also, in principle, be calculated in the

string theory and both will give the same result. The most well studied example

relates a superconformal field theory in four dimensions to string theory with five

of the ten dimensions taking the form of what is called Anti-deSitter space (AdS).

The other 5 dimensions are very small and called compact. The details of the

shape and size of these small dimensions determine many of the properties of the

field theory living on the brane.

According to the AdS/CFT correspondence any computation done in the

superconformal field theory should have a corresponding calculation in the string

theory. One could ask what the calculation corresponding to a-maximization is. It

has been shown that the central charge “a” is proportional to one divided by the

volume of the compact dimensions. So one would expect the volume of that space

to be minimized, since “a” is maximized. The quantity “a” is a function of the

scaling dimensions of the fields. In order to carry out the string theory calculation

we need to know what quantities, corresponding to the scaling dimensions, the

volume of the compact space depends on. For a certain group of models the

answer to this was found, and the dual calculation to a-maximization goes by the
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name of “Z-minimization.”[58] The “Z” which is minimized is proportional to the

volume of the compact space, and is a function of what is called the Reeb vector.

Using Z-minimization one can determine “a” and all of the scaling dimensions

of the fields in corresponding quantum field theory and the answers match those

calculated with a-maximization.

The discovery of Z-minimization brought another puzzle. One can use

Z-minimization for different geometries than the type listed above, and for these

geometries the corresponding field theory is no longer four dimensional. The cor-

responding field theories can be two or three dimensional, but a-maximization

only works for four dimensional theories. In chapters IV and V we show why

Z-minimization gives the correct values for the scaling dimensions in these theo-

ries. To do this we introduce another method of obtaining the scaling dimensions,

which goes by the name of τRR-minimization. The quantity τRR does change

along RG flows making it very difficult to compute, so this is not as powerful a

a-maximization. In cases where we know the corresponding geometry problem,

however, the string theory calculation is easier. τRR-minimization does work in

superconformal field theories of dimension other than four and allows us to show

why Z-minimization gives the proper scaling dimensions of the fields.



II

Evidence for the Strongest

Version of the 4d a-Theorem via

a-Maximization Along RG Flows

II.A Introduction

There is an intuition that RG flows are a one-way process, with infor-

mation about the UV modes lost as one coarse-grains. More precisely (since even

an RG fixed point conformal field theory (CFT) has UV modes going above the

cutoff), the intuition is that non-trivial RG flows should always decrease the num-

ber of massless degrees of freedom: relevant deformations will lift some massless

degrees of freedom, and RG flow to the IR coarse-grains away these lifted modes,

with no new modes becoming massless.

Let us distinguish several possibilities:

1. One can define a quantity, c, that properly counts the massless degrees of

freedom of a CFT (e.g. c > 0 for all unitarity CFTs, and c = c1 + c2 for two

decoupled CFTs) such that the endpoints of all (unitarity) RG flows satisfy

cIR < cUV .

2. A stronger claim is that c can be extended to a monotonically decreasing

10
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“c-function” c(g(t)) along the entire RG flow to the IR:

ċ(g) = −βI(g) ∂c
∂gI

≤ 0, (II.1)

with ċ = 0 iff the theory is conformal. Here ˙ = d
dt

, with t = − log µ the

RG “time”, increasing towards the IR, and ġI(t) = −βI(g), with gI(t) the

running couplings.

3. The strongest possibility is that RG flow is gradient flow of the c-function,

βI(g) = GIJ(g)
∂c(g)

∂gJ
, and

∂c(g)

∂gI
= GIJ(g)β

J(g), (II.2)

(here GIJ ≡ (GIJ)
−1) with GIJ(g) > 0 a positive definite metric (all eigen-

values positive) on the space of coupling constants. Eqn. (II.2) then implies

ċ ≤ 0,

ċ(g(t)) = −βI ∂c
∂gI

= −GIJβ
IβJ ≤ 0, (II.3)

with ċ = 0 iff the theory is conformal.

The possibility that RG flow is gradient flow with positive definite metric

was proposed (and verified to 3-loop order in 4d multi-component λφ4 theory)

by Wallace and Zia [1]. In 2d, Zamolodchikov [2] defined a function c(g), equal

to the central charge of the Virasoro algebra for CFTs, which he proved satisfies

(II.3) with GIJ(g) > 0 (for unitary theories). GIJ is determined from the two-point

functions 〈OI(x)OJ (y)〉 of the operators that gI and gJ source. This proves version

(2) above in 2d, and suggests the strongest version (3) (if the dot product with

βI could be eliminated from both sides of (II.3)). It was also demonstrated [2]

that the strongest version (II.2) is indeed true, at least in conformal perturbation

theory, in the vicinity of any 2d RG fixed point.

The apparent generality of these intuitions suggest that analogous state-

ments should apply for RG flows in any spacetime dimension. Cardy [3] conjec-

tured that an1 appropriate quantity for counting the number of massless degrees

1This candidate doesn’t have an analog for odd spacetime dimensions, unfortunately.
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of freedom of 4d CFTs is the conformal anomaly a on a curved spacetime2:

a ∼
∫

S4
〈T µµ 〉. (II.4)

The weakest version of the 4d a-theorem conjecture is then that the conformal

anomaly a satisfies a > 0 for every (unitary) 4d RG fixed point, and aUV > aIR

for the endpoints of all (unitary) 4d RG flows. Every known computable example

(both non-supersymmetric and using SUSY exact results) is strikingly, and often

highly non-trivially, compatible with this conjecture. It would be very interesting

and powerful if this a-theorem conjecture is indeed a completely general property

of all (unitary) 4d RG flows. At present, however, there is not yet a general, and

generally accepted, proof of the conjectured 4d a-theorem. See e.g. [4], [6] , [7],

[8], [9] for further discussion of the a-theorem conjecture.

Given the striking successes of the weaker version of the 4d a-theorem,

it is natural to consider the 4d analogs of the stronger possibilities (2) and (3)

above: perhaps a can be extended to a monotonically decreasing “a-function”

a(gI) along the entire RG flow, and perhaps the beta functions are gradients of

this a-function, with positive definite metric, as in (II.2). Osborn and collaborators

[10], [11] investigated this in perturbation theory for 4d QFTs (by considering

renormalization with spatially dependent couplings) and indeed found a candidate

a-function a(g) which satisfies a relation similar to (II.2):

∂a(g)

∂gI
= (GIJ + ∂IWJ − ∂JWI)β

J , where a(g) = aconf.(g) +WI(g)β
I(g).(II.5)

The candidate a-function a(gI) coincides with the conformal anomaly3 aconf(g)

at the endpoints of the RG flow. The possible term ∂[IWJ ] in (II.5), a possible

difference from gradient flow (II.2), was found to vanish in every example, to all

2A general curved 4d spacetime background has two independent anomaly coefficients, 〈T µ
µ 〉 =

a(Euler) + c(Weyl)2, but (Weyl)2 = 0 vanishes on a conformally flat background such as S4. This
is just as well, since its coefficient c (so named because it also appears in 〈Tµν(x)Tρσ(0)〉 in flat space) is
known to not have definite monotonicity under RG flow [4], [5]. So we won’t discuss c further, and will
replace “c” with “a” in the conjectured 4d analogs of the above statements.

3To avoid repeatedly writing 3/32, we rescale a relative to other references, ahere = (32/3)ausual, and
write our a-function as ahere(g) = (32/3)ãOsborn(g). To avoid a factor of 4/3 which would then show up
in (II.5), we also rescale our GIJ relative to [10], [11]: Ghere

IJ = 4
3
Gthere

IJ .
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orders checked. Also, it’s not manifest in this approach that GIJ(g) > 0 (GIJ(g)

is defined via beta functions βµν ∼ GIJ(g)∂µg
I∂νg

J upon taking the couplings to

be spatially dependent), but GIJ > 0 was verified to be true in every example, to

all orders checked [10], [11].

Here we’ll explore these ideas in supersymmetric theories, where it’s possi-

ble to obtain exact results. Supersymmetry relates the stress tensor to a particular

R-symmetry, which we’ll refer to as the superconformal R-symmetry (even when

the theory isn’t conformal). The matter chiral superfields Qi have superconformal

U(1)R charge

R(Qi) =
2

3
∆(Qi) =

2

3
(1 +

1

2
γi), (II.6)

related to Qi’s anomalous dimension. The exact beta functions are related to the

violations of the superconformal R-symmetry. For example, the NSVZ exact beta

function [12] for the gauge coupling of gauge group G, with matter fields Qi in

representations ri, is

βNSV Z(g) =


 3g3/16π2

1 − g2T (G)
8π2


 β̂G(R), β̂G(R) ≡ −

[
T (G) +

∑

i

T (ri)(Ri − 1)

]
,(II.7)

with T (G) the quadratic Casimir of the adjoint and T (ri) that of representation ri.

Likewise, the exact beta function for the coupling h of a superpotential term W =

h
∏
iQ

n(W )i

i can be written as (using ∆(h) = 3−∆(W ) to write h ∼ µ(3/2)(R(W )−2)):

βW (h) ≡ −ḣ =
3

2
hβ̂W (R), β̂W (R) ≡ R(W ) − 2 =

∑

i

n(W )iR(Qi) − 2. (II.8)

β̂G(R) and β̂W (R) are simply linear combinations of the R-charges, independent

of the coupling constants. They are defined to have the same sign as the full

beta functions, and represent the violation of the R-symmetry by the interactions:

β̂G(R) is the coefficient TrRG2 of the U(1)R current’s ABJ anomaly, and β̂W (R)

gives the violation of the R-symmetry by the superpotential.

At the superconformal endpoints of RG flow, the superconformal R-

current evolves to a conserved U(1)R∗
⊂ SU(2, 2|1), as the interactions flow to
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a zero of their beta functions. The superconformal R-charges of the fields deter-

mine the exact operator dimensions of gauge invariant chiral primary operators via

∆(O) = 3
2
R∗(O) (computable in terms of R∗(Qi) since R-charges are simply addi-

tive). Moreover, as shown in [5], [13], the ’t Hooft anomalies of U(1)R∗
determine

the exact central charge of the SCFT:

aSCFT = 3TrR3
∗ − TrR∗. (II.9)

It was shown in [14] how to uniquely pick out the special U(1)R∗
⊂

SU(2, 2|1), from among all possible conserved R-symmetries (satisfying β̂(R) = 0):

it is that which maximizes the combination of ’t Hooft anomalies

atrial(R) = 3TrR3 − TrR. (II.10)

At the unique local maximum, the function (II.10) coincides with the conformal

anomaly aSCFT (II.9), hence the name “a-maximization.” E.g. for a free chiral

superfield atrial(R) = 3(R− 1)3 − (R− 1), as plotted in fig. II.1, with local maxi-

mum at point (A). The same qualitative picture of fig. II.1 applies for interacting

theories. The function atrial(R), and its local maximum R∗ and value a∗, can be

exactly computed, even for strongly interacting RG fixed points, via the power of

’t Hooft anomaly matching. See e.g. [15] , [16], [17], [18], [19], [20], [21] for some

extensions and applications of a-maximization.

a-maximization has several immediate general corollaries. E.g. it implies

[14] in complete generality, for any 4d N = 1 SCFT4, that the superconformal

R∗ charges, and hence the exact scaling dimension of chiral primary operators

and the central charges a∗ and c∗, are necessarily very special numbers: quadratic

irrationals, of the general form

R∗, a∗ ∈ {n+
√
m

p
| n ∈ Z, m ∈ Z≥0, p ∈ Z6=0}. (II.11)

4Theories with accidental symmetries could be exceptions to these general statements, though all
known such examples, for example those associated with singular points of N = 2 Seiberg-Witten curves
[22], [23], still satisfy the above general statements.
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Figure II.1: The trial central charge atrial(R) (with R∗ values indicated for free

field case).

Quadratic irrational numbers are a measure zero subset of the reals5, with special

properties (e.g. precisely they have continued fraction form that’s periodic). The

result (II.11) implies that the superconformal U(1)R charges and central charge a∗

cannot vary continuously; therefore, for any SCFT, they cannot depend on any

continuous moduli.

As also discussed in [14], a-maximization gives a two line “almost proof”

of the a-theorem for supersymmetric RG flows: relevant deformations will break

some of the flavor symmetries, placing additional constraints on the IR R-symmetry

as compared with the UV one, FIR ⊂ FUV , and maximizing a function over a

subspace leads to smaller maximal value, hence aIR < aUV –QED! However, as

also pointed out in [14], each of these two lines has possible exceptions. First

of all, the IR SCFT can have additional accidental symmetries not present in

the UV theory, in which case FIR 6⊂ FUV ; the result of [14] implies that atrial

should be maximized over all flavor symmetries, including all accidental ones, so

5Rational numbers are a subset of the quadratic irrationals. SCFTs with string dual descriptions are
typically limited to this subset, though recently string geometry examples were obtained for which the
R-charges are not rational [24], though they’re indeed quadratic irrational, compatible with (II.11) (and
the general prediction from (II.11) is that any (generally singular) H5, such that AdS5 × H5 is dual to
a N = 1 SCFT, must have quadratic irrational volumes). There are many SUSY gauge theory examples
with R-charges that are quadratic irrational but not rational.
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it’s crucial that accidental symmetries be properly included. The two-line proof

needs to be supplemented with additional physical information to apply to cases

with accidental symmetries. The caveat for the second line of the proof is the fact

that the maximum is only a local one. E.g. in fig. II.1, suppose that the UV theory

is at local maximum (A): perturbing away from there will reduce a, but we need

to rule out the possibility that the deformation might eventually drive the value

of a up to a point such as (D) in the IR, with a(D) > a(A), violating aIR < aUV .

In [20] Kutasov made a very interesting proposal, which helps close the

second loophole by extending a-maximization away from the RG fixed points. As-

suming that FIR ⊂ FUV (in sect. II.D, we’ll discuss an extension for certain acci-

dental symmetries), the idea is to implement the additional constraints associated

with FIR ⊂ FUV via Lagrange multipliers. We’ll write this generally as

a(R, λI) = 3TrR3 − TrR+
∑

I

λI β̂
I(R), (II.12)

with β̂I(R) the linear constraints on the R-charges mentioned above, and β̂I = 0

at the IR SCFT. Extremizing (II.12) w.r.t. R, holding the Lagrange multipliers

λI fixed, yields R(λI), and plugging back into (II.12) gives

a(λI) ≡ a(R(λI), λI) such that
∂a(λ)

∂λI
= β̂I(R(λ)), (II.13)

using the fact that R(λI) solves ∂a/∂R = 0. The observation now is that the

function a(λI) interpolates between aUV and aIR, and (II.13) suggests that a(λI)

is monotonic, using the physical intuition that beta functions are expected to have

a definite sign along the entire RG flow: once a coupling hits a zero of the beta

function, it just stops running (e.g. it doesn’t overshoot a zero).

It was conjectured in [20] that the Lagrange multipliers λI are to be

identified with the running coupling constants g2
I in some scheme. The extremizing

solution R(λ) of (II.12) is interpreted as the RG flow of the superconformal R-

charges, and a(λ) (II.13) is interpreted as a monotonically decreasing a-function

along the RG flow to the IR. For relevant interactions, λ̇I > 0, so (II.13) with
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β̂I < 0 implies that ȧ < 0. Likewise, for irrelevant interactions, λ̇I < 0 and (II.13),

with β̂I > 0, again leads to ȧ < 0.

We will expand upon and further check the interpretation of (II.13) as

defining a monotonically decreasing a-function along the RG flow. Our main point

is that this proposal suggests the strongest version (3) of the a-theorem conjecture:

that the exact RG flows are indeed gradient flows of the a-function (II.13), as in

(II.2), with metric on the space of coupling constants given by

GIJ(g) = fKJ (g)
∂λK(g)

∂gI
, where β̂K(R) = fKJ (g)βJ(g). (II.14)

A sufficient condition for this metric to be positive definite is that the fKJ (g)

are positive, e.g. g doesn’t flow beyond the apparent pole in the denominator of

βNSV Z(g) in (II.7), and the relation (scheme change) between the λK and the gJ

is monotonic.

In section II.B.1 and II.B.2, we review the RG flow of the R-symmetry

in the stress tensor supermultiplet, and the a-maximization method [14] for deter-

mining the superconformal R-charge at RG fixed points, as well as the extension

of [16] for cases with accidental symmetries. In section II.B.3 we review Kutasov’s

proposal for a-maximization with Lagrange multipliers [20], first for the case of

gauge interactions only. In sect. II.B.4, we use (II.6) and the R-charges R(λ)

obtained by extremizing (II.12) to compute the anomalous dimensions

γi(λ) = 3R(λI)Qi
− 2 = 1 −

√√√√1 +
λC(ri)

|G| , (II.15)

comparing with perturbative computations of γi(g). This provides both a non-

trivial check of a-maximization and its extensions, and also a means to determine

the relation, λI(g), of λI to the coupling constant g in a given scheme, e.g. that

of the NSVZ beta function. In sect. II.B.4, we will check (II.15) to three loops,

comparing with the computations of [25] (the one-loop check was already verified

in [14], and the two-loop check was discussed and verified in [20]). In sect. II.B.5

we will discuss a-maximization along the RG flow for superpotential interactions,
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obtaining the one-loop (scheme independent part) relation between the Lagrange

multiplier and the superpotential Yukawa coupling. In sect. II.B.6, after reviewing

a-maximization with Lagrange multipliers for SU(Nc) SQCD (which was discussed

in [20]), we apply this method to its magnetic SU(Nf − Nc) Seiberg [26] dual.

Analyzing the magnetic theory, we point out that the R(λI) which extremizes

(II.12) is a solution of a quadratic equation and that, in the RG flow of R(λI)

to the IR, λ can flow from increasing on one branch to decreasing λ on the other

branch.

In section II.C, we point out that (II.13), with the Lagrange multipliers

interpreted as the running coupling constants, demonstrates that RG flow is indeed

gradient flow, with metric (II.14). We compute this metric for gauge (this case

already appears in [20]) and Yukawa interactions. In the perturbative limit, we

compare these metrics with those computed by Freedman and Osborn [11], and find

perfect agreement for the leading, scheme independent coefficients. In other words,

the a-function (II.13), computed by a-maximization with Lagrange multipliers,

agrees with that proposed and computed perturbatively in [10], [11] (at least to

leading perturbative order).

In section II.D, we propose an extension of the Lagrange multiplier

method of [20] to apply for RG flows with accidental symmetries associated with

gauge invariant operators hitting their unitarity bound and becoming free. This

extension leads to a monotonically decreasing a-function for such RG flows, show-

ing in particular that a-maximization indeed ensures that aIR < aUV for these RG

flows too. We also comment in sect. II.D on the challenge of finding a natural,

monotonically decreasing a-function for RG flows associated with the Higgs mech-

anism: there are contributions (the eaten matter fields) whose effect is to reduce

a in the IR, as well as contributions (the uneaten matter fields) whose effect is to

increase a in the IR, and the challenge is to find an interpolating function which

makes it manifest that the former always outweighs the latter.

Finally, in section II.E, we illustrate some of these ideas with a new
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class of 4d SCFTs, which are simply a deformation of SQCD, where some general

fraction of the flavors are coupled to added singlets. These theories generalize and

interpolate between SQCD and its magnetic Seiberg dual [26], which are the special

cases of none or all flavors coupled to singlets. As we discuss, these new SCFTs

have a dual description, obtained as a deformation of Seiberg duality [26]. Though

these new SCFTs are simply related to SQCD, they could not have been analyzed

before the introduction of the a-maximization method [14]. In ordinary SQCD,

mesons hitting their unitarity bound coincides with the entire magnetic dual being

IR free [26]. In our “SSQCD” (for singlets + SQCD) generalizations, on the other

hand, mesons can decouple with the rest of the SCFT remaining interacting. In

the magnetic dual description, this happens when only the superpotential term

involving that meson becomes irrelevant, with the rest of the dual theory remaining

interacting.

Note added: The results of our section II.B.4 (including, in particular, the scheme

change with ∂ lnFi/∂g ∼ C(ri)
2g3 + O(g5)) were subsequently independently ob-

tained in [27].

II.B The superconformal R-symmetry, a-maximization,

and Lagrange multipliers

II.B.1 The flowing R-charges

N = 1 supersymmetry puts the stress-energy tensor Tµν into a current

supermultiplet, Tαα̇(x, θ, θ), whose first component is a U(1)R current (and other

components include the supercharge currents). For superconformal theories, this

R-current is conserved, and is the U(1)R ⊂ SU(2, 2|1) in the superconformal al-

gebra. For non-conformal theories, supersymmetry relates the dilatation current

divergence T µµ to that of this R-current, via

∇α̇
Tαα̇ = ∇αLT , (II.16)
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with LT the chiral superfield trace anomaly, e.g.

LT = − β̂(R)

64π2
(W αWα)gauge −

τIJ
96π2

(W I
αW

αJ)flavor +
c

24π2
W2 − a

24π2
Ξ, (II.17)

with the first term the gauge beta function, the second the contribution associated

with background fields coupled to flavor currents, and the last two terms the

contributions associated with a background metric and gauge field coupled to the

superconformal R-current. See [13] for a discussion of the latter terms. We’ll

refer to the U(1)R current in Tαα̇ as the superconformal R-current, whether or

not the theory is conformal, keeping in mind that in the non-conformal case this

R-symmetry is violated.

Whether or not the theory is conformal, supersymmetry relates the su-

perconformal R-charges to the scaling dimensions of the fields:

R(Qi) =
2

3
∆(Qi) =

2

3
(1 +

1

2
γi), (II.18)

with γi the anomalous dimension of field Qi. Consider a RG flow, e.g. with

asymptotically free gauge fields and matter in the UV, to an interacting RG fixed

point in the IR. Along this RG flow we can write the superconformal R-current as

Rµ = Rµ
cons +Xµ

flow, (II.19)

with Rµ
cons a conserved current, and Xµ

flow not conserved. The current Xµ
flow gets

an anomalous dimension, and becomes irrelevant, flowing to zero in the IR, so the

R-symmetry in the stress tensor supermultiplet flows as R→ Rcons in the IR.

As an example, consider SQCD: SU(Nc) gauge theory with Nf fun-

damental flavors Qf and Q̃f̃ (taking Nf in the superconformal window [26]

3
2
Nc < Nf < 3Nc). There is a unique conserved R-symmetry that commutes with

all the flavor symmetries and charge conjugation, Rcons(Qf) = Rcons(Q̃f̃) = 1− Nc

Nf
.

This R-symmetry is conserved along the entire RG flow, but it is only the R-

symmetry in the stress tensor supermultiplet at the IR SCFT fixed point. Along

the RG flow, the R-symmetry in the stress tensor supermultiplet is the sum of terms
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(II.19), with Xµ
flow → 0 in the IR (see e.g. [28]). The superconformal R-charges

evolve along the RG flow, from RUV (Qf) = RUV (Q̃f̃ ) = Rfree = 2/3 (asymptotic

freedom), to those of the IR SCFT, RIR(Qf ) = RIR(Q̃f̃ ) = Rcons = 1 − Nc

Nf
.

Using the result of [5], [13], the conformal anomaly at the UV and IR

endpoints of the RG flow are given by aUV = 3TrR3
UV −TrRUV and aIR = 3TrR3

IR−
TrRIR. ’t Hooft anomaly matching does not equate aUV and aIR, because the R-

charges themselves are different in the UV and the IR, with the R-current in Tαα̇ not

even conserved along the RG flow. E.g. for SQCD (with Nf in the superconformal

window)

aUV = 2(N2
c − 1) + 2NcNf

(
3
(
−1

3

)3

+
1

3

)
= 2(N2

c − 1) +
2

9
(2NcNf ), (II.20)

the free-field contribution expected by asymptotic freedom (afreeV = 2 and afreeQ =

2/9 in our normalizations). At the IR endpoint of the RG flow, the conformal

anomaly is

aIR = 2(N2
c − 1) + 2NcNf

(
3
(
−Nc

Nf

)3
+ Nc

Nf

)
= 4N2

c − 2 − 6N4
c

N2
f

(II.21)

≡ aSQCD(Nc, Nf ),

where we used RIR = Rcons. ’t Hooft anomaly matching is used to evaluate these

RIR ’t Hooft anomalies using the weakly coupled degrees of freedom of the UV

endpoint of the flow (since RIR, unlike the R-symmetry in Tαα̇, is here conserved

along the entire RG flow). As predicted by the a-theorem conjecture, aUV > aIR.

In the UV, the matter fields are at point (A) in fig. II.1, and in the IR they’re at

a lower point such as (C) in fig. II.1.

It’s non-trivial that aSCFT > 0, even at strongly coupled RG fixed

points, as desired for a count of massless d.o.f.. E.g. expression (II.21) satisfies

aSQCD(Nc, Nf) > aSQCD(Nc, Nf − 1), as expected by the a-theorem conjecture,

since we can RG flow from the theory with Nf flavors in the UV to one with

Nf − 1 flavors in the IR by giving a mass to a flavor. If continued to sufficiently

small Nf , (II.21) would give negative a. But Nf never gets sufficiently small to
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violate a > 0, because for Nf ≤ 3
2
Nc something different happens, as can be seen

from the fact that the mesons M = QQ̃ hit the unitarity bound R(M) ≥ 2/3; in

fact, the entire magnetic dual then becomes free [26].

II.B.2 a-maximization at RG fixed points

Let us briefly recall the argument of [14], that the exact superconformal

R-symmetry maximizes atrial = 3TrR3
t − TrRt. We write the general trial U(1)R

symmetry as Rt = R0 +
∑
I sIFI , where R0 is an arbitrary R-symmetry, the FI

are non-R flavor symmetries, and sI are real coefficients. The superconformal R-

symmetry U(1)R∗
⊂ SU(2, 2|1) corresponds to some particular values of the s∗I ,

that we’d like to determine. The result of [14] is that they’re uniquely determined

by the ’t Hooft anomaly relations

9TrR2
∗FI = TrFI for all FI , (II.22)

TrR∗FIFJ = −1

3
τIJ < 0. (II.23)

Relation (II.22) is equivalent to the statement that the exact superconformal R-

symmetry extremizes atrial = 3TrR3
t − TrRt; because atrial is a cubic function,

(II.22) is a quadratic equation for R in each variable sI . The inequality (II.23)

then implies that the correct extremum is the unique one which locally maximizes

atrial.

Relation (II.22) was obtained in [14] by using supersymmetry to relate

the two corresponding anomaly triangle diagrams, 〈FIRR〉 and 〈FITT 〉. A non-R

flavor supercurrent JI is at one vertex and the super-stress tensor Tαα̇, containing

both the superconformal U(1)R current and the stress tensor, is at the other two

vertices. Using a result of [29], the 〈JI(z1)Tαα̇(z2)Tββ̇(z3)〉 three-point function, and

hence its anomaly, is uniquely determined by the superconformal Ward identities

up to an overall normalization coefficient; this implies that the anomalies on the two

sides of (II.22) have fixed ratio, and the factor of 9 can then be fixed by considering
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the free-field case, where the fermions have R = −1/3. Another way to obtain

(II.22) is to consider the anomalous violation of the flavor supercurrent JI upon

turning on a background coupled to Tαα̇, i.e. a background metric and background

gauge fields coupled to the superconformal R-current: (II.22) is obtained upon

arguing that D
2
JI = kIW2, with no contribution proportional to the chirally

projected super Euler density Ξ [14].

The equality in (II.23), obtained in [5], relates the ’t Hooft anomaly

for 〈RFIFJ〉 to the coefficients τIJ of the flavor current two-point functions

〈JµI (x)JνJ (y)〉. The inequality in (II.23) then follows upon using unitarity to ar-

gue that the current-current two-point function coefficients are a positive definite

matrix, τIJ > 0. The extremum condition (II.22) is a quadratic equation, and

inequality (II.23) determines that the correct solution is uniquely determined to

be that which locally maximizes atrial.

For a general N = 1 SUSY gauge theory, with gauge group G and matter

chiral superfields Qi in representations ri of G, (II.22) constrains the superconfor-

mal R-charges R(Qi) ≡ Ri to satisfy

∑

i

|ri|(FI)i
(
9(Ri − 1)2 − 1

)
= 0. (II.24)

(FI)i ≡ FI(Qi) are any flavor charges of the matter fields, which must be G-

anomaly free:

TrFIG
2 =

∑

i

(FI)iT (ri) = 0, (II.25)

with T (ri) the quadratic Casimir of representation ri. Superpotential interactions

further constrain the charges (FI)i; for now, consider the case of gauge interactions

only. The general solution for Ri, satisfying (II.22) for any flavor charges (FI)i

satisfying (II.25), is

Ri = 1 − 1

3

√√√√1 +
λ∗T (ri)

|ri|
. (II.26)



24

λ∗ is a parameter that is fixed by the constraint that U(1)R be anomaly free:

TrRG2 = T (G) +
∑

i

T (ri)(Ri − 1) = T (G) − 1

3

∑

i

√√√√1 +
λ∗T (ri)

|ri|
= 0. (II.27)

The branch of the square-roots are determined by (II.23), which for gauge interac-

tions has sign corresponding to negative anomalous dimensions, since (II.26) and

(II.6) yield for the RG fixed point anomalous dimensions:

γi(g∗) = 3Ri − 2 = 1 −
√√√√1 +

λ∗T (ri)

|ri|
= 1 −

√√√√1 +
λ∗C(ri)

|G| . (II.28)

As standard, we define group theory factors as

Trri(T
ATB) = T (ri)δ

AB,
|G|∑

A=1

TAriT
A
ri

= C(ri)1|ri|×|ri|, so C(ri) =
|G|T (ri)

|ri|
,(II.29)

normalizing quadratic Casimirs so that T (G) = Nc and T (Fund) = 1
2

for SU(Nc).

As discussed in [14], a non-trivial check of a-maximization is that (II.28)

indeed reproduces the correct anomalous dimensions for perturbatively accessible

RG fixed points:

γi(g) = − g2

4π2
C(ri) +O(g4). (II.30)

Expanding the exact result (II.28) for small λ and comparing with (II.30) yields

λ∗ =
g2
∗|G|
2π2

+O(g4
∗), (II.31)

with both λ∗ and g∗ determined at the RG fixed point in terms of the group

theory factors [14] by the condition that U(1)R∗
be anomaly free (equivalently,

βNSV Z = 0).

The above results are valid as long as there are no accidental symmetries

in the IR. They require modification when IR accidental symmetries are present

[16], because we must a-maximize over all flavor symmetries, including all acciden-

tal symmetries. Restricting the landscape of allowed R-charges, by not accounting

for the possibility of mixing with all accidental symmetries, would lead to incor-

rect results. A crucial issue then becomes how one can determine what accidental

symmetries might be present.
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One particular type of accidental symmetry, which is under control, is that

associated with gauge invariant composite operators hitting a unitarity bound,

and becoming free. To be concrete, suppose that dim(M) operators M = QQ̃

become free, with an accidental U(1)M symmetry, under which only the composite

operators M are charged; the U(1)M charge is FM , with FM(M) = 1 and all

other fields neutral. a-maximization must include mixing with U(1)M : Rtrial =

R
(0)
trial+sMFM . atrial = 3TrR3

trial−TrRtrial can be computed using ’t Hooft anomaly

matching. Maximizing over sM yields R∗(M) = 2/3, as appropriate for a free

field, with R∗(M) 6= R∗(Q) + R∗(Q̃) because of the mixing with U(1)M . There

is an important residual effect on the quantity to be maximized for determining

y ≡ R(Q) and ỹ ≡ R(Q̃) [16] (see [17] for a derivation along the lines sketched

here):

a(1)(y, ỹ, . . .) = a(0)(y, ỹ, . . .) + dim(M)
(

2

9
− 3(y + ỹ − 1)3 + y + ỹ − 1

)
.(II.32)

The additional term in (II.32) vanishes when R0(M) ≡ y + ỹ = 2/3, as

does its first derivative. This ensures that a-maximization yields R∗ charges and

central charge aCFT that are continuous and smooth (first derivative continuous,

though higher derivatives are generally discontinuous) across a transition where

the operators M become free (say as a function of parameters that can be varied,

such as Nc/Nf).

II.B.3 a-maximization with Lagrange multipliers

We first review Kutasov’s proposal [20] for the case of gauge interactions

only. The idea is to implement the constraint that the superconformal U(1)R be

anomaly free at the IR fixed point via a Lagrange multiplier λ, maximizing (II.12)

a(Ri, λ) = 2|G| +∑
i |ri|[3(Ri − 1)3 − (Ri − 1)]

−λ (T (G) +
∑
i T (ri)(Ri − 1)) . (II.33)
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Extremizing (II.33) w.r.t. Ri yields

Ri(λ) = 1 − 1

3

√√√√1 +
λT (ri)

|ri|
= 1 − 1

3

√√√√1 +
λC(ri)

|G| . (II.34)

Plugging back into (II.33) yields

a(λ) ≡ a(Ri(λ), λ) = 2|G| − λT (G) +
2

9

∑

i

|ri|
(

1 +
λT (ri)

|ri|

)3/2

. (II.35)

Because Ri(λ) solves ∂a/∂Ri = 0, we have

d

dλ
a(λ) =

∂

∂λ
a(Ri, λ) = −T (G) −

∑

i

T (ri)(Ri − 1) ≡ β̂G(Ri). (II.36)

Extremizing now in λ has solution λ∗, where (II.36) vanishes, and Ri(λ∗) are

the same as in (II.26). Also, evaluating (II.33) with both Ri and λ extremized

yields a(R(λ∗), λ∗) = aSCFT , since the additional term proportional to λ in (II.33)

vanishes at λ = λ∗.

The proposal of [20] is to interpret (II.34) and (II.35) as the running R-

charges and a-function, along the entire RG flow, from the UV to the IR, with

the Lagrange multiplier λ interpreted as the running gauge coupling g2 in some

scheme. The RG flow from UV to IR corresponds to λ : 0 → λ∗. Since λ is

increasing along the RG flow to the IR, λ̇ > 0, and the beta function along the RG

flow is negative, (II.36) implies that this a-function is monotonically decreasing

along the RG flow, ȧ ≤ 0, with ȧ = 0 at precisely the IR SCFT, where the beta

function vanishes.

The RG flow can be pictured using fig. II.1. In the UV, λ = 0 and the

matter chiral superfields all have Ri = 2/3, at point (A). Extremizing (II.33) w.r.t.

Ri implies that Ri should sit at a point where the slope of the function in fig.

II.1 equals λT (ri), giving (II.34). Increasing λ thus takes Ri to where the slope

is positive, i.e. down the hill to the left of point (A), reducing a. Eventually the

flow hits a zero of the beta function and stops, with R(Qi) at some point (C) in

fig. II.1.
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II.B.4 Comparing with the explicit perturbative computations of Jack,

Jones, and North [25].

The proposal is that (II.34) gives the exact R-charges along the entire

RG flow. Hence the exact anomalous dimensions, along the entire RG flow, are

given by

γi(λ) = 2(∆(Qi) − 1) = 3Ri − 2 = 1 −
√√√√1 +

λC(ri)

|G| . (II.37)

In this subsection, we will compare this with explicit perturbative computations,

extending the higher-loop check made in [20]. Note that the expression (II.37) is ob-

viously compatible with the a-maximization result (II.28) for the exact anomalous

dimension at RG fixed points. The check here is thus also a higher-loop extension

of the check in [14] between the exact a-maximization results and explicit pertur-

bative computations, for those RG fixed point theories which are perturbatively

accessible.

