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Abstract. We present global fits of an effective field theory description of real, and complex
scalar dark matter candidates. We simultaneously take into account all possible dimension
6 operators consisting of dark matter bilinears and gauge invariant combinations of quark
and gluon fields. We derive constraints on the free model parameters for both the real (five
parameters) and complex (seven) scalar dark matter models obtained by combining Planck
data on the cosmic microwave background, direct detection limits from LUX, and indirect
detection limits from the Fermi Large Area Telescope. We find that for real scalars indirect
dark matter searches disfavour a dark matter particle mass below 100 GeV. For the complex
scalar dark matter particle current data have a limited impact due to the presence of operators
that lead to p-wave annihilation, and also do not contribute to the spin-independent scat-
tering cross-section. Although current data are not informative enough to strongly constrain
the theory parameter space, we demonstrate the power of our formalism to reconstruct the
theoretical parameters compatible with an actual dark matter detection, by assuming that
the excess of gamma rays observed by the Fermi Large Area Telescope towards the Galactic
centre is entirely due to dark matter annihilations. Please note that the excess can very well
be due to astrophysical sources such as millisecond pulsars. We find that scalar dark matter
interacting via effective field theory operators can in principle explain the Galactic centre
excess, but that such interpretation is in strong tension with the non-detection of gamma
rays from dwarf galaxies in the real scalar case. In the complex scalar case there is enough
freedom to relieve the tension.
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1 Introduction

Overwhelming observational evidence points to the existence of dark matter (DM) , from
Galactic up to cosmological scales [1–4] The most widely discussed and well-motivated par-
ticle DM candidates are weakly interacting massive particles (WIMP), which arise from some
of the most popular extensions of the SM, and naturally lead to the right DM abundance [4].

Well-motivated ultraviolet-complete particle-physics models accommodate good DM
particle candidates in their mass spectrum. This is the case for example of supersymmet-
ric theory with R-parity conservation [2] or Universal Extra Dimensions theories [5]. On the
other hand, one can adopt a model independent approach that makes minimal assumptions
on the DM particle and its couplings with SM particles. In the framework of Effective Field
Theories (EFT) for particle DM, DM would be the only additional degree of freedom beyond
the SM accessible by current experiments [6]. Therefore, the interactions of the DM particle
with SM particles are described by effective operators (of dimension 6 or higher). Those can
be predictive if the energy scale of the experiment under investigation is lower than the en-
ergy scale of the operator’s coefficients, while will break down once the energy scale of the
experiment is of the order of the mass of any particle mediating the DM – SM interactions.

Several detection strategies are applied in order to detect the elusive nature of DM.
Direct detection searches look for the recoil energy of nuclei scattered off by DM particles
in large, underground laboratories. Indirect detection searches aim to detect the final stable
products (like gamma rays, neutrinos or charged cosmic rays) of DM annihilation or decay
above the large astrophysical background. Finally, searches for DM at colliders are based on
the possibility to look for the production of new particles beyond the SM.

EFT have been shown to be able to capture the main features of generic WIMP candi-
dates in their range of validity and being a powerful framework to compare theory against
data. EFT operators have been studied extensively in context of various experiments, see for
example [7–9]. However, in these studies each operator was considered separately to draw
phenomenological implications and detectability prospects. In this work, we present the first
global analysis of all relevant EFT operators simultaneously in light of the latest constraints
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from indirect and direct searches for DM. We perform a Bayesian statistical scan of the
EFT parameter space, as described in section 2, by implementing all the latest experimen-
tal constraints, following an approach similar to that adopted for supersymmetric scenarios
in Refs. [10–17]. Previously, Balázs et al. [18] presented a similar work with a full set of
EFT operators. Our analysis goes beyond that of Ref. [18] in several respects: we perform a
more thorough statistical analysis that addresses the dependence on priors, and we perform
a comparison between profile likelihood and posterior distributions; we include the contribu-
tion from DM–gluon operators that was previously neglected while being potentially sizeable;
and we make use of the latest data from the Fermi Large Area Telescope (Fermi -LAT). We
do not include collider constraints from the LHC, as these do not rigorously exist for scalar
dark matter, and are typically subdominant to direct search constraints for the masses of
particular interest to us here [19, 20].