Expanding (II.37) in λ̂ ≡ λ/2|G| yields (for uniform notation, we take

(−1)!! ≡ 1)

γi(λ) =
∞∑

p=1

(2p− 3)!!

p!
(−λ̂)pC(ri)

p = −λ̂C(ri) +
λ̂2

2
C(ri)

2

− λ̂
3

2
C(ri)

3 +
5λ̂4

8
C(ri)

4 + . . . . (II.38)

Comparing with the 1-loop anomalous dimensions (II.30) then yields

λ̂ ≡ λ

2|G| =
g2

4π2
+

∞∑

q=2

Aqg
2q, (II.39)

the analog of (II.31), now interpreted as applying along the entire RG flow; (II.39)

is indeed compatible with the interpretation of λ as corresponding to the running

coupling. The undetermined coefficients Aq≥2 in (II.39) reflect the standard renor-

malization scheme freedom to reparametrize the coupling constant. In general, if

one scheme has coupling g and wavefunction renormalization factors Zi(g), another

could have coupling g′(g) and wavefunction renormalization Z ′
i(g

′) = Zi(g)Fi(g).
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The anomalous dimensions and beta function of the two schemes are then related

by

γ′i(g
′) = γi(g) +

1

2
β(g)

∂ lnFi(g)

∂g
, and β ′(g′) =

∂g′(g)

∂g
β(g). (II.40)

We will compare the prediction (II.38) with the explicit higher loop computations

of [25], assuming initially that the only scheme difference is a change of coupling

constant λ = λ(g), as in (II.39), assuming initially that Fi(g) = constant in (II.40).

Keeping arbitrary Aq in (II.39), (II.38) yields

γi(g) =
∞∑

p=1

(2p− 3)!!

p!


−g

2C(ri)

4π2
−

∞∑

q=2

AqC(ri)g
2q



p

. (II.41)

Expanding yields predicted expressions for the p-loop anomalous dimensions:

γ
(1)
i = −C(ri)

4π2
g2, γ

(2)
i =

(
C(ri)

2

32π4
− A2C(ri)

)
g4,

γ
(3)
i =

(
−C(ri)

3

128π6
+ A2

C(ri)
2

4π2
− A3C(ri)

)
g6,

γ(4) =

(
5

8

C(ri)
4

(4π2)4
− 3

2
A2
C(ri)

3

(4π2)2
+

1

2
(2
A3

4π2
+ A2

2)C(ri)
2 −A4C(ri)

)
g8, etc.

(II.42)

The prediction, for general p-loops, is that the highest power of C(ri) is C(ri)
p. The

coefficient of this highest power term is hence scheme independent, and predicted

to be:

γ
(p)
i (g) =


(2p− 3)!!

p!

(
−C(ri)

4π2

)p
+

p−1∑

ℓ=1

(scheme dependent coeffs.)C(ri)
ℓ


 g2p.

(II.43)

Moreover, for each p, the scheme dependent coefficients of C(ri)
ℓ in (II.43) are

fixed in terms of those of lower orders of perturbation theory for 2 ≤ ℓ < p (only

the coefficient of the ℓ = 1 term isn’t already determined by the results from lower

orders in perturbation theory). The structure of the scheme dependent coefficients

is predicted to be such that there exists a particular scheme, corresponding to

setting all Aq>2 = 0, in (II.39) in which the p-loop anomalous dimension has only

the C(ri)
p term in (II.43).
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As discussed in [20], the predicted γ(2) in (II.42) indeed agrees with that

obtained from explicit computation of the Feynman diagrams: the scheme inde-

pendent C(ri)
2 term indeed has the same coefficient6, and matching the coefficient

of the C(ri) term fixes the coefficient A2 in the expression (II.39) for λ in the

particular scheme adopted in [25]:

A2 =
b1

64π4
, with b1 ≡ 3T (G) −∑

i T (ri), in the particular scheme of [25].

(II.44)

We can now go to three loops, comparing the prediction (II.42) with the

perturbative results of [25]. We indeed find precise agreement for the scheme in-

dependent coefficient of the g6C(ri)
3 term! However, using (II.44) in (II.42), our

prediction for the (scheme dependent) coefficient of the g6C(ri)
2 term in γ

(3)
i is

twice that obtained in [25]. Fortunately, this difference (as in (II.44)) is propor-

tional to (the leading term of) β(g). Thus (II.42) can be salvaged by including a

further scheme difference (II.40), between that of the Lagrange multiplier method

and that of [25], coming from a non-trivial difference in the wavefunction renor-

malization starting at two loops: ∂ lnFi/∂g ∼ C(ri)
2g3.

II.B.5 Including superpotential interactions

Let’s now consider the case of both gauge interactions and those asso-

ciated with a superpotential term W = h
∏
iQ

n(W )i

i . If this W is relevant, the

IR SCFT has the added constraint that the superpotential7 has total R-charge 2,

which can again be implemented with a Lagrange multiplier. The prescription is

then to modify (II.33) by adding a term λW (R(W )−2), with R(W ) =
∑
iRin(W )i.

Extremizing a(Ri, λG, λW ) w.r.t. the Ri, holding λG and λW fixed, then modifies

6In comparing with [25], note that we define anomalous dimensions as ∆(Qi) = 1 + 1
2
γi, whereas the

definition in [25] wouldn’t have the 1
2
, so γhere = 2γthere.

7We use the fact that the form of the superpotential is not renormalized along the RG flow: the
only renormalization is that of the overall coupling h (coming from the renormalization of the kinetic
terms). Non-perturbative corrections to the superpotential are avoided if there is sufficient matter, so
that

∑
i
T (ri) ≥ T (G).
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(II.34) to

Ri(λG, λW ) = 1 − 1

3

√√√√1 +
λGT (ri)

|ri|
− n(W )iλW

|ri|
. (II.45)

Plugging Ri(λG, λW ) back into a(Ri, λG, λW ) yields the a-function

a(λG, λW ) = 2|G| − λGT (G) + λW (n(W ) − 2)

+
2

9

∑

i

|ri|
(

1 +
λGT (ri)

|ri|
− n(W )iλW

|ri|

)3/2

, (II.46)

with nW =
∑
i n(W )i the degree of the superpotential. This a-function satisfies

∂a

∂λG
= β̂G, and

∂a

∂λW
= β̂W , (II.47)

proportional to the exact gauge and Yukawa beta functions, as defined in (II.7)

and (II.8).

The conjecture is again that λW can be interpreted as the running super-

potential Yukawa coupling h2, in some appropriate scheme. Using (II.34) for the

exact R-charges yields exact anomalous dimensions

γi = 3Ri − 2 = 1 −
√√√√1 +

λGT (ri)

|ri|
− λWn(W )i

|ri|
. (II.48)

We can again write this exact expression for the anomalous dimensions as

γi = 1 −
√

1 − 2γ
(1)
i , (II.49)

with

γ
(1)
i = −λGT (ri)

2|ri|
+
n(W )iλW

2|ri|
, (II.50)

to be identified with the one-loop anomalous dimension. Comparing with explicit

perturbative computations allows us to check this result, e.g. verifying the 1/|ri|
dependence in (II.48) and (II.50), and to find the leading relation between λW and

h2.

To fix the normalization, let’s first compare (II.50) with perturbation

theory for a single chiral superfield Q, with cubic superpotential W = 1
6
hQ3 (so

n(W ) = 3 in (II.50)):

γ
(1)
Q =

|h|2
16π2

=
3λW

2
hence λW =

|h|2
24π2

+ O(h4). (II.51)
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With many chiral superfields Qi and superpotential W = 1
6
hijkQiQjQk, the one-

loop anomalous dimension matrix is

γ(1)i
j =

hiklh∗jkl
16π2

. (II.52)

Suppose that the matter fields form distinct irreps of a group, with hijk = hT rirjrk ,

with T rirjrk an invariant tensor to contract the group indices of those irreps. Schur’s

lemma then ensures that the anomalous dimension matrix (II.52) is diagonal and

proportional to the identity matrix for each irrep, and taking the trace fixes the

coefficient to be

γ(1)i
j = δij

(hklmh∗klm)

16π2|ri|
(
with hklmh∗klm = |h|2T rirjrkT ∗

rirjrk
≡ |h|2|T |2

)
,

(II.53)

giving γ(1) ∼ 1/|ri|, as predicted from (II.48). Comparing (II.48) and (II.53) yields,

λW =
|h|2|T |2
24π2

+ higher loop (scheme dependent) corrections. (II.54)

As in the previous subsection, one can do higher-loop comparisons with the results

of [25], where the anomalous dimensions were computed to three loops, including

the contributions from Yukawa couplings. But there is significant scheme freedom

in redefining the Yukawa couplings, including their tensor structure, so we will

not here explicitly discuss the higher order dictionary (II.54) between λW and the

Yukawa couplings in the scheme of [25].

II.B.6 An example: electric and magnetic SQCD

For SU(Nc) SQCD, with Nf fundamental flavors Qf , Q̃f̃ , (II.34) gives

[20]

RQ(λ) = R
Q̃
(λ) = 1 − 1

3

√

1 +
λG
2Nc

, (II.55)

and thus the a-function along the flow is [20]

a(λ) = 2(N2
c − 1) − λGNc +

4

9
NcNf

(
1 +

λG
2Nc

)3/2

. (II.56)
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The asymptotically free UV theory corresponds to λ = 0, and the RG flow to the

IR corresponds to λ : 0 → λ∗, where

λG∗
2Nc

=

(
3Nc

Nf

)2

− 1 (II.57)

is where the R-charges (II.55) are anomaly free, and hence (II.56) is critical and

βNSV Z = 0.

The magnetic dual [26] is G̃ = SU(Ñc) ≡ SU(Nf −Nc) SCQD, with Nf

dual quarks qf , q̃f , and N2
f added singlets Mfg̃, with superpotential

W = hMfg̃qf q̃
g̃. (II.58)

The quantity to maximize for the RG flow of the dual theory is

a = 2(Ñ2
c − 1) + 2ÑcNf (3(Rq − 1)3 − (Rq − 1)) +N2

f (3(RM − 1)3 − (RM − 1))

−λ
G̃

(
Ñc +Nf (Rq − 1)

)
+ λh (2Rq +RM − 2) . (II.59)

Extremizing in Rq and RM , holding λ
G̃

and λh fixed yields

R(q) = R(q̃) = 1 − 1

3

√√√√1 +
λ
G̃

2Ñc

− λh

ÑcNf

, R(M) = 1 − ǫ
1

3

√√√√1 − λh
N2
f

. (II.60)

Increasing λ
G̃
, and hence the magnetic gauge group coupling g̃2, lowers R(q),

whereas increasing λh increases R(q) and R(M). Plugging back into (II.59) yields

a-function

a(λ
G̃
, λM) = 2(Ñ2

c − 1) − λ
G̃
Ñc +

4

9
ÑcNf

(
1 +

λ
G̃

2Ñc

)3/2

+ ǫ
2

9
N2
f

(
1 − λh

N2
f

)3/2

,

(II.61)

whose λ gradients give β̂
G̃

and β̂W .

The ǫ = ± in (II.60) corresponds to the choice of branch sign in the square

root, and is a main point of this subsection. Taking Nf >
3
2
Nc, the magnetic theory

is asymptotically free, and the UV limit has the free-field R-charges R(q) → 2/3

and R(M) → 2/3, and hence λ
G̃
→ 0 and λh → 0, with ǫ = +1 in (II.60). As

the magnetic theory RG flows to the IR, λh increases, and hence R(M) moves to
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R(M) > 2/3 (unitarity requires R(M) ≥ 2/3, with equality iff it’s a free field). In

fig. II.1, R(M) flows from point (A) towards point (B). If the IR fixed point is

sufficiently strong coupling, R(M) can increase past R(M) = 1, in which case λh

must first increase to N2
f on the ǫ = +1 branch of (II.60), and then we must switch

to the ǫ = −1 branch, after which λh must decrease as we flow farther in the IR.

As an extreme example, for Nf ≈ 3Nc (just below) the electric theory

is barely asymptotically free and hence weakly coupled in the IR, whereas the

magnetic dual is very strongly coupled in the IR. At the RG fixed point, we know

from the electric side that RIR(Q) ≈ 2/3, and thus RIR(M) ≈ 4/3, i.e. R(M) in

the magnetic theory flows from RUV (M) = 2/3 to RIR(M) ≈ 4/3. Using (II.60),

the flow starts in the UV with ǫ = +1 and λh increasing from zero to its maximal

value λh = N2
f , after which the continued flow to the IR is on the ǫ = −1 branch,

with λh decreasing, with λh → 0 at the IR fixed point. Though λh ≈ 0 at the IR

fixed point, the magnetic dual is certainly strongly coupled, and we expect that h2
∗

isn’t small. As we’ll discuss in the next section, in order to have positive definite

metric GIJ and monotonically decreasing a-function, we expect that the jacobian

∂λK

∂gI should be positive (positive eigenvalues); assuming the off-diagonal terms to

be negligible, this requires dλh/dh
2 > 0, suggesting the “shark fin” shape of fig.

II.2.

The slope of the beta function at a RG fixed point, β ′(α∗), is a scheme

independent quantity, which gives the anomalous dimension of the leading irrele-

vant operator along which we flow into a RG fixed point (i.e. FµνF
µν for gauge

interactions). For SUSY gauge theories, β ′(α∗) was argued to be related to the

anomalous dimension of the Konishi current at the RG fixed point [30]. Using

a claimed map of this current to that of the magnetic dual it was argued that

β ′(g2
∗)elec = β ′

min(g
2
∗, h

2
∗)mag [30]. For Nf/Nc = 3

2
+ δ, with δ ≪ 1, the mag-

netic RG fixed point is weakly coupled and β ′
min(g

2
∗, h

2
∗)mag can be perturbatively

computed; doing so, the claim of [30] leads to a prediction for β ′(α∗) in the

corresponding, strongly coupled electric theory [30], β ′(α∗) = (28/3)δ2. We do
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Figure II.2: Hypothetical plot of λh(h
2), with ǫ = +1 on the top part and ǫ = −1

on the bottom.

not, however, find this qualitative behavior, of having β ′(α∗) → 0 as δ → 0, in

(dβ̂/dλ)λ∗ = (Nf/6Nc)
2, as computed using (II.56) and (II.57). The factor from

βNSV Z/β̂ in (II.7) doesn’t help (if anything, it’s large in this limit); the only ap-

parent way to get β ′ → 0 would be if (dλ/dα)|α∗
→ 0 as δ → 0. We do not know

whether or not this is the case.

II.C RG flow = gradient flow: evidence for the strongest

version of the a-theorem

Writing the general a-function again as a(λ) = a(R(λ), λ) with

a(R, λI) = 3TrR3 − TrR+
∑

I

λI β̂
I(R), (II.62)

and R(λ) obtained by extremizing in R, the λK gradients of this function give

∂a(λ)

∂λK
= β̂K(R(λ)). (II.63)

The β̂K(R) are are proportional to the exact beta functions, which we’ll write as

β̂K(R) = fKJ (g)βJ(g). (II.64)
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Thus (II.63) demonstrates that the exact RG flow is indeed gradient flow! Writing

the λI as functions of the couplings gJ in a general scheme, we have

∂a

∂gI
=

∂a

∂λK

∂λK
∂gI

= fKJ (g)
∂λK
∂gI

βJ(g) ≡ GIJ(g)β
J(g). (II.65)

This gives the beta-functions as gradients of the a-function, as in (II.2), with metric

for the space of gI coupling constants

GIJ(g) = fKJ (g)
∂λK
∂gI

. (II.66)

A sufficient condition for GIJ(g) > 0 and the strongest version of the a-theorem

is fKJ (g) > 0 (e.g. we don’t continue past the apparent pole associated with

the denominator of βNSV Z) and the coupling constant reparametrization λK(g) is

monotonic, ∂λK

∂gI > 0.

Using (II.66) and (II.7), the exact metric for gauge couplings is (this case

appears already in [20])

Ggg =
β̂

β

dλG
dg

=
16π2

3g3

(
1 − g2T (G)

8π2

)
dλG
dg

, (II.67)

with λG(g) that for the NSVZ g scheme. As long as g2T (G) < 8π2 and λG(g) is

monotonic, (II.67) satisfies Ggg > 0. Using (II.39) and (II.44), for weak coupling

we approximate:

Ggg =
16π2

3g3

(
1 − g2T (G)

8π2

)(
g|G|
π2

+
|G|g3b1

8π4
+ . . .

)

≈ 16|G|
3g2

(
1 +

g2

8π2
(b1 − T (G))

)
. (II.68)

Likewise, for Yukawa couplings, using (II.66) and (II.8), the exact metric

is

Ghh =
β̂

β

dλh
dh

=
4

3

dλh
d(h2)

, (II.69)

which satisfies Ghh > 0 as long as λh(h) is monotonic. Using (II.54), we can

approximate for weak coupling

Ghh =
4

3

dλh
d(h2)

≈ 4

3

(
1

24π2
+ O(h2)

)
. (II.70)
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Consider e.g. the magnetic dual of SQCD, with gauge group SU(Ñc),

with gauge coupling g̃, and superpotential (II.58), with Yukawa coupling h. The

a-function (II.59) gives the beta functions as gradient flow:




∂a
∂g̃

∂a
∂h


 =

4

3




∂λ
G̃

∂g̃
∂λh

∂g̃

∂λ
G̃

∂h
∂λh

∂h






4π2g−3(1 − g̃2T (G̃)
8π2 ) 0

0 (2h)−1





βNSV Z(g̃)

βW (h)


 . (II.71)

A sufficient condition for positive metric in (II.71) is positivity of the jacobian

dλK

dgI and g̃2T (G) < 8π2. Assuming that the off-diagonal components of the metric

aren’t appreciable (they’re zero in perturbation theory), positivity of the jacobian

requires dλh/dh
2 > 0, which motivated the shark-fin shape of fig. II.2, for the case

of Nf ≈ 3Nc.

As we discussed in the introduction, we can compare metrics GIJ , as

computed above, with those computed by Osborn and collaborators in the context

of 4d field theories on curved spacetime, with spatially dependent couplings. The

supersymmetric case was considered by Freedman and Osborn in [11]. To com-

pare expressions, we need to account for our rescalings mentioned in footnote 3,

ahere(g) = (32/3)ãthere(g), and Ghere
IJ (g) = 4

3
Gthere
IJ (g). We then find that the lead-

ing, scheme independent, term in both the metric Ggg (II.68), and also the Yukawa

coupling metric (II.70), agree precisely with those found by Freedman and Osborn

[11]! (The coefficient of the subleading, scheme dependent term in (II.68), how-

ever, does not agree with that obtained in [11]: rather than b1 − T (G) of (II.68),

the coefficient obtained in [11] was 5
2
b1 − T (G). The apparent difference, ∼ b1,

could be completed at higher orders into a difference ∼ β(g), which would at least

vanish at the endpoints of the RG flow. More work is needed to verify if this is a

real difference in the metric and a-function, or perhaps associated with a scheme

discrepancy.)

The method of Osborn was to consider renormalization for spatially de-

pendent coupling constants, e.g. with GIJ coming from beta functions βµν ∼
GIJ(g)∂µg

I∂νg
J . This is very reminiscent of the AdS/CFT correspondence, where

coupling constants correspond to fields in the bulk, with GIJ naturally associated
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with the sigma model metric Gbulk
IJ of these bulk fields. Indeed, in [31] it was

argued that the AdS holographic RG flow leads to ċ = −GIJβ
IβJ , with metric

GIJ = 2cGbulk
IJ . This again suggests that RG flow is gradient flow, with positive

definite metric, though it’s important to emphasize that the AdS/CFT correspon-

dence seems limited to a very restricted subset of all possible CFTs. In any case,

GIJ = 2cGbulk
IJ gives a nice insight into the result for the leading perturbative

metric, Ggg ∼ |G|/g2 (II.68): it matches with the (SL(2, Z) invariant) dilaton

kinetic terms in the bulk: Lbulk = −1
2
(τ2)

−2∂µτ∂
µτ (here τ = θ

2π
+ 4πig−2, so

1
4
(d(log τ2))

2 = (d(log g))2).

II.D a-maximization along RG flows with accidental sym-

metries, and comments about Higgsing

The Lagrange multiplier method needs to be extended in order to apply

to RG flows with accidental symmetries, or those associated with Higgsing [20].

In this section, we’ll discuss an extension of the proposal of [20] for the case of

accidental symmetries associated with gauge invariant operators hitting the uni-

tarity bound and becoming free. This extension defines a monotonically decreasing

a-function along such RG flows. This shows, in particular, that a-maximization

indeed ensures that aUV > aIR is automatically satisfied for such RG flows. We’ll

next discuss Higgsing RG flows, where we do not yet have a good candidate a-

function, or general argument for aUV > aIR.

II.D.1 Accidental symmetries

Accidental symmetries, present in the IR but not in the UV, challenge the

a-theorem conjecture. Additional symmetries broaden the landscape over which

we’re maximizing atrial, increasing the value of aIR. To avoid violating aIR < aUV

thus requires that the IR theory must not have too much accidental symmetry;

at present, however, we do not know of a general way to prove that the possible
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accidental symmetries are always sufficiently bounded so as to be compatible with

aIR < aUV . Here we will limit our discussion to a particular type of accidental sym-

metry, that of a gauge invariant operator hitting its unitarity bound and becoming

free (without additional free fields, such as free magnetic quarks and gluons, whose

existence would have been hard to predict from the spectrum of gauge invariant

operators of the UV theory).

Near the UV start of the RG flow, we’ll use for the a-function, following

[20],

a(0)(R, λI) = 3TrR3 − TrR+
∑

I

λI β̂I(R). (II.72)

Extremizing this in the Ri has solution R
(0)
i (λI), and plugging back in gives a-

function a(0)(λI) = a(0)(Ri(λI), λI). We propose that these R(0)(λI) and a(0)(λI)

give the R-charges and the a-function initially along the RG flow, up until the point

where the accidental symmetry arises: until the flow hits a value of the Lagrange

multiplier/coupling constants λ
(0)
I where a gauge invariant composite operator M

hits R(M) = 2/3. At that point on the RG flow, including the effect of the

accidental U(1)M means patching onto another a-function, with the correction

term of [16] added to (II.72):

a(1)(Ri, λI) = a(0)(R, λI) + dim(M)
(

2

9
− 3(RM − 1)3 +RM − 1

)
, (II.73)

with RM =
∑
iRimI for M =

∏
iQ

mi
i . Now (II.73) is extremized to find R

(1)
i (λI),

and plugging these back into (II.73) gives a-function a(1)(λI) = a(1)(R
(1)
i (λI), λI).

If other operators M ′ hit R(M ′) = 2/3 further down the RG flow, we’d similarly

patch onto the a-function a(2) obtained by adding the analogous correction term

to (II.73).

So the running R-charges Ri(λI) and a-function a(λI) along the entire

RG flow are proposed to be given by this patching procedure, with the patches oc-

curring at every place along the RG flow where some gauge invariant operator hits

the unitarity bound. The important point is that, despite the patching together,

the Ri(λI) and a(λI) thus obtained are continuous along the entire RG flow, as



39

presumably are Ṙi(λI) and ȧ(λI), because the added term in (II.73) vanishes at

the patching location, where RM = 2/3, as does its first derivative w.r.t. RM .

Moreover, the patched-together a-function still satisfies

∂a(λI)

∂λI
= β̂I(R),

with β̂I(R) the same linear combinations of the (patched together) R-charge Ri,

proportional to the exact beta functions, as in (II.7) and (II.8). Thus the patched-

together a-function continues to satisfy ȧ(λI) < 0. In particular, for the endpoints

of the RG flow, this demonstrates that a-maximization automatically ensures that

the accidental symmetries of the above type never violate aIR < aUV .

Here is a suggestive way to obtain this same patching-together prescrip-

tion. Consider coupling the N2
f composite, gauge invariant meson operators Qf Q̃g̃

to the same number of added sources, Lfg̃, and also introduce into the theory the

same number of added gauge invariant fields Mfg̃, with added superpotental

W = Lfg̃Qf Q̃g̃ + hLfg̃Mfg̃. (II.74)

We think of the second term, with coupling h, as a perturbation. Starting at

h = 0, we have R(M) = 2/3 and R(L) = 2 − R(QQ̃), so the h perturbation is

relevant if R(QQ̃) > 2/3. In this case, the effect of the two terms in (II.74) is that

L and M are both massive, and hence should be integrated out. The L e.o.m. sets

Mfg̃ = Qf Q̃g̃, the M e.o.m. sets Lfg̃ = 0, and the upshot is that we’re back to

were we would have been had we not included the 2N2
f additional fields Lfg̃ and

Mfg̃. In particular, these massive fields make cancelling contributions to ’t Hooft

anomalies and hence to the a-function a = 3TrR3 − TrR.

On the other hand, if R(QQ̃) < 2/3, the second term in (II.74) is irrele-

vant, and the N2
f fields Mfg̃ are then decoupled free fields, with R(M) = 2/3. This

gives the 2/9 term in (II.73), and the remaining additional terms in (II.73) are the

contribution of the fields Lfg̃ (whose R-charge is fixed by the first term in (II.74) to

be R(L) = 2−R(QQ̃)). The a-function computed with these added fields and su-

perpotential interactions involves additional Lagrange multipliers, associated with
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the added superpotential terms, but should be equivalent to the patched-together

prescription described above.

II.D.2 Higgsing

Giving a chiral superfield an expectation value breaks the gauge group

G→ H . There is then a Higgsing RG flow, from the unbroken G theory in the UV

(as the vev’s then negligible), to the H theory in the IR, with the massive G/H

fields decoupled. We do not have a candidate a-function, or a general argument

that aIR < aUV , for Higgsing RG flows. We’ll simply illustrate the challenge here,

taking Wtree = 0 for simplicity.

When G→ H , the G matter fields Qi decompose into H representations

as Qi →
∑
µQiµ, some of which are eaten. As with other RG flows, we can compute

∆a ≡ aIR − aUV from the IR vs UV R-charges of the chiral superfields, with the

gauge field contribution unchanged and canceling in ∆a. The fact that the low

energy group does change, from G to H , is accounted for by the contribution to

∆a of the |G| − |H| matter fields eaten by the Higgs mechanism. At the IR fixed

point, these eaten matter fields will have RIR(Qeaten) = 0, as seen by the fact that

their fermionic components pair up to get a mass with the G/H gauginos; their

contribution to ∆a then correctly accounts for G→ H . We’ll write the total ∆a as

∆a = ∆aeaten + ∆auneaten. The a-theorem conjecture predicts ∆a < 0. The eaten

contribution satisfies ∆aeaten < 0 if RUV (Qeaten) > 0, e.g. at point (C) in fig. II.3,

which is the case for RG fixed points with Wtree = 0 and sufficient matter to avoid

generating Wdyn. (Theories with Wtree can have matter with negative R-charge,

as seen e.g. in [16] for the theory with Wtree = TrXk+1.)

Very generally, however, ∆auneaten > 0, because Higgsing leads to an IR

theory that is less asymptotically free than the UV theory. The uneaten matter

fields move up the hill of fig. II.3 (which is a blown-up portion of fig. II.1), from

point (C) in the UV, to a larger value in the IR. Those that are H-charged move

partially up the hill, and those that are H-singlets are IR free, and hence move all
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Figure II.3: Eaten and uneaten matter fields contribute oppositely to ∆a.

the way up to point (A) in the IR. The a-theorem prediction that ∆a < 0 thus

requires that ∆aeaten be sufficiently negative, to compensate for ∆auneaten > 0.

To illustrate all this, consider SU(Nc) SQCD with Nf flavors in the su-

perconformal window range 3
2
Nc < Nf < 3Nc. As reviewed in sect. II.B, this

theory has

aSCFT = aSQCD(Nc, Nf) ≡ 2(N2
c − 1) + 2NcNf

(
Nc

Nf
− 3

N3
c

N3
f

)
. (II.75)

Giving an expectation value to one of the flavors yields a SU(Nc) → SU(Nc − 1)

Higgsing RG flow, with Nf → Nf − 1, and a-theorem prediction

aSQCD(Nc, Nf ) > aSQCD(Nc − 1, Nf − 1) +
2

9
(2Nf − 1), (II.76)

with the last term from the 2Nf −1 uneaten singlets (decomposing (Nc) → (Nc−
1)+(1)). This inequality can be thought of as a statement about the contributions

of the 2NcNf matter fields to ∆a ≡ aIR − aUV . In the UV limit of the Higgsing

flow, all of these fields start at point (C) in fig. II.3, with RUV = 1 − (Nc/Nf). In

the IR limit, the 2(Nc−1)(Nf −1) uneaten charged matter fields move slightly up

the hill of fig. II.3 (to RIR = 1− (Nc−1/Nf−1)), contributing to an increase in a.

The 2Nf−1 uneaten singlets also contribute positively to ∆a, moving up the hill in

fig. II.3 from point (C) to point (A), with R = 2/3. Only the |G| − |H| = 2Nc− 1
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eaten matter fields contribute to a decreased value of aIR, moving down the hill of

fig. II.3 from point (C) to RIR(Qeaten) = 0.

Since ∆auneaten > 0, it’s non-trivial to prove that the eaten matter field

contribution is sufficient to ensure that ∆a < 0. Indeed, (II.76) would be violated

for Nf sufficiently small, if we didn’t account for the effect of accidental symmetries

for Nf ≤ 3
2
Nc. Upon taking into account these accidental symmetries, ∆a < 0 is

satisfied. Proving that Higgsing RG flows always satisfy ∆a < 0 thus generally

requires accounting for accidental symmetries. Perhaps it’s possible to prove that

aIR < aUV is satisfied whenever the unitarity bound condition is satisfied by all

gauge invariant operators, with accidental symmetries giving R = 2/3 for any

gauge invariant operators appearing to violate the unitarity bound, but we have

not found an effective way to implement this.

An attempt to generalize the proposal of [20] for defining a flowing a-

function for Higgsing RG flows would be to introduce several Lagrange multipliers,

to interpolate along each of the three flows depicted in fig. II.3, λe for the eaten

matter fields, λu.c. for the uneaten charged matter, and λu.s. for uneaten singlet

matter fields. The Higgsing RG flow would then correspond to some path λe(t),

λu.c.(t), λu.s.(t), along which we’d like to find a monotonically decreasing a-function.

Some clever choice of path would be required, since only the flow associated with

λe has the needed sign of decreasing a.

II.E New SCFTs from SQCD with singlets: SSQCD

In this section, we illustrate some of the points discussed in the previous

sections with a new set of examples. Consider SU(Nc) SQCD with Nf fundamental

flavors Qi and Q̃ĩ (with i = 1 . . . Nf), and N ′
f additional flavors Q′

i′ and Q̃′
ĩ′

(with

i′ = 1 . . .N ′
f ), with the N ′

f flavors coupled to N ′
f
2 singlets Si

′j̃′ by a superpotential

term

W = hSi
′ j̃′Q′

i′Q̃
′
j̃′. (II.77)
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For h = 0, the theory is just SQCD, with Nf + N ′
f flavors, which flows to an

interacting SCFT in the superconformal window 3
2
Nc < Nf + N ′

f < 3Nc. The

superpotential (II.77) is a relevant deformation of these SCFTs, h : 0 → h∗ 6= 0,

driving a RG flow to a new family of SCFTs in the IR, labeled by (Nc, Nf , N
′
f).

The usual SQCD RG fixed points are the special case N ′
f = 0 (electric description)

or Nf = 0 (dual, magnetic description).

The SU(Nf + N ′
f − Nc) Seiberg dual [26] of the theory with h = 0 can

be deformed by the superpotential (II.77), whose effect in the dual is simply a

mass term that pairs up the N ′
f
2 added singlets S with the N ′2

f mesons M ′ (which

Q′Q̃′ map to). The dual description of the new RG fixed points associated with

(II.77) is thus simply a deformation of Seiberg duality, where we integrate out

the massive gauge singlets S ′ and M ′. What’s left is an SU(Ñc) gauge theory,

with Ñc ≡ Nf + N ′
f − Nc, with Nf flavors of dual quarks, q′, and q̃′ (if Q ∈ Nf

of SU(Nf )L, then q′ ∈ Nf ), and N ′
f flavors q, and q̃ (if Q′ ∈ N′

f
of SU(N ′

f ),

then q ∈ N
′
f
), and N2

f gauge singlets Mij̃ , and 2NfN
′
f singlets Pij̃′, and P ′

ĩj′
, with

superpotential (suppressing flavor and color indices)

W = Mq′q̃′ + Pq′q̃ + P ′q̃′q. (II.78)

The first term in (II.78) is similar to the superpotential (II.77) of the electric

theory, with an exchange Nf ↔ N ′
f in the number of flavors coupled to singlets.

But the additional P and P ′ terms in (II.78) distinguish the magnetic duals from

the original electric theory (II.77, so the duality does not simply equate the SCFT,

obtained from the electric theory with (Nc, Nf , N
′
f ), to that obtained from the

electric theory with (Nf+N ′
f−Nc, N

′
f , Nf). Duality equates these two SCFTs only

for the special case of SQCD, NfN
′
f = 0; for NfN

′
f 6= 0, the electric (Nc, Nf , N

′
f)

and (Nf + N ′
f − Nc, N

′
f , Nf) theories are distinct (each with their own, distinct,

magnetic dual). The duality map for mesons, singlets, and baryonic operators is

QQ̃→M, S → −qq̃, QQ̃′ → P, Q′Q̃→ P ′, QrQ′Nc−r ↔ q′Nf−rqN
′

f
−Nc+r,

(II.79)
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(with r an arbitrary integer).

Both the electric and magnetic theories have an SU(Nf )L × SU(Nf )R ×
SU(N ′

f )L × SU(N ′
f )R × U(1)B × U(1)B′ × U(1)F × U(1)R0 flavor symmetry. E.g.

taking h 6= 0 in (II.77) breaks the axial SU(Nf+N
′
f) to SU(Nf )×SU(N ′

f)×U(1)F ,

so the U(1)F charges are F (Q) = F (Q̃) = N ′
f/(Nf + N ′

f ) and F (Q′) = F (Q̃′) =

−Nf/(Nf +N ′
f). It is straightforward to list all of the flavor charges in the electric

and magnetic duals, and to verify that they are compatible with the mappings

(II.79), and also to verify that all of their ’t Hooft anomalies match. All of these

checks are guaranteed to work, because they worked for the original Seiberg duality

[26], and the above new SCFTs and duality are obtained from those via a relevant

deformation and its map to the dual description.

Despite the fact that these new SCFTs are such a simple deformation

of those associated with SQCD, they could not have been quantitatively analyzed

prior to the introduction [14] of the a-maximization method for determining the su-

perconformal R-charges. The reason is that there are three independent R-charges,

R(Q) = R(Q̃) ≡ y, R(Q′) = R(Q̃′) ≡ y′, and R(S) ≡ z, but only two constraints

among them, anomaly freedom and the constraint that the superpotential (II.77)

respect the R-symmetry:

Nc+Nf(R(Q)−1)+N ′
f (R(Q′)−1) = 0, and R(S)+2R(Q′) = 2. (II.80)

This is because the R-symmetry can mix with the U(1)F flavor symmetry, whose

effect is to allow R(Q) and R(Q′) to differ. We’ll first discuss a-maximization at

the RG fixed points, imposing (II.80) at the outset, and then next a-maximization

along the RG flow, with (II.80) imposed along the lines of [20], with Lagrange

multipliers.

II.E.1 a-maximization at the RG fixed point

Before getting started, it’s worth noting that the superconformal R-

charges, obtained via a-maximization in the above electric and magnetic dual
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theories, will be compatible with the duality maps (II.79, which require

2R∗(Q) = R∗(M), R∗(S) = 2R∗(q), R∗(Q) +R∗(Q
′) = R∗(P ). (II.81)

The two duals have the same flavor symmetries and ’t Hooft anomalies, so we’re

maximizing the same function atrial(s) in both descriptions. The result is that the

superconformal R-charges of the electric and magnetic theories are related by

R∗(q
′) = 1 −R∗(Q), R∗(q) = 1 − R∗(Q

′), (II.82)

which imply (II.81).

In the electric theory we have R(Q) = R(Q̃) ≡ y, R(Q′) = R(Q̃′) ≡ y′,

and R(S) ≡ z, which are subject to the constraints (II.80) at the RG fixed point.

We use these to eliminate y′ and z in favor of y, and we then obtain y at the RG

fixed point by maximizing atrial = 3TrR3 − TrR, which we write as (taking Nc,

Nf , and N ′
f all large, to simplify the expressions, holding fixed x ≡ Nc/Nf and

n ≡ N ′
f/Nf):

a

2NfN ′
f

(x, n, y) =
x

n

[
3(y − 1)3 − y + 1

]
+ x

[
3
(

1 − y − x

n

)3

− 1 − y − x

n

]

+
n

2

[
3
(
2
(
x+ y − 1

n

)
− 1

)3

−
(
2
(
x+ y − 1

n

)
− 1

)]
+
x2

n
. (II.83)

Maximizing this with respect to y determines the superconformal R-charge to be

y =
1

3x− 3n(4 + nx)

(
− 3(2n(2 + n) + (n(n− 4) − 1)x+ x2)

+
√
n2(9x2(x− 2n)2 + 8n(1 − n2)x+ 4n2)

)
. (II.84)

The result (II.84) is only valid over a range of x and n for which no

gauge invariant operator violates the unitarity bound. The first operator to hit

the unitarity bound is the meson M = QQ̃, which hits the unitarity bound when

R(Q) = 1/3; solving (II.84) for the value xM (n) such that y(xM(n)) = 1/3, the

unitarity bound is hit at xM(n) = 1
3
(1 + 5n −

√
1 − 14n+ 13n2). So (II.84) is
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Figure II.4: Phases of SSQCD.

valid for x < xM(n), and needs correction to account for the accidental symmetry

associated with the free-fields M when x ≥ xM(n).

We also know that, when Nf +N ′
f ≤ 3

2
Nc, i.e. when x ≥ xFM(n) ≡ 2

3
(1+

n), the theory is in a free magnetic phase, with IR free quarks, SU(Nf +N ′
f −Nc)

gluons, and singlets M , P , P ′. The phases are as in fig. II.4: for n = N ′
f/Nf < 2,

(e.g. for the usual SQCD, where n = 0) the theory goes directly from having no

accidental symmetries to free magnetic phase, where the entire magnetic theory is

IR free. On the other hand, for n ≥ 2, there is a wedge in the (x, n) parameter space

where the field QQ̃ hits its unitarity bound, while the dual is still asymptotically

free. In this wedge, the IR theory remains an interacting SCFT, with only the

field M becoming free and decoupled.

In the wedge xM < x < xFM , where M = QQ̃ hits the unitarity bound,

but the theory is not in the free magnetic phase, the effect of the accidental U(1)M

symmetry is, as in [16], simply to replace the M field contributions with those of

free fields: we instead maximize the quantity

a(1) = a(0) +
(

2

9
− 3(2y − 1)3 + (2y − 1)

)
N2
f . (II.85)

The maximizing solution for the superconformal R-charges, and the maximal value

a for the central charge, are pasted-together with the solution (II.84) at x = xM (n).
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Because the added quantity in (II.85) has a second order zero at y = 2/3, these

pasted together quantities are continuous and smooth (first derivatives match) at

x = xM(n).

The magnetic description of the decoupling of M in the wedge xM (n) <

x < xFM(n) is very simple, the term Mq′q̃′ in the dual superpotential (II.78) is

then irrelevant: when its coefficient is small, R(Mq′q̃′) > 2, because R(M) ≈ 2/3

and R(q′) > 2/3 for x > xM(n). In the IR, this irrelevant term goes away, and the

dual superpotential becomes

Wmag = Pq′q̃ + P ′q̃′q. (II.86)

When we now compute ãtrial in the magnetic theory, with superpotential (II.86),

we obtain the same result as on the electric side, reproducing the correction term

in (II.85).

II.E.2 a-function, via a-maximization with Lagrange multipliers

For the electric theory, a-maximization along the RG flow, imposing

(II.80) with Lagrange multipliers, yields

R(Q) = 1 − 1

3

√

1 +
λG
2Nc

, R(Q′) = 1 − 1

3

√√√√1 +
λG
2Nc

− λS
NcN ′

f

,

R(S) = 1 − 1

3
ǫ

√√√√1 − λS
N ′2
f

, (II.87)

with both branches ǫ = ±1 generally needed, as we discussed in sect. II.B.6.

Plugging these back into a(Ri, λI) yields a(λG, λS),

a =
4

9
NcNf

(
1 +

λG
2Nc

)3/2

+
4

9
NcN

′
f

(
1 +

λG
2Nc

− λS
NcN ′

f

)3/2

+
2

9
N ′2
f ǫ

(
1 − λS

N ′2
f

)3/2

+2N2
c − λGNc + λS. (II.88)

It would be interesting to determine the RG flow path of the gauge coupling and

superpotential coupling Lagrange multipliers, λG(t) and λS(t) to their eventual IR
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values, where (II.88) is critical. It’s gradient flow, as discussed in sect. II.C, but

to actually determine the full trajectory requires knowing the full λI(g).

Similarly, a-maximization along the RG flow, with Lagrange multipliers,

in the magnetic dual yields

R(q) = 1 − 1

3

√√√√1 +
λ̃G

Ñc

− λ̃P

2ÑcN ′
f

, R(M) = 1 − 1

3
ǫM

√√√√1 − λ̃M
N2
f

R(q′) = 1 − 1

3

√√√√1 +
λ̃G

Ñc

− λ̃M

ÑcNf

− λ̃P

2ÑcNf

R(P ) = 1 − 1

3
ǫP

√√√√1 − λ̃P
2NfN ′

f

.

(II.89)

In the wedge xM(n) < x < xFM(n), where M decouples but the theory is otherwise

interacting, the RG fixed point has λ̃∗M = 0. This happens when R(q′) > 2/3, hence

λ̃P/2Nf > λ̃G in (II.89).

II.E.3 Predictions and Checks of the a-theorem

Having obtained the superconformal R-charge R∗ via a-maximization,

as discussed above, we can compute a(Nc, Nf , N
′
f ) = 3TrR3

∗ − TrR∗ for our new

SCFTs. There are many RG flows associated with these theories, and in this

subsection we’ll discuss and check some of the aUV > aIR predictions.

First, there is the RG flow associated with superpotential (II.77). In

the UV limit of this flow, h → 0, and the theory is the SCFT associated with

ordinary SQCD with Nf + N ′
f flavors plus the N ′2

f decoupled singlets, so aUV =

aSQCD(Nc, Nf +N ′
f )+ 2

9
N ′2
f . The IR limit is our new SSQCD superconformal field

theory, with aIR = a(Nc, Nf , N
′
f ), so aUV > aIR means

2N2
c + 2Nc(Nf +N ′

f)

(
3(− Nc

Nf +N ′
f

)3 − (− Nc

Nf +N ′
f

)

)
+

2

9
N ′2
f > a(Nc, Nf , N

′
f).

(II.90)

For simplicity, we again consider the limit of large Nc, Nf , and N ′
f , holding fixed

x ≡ Nc/Nf and n ≡ N ′
f/Nf . Defining â(x, n) ≡ a(Nc, Nf , N

′
f)/2NfN

′
f , (II.90)

becomes
x2

n
+ x(1 +

1

n
)
(
−3(

x

1 + n
)3 +

x

1 + n

)
+
n

9
> â(x, n). (II.91)
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We have verified numerically that this prediction is indeed satisfied.

Another RG flow is to start at our SSQCD fixed point and deform by

giving a Q flavor a mass. The IR theory is again SSQCD, but with Nf → Nf − 1,

and aUV > aIR becomes

a(Nc, Nf , N
′
f ) > a(Nc, Nf − 1, N ′

f). (II.92)

In the limit discussed above, this becomes

â(x, n) > (1 − ǫ)â(x(1 + ǫ), n(1 + ǫ)), (II.93)

with ǫ ≡ 1/Nf > 0. The order ǫ term then gives

0 >

(
x
∂

∂x
+ n

∂

∂n
− 1

)
â(x, n), (II.94)

which must hold for all x and n in the conformal window, 3x > 1 + n > 3
2
x. In

fig. II.5, we have plotted the function on the right hand side of (II.94). The plane

at the top of the graph indicates both the conformal window as well as where the

right hand side of (II.94) would equal 0, so aIR < aUV is indeed always satisfied in

the conformal window.

Now consider giving a mass to one of the q′ flavors, which is equivalent

to giving, say SN ′

f
N ′

f
a non-zero expectation value. This drives the theory in the

IR to a similar RG fixed point, with Nc → Nc, Nf → Nf , and N ′
f → N ′

f − 1. In

addition, the IR fixed point has 2N ′
f − 1 decoupled free singlets, coming from the

SiN ′

f
. The a-theorem thus requires

a(Nc, Nf , N
′
f) > a(Nc, Nf , N

′
f − 1) +

2

9
(2N ′

f − 1). (II.95)

As above, we divide both sides by 2NfN
′
f and take the term proportional to ǫ ≡

1/Nf > 0 to write this inequality as

â +
∂â

∂n
>

2

9
n. (II.96)

Once again, we find numerically that (II.96) is satisfied.
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Figure II.5: Q mass RG flow, checking aIR < aUV , i.e. 0 > (x ∂
∂x

+ n ∂
∂n

− 1)â in

the conformal window.

Now consider giving QNf
Q̃Nf

a non-zero expectation value. This leads to

a(Nc, Nf , N
′
f ) > a(Nc − 1, Nf − 1, N ′

f) +
2

9
(2Nf + 2N ′

f − 1), (II.97)

with the last term from the uneaten SU(Nc − 1) singlets, which are IR free. We

can write (II.97) as

â(x, n) > (1 − ǫ)â((x− ǫ)(1 + ǫ), n(1 + ǫ)) +
2

9
(1 +

1

n
)ǫ, (II.98)

so, taking the ǫ term,

0 > −(1 + (1 − x)
∂

∂x
− n

∂

∂n
)â+

2

9
(1 +

1

n
). (II.99)

This inequality is shown in fig. II.6, where there appears to be a region where

it’s violated. But within the conformal window, the inequality is indeed satisfied.

(Outside of the conformal window, additional contributions of free fields come to

the rescue.)

There is a similar Higgsing RG flow upon giving Qf Q̃
′
Nf

an expectation

value (i.e. P in the dual), and aUV > aIR is

a(Nc, Nf , N
′
f) > a(Nc − 1, Nf , N

′
f − 1) +

2

9
(2Nf), (II.100)
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Figure II.6: Q vev Higgsing satisfies aIR < aUV in the conformal window.

where there are fewer singlets than in (II.97) because some pair up with the Si′N ′

f

to get a mass. We write (II.100) as

â(x, n) >
(
1 − 1

n
ǫ
)
â(x− ǫ, n− ǫ) +

2

9n
ǫ, (II.101)

and hence

(
1

n
+

∂

∂x
+

∂

∂n
)â >

2

9n
. (II.102)

Once again, we numerically verified that this inequality is true.

This chapter is a reprint of the material as it appears in E. Barnes, K. In-

triligator, B. Wecht and J. Wright, “Evidence for the strongest version of the 4d

a-theorem, via a-maximization along RG flows,” Nucl. Phys. B 702, 131 (2004),

and on the preprint archive, http://www.arxiv.org/hep-th/0408156.



III

N=1 RG flows, Product Groups,

and a-Maximization

III.A Introduction

Asymptotically free gauge theories have various possible IR phases, one

being the “non-Abelian Coulomb phase,” which is an interacting conformal field

theory RG fixed point, where all beta functions vanish. A classic example is N = 1

SU(Nc) SQCD with Nf massless flavors, which flows to a SCFT in the IR for Nf

within the Seiberg superconformal window [26] 3
2
Nc < Nf < 3Nc. For Nf ≤ 3

2
Nc,

the theory is instead in a free magnetic SU(Nc − Nf ) phase in the IR. (See e.g.

[32] for a review and references.) Our prejudice is that the interacting SCFT

phase is rather generic for asymptotically free SUSY gauge theories with enough

massless matter to avoid dynamical superpotentials, i.e. with massless matter

representation R such that T (G) < T (R) < 3T (G), with T (R) the quadratic

Casimir of R and T (G) that of the adjoint. The theory at the origin is then either a

non-trivial free field solution of ’t Hooft anomaly matching (as in the free magnetic

phase) or an interacting SCFT. Unfortunately, unless one has a conjectured dual

description1, there is no simple test for directly determining if the IR phase is a

1Even with a non-trivial free field solution of ’t Hooft anomaly matching, e.g. as in the example
of [42], there’s the possibility that the matching is a fluke, and that the theory actually flows to an

52
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SCFT or (fully or partially) IR free magnetic.

There is an essentially endless landscape of possible RG fixed point SCFTs

to explore, coming from various gauge groups, including product groups, and mat-

ter representations. Here we’ll consider examples with product gauge groups, e.g.

the theory

gauge group: SU(Nc) × SU(N ′
c)

matter: X
⊕
X̃ ( , )

⊕
( , ),

Qf
⊕
Q̃f̃ ( , 1)

⊕
( , 1) (f, f̃ = 1 . . .Nf ),

Q′
f ′
⊕
Q̃′
f̃ ′

(1, )
⊕

(1, ) (f ′, f̃ ′ = 1 . . .N ′
f ).

(III.1)

We’ll be interested in when this theory flows to an (either fully or partially) in-

teracting SCFT and when various dualities apply, e.g. dualizing one gauge group

with the other treated as a spectator. We’ll also be interested in the supercon-

formal window for a duality proposed in [36], for the above theory deformed by

superpotential WA2k+1
= Tr(XX̃)k+1.

With multiple couplings, e.g. the two gauge couplings of (III.1), the RG

running of one coupling can radically affect that of the other, possibly driving it

into another basin of attraction. For example, as depicted in fig. III.1, there can

be saddle point IR fixed points (A) and (B) when one or the other coupling is

tuned to precisely zero, but which are unstable to any perturbation in the other

coupling: the generic RG flows then end up at point (C) in the IR, with both g∗

and g′∗ nonzero. Another possibility, shown in fig. III.2, is that g′ is interacting in

the IR only if g = 0, but that any arbitrarily small, nonzero, g would eventually

overwhelm g′, and drive g′ to be IR irrelevant, g′ → 0 in the IR; generic RG flows

then end up at point (A), with g′∗ = 0. Fig. III.3 depicts an opposite situation,

where an otherwise IR free coupling g′ is driven to be interacting in the IR by the

coupling g. Fig. III.4 depicts two separately IR free couplings, which can cure

each other and lead to an interacting RG fixed point (this happens for e.g. the

gauge and Yukawa couplings of the N = 4 theory, when we break to N = 1 by

taking them to be unequal).

interacting SCFT after all, as was argued to be the case for another example in [43].



54

g’

��

����

������������������������������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��������������������

A

B C

g

��

Figure III.1: A and B are saddle-

points.
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Figure III.2: The plop. B is a saddle-

point.
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Figure III.3: The opposite of fig.

III.2. g′ is IR free for g = 0, but g 6= 0

drives g′ IR interacting.
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Figure III.4: Two separately irrele-

vant couplings combine to be interact-

ing. N = 4 SYM is such an example.
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The theory (III.1) realizes the RG flows depicted in fig. III.1 or fig. III.2,

depending on the values of the parameters (Nc, N
′
c, Nf , N

′
f). With an additional

superpotential, as is present if we dualize one of the factors in (III.1), the phe-

nomenon of fig. III.3 is also realized.

We’ll focus here on supersymmetric theories, such as (III.1) with N = 1

supersymmetry, where some exact results can be obtained. However, we expect

the phenomena of figs. III.1 and III.2 to occur even in non-supersymmetric G×G′

gauge theories, with matter in mixed G × G′ representations, at least when the

matter content is chosen such that each group is just barely asymptotically free.

There can then be RG fixed points in the perturbative regime, as can be seen by

considering the beta functions to two loops:

βα =
α2

2π
(−b1 + b2α+ c2α

′) +O(α4), and βα′ =
α′2

2π
(−b′1 + b′2α

′ + c′2α) +O(α4),

(III.2)

(writing α = g2/4π and α′ = g′2/4π, and O(α4) refers to powers of either α or

α′), where the c2 and c′2 terms come from the matter in mixed representations;

see e.g. [44]. Choosing the matter content to be such that the groups are barely

asymptotically free, i.e. such that b1 and b′1 are small positive numbers, it is then

found that the two-loop coefficients (b2, c2, b
′
2, c

′
2) in (III.2) are positive and not

especially small (e.g. in large Nc); this allows for RG fixed points to exist at

relatively small values of the fixed point coupling, so that this argument for the

RG fixed point’s existence could be qualitatively reliable.

In particular, to two loops, we find zeros of the beta functions (III.2) at

three points: point (A) at (α∗, α′
∗)A ≈ (b1/b2, 0), point (B) at (α∗, α′

∗)B ≈ (0, b′1/b
′
2),

and point (C), at



α∗

α′∗



C

≈ 1

b2b′2 − c2c′2




b′2 −c2
−c′2 b2





b1

b′1


 . (III.3)

For point (C) to actually exist, the values of α∗ and α′
∗ in (III.3) must be positive.

It is found that the determinant denominator in (III.3) is generally positive, so the
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positivity condition for RG fixed point (C) to exist is thus

b1b
′
2 > b′1c2 and b′1b2 > b1c

′
2 to have g∗ 6= 0 and g′∗ 6= 0. (III.4)

These inequalities may or may not hold, depending on the choice of matter content.

The intuition for these inequalities is that each gauge coupling makes the other

less interacting in the IR (via the c2 or c′2 terms), so there can only be a RG fixed

point (C), with both interacting, if the couplings flow in balance: if either flows

too much faster than the other, it can drive the other to be IR free. For example,

if the matter content is such that b1c
′
2 > b′1b2, then g′ → 0 in the IR, as in fig.

III.2, with the G dynamics overwhelming the G′ dynamics in the IR. Likewise, if

b′1c2 > b1b
′
2, then G′ wins, and drives g → 0 in the IR. The inequality b2b

′
2 > c2c

′
2

implies that both inequalities in (III.4) could not be reversed.

The criteria (III.4) for RG fixed point (C) to exist are equivalent to the

condition that RG fixed points (A) and (B) be IR unstable to perturbations in

the other coupling, as depicted in fig. III.5. For example, near (A), where α′ = 0

and α∗ ≈ b1/b2, (III.2) gives βα′ = α′2(−b′1 + c′2b1/b2)/2π + O(α′3). The second

inequality in (III.4) is thus equivalent to having (A) be IR repulsive to α′ pertur-

bations, as in fig. III.1. If (A) and (B) are both IR repulsive to perturbations,

generic couplings flow to having both interacting, and can end up at a fixed point

(C), as in fig. III.1. If either inequality of (III.4) is violated, then either (A) or (B)

is IR attractive, and then RG fixed point (C) does not exist (at least it does not

exist within the basin of attraction of zero couplings). In that case, as depicted

in fig. III.2, generic RG flows attract to the IR stable point (A) or (B). Because

b2b
′
2 > c2c

′
2, both inequalities in (III.4) could not be reversed, i.e. we can not have

(A) and (B) both be IR attractive. As depicted in fig. III.6, such a hypotheti-

cal flow would have required an unstable separatrix ridge, depicted as a dashed

line, dividing the RG flows into two different domains of attraction. In neither

the perturbative analysis, nor the supersymmetric examples to follow, do we find

examples of such flows.
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Figure III.5: If A and B are both IR

unstable to perturbations, the theory

flows to C, with both couplings inter-

acting.
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Figure III.6: We don’t find examples

of A and B both IR stable to perturba-

tions. Would’ve required a separatrix

between domains of attraction.

We can go beyond the above perturbative analysis in N = 1 super-

symmetric theories, where exact results can be obtained via the NSVZ [12] beta

functions. For a general N = 1 G×G′ gauge theory, with matter chiral superfield

in representations ⊕i(ri, r
′
i
), these are

βg(g, g
′) = − g3f

16π2

(
3T (G) −

∑

i

T (ri)|r′i|(1 − γi(g, g
′))

)
= −3g3f

16π2
Tr GGR

βg′(g, g
′) = −g

′3f ′

16π2

(
3T (G′) −

∑

i

T (r′i)|ri|(1 − γi(g, g
′))

)
= −3g′3f ′

16π2
Tr G′G′R.

(III.5)

In the NSVZ scheme, f = (1 − g2T (G)
8π2 )−1 and f ′ = (1 − g′2T (G′)

8π2 )−1, while in other

schemes these factors are replaced with other functions of the coupling [27], such

that f = 1 + O(g2); these scheme-dependent prefactors are unimportant for our

discussion, except for the fact that they should be strictly positive in our range of

coupling constants.

The last equality in each line of (III.5) involves Tr GGR, which is the

coefficient of the U(1)R ABJ triangle anomaly, with two external G gluons. This

uses the fact that supersymmetry relates the dilatation current to a U(1)R current,
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with the exact scaling dimensions of chiral fields related to their U(1)R charges:

∆ =
3

2
R e.g. ∆(Qi) ≡ 1 +

1

2
γi =

3

2
R(Qi). (III.6)

When the theory is conformally invariant, this U(1)R is conserved, and part of the

superconformal group SU(2, 2|1). When the theory is not conformally invariant,

e.g. along the RG flow from the UV to the IR, supersymmetry still relates the

stress tensor to an R-current, whose charges run with the anomalous dimensions

according to (III.6), and whose anomaly is related to the beta function according

to (III.5). Among all possible R-symmetries, the superconformal R-symmetry is

that which locally maximizes atrial(R) ≡ 3TrR3−TrR [14]. This method for deter-

mining the superconformal R-charges is referred to as “a-maximization,” because

the value of atrial at its unique local maximum equals the conformal anomaly coef-

ficient a of the SCFT [13], [5] (we rescale a by a conventional factor of 3/32). An

extension of a-maximization [20], further explored in [27], [45], has been proposed

for determining the running R-charges, along the RG flow from the UV to the IR.

See e.g. [15],[16],[18],[17],[19],[21],[46],[47] for further applications and extensions

of a-maximization.

For our particular example (III.1), the exact beta functions (III.5) are

βg(g, g
′) = −3g3f

16π2
Tr SU(Nc)

2R = − g3f

16π2
(b1 +NfγQ +N ′

cγX) ,

βg′(g, g
′) = −3g′3f ′

16π2
Tr SU(N ′

c)
2R = −g

′3f ′

16π2

(
b′1 +N ′

fγQ′ +NcγX
)
, (III.7)

where b1 ≡ 3Nc−Nf−N ′
c and b′1 ≡ 3N ′

c−N ′
f−Nc are the one-loop beta functions.

We’ll take both groups to be asymptotically free, i.e. take g = g′ = 0 to be UV

attractive:

3Nc −Nf −N ′
c > 0, and 3N ′

c −N ′
f −Nc > 0, (III.8)

so that g = g′ = 0 is IR repulsive, as in figs. III.1 and III.2. To have the theory flow

to a SCFT in the IR, rather than dynamically generating a vev, from a dynamically

generated superpotential or quantum moduli space constraint, we also require

Nf +N ′
c > Nc and N ′

f +Nc > N ′
c (stability). (III.9)
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Assuming that (III.8) and (III.9) hold, much as in the above perturbative

analysis, we identify three possible RG fixed points:

(A) g∗ 6= 0, g′∗ = 0 : where γQ = γX = − b1
Nf +N ′

c

, and γQ′ = 0.

(III.10)

(B) g∗ = 0, g′∗ 6= 0 : where γQ′ = γX = − b′1
N ′
f +Nc

, and γQ = 0.

(III.11)

(C) g∗ 6= 0, g′∗ 6= 0 : where b1+NfγQ+N ′
cγX = 0 = b′1+N

′
fγQ′+NcγX . (III.12)

For point (A), we used the fact that there is an enhanced flavor symmetry which

ensures that γX = γQ when g′ = 0, and that Q′ is a free field for g′ = 0, so γQ′ = 0.

Analogous considerations apply for RG fixed point (B). Seiberg duality [26] shows

that (A) and (B) are actually interacting SCFTs only if

Nf +N ′
c >

3

2
Nc, and N ′

f +Nc >
3

2
N ′
c, (III.13)

respectively; otherwise (A) or (B) should be replaced with its free magnetic Seiberg

dual.

Our interest here is in the possible RG fixed point (C). We’ll discuss when

it exists as an interacting SCFT. We’ll find, for example, that (III.13) is modified,

once the RG flow of both couplings is taken into account: the otherwise free

magnetic dual can be driven interacting by the other gauge coupling, as depicted

in fig. III.3.

Let us first discuss some simple necessary, though not sufficient, condi-

tions for (C) to exist – at least within the domain of attraction of flows to the IR

from the asymptotically free UV fixed point at zero couplings – by determining

when the RG flow is as in fig. III.1, or as in fig. III.2, with one of the couplings

driven IR free. (Our discussion here is essentially identical to one that already ap-

peared in [48] for a chiral example similar to (III.1), having the field X but not X̃.)

As in fig. III.5, (C) exists within the domain of attraction of the UV fixed point

only if (A) and (B) are both IR unstable to perturbations in the other coupling.

Using (III.7), (A) is IR stable to g′ perturbations if TrSU(N ′
f )

2R|A < 0, i.e. we
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get βg′ ∼ −g′3(b′1 − Ncb1/(Nf +N ′
c)) + O(g′5), with the second contribution from

γX at (A), so g′ is an IR irrelevant perturbation of (A) if b′1 < Ncb1/(Nf +N ′
c), i.e.

(A) is IR attractive, with g′ → 0, if (3N ′
c −N ′

f )(N
′
c +Nf ) − 3N2

c < 0.

(III.14)

Similarly, g will be an irrelevant perturbation of (B) if Tr SU(Nc)
2R|B < 0, which

gives

(B) is IR attractive, with g → 0, if (3Nc −Nf)(Nc +N ′
f ) − 3N ′2

c < 0.

(III.15)

The two inequalities in (III.14) and (III.15) are mutually incompatible, so we do

not find the situation of fig. III.6. The condition for RG fixed point (C) to exist

(within the domain of attraction of the UV fixed point) is that neither (III.14) nor

(III.15) holds, i.e. we have a flow as in fig. III.1 only if

(3Nc −Nf)(Nc +N ′
f ) − 3N ′2

c > 0 and (3N ′
c −N ′

f )(N
′
c +Nf ) − 3N2

c > 0.

(III.16)

The inequalities (III.16) generally differ from the asymptotic freedom conditions

(III.8) needed to have g = g′ = 0 not be IR attractive. For the special case Nc = N ′
c

and Nf = N ′
f , (III.16) do reduce to the asymptotic freedom conditions (III.8).

When RG fixed point (C) does exist, the three independent anomalous di-

mensions, γQ, γQ′, and γX are under-constrained by the two constraints of (III.12),

so a-maximization [14] is required to determine the exact anomalous dimensions

of chiral operators at (C). When the RG fixed point is not at sufficiently strong

coupling for there to be accidental symmetries, the a-maximization result can be

written as

γQ = 1−
√

1 +
λG
2Nc

, γQ′ = 1−
√

1 +
λG′

2N ′
c

, γX = 1−
√

1 +
λG
2Nc

+
λG′

2N ′
c

, (III.17)

with λG and λG′ determined by the two conditions in (III.12), for the two beta func-

tions (III.7) to vanish. This way of writing the a-maximization result is motivated

by the extension of a-maximization due to Kutasov [20], [27], [45], where the inter-

action constraints on the superconformal R-charges, e.g. that the ABJ anomalies
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should vanish, are imposed with Lagrange multipliers. The conjecture is that the

Lagrange multipliers can be interpreted as the running coupling constants along

the flow to the RG fixed point. In particular, the claim is that (III.17) gives the

running anomalous dimensions along the entire RG flow, from g = g′ = 0 in the UV

to the RG fixed point (C) in the IR, with λG = g2|G|/2π2 and λG′ = g′2|G′|/2π2

the running couplings in some scheme.

This analysis needs to be supplemented when there are accidental symme-

tries [16], and we’ll find that many accidental symmetries do arise in these theories

for general (Nc, N
′
c, Nf , N

′
f). a-maximization with many accidental symmetries is

best left to a computer (we used Mathematica), and then it’s simpler to do the a-

maximization at the RG fixed point, imposing the constraints at the outset rather

than with Lagrange multipliers. We simplify the analysis by considering the limit

of large numbers of flavors and colors, for arbitrary fixed values of the ratios, which

for the example (III.1) are

x ≡ Nc

Nf
, x′ ≡ N ′

c

Nf
, n ≡ N ′

f

Nf
. (III.18)

In this limit, the operator scaling dimensions then only depend on these ratios.

Depending on (x, x′, n), a variety of accidental symmetries associated with gauge

invariant operators hitting the unitarity bound are found to occur, and their effect

on the a-maximization analysis [16] is accounted for in our numerical algorithm.

As a function of the parameters (x, x′, n), the theory either flows in the

IR to a fully interacting RG fixed point, or can be partially or fully free. Our

motivation for considering the examples (III.1) is that they have various possible

dualities, and the a-maximization results can give insight into when they’re ap-

plicable. For example, we could Seiberg dualize [26] one of the groups in (III.1),

treating the other as a weakly gauged spectator. As we’ll discuss, there is a range of

(x, x′, n) for which this dual theory realizes the RG flow possibility of fig. III.3: an

arbitrarily small non-zero coupling of the “spectator” group can drive an otherwise

free magnetic group to be interacting in the IR. This also occurs in an example

discussed in [21], which appeared during the course of the present work.



62

Knowing the exact dimensions of chiral operators, we can classify the

relevant superpotential deformations of (C). In particular, we can now determine

the “superconformal window” range of validity of a duality proposed in [36] for

the theory (III.1) with added superpotential interaction WA2k+1
= Tr(XX̃)k+1.

The dual [36] has gauge group SU((k + 1)(Nf + N ′
f ) − Nf − N ′

c) × SU((k +

1)(Nf +N ′
f)−N ′

f −Nc) with similar matter content and additional gauge singlets

(corresponding to the mesons), and a dual analog of the WA2k+1
superpotential.

The superconformal window, where both dual descriptions are useful, is the range

of (Nc, N
′
c, Nf , N

′
f) within which both the electric WA2k+1

, as well as its analog

in the magnetic dual, are both relevant. The a-maximization results allow us to

determine this subspace of (x, x′, n) parameter space, as a function of k. For large

k, we find that this subspace is necessarily close to the x ≈ x′ slice, i.e. Nc ≈ N ′
c.

The outline of this paper is as follows. In sect. III.B we briefly review

a-maximization, and apply it to determine the superconformal R-charges for the

SU(Nc) × SU(N ′
c) example (III.1). We find that there are accidental symmetries

arising from gauge invariant operators hitting the unitarity bound ∆ ≥ 1, and

use the procedure of [16] to take these into account during a-maximization. We

especially consider the parameter slice x = x′ (i.e. Nc = N ′
c) for large x (i.e.

Nc ≫ Nf), and general n. In this slice and limit, R(X) → 0. We account for

the many accidental symmetries, associated with generalized mesons hitting their

unitarity bound, in this limit (and numerically check that no baryon operators hit

the unitarity bound.) As we discuss, if we set n ≡ N ′
f/Nf = 1, our results should

– and indeed do – coincide with those of [16].

In sect. III.C we consider the theory (III.1) deformed by the superpo-

tential WA2k+1
= Tr(XX̃)k+1, and the dual description of [36] of that theory. We

use a-maximization to determine the exact chiral operator dimensions in the dual

of [36]. Combining these results with those of sect. III.B, we can determine the

superconformal window region of (x, x′, n) parameter space, for any given value of

k, within which the WA2k+1
superpotential of both the electric theory (III.1) and
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its dual are both relevant. For large k, the superconformal window is necessarily

close to the parameter slice x ≈ x′. We check numerically that, for all k, there is

always a non-empty superconformal window region of parameter space in which

the duality of [36] is applicable.

In sect. III.D we consider Seiberg dualizing [26] one of the groups in

(III.1), treating the other gauge group as a spectator. We’ll discuss analogs Ã, B̃,

and C̃ of the possible RG fixed points in fig. III.1, when they exist, and when

they’re IR stable to perturbations. We find that there is a range of the parameters

(III.18) (x, x′, n) where an otherwise IR free magnetic gauge group is driven to be

interacting for any non-zero gauge coupling of the “spectator” group. This is the

phenomenon depicted in fig. III.3. As seen from the exact beta functions (III.5),

positive anomalous dimensions are needed to turn a 1-loop IR irrelevant coupling

into an IR relevant one. The superpotential of the Seiberg dual theory plays a

crucial role here, together with the spectator gauge coupling, to get the positive

anomalous dimensions needed for the effect of fig. III.3. The condition that the

RG fixed point (C) of the original electric theory (III.1) be interacting, rather than

flowing to a free magnetic dual, is that the fully interacting RG fixed point (C̃)

exists in the dual theory; this issue is analyzed by the dual analog of fig. III.5.

When (C̃) does exist, we expect that it’s equivalent to the RG fixed point (C) of

the electric description. We verify that their superconformal R-charges and central

charges indeed agree.

In Sect. III.E we briefly conclude, and present a topic for further research.

In the Appendix, we note that all of the many duality examples of [36]

have a non-zero superconformal window. The theories in [36] with a single gauge

group (either SU(Nc), SO(Nc), or Sp(Nc)) and matter in a two-index representa-

tion (e.g. adjoint, symmetric, or antisymmetric) are shown in the large Nc limit to

all have the same superconformal R-charges, and superconformal window, as that

of SU(Nc) with an adjoint; we can directly borrow the results obtained in [16],

with the central charge differing from that of [16] by just a fixed overall multiplica-
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tive factor. We also note that all of the other examples in [36], involving product

groups, all also have superconformal R-charges and superconformal window that

reduce to those obtained in [16] for a 1d slice of their parameter space, when we

take all of the group ranks equal and all numbers of flavors equal (e.g. taking

x = x′ and n = 1 in (III.18)). This suffices to show that all of the duality examples

of [36] indeed have a non-empty superconformal window.

III.B a-maximization analysis for the SU(Nc)×SU(N ′
c) the-

ory (III.1)

The superconformal U(1)R symmetry is uniquely determined by the con-

dition that it maximizes atrial(R) = 3TrR3−TrR among all possible R-symmetries

[14]. The constraints on the superconformal R-symmetry, e.g. that it’s ABJ

anomaly free, can either be implemented at the outset, before maximizing a(R)

w.r.t. R, or via Lagrange multipliers λ [20]. a-maximization with the Lagrange

multipliers yields simple general expressions for the R-charges of the fields Ri(λ),

with the conjectured interpretation of giving the running R-charges along the RG

flow to the RG fixed point [20], [27], [45].

For example, for a general N = 1 supersymmetric G× G′ gauge theory,

with zero superpotential, we determine the running R-charges by maximizing with

respect to the Ri

a(λ,R) = 3TrR3−TrR−λGTrG2R−λG′TrG′2R = 2|G|+2|G′|−λGT (G)−λG′T (G′)

+
∑

i

|ri||r′i|
[
3(Ri − 1)2 − 1 − λG

T (ri)

|ri|
− λG′

T (r′
i
)

|r′
i
|

]
(Ri − 1), (III.19)

holding fixed the Lagrange multipliers λG and λG′, which enforce the constraints

that U(1)R not have ABJ anomalies, TrGGR = TrG′G′R = 0. This yields:

Ri(λ) = 1−1

3

√√√√1 + λG
T (ri)

|ri|
+ λG′

T (r′i)

|r′i|
i.e. γi = 1−

√√√√1 + λG
T (ri)

|ri|
+ λG′

T (r′i)

|r′i|
,

(III.20)
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where we used γi = 3Ri − 2 for the anomalous dimensions. The conjecture is that

these expressions can be interpreted as giving the anomalous dimensions along

the entire RG flow, with λG = g2|G|/2π2 and λG′ = g′2|G′|/2π2 in some scheme.