This work is organised as follows. In section 2 we describe the theory of EFT operators
we use. In section 3 we describe our statistical approach and computational method, in section
4 we present the results, and in section 5 we present our conclusions.

2 Effective field theory operators

We focus on the interactions of DM with quarks and gluons, since these interactions are
currently probed very efficiently by so-called ‘direct detection’ experiments, and by searches
for DM production at the LHC. It is relatively straightforward to extend our formalism
to include leptons (e.g. [21]), but we leave such refinements for future work. We further
make some well-motivated simplifying assumptions about the nature of the interactions. In
particular, we work in the limit in which the particles mediating the interactions between
the DM, quarks, and gluons are heavy compared to the energies of interest. In that limit, all
theories map into an EFT which encapsulates the interactions of the DM with the Standard
Model via a set of non-renormalizable interactions [6–8, 22, 23],

L ⊃
∑
i

λi Oi, (2.1)

where the coefficients λi have dimensions of inverse mass to the appropriate power such that
the over-all dimension of L remains four and the Oi are a set of operators consisting of a DM
bilinear contracted with a gauge invariant combination of quark and/or gluon fields.

As a starting point, we focus on the case in which the DM is a single species of (real or
complex) scalar particle that is a singlet under the electroweak symmetry, as this limits the
number of Lorentz structures describing its interactions1. We restrict our basis of operators
to those which are leading in the sense of being the least marginal at low energies and which
represent the leading structures consistent with the principle of minimal flavor violation
(MFV) [24], which dictates that their contributions to flavour-changing neutral currents
follows the same CKM structure of the SM itself, mitigating the otherwise extreme constraints
from the null searches for non-SM sources of flavour violation. After rotating the quarks into
the mass basis, this effectively results in the quark vector bilinears having a generation-
independent coupling whereas the scalar bilinears are weighted by the quark mass. The
resulting set of operators for real (R) and complex (C) DM are shown in Table 1. Also
indicated in the table are the operators which make velocity-unsuppressed contributions to

1Our formalism also applies rather simply to the case of fermionic DM, which requires more parameters
to describe its interactions. [7]
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Real scalar DM operators

Label Coefficient Operator σSI 〈σannv〉

R1 λ1 ∼ 1
2M2 mqχ

2q̄q X s-wave
R2 λ2 ∼ 1

2M2 imqχ
2q̄γ5q s-wave

R3 λ3 ∼ αs
4M2 χ2GµνG

µν X s-wave

R4 λ4 ∼ αs
4M2 iχ2GµνG̃

µν s-wave

Complex scalar DM operators

Label Coefficient Operator σSI 〈σannv〉

C1 λ1 ∼ 1
M2 mqχ

†χq̄q X s-wave
C2 λ2 ∼ 1

M2 imqχ
†χq̄γ5q s-wave

C3 λ3 ∼ 1
M2 χ†∂µχq̄γ

µq X p-wave
C4 λ4 ∼ 1

M2 χ†∂µχq̄γ
µγ5q p-wave

C5 λ5 ∼ αs
8M2 χ†χGµνG

µν X s-wave

C6 λ6 ∼ αs
8M2 iχ†χGµνG̃

µν s-wave

Table 1: The EFT operators for real and complex scalar DM interacting with quarks and
gluons. Also indicated is the mapping for each coefficient λi to the notation of [7], which op-
erators contributes to σSI, and if 〈σannv〉 is s-wave or p-wave dominated in the non-relativistic
limit.

spin-independent scattering with nuclei (σSI) or annihilation (〈σannv〉) in the non-relativistic
limit. Note that the possible annihilation channels for these models are the kinematically
available quarks and gluons. The branching ratios are determined by the relative strength of
the operators. For each individual operator the ratios to different flavours (when applicable)
are democratic except for the operators weighted by the quark mass. For these the branching
ratios to different quark flavours do have an m2

q dependence, i.e. the heaviest available is
favoured.

While typically an analysis will assume that one operator or another dominates, any
realistic UV model of scalar DM will involve several in concert with related coefficients (see
[23, 25–31] for examples). To truly represent the heavy-mediator limit in general, one must
allow for combinations of interactions. Combined with the DM mass, this defines a parameter
set of five quantities for real DM and seven for complex. This work represents the first truly
general analysis of the scalar singlet DM parameter space in the EFT limit.