For the example (III.1) this gives the result (III.17). As in [20], using (III.20) in

(III.19) yields a monotonically decreasing a-function a(λ) = a(λ,R(λ)) along the

RG flow. The values of λ∗G and λ∗G′ at the IR fixed point are the extremal values of

a(λ); since a(λ)’s gradients are proportional to the exact beta functions [20], [27],

[45], this is equivalent to the conditions that the anomalous dimensions (III.17)

yield zeros of the beta functions (III.5).

Whenever a gauge invariant operator M hits or appears to violate the

unitarity bound R(M) ≥ 2/3, M becomes a decoupled free field. This affects

the a-maximization analysis by introducing an additive correction to the quantity

a(R) to be maximized [16] (this can be derived from the presence of an accidental

U(1)M symmetry, acting only on M [17]):

atrial(R) → atrial(R) +
1

9
dim(M) (2 − 3R(M))2 (5 − 3R(M)) . (III.21)

This correction can also be included in the a-maximization analysis with Lagrange

multipliers [45], but it becomes unwieldy to do so when there are many such

contributions from operators that hit the unitarity bound, as is the case in our

examples for general values of the numbers of flavors and colors. For this reason, we

will here do the a-maximization analysis at the RG fixed point, numerically, with

the constraints implemented at the outset rather than via Lagrange multipliers.

We consider the example (III.1) in the range of the parameters (III.18)

where it’s possible to have the RG fixed point like (C) in fig. III.1, with both

groups interacting. For asymptotic freedom of g = g′ = 0 in the UV, and to avoid

having it be attractive in the IR, we take

3x− x′ − 1 > 0, and 3x′ − x− n > 0. (III.22)

We also impose the condition (III.9), which is

−n < x− x′ < 1 (stability), (III.23)
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to have the origin of the moduli space of vacua not be dynamically disallowed.

Finally, to have the points (A) and (B) not be IR attractive, as in fig. III.2, we

impose (III.16),

(3x− 1)(x+ n) − 3x′2 > 0 and (3x′ − n)(x′ + 1) − 3x2 > 0. (III.24)

If either inequality of (III.24) is not satisfied, one or the other group is driven IR

free, to RG fixed point (A) or (B), with anomalous dimensions and R-charges given

by (III.10) or (III.11). When both (III.24) are satisfied, RG flows generally end

up with both couplings interacting, which can end up being a RG fixed point (C),

where (III.12) is satisfied. As mentioned in the introduction, we do not impose

the naive conditions (III.13) to avoid IR free magnetic dual groups: as we’ll see

in sect. III.D, the conditions (III.13) are generally dramatically modified by the

dynamics of the other gauge group.

As always, the conditions in (III.12) for the exact beta functions to vanish

are equivalent to requiring that the superconformal U(1)R have vanishing ABJ

anomalies with respect to all of the interacting gauge groups. So at (C) we have

the two anomaly free conditions

Nc +N ′
c(R(X) − 1) +Nf (R(Q) − 1) = 0

N ′
c +Nc(R(X) − 1) +N ′

f (R(Q′) − 1) = 0 (III.25)

to have TrSU(Nc)
2U(1)R = TrSU(N ′

c)
2U(1)R = 0. Enforcing (III.25) at the RG

fixed point, we can solve for R(X) and R(Q′) in terms of y ≡ R(Q)

R(X) =
1 − y

x′
+ 1 − x

x′
, R(Q′) =

x

nx′
(y − 1) +

x2

nx′
− x′

n
+ 1, (III.26)

where the parameters (x, x′, n) of the theory are the ratios (III.18). We determine

the superconformal R-charge y(x, x′, n) by a-maximization (in the single variable

y).

Imposing (III.26), we compute atrial(R) = 3TrR3−TrR from the spectrum

(III.1) to be

a(0)/N2
f = 2x2 + 2x′2 + 6x(y − 1)3 − 2x(y − 1) + 6nx′

[
x

nx′
(y − 1) +

x2

nx′
− x′

n

]3
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−2nx′
[
x

nx′
(y − 1) +

x2

nx′
− x′

n

]
+6xx′

[
1 − y

x′
− x

x′

]3
−2xx′

[
1 − y

x′
− x

x′

]
. (III.27)

We then compute the superconformal R-charges by locally maximizing (III.27)

w.r.t. y, for general fixed values of the parameters (x, x′, n); we’ll denote the

solution as y(0)(x, x′, n). The superscript (0) is a reminder that these results are

valid only in the range of (x, x′, n) in which no gauge invariant operators have

hit the unitarity bound; otherwise (III.27) will require corrections as in (III.21).

Within this range of (x, x′, n), we can also use the Lagrange multiplier approach.

Imposing (III.25) with Lagrange multipliers yields the simple expressions (III.17),

which can be interpreted as the running R-charges along the RG flow, coinciding

with the R-charges obtained above from y(0)(x, x′, n) at the RG fixed point.

The first gauge invariant, chiral, composite operators O to hit the uni-

tarity bound R(O) ≥ 2/3 are the mesons M ≡ QQ̃ or M ′ ≡ Q′Q̃′. M hits the

unitarity bound when y(x, x′, n) ≤ 1/3; using (III.6), this happens when Q has

the large, negative anomalous dimension, γQ(x, x′, n) < −1, which can only hap-

pen if (x, x′, n) are such that the RG fixed point values of the gauge couplings are

large. The above result y(0)(x, x′, n) is valid within the range of (x, x′, n) where

neither M or M ′ have hit their unitarity bound, i.e. the range of (x, x′, n) where

y(0)(x, x′, n) > 1/3 and where R(Q′) ≥ 1/3, with R(Q′) computed from y(0)(x, x′, n)

via (III.26). Outside of this range, the above a-maximization analysis has to be

supplemented, as in (III.21), to account for the accidental symmetries associated

with operators hitting the unitarity bound and becoming free fields.

For general (x, x′, n) the gauge operators that will hit the unitarity bound

are:

Mj = Q(X̃X)j−1Q̃, M ′
j = Q′(X̃X)j−1Q̃′,

Pj = Q(X̃X)j−1X̃Q̃′, P̃j = Q̃X(X̃X)j−1Q′. (III.28)

For every integer j ≥ 1, there are NfN
′
f mesons Pj and P̃j, N

2
f mesons Mj, and

N ′
f
2 mesons M ′

j . We verified that it’s self-consistent to assume that the baryon

operators do not hit the unitarity bound; also, gauge invariants without fundamen-
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tals, such as Tr(XX̃)j , contribute negligibly in the large N limit. The quantity to

maximize in general is then

a(p)/N2
f = ã(0)/N2

f +
2n

9

pP∑

j=1

[2 − 3R(Pj)]
2 [5 − 3R(Pj)]

+
1

9

pM∑

j=1

[2 − 3R(Mj)]
2 [5 − 3R(Mj)] +

n2

9

pM′∑

j=1

[
2 − 3R(M ′

j)
]2 [

5 − 3R(M ′
j)
]
,

(III.29)

where p denotes {pP , pM , pM ′}, with pP = p
P̃

the number of P (and also P̃ type)

mesons which have hit the unitarity bound. The quantities such as R(Mj) in

(III.29) are given by e.g. R(Mj) = R[Q(XX̃)j−1Q̃] = 2y + 2(j − 1)R(X), with

R(X) given by (III.26); so the corrections in (III.29) are complicated functions of

the variable y that we’re maximizing with respect to, along with the parameters

(x, x′, n). Maximizing (III.29) yields y(p)(x, x′, n), and y(x, x′, n) is obtained by

pasting these together, with the appropriate values of p depending on (x, x′, n),

increasing e.g. pM every time another value of j is obtained such that R(Mj)

hits 2/3. We numerically implemented this process to obtain y(x, x′, n), but it’s

difficult to produce an illuminating plot of a function of three variables.

Let us discuss some qualitative aspects of our results. From y(x, x′, n) we

can compute the anomalous dimensions γQ, γX , and γQ′, using (III.6), and we find

that all are negative within the range (III.24) where the RG fixed point (C) can

exist. This is to be expected, since our theory (III.1) has only gauge interactions,

and no superpotential (gauge interactions yield negative anomalous dimension, and

superpotentials yield positive contributions to the anomalous dimensions). When

either inequality (III.24) is violated, the theory flows not to (C), but rather to RG

fixed points (A) or (B), as in fig. III.2 and the above a-maximization analysis,

which assumed in (III.25) that both groups are interacting, is inapplicable. At the

boundaries of (III.24), where either inequality is saturated, our a-maximization

results properly reduce to (III.10) or (III.11).

It is interesting to note that there is a 1d slice of the (x, x′, n) parameter

space, given by x = x′ and n = 1, for which the a-maximization analysis of this
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theory coincides with that of [16] for SU(Nc) SQCD with Nf fundamentals and

an added adjoint. In this slice, for every contribution to the quantity atrial to

maximize in [16], we have here two analogous matter fields in the spectrum of

our theory, with the same R-charges: twice as many gauge fields, twice as many

fundamentals (Q and Q′ and conjugate), the X and X̃ fields contribute as two

adjoints (using (III.26) for x = x′ and n = 1), and all the mesons (III.28) hitting

the unitarity bound map to two copies of the mesons hitting the unitarity bound

in [16]. Thus, for x = x′ and n = 1, (III.29) is exactly twice the expression

obtained in [16] for the theory considered there. Since atrial is the same function

of y, up to a factor of 2, it is maximized by the same solution yKPS(x) obtained by

the analysis of [16]. So the superconformal R-charges of our theory (III.1) satisfy

y(x, x′, n)|x=x′,n=1 = yKPS(x).

For x ≈ x′ taken to be very large, i.e. Nc ≈ N ′
c ≫ Nf , the superconformal

R-charge of the field X goes to zero, R(X) → 0, for arbitrary fixed values of n ≡
N ′
f/Nf , as seen from (III.26), and the fact that y remains finite in this limit. The

asymptotic value yas(n) in this x = x′ → ∞ limit is determined by our numerical

a-maximization analysis, but it can also be approximated analytically. Because

many mesons contribute to the sums (III.29), the sums can be approximated as

integrals (following [16]):

1

9

p∑

j=1

[2−3Rj]
2[5−3Rj ] ≈

1

27β

∫ 2−3α

0
u2(3+u)du =

1

18β
(2−3α)3(1− 1

2
α), (III.30)

where α and β are defined by Rj ≡ α + (j − 1)β (and u ≡ 2 − 3Rj). The upper

limit p in the sum is solved for by setting Rp = α+(p−1)β equal to 2/3. Applying

(III.30) to the sums in (III.29), β = R(XX̃) = 2R(X) for all three, and for the

first sum in (III.29) α = R(QX̃Q̃′) = y +R(Q′) +R(X), while for the second and

third α = 2y and α = 2R(Q′) respectively; here, R(X) and R(Q′) are to be written

in terms of the variable y and the parameters (x, x′, n) using (III.26).

Setting x = x′ and taking both large, (III.29) then becomes

a/N2
f ≃ 6x

[
1 +

1

n2

]
(y − 1)3 − 20x(y − 1)
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+
x

36
[2 − 6y]3 +

xn

36

[
6

n
(1 − y) − 4

]3
+
xn

36

(
1 +

1

n

) [
3(1 − y)

(
1 +

1

n

)
− 4

]3
.

(III.31)

The first line of (III.31) is the large x = x′ limit of (III.27), and the second line

contains the meson sums of (III.29), evaluated using (III.30). Note that every term

in (III.31) is linear2 in x in this limit, so maximizing (III.31) w.r.t. y yields an

asymptotic value, yas(n), that’s independent of x in this limit of large x = x′. This

asymptotic value depends on n ≡ N ′
f/Nf , and the conditions (III.24) needed for

neither gauge coupling to drive the other to be IR free here require n to lie in the

range

3 > n >
1

3
for x = x′ → ∞. (III.32)

As expected from the discussion above, for n = 1 (III.31) reduces to twice the

expression obtained in the large x analysis of [16], and for n = 1 our expression for

yas(n) coincides with the asymptotic large x value of y obtained there: yas(n)|n=1 =

(
√

3 − 1)/3.

The asymptotic value yas(n) will be used in the next section to find the

minimal value of x ≈ x′ needed for the superpotential ∆WA2k+1
≡ Tr(XX̃)k+1

to be a relevant deformation of RG fixed point (C) in the limit of large k. This

gives one side of the superconformal window for the duality of [36] (see fig. III.7).

We have also checked, including away from the strict x = x′ limit, that R(X)

is nowhere negative, i.e. using (III.26) that the a-maximizing solution y(x, x′, n)

satisfies 1 − y(x, x′, n) + x′ − x > 0. This is important for the self-consistency of

our analysis since, if R(X) were negative, baryonic operators, formed by dressing

the quarks with many powers of XX̃, would hit the unitarity bound and lead to

additional contributions analogous to (III.21).

2The fact that the expression in (III.31) grows for large x only linearly is a check of the conjectured
a-theorem. Any greater exponent would’ve led to a-theorem violations, e.g. along a Higgs flat direction
where XX̃ gets an expectation value, Higgsing each SU(Nc) gauge group factor to products of similar
factors. This flat direction is analogous to that considered in a non-trivial check of the a-theorem in [16]
(where it’s also pointed out that the sub-leading constant term must be – and indeed is – negative for
the a-theorem to hold for this Higgs RG flow).
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III.C The theory with WA2k+1
= Tr(XX̃)k+1 and its dual

In [36] it was proposed that our theory (III.1), together with a superpo-

tential WA2k+1
= Tr(XX̃)k+1 has a dual given by a similar theory:

gauge group: SU(Ñc) × SU(Ñ ′
c)

matter: Y ⊕ Ỹ ( , ) ⊕ ( , ),

qf ⊕ q̃f̃ ( , 1) ⊕ ( , 1) (f, f̃ = 1 . . . N ′
f),

q′f ′ ⊕ q̃′
f̃ ′

(1, ) ⊕ (1, ) (f ′, f̃ ′ = 1 . . . Nf),

(III.33)

where Ñc = (k + 1)(Nf +N ′
f ) − Nf −N ′

c and Ñ ′
c = (k + 1)(Nf +N ′

f ) − N ′
f −Nc.

There are also singlets Pj, for j = 1 . . . k, and Mj and M ′
j for j = 1 . . . k + 1, with

superpotential

W = Tr(Y Ỹ )k+1 +
k∑

j=1

[
PjqỸ (Y Ỹ )k−j q̃′ + P̃j q̃

′(Y Ỹ )k−jY q
]

+
k+1∑

j=1

[
Mjq

′(Ỹ Y )k−j+1q̃′ +M ′
j q̃(Y Ỹ )k−j+1q

]
. (III.34)

The first term is the dual analog of the WA2k+1
superpotential, and the remaining

terms are analogs of the Mqq̃ superpotential in Seiberg duality [26].

The duality is useful within a superconformal window, which is the range

of the parameters (x, x′, n), where the superpotential WA2k+1
and its dual analog in

(III.34) are both relevant in controlling the IR dynamics, i.e. when the following

conditions are satisfied:

(i) R(X) =
1 − y(x, x′, n)

x′
+ 1 − x

x′
<

1

k + 1
, (III.35)

(ii) R(Y ) =
1 − ỹ(x̃, x̃′, ñ)

x̃′
+ 1 − x̃

x̃′
<

1

k + 1
, (III.36)

(iii) (k+1)(Nf +N ′
f)−Nf −N ′

c > 0, and (k+1)(Nf +N ′
f)−N ′

f −Nc > 0.

(III.37)

If (i) is not satisfied, Welec = Tr(XX̃)k+1 is an irrelevant deformation of RG fixed

point (C), and thus Welec → 0 in the IR; this fact is obscured in the magnetic

dual description. Likewise, if (ii) is not satisfied, one should use the magnetic
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description, with the coefficient of the Tr(Y Ỹ )k+1 superpotential term flowing to

zero in the IR; the electric description then doesn’t readily describe the true RG

fixed point. Finally, condition (iii) is the “stability bound,” needed for the RG

fixed point to exist (and for the dual groups (III.33) to have positive ranks): if

(III.37) are not satisfied, the electric theory (III.1) with WA2k+1
superpotential

dynamically generates a superpotential, spoiling conformal invariance.

Using the results of the previous subsection, we can now determine the

range of (x, x′, n) in which condition (III.35) is satisfied, for Tr(XX̃)k+1 to be

relevant. The k = 0 case is a mass term and (III.35) is then always satisfied

(starting with W = 0 at (C), all fields have R ≤ 2/3). For all k > 1, (III.35) is

only satisfied in subspaces of the (x, x′, n) parameter space for which the RG fixed

point is at sufficiently strong enough coupling to give X a sufficiently negative

anomalous dimension. The larger k is, the more strongly coupled the RG fixed

point must be in order to have (III.35) be satisfied. For arbitrarily large k, there’s a

non-empty range of (x, x′, n) in which (III.35) is satisfied: as we saw in the previous

subsection, R(X) → 0 in parts of the parameter space. Let’s consider, for example,

the parameter slice x = x′ and ask when (III.35) is satisfied for large values of k.

Since satisfying (III.35) for large k requires large x, we can replace y(x, x′, n) in

(III.35) with the asymptotic value yas(n) obtained by maximizing (III.31). Then

the condition (III.35) for the superpotential to be relevant becomes

x > xmin(n) ≈ k (1 − yas(n)) for k ≫ 1. (III.38)

The above analysis of the electric theory gives one edge of the supercon-

formal window of the parameters (x, x′, n) for the duality of [36]. The other edge

of the window is obtained by determining the range of these parameters in which

(III.36) is satisfied, for the WA2k+1
superpotential to be relevant in the magnetic

theory. Again, we simplify the analysis by taking the numbers of flavors and col-

ors in the electric theory to be large, so the same is true in the magnetic theory.

The ratios on the magnetic side are defined to be x̃ ≡ Ñc/N
′
f , x̃

′ ≡ Ñ ′
c/N

′
f , and
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ñ ≡ Nf/N
′
f , which are related to the electric ones (III.18) as

x̃ = (k+ 1)(1+n−1)− n−1 −x′n−1, x̃′ = (k+1)(1+n−1)− 1−xn−1, ñ = n−1.

(III.39)

In the magnetic theory (III.33), we assume that both magnetic gauge groups re-

main interacting. The superconformal R-charge is constrained by the magnetic

analog of (III.25), that it be anomaly free w.r.t. both gauge groups. As in (III.26),

we can use this to solve for R(Y ) = R(Ỹ ) and R(q′) = R(q̃′) ≡ ỹ′ in terms of

R(q) = R(q̃) ≡ ỹ:

R(Y ) =
1 − ỹ

x̃′
+ 1 − x̃

x̃′
, ỹ′ =

x̃

ñx̃′
(ỹ − 1) +

x̃2

ñx̃′
− x̃′

ñ
+ 1. (III.40)

The contribution to the magnetic ãtrial from the fields in (III.33) is

ã(0)/N ′2
f = 2x̃2 + 2x̃′2 + 6x̃(ỹ − 1)3 − 2x̃(ỹ − 1) + 6ñx̃′

[
x̃

ñx̃′
(ỹ − 1) +

x̃2

ñx̃′
− x̃′

ñ

]3

−2ñx̃′
[
x̃

ñx̃′
(ỹ − 1) +

x̃2

ñx̃′
− x̃′

ñ

]
+6x̃x̃′

[
1 − ỹ

x̃′
− x̃

x̃′

]3
−2x̃x̃′

[
1 − ỹ

x̃′
− x̃

x̃′

]
. (III.41)

To this we must add the contributions from the singlets Pi, P̃j, Mi, M
′
j . Each of

these fields couples only via a superpotential term in (III.34) and, initially taking

that singlet’s R-charge to be 2/3, that superpotential term may be relevant or

irrelevant in the IR. If it’s relevant, then the singlet’s R-charge is determined by

the requirement that the superpotential term have R = 2 total in the IR. If it’s

irrelevant, the singlet is a free field, with R = 2/3. If we assume that the last pP

Pj’s (and P̃j’s), the last pM Mj ’s, and the last pM ′ M ′
j ’s are interacting, then the

quantity to maximize is

ã(p)/N ′2
f = ã(0)/N ′2

f +
2ñ

9

pP∑

j=1

(2 − 3αPj )2(5 − 3αPj ) +
ñ2

9

pM∑

j=1

(2 − 3αMj )2(5 − 3αMj )

+
1

9

pM′∑

j=1

(2 − 3αM
′

j )2(5 − 3αM
′

j ) +
4ñ

9
(k − 2pP ) +

2ñ2

9
(k + 1 − 2pM) (III.42)

+
2

9
(k + 1 − 2pM ′),
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where we define

αPj ≡ ỹ +
x̃

ñx̃′
(ỹ − 1) +

x̃2

ñx̃′
− x̃′

ñ
+ 1 + (2j − 1)

[
1 − ỹ

x̃′
+ 1 − x̃

x̃′

]
,

αMj ≡ 2

[
x̃

ñx̃′
(ỹ − 1) +

x̃2

ñx̃′
− x̃′

ñ
+ 1

]
+ 2(j − 1)

[
1 − ỹ

x̃′
+ 1 − x̃

x̃′

]
, (III.43)

αM
′

j ≡ 2ỹ + 2(j − 1)
[
1 − ỹ

x̃′
+ 1 − x̃

x̃′

]
.

The additional terms in (III.42) are the contributions from the singlets (see sect.

6 of [17] for a detailed discussion of an analogous example). The full solution

ỹ(x̃, x̃′, ñ) is obtained by patching together the maximizing solutions of (III.42)

with the appropriate values of pM , pM ′, and pP , depending on (x̃, x̃′, ñ), given by

the largest integer j’s such that the αj in (III.43) satisfy αj ≤ 4/3 (where the

corresponding superpotential term becomes irrelevant).

For any given value of k, we can use the numerical a-maximization anal-

ysis to determine the range of (x̃, x̃′, ñ), and thus the range of electric parameters

(x, x′, n), in which the condition (III.36) for ∆W = Tr(Y Ỹ )k+1 to be relevant

is satisfied. Using (III.39), we’ll express this in terms of the electric parameters

(x, x′, n). To be concrete, let us consider the limit of large k. The condition (III.35)

on the electric side gave the inequality (III.38), which shows that x ≈ x′ must get

large, linearly in k, in the large k limit, while n is restricted to the range (III.32).

Then (III.39) gives x̃ ≈ x̃′ ≈ k(1 + n−1) − xn−1, and the condition (III.36) will

require x̃ to also be large. In this limit of large x̃ ≈ x̃′, (III.43) becomes

ã/N ′2
f ≃ 6x̃

[
1 +

1

ñ2

]
(ỹ − 1)3 − 20x̃(ỹ − 1) +

x̃ñ

36

(
1 +

1

ñ

) [
3(1 − ỹ)

(
1 +

1

ñ

)
− 4

]3

+
4x̃

9

[
ñỹ

1 − ỹ
− 1

]
+
x̃ñ

36

[
6

ñ
(1 − ỹ) − 4

]3
+

2ñx̃

9

[
ñ

1 − ỹ
− 2

]
(III.44)

+
x̃

36
[2 − 6ỹ]3 +

2x̃(2ỹ − 1)

9(1 − ỹ)
+

2k

9
(ñ+ 1)2.

The first two terms are the large x̃ ≈ x̃′ limit of (III.41), and the rest are the

remaining terms in (III.42), with sums evaluated using (III.30) (modifying the

lower limit of the integral (III.30) to be 2−3R = −2, rather than 0, since αj = 4/3
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is the limit where the superpotential term becomes irrelevant). Maximizing (III.44)

with respect to ỹ gives ỹas(ñ).

The condition (III.36) for Tr(Y Ỹ )k+1 to be relevant can then be written

for k ≫ 1 as
(1 − ỹas)n

k(n+ 1) − x
<

1

k
. (III.45)

Rearranging and combining with (III.38), the electric and magnetic conditions

(III.35) and (III.36) can be written together for k ≫ 1 as

1 − yas(n) <
x

k
< 1 + nỹas(n) for x ≈ x′ and k ≫ 1. (III.46)

For the duality (III.33) of [36] to be useful, and the superconformal window be

non-empty, the inequalities at the two ends of (III.46) had better be compatible

with each other. This is verified to indeed be the case, as seen in the plots in fig.

III.7, for the entire allowed range (III.32) of n. The vertical axis of fig. III.7 gives

the allowed values of x/k, for a given value of n, and the superconformal window

is the region between the lower two curves on fig. III.7. There is also the stability

bound conditions (III.37), which in our k ≫ 1 limit, with x ≈ x′ scaling linearly in

k, can both be written as x/k < 1+n. In the plot of fig. III.7, the upper line is the

stability bound, and the values of x/k in the superconformal window, between the

lower two curves, is indeed always safely below the stability bound for the entire

allowed range of n. All of these successes can be viewed as reassuring checks of

the duality of [36].

For the case x = x′, n = 1, the conformal window plotted in fig. III.7

coincides with that obtained in [16] for SQCD with an adjoint, for the reason

discussed above.

III.D Dualizing one gauge group

With product gauge groups, such as (III.1), we can consider dualizing one

of the gauge groups, treating the other gauge group as a spectator. The validity
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Figure III.7: The x/k conformal window: the upper line is the stability bound

1 + n, the middle line is 1 + nỹas(n) and the lower line is 1 − yas(n).

of doing this deserves scrutiny, because duality is only exact at the IR fixed point.

Dualizing away from the extreme IR can be potentially justified if the dualized

group’s dynamical scale is far above that of the other “spectator” group, Λd ≫ Λs

(and then holomorphic quantities can be analytically continued in Λd/Λs) or if one

group gets strong while the other gets weak in the IR (as in string theory examples,

see e.g. [49], [50]).

Let’s consider the SU(Nc)×SU(N ′
c) theory (III.1), and consider dualizing

SU(Nc), supposing that it’s valid to treat SU(N ′
c) as a weakly gauged flavor sym-

metry spectator. We’ll suppose that the original electric theory satisfies (III.24), so

that both electric couplings RG flow to non-zero values. (If the second inequality

(III.24) is violated, SU(N ′
c) is IR free, and thus reasonably treated as a spectator.

But if the first inequality in (III.24) is violated then SU(Nc) is actually IR free,

and the validity of dualizing it with SU(N ′
c) treated as a spectator is question-

able.) The SU(Nc) group has Nf +N ′
c flavors and its Seiberg [26] dual has SU(Ñc)

gauge group, with Ñc ≡ Nf + N ′
c − Nc, with Nf + N ′

c flavors of dual quarks and

(Nf + N ′
c)

2 singlet mesons. The stability condition (III.23) ensures that Ñc > 0.

Gauging SU(N ′
c)mag, with the subscript as a reminder that its spectrum now differs
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from that of (III.1), the dual is

gauge group: SU(Ñc) × SU(N ′
c)mag

matter: Y ⊕ Ỹ ( , ) ⊕ ( , ),

qf ⊕ q̃f̃ ( , 1) ⊕ ( , 1) (f, f̃ = 1 . . .Nf ),

Q′
f ′ ⊕ Q̃′

f̃ ′
(1, ) ⊕ (1, ) (f ′, f̃ ′ = 1 . . .N ′

f ),

F ′
n′ ∼ XQ̃⊕ c.c. (1, ) ⊕ (1, ) (n′, ñ′ = 1 . . . Nf),

Mf,g̃ ∼ QQ̃ (1, 1) (f, g̃ = 1 . . .Nf ),

Φ ∼ XX̃ (1,Adj) ⊕ (1, 1),
(III.47)

with the superpotential of [26] yielding

W = Mqq̃ + Y F ′q̃ + Ỹ qF̃ ′ + ΦY Ỹ . (III.48)

The one loop beta function coefficients of the electric theory (III.1) were

b1 = 3Nc −N ′
c −Nf , and b′1 = 3N ′

c −Nc −N ′
f (III.49)

(writing b1 > 0 if asymptotically free), and those of the dual (III.47) are

b1
mag = 2Nf + 2N ′

c − 3Nc, and b′1
mag = N ′

c +Nc − 2Nf −N ′
f . (III.50)

Note that b′1
mag differs from b′1, because the SU(N ′

c)mag fields in (III.47) differ

from those of the original SU(Nc) × SU(N ′
c) theory (III.1); in fact, b′1 − b′1

mag =

2(Nf +N ′
c −Nc) = 2Ñc > 0, so SU(N ′

c)mag is always less asymptotically free than

the electric SU(N ′
c) in the UV. Ignoring the SU(N ′

c)mag dynamics, we’d conclude

that the magnetic SU(Ñc) is IR free if Nf +N ′
c <

3
2
Nc; we’ll discuss here how the

SU(N ′
c)mag dynamics can dramatically affect when the magnetic group is actually

IR free.

The important quantities for the IR dynamics are the exact beta functions

for the theory (III.47), which are

βgmag
= −3g3

magf

16π2
Tr SU(Ñc)

2R, βg′mag
= −3g′3magf

′

16π2
Tr SU(N ′

c)
2
magR, (III.51)
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where again f and f ′ are unimportant, positive, scheme dependent factors. The

beta functions (III.51) can be written in the usual NSVZ form using (III.6), which

gives

3Tr SU(Ñc)
2R = bmag1 +N ′

cγY +Nfγq,

3Tr SU(N ′
c)

2
magR = b′mag1 + ÑcγY +N ′

fγQ′ +NfγF ′ +N ′
cγΦ. (III.52)

As with the electric theory, the dual (III.47) has three possible RG fixed

points,

(Ã) gmag∗ 6= 0, g′mag∗ = 0, i.e. SU(N ′
c)mag free and TrSU(Ñc)

2R|
Ã

= 0,

(III.53)

(B̃) gmag∗ = 0, g′mag∗ 6= 0, i.e. SU(Ñc) free and TrSU(N ′
c)

2
magR|B̃ = 0, (III.54)

(C̃) gmag∗ 6= 0, g′mag∗ 6= 0 so TrSU(Ñc)
2R|

C̃
= TrSU(N ′

c)
2
magR|C̃ = 0, (III.55)

which are depicted in fig. III.8. RG fixed point (Ã) is simply the Seiberg dual

description of RG fixed point (A) of the original electric theory (with SU(N ′
c)

part of the global flavor symmetry). We expect that RG fixed point (C̃), when it

exists, is an equivalent, dual description of the SCFT at RG fixed point (C) of the

original electric theory (III.1). The qualifier “when it exists” is because, as in the

electric description, the RG flow may look like that of fig. III.2 rather than that

of fig. III.1. In the electric description, the condition for the RG fixed point (C)

to exist is (III.16). We will determine its analog in the magnetic theory (III.47),

for (C̃) to exist, by analyzing the IR stability of the RG fixed points (Ã) and (B̃)

to small non-zero perturbations in the couplings that are set to zero in (III.53)

and (III.54), in analogy with fig. III.5. We will find that, for a particular range

of flavors and colors, the theory (III.47) with superpotential (III.48) realizes the

RG flow depicted in fig. III.3: even if the one-loop beta function might suggest

that SU(Ñc) is IR free, it can be driven to be interacting by the interactions of

the other gauge group and the superpotential.

Finally, we note that RG fixed point (B̃) is not the dual of RG fixed point

(B): as duality exchanges strong and weak coupling, the RG fixed point (B̃), where



79

mag

c

��

����

��

��

����

��

A

B

g’

g

C

dualize B

g

~

A (=A)

C (= C)
~

~

g’mag

SU(N  )

Figure III.8: The process of dualizing one group.

the magnetic SU(Ñc) is free, corresponds to strongly coupled electric SU(Nc). In

cases where RG fixed point (B̃) is IR stable, our interpretation is that the electric

side appears to flow to interacting RG fixed point (C), but the magnetic dual

reveals that the theory actually flows instead to having a free magnetic SU(Ñc),

at the RG fixed point (B̃).

III.D.1 The RG fixed point (Ã) and its IR stability to g′mag perturba-

tions.

RG fixed point (Ã) is the Seiberg dual description of RG fixed point

(A) of the original electric theory. All of the superconformal R-charges at (Ã) are

immediately computable from the dual matter content (III.47) and superpotential,

or from the Seiberg duality map [26] and the superconformal R-charges at RG fixed

point (A) in the electric description. Either way, the result is: R(Y ) = R(q) =

Nc/(Nf + N ′
c), R(M) = R(F ′) = R(Φ) = 2 − 2Nc/(Nf + N ′

c), and R(Q′) =

2/3. Using (III.51), we see that g′mag is an IR relevant perturbation of (Ã) if

TrSU(N ′
c)

2
magR|Ã is positive, or an IR irrelevant perturbation if it’s negative. This

’t Hooft anomaly is easily directly computed, or we can use the fact that ’t Hooft

anomalies match in Seiberg duality [26] (since SU(N ′
c) is a subgroup of the flavor

group), so TrSU(N ′
c)

2
magR|Ã = TrSU(N ′

c)
2R|A. The RG fixed point (Ã) of the

dual theory is thus IR stable if precisely the same inequality (III.14) found in the
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electric description holds. So our first necessary condition for RG fixed point (C̃)

to exist, at least within the domain of attraction of the UV fixed point at zero

couplings, is that the opposite inequality of (III.14) should hold,

(3N ′
c −N ′

f)(N
′
c +Nf ) − 3N2

c > 0, (III.56)

to have (Ã) be IR repulsive. It is satisfying to see that the magnetic (Ã) RG fixed

point is IR repulsive precisely when the electric RG fixed point (A) is. It is hard

to imagine how it could have been otherwise, given that the RG fixed points (A)

and (Ã) are identified.

III.D.2 The RG fixed point (B̃) and its IR stability to gmag perturba-

tions.

This case is considerably more difficult than that of the previous sub-

section, as a-maximization is needed to determine the superconformal R-charges

at RG fixed point (B̃). Notice that, with the SU(Ñc) gauge coupling set to zero

at (B̃), the SU(N ′
c)mag spectrum in (III.47) is the same as that analyzed in [16]:

SQCD with an additional adjoint. But here the a-maximization analysis is further

complicated by the presence of the superpotential in (III.47), which couples some

of the SU(N ′
c)mag fundamentals Y to the adjoint Φ, and also to fundamentals F ′

and SU(N ′
c)mag singlets q. Rather than maximizing atrial as a function of one

variable, y, depending on one parameter, x, as in [16], we’ll have here to maximize

atrial as function of two variables, R(Q′) ≡ u and R(Φ) ≡ v, depending on the

three parameters (x, x′, n) of (III.18).

Let’s consider the constraints on the superconformal U(1)R at (B̃). Hav-

ing βg′mag
= 0 requires TrSU(N ′

c)
2
magR|B̃ = 0 (III.54):

N ′
c+ Ñc(R(Y )−1)+N ′

f (R(Q′)−1)+Nf (R(F ′)−1)+N ′
c(R(Φ)−1) = 0. (III.57)

The superpotential terms (III.48) further impose

R(Y ) +R(F ′) +R(q) = 2, and R(Φ) + 2R(Y ) = 2. (III.58)



81

Note that the first term in the superpotential (III.48) is irrelevant for gmag = 0,

since none of its fields are charged under SU(N ′
c), so M is a free field, with R(M) =

2/3. The constraints (III.57) and (III.58) are three constraints on five R-charges;

they can be solved for

R(Y ) = 1−1

2
v, R(q) =

1

2
(x+x′)v+n(u−1), R(F ′) = 1+n(1−u)+1

2
(1−x−x′)v,

(III.59)

with R(Q′) ≡ u, R(Φ) ≡ v, and (x, x′, n) defined as in (III.18). a-maximization

w.r.t. u and v is needed to determine the values of u(x, x′, n) and v(x, x′, n).

Once we’ve determined the superconformal R-charges at (B̃), we can

determine whether or not (B̃) is stable to non-zero gmag perturbations. We see from

βgmag
in (III.51) that gmag is a relevant perturbation of (B̃) if TrSU(Ñc)

2R|
B̃
> 0,

i.e. if

3Ñc−Nf−N ′
c+Nfγq+N

′
cγY > 0, i.e. if −Nc+NfR(q)+N ′

cR(Y ) > 0. (III.60)

This condition, together with (III.56), are the necessary conditions for RG fixed

point (C̃) to exist (at least within the domain of attraction of zero couplings). If

the inequality in (III.60) is not satisfied, RG fixed point (B̃) is IR attractive, and

then we expect RG flows from generic values of the couplings to end up there in

the IR. So if (III.60) is not satisfied, the original electric theory (III.1) flows to

having a free magnetic SU(Ñc) in the IR.

The condition (III.60), for SU(Ñc) to not be free magnetic in the IR, is

generally very different from the naive criterion, Nf + N ′
c >

3
2
Nc, based on when

SU(Ñc) is asymptotically free in the UV. The difference is that (III.60) accounts

for the SU(N ′
c)mag dynamics. If the numbers of flavors and colors are chosen such

that the SU(N ′
c)mag matter spectrum is just barely asymptotically free (i.e. b′1

mag

in (III.50) is small and positive), then the RG fixed point coupling g′mag at (B̃) is

small. In this case, the the SU(N ′
c)mag dynamics doesn’t much affect the running

of the SU(Ñc) coupling gmag. In particular, when (B̃) is at weak coupling, the

a-maximization results properly give R(q) ≈ 2/3 and R(Y ) ≈ 2/3, since these
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fields are approximately free. We then find that (III.60) gives approximately the

standard condition from Seiberg duality [26] for the magnetic dual SU(Ñc) to be

interacting rather than IR free, Nf + N ′
c >

3
2
Nc, which is the condition that gmag

be an IR relevant perturbation of free theory at gmag = g′mag = 0.

On the other hand, when the number of flavors and colors are such that

SU(N ′
c)mag is very much asymptotically free, i.e. b′1

mag in (III.50) is positive and

large, the RG fixed point (B̃) is at strong SU(N ′
c)mag coupling. In this case, the

SU(N ′
c)mag dynamics can radically affect whether or not the SU(Ñc) coupling gmag

is relevant. Indeed, depending on the values of (x, x′, n), this theory can realize the

flow of fig. III.3: even if Nf+N
′
c ≤ 3

2
Nc, so SU(Ñc) is IR free around gmag = g′mag =

0, the condition (III.60) for SU(Ñc) to be an IR interacting deformation of (B̃)

can nevertheless be satisfied. In short, the SU(N ′
c)mag has driven an otherwise IR

free SU(Ñc) theory to instead be IR interacting. We’ll focus on this phenomenon

of fig. III.3 in the rest of this subsection.

To have (III.60) be satisfied when bmag1 < 0 requires that q and/or Y have

positive anomalous dimension, i.e. R-charge greater than 2/3, at the RG fixed

point (B). Positive anomalous dimensions are possible provided that there is a

Wtree superpotential, as in the case here (III.48): gauge interactions make negative

contributions to the anomalous dimensions, and superpotential interactions make

positive contributions. As we’ll now discuss, there is indeed a range of parameter

space of flavors and colors for the magnetic theory (III.47) where the anomalous

dimensions are sufficiently positive so as to have (III.60) satisfied, despite having

bmag1 < 0, realizing the effect of fig. III.3. (See also the example [21].)

Though the a-maximization analysis at RG fixed point (B̃) is standard,

it’s computationally intensive. Using the spectrum (III.47) and (III.59), we com-

pute the combination of ’t Hooft anomalies a(0) = 3TrR3 − TrR, as a function of

the two variables, (u, v), and the parameters (x, x′, n). Depending on (x, x′, n), we

have to also add the additional contributions (III.21) for any gauge invariant op-

erators with R ≤ 2/3. (The operators hitting the unitarity bound are found to be
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Q′Φj−1Q̃′, Q′Φj−1F̃ ′, and F ′Φj−1F̃ ′ for values of j = 1 . . . increasing with x and x′,

as the RG fixed point (B̃) becomes more and more strongly coupled.) Again, we

implemented this a-maximization analysis numerically, using Mathematica. While

the numerics are similar in spirit to our previous cases, the fact that here we’re

maximizing a function of two, rather than one, variables, as a function of the three

parameters, greatly prolongs the required computational timescale.

Let’s focus on an interesting range of parameter space, where we take the

parameters x and x′ to be large. This is an interesting region of parameter space

because then RG fixed point (B̃) is at very strong SU(N ′
c)mag gauge coupling (as

seen from the fact that the one-loop beta function is very large). For large x and

x′, there are terms quartic in x in a(0) = 3TrR3−TrR, coming from the O(x) terms

in R(q) and R(F ′) in (III.59). Note, however, that the O(x) terms in (III.59) all

appear multiplied by v, so the leading terms for large x transform homogeneously,

with degree one, under x → λx and v → λ−1v, e.g. the quartic term in a(0) is

∼ x4v3. When we include the contributions from the meson hitting the unitarity

bound, we find that they also have a leading large x term which is degree one under

this scaling. Because of this homogeneity, when we maximize w.r.t. v for large x,

we find v ∼ 1/x, and the value of a at its maximum is linear in x, since it’s degree

one in the above rescaling. (The fact that the central charge of the SCFT grows

linearly in x is a check of the a-theorem conjecture, since there’s a Higgsing RG

flow analogous to that of [16] which would violate the a-theorem with any higher

degree.) To study the limit of large x, we can thus scale λ→ ∞, keeping only the

terms of degree one in λ.

In this scaling limit, R(Φ) ≡ v → λ−1v → 0 for λ → ∞. Then (III.59)

gives R(Y ) → 1, while R(Q′) ≡ u, R(q), and R(F ′) asymptote to some finite

values that are determined by a-maximization. The a-maximization answer for

these quantities, in our limit of large x and x′, can also be obtained by borrowing

the a-maximization results of [16]. The idea is that the SU(N ′
c)mag gauge coupling

at (B̃) is very strong for large x and x′, and the SU(N ′
c)mag matter content that it
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couples to coincides with that of [16], and adjoint and fundamentals. The theory at

(B̃) differs from that of [16] only because of the superpotential interactions (III.48).

If not for the superpotential interactions, the a-maximization result of [16] would

tell us that R(Y ), R(Q′) and R(F ′) all asymptote to (
√

3 − 1)/3 ≈ 0.244 for x→
∞. The superpotential non-negligibly affects R(Y ): the ΦY Ỹ term requires that

R(Y ) → 1, since R(Φ) → 0 for large x. But the superpotential negligibly affects

R(Q′) and R(F ′) in the strong SU(N ′
c)mag coupling, large x limit. For example,

though there is a term Y F ′q̃ in the superpotential, its effect is to determine the

R-charge of the otherwise free field q, leaving R(Y ) → 1 and R(F ′) → (
√

3 −
1)/3 ≈ 0.244 unaffected. So in this large x limit we obtain (and the detailed

a-maximization analysis bears this out):

R(Y ) → 1, and R(q) → 1−
(√

3 − 1

3

)
≈ 0.756, for large x and x′. (III.61)

The condition (III.60) for gmag to be relevant at B̃ is then (recalling

(III.18))

N ′
c−Nc +Nf (0.756) > 0, i.e. x′−x+0.756 > 0, for large x and x′. (III.62)

This is very different from the condition that gmag be asymptotically free for g′mag =

0, bmag1 > 0, i.e. 1 + x′ − 3
2
x > 0, and III.62) can be satisfied even when bmag1 < 0,

i.e. we can have

1 + x′ − 3

2
x < 0 but nevertheless x′ − x+ 0.756 > 0; (III.63)

for example, we can take x ≈ x′ → ∞. For values of (x, x′, n) such that the

inequalities in (III.63) both hold, the RG flow is as in fig. III.3: if SU(N ′
c)mag’s

coupling were set to exactly zero, then SU(Ñc) would be IR free, but any non-zero

SU(N ′
c)mag coupling would eventually drive SU(Ñc) to be instead interacting in

the IR.
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III.D.3 The RG fixed point (C̃)

RG fixed point (C̃) exists if (Ã) and (B̃) are both IR unstable to pertur-

bations in the other coupling; we found this to be the case if (III.56) holds, and

if, say for large x and x′, (III.62) holds, respectively. When (C̃) exists, we expect

that it’s an equivalent, dual description of the RG fixed point (C) of the original

electric theory. We’ll here check that the superconformal R-charges are compatible

with this identification.

At (C̃), the six independent superconformal R-charges, on the six lines

of (III.47), are subject to five constraints: for vanishing βgmag
and βg′mag

, we re-

quire (III.55), TrSU(Ñc)
2R|

C̃
= TrSU(N ′

c)
2
magR|C̃ = 0, along with three more

constraints from requiring that the superpotential terms (III.48) all have total

R(W ) = 2. (All terms in (III.48) are relevant deformations of the W = 0 theory

when gmag∗ and g′mag∗ are both non-zero.) There is thus a one-variable family of

R-charges, as for the electric RG fixed point (C). These constraints are compati-

ble with the duality map identification of the fields F ′, M , and Φ in (III.47): the

R-charges of the dual theory (III.47) can be related to those of the original electric

theory (III.1), with R(Q) ≡ y as before, by

R(M) = 2y, R(F ′) = R(X)+y, R(Φ) = 2R(X), R(q) = 1−y, R(Y ) = 1−R(X),

(III.64)

with R(X) and R(Q′) given by (III.26) in terms of the variable y and parameters

(x, x′, n).

We compute the same function a
(0)
trial = 3TrR3−TrR to maximize w.r.t. y

as in the electric theory (III.27), as expected from the ’t Hooft anomaly matching

for the global flavor symmetries in Seiberg duality [26]. Compatible with our claim

that the electric RG fixed point (C) is equivalent to the dual one (C̃), there is a one-

to-one mapping of the operators that have hit the unitarity bound. Corresponding
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to the operators (III.28) we have

Mj=1 ↔ M, Mj>1 ↔ F̃Φj−2F, M ′
j ↔ Q′Φj−1Q̃′, Pj ↔ F ′Φj−1Q̃′, P̃j ↔ F̃ ′Φj−1Q′.

(III.65)

So, even including the contributions of the operators hitting their unitarity bound,

we find the same atrial function of y and (x, x′, n) to maximize w.r.t. y, and hence

the same superconformal R-charges are given by (III.64) with y(x, x′, n) the same

superconformal R-charge as obtained by analyzing the electric theory (III.1).

III.E Conclusions and Comments

A general potential pitfall in applying a-maximization is that one must

really have the full symmetry group under control, including all accidental symme-

tries, to obtain correct results. Overlooking some symmetries will lead to a value

of the central charge aSCFT that is too low. Seiberg duality [26] shows that there

can be highly non-obvious accidental symmetries, such as those acting on the free

magnetic SU(Nf −Nc) quarks and gluons when Nf <
3
2
Nc. More generally, with-

out knowing the dual, we do not presently have a way to look for such accidental

symmetries, which do not act on any of the “obvious” gauge invariant operators

of the theory.

Ignoring the interplay of the two gauge couplings, the superconformal

window of [26] for each gauge group in (III.1) separately is

3

2
Nc < Nf +N ′

c < 3Nc,
3

2
N ′
c < N ′

f +Nc < 3N ′
c. (III.66)

These are the conditions for points (A) and (B) to be interacting SCFTs, respec-

tively. The upper limits are needed for the electric coupling to not be driven to

zero in the IR, and the lower limits are for the couplings of the dual [26] to not be

driven to zero in the IR.

Accounting for the g and g′ interplay, the conditions for point (C) to exist

as a fully interacting SCFT differ from (III.66). The upper limits of (III.66) should
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be replaced with the conditions (III.16), for neither electric gauge coupling to be

driven to zero in the IR. Similarly, the duality of sect. III.D (assuming its validity)

shows how the lower limits of (III.66) are modified, in order for neither magnetic

gauge coupling to be driven to zero in the IR.

For example, taking x ≡ Nc/Nf and x′ ≡ N ′
c/Nf large, we found in sect.

III.D that (B̃), with gmag → 0, is IR attractive if

N ′
c −Nc + (0.756)Nf < 0, i.e. if x′ − x+ 0.756 < 0. (III.67)

In this case, rather than flowing to the fully interacting RG fixed point (C), the

theory flows to the free magnetic point (B̃) in the IR, where the original electric

SU(Nc) is very strongly coupled, but its SU(Nf + N ′
c − Nc) magnetic dual is IR

free. There is then a large, non-obvious, accidental symmetry of the original electric

theory when (III.67) holds. Likewise, dualizing the SU(N ′
c) factor of (III.1), we

find for large x and x′ that the apparent RG fixed point (C) of the electric theory

instead flows to having a free magnetic SU(N ′
f +Nc −N ′

c) group when

Nc −N ′
c + (0.756)N ′

f < 0, i.e. if x− x′ + (0.756)n < 0. (III.68)

So, for RG fixed point (C) to be fully interacting, rather than partially

free magnetic, the lower limits in (III.66) are replaced, for large x and x′, with the

conditions

−(0.756)n < x− x′ < 0.756. (III.69)

The range (III.69) is a subset of the stability range (III.23). Outside of the range

(III.69), there are non-obvious accidental symmetries. Within the range (III.69),

we have no evidence for non-obvious accidental symmetries. If there had been

any such non-obvious accidental symmetries, our a-maximization analysis of sects.

III.B and III.C would have to be appropriately modified. In particular, in our

parameter slice of special interest in sects. III.B and III.C, x = x′, i.e. Nc = N ′
c,

the magnetic duals remain fully interacting.

As we noted, for x = x′ and n = 1, the a-maximization analysis of our

product group example (III.1) coincides with that in [16] for SU(Nc) with an
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adjoint and Nf fundamentals. In the analysis of [16] of that latter theory, it was

assumed that the only accidental symmetries are the obvious ones, associated with

gauge invariant operators hitting the unitarity bound. But, as in the example of

[21], there’s a possibility of a non-obvious accidental symmetry, associated with

a free-magnetic gauge group in a deconfining dual. The idea of the deconfining

dual [51] is that the dual (III.33) of our theory (III.1) would look quite a lot like

SU(N ′
c) SQCD with an adjoint if we chose the flavors and colors such that Ñc = 1

in (III.47). And a slight modification of the theory (III.1), with added fields and

superpotential terms (designed to eliminate the analog of (III.48) in the dual), will

lead to precisely SQCD with an adjoint and fundamentals, with no superpotental;

see table 8 of [52] for the needed field content. It would be interesting to carry out

the a-maximization analysis of that theory, and its duals, to determine whether or

not any of the gauge groups of the deconfining duals can become IR free.

This chapter is a reprint of the material as it appears in E. Barnes,

K. Intriligator, B. Wecht and J. Wright, “N = 1 RG flows, product groups,

and a-maximization,” Nucl. Phys. B 716, 33 (2005), and on the preprint archive,

http://www.arxiv.org/hep-th/0502049.



IV

The Exact Superconformal

R-symmetry Minimizes τRR

IV.A Introduction

Our interest here will be in the coefficients τIJ of two-point functions

of globally conserved currents JµI (I labels the various currents) in d-dimensional

CFTs:

〈JµI (x)JνJ (y)〉 =
τIJ

(2π)d
(∂2δµν − ∂µ∂ν)

1

(x− y)2(d−2)
. (IV.1)

The general form (IV.1) of the correlator is completely fixed by conformal invari-

ance, with the specific dynamics of the theory entering only in the coefficients τIJ .

Unitarity restricts τIJ to be a positive matrix (positive eigenvalues). For 4d CFTs,

τIJ give [54], [55] the violation of scale invariance, 〈T µµ 〉 = 1
4
τIJ(F

I)µν(F
J)µν , when

the global currents are coupled to background gauge fields.

We’ll here consider field theories with four supercharges: N = 1 in 4d,

and N = 2 in 3d (one could also consider N = (2, 2) in 2d), and their renormal-

ization group fixed point SCFTs (where there are an additional four superconfor-

mal supercharges). The stress tensor of these theories lives in a supermultiplet

Tαβ̇(x, θ, θ) (in 4d Lorentz spinor notation; for d < 4 the dot on β̇ is unnecessary),

which also contains a U(1)R current – this is “the superconformal U(1)R sym-

89
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metry”. Supersymmetry relates this current and its divergence to the dilitation

current and its divergence. The scaling dimension of chiral operators are related

to their superconformal U(1)R charge by

∆ =
d− 1

2
R. (IV.2)

For a chiral superfield, writing ∆ = 1
2
d− 1 + 1

2
γ, with γ the anomalous dimension,

(IV.2) yields

R =
d− 2

d− 1
+

1

d− 1
γ. (IV.3)

There are often additional non-R flavor currents, whose charges we’ll

write as Fi, with i labeling the flavor symmetries. In superspace, these currents

reside in a different kind of supermultiplet, which we’ll write as Ji(x, θ, θ). When

there are such additional flavor symmetries, the superconformal U(1)R of RG fixed

point SCFTs can not be determined by the symmetries alone, as the R-symmetry

can mix with the flavor symmetries. Some additional dynamical information is

then needed to determine precisely which, among all possible R-symmetries, is the

superconformal one, in the Tαβ̇ supermultiplet.

We will here present a new condition that, in principle, completely de-

termines which is the superconformal U(1)R. We write the most general possible

trial R-symmetry as

Rt = R0 +
∑

i

siFi, (IV.4)

where R0 is any initial R-symmetry, and Fi are the non-R flavor symmetries. The

subscript “t” is for “trial”, with the si arbitrary real parameters. The supercon-

formal R-symmetry, which we’ll write as R without the subscript, corresponds to

some special values s∗i of the coefficients in (IV.4), that we’d like to determine,

R = Rt|sj=s∗j
.

As we’ll discuss, the fact that the superconformal R-symmetry and the

non-R flavor symmetries reside in different kinds of supermultiplets, implies that

their current-current two-point function necessarily vanishes, 〈JµR(x)JνFi
(y)〉 = 0,
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i.e.

τRi = 0 for all non-R symmetries Fi. (IV.5)

This condition uniquely characterizes the superconformal R-symmetry among all

possibilities (IV.4). To see this, use (IV.4) to write (IV.5) as

0 = τRi = τRti|sj=s∗j
= τR0i +

∑

j

s∗jτij for all i. (IV.6)

Here τR0i is the coefficient of the 〈JµR0
(x)JνFi

(y)〉 current-current two-point function

of the currents for R0 and Fi, and τij is the coefficient of the 〈JµFi
(x)JνFj

(y)〉 of

the current-current two-point function for the non-R flavor symmetries Fi and Fj .

The conditions (IV.6) is a set of linear equations which uniquely determines the

s∗j , if the coefficients τR0i and τij are known. Unitarity implies that the matrix τij

is necessarily positive, with non-zero eigenvalues, so it can be inverted, and the

solution of (IV.6) is

s∗j = −
∑

i

(τ−1)ijτR0i. (IV.7)

The conditions (IV.6) can be phrased as a minimization principle: the

exact superconformal R-symmetry is that which minimizes the coefficient τRtRt

of its two-point function among all trial possibilities (IV.4). Using (IV.4), the

coefficient of the trial R-current Rt two-point function is a quadratic function of

the parameters sj:

τRtRt
(s) = τR0R0 + 2

∑

i

siτR0i +
∑

ij

sisjτij . (IV.8)

Our result (IV.5) implies that the exact superconformal R-symmetry extremizes

this function,
∂

∂si
τRtRt

(s)|sj=s∗j
= 2τRi = 0. (IV.9)

The unique solution of (IV.9) is a global minimum of the function (IV.8) since

∂2

∂si∂sj
τ(s) = 2τij > 0, (IV.10)

with the last inequality following from unitarity.
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The value of τRtRt
at its unique minimum is the coefficient τRR of the

superconformal R-current two-point function. As is well known, supersymmetry

relates this to the coefficient, “c”, of the stress tensor two-point function, τRR ∝ c;

as we’ll discuss, the proportionality factor is

τRR =
(2π)d

d(d2 − 1)(d− 2)
CT or, for d = 4, τRR =

16

3
c. (IV.11)

τRR minimization immediately implies some expected results. For non-

Abelian flavor symmetry, (IV.5) is automatically satisfied for all flavor currents

with traceless generators, if the superconformal R-symmetry is taken to com-

mute with these generators. This shows, as expected, that the superconformal

R-symmetry does not mix with such non-Abelian flavor symmetries. Similarly,

(IV.5) is automatically satisfied by any baryonic flavor currents which are odd un-

der a charge conjugation symmetry, taking the superconformal U(1)R to be even

under charge conjugation. So, as expected, the superconformal U(1)R does not mix

with baryonic symmetries which are odd under a charge conjugation symmetry.

As a simple example of τRR minimization, consider a single, free, chiral

superfield Φ in d spacetime dimensions. The R-symmetry can mix with a non-R

U(1)F flavor current, under which Φ has charge 1 (the “Konishi current”). Write

the general trial R-charges for the scalar and fermion components as R(φ) = Rt,

R(ψ) = Rt − 1. As we’ll review, the free field two-point function of this R-current

is

τRtRt
=

Γ(d
2
)22d−2

(d− 1)(d− 2)

(
1

d− 2
R2
t + (Rt − 1)2

)
(IV.12)

with the two terms the scalar and fermion contributions. Taking the derivative

w.r.t. Rt,

τRtF =
1

2

d

dRt

τRtRt
=

Γ(d
2
)22d−2

(d− 1)(d− 2)

(
Rt

d− 2
+Rt − 1

)
. (IV.13)

Requiring τRF = 0 then gives the correct result (IV.3), with anomalous dimension

γ = 0, for a free chiral superfield in d spacetime dimensions.

The above considerations all apply independent of space-time dimension;

they are equally applicable for 4d N = 1 SCFTs as with 3d N = 2 SCFTs.
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For 4d N = 1 SCFTs, there is already a known method for determining the

superconformal R-symmetry: a-maximization [14]. It was shown in [14] that the

s∗i can be determined by a-maximization, maximizing w.r.t. the si in (IV.4) the

combination of ’t Hooft anomalies

atrial(Rt) =
3

32
(3TrR3

t − TrRt), (IV.14)

(where we decided here to include the conventional normalization prefactor). For

example, for a free 4d chiral superfield we locally maximize the function

atrial(Rt) =
3

32
(3(Rt − 1)3 − (Rt − 1)). (IV.15)

The local maximum of (IV.15) is atR = 2/3, which indeed coincides with the global

minimum of (IV.12), but it’s illustrative to see how the functions themselves differ.

a-maximization in 4d is much more powerful than τRtRt
minimization,

because one can use the power of ’t Hooft anomaly matching to exactly compute

atrial(Rt) (IV.14), whereas the current two-point functions τR0i and τij needed for

τRtRt
minimization receive quantum corrections. Actually, once the exact super-

conformal R-symmetry is known, there is a nice way to evaluate τij in terms of ’t

Hooft anomalies [13]:

τij = −3TrRFiFj , (IV.16)

as we’ll review in what follows. (The result (IV.16) generally can not be turned

around, and used as a way to determine the superconformal U(1)R, because plug-

ging (IV.4) in (IV.16) can not always be inverted to solve for the s∗.)

In the context of the AdS/CFT correspondence, the criterion (IV.6) for

determining the superconformal R-symmetry becomes more useful and tractable,

because the AdS duality gives a weakly coupled dual description of τR0i and τij :

these quantities become the coefficients of gauge field kinetic terms in the AdS bulk

[56]. As we’ll discuss in a separate paper [57], these coefficients are computable

by reducing SUGRA on the corresponding Sasaki-Einstein space. We’ll show in

[57] that the conditions (IV.6) are in fact equivalent to the “geometric dual of

a-maximization” of Martelli, Sparks, and Yau [58].



94

There is no known analog of a-maximization for 3d N = 1 SCFTs, and

in 3d there is no useful analog of ’t Hooft anomalies and matching (aside from

a Z2 parity anomaly matching [59]). τRtRt
minimization gives an alternative to

a-maximization in 4d, which applies equally well to 3d N = 2 SCFTs.

a-maximization in 4d ties the problem of finding the superconformal

U(1)R together with Cardy’s conjecture [3], that the conformal anomaly a counts

the degrees of freedom of a quantum field theory, with aUV > aIR and aCFT > 0.

The result that a is maximized over its possibilities implies that relevant defor-

mations decrease a [14], in agreement with Cardy’s conjecture. Unfortunately, we

have not gained any new insights here into general RG inequalities from our τRR

minimization result. Indeed, τRR is related to the conformal anomaly c in 4d,

which is known to not have any general behavior, neither generally increasing nor

generally decreasing, in RG flows to the IR. And there is no analogous argument

to that of [14], to conclude that τRR generally increases in RG flows in the IR, from

the fact that τRR is minimized among all possibilities: the quantum corrections to

τRR, coming from the relevant interactions, can generally have either sign. (The

difference is that the argument of [14] was based on ’t Hooft anomalies, which do

not get any quantum corrections for conserved currents).

Our τRR minimization result applies for SCFTs at their RG fixed point.

It would be interesting to extend τRR minimization to study RG flows away from

the RG fixed point. Perhaps this can be done by using Lagrange multipliers, as

in [20], to impose the constraint that one minimize only over currents that are

conserved by the relevant interactions.

IV.B Current two point functions; free fields and normal-

ization conventions

Two point functions of currents and stress tensors for free bosons and

fermions in d-spacetime dimensions were worked out, e.g. in [60]. To compare
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with [60], rewrite (IV.1) as

〈JµI (x)JνJ (y)〉 = τIJ
2(d− 1)(d− 2)

(2π)d
Iµν(x− y)

(x− y)2(d−1)
, (IV.17)

with Iµν(x) ≡ δµν − 2xµxν(x
2)−1. The normalization conventions of [60] is

〈Jµ(x)Jν(0)〉 =
CV

x2(d−1)
Iµν(x), 〈Tµν(x)Tρσ(0)〉 =

CT
x2d

Iµν,σρ(x), (IV.18)

with Iµν,σρ(x) = 1
2
(Iµσ(x)Iνρ(x) + Iµρ(x)Iνσ(x)) − d−1δµνδσρ. Thus CV = 2τ(d −

1)(d − 2)/(2π)d. With these normalizations, the coefficients (IV.18) for a single

complex scalar are

CV =
2

d− 2

1

S2
d

, CT =
2d

d− 1

1

S2
d

, (IV.19)

where Sd ≡ 2π
1
2
d/Γ(1

2
d) and the current was normalized to give φ and φ∗ charges

±1. The coefficients for a free fermion having the same number of components as a

4d complex chiral fermion (half the components of a Dirac fermion) the coefficients

are

CV = 2
1

S2
d

, CT = d
1

S2
d

(IV.20)

(we don’t have the factors of 2d/2 of [60], because we’re here considering a fermion

with the same number of components as the dimensional reduction of a 4d chiral

fermion for all d).

More generally, let current JI(x) give charges qI,b to the complex bosons

and charges qI,f to the chiral fermions. Using (IV.19) and (IV.20), we have

τ free field
IJ =

Γ(d
2
)22d−2

(d− 1)(d− 2)




1

d− 2

∑

bosons b

qI,bqJ,b +
∑

fermions f

qI,fqJ,f


 .

(IV.21)

In particular, for a U(1)R symmetry, this gives (IV.12). For d = 4,

Γ(d/2)22d−2/(d − 1)(d − 2) = 2/3, so e.g. a 4d U(1)F non-R symmetry which

assigns charge q to a single chiral superfield has τ freefieldFF = q2.
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IV.C Supersymmetric field theories

Supersymmetry relates the superconformal R-symmetry to the stress ten-

sor: both reside in the supercurrent supermultiplet

Tαα̇(x, θ, θ) ∼ JR,αα̇(x) + Sαα̇β(x)θ
β + Sαα̇β̇(x)θ

β̇
+ Tαα̇ββ̇(x)θ

βθβ̇ + . . . , (IV.22)

whose first component is the superconforal U(1)R current and whose θθ compo-

nent is the stress energy tensor (we’re omitting numerical coefficients here). Our

notation is for the 4d case; similar results hold for 3d N = 2 theories, with θ
α̇

replaced with a second flavor of θα. For superconformal theories, the stress tensor

is traceless, and the superconformal R-current is conserved. As discussed in [29],

the supercurrent two-point function is then of a completely determined form, with

the only dependence on the theory contained in a single overall coefficient C:

〈Tαα̇(z1)Tββ̇(z2)〉 = C
(x12)αβ̇(x21)βα̇

(x2
21
x2

12
)d/2

; (IV.23)

see [29] for an explanation of the superspace notation in (IV.23).

Expanding out (IV.23) in superspace, the LHS includes both the R-

current two-point function and the stress-tensor two-point function. So (IV.23)

shows that the coefficient C ∝ τRR, and also C ∝ CT , and so it follows that

τRR ∝ CT . We could determine the precise coefficients in these relations by be-

ing careful with the coefficients in (IV.22) and in expanding both sides of (IV.23);

instead we will fix these universal proportionality factors by considering the partic-

ular example of a free chiral superfield. Using (IV.19) and (IV.20) to get CT , and

comparing with the free-field value of τRR computed from (IV.21), gives the general

proportionality factor that we quoted in (IV.11; e.g. for d = 3 it’s τRR = π3CT/3.

In 4d, CT ∝ c, one of the conformal anomaly coefficients, and the proportionality

can again be fixed by considering the case of a free 4d N = 1 chiral superfield, for

which c = 1/24 and (IV.21) gives τRR = 2/9 (or a free 4d N = 1 vector superfield,

for which c = 1/8 and (IV.21) gives τRR = 2/3); this gives the relation quoted in

(IV.11).
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The non-R global flavor currents Jµi (x) are the θαθ
α̇

components of super-

fields Ji(x, θ, θ), whose first component is a scalar. We can write their two-point

functions in superspace [29], with the coefficients given by that of the flavor current

correlators, τij :

〈Ji(z1)Jj(z2)〉 =
τij

(2π)d
1

(x2
21
x2

12
)(d−2)/2

. (IV.24)

In general d dimensional CFTs, two-point functions of primary operators

vanish unless the operators have conjugate Lorentz spin and the same operator

dimension. Noting that the first component of the supermultiplet (IV.22) has

dimension ∆(Tαβ̇) = d−1, and the first component of the current Ji has dimension

∆(Ji) = d−2 (since the θαθ
α̇

component is the current, with dimension d−1), the

two-point function of the first components of these two different supermultiplets

must vanish. Because there is no non-trivial nilpotent invariant for two-point

functions [29] , this implies that two-point function of the entire supermultiplets

must vanish:

〈Tαα̇(z1)Ji(z2)〉 = 0. (IV.25)

I.e. the two-point function of any operator in the Tαα̇ supermultiplet and any

operator in the Ji supermultiplet vanishes; in particular, this implies that the two-

point function of the superconformal U(1)R current and all non-R flavor currents

necessarily vanish, τRFi
= 0. We thus have the general result (IV.5), and this same

argument applies equally for d = 4 N = 1 as well as lower dimensional SCFTs

with the same number of supersymmetries.

IV.C.1 4d N = 1 SCFTs: relating current correlators to ’t Hooft

anomalies

The superspace version of an anomaly in the dilatation current is

∇α̇
Tαα̇ = ∇αLT , (IV.26)

with LT the trace anomaly, which is the variation of the effective action with

respect to the chiral compensator chiral superfield [61].
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On a curved spacetime, there is the conformal anomaly

〈T µµ 〉 =
1

120

1

(4π)2

(
c(Weyl)2 − a

4
(Euler)

)
, (IV.27)

(there can also be an a′∂2R term, whose coefficient a′ is ambiguous, which was

discussed in detail in [62]). The coefficient “c” is that of the stress tensor two-

point function in flat space, whereas the coefficient “a” can be related to a stress

tensor 3-point function in flat space. The superspace version of this anomaly,

including also background gauge fields coupled to the superconformal R-current,

is as in (IV.26), with LT = (cW2 − aΞc)/24π2 [13]. Taking components of this

superspace anomaly equation relates the conformal anomaly coefficients a and c

to the ’t Hooft anomalies of the superconformal U(1)R symmetry [13]:

a =
3

32
(3TrR3 − TrR) c =

1

32
(9TrR3 − 5TrR). (IV.28)

An alternate derivation [29] of these relations follows from the fact that,

in flat space, the 3-point function 〈Tαα̇(z1)Tββ̇(z2)Tγγ̇(z3)〉 is of a form that’s com-

pletely determined by the symmetries and Ward identities, up to two overall nor-

malization coefficients, with one linear combination of these coefficients propor-

tional to the coefficient (IV.23) of the Tαβ two-point function. In components,

this relates the stress tensor three-point functions, and hence a and c, and to the

R-current 3-point functions, and hence the TrU(1)R and TrU(1)3
R ’t Hooft anoma-

lies, to these two coefficients. It follows that a and c can be expressed as linear

combinations of TrU(1)R and TrU(1)3
R, and the coefficients in (IV.28) can easily

be determined by considering the special cases of free chiral and vector superfields.

Combining (IV.11) and (IV.28), we have

τRR =
3

2
TrR3 − 5

6
TrR. (IV.29)

It was also argued in [13] that the two-point functions τij of non-R flavor

currents are related to ’t Hooft anomalies, as

τij = −3TrRFiFj . (IV.30)
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Again, this can be argued for either by turning on background fields, or by

considering correlation functions in flat space. In the former method, one uses

the fact that coupling background field strengths to the non-R currents leads to

∆LT = CijWαiW
α
j , in (IV.26), for some coefficients Cij. In components, (IV.26)

then gives δ〈T µµ 〉 ∼ CijFµν,iF
µν
j and δ〈∂µJµR〉 ∼ CijFµνiF̃

µν
j . The former gives

Cij ∼ τij and the latter gives Cij ∼ TrRFiFj, so τij ∝ TrRFiFj . The coefficient

in (IV.30) is again easily determined by considering the special case of free field

theory.

The alternate derivation would be to consider the flat space 3-point func-

tion of the stress tensor and two flavor currents, 〈Tαα̇(z1)Ji(z2)Jj(z3)〉. It was shown

in [54] that such 3-point functions are completely determined by the symmetries

and Ward identities, up to two overall coefficients, and that one linear combination

of these coefficients is proportional to the current-current two point functions, and

hence τij . In our supersymmetric context, that same linear combination should be

related by supersymmetry to 〈∂µJµR(x1)J
ρ
Fi

(x2)J
σ
Fj

(x3)〉, and hence to the TrRFiFj

’t Hooft anomaly.

The a-maximization [14] constraint on the superconformal R-symmetry

follows from the fact that supersymmetry relates the TrR2Fi and TrFi ’t Hooft

anomalies:

9TrR2Fi − TrFi = 0, (IV.31)

which again can be argued for either by considering again an anomaly with back-

ground fields, or by considering current correlation functions in flat space [14]. In

the former method, one considers the anomaly of the flavor current coming from

a curved background metric and background gauge field coupled to the supercon-

formal R-current, ∇2
J ∝ W2. With the latter method, one uses the result of

[29] that the flat space 3-point function 〈Tαα̇(z1)Tββ̇(z2)Ji(z3)〉 is completely de-

termined by the symmetries and superconformal Ward identities, up to a single

overall normalization constant.