It is also worth mentioning that the EFT description will fail to accurately describe
observables whose typical momentum transfer is large enough to be on the order of the
particles mediating the interaction. Particularly for large momentum transfer processes such
as at the LHC, this implies that limits derived in an EFT context do not apply to models in
which the mediator masses are . TeV [32, 33].

– 3 –



3 Statistical framework

We use highly efficient Bayesian methods to explore the models but we present our results
both in Bayesian and in frequentist terms. Our approach is based on Bayes’ theorem (see e.g.
[34])

p(Θ|D) =
p(D|Θ)p(Θ)

p(D)
, (3.1)

where D are the data and Θ are the model parameters of interest. Bayes’ theorem states that
the posterior probability distribution function (pdf) p(Θ|D) for the parameters is obtained
from the likelihood function p(D|Θ) ≡ L(Θ) and the prior pdf (or “prior” for short) p(Θ).
In this article we are primarily interested in parameter inference, therefore the Bayesian
evidence p(D) merely act as a normalisation constant, and will not be considered further in
the following analysis.

In order to study the constraints on a single parameter of interest θi, one can consider
either the one-dimensional marginal posterior, or the one-dimensional profile likelihood. The
marginal posterior is obtained from the full posterior distribution by integrating (marginal-
ising) over the unwanted parameters in the n-dimensional parameter space:

p(θi|D) =

∫
p(Θ|D)dθ1...dθi−1dθi+1...dθn. (3.2)

On the other hand, the profile likelihood function for θi, instead, is found by maximising
over the parameters that are not of interest:

L(θi) = max
θ1,...,θi−1,θi+1,...,θn

L(Θ). (3.3)

The extension of these concepts to more than one parameter is straightforward. The
profile likelihood and the marginal posterior are two different statistical quantities that may
lead to different conclusions about the parameter space of interest. The marginal posterior in-
tegrates over hidden parameter directions and therefore correctly accounts for volume effects;
it peaks at the region of highest posterior mass. The profile likelihood peaks at the region of
highest likelihood. It is oblivious to volume effects, but is an excellent quantity to find small
regions of high likelihood in parameter space. These two quantities do not necessarily lead to
the same conclusions for non-Gaussian likelihoods, and the maximum of information about
the model parameter space is obtained by studying both of these quantities. Therefore, in
the following we present results for both the marginalised Bayesian posterior and the profile
likelihood.

3.1 Experimental constraints and the likelihood function

The experimental constraints are implemented as a joint likelihood function L with each
component representing different contraints.

lnL = lnLΩχh2 + lnLDD + lnLCMB + lnLdSph + lnLGCE, (3.4)

where LΩχh2 is the part corresponding to measurements of the cosmological DM relic density,
LDD direct DM detection constraints and LCMB,LdSph,LGCE are from DM indirect detection
constraints. We discuss each component in turn:
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lnLΩχh2: We apply a Gaussian likelihood taken the Planck cosmic microwave background
(CMB) data constraint on the DM relic abundance. We use as central value the result from
Planck temperature and lensing data Ωχh

2 = 0.1186± 0.0031 [35] with a (fixed) theoretical
uncertainty, τ = 0.012, to account for the numerical uncertainties entering in the calculation
of the relic density.

lnLDD: For DM direct detection we use upper limits from the LUX experiment [36], as
implemented in the LUXCalc code [37]. We adopt hadronic matrix elements determined by
lattice QCD [38, 39]. We use a local DM density of ρdm = 0.4 GeV cm−3.

lnLCMB: DM annihilating into ionising particles during the cosmic dark ages will broaden
the last scattering surface of the CMB. This would modify the CMB anisotropies as measured
by the Planck satellite. As Planck has not measure any such effect [40] we can use the data
put limits on our models. We use the likelihood as defined by [41] using the updated analysis
from [42].

lnLdSph: As limits from indirect searches for DM, we focus here on limits from gamma ray
observations with the Fermi -LAT. As the arguably most robust limits in indirect searches,
we adopt constraints that were obtained from the non-observation of a gamma ray signal
from a dozen of dwarf spheroidal galaxies. We use here results from [43], which are based
on a combined analysis of six years of Fermi -LAT data, and take into account uncertainties
in the DM content of each dwarf spheroidal. The results of that analysis were presented
as tabulated likelihood functions, which allows us to apply them to models with arbitrary
gamma ray spectra.

lnLGCE: Given the excitement about a possible gamma ray DM signal from the Galactic
centre (see [44–46] and references therein), we also include a likelihood that evaluates the
compatibility between this gamma ray excess and a DM annihilation signal as predicted by
our models. To this end, we use the results from [47], which account for systematic correlated
uncertainties related to the subtraction of Galactic diffuse foregrounds along the line-of-sight
towards the Galactic centre.

Both the dwarf spheroidal and the Galactic centre likelihoods we have used are conve-
niently packaged in the gamLike2 code.

3.2 Priors

As we are using Bayesian inference we need to provide prior probability distributions for our
parameters. For the DM mass parameter mχ we consider the typical range mχ ∈ [1, 1000]GeV
advocated for WIMPs, and we adopt a prior uniform on the log of the quantity, which reflecs
a state of indifference with regards to the mass scale.

Given a mediator particle with mass M with couplings g1, g2 to the DM and SM particles
respectively, we can write the operator coefficients λi as

λi = ki
g1g2

M2
, (3.5)

where ki is an operator specific constant. In this way, conditions on the underlying physics
can then translate onto the coefficients. The theory has to be perturbative g1g2 ≤ (4π)2, and,
for the EFT description to be valid, we, at least, need M > 2mχ. These conditions imply

2C. Weniger et al., to be released soon.
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λi < ki
4π2

m2
χ

. (3.6)

The bound’s strong dependence on mχ makes the operator coefficients very hard to scan
efficiently. We could define hyperparameters to eliminate the mass dependence, but together
with the unavoidable lower bound, this would introduce a prior preference towards higher
DM masses. Instead we use the fact that, as we shall see later, the constraint from producing
the correct relic density is much more constraining than the theoretical bound. We therefore
simply impose λi < 1. There is no physical motivation for a lower bound, so we conservatively
adopt 10−20, since if λi = 10−20 then the operators Oi do not contribute significantly to any
observable.

In order to assess the prior dependence of the posterior, we consider here two different
kind of priors to scan over λi. We first consider a prior uniform on the log, i.e. log10 λi ∈
[−20, 0]. Then, we define two hyperparameters: a common energy scale to all operators A, and
the coefficients fi such that λi = fiA. For A we use a prior uniform on log10A ∈ [−20, 0]. For
fi we use a symmetric Dirichlet prior between 0 and 1. The fi determine if the operator Oi
contributes or not; we impose

∑
fi = 1 to ensure that at least one operator contributes, and

that the energy scale is actually determined only by A. The symmetric Dirichlet distributions
are parametrised by a single scalar α which determines how the fi’s are distributed. Larger
values lead all fi to be similar, while smaller values tend to select a few large fi. For the prior
we use we have α = 0.1. Later when we refer to these two priors as the Log and Dirichlet
prior respectively.

3.3 Scanning methodology

To map out the posterior and the likelihood we have developed the EFTBayeS package in which
we implemented the Lagrangians of our models in FeynRules [48]. This is then interfaced
with a modified version of MicrOMEGAs v2.4 [49] to compute the relic abundance of DM and
direct and indirect detection rates. The code LUXCalc v1.0.1 [37] has been used to compute
the LUX experiment likelihood and PPPC 4 DM ID [50, 51] tables to calculate the photon
spectrum of DM annihilation products. We have used tabulated values of feff from [42]. feff

is the efficiency for DM annihilations to deposit energy into the gas medium in the cosmic
dark ages and is used in the CMB constraint.

For the exploration of the EFT models, the EFTBayeS code uses MultiNest v2.18 [52, 53]
nested sampling algorithm. MultiNest is an extremely efficient scanning algorithm that can
reduce the number of likelihood evaluations required for an accurate mapping of the posterior
pdf by up to two orders of magnitude with respect to conventional MCMC methods. This
Bayesian algorithm, originally designed to compute the model likelihood and to accurately
map out the posterior, is also able to reliably evaluate the profile likelihood, given appropriate
MultiNest settings, as demonstrated in [12].
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4 Results

In this section we present the impact of aforementioned experimental data on the parameter
space of the real and the complex scalar DM candidates. We first show the profile likelihood
and posteriors when applying the relic density determination and all current experimental
limits. We then show what happens when we also assume that the Galactic centre excess
is entirely due to the annihilation of our DM candidates. This will serve as an example to
demonstrate the constraining power of an astroparticle detection, when combined with the
relic density constraint.