We note that supersymmetry does not relate τRi to the ’t Hooft anomaly
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TrR2Fi. Naively, one might have expected some such relation, in analogy with the

above arguments, for example by trying to use (IV.26) to relate a term δ〈T µµ 〉 ∼
τRiFR,µνF

µν
i to a term δ〈∂µJµR〉 ∼ (TrR2Fi)FR,µνF̃

µν
i , when background fields are

coupled to both U(1)R and U(1)Fi
currents. But there is actually no way to write

such combined contributions of the U(1)R and U(1)Fi
background fields to (IV.26),

because the former resides in the spin 3/2 chiral super field strength Wαβγ , and

the latter resides in the spin 1/2 chiral super field strength Wαi, and there is no

way to combine the two of them into the spin zero chiral object LT . Likewise, in

flat space, a relation between τRi and TrR2Fi would occur if the 3-point function

〈Tαα̇(z1)Tββ̇(z2)Ji(z3)〉, which includes a term proportional to TrR2Fi, were related

to the two-point function 〈Tββ̇(z2)Ji(z3)〉, which is proportional to τRi (and, as we

have argued above, vanishes). It sometimes happens that 3-point functions with

a stress tensor are simply proportional to the 2-point function without the stress

tensor, e.g. this is the case when the other two operators are chiral and anti-chiral

primary [29]. But the the 〈Tαα̇(z1)Tββ̇(z2)Ji(z3)〉 3-point function in [29] is not

related to the 〈Tββ̇(z2)Ji(z3)〉 two-point function. Indeed, the free field example

discussed in the introduction illustrates that TrR2Fi and τRi are not related by

supersymmetry, as TrR2Fi 6= 0 for this example but, as always, τRi = 0.

IV.C.2 Using τRi = 0 to determine the superconformal R-symmetry

As discussed in the introduction, using (IV.4), we have for a general trial

R-symmetry

τRti = τR0i +
∑

j

sjτij . (IV.32)

Imposing τRii = 0 gives a set of linear equations, which determines the particular

values s∗j of the parameters for which the trial R-symmetry is the superconformal R-

symmetry. As discussed in the introduction, this can equivalently be expressed as

“the exact superconformal R-symmetry minimizes its two-point function coefficient

τRtRt
(s), which is given by (IV.8), and which we can re-write using τRi = 0 for the
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superconformal R-symmetry as

τRtRt
(s) = τRR +

∑

ij

(si − s∗i )(sj − s∗j)τij , (IV.33)

making it manifest that τRtRt
has a unique global minimum, when the sj are set to

the particular value s∗j . At sj = s∗j , the general R-symmetry Rt in (IV.4) becomes

the superconformal R-symmetry, in the supermultiplet stress tensor Tαα̇.

The function τRtRt
(s) to minimize and the function atrial(s) to locally

maximize in 4d are different. Let us compare the values of them and their deriva-

tives at the extremal point si = s∗i . For (IV.32), we have:

τRtRt
|s∗ = τRR =

16

3
c =

3

2
TrR3 − 5

6
TrR,

∂

∂si
τRtRt

|s∗ = 0, (IV.34)

∂2

∂si∂sj
τRtRt

= 2τij,

whereas for 16
3
atrial(Rt) ≡ 1

2
(3TrR3

t − TrRt) we have:

16

3
atrial(Rt)|s∗ =

16

3
a =

3

2
TrR3 − 1

2
TrR,

∂

∂si

16

3
atrial(Rt)|s∗ =

9

2
TrR2Fi −

1

2
TrFi = 0, (IV.35)

∂2

∂si∂sj

16

3
atrial(Rt)|s∗ = 9TrRFiFj = −3τij .

The derivatives of both functions of s vanish at the same values s∗. The values

of the two functions in (IV.34) and (IV.35) differ, except for SCFTs with a = c,

i.e. TrR = 0, as is the case for SCFTs with AdS duals 1 The second derivatives of

the functions in (IV.34) and (IV.35) are proportional, though with opposite sign,

reflecting the fact that the exact superconformal R-symmetry minimizes τRtRt
and

maximizes atrial(Rt).

1Quite generally, quiver gauge theories with only bi-fundamental matter have TrR = 0, and hence
a = c [15] , [63].
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For the sake of comparison, let’s also consider the function 16
3
ctrial(Rt) ≡

3
2
R3
t − 5

6
Rt; the value of this function and its first two derivatives at Rt = R, i.e.

si = s∗i , are
16

3
ctrial(Rt)|s∗ =

16

3
c =

3

2
TrR3 − 5

6
TrR,

∂

∂si

16

3
ctrial(Rt)|s∗ =

9

2
TrR2Fi −

5

6
TrFi = −1

3
TrFi, (IV.36)

∂2

∂si∂sj

16

3
ctrial(Rt)|s∗ = 9TrRFiFj = −3τij .

The value of τRtRt
and ctrial(Rt) coincide at Rt = R. The value of their first

derivatives differ for any flavor symmetries with TrFi 6= 0. General SCFTs can have

flavor symmetries with TrFi = 0, but SCFTs with AdS duals always have TrFi = 0,

and TrFi = 0 for general superconformal quivers with only bifundamental matter

[15], [63]. The second derivatives in (IV.36) differ from those of (IV.34) by a factor

of −3/2, coinciding with those of (IV.35).

As a further comparison of a-maximization in 4d with τRR minimization,

let’s consider the equations for the case where the superconformal U(1)R can mix

with a single non-R flavor symmetry, Rt = R0 + sF . a-maximization gives the

value s∗ for the superconformal U(1)R as a solution of the quadratic equation

s2TrF 3 + 2sTrR0F
2 + TrR2

0F − 1

9
TrF = 0. (IV.37)

τRR minimization gives s∗ as (IV.7)

s∗ = −τR0F/τFF . (IV.38)

If TrF 3 is non-zero, s∗ can also be obtained from (IV.16), which here gives

s∗ = −
[
TrR0F

2 +
1

3
τFF

]
/TrF 3. (IV.39)

For any given choice of R0 and F , the value of s∗ obtained in these three dif-

ferent ways must agree. It would be nice to have a direct proof of the rela-

tions that this implies. E.g. comparing (IV.39) with (IV.38) gives the identity

τR0FTrF 3 = τFF
(

1
3
τFF + TrR0F

2
)

which, evidently, must hold for any choice of

the R-symmetry R0 (taking R0 to equal the superconformal U(1)R, both sides

vanish).
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IV.D SQCD Example

4d N = 1 SCQD, with gauge group SU(Nc) and Nf fundamental and

anti-fundmantal flavors, Q and Q̃, has been argued to flow to a SCFT in the IR

for the flavor range 3
2
Nc < Nc < 3Nc [26]. Taking the superconformal U(1)R

to be the anomaly free R-symmetry, the superconformal R-charges are R(Q) =

R(Q̃) = 1 − (Nc/Nf). Let’s also consider the baryonic U(1)B symmetry, with

B(Q) = −B(Q̃) = 1/Nc. Using the ’t Hooft anomaly relations,

τRR =
3

2
TrR3 − 5

6
TrR =

3

2

[
N2
c − 1 − 2

N4
c

N2
f

]
+

5

6

[
N2
c + 1

]
, (IV.40)

τBB = −3TrRBB = 6. (IV.41)

For Nf ≈ 3Nc, where the RG fixed point is at weak coupling as in [33], [38], these

expressions reduce to the free field values.

There is a unique, anomaly free U(1)R symmetry that commutes with

charge conjugation and the SU(Nf) global symmetries. Our τRtRt
minimization

condition immediately leads to the same conclusion. τRtRt
is minimized by having

τRB = 0 and τRFi
= 0 for the U(1)B and SU(Nf ) global symmetries. Taking

the U(1)R to be even under charge conjugation ensures that τRB = 0, because

the U(1)B current is odd, so charge conjugation symmetry gives τRB = −τRB .

Likewise τRFi
= 0 for the SU(Nf ) flavor currents, simply by the tracelessness of

the generators, if U(1)R is taken to commute with SU(Nf ).

IV.E Perturbative analysis

Consider a general 4d N = 1 SCFT with gauge group G and matter

chiral superfields Qf in representations rf (of dimension |rf |) of G, with no super-

potential, W = 0. If the theory is just barely asymptotically free, there can be a

RG fixed point at weak gauge coupling, where perturbative results can be valid.

We will verify that the leading order pertubative expression for the anomalous
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dimension for fields,

γf(g) = − g2

4π2
C(rf) + O(g4), i.e Rf =

2

3
− g2

12π2
C(rf) +O(g4). (IV.42)

agrees with τRR minimization. As standard, we define group theory factors as

Trrf (T
ATB) = T (rf)δ

AB,
|G|∑

A=1

TArfT
A
rf

= C(rf)1|rf |×|rf |, so C(rf ) =
|G|T (rf)

|rf |
.

(IV.43)

The RG fixed point value g∗ of the coupling is determined by the constraint that

the R-symmetry be anomaly free, T (G) +
∑
f T (rf)(Rf − 1) = 0.

For the free UV theory, we minimize τRR over all possible R charges Rf of

the matter chiral superfields, which are unconstrained for g = 0. As we discussed

in the introduction, this gives the free-field term R
(0)
f = 2/3. For g 6= 0, we write

Rf = R
(0)
f + R

(1)
f + . . ., with R

(1)
f the O(g2) term that we’d like to find via τRR

minimization. For g 6= 0, τRR should be minimized subject to the constraint that

the symmetries be anomaly free, i.e. we impose τRi = 0 over all anomaly free

U(1)R and U(1)Fi
symmetries, with R charges Rf , and flavor Fi charges qi(rf)

constrained to satisfy

T (G) +
∑

f

T (rf)(Rf − 1) = 0, and
∑

f

T (rf)qi(rf ) = 0. (IV.44)

The U(1)R current assigns charges Rf to the squark and Rf − 1 to the

quarks components of Qf . The U(1)Fi
non-R current assigns charges qi(rf) to

both the quark and squark components of Qf . To compute τRFi
, we consider the

diagrams for the two point function 〈JµR(x1)J
ν
Fi

(x2)〉. Because we take the currents

to be conserved, they have vanishing anomalous dimension, so we anticipate that

the various diagrams sum such that all apparent divergences cancel, and we’re left

with only finite contributions to τRFi
. The O(g2) contributions can be written as

τ
(1)
Ri =

∑

f

qi(rf)
[
(
1

3
R

(1)
f +

2

3
R

(1)
f )|rf | +R

(0)
f (A

(1)
f + C

(1)
f ) + (R

(0)
f − 1)(B

(1)
f + C

(1)
f )

]
.

(IV.45)

The first two terms come from the leading diagrams, without interactions, exactly

as in the free-field result (IV.13), but weighted by the O(g2) R-charges R
(1)
f . The
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first term is from connecting the currents at x1 and x2, with squark φf propa-

gators, and the second from connecting them with quark ψf propagators. The

remaining contributions in (IV.45) are O(g2) because they involve O(g2) inter-

action diagrams, and the R-charge weighting is thus taken as R(0) = 2/3. Here

A
(1)
f is the contribution of all O(g2) 1PI diagrams connecting squark φf , at x1,

to squark φf at x2. B
(1)
f is similarly the contribution from all O(g2) diagrams

connecting quark ψf at x1 to quark ψf at x2. C
(1)
f is the contributions of dia-

grams connecting squark φf at x1 to quark ψf at x2 (or vice-versa). We note

that the group theory factors in all of these diagrams with O(g2) interactions is

the same: Trrf
∑|G|
A=1 T

A
rf
TArf = |rf |C(rf) = |G|T (rf), i.e. A

(1)
f = |G|T (rf)A

(1),

B
(1)
f = |G|T (rf)B

(1), and C
(1)
f = |G|T (rf)C

(1), where A(1), B(1), and C(1) are in-

dependent of the gauge group and representation, e.g. they could be computed in

U(1) SQED.

Using the second constraint in (IV.44),
∑
f T (rf)qi(rf) = 0, it immedi-

ately follows, without even having to compute A(1), B(1), and C(1), that their contri-

butions to τ
(1)
Ri in (IV.45) all vanish, for all anomaly free flavor symmetries Fi. The

only contributions remaining in (IV.45) are the R
(1)
f ones, τ

(1)
Ri =

∑
f qi(rf)R

(1)
f |rf |.

Our τRR minimization result implies that this must vanish, for any qi(rf) satisfying

the anomaly free constraint in (IV.44). This implies that R
(1)
f = αC(rf) for some

constant α that’s independent of the rep. rf .

We have thus used τRtRt
minimization to re-derive the group theory de-

pendence of the O(g2) term in the anomalous dimension (IV.42). The coefficient

is also fixed to agree with (IV.42), at the fixed point g∗, by using the condition in

(IV.44) that the R-symmetry be anomaly free to solve for α (which is appropri-

ately small when the matter content is such that the theory is barely asymptotically

free). This reproduces the O(g2) contribution to the R-charges in (IV.42) at the

RG fixed point.

In principle, one could extend this analysis, and use τRR minimization

to compute the anomalous dimensions to all orders. Using a-maximization [14]
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(assuming that the RG fixed point has no accidental symmetries), the general

result can be written as [20]

Rf =
2

3
(1 +

1

2
γf(g∗)) = 1 − 1

3

√√√√1 +
λ∗T (rf)

|rf |
= 1 − 1

3

√√√√1 +
λ∗C(rf)

|G| , (IV.46)

where λ∗ is a Lagrange multiplier [20], which is determined by the constraint that

the R-symmetry be anomaly free, T (G)+
∑
f T (rf)(Rf−1) = 0. The result (IV.46)

was successfully compared [27], [45] with the results for the anomalous dimensions

to 3-loops of [25]. But, because current two-point functions get quantum cor-

rections, τRR minimization does not seem to be a very efficient way to compute

anomalous dimensions. Indeed, the higher order quantum corrections to τRi in-

clude diagrams where the currents at x1 and x2 are connected by renormalized

propagators, with all quantum corrections from the interactions, and computing

such τRi contributions is already tantamount to directly computing the anomalous

dimensions γf(g).

This chapter is a reprint of the material as it appears in E. Barnes, E. Gor-

batov, K. Intriligator, M. Sudano and J. Wright, “The exact superconformal R-

symmetry minimizes tau(RR),” Nucl. Phys. B 730, 210 (2005), and on the preprint

archive, http://www.arxiv.org/hep-th/0507137.



V

Current Correlators and

AdS/CFT Geometry

V.A Introduction

This work is devoted to the geometry / gauge theory interrelations of

the AdS/CFT correspondence [66], [67], [68], which has been much developed and

checked over the past year (a sample of recent references is [24], [69], [46], [47],

[70], [58], [71], [72]).

In the AdS/CFT correspondence [66], [67], [68], global currents JµI (I

labels the various currents) of the d-dimensional CFT couple to gauge fields in the

AdSd+1 bulk. The current two-point functions of the CFT are of fixed form,

〈JµI (x)JνJ (y)〉 =
τIJ

(2π)d
(∂2δµν − ∂µ∂ν)

1

(x− y)2(d−2)
, (V.1)

with only the coefficients τIJ depending on the theory and its dynamics. Unitarity

restricts τIJ to be a positive matrix (positive eigenvalues). The coefficients τIJ map

to the coupling constants of the corresponding gauge fields in AdSd+1: writing their

kinetic terms as

SAdSd+1
=
∫
ddzdz0

√
g
[
−1

4
g−2
IJ F

I
µνF

µνJ + . . .
]
, (V.2)
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the relation is [56]:

τIJ =
2d−2π

d
2 Γ[d]

(d− 1)Γ[d
2
]
Ld−3g−2

IJ , (V.3)

where L is the AdSd+1 length scale. Our main interest here will be in the quantities

τIJ , and comparing field theory results with the AdS relation (V.3).

We will here consider 4d N = 1 superconformal field theories, 3d N =

2 SCFTs, and their AdS duals, coming, respectively, from IIB string theory on

AdS5 × Y5, 11d SUGRA or M-theory on AdS4 × Y7. Supersymmetry requires Y5

and Y7 to be Sasaki-Einstein. In general, a Sasaki-Einstein space Y2n−1 is the

horizon of a non-compact local Calabi-Yau n-fold X2n = C(Y2n−1), with conical

metric

ds2(C(Y2n−1)) = dr2 + r2ds2(Y2n−1). (V.4)

The gauge theories come from N D3 or M2 branes at the tip of the cone. In the

large N dual, the radial r becomes that of AdSd+1. The dual to 4d N = 1 SCFTs

is IIB on

AdS5 × Y5 : ds2
10 =

r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2ds2(Y5), (V.5)

and the dual to 3d N = 2 SCFTs is 11d SUGRA or M-theory with metric back-

ground

AdS4 × Y7 : ds2
11 =

r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + (2L)2ds2(Y7). (V.6)

The SCFTs have a conserved, superconformal U(1)R current, in the same

supermultiplet as the stress tensor. The scaling dimensions of chiral operators are

related to their superconformal U(1)R charges by

∆ =
d− 1

2
R. (V.7)

There are also typically various non-R flavor currents, whose charges we’ll write as

Fi, with i labeling the flavor symmetries. The superconformal U(1)R of RG fixed

point SCFTs is then not determined by the symmetries alone, as the R-symmetry

can mix with the flavor symmetries. Some additional dynamical information is
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then needed to determine precisely which, among all possible R-symmetries, is the

superconformal one, in the stress tensor supermultiplet.

On the field theory side, we presented a new condition in [73], which, in

principle, uniquely determines the superconformal U(1)R: among all possible trial

R-symmetries,

Rt = R0 +
∑

i

siFi, (V.8)

the superconformal one is that which minimizes the coefficient τRtRt
of its two point

function (V.1). An equivalent way to state this is that the two-point function of the

superconformal R-current with all non-R flavor symmetries necessarily vanishes:

τRi = 0 for all non-R symmetries Fi. (V.9)

(Our notation will always be that capital I runs over all symmetries, including the

superconformal U(1)R, and lower case i runs over the non-R flavor symmetries.)

We refer to the field theory condition of [73] as “τRR minimization”. The minimal

value of τRtRt
is then the coefficient, τRR, of the superconformal U(1)R current

two-point function, which is related by supersymmetry to the coefficient of the

stress-tensor two-point function,

τRR ∝ CT . (V.10)

For the case of 4d N = 1 SCFTs, a-maximization [14] gives another

way, besides τRR minimization, to determine the superconformal U(1)R: the exact

superconformal R-symmetry is that which (locally) maximizes the combination of

’t Hooft anomalies

atrial(Rt) =
3

32
(3TrR3 − TrR). (V.11)

Equivalently, the superconformal U(1)R satisfies the ’t Hooft anomaly identity [14]

9TrR2Fi = TrFi for all flavor symmetries Fi. (V.12)

a-maximization does not apply for 3d SCFTs, as there are there no ’t Hooft anoma-

lies.
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The global symmetries of the SCFTd map to the following gauge sym-

metries in the AdSd+1 bulk:

1. The graviphoton, which maps to the superconformal U(1)R, is a Kaluza-Klein

gauge field, associated with the “Reeb” Killing vector isometry of Sasaki-

Einstein Y2n−1. The R-charge is normalized so that superpotential terms,

which are related to the holomorphic n form of X2n, have charge R = 2.

2. Any other Kaluza-Klein gauge fields, from any additional isometries of Y2n−1.

These can be taken to be non-R symmetries, by taking the holomorphic n-

form to be neutral. We refer to these as “mesonic, non-R, flavor symmetries,”

because mesonic operators (gauge invariants not requiring an epsilon tensor)

of the dual gauge theory can be charged under them. When Y2n−1 is toric,

there is always (at least) a U(1)n−1 group of mesonic, non-R flavor symme-

tries.

3. Baryonic U(1)b∗ gauge fields, from reducing Ramond-Ramond gauge fields

on non-trivial cycles of Y2n−1. In particular, for IIB on AdS5 × Y5, there are

U(1)b3 baryonic gauge fields come from reducing C4 on the b3 =dim(H3(Y5))

non-trivial 3-cycles of Y5. These are also non-R symmetries. Baryonic U(1)

symmetries have the distinguishing property in the gauge theory that only

baryonic operators, formed with an epsilon tensor, are charged under them.

It was pointed out in [15] that 4d baryonic symmetries have another distin-

guishing property: their cubic ’t Hooft anomalies all vanish, TrU(1)3
B = 0,

as seen from the fact that it’s not possible to get the needed Chern-Simons

term [68] AB ∧ dAB ∧ dAB from reducing 10d string theory on Y5.

In field theory, the superconformal U(1)R can, and generally does mix

with the mesonic and baryonic 1 flavor symmetries. The correct superconformal

1A point of possible confusion: as pointed out in [14], the superconformal U(1)R does not mix with
those baryonic symmetries which transform under charge conjugation symmetry. But the superconformal
gauge theories associated with general Y2n−1 are chiral, with no charge conjugation symmetries. So the
superconformal U(1)R can mix with these baryonic U(1)’s.
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U(1)R can, in principle, be determined by τRR minimization [73]. τRR minimization

is not especially practical to implement in field theory, because the coefficients

(V.9) get quantum corrections. But, on the AdS dual side, τRR minimization

becomes more useful and tractable, because the AdS duality gives a weakly coupled

dual description of τR0i and τij , via (V.3).

The problem of determining the superconformal U(1)R in the field theory

maps to a corresponding problem in the geometry: determining which U(1), out

of the U(1)n geometric isometries of toric Sasaki-Einstein spaces, is that of the

Reeb vector. A solution of this mathematical problem was recently found by

Martelli, Sparks, and Yau [58]: the correct Reeb vector is that which minimizes

the Einstein-Hilbert action on Y2n−1 – this is referred to as “Z-minimization,” [58].

The mathematical result of [58] was shown, on a case-by-case basis, to always

lead to the same superconformal R-charges as found from a-maximization [14]

in the corresponding field theory, but there was no general proof as to why Z-

minimization in geometry implements a-maximization in field theory. In addition,

Z-minimization applies to general Y2n−1, whereas a-maximization is limited to 4d

SCFTs, and hence the case of AdS5 × Y5.

Our main result will be to show that the Z-minimization of Martelli,

Sparks, and Yau [58] is precisely equivalent to ensuring that the τRR minimization

conditions (V.9) of [73] are satisifed, i.e. Z-minimization = τRR minimization.

This demonstrates that Z-minimization in the geometry indeed determines the

correct superconformal R-symmetry of the dual SCFT, not only for 4d SCFTs, but

also for 3d SCFTs with dual (V.6). We will also explain why it’s OK that the U(1)b∗

baryonic U(1) symmetries did not enter into the geometric Z-minimization of [58]:

the condition (V.9) is automatically satisfied in the string theory constructions for

all baryonic symmetries.

The outline of this paper is as follows. In sect. V.B, we review relations

in 4d N = 1 field theory for the current two-point functions, and the ’t Hooft

anomalies of the superconformal U(1)R. We then show that these relations are
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satisfied by the effective AdS5 bulk SUGRA theory, thanks to the structure of real

special geometry. In particular, the kinetic terms in the AdS5 bulk are related to

the Chern-Simons terms, which yield the ’t Hooft anomalies of the dual SCFT. In

the following sections, we discuss how these kinetic terms are obtained from the

geometry of Y ; it would be interesting to also directly obtain the Chern-Simons

terms from the geometry of Y , but that will not be done here. In sect. V.C, we

discuss the contributions to the kinetic terms in the AdS bulk. As usual, Kaluza-

Klein gauge fields get a contribution, with coefficient (g−2
ij )KK , from reducing the

Einstein term in the action on Y . Because of the background flux in Y , there is also

a contribution (g−2
IJ )CC from reducing the Ramond-Ramond C field kinetic terms

on Y . We point out (closely following [74]) that these two contributions always

have the fixed ratio: (g−2
IJ )CC = 1

2
(Dc− 1)(g−2

IJ )KK , for any Einstein manifold Y of

dimension Dc. This relation will be used, and checked, in following sections. For

the baryonic gauge fields, there is only the contribution (g−2
IJ )CC , from reducing

the Ramond-Ramond kinetic term on Y .

In sect. V.D, we discuss generally how the gauge fields AI alter Ramond-

Ramond flux background, and thereby alter the Ramond-Ramond field at lin-

earized level, as δC =
∑
I ωI ∧ AI , for some particular 2n− 3 forms ωI on Y . We

discuss how the AI charges of branes wrapped on supersymmetric cycles can be

obtained by integrating ωI over the cycle, and how the Ramond-Ramond contri-

bution to the gauge kinetic terms is written as ∼ ∫
Y ωI ∧ ∗ωJ . In sect. V.E, we

review some aspects of Sasaki-Einstein geometry, and the analysis of [75] for how

to determine the form ωR for the U(1)R gauge field. In sect. V.F, we generalize

this to determine the forms ωI for the non-R isometry and baryonic gauge fields.

In sect. V.G, we give expressions for the gauge kinetic terms g−2
IJ , and thereby

the current-current two-point function coefficients τIJ that we are interested in, in

terms of integrals ∼ ∫
Y ωI ∧ ∗ωJ of these forms. We note that this immediately

implies that there is never any mixing in the kinetic terms between Kaluza-Klein
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isometry gauge fields and the baryonic gauge fields, i.e. that

τIJ = 0 automatically, for I = Kaluza-Klein and J = baryonic. (V.13)

This shows that our condition (V.9) for the U(1)R is automatically satisfied, for

all baryonic symmetries, by taking U(1)R to be purely a Kaluza-Klein isometry

gauge field, without any mixing with the baryonic symmetries. For the mesonic,

non-R isometry gauge fields, the condition (V.9) becomes

∫

Y
gabK

aKb
i vol(Y ) = 0, (V.14)

which give conditions to determine the U(1)R isometry Killing vector Ka. The

condition (V.14) must hold for every non-R isometry Killing vector of Y , i.e. for

every Killing vector Ka
i under which the the holomorphic n form of C(Y2n−1) is

neutral.

In sect. V.H, we summarize the results of Martelli, Sparks, and Yau [58]

for toric C(Y ). Then Y2n−1 always has at least U(1)n isometry, associated with

shifts of toric coordinates φi, and the U(1)R Killing Reeb vectorKa is given by some

components bi, i = 1 . . . n, in this basis. The volume of Y and its supersymmetric

cycles are completely determined by the bi, without needing to know the metric

on Y . And the bi are themselves determined by Z-minimization [58], which is

minimization of the Einstein-Hilbert action on Y . In sect. V.I, we point out that

Z-minimization is precisely equivalent to τRR minimization. We also discuss the

flavor charges of wrapped branes. In sect. V.J, we illustrate our results for the Y p,q

examples of [24], [69]. We find the forms ωI , and thereby use the flavor charges of

wrapped branes. We also compute from the geometry of Y the gauge kinetic term

coefficients, and thus the current-current two-point function coefficients τIJ . These

quantities, computed from the geometry of Y , match with those computed in the

dual field theory of [47]; this gives new checks of the AdS/CFT correspondence for

these theories.

In the final stages of writing up this paper, the very interesting work [76]

appeared, in which it was mathematically shown that the Z-function [58] of 5d toric
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Sasaki-Einstein Y5 and the atrial function [14] of the dual quiver 4d gauge theory

are related by Z(x, y) = 1/a(x, y) (even before extremizing). The approach and

results of our paper are orthogonal and complementary to those of [76]. Also in the

final stages of writing up this paper, the work [77] appeared, which significantly

overlaps with the approach of section V.B of our paper, and indeed goes further

along those lines than we did here.

V.B 4d N = 1 SCFTs and real special geometry

This section is somewhat orthogonal to the rest of the paper. The rest

of this paper is devoted to deriving the AdS bulk gauge field kinetic terms g−2
IJ in

(V.2) and (V.3) directly from the geometry of Y . In the present section, without

explicitly considering Y , we will discuss how the various identities of 4d N = 1

SCFTs are guaranteed to also show up in the effective AdS5 SUGRA theory, thanks

to the structure of real, special geometry.

Because the superconformal R-current is in the same supermultiplet as

the stress tensor, their two-point function coefficients are proportional, τRR ∝ CT .

Also, in 4d CT ∝ c, with c the conformal anomaly coefficient in

〈T µµ 〉 =
1

120

1

(4π)2

(
c(Weyl)2 − a

4
(Euler)

)
. (V.15)

So τRR ∝ c; more precisely,

τRR =
16

3
c, (V.16)

with c normalized such that c = 1/24 for a free N = 1 chiral superfield. Supersym-

metry also relates a and c in (V.15) to the ’t Hooft anomalies of the superconformal

U(1)R [5]:

a =
3

32
(3TrR3 − TrR) c =

1

32
(9TrR3 − 5TrR). (V.17)

Combining (V.16) and (V.17), we have

τRR =
3

2
TrR3 − 5

6
TrR, (V.18)
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The flavor current two-point functions are also given by ’t Hooft anomalies [5]:

τij = −3TrRFiFj . (V.19)

There are precise analogs to the above relations in the effective2 5d N = 2

bulk gauged U(1) supergravity; this is not surprising given that, on both sides of the

duality, these relations come from the same SU(2, 2|1) superconformal symmetry

group.

The bosonic part of the effective 5d Lagrangian is [78] (also see e.g. [79])

Lbosonic =

√
|g|
[
1

2
R− 1

2
Gij∂µφ

i∂µφj − 1

4
g−2
IJ F

I
µνF

µνJ − V (X)
]

+
1

48
CIJKA

I ∧ F J ∧ FK

(V.20)

where, to simplify expressions, we’ll set the 5d gravitational constant κ5 = 1 in

this section. There are nV + 1 gauge fields, I = 1 . . . nV + 1, one of them being

the graviphoton, which corresponds to the superconformal U(1)R in the 4d SCFT.

The nV gauge fields correspond to the non-R (i.e. the gravitino is neutral under

them) flavor symmetries, which reside in current supermultiplets Ji, i = 1 . . . nV ;

the first component of this supermultiplet is a scalar, which couples to the scalars

φi in (V.20). The scalars of the nV vector multiplets are constrained by real special

geometry to the space

N ≡ 1

6
CIJKX

IXJXK = 1. (V.21)

The kinetic terms are all determined by the Chern-Simons coefficients

CIJK . In particular, the gauge field kinetic term coefficients g−2
IJ are given by

g−2
IJ = −1

2
∂I∂J lnN|N=1 = −1

2
(CIJKX

K −XIXJ), (V.22)

where XI ≡ 1
2
CIJKX

JXK . In a given vacuum, where XI has expectation values

satisfying (V.21), the nV scalars in (V.20) are given by the tangents XI
i to the

surface (V.21), which satisfy

CIJKX
I
iX

JXK = 0. (V.23)

2The 5d SUGRA theory suffices for studying current two-point functions, and relations to ’t Hooft
anomalies, even if there is no full, consistent truncation from 10d to an effective 5d theory.
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This can be written as XIX
I
i = 0. The vacuum expectation value XI picks out

the direction of the graviphoton AR, and the tangents XI
i pick out the direction

of the non-R flavor gauge fields:

AI = αXIAR +XI
i Ai, (V.24)

with α a normalization factor, to ensure that the R-symmetry is properly normal-

ized, to give the gravitinos charges ±1. The correct value is α = 2L/3, where L

is the AdS5 length scale, related to the value of the potential at its minimum by

Λ = −6/L2.

Using (V.24) and (V.22), we can compute the kinetic term coeffi-

cients for the graviphoton and non-R gauge fields. Using (V.3) to convert

these into the current-current 2-point function coefficients, we have for the R-

symmetry/graviphoton kinetic term

τRR = 8π2Lg−2
RR = 8π2Lα2g−2

IJX
IXJ = 12π2Lα2. (V.25)

For the nV non-R gauge fields, we have

τij = 8π2Lg−2
ij = 8π2Lg−2

IJX
I
iX

J
j = −4π2LCIJKX

I
iX

J
j X

K . (V.26)

It also follows from (V.22) and (V.23), XIX
I
i = 0, that there is no kinetic term

mixing between the graviphoton and the non-R gauge fields:

τRi = 8π2Lg−2
Ri = 8π2Lαg−2

IJX
I
iX

J = 0 for all i = 1 . . . nV . (V.27)

This matches with the general SCFT field theory result (V.9) of [73].

The Chern-Simons terms for the graviphoton and flavor gauge fields are

similarly found from (V.24). We’ll normalize them as CIJK/48 = kIJK/96π2, where

kIJK is the properly normalized 5d Chern-Simons coefficients, which map [68] to

the ’t Hooft anomalies of the gauge theory:

TrR3 = kRRR = 2π2α3CIJKX
IXJXK = 12π2α3, (V.28)

TrR2Fi = kRRj = 2π2α2CIJKX
IXJXK

i = 0, (V.29)
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where we used (V.23), and also

TrRFiFj = kRij = 2π2αCIJKX
IXJ

i X
K
j . (V.30)

The field theories with (weakly coupled) AdS duals generally have TrR =

0 and also TrFi = 0. The result (V.29) then reproduces the ’t Hooft anomaly

identity (V.12) of [14]. For TrR = 0, (V.18) becomes τRR = 3
2
TrR3, which is

reproduced by (V.25) and (V.28) for α = 2L/3 in (V.24). Also the relation (V.17)

of [13], which for TrR = 0 is a = c = 9
32

TrR3, is also reproduced by (V.28) for

α = 2L/3, since the result of [80] is a = c = L3π2 in κ5 = 1 units. The relation

(V.19) is also reproduced, for α = 2L/3, by (V.26) and (V.30).

In later sections, we will be interested in computing the AdS5 gauge field

kinetic terms τIJ directly from IIB string theory on AdS5 × Y5. To connect with

the above expressions, we restore the factors of κ5 via dimensional analysis, and

convert using
L3

κ2
5

=
L3

8πG5

=
L8V ol(Y5)

8πG10

=
N2

4

π

V ol(Y5)
, (V.31)

where V ol(Y5) is the dimensionless volume of Y5, with factors of its length scale,

which coincides with the AdS5 length scale L, factored out. The last equality of

(V.31) uses the flux quantization / brane tensions relation (see [81] and references

therein)

2
√
πκ−1

10 L
4V ol(Y5) =

L4V ol(Y5)√
2G10

= Nπ. (V.32)

E.g. using (V.31) the result of [80] becomes [82]

a = c =
L3π2

κ2
5

=
N2

4

π3

V ol(Y5)
, (V.33)

and (V.25) for α = 2L/3 becomes

τRR =
16π2

3

L3

κ2
5

=
4N2

3

π3

V ol(Y5)
. (V.34)

In the following sections, we will directly compute the τIJ kinetic terms

from reducing SUGRA on Y . One could also directly determine the Chern-Simons

coefficients CIJK from reduction on Y , but doing so would require going beyond
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our linearized analysis, and we will not do that here. It would be nice to extend

our analysis to compute the CIJK from Y , and explicitly verify that the special

geometry relations reviewed in the present section are indeed satisfied.

V.C Kaluza-Klein gauge couplings: a general relation for

Einstein spaces

Our starting point is the Einstein action in Dt = D + Dc spacetime

dimensions, along with the Ramond-Ramond gauge field kinetic terms:

1

16πGDt

∫ (
RDt

∗ 1 − 1

4
F ∧ ∗F

)
. (V.35)

We’ll be interested in fluctuations of this action around a background solution of

the form MD×Y , with MD non-compact and Y compact, of dimension Dc ≡ p+2,

with flux

F bkgd
p+2 = (p+ 1)m−(p+1)vol(Y ), (V.36)

and metric

ds2 = ds2
M +m−2ds2

Y . (V.37)

Here m−1 is the length scale of Y , which we’ll always factor out explicitly; vol(Y )

is the volume form of Y , with the length scale m−1 again factored out. (We always

use lower case vol(Y ) for a volume form, and upper case V ol(Y ) for its integrated

volume.) Our units are such that the integrated flux is

µp

∫

Y
F bkgd
p+2 ∼ µpm

−(p+1)V ol(Y ) ∼ N, (V.38)

with µp the p-brane tension. Our particular cases of interest will be IIB on AdS5×
Y5 and 11d SUGRA on AdS4 × Y7, but we’ll be more general in this section.