4.1 Impact of Planck, LUX, and Fermi-LAT

In figure 1 we show the two 2D marginalised posterior and the 2D profile likelihood for both
the real and complex scalar DM candidate in the planes of mχ and either 〈σannv〉 or σSI. This
is after including all experimental limits in the likelihood, but excluding the Galactic centre
excess. In order to illustrate the dependence of the results on priors, we show the posterior
distribution under the Log and the Dirichlet priors as defined in section 3.2.

We begin with discussing the features of in the 〈σannv〉 panels. We see that the value
of the annihilation cross-section is quite well-constrained, due to the fact that it is directly
related to the relic density, which is a well measured quantity. For the complex scalar candi-
date we have two regions in the posteriors, because the C3 and the C4 operators are p-wave
rather than s-wave as the rest of the operators are (all real scalar operators are s-wave.) In
the lower region it is one of the p-wave operators that dominates, while in the upper region
it is one of the s-wave operators. By a dominating operator we mean that the corresponding
coefficient λi is large enough to provide the correct amount of relic density by itself. The
differences we see between the posteriors and the profile likelihood is due to the difference
between marginalisation (i.e. integration) and profiling (i.e. maximation).

In the complex scalar case, the values of the annihilation cross-section between the p-
wave region and the s-wave region still have a large profile likelihood as there is at least one
combination of input parameters for which the operator coefficients give rise to the correct
relic density. However, as there are not very many of these possible combinations in the input
parameter space, they have a negligible effect on the posteriors.

In the real scalar case the most noticeable difference between the profile likelihood and
the posteriors are the downward spikes in 〈σannv〉 when the DM mass is close to a quark
mass. This is a kinematical effect that enhances the cross-section in the early universe when
new annihilation channels open up [54]. In this case the new channels are additional quarks
in the R1/C1, R2/C2 operators. This effect isn’t present in today’s colder universe which is
why we get the downward spikes in 〈σannv〉 today. These are tiny, i.e. highly tuned, regions
in the parameter spaces which is why we only see them in the profile likelihood.

The bottom of the two spikes at mχ ≈ 1.3 GeV and 4.7 GeV (i.e. charm and bottom
quark masses) avoid all limits. In fact the only term in the likelihood that has any impact
for mχ < 5 GeV is the CMB term, whereas the constraining power of the LUX experiment
vanishes as the recoil energies of these low mass DM candidates fall below the detection
threshold. As for Fermi -LAT dSph results, they should have an impact on these region,
but the lowest photon energy (Eγ) considered in the likelihood published by Fermi -LAT and
implement here, is 500 MeV, and for mχ . 5 GeV the spectra actually peaks below Eγ = 500
MeV. For mχ = 5 GeV 75% of the photons has an energy less than 500 MeV, for mχ = 1
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GeV that number increases to 99%.3 We strongly suspect that these low mass regions would
be disfavoured in an analysis extended to lower Eγ .

This limitation in the dSph likelihood also explains the existence of slightly favoured
regions seen in the complex scalar profile likelihood maps for mχ and 〈σannv〉 in figure 3
below. There is a slight upward fluctuation in the low energy bins of the dSph likelihood, this
does not matter for larger mχ as their spectra is fitted against a large set of bins. However,
as stated above, for low mχ much of the spectra is below the lowest energy bin of 500 MeV
and the importance of the slight upward fluctuation is enhanced.

In contrast with the annihilation cross-section the spin-independent scattering cross-
section is only bounded from above by the relic density. This is because not all operators
contribute to σSI, which means that as long as one of the non-contributing operators’ coeffi-
cient is large enough to provide the correct relic density, the coefficients of the contributing
operators are free to be arbitrarily low. This means that the profile likelihood region actu-
ally extends down to arbitrarily low numbers. This freedom to put the operator coefficients
at arbitrary low values is also the reason why the two posteriors differ, i.e. the tails of the
distributions depend on the choice of priors for the operator coefficients.

This is easier to understand if we look at the 1D posteriors and profile likelihood in figure
2 and 3 for real and complex scalar respectively. In the panels for the operator coefficient λi
we clearly see that the tails are prior dependent. The profile likelihood is in fact flat for low
λi and following Bayes’ theorem (3.1), when the likelihood is constant, then the posterior
simply traces the prior. We note however that the position of the peaks does not depend on
the choice of prior (although the height does, since it depends on the size of the tails through
the normalisation of the posterior) and they tell us that the most probable solution is when
a single operator provides all the DM relic density by themselves.

For the real scalar candidate low masses are effectively disfavoured by Planck, Fermi -
LAT and LUX with the exception of the small regions around 1.3 GeV and 4.7 GeV as
discussed earlier. In the complex scalar case the mass is much less constrained due to the
presence of p-wave operators.

4.2 GCE as example of additional measurement

In figure 4 and 5 we show the 1D profile likelihood and posteriors for real and complex scalar
DM candidate when we include an actual measurement in the likelihood, in addition to the
relic density. The measurement we consider is the Galactic centre excess because it is an
actual well-studied measurement, and still compatible with a DM interpretation. Although
a more standard astrophysical interpretation, e.g. in terms of millisecond pulsars [55–60],
is possible or even probable, we assume here that the excess is fully explained by our DM
candidates.

The impact of including this measurement in the likelihood is drastic. For the real scalar
case only the R2 operator is the possible solution with a mχ ≈ 40–60 GeV, whereas the R1
and R3 operators are disfavoured because they contribute to the spin-independent scattering
cross-section and are therefore disfavoured by LUX; and the R4 operator favours slightly
lower masses which are excluded by the Fermi -LAT dSph analysis.

In fact, even the R2 operator is in tension with the limit from the dSph analysis, but
it is the least disfavoured operator. If we look closer at the best fit point from the scan in
table 2 we see that it is a good fit to the excess. However, if we compare with the best fit

3 These numbers do not significantly depend on the annihilation channel in question. The spectra are quite
similar for all quarks and gluons.
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Best fit points for the real scalar DM case

mχ [GeV] 〈σannv〉 [cm3s−1] σSI [pb] χ2
GCE (p-value) χ2

dSph χ2
Ωh2

w/ GCE 49.0 1.93× 10−26 8.52× 10−11 27.74 (0.15) 71.6 0.2
w/o GCE 173.3 2.47× 10−28 2.22× 10−10 – 66.7 1.5× 10−6

Best fit points for the complex scalar DM case

w/ GCE 42.6 7.37× 10−27 8.30× 10−11 28.2 (0.14) 67.56 0.003
w/o GCE 2.76 4.84× 10−28 4.82× 10−4 – 65.78 0.0008

Table 2: Best fit points (i.e. minimal χ2) for both the real and complex scalar DM candidates
with and without fitting to the Galactic centre excess. The p-values are calculated only using
χ2 contribution from the Galactic centre excess, under the fairly bold assumption that the
test statistic is chi-squared distributed with 24− 3 = 21 degrees of freedom.

point when not fitting the excess we see that the other data, mainly the dSph, contributes
a ∆χ2 = 5.1 which is sizeable. In summary, if one believes the Galactic centre excess is due
to DM annihilation, the tension with the non-detection of gamma rays from dwarf galaxies
would disfavour the real scalar model is excluded as the dark matter candidate.

In the case of the complex scalar candidate, the two additional operators, C3 and C4, are
p-wave operators and thus cannot explain the excess in themselves. They do, however, relax
the connection between the relic density and the annihilation cross-section which somewhat
relieves the tension from the dSph limit. If we look at the best fit point for the complex case
in table 2 we again see that it is a good fit to the excess. Comparing with the best fit point
without the excess we see a ∆χ2 = 1.78.