Metric fluctuations along directions of Killing vectors Ka
I of Y lead to

Kaluza-Klein gauge fields AµI in M . Fluctuations of the Ramond-Ramond gauge

field background, reduced on non-trivial cycles of Y lead to additional, “baryonic”

gauge fields that we’ll also discuss. In general, Kaluza-Klein reduction involves
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a detailed, and highly non-trivial, ansatz for how the Kaluza-Klein gauge fields

affect the metric and background field strengths. But here we’re simply interested

in the coefficients g−2
IJ of the gauge field kinetic term, and for these it’s unnecessary

to employ the full Kaluza-Klein ansatz: a linearized analysis suffices.

The linearized analysis will be presented in the following section. In this

section, we’ll note some general aspects, and discuss a useful relation that can

be obtained by a generalization of an argument in [74], that was based on the

non-trivial Kaluza-Klein ansatz for how the Kaluza-Klein gauge fields modify the

backgrounds.

For Kaluza-Klein isometry gauge fields, both the Einstein term and the

C field kinetic terms in (V.35) contribute to their gauge kinetic terms:

g−2
IJ = (g−2

IJ )KK + (g−2
IJ )CC , (V.39)

where (g−2
IJ )KK is the Kaluza-Klein contribution coming from the Einstein term

in (V.35) and (g−2
IJ )CC is that coming from the Ramond-Ramond C field kinetic

terms in (V.35). On the other hand, if either I or J is a baryonic gauge field,

coming from C reduced on a non-trivial cycle of Y , then only the dC kinetic terms

in (V.35) contribute

g−2
IJ = (g−2

IJ )CC , if I or J is baryonic. (V.40)

Let’s review how the Kaluza-Klein contribution in (V.39) is obtained, see

e.g. [83]. Let ya be coordinates on Y , and Ka
I (y) isometric Killing vectors (I labels

the isometry). The one-form dφI dual to KI is shifted by the 1-form gauge field

AI(x) = AµI dx
µ, with xµ coordinates on M . This variation of the metric leads to

variation of the Ricci scalar

R → R− m−2

4
gab(y)K

a
I (y)K

b
J(y)(FI)µν(FJ)

µν , (V.41)

where ds2
Y = gabdy

adyb is the metric on Y , with the length scale m−1 factored

out. Since (V.41) is already quadratic in AI , we don’t need to vary
√
|g|. The
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contribution to the Kaluza-Klein gauge field kinetic terms coming from the Einstein

action is thus

(g−2
IJ )KK =

m−(Dc+2)

16πGDt

∫

Y
gabK

a
IK

b
Jvol(Y ). (V.42)

In [83], the Killing vectors are normalized so that the gauge fields have canonical

kinetic terms, and then what we’re referring to as the “coupling” becomes the

“charge” unit; here we’ll normalize Ka
I and gauge fields so that the charge unit

is unity, and then physical charges governing interactions are given by what we’re

calling the couplings g−2
IJ .

As an example, it was shown [83] that reducing the Einstein action on a

Dc dimensional sphere, Y = SDc of radius m−1 leads to SO(Dc + 1) Kaluza-Klein

gauge fields in the uncompactified directions, with coupling [83]

(g−2)KK =
1

8πGD(Dc + 1)m2
for Y = SDc , (V.43)

with GD = GDt
mDc/V ol(Y ) the effective Newton’s constant in the uncompactified

MD.

In [74], it was pointed out that (V.43), applied to 11d SUGRA on S7,

with Freund-Rubin flux for the Ramond-Ramond gauge field, would be incompat-

ible with the 4d N = 8 SO(8) SUGRA of [84], but that properly including the

additional contribution from the Ramond-Ramond fields fixes this problem. In

our notation above, it was shown in [74] that the full coupling of the SO(8) gauge

fields in the AdS4 bulk is

g−2 = (g−2)KK + (g−2)CC = 4g−2
KK =

1

16πG4m2
, (V.44)

which is now perfectly compatible with the 4d N = 8 theory of [84].

We here point out that, for general Freund-Rubin compactifications on

any Einstein space Y of dimension Dc, there is always a fixed proportionality be-

tween the Einstein and Ramond-Ramond contributions to the Kaluza-Klein gauge

kinetic terms:

(g−2
IJ )CC =

Dc − 1

2
(g−2
IJ )KK , (V.45)
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of which (V.44) is a special case. Our relation (V.45) follows from a generalization

of the argument in [74]. In a KK ansatz like that of (V.44), the contribution to

g−2
IJ from the Ramond-Ramond kinetic term in (V.35) is

(g−2
IJ )CC =

m−(Dc+2)

16πGDt

∫

Y

1

2
gab∇cKa

I ∇cKb
Jvol(Y ) =

Dc − 1

2
(g−2
IJ )KK . (V.46)

In the last step, there was an integration by parts, use of −∇c ∇cKa
I = Ra

cK
c
I ,

use of Rab = (Dc − 1)m2gab since Y is taken to be Einstein, and comparison with

(V.42). We will check and verify the relation (V.45) more explicitly in the following

sections.

As a quick application, we find from (V.43) and (V.45) that reducing 10d

IIB SUGRA on S5 leads to a theory in the AdS5 bulk with SO(6) gauge fields

with coupling

g−2
SO(6) = (g−2

SO(6))
KK + (g−2

SO(6))
CC = 3(g−2

SO(6))
KK =

L2

16πG5

, (V.47)

where m−1 = L is the radius of the S5, and also the length scale of the AdS5 vac-

uum. The result (V.47) agrees with that found in [85] for 5d N = 8 SUGRA: the

SO(5) invariant vacuum in eqn. (5.43) of [85] has, in 4πG5 = 1 units, Rµν = g2gµν ;

thus g−2 = L2/4 = L2/16πG5, in agreement with (V.47). Using (V.31), with

V ol(S5) = π3, gives τSO(6) = 8π2Lg−2 = πL3/2G5 = N2. On the other hand,

(V.34) here gives τRR = 4N2/3. We can also verify τRR = 4N2/3 by direct compu-

tation in the N = 4 theory (where the free field value is not renormalized). The

apparent difference with the above τSO(6) is because of the different normalization

of the U(1)R vs. SO(6) generators.

The relation (V.45) will prove useful in what follows, because the

Ramond-Ramond contribution (g−2
IJ )CC is sometimes, superficially, easier to com-

pute than the Kaluza-Klein contribution (V.42). Thanks to the general relation

(V.45), the full coefficient of the kinetic terms for Kaluza-Klein gauge fields can

be computed from (g−2
IJ )CC as

g−2
IJ = (g−2

IJ )KK + (g−2
IJ )CC =

Dc + 1

Dc − 1
(g−2
IJ )CC . (V.48)
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V.D Gauge fields and associated p-forms on Y

The linearized fluctuations of the gauge fields modify the background as

F bkgd
p+2 → (p+ 1)m−(p+1)vol(Y ) + d

(
∑

I

ωI ∧ AI
)
, (V.49)

and hence, writing F = dC,

Cp+1 → Cbkgd
p+1 +

∑

I

ωI ∧ AI (V.50)

Here AI are all of the gauge fields, both Kaluza-Klein and the baryonic ones coming

from reducing Cp+1 on non-trivial p cycles of Y .

So every gauge field AI enters into Cp+1 at the linearized level, and we’ll

here be interested in determining the associated form ωI in (V.50). The ωI asso-

ciated with Kaluza-Klein gauge fields AI are found from the variation of vol(Y )

in (V.36) by the linearized shift of the 1-form, dual to the Killing vector isometry

KI , by AI :

vol(Y ) → vol(Y ) + d

(
∑

I

ω̂I ∧AI
)
, with dω̂I = iKI

vol(Y ). (V.51)

Using this in (V.49) gives (V.50), with associated p-form ωI ≡ (p + 1)m−(p+1)ω̂I

on Y .

Note that this definition of the ωI is ambiguous under shifts of the ωI

by any closed p form. Shifts of ωI by any exact form will have no effect, so this

ambiguity in defining the ωI associated with Kaluza-Klein gauge fields is associated

with the cohomology Hp(Y ) of closed, mod exact, p forms on Y .

The baryonic gauge fields AI enter into (V.50) with ωI running over a

basis of the cohomology Hp(Y ) of closed, mod exact, p-forms on Y . The ambiguity

mentioned above in the Kaluza-Klein gauge fields corresponds to the freedom in

one’s choice of basis of the global symmetries, as any linear combination of a

“mesonic” flavor symmetry and any “baryonic” flavor symmetry is also a valid

“mesonic” flavor symmetry.
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Branes that are electrically charged under Cp+1 have worldvolume cou-

pling µp
∫
Cp+1, with µp the brane tension. Wrapping these branes on the non-

trivial cycles Σ of Hp(Y ) yield particles in the uncompactified dimensions, and

(V.50) implies that these wrapped branes carry electric charge

qI(Σ) = µp

∫

Σ
ωI (V.52)

under the gauge field AI .

Plugging (V.50) into Fp+2 kinetic terms in (V.35) gives what we called

the (g−2
IJ )CC contribution to the gauge field kinetic terms to be

(g−2
IJ )CC =

1

16πGDt

∫

Y
ωI ∧ ∗ωJ ≡ (p+ 1)2m−(p+4)

16πGDt

∫

Y
ω̂I ∧ ∗ω̂J , (V.53)

where ωI ≡ (p+ 1)m−(p+1)ω̂I and ∗ωI ≡ (p+ 1)m−3 ∗ ω̂I
We will use (V.53), together with (V.48) for Kaluza-Klein gauge fields,

or (V.40) for baryonic gauge fields, to compute the coefficients g−2
IJ of the gauge

field kinetic terms in AdSd+1. These are then related to the coefficients, τIJ , of the

current-current two-point functions in the gauge theory according to (V.3).

V.E Sasaki-Einstein Y , and the form ωR for the R-

symmetry.

The modification (V.50) for the U(1)R gauge field, coming from the U(1)R

isometry of Sasaki-Einstein spaces, was found in [75], which we’ll review in this

section.

The metric of Sasaki-Einstein Y2n−1 can locally be written as

ds2(Y ) = (
1

n
dψ′ + σ)2 + ds2

2(n−1), (V.54)

with ds2
2(n−1) a local, Kahler-Einstein metric, and

dσ = 2J dΩ = niσ ∧ Ω, (V.55)
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with J the local Kahler form and Ω the local holomorphic (n − 1, 0) form for

ds2
2(n−1). In [75] the coordinate ψ = ψ′/q was used, in order to have the range

0 ≤ ψ < 2π; q is given by ndσ = 2πqc1, with c1 the first Chern class of the U(1)

bundle over the n − 1 complex dimensional Kahler-Einstein space with metric

ds2
2(n−1). The U(1)R isometry is associated with the Reeb Killing vector

K = n
∂

∂ψ′ . (V.56)

It is convenient to define the unit 1-form, dual to the Reeb vector, of the U(1)R

fiber

eψ ≡ 1

n
dψ′ + σ. (V.57)

Note that deψ = dσ = 2J . The volume form of Y2n−1 is

vol(Y2n−1) =
1

(n− 1)!
eψ ∧ Jn−1. (V.58)

Following [75], the linearized effect of the U(1)R isometry (V.56) Kaluza-

Klein gauge field is found by shifting

eψ → eψ +
2

n
AR, (V.59)

where the coefficient of AR is chosen so that the U(1)R symmetry is properly

normalized: the holomorphic n-form on C(Y ), which leads to superpotential terms,

has R-charge 2. The shift (V.59) affects the volume form (V.58) as

vol(Y2n−1) → vol(Y2n−1) +
2

n!
AR ∧ Jn−1 − 1

n!
dAR ∧ eψ ∧ Jn−2, (V.60)

where the last term in (V.60) was added to keep the form closed:

vol(Y2n−1) → vol(Y2n−1) + d
(

1

n!
eψ ∧ Jn−2 ∧AR

)
. (V.61)

The shift (V.61) alters the Ramond-Ramond flux background F bkgd
2n−1

(V.49), and thus alters C2n−2 as in (V.50), δC2n−2 = ωR ∧ AR, with the 2n − 3

form ωR given by

ω̂R ≡ ωR
(2n− 2)m−(2n−2)

=
1

n!
eψ ∧ Jn−2. (V.62)
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In particular, for type IIB on AdS5 × Y5, the background flux is

F bkgd
5 = 4L4 (vol(Y5) + ∗vol(Y5)) , (V.63)

and (V.61) alters the C4 on Y5 as in (V.50), with 3-form ωR given by [75]:

ω̂R ≡ 1

4L4
ωR =

1

6
eψ ∧ J, for Y5. (V.64)

For 11d SUGRA on AdS4 × Y7, the effect of (V.61) on the Ramond-

Ramond flux

F7 = 6(2L)6vol(Y7) (V.65)

leads to a shift as in (V.50) of C6, by ωR ∧AR, with 5-form ωR given by [75]

ω̂R ≡ 1

6(2L)6
ωR =

1

24
eψ ∧ J ∧ J. (V.66)

Wrapping a brane on a supersymmetric 2n − 3 cycle Σ of Y yields a

baryonic particle BΣ in the AdSd+1 bulk, dual to a baryonic chiral operator in the

gauge theory. It was verified in [75] that the R-charges assigned to such objects

by the forms (V.64) and (V.66) are compatible with the relation (V.7) in the dual

field theory. Using (V.62), the R-charge assigned to such an object is related to

the operator dimension ∆ as

R[BΣ] = µ2n−3

∫

Σ2n−3

ωR =
2

n
µ2n−3m

−(2n−2)
∫

Σ

1

(n− 2)!
eψ ∧ Jn−2

=
2

n
µ2n−3m

−(2n−2)V ol(Σ2n−3) =
2m−1

nL
∆[BΣ]. (V.67)

In going from the first to the second line of (V.67), we used the fact that the

supersymmetric 2n−3 cycles in Y are calibrated, with vol(Σ) = eψ∧Jn−2/(n−2)!.

For both IIB on AdS5 × Y5 and M theory on AdS4 × Y7, (V.67) matches with the

relation (V.7) in the 4d and 3d dual, respectively [75]: in the former case, m−1 = L

and n = 3 in (V.67), and in the latter case m−1 = 2L and n = 4.

The µ2n−3m
−(2n−2) factor in (V.67) is proportional to N/V ol(Y ) by the

flux quantization condition. For AdS5 × Y5, using (V.32) then gives [75]

R(Σi) =
2

3
µ3L

4V ol(Σi) =
πN

3

V ol(Σi)

V ol(Y5)
. (V.68)
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For M theory on AdS4 × Y7, the flux quantization condition (see e.g. the recent

work [86])

6(2L)6V ol(Y7) = (2πℓ11)
6N, (V.69)

where 16πG11 = (2π)8ℓ911. Using the M5 tension µ5 = 1/(2π)4ℓ611, (V.67) then

gives

R(Σi) =
π2N

3

V ol(Σi)

V ol(Y7)
. (V.70)

V.F The forms ωI for other symmetries

In this section, we find the forms entering in (V.50), for the non-R flavor

symmetries. Those associated with non-R isometries are found in direct analogy

with the discussion of [75], reviewed in the previous section, for ωR. We re-write

(V.58) as

vol(Y2n−1) =
1

2n−1(n− 1)!
eψ ∧ (deψ)n−1. (V.71)

Under a non-R isometry, the form eψ (V.57) shifts by

eψ → eψ + hi(Y )AFi
, (V.72)

with the functions hi(Y ) obtained by contracting the 1-form σ in (V.57) with the

Killing vector Ki for the flavor symmetry,

hi(Y ) = iKi
σ = gabK

aKb
i . (V.73)

The last equality follows from (V.54): iKi
σ can be obtained by contracting the

Reeb vector Ka and the general Killing vector Kb
i , using the metric (V.54).

In the last section, for U(1)R, only the first eψ factor in (V.71) was shifted,

as that eψ factor is associated with the U(1)R fiber, where U(1)R acts. Conversely,

since non-R isometries do not act on the U(1)R fiber, but rather in the Kahler

Einstein base, we should not shift the first eψ factor in (V.71), but instead shift

the n− 1 factors of deψ in (V.71). Effecting this shift gives

δvol(Y2n−1) =
1

2n−1(n− 2)!

(
eψ ∧ d(hi(Y )AFi

) ∧ (deψ)n−2
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−deψ ∧ hi(Y )AFi
∧ (deψ)n−2

)
, (V.74)

where the last term was added to keep the form closed:

δvol(Y2n−1) = −d
(

1

2(n− 2)!
hi(Y )eψ ∧ Jn−2 ∧ AFi

)
. (V.75)

Effecting this shift in F bkgd leads to δC2n−2 = ωFi
∧ AFi

, with 2n− 3 form ωFi
:

ω̂Fi
≡ ωFi

(2n− 2)m−(2n−2)
= − 1

2(n− 2)!
hi(Y )eψ ∧ Jn−2 = −n(n− 1)

2
hi(Y )ω̂R.

(V.76)

Aside from the factor of −1
2
n(n − 1)hi(Y ), ωFi

is the same as for ωR, as given in

(V.62).

In particular, for IIB on AdS5 × Y5 we have

ω̂Fi
≡ ωFi

4L4
= −1

2
hi(Y5)e

ψ ∧ J = −3hi(Y5)ω̂R, (V.77)

and for M theory on AdS4 × Y7 we have

ω̂Fi
≡ 1

6(2L)6
ωFi

= −1

4
hi(Y7)e

ψ ∧ J ∧ J = −6hi(Y7)ω̂R. (V.78)

As reviewed in (V.67), the R-charge of branes wrapped on supersymmet-

ric cycles Σ is

R[BΣ] =
2

n
µ2n−3m

−(2n−2)
∫

Σ
vol(Σ). (V.79)

Using (V.76), the flavor charges of these wrapped branes can similarly be written

as

Fi[BΣ] = µ2n−3

∫

Σ
ωFi

= −(n− 1)µ2n−3m
−(2n−2)

∫

Σ
hivol(Σ)

= −n(n− 1)

2
· R[BΣ] ·

∫
Σ hivol(Σ)
∫
Σ vol(Σ)

. (V.80)

In particular, for IIB on AdS5 × Y5, we have

Fi[BΣ] = − πN

V ol(Y )

∫

Σ3

hivol(Σ) = −3R[BΣ]

∫
Σ hivol(Σ)
∫
Σ vol(Σ)

. (V.81)

The baryonic symmetries, coming from reducing C2n−2 on the non-trivial

(2n − 3)-cycles of Y2n−1, also alter C2n−2 at linear order as in (V.50), δC2n−2 =
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ωBi
∧ ABi

, where the 2n − 3 forms ωBi
are representatives of the cohomology

H2n−3(Y, Z). These can be locally written on Y2n−1 as

ωBi
= kie

ψ ∧ ηi, (V.82)

where ηi are 2(n − 2) forms on the Kahler-Einstein base, satisfying dηi = 0, and

ηi∧J = 0. The normalization constants ki in (V.82) are chosen so that µ2n−3

∫
Σ ωBi

is an integer for all (2n− 3)-cycles Σ of Y2n−1.

As mentioned in sect. V.D, this construction of the forms ωFi
involves

integrating an expression for dωFi
, so there’s an ambiguity of adding an arbitrary

closed form to ωFi
. Since addition of an exact form would not affect the charges of

branes wrapped on closed cycles, the interesting ambiguity corresponds precisely

to the same cohomology class of forms as the ωBj
. This is as it should be: there

is an ambiguity in our basis for the mesonic flavor symmetries, as one can always

re-define them by arbitrary additions of the baryonic flavor symmetries. The form

(V.76) for ωFi
corresponds to some particular choice of the basis for the mesonic

flavor symmetries. In the field theory dual, it may look more natural to call this a

linear combination of mesonic and baryonic flavor symmetries.

V.G Computing τIJ from the geometry of Y

The expressions (V.53) for the Ramond-Ramond kinetic term contribu-

tion (g−2
IJ )CC is

(g−2
IJ )CC =

1

16πGDt

∫

Y
ωI ∧ ∗ωJ ≡ (2n− 2)2m−(2n+1)

16πGDt

∫

Y
ω̂I ∧ ∗ω̂J (V.83)

and the Einstein action contribution (V.42) is

(g−2
IJ )KK =

m−(2n+1)

16πGDt

∫

Y2n−1

gabK
a
IK

b
Jvol(Y2n−1); (V.84)

again, the length scale m−1 is factored out of the metric and volume form. As

discussed in sect. 3, for gauge fields associated with isometries of Y , and in par-

ticular the graviphoton, we add the two contributions, g−2
IJ = (g−2

IJ )CC + (g−2
IJ )KK ,
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whereas for baryonic symmetries there is no contribution from the Einstein action,

so g−2
IJ = (g−2

IJ )CC .

Our claimed general proportionality (V.45) here gives

(g−2
IJ )CC = (n− 1)(g−2

IJ )KK, (V.85)

which implies that

4(n− 1)
∫

Y2n−1

ω̂I ∧ ∗ω̂J =
∫

Y2n−1

gabK
a
IK

b
Jvol(Y2n−1). (V.86)

As we’ll see, this relation can look non-trivial in the geometry.

To compute (g−2
IJ )CC from (V.83), we first note that (V.62) gives

∗ω̂R ≡ ∗ωR
(2n− 2)m−3

=
1

n!
∗ eψ ∧ Jn−2 =

n− 2

n!
J, (V.87)

and then, using (V.58), gives

ω̂R ∧ ∗ω̂R =
(n− 2)

n!n
vol(Y2n−1). (V.88)

In particular, for the U(1)R graviphoton, we obtain

(g−2
RR)CC =

(2n− 2)2m−(2n+1)

16πGDt

(n− 2)

n!n
V ol(Y2n−1). (V.89)

For the mixed kinetic term between U(1)R and non-R isometries U(1)Fi
,

(g−2
RFi

)CC =
(2n− 2)2m−(2n+1)

16πGDt

(n− 2)

n!n

(
−n(n− 1)

2

)∫

Y
hi(Y )vol(Y ). (V.90)

For the U(1)Fi
and U(1)Fj

kinetic terms, we similarly obtain

(g−2
FiFj

)CC =
(2n− 2)2m−(2n+1)

16πGDt

(n− 2)

n!n

(
n(n− 1)

2

)2 ∫

Y
hi(Y )hi(Y )vol(Y ).

(V.91)

For U(1)Bi
symmetries, we have

g−2
RBi

=
1

16πGDt

∫

Y
ωBi

∧∗ωR =
(2n− 2)m−(2n−2)

16πGDt

n− 2

n!

∫

Y
kie

ψ∧ηi∧J = 0, (V.92)

where we used (V.82) for ωBi
, (V.87), and we get zero immediately from ηi∧J = 0.

Likewise,

g−2
FjBi

= 0, (V.93)
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for any isometry symmetry Fi, since (V.76) gives ωFj
∝ ωR, so ∗ωFi

∝ J , and we

immediately get zero in (V.93) again from ηi ∧ J = 0. As mentioned in the intro-

duction, there is thus never any kinetic term mixing between any of the isometry

Kaluza-Klein gauge fields and any of the gauge fields coming from reducing the C

fields on non-trivial homology cycles of Y . Finally, for the baryonic kinetic terms,

we have

g−2
BiBj

=
1

16πGDt

∫

Y
kikje

ψ ∧ ηi ∧ ∗Bηj, (V.94)

where ∗B acts on the 2n− 2 dimensional Kahler-Einstein base.

For the isometry (non-baryonic) gauge fields, we have to add the Kaluza-

Klein contributions, (g−2
IJ )KK, from the Einstein action, to the kinetic terms. These

can either be explicitly computed, using (V.84), or one can just use our relation

(V.86) to the above Ramond-Ramond contributions. It’s interesting to check that

our relation (V.86) is indeed satisfied. For example, the Kaluza-Klein contribution

(g−2
RR)KK is

m−(2n+1)

16πGDt

∫

Y2n−1

gabK
aKbvol(Y2n−1) =

m−(2n+1)

16πGDt

4

n2
V ol(Y2n−1), (V.95)

where we used the local form of the metric (V.54), and U(1)R isometry Killing

vector (V.56), rescaled by the factor in (V.59) to have U(1)R properly normalized.

Comparing with (V.89), our relation (V.86) is indeed satisfied for both of our cases

of interest, n = 3 and n = 4, appropriate for IIB on AdS5 × Y5 and M theory on

AdS4 × Y7, respectively.

Our main point will be that the τRtRt
minimization condition (V.9) of

[73] requires (V.90) to vanish, τRFi=0, so we must have

∫

Y
hi(Y )vol(Y ) =

∫

Y
iKi
σvol(Y ) =

∫

Y
gabK

aKb
i = 0, (V.96)

for every non-R isometry Killing vector Ka
i . We know from the field theory argu-

ment of (V.9) that the conditions (V.96) must uniquely determine which, among

all possible R-symmetries, is the superconformal R-symmetry. Correspondingly,

(V.96) determines the isometry K, from among all possible mixing with the Ka
i .
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As we’ll discuss in the following sections, the Z-minimization of [58] precisely im-

plements (V.96) (in the context of toric C(Y )). Also, (V.92) implies that the

condition τRi of [73] is automatically satisfied for baryonic U(1)Bi
. This is the

reason why the Z-minimization method of [58] did not need to include any mixing

of U(1)R with the baryonic U(1)B symmetries.

For future reference, we’ll now explicitly write out the above formulae for

our cases of interest. For IIB on AdS5×Y5, we have n = 3 and m−1 = L, so (V.83)

is

τCCIJ ≡ 8π2L(g−2
IJ )CC =

8πL8

G10

∫

Y5

ω̂I ∧ ∗ω̂J =
16N2π3

V ol(Y5)2

∫

Y5

ω̂I ∧ ∗ω̂J , (V.97)

where we used (V.32) to write the result in terms of N . For I or J baryonic, this

is the entire contribution:

τIJ =
16N2π3

V ol(Y5)2
×
∫

Y5

ω̂I ∧ ∗ω̂J , for I or J baryonic. (V.98)

For isometry gauge fields, we add this to

τKKIJ =
8π2L8

16πG10

∫

Y5

vol(Y5)gabK
a
IK

b
J =

N2π3

V ol(Y5)2

∫

Y5

vol(Y5)gabK
a
IK

b
J , (V.99)

or, using relation (V.45), we simply have

τIJ =
3

2
τCCIJ =

24N2π3

V ol(Y5)2

∫

Y5

ω̂I ∧ ∗ω̂J , for I and J Kaluza-Klein. (V.100)

In particular, for the U(1)R kinetic term we compute

τCCRR =
16N2π3

V ol(Y5)2

∫

Y5

ωR ∧ ∗ωR =
16N2π3

V ol(Y5)2

∫

Y5

1

36
eψ ∧ J ∧ J =

8N2π3

9V ol(Y5)
, (V.101)

and

τKKRR =
N2π3

V ol(Y5)2

∫

Y5

4

9
vol(Y5) =

4N2π3

9V ol(Y5)
, (V.102)

verifying (V.45). The total for the graviphoton kinetic term coefficient then gives

τRR = τCCRR + τKKRR =
4

3

N2π3

V ol(Y5)
. (V.103)

This agrees perfectly with the relation (V.16) and (V.18), given (V.33).
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For the kinetic terms for two mesonic non-R symmetries, (V.100) gives

τFiFj
=

12N2π3

V ol(Y5)2
×
∫

Y5

hihjvol(Y5). (V.104)

The relation (V.45), τKKIJ = 1
2
τCCIJ , which was already used in (V.104) can be

written as

∫

Y5

gabK
a
Fi
Kb
Fj
vol(Y5) = 4

∫

Y5

hihjvol(Y5) = 4
∫

Y5

gacgbdK
cKdKa

Fi
Kb
Fj
vol(Y5).

(V.105)

Likewise, using (V.98), the kinetic terms for two baryonic flavor symme-

tries are

τBiBj
=

16N2π3

V ol(Y5)2
kikj

∫

Y5

eψ ∧ ηi ∧ ∗(eψ ∧ ηj). (V.106)

For M theory on AdS4 × Y7, we set n = 4 for Y7, and m−1 = 2L for its

length scale, in the above expressions. Then we obtain from (V.83), using also

(V.3) with d = 3,

τCCIJ ≡ 4π(g−2
IJ )CC = 4π(6)2(2L)9 1

16πG11

∫
ω̂I ∧ ∗ω̂J . (V.107)

Using the flux quantization relation (V.69), (V.107) becomes

τCCIJ =
48π2N3/2

√
6(V ol(Y7))3/2

∫

Y7

ω̂I ∧ ω̂J . (V.108)

Using (V.42) we can also write the Kaluza-Klein contribution, as

τKKIJ ≡ 4π(g−2
IJ )KK =

4π2N3/2

3
√

6(V ol(Y7))3/2

∫

Y7

gabK
a
IK

b
Jvol(Y7). (V.109)

For τRR, (V.89) gives

τCCRR =
π2N3/2

√
6V ol(Y7)

. (V.110)

The Kaluza-Klein contribution is given by (V.84), with gabK
a
RK

b
R = (1/2)2 from

(V.59), so

τKKRR =
π2N3/2

3
√

6V ol(Y7)
. (V.111)
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Comparing (V.110) and (V.111), we verify that τCCRR = 3τKKRR , in agreement with

our general expression (V.46) (specializing Y7 = S7 gives the case analyzed in [74]).

The total is

τRR =
4π2N3/2

3
√

6V ol(Y7)
. (V.112)

We can compare (V.112) with the 3d N = 2 gauge theory proportionality

relation

τRR =
π3

3
CT in d = 3, (V.113)

where CT is the coefficient of the stress tensor two-point function. Along the lines

of [80], [82], the central charge CT is determined in the dual, from the Einstein

term of M theory on AdS4 × Y7, to be

CT =
(2N)3/2

π
√

3V ol(Y7)
, (V.114)

so (V.112) indeed satisfies (V.113). As a special case, for Y7 = S7, V ol(S7) = π4/3

and (V.112) gives τRR = (2N)3/2/3.

For two non-R isometries , we have from (V.107) and (V.85), for AdS4 ×
Y7:

τFiFj
=

4

3
τCCFiFj

=
π2(2N)3/2

3
√

3(V ol(Y7))3/2

∫

Y7

(6)2hihjvol(Y ). (V.115)

V.H Toric Sasaki-Einstein Geometry and Z-minimization

In this section, we’ll briefly summarize some of the results of [58]. Con-

sider a Sasaki-Einstein manifold Y2n−1, of real dimension 2n − 1, whose metric

cone X = C(Y ) (V.4) is a local Calabi-Yau n-fold. The condition that (V.4) be

Kahler is equivalent to Y = X|r=1 being Sasaki, which is needed for the associated

field theory to be supersymmetric. The complex structure of X pairs the Euler

vector r∂/∂r with the Reeb vector K, K = I(r∂/∂r). This is the AdS dual ver-

sion of the pairing, by supersymmetry, between the dilitation generator and the

superconformal R-symmetry, respectively. The physical problem of determining
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the superconformal R-symmetry among all possibilities (V.8) maps to the math-

ematical problem of determining the Reeb vector among all U(1) isometries of

Y .

When X = C(Y ) is toric, it can be given local coordinates (yi, φi),

i = 1 . . . n, and both C(Y ) and Y have a U(1)n isometry group, associated with

the torus coordinates φi ∼ φi + 2π. It is useful to introduce both symplectic co-

ordinates (yi, φi) and complex coordinates (xi, φi). In the symplectic coordinates,

the symplectic Kahler form is simply ω = dyi ∧ dφi, and the metric with toric

U(1)n isometry takes the form

ds2 = Gijdy
idyj +Gijdφidφi, (V.116)

with Gij the inverse to Gij(y), and Gij = ∂2G/∂yi∂yj for some convex symplectic

potential function G(y). In the complex coordinates, zi = xi + iφi, the metric is

ds2 = F ijdxidxj + F ijdφidφi, (V.117)

and F ij = ∂2F (x)/∂xi∂xj , with F (x) the Kahler potential. The two coordinates

are related by a Legendre transform, yi = ∂F (x)/∂xi and F ij(x) = Gij(y =

∂F/∂x), with F (x) = (yi∂G/∂yi − G)(y). The holomorphic n-form of the cone

X = C(Y ) is

Ωn = ex1+iφ1(dx1 + idφ1) ∧ . . . ∧ (dxn + idφn). (V.118)

The Reeb vector can be expanded as

K = bi
∂

∂φi
, (V.119)

and its symplectic pairing with r ∂
∂r

implies that

bi = 2Gijy
j, note: bi = constant. (V.120)

The problem of determining the superconformal R-symmetry maps to that of de-

termining the coefficients bi, i = 1 . . . n. The component b1 is fixed to b1 = n by

the condition that LKΩn = inΩn, which is the condition that U(1)R in the field
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theory is properly normalized to give the superpotential charge R(W ) = 2. The

remaining n− 1 components bi are unconstrained by symmetry conditions, corre-

sponding to the field theory statement that U(1)R can mix with an U(1)n−1 group

of non-R flavor symmetries.

The spaceX = C(Y ) is mapped by the moment map, µ, where one forgets

the angular coordinates φi, to C = {y|(y, va) ≥ 0}, where va ∈ Z
n, for a = 1 . . . d,

are the “toric data”. The supersymmetric divisors Da of X are mapped by µ to

the subspaces (y, va) = 0; here a = 1 . . . d label the divisors (d here, of course, is

unrelated to the spacetime dimension d of our other sections). The Sasaki-Einstein

Y is given by X|r=1, and r = 1 gives 1 = bibjG
ij = 2(b, y). It is also useful to

define X1 ≡ X|r≤1, with µ(X1) = ∆b ≡ {y|(y, va) ≥ 0, and (y, b) ≤ 1
2
}. The

supersymmetric 2n − 3 dimensional cycles Σa of Y , for a = 1 . . . d, have cone

Da = C(Σa) which are the divisors of X, and µ(Σa) is the subspace Fa of ∆b with

(y, va) = 0.

The volume of Y and its supersymmetric cycles Σa are found from con-

sidering their cones in X1, which are calibrated by the Kahler form ω = dyi ∧ dφi.
This gives

V olb(Y ) = 2n(2π)nV ol(∆b), V olb(Σa) = (2n− 2)(2π)n−1 1

|va|
V olb(Fa). (V.121)

As shown in [58],
∑
a

1
|va|V olb(Fa)(va)i = 2nV ol(∆b)bi, from which it follows that

these volumes satisfy π
∑
a V ol(Σa) = n(n − 1)V ol(Y ). (This ensures that super-

potential terms, associated in the geometry with the holomorphic n-form, have

R(W ) = 2.)

The key point [58] is that the full information of the Sasaki-Einstein met-

ric on Y is not needed to determine the volumes (V.121); the weaker information

of the Reeb vector bi and the toric data va suffice.

Moreover, the Reeb vector bi can be determined from the toric data [58].

This fits with the fact that the toric data determines the dual quiver gauge theory

(see e.g. [71] and references cited therein), from which the superconformal R-

charges can be determined. The Z-minimization method of [58] for determining
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the Reeb vector is to start with the 2n− 1 dimensional Einstein-Hilbert action for

the metric g on Y2n−1:

S[g] =
∫

Y
(Rg + 2(n− 1)(3 − 2n))vol(Y ), (V.122)

including the needed cosmological constant term associated with the added flux.