However, the freedom in 〈σannv〉 also means we can increase the Galactic centre J-factor
in order to lower the annihilation cross-section and still fit the excess. The tension between
the dSph and the Galactic centre excess can therefore be relieved.
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Figure 1: Confidence region and credibility regions for real and complex scalar DM candi-
dates in observable vs mass planes. In the mχ, 〈σannv〉 panels we show the 68% contours while
in the mχ, σSI panels we show the 95% contours. This is done for clarity of presentation; the
posteriors in certain regions are fairly flat which leads to very noisy contours. The experi-
mental constraints applied are the relic density of DM, limit on spin-independent scattering
cross-section from LUX, and annihilation cross-section limits from both the Planck CMB
measurement, and the stacked dSph analysis from Fermi -LAT. The different posteriors are
using different priors; the Log prior and the Dirichlet prior (α = 0.1) as defined in section
3.2.
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Figure 2: 1D posterior distributions and profile likelihood of parameters and observables
for real scalar DM. The experimental constraints considered are the relic density of DM,
limit on spin-independent scattering cross-section from LUX, and annihilation cross-section
limits from both the Planck CMB measurement, and the stacked dSph analysis from Fermi -
LAT. The different posteriors are using different priors; the Log prior and the Dirichlet prior
(α = 0.1) as defined in section 3.2. Posteriors and likelihoods are normalised to their peaks.
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Figure 3: 1D posterior distributions and profile likelihood of parameters and observables
for complex scalar DM. The experimental constraints considered are the relic density of DM,
limit on spin-independent scattering cross-section from LUX, and annihilation cross-section
limits from both the Planck CMB measurement, and the stacked dSph analysis from Fermi -
LAT. The different posteriors are using different priors; the Log prior and the Dirichlet prior
(α = 0.1) as defined in section 3.2. Posteriors and likelihoods are normalised to their peaks.
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Figure 4: 1D posterior distributions and profile likelihood of parameters and observables
for real scalar DM when assuming it explains the Galactic centre excess. The additional
experimental constraints considered are the relic density of DM, limit on spin-independent
scattering cross-section from LUX, and annihilation cross-section limits from both the Planck
CMB measurement, and the stacked dSph analysis from Fermi -LAT. The different posteriors
are using different priors; the Log prior and the Dirichlet prior (α = 0.1) as defined in section
3.2. Posteriors and likelihoods are normalised to their peaks.
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Figure 5: 1D posterior distributions and profile likelihood of parameters and observables
for complex scalar DM when assuming it explains the Galactic centre excess. The additional
experimental constraints considered are the relic density of DM, limit on spin-independent
scattering cross-section from LUX, and annihilation cross-section limits from both the Planck
CMB measurement, and the stacked dSph analysis from Fermi -LAT. The different posteriors
are using different priors; the Log prior and the Dirichlet prior (α = 0.1) as defined in section
3.2. Posteriors and likelihoods are normalised to their peaks.
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5 Conclusions

In this article we have presented global scans of combined dark matter–parton EFT oper-
ators for both real and complex scalar dark matter, including constraints from cosmology,
indirect, and direct detection experiments. We have produced posterior distributions and
profile likelihood maps of the model parameter spaces, and thus provided a state of the art,
comprehensive, and – more importantly – coherent picture of scalar dark matter.

From these distributions we see that, of all current experimental results, the relic density
has the greatest impact on the model parameters, as it is an actual measurement and not a
limit. All the operator coefficients combined must be just right to provide the correct relic
density. The most common configuration, and therefore the most probable, is when a single
operator dominates and the others are weak. In contrast with the relic density the null results
from LUX and Fermi -LAT dSph analysis have a somewhat limited impact on the operator
coefficients. Instead, they do have effect on the dark matter mass, strongly disfavouring dark
matter masses below 100 GeV.

Small regions survive where the dark matter mass is around the charm or the bottom
quark mass due to resonance-like effects in the relic density calculation. These regions could
very well be excluded by the Fermi -LAT dSph data if the publicly available likelihood from
Fermi -LAT would be extended to photon energies below 0.5 GeV.

We also considered the impact of including in our analysis the Galactic centre excess
as signal of dark matter. Although standard astrophysical sources might explain the excess,
such as unresolved millisecond pulsars, we showed the effect of including it in our likelihood
to illustrate the effect of a measurement on the model parameters. The results are dramatic
– a specific mass (40–60 GeV) and operator (R2/C2) are preferred to fit the excess. This
region of the parameter space is however in tension with the absence of excess gamma rays
from the Milky Way dwarf spheroidals in the real scalar case. So if one believe the Galactic
centre excess is due to dark matter, then the quite general real scalar DM model would be
excluded. The complex scalar candidate is able to avoid the tension by allowing for lower
annihilation cross-section.

Our toolchain is model-independent which means that, in principle, extending these
types of combined EFT models – adding non-parton operators, or fermionic dark matter –
or looking a more complete models such as simplified models is as easy as writing down the
Lagrangian. The main caveat being that adding more degrees of freedom without additional
experimental constraints is inadvisable until more informative data become available.
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