Though (V.122) appears to be a functional of the metric, it was shown in [58] that

it’s actually only a function of only the Reeb vector:

S[g] = S[b] = 4π
∑

a

V olb(Σa) − 4(n− 1)2V olb(Y ). (V.123)

The full information of the metric is not needed, the weeker information of the

Reeb vector suffices to evaluate the action.

As shown in [58], the condition that b be the correct Reeb vector, as-

sociated with a Sasaki-Einstein metric, is precisely the condition that the action

(V.123) be extremal:
∂

∂bi
S[b] = 0. (V.124)

Defining

Z[b] ≡ 1

4(n− 1)(2π)n
S[b] = (b1 − (n− 1))2nV ol(∆b), (V.125)

the equation (V.124) for i = 1 gives b1 = n, which is just the condition that the

holomorphic n-form transforms as appropriate for a U(1)R symmetry. Following

[58], define

Z̃[b2, . . . bn] = Z|b1=n = 2nV olb(∆)|b1=n. (V.126)

The equations (V.124) for i 6= 1 give, upon setting b1 = n,

0 =
∂

∂bi
Z̃[b] = −2(n+ 1)

∫

∆b

yidy1 . . . dyn for i 6= 1. (V.127)

These are the equations that determine the components bi, for i = 2 . . . n, of the

Reeb vector, i.e. that pick out the superconformal U(1)R from the U(1)n isometry

group [58]. The correct Reeb vector minimizes Z̃, since the matrix of second

derivatives is positive [58]

∂2Z̃

∂bi∂bj
∝
∫

H
yiyjdσ > 0. (V.128)
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V.I Z-minimization = τRR minimization.

Let’s write (V.126) and (V.121) as

Z̃[b2, . . . bn] = 2nV olb(∆) =
1

(2π)n
V olb(Y )|b1=n, (V.129)

so Z minimization corresponds to minimizing the volume of Y , over the choices

of b2, . . . , bn, subject to b1 = n. This can be directly related to τRR minimization

[73], i.e. minimization of the U(1)R graviphoton’s coupling, since

τRR = Cn
Ld−3m−(2n+1)

16πGDt

V ol(Y ). (V.130)

The constant Cn is obtained from adding the contributions (V.89) and (V.95)

and using the relation (V.3). Let us now consider the quantity (V.130), but with

V ol(Y ) promoted to the function V olb(Y ), depending on components b2, . . . bn of

the Reeb vector:

τ̃RtRt
[b2, . . . , bn] ≡ Cn

Ld−3m−(2n+1)

16πGDt

V olb(Y ) = Cn(2π)n
Ld−3m−(2n+1)

16πGDt

·Z̃[b2, . . . , bn].

(V.131)

For the superconformal U(1)R values of b2, . . . bn, τ̃RtRt
= τRR.

If we hold Ld−3m−(2n+1)/GDt
fixed, (V.131) suggests a direct relation

between Z and τRR minimization. Physically, we should hold the number of flux

units N fixed, i.e. use the flux quantization relation to eliminate Ld−3m−(2n+1)/GDt

in favor of N/V ol(Y ). In particular, for IIB on AdS5 × Y5 and M theory on

AdS4 × Y4,

AdS5 × Y5 : Cn
Ld−3m−(2n+1)

16πGDt

=
4π3

3

(
N

V ol(Y )

)2

,

AdS4 × Y7 : Cn
Ld−3m−(2n+1)

16πGDt

=
4π2

3
√

6

(
N

V ol(Y )

)3/2

. (V.132)

Using these in (V.130) shows that, for fixed N , τRR is actually inversely related

to V ol(Y ). From that perspective, it would seem that Z minimization instead

maximizes τRR, which is opposite to the result of [73] that the exact superconformal

U(1)R minimizes τRR. To avoid this, we do not promote the constant V ol(Y ) in
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the flux relations (V.132) to the function V olb(Y ) of the Reeb vector, but instead

there hold it fixed to its true, physical value. Then the function τ̃RtRt
[b] (V.131) is

simply a constant times the function Z̃[b] of [58].

To use the formulae of our earlier sections, consider the Killing vectors

χ = χi
∂

∂φi
(V.133)

for the U(1)n isometries of toric Y2n−1. R-symmetries, and in particular the Reeb

vector, have χ1 = n, and non-R isometries have χ1 = 0. As we discussed in sections

V.E and V.F, the isometry dφχ → dφχ +Aχ has an associated 2n− 3 form, which

is found from the associated shift eψ → eψ + hχ(Y )Aχ. For the R-symmetry,

this comes from the shift of dψ′, and for non-R flavor symmetries the shift is via

hχ = iχσ. Using the second equality in (V.73), we have

hχ(Y ) = F ijbiχj = Gijbiχj = 2yiχi = 2〈r2θ, χ〉, (V.134)

with the inner product with r2θ as in [58]. For the Reeb vector, (V.134) gives

hK = 1, since the cone r = 1 has 1 = bibjG
ij = 2(b, y) [58].

For the non-R isometries, we can take as our basis of Killing vectors e.g.

χ(i) = ∂
∂φi

, so χ
(i)
j = δij, for i = 2 . . . n. Then (V.134) gives simply

hχ(i) = 2yi. (V.135)

In this basis, where U(1)Fi
is associated with Killing vector ∂

∂φi
, the Fi charge of a

brane wrapped on cycle Σ is

Fi[BΣ] = −(n− 1)µ2n−3m
−(2n−2)

∫

Σ
2yivol(Σ)

= −n(n− 1) · R[BΣ] ·
∫
Σ yivol(Σ)
∫
Σ vol(Σ)

. (V.136)

In particular, for IIB background AdS5 × Y5, we have

Fi[BΣ] = − 2πN

V ol(Y5)

∫

Σ3

yivol(Σ), (V.137)
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and for M theory background AdS4 × Y7 we have

Fi[BΣ] = − 4π2N

V ol(Y7)

∫

Σ5

yivol(Σ). (V.138)

Using our formulae from sect. V.G, we can determine the kinetic terms

g−2
IJ , and hence τIJ in terms of the geometry of Y . In particular, using (V.90) and

(V.135), we have

τRFi
= Cn

Ld−3m−(2n+1)

16πGDt

(−n(n− 1))
∫

Y
yivol(Y ), (V.139)

with Cn the same constant appearing in (V.130). Note that

∫

Y
yivol(Y ) = 2(n+ 1)

∫

X1

yivol(X1) = 2(n+ 1)(2π)n
∫

∆b

yidy1 . . . dyn, (V.140)

(2(n + 1) accounts for the extra r integral in X1). Moreover, eqn. (3.21) of [58]

gives
∫

∆b

yidy1 . . . dyn = − 1

2(n + 1)

∂

∂bi
V olb(∆). (V.141)

So (V.139) gives

τRFi
= Cn

Ld−3m−(2n+1)

16πGDt

(2π)n
(n− 1)

2

∂

∂bi
Z̃[b2, . . . bn]. (V.142)

As discussed, we take the factors in (V.132) to be bi independent constants, so

(V.142) can be written as

τRFi
=

(n− 1)

2

∂

∂bi
τ̃RtRt

[b2 . . . bn]. (V.143)

The relation (V.142) shows that the τRtRt
minimization equations, τRFi

= 0, are

indeed equivalent to the Z minimization equations (V.127) of [58].

We can similarly use our formula (V.90) and (V.134) to obtain the coef-

ficient τFiFj
for two flavor currents:

τFiFj
= Cn

Ld−3m−(2n+1)

16πGDt

(n(n− 1))2
∫

Y
yiyjvol(Y ), (V.144)

with Cn the same constant appearing in (V.130). Note now that

∫

Y
yiyjvol(Y ) = 2(n+ 2)

∫

X1

yiyjvol(X1) = 2(n+ 2)(2π)n
∫

∆b

yiyjdy1 . . . dyn.

(V.145)
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Moreover, in analogy with the derivation of (V.141), in eqn. (3.21) of [58], we find:

∫

∆b

yiyjdy1 . . . dyn =
1

4(n+ 1)(n+ 2)

∂2

∂bi∂bj
V olb(∆). (V.146)

We can then write (V.144) as

τFiFj
=
n(n− 1)2

4(n+ 1)

∂2

∂bi∂bj
τ̃RtRt

[b2 . . . bn], (V.147)

where again we take (V.132) as b independent.

Since τ̃RtRt
is proportional to Z̃, (V.147) provides a way to evaluate the

current two-point function coefficients τFiFj
entirely in terms of the Reeb vector

and the toric data, without needing to know the metric.

In [73], we discussed the trial function τRtRt
(si), which is quadratic in the

parameters si, and satisfies

τRtRt
|s∗ = τRR,

∂

∂si
τRtRt

|s∗ = 2τRi = 0,
∂2

∂si∂sj
τRtRt

(s) = 2τij. (V.148)

This can be compared with the function τ̃RtRt
(bi) defined above, which coincides

with τRR for the minimizing values b∗i , which are determined by setting the deriva-

tives to zero, (V.143), and the second derivatives (V.147) are proportional to τij , as

in (V.148). The relation between si and bi can be chosen to convert the coefficients

in (V.147) to equal those of (V.148).

Let us now consider further the expression (V.136), or more explicitly

(V.137) and (V.138), for the flavor charges of branes wrapped on cycles. We

would like to evaluate these for the supersymmetric cycles Σa ⊂ Y , i.e. to evaluate

∫

Σa

yivol(Σ) (V.149)

in terms of the toric data and Reeb vector. Note that

∫

Σa

yivol(Σ) = 2n
∫

C(Σa)
yivol(C(Σa)) = 2n(2π)n−1

∫

Fa

yidσa, (V.150)

where the 2n factor is from the extra r integral in going from Σa to C(Σa), and dσa

is the measure on Fa, from
∫
δ((y, va))dy

1 . . . dyn. In analogy with the derivation
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of eqn. (3.21) in [58], it seems likely that the yi in (V.149) and (V.150) can be

obtained from the volume V olb(Σa) in (V.121) by differentiating w.r.t. bi. But

completing this argument, accounting for all the potential new boundary terms,

seems potentially subtle (to us).

Let us, instead, note a different way to compute the charges from the

toric data. Consider the expression for V olb(Y ), as a function of both b and the

toric data (va)i. In the integral leading to V olb(Y ) = 2n(2π)nV ol(∆b) in (V.121),

the vectors (va)
i appear via the boundary of ∆b, which has (y, va) ≥ 0. Thinking

of them as variables, taking the derivative w.r.t. va then gives a contribution only

on the boundary (y, va) = 0:

∂

∂(va)i
V ol(∆b) = −

∫

Fa

yidσa. (V.151)

Using (V.150) and (V.121) then gives

∫

Σa

yivol(Σ) = − 1

2π

∂

∂(va)i
V olb(Y ). (V.152)

In the above expressions for τ̃RR and τRFi
and τFiFj

, the Ramond-Ramond

and Kaluza-Klein contributions to g−2
IJ were summed together, in the coefficient

Cn. Using the relation (V.46), which here gives (g−2
IJ )CC = (n− 1)(g−2

IJ )KK , those

two contributions have a fixed ratio. Let us now examine that relation in the

present context. For general Killing vectors χ(I) and χ(J), the contribution (V.53)

to their mixed kinetic term is

(g−2
IJ )CC ∝

∫

Y
4yiyjχ

(I)
i χ

(J)
j vol(Y ). (V.153)

The contribution (V.42) of the Einstein term is similarly

(g−2
IJ )KK ∝

∫

Y
Gijχ

(I)
I χ

(J)
j vol(Y ). (V.154)

Taking both I and J to be the R-symmetry, with χI and χJ the Reeb vector, the

relation from (g−2
IJ )CC = (n− 1)(g−2

IJ )KK is

∫

Y
Gijbibjdy1 . . . dyn = 4

∫

Y
(yibi)

2dy1 . . . dyn; (V.155)
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which is clearly satisfied, since 2biy
i = Gijbibj = 1. For non-R flavor symmetries,

the identity is less trivial. For general Y2n−1 it states that

∫

Y2n−1

Gijvol(Y ) = 4(n− 1)2
∫

Y2n−1

yiyjvol(Y ) i, j 6= 1. (V.156)

The extra factor of (n − 1)2, as compared with (V.155), is as in (V.90), coming

from writing the volume form as ∼ eψ ∧ (deψ)n−1 and the fact that ωR is found

from the shift of the first eψ factor, whereas the non-R isometries are obtained by

shifting the n− 1 factors of d(eψ). The relation (V.156) can indeed be verified to

hold in the various examples. It can also be written in terms of integrals over ∆b,

by extending to X1 and doing the extra r integrals, as

(n + 1)
∫

∆b

Gijdy1 . . . dyn = 4(n− 1)2(n+ 2)
∫

∆b

yiyjdy1 . . . dyn. (V.157)

V.J Examples and checks of AdS/CFT: Y p,q

The metric of [24], [69] is simply written in the basis of unit one-forms

eψ =
1

3
(dψ′ − cos θdφ+ y(dβ + cos θdφ))

eθ =

√
1 − y

6
dθ, eφ =

√
1 − y

6
sin θdφ, (V.158)

ey =
1√
wv

dy, eβ =

√
wv

6
(dβ + cos θdφ),

as ds2
Y = (eθ)2 + (eφ)2 + (ey)2 + (eβ)2 + (eψ)2. The coordinate y lives in the range

y1 ≤ y ≤ y2, where y1 and y2 are the two smaller roots of v(y) = 0 [69] :

y1 =
1

4p

(
2p− 3q −

√
4p2 − 3q2

)
, y2 =

1

4p

(
2p+ 3q −

√
4p2 − 3q2

)
.

(V.159)

The local Kahler form of the 4d base is

J = eθ ∧ eφ + ey ∧ eβ . (V.160)

The gauge symmetries in AdS5 of IIB on Yp,q, and the global symmetries

of the dual SCFTs [47], are U(1)R × SU(2) × U(1)F × U(1)B. The first three
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factors are associated with isometries of the metric, and U(1)B comes from the

single representative of H3(Yp,q, Z) (topologically, all are S2 × S3). As usual, the

superconformal U(1)R symmetry is associated with the shift in eψ: 1
3
dψ′ → 1

3
dψ′ +

2
3
AR, and the associated 3-form is that of [75]:

ω̂R ≡ 1

4L4
ωR =

1

6
eψ ∧ J. (V.161)

The SU(2) is symmetry is an non-R isometry, associated with rotations of the

spherical coordinates θ and φ. Finally, the U(1)F isometry is associated with

shifts dβ + cos θdφ→ dβ + cos θdφ+AF . U(1)φ ⊂ SU(2) and U(1)F form a basis

for the U(1)2 non-R isometries, expected from the fact that Yp,q is toric [69]. The

3-forms associated with these flavor U(1)2 are found from (V.73) and (V.77) to be

ω̂φ ≡ 1

4L4
ωφ = − cos θω̂R and ω̂F ≡ 1

4L4
ωF = −yω̂R. (V.162)

The 3-form associated with the U(1)B baryonic symmetry was already

constructed in [70], restricting their form Ω2,1 on C(Yp,q) to Yp,q by setting r = 1:

µ3ωB =
9

8π2
(p2 − q2)eψ ∧ η η ≡ 1

(1 − y)2
(eθ ∧ eφ − ey ∧ eβ), (V.163)

where the normalization constant is to keep the periods of µ3

∫
C4 properly integral.

D3 branes wrapped on the various supersymmetric 3-cycles Σa of Y map

to the di-baryons of the dual gauge theory [47] as:

Σ1 ↔ det Y, Σ2 ↔ detZ, Σ3 ↔ detUα, Σ4 ↔ detVα. (V.164)

The cycles Σ1 and Σ2 are given by the coordinates at y = y1 and y = y2 respectively

[69]. The cycle Σ3 is given by fixing θ and φ to constant values, which yields the

SU(2) collective coordinate of the di-baryon [70]. The cycle Σ4
∼= Σ2 + Σ3.

As in [75], the R-charges of the wrapped D-3 branes, computed from

µ3

∫
Σi
ωR, are

R(Σi) =
πN

3V ol(Y5)

∫

Σi

vol(Σ) =
πN

3

V ol(Σi)

V ol(Y5)
. (V.165)

It was verified in [69], [46], [47], [70] that the R-charges computed from the cycle

volumes as in (V.165) agree perfectly with the map (V.164) and the superconformal
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R-charges, computed in the field theory dual by using the a-maximization [14]

method.

We can similarly verify that integrating the U(1)φ, U(1)F and U(1)B 3-

forms (V.162) and (V.163) over the 3-cycles Σa agree with the map (V.164) and

the corresponding charges of the dual field theory [47]. For U(1)B we have

B(Σi) = µ3

∫

Σi

ωB =
9

8π2
(p2 − q2)

∫

Σi

eψ ∧ 1

(1 − y)2
(eθ ∧ eφ − ey ∧ eβ), (V.166)

and, as already computed in [70], this gives (reversing Σ1’s orientation)

B(Σ1) = (p− q), B(Σ2) = (p+ q), B(Σ3) = p, (V.167)

in agreement with the U(1)B charges of [47] for Y , Z, and Uα, respectively. One

minor difference is that we normalize the U(1)B charges for the bi-fundamentals

with a factor of 1/N , so that the charges of the baryons are O(1) rather than

O(N); this is natural when U(1)B is thought of as an overall U(1) factor of a

U(N) gauge group, and also natural in terms of having the charges be properly

quantized, so that
∫
µ3C4 and

∫
B(Qi)AB are gauge invariant mod 2π under large

gauge transformations.

We can compute the U(1)F charges of the wrapped D3 branes by using

(V.81), here with h = y/3:

F (BΣ) = −R(BΣ)

∫
Σ yvol(Σ)
∫
Σ vol(Σ)

. (V.168)

This gives

F (Σ1) = y1R(Σ1), F (Σ2) = −y2R(Σ2), F (Σ3) = −1

2
(y1 + y2)R(Σ3).

(V.169)

The Σ1 and Σ2 cases follow immediately from (V.168), since y = y1 and y = y2 is

constant (the Σ1 integral gets an extra minus sign from the orientation), and F (Σ3)

in (V.169) simply comes from
∫ y2
y1
ydy/

∫ y2
y1
dy. The charges (V.169) agree with the

U(1)F charges of [47], up to the ambiguity that we have mentioned for redefining

U(1)F by an arbitrary addition of U(1)B, i.e. U(1)hereF = U(1)thereF + αU(1)B.
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Using the metric [24], [69], we can explicitly compute the contributions

τCCIJ in (V.97) and the contributions τKKIJ in (V.99), and verify that τCCIJ = 2τKKIJ ,

as expected from (V.45), for the U(1)R and U(1)φ and U(1)F isometry gauge fields.

For U(1)B, there is only the τCCIJ contribution to τIJ . For the superconformal U(1)R,

we find, as expected τKKRR = 4N2π3/9V ol(Yp,q) and τCCRR = 8N2π3/9V ol(Yp,q), with

[69]

V ol(Yp,q) =
q2[2p+ (4p2 − 3q2)1/2]

3p2[3q2 − 2p2 + p(4p2 − 3q2)1/2]
π3. (V.170)

For τKKFF , the metric [24], [69] gives gabK
a
FK

b
F = 1

36
wq+ 1

9
y2 = 1

36
w(y), so

(V.99) yields

τKKFF =
N2π3

36V ol(X5)

∫
dyw(y)(1− y)
∫
dy(1 − y)

=
N2π3

18V ol(X5)

√
4p2 − 3q2

p2

(
2p−

√
4p2 − 3q2

)
.

(V.171)

Using ω̂F of (V.162) in (V.97) we can also compute

τCCFF = τCCRR

∫
dyy2(1 − y)
∫
dy(1 − y)

= τCCRR
1

16

∫
dyw(y)(1− y)
∫
dy(1− y)

= 2τKKFF , (V.172)

satisfying the relation (V.45). Combining (V.171) and (V.172) gives

τFF =
N2π3

6V ol(Yp,q)

√
4p2 − 3q2

p2

(
2p−

√
4p2 − 3q2

)
. (V.173)

This result for τFF can be compared with the field theory prediction. The U(1)F

charges of the bifundamentals are found from the U(1)F charges (V.169) of the

dibaryons, and the map (V.164) (so the factor of N from (V.165) is eliminated),

e.g. F (Z) = −y2R(Z) = −y2πV ol(Σ2)/3V ol(Y5), which looks rather ugly when

written out in terms of p and q. From these charges and the U(1)R charges, we

can compute the ’t Hooft anomalies, and thereby compute τFF on the field theory

side by using the relation τFF = −3TrRFF . The result is found to agree perfectly

with (V.173).

Let us now consider τRF . The Kaluza-Klein contribution is given as in

(V.99), with gabK
a
RK

b
F = y/9, and the integral over y vanishes, so τKKRF = 0.

Likewise, τCCRF = 0, because
∫
y(1 − y) vanishes. So, as expected, τRF = 0.
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As we discussed in the previous section, the Fi[Σa] charges and τIJ can

also be computed entirely from the toric data and Z-function of [58]. In the toric

basis of [58],

v1 = (1, 0, 0), v2 = (1, p− q − 1, p− q), v3 = (1, p, p), v4 = (1, 1, 0). (V.174)

The Z-function is, with (b1, b2, b3) ≡ (x, y, t), [58]

Z[x, y, t] =
(x− 2)p(p(p− q)x+ q(p− q)y + q(2 − p+ q)t)

2t(px− py + (p− 1)t)((p− q)y + (1 − p+ q)t)(px+ qy − (q + 1)t)
,

(V.175)

which, imposing x = 1, is minimized for [58]:

bmin =
(
3,

1

2
(3p− 3q + ℓ−1),

1

2
(3p− 3q + ℓ−1)

)
,

ℓ−1 =
1

q

(
3q2 − 2p2 + p

√
4p2 − 3q2

)
. (V.176)

Our formula (V.147), for example, gives τFiFj
, for the Fi associated with

the ∼ ∂
∂φi

Killing vectors, in terms of the Hessian of second derivatives of the

function (V.175), evaluated at (V.176). To connect the results in the toric basis

for the flavor symmetries to those discussed above, we note that the Killing vector

for shifting β can be related to those for shifting φ1 and φ2 as ∂
∂β

= ℓ−1

6

(
∂
∂φ2

+ ∂
∂φ3

)
,

so U(1)F = ℓ−1

6
(U(1)2 + U(1)3).

This chapter is a reprint of the material as it appears in E. Barnes,

E. Gorbatov, K. Intriligator and J. Wright, “Current correlators and AdS/CFT

geometry,” Nucl. Phys. B 732, 89 (2006), and on the preprint archive,

http://www.arxiv.org/hep-th/0507146.



Appendix.

On the superconformal window of

the other duals of [36]

Appendix..A Reviewing SU(Nc) SQCD, with Nf funda-

mental flavors, and an adjoint X

Let us briefly review the a-maximization analysis of Kutasov, Parnachev,

and Sahakyan (KPS) [16] for this theory, with Wtree = 0. The anomaly free super-

conformal R-charges of the fields are R(Q) = R(Q̃) ≡ y for the fundamentals and

R(X) = (1 − y)/x for the adjoint, where x ≡ Nc/Nf . a-maximization determines

y(x) via maximizing

a
(p)
KPS(y, x)/N

2
f = 2x2 + x2

(
3
(

1 − y

x
− 1

)3

−
(

1 − y

x
− 1

))

+2x
(
3(y − 1)3 − (y − 1)

)
+

p∑

j=0

(
2y + j

1 − y

x
− 2

3

)2 (
5 − 3[2y + j

1 − y

x
]
)
,

(Appendix..1)

w.r.t. y; this has solution y(p)(x). The sums account for the generalized

mesons QXjQ̃ hitting their unitarity bound, with p the greatest integer such that

R(QXjQ̃) would naively violated the unitarity bound. The solution yKPS(x) is

obtained by patching together the functions y(p)(x), with the appropriate value of

p depending on x. The function yKPS(x) is monotonically decreasing, with asymp-

147
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totic value y(x→ ∞) → yas = (
√

3−1)/3. R(X) = (1−y)/x is also monotonically

decreasing in x and, for x→ ∞, R(X) → (1 − yas)/x.

The superpotential WAk
= TrXk+1 is a relevant deformation of theW = 0

SCFT ifR(Xk+1) < 2 (since ∆(W ) = 3
2
R(W )), i.e. ifR(X) = (1−y)/x < 2/(k+1).

Since R(X) monotonically decreases with x, WAk
can always be made relevant, by

taking x sufficiently large, x > xminAk
, where xminAk

is determined by the condition

that (1 − y(xminAk
))/xminAk

= 2/(k + 1). Using the numerical solution for y(x), the

numerical values of xminAk
can be obtained for arbitrary k. For large k, xminAk

is large,

and then R(X) ≈ (1 − yas)/x
min
Ak

= 2/(k + 1) gives xminAk
→

(
4−

√
3

6

)
k ≈ 0.3780k

[16].

The Ak theory has dual description [39], [40], [34] in terms of a mag-

netic SU(Ñc) gauge theory, with Ñc = kNf − Nc. It has an adjoint field Y , Nf

fundamental flavors q, q̃, and N2
f gauge singlet fields Mj , for j = 1 . . . k. The

superpotential is

W
Ãk

= TrY k+1 +
k∑

j=1

Mk−jqY
j−1q̃ . (Appendix..2)

The analysis of the dual theory is similar to that of the electric theory, with

x→ x̃ = Ñc/Nf = k − x, though the specifics are not identical, because of the ef-

fect of the additional gauge singlets Mj and superpotential terms in (Appendix..2).

We refer the reader to [16], for the details of the a-maximizing ỹ(x̃) in the mag-

netic theory. The qualitative result is that ỹ(x̃) drops to zero a little faster on

the magnetic side than the electric y(x), so the TrY k+1 term in (Appendix..2) is

relevant for x̃ > x̃minAk
, with x̃minAk

< xminAk
. In particular, for k ≫ 1, x̃minAk

≈ 0.3578k

[16] .

The superconformal window, where both dual descriptions of the

Ak(Nc, Nf) SCFTs are useful, is xminAk
< x < k − x̃minAk

; for k ≫ 1, it’s

0.3780k < x < 0.6422k. Within this range the electric and magnetic theories

have the same central charge a, as guaranteed by ’t Hooft anomaly matching.

Outside of this range, there are accidental symmetries that are manifest in one of
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the dual descriptions but not in the other so, without accounting for these acciden-

tal symmetries, the central charge as computed by a-maximization for the electric

and magnetic theories can appear to differ [16]. The larger of aelec or amag is the

correct one – it’s larger because of maximizing atrial over R-symmetries that can

mix with the additional, accidental flavor symmetries.

Appendix..B Some immediate generalizations, with other

groups and matter content

Many analogs of the duality of [39], [40], [34] were soon given in [36],

[53], [41], all for theories with WAk
type LG superpotential. Without the LG

superpotential, those theories are expected to flow to other SCFTs, which can now

be analyzed via a-maximization. Doing so determines when theWAk
superpotential

is relevant. Doing a similar a-maximization analysis of the duals of [36], [53], [41]

determines when the dual Ak LG superpotentials are relevant. Combining the

two bounds, as in the analysis of [16], reviewed in the last section, determines

the superconformal window for where the duals of [36], [53], [41] are useful. In

particular, we can verify that the superconformal window is non-empty for all k.

As in the analysis of [16], it is most convenient to consider the limit

Nc ≫ 1, Nf ≫ 1, holding x ≡ Nc/Nf fixed. However, as we’ll now explain, the

a-maximization analysis of all of the examples of [36], [53], [41] involving a single

gauge group becomes simply identical to that of [16] in this limit, where we drop

terms O(1/Nc) or O(1/Nf).
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The examples of [36], [53], [41] involving a single gauge group are:

group X Q # mesons QXjQ a/aKPS

SO(Nc) Nf · 1
2
Nf (Nf + 1) 1

2

Sp(Nc) 2Nf · Nf (2Nf − 1) 2

SO(Nc) Nf · 1
2
Nf (Nf + (−1)j) 1

2

Sp(Nc) 2Nf · Nf (2Nf − (−1)j) 2

SU(Nc) ⊕ Nf · ( ⊕ ) N2
f or Nf (Nf − 1) 1

SU(Nc) ⊕ Nf · ( ⊕ ) N2
f or Nf (Nf + 1) 1

SU(Nc) ⊕ 8 · ⊕Nf · ( ⊕ ) ∼ N2
f 1

(Appendix..3)

Our notation for Sp(Nc) is that SU(2) ∼= Sp(1).

Let us compare the theory on the first line of (Appendix..3) with the

SU(Nc) with adjoint theory analyzed in [16]. The anomaly free R-symmetry is

constrained to satisfy 2(Nc − 2) + 2Nf(R(Q) − 1) + 2(Nc + 2)(R(X) − 1) = 0.

But in the Nc ≫ 1 and Nf ≫ 1 limit, holding fixed x ≡ Nc/Nf , this gives an

identical relation, R(X) = (1 − y)/x, with x ≡ Nc/Nf , as in the case reviewed

in the previous subsection. Computing the analog of (Appendix..1) for the theory

on the first line of (Appendix..3), we find that every term is now simply half of

that in (Appendix..1), coming from the fact that the only difference (to leading

order O(1/Nc) and O(1/Nf)) is that there are half as many of each of the different

fields. For example, the 2x2 term in (Appendix..1) is the contribution of the

|SU(Nc)| ≈ N2
c gauge fields, which here becomes a similar contribution from the

|SO(Nc)| = 1
2
Nc(Nc−1) ≈ 1

2
N2
c gauge fields. Similarly, there are here half as many

X fields (1
2
Nc(Nc + 1) ≈ 1

2
N2
c here, vs. N2

c − 1 ≈ N2
c there), half as many Q fields

(NcNf here, vs 2NcNf there) and half as many of the meson fields (1
2
Nf(Nf +1) ≈

1
2
N2
f here, vs N2

f there). So the a-function to maximize for the theory in the first

line of (Appendix..3) is simply half aKPS (Appendix..1). Maximizing this obviously

leads to the same solution for the superconformal R-charges as obtained in [16],

y(x) = yKPS(x).

Likewise, all of the other theories in (Appendix..3) similarly lead to the
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same results in the Nc ≫ 1, Nf ≫ 1 limit, for arbitrary x ≡ Nc/Nf . In this limit,

the anomaly free condition on the superconformal R-symmetry gives R(X) = (1−
y)/x, with R(Q) ≡ y, for all of them. For all of these theories, the analog of every

term in (Appendix..1) becomes approximately simply the same as in (Appendix..1),

up to an overall factor, which is given in the last column of (Appendix..3). For

example, for the theory in the last line of (Appendix..3), the generalized mesons

QXjQ which can hit the unitarity bound are given for even j by Q̃(XX̃)rQ (which

are Nf (Nf +8) ≈ N2
f in number) and for odd j by Q(X̃X)2X̃Q (which are 1

2
(Nf +

8)(Nf +9) ≈ 1
2
N2
f in number) and Q̃X(X̃X)rQ̃ (which are 1

2
Nf (Nf − 1) ≈ 1

2
N2
f in

number) so, whether j is even or odd, there are approximately the same number

N2
f of mesons, leading to the same contributions as in the last line of (Appendix..1).

There are several interrelations among the theories (Appendix..3) associ-

ated with giving X an expectation value (which we’re free to do, since we’re now

discussing the theories with Wtree = 0), and it can be verified that all of these Hig-

gsing RG flows satisfy aIR < aUV . These checks make use of the a/aKPS factors in

the last column of (Appendix..3). For example, consider the SO(Nc) theory with

adjoint X, on the third line of (Appendix..3). Giving X an expectation value,

there is a RG flow connecting this SO(Nc) theory in the UV to an IR theory with

gauge group U(1
2
Nc), adjoint matter Xlow, and Nf fundamental flavors ( ⊕ ).

Using the last column of (Appendix..3), the UV theory has aUV ≈ 1
2
N2
f âKPS(x).

The IR theory has aIR ≈ N2
f aKPS(

1
2
x), because the IR theory has Nc/2 colors. The

a-theorem conjecture thus requires 1
2
âKPS(x) > âKPS(

1
2
x), which can be verified

to be satisfied.

Since all of the theories in (Appendix..3) have the same R-charge R(X),

given by R(X) = (1−yKPS(x))/x, the minimal values xminAk
for the WAk

= TrXk+1

superpotential to be relevant is the same, for all of these theories1, as was obtained

in [16] for the SU(Nc) with adjoint theory. E.g. for k ≫ 1, all have xminAk
→

(
4−

√
3

6

)
k.

1The theories in the third through sixth line of (Appendix..3) must have k = odd, and that in the
last line of (Appendix..3) must have k + 1 = 0 (mod) 4.
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We can similarly analyze the magnetic duals of the above theories [36],

[53], [41]. For example, the theory in the last line of (Appendix..3), upon deforming

by superpotential WAk
= Tr(XX̃)

1
2
(k+1) (with k + 1 = 0 mod 4 here), was argued

to be dual to a similar theory, with gauge group SU(Ñc), with Ñc ≡ k(Nf+4)−Nc,

along with some additional gauge singlets and superpotential terms. We can use

a-maximization to analyze this dual SU(Ñc) theory for Wtree = 0, and thereby

determine when the various terms in the superpotential appearing in the duality

of [36] are relevant. In particular, we can determine x̃minAk
, the lower bound on

x̃ ≡ Ñc/Nf in order for the superpotential W̃Ak
to be relevant. As on the electric

side, in the limit of large Nc and Nf , the a-maximization analysis becomes identical

to that of [16] for the magnetic dual of the adjoint theory with superpotential WAk
:

the above Ñc becomes Ñc ≈ kNf − Nc, as in the adjoint theory, and every term

in the a-maximization analysis here maps to a corresponding term there. In this

limit, the values here of the x̃minAk
are the same as those obtained in [16] for the

adjoint theory.

Thus, at least in the Nc ≫ 1 and Nf ≫ 1 limit, all of the above theories

have exactly the same superconformal window as obtained in [16] for the SU(Nc)

theory with adjoint.

We also note that all of the other theories in [36], with product gauge

groups, also have the same superconformal window range of x, as long as we take

all the groups to have the same (large) rank, and take all to have the same (large)

number of fundamental flavors. This generalizes our observation of Sect. III.B,

that the SU(Nc) × SU(N ′
c) theory gives the superconformal window obtained in

[16] for the slice of parameter space Nc = N ′
c and Nf = N ′

f .

For example, consider the SU(M) × SO(N) × SO(N ′) duality discussed

in sect. 11 of [36]. In the parameter slice, M = N = N ′ ≡ Nc, and m = n =

n′ ≡ Nf , taking Nc ≫ 1 and Nf ≫ 1 large, holding fixed the ratio x ≡ Nc/Nf ,

we find that every term in the quantity atrial(y, x) = 3TrR3 − TrR equals twice a

corresponding term in the corresponding function of [16], atrial(y, x) = 2aKPS(y, x)
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(even including the contributions of the gauge invariant operators that hit the

unitarity bound). This is because there is a correspondence in this limit between

every field, with the same R-charges and twice as many copies for the SU×SO×SO
theory of [36] as compared with that of [16]. Since atrial = 2aKPS, it is maximized

by the same function, y = yKPS(x). The anomalous dimensions are thus the same

of those in [16] for this parameter slice. There is an analogous equality, up to the

same factor of 2, between the function atrial for the magnetic duals. It thus follows

that the duality of [36] for this product group has a non-empty superconformal

window, which reduces to the x interval of [16] in this 1d subspace of the full

parameter space of flavors and colors. Likewise, all the dualities of [36] have a

non-empty superconformal window, for any k, which reduces to the x interval of

[16] in a 1d subspace of the full parameter space of flavors and colors.
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