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Abstract

Context: Both type 1 diabetes (T1D) and type 2 diabetes (T2D) have significant genetic contributions to risk and understanding their overlap can
offer clinical insight.

Objective: We examined whether a T1D polygenic score (PS) was associated with a diagnosis of T2D in the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) consortium.

Methods: We constructed a T1D PS using 79 known single nucleotide polymorphisms associated with T1D risk. We analyzed 13 792 T2D cases
and 14 169 controls from CHARGE cohorts to determine the association between the T1D PS and T2D prevalence. We validated findings in an
independent sample of 2256 T2D cases and 27 052 controls from the Mass General Brigham Biobank (MGB Biobank). As secondary analyses in
5228 T2D cases from CHARGE, we used multivariable regression models to assess the association of the T1D PS with clinical outcomes
associated with T1D.

Results: The T1D PS was not associated with T2D both in CHARGE (P=.15) and in the MGB Biobank (P=.87). The partitioned human leukocyte
antigens only PS was associated with T2D in CHARGE (OR 1.02 per 1 SD increase in PS, 95% CI 1.01-1.03, P=.006) but not in the MGB Biobank.
The T1D PS was weakly associated with insulin use (OR 1.007, 95% CI 1.001-1.012, P=.03) in CHARGE T2D cases but not with other outcomes.

Conclusion: In large biobank samples, a common variant PS for T1D was not consistently associated with prevalent T2D. However, possible
heterogeneity in T2D cannot be ruled out and future studies are needed do subphenotyping.

Key Words: type 1 diabetes, type 2 diabetes, genetics, polygenic score

Abbreviations: BMI, body mass index; CHS, Cardiovascular Health Study; FHS, Framingham Heart Study; GWAS, genome-wide association study; HOMA,
Homeostasis Model Assessment; LADA, latent autoimmune diabetes; MESA, Multi-Ethnic Study of Atherosclerosis; PS, polygenic score; SNP, single
nucleotide polymorphism; T1D, type 1 diabetes; T2D, type 2 diabetes; WHI, Women's Health Initiative.
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It has become increasingly clear that type 1 diabetes (T1D)
and type 2 diabetes (T2D) cannot be accurately distinguished
on the basis of clinical features alone [1]. This is particularly
true for adolescents and young adults and it is thought that
up to 15% of young adults with diabetes are wrongly classi-
fied and incorrectly treated [2]. Obesity is now widespread
across all age groups [3] and can no longer be used to distin-
guish T1D and T2D, as people with T1D are equally suscep-
tible to the same environmental and genetic risk factors that
lead to obesity. Additionally, autoimmune diabetes can occur
at any age, even at older ages [4, 5]. Accurate classification of
the type of diabetes is essential, as management approaches
and risk of comorbidities and complications differ between
the 2 diseases [6-8]. Failure to accurately diagnose T1D could
lead to life-threatening diabetic ketoacidosis, and inaccurate
diagnosis of T2D could lead to unnecessary treatment with in-
sulin when other more appropriate options may be available.

However, while there is overlap in clinical features, it remains
unclear if there is any overlap in the genetic predisposition for de-
veloping the two forms of diabetes. T1D has a significant herit-
able risk estimated to be between 40% and 60% based on
familial and twin studies with approximately 50% of this herit-
ability attributable to the HLA region and loci from other parts
of the genome making smaller additional contributions to dis-
ease risk [9-13]. Similarly, T2D has a polygenic inheritance pat-
tern and a heritability estimate between 30% and 70% with
hundreds of variants that have been reported to be associated
with disease risk based on genome-wide association studies
(GWASs) and exome sequencing studies, but with each individ-
ual variant only contributing a small increase in disease risk [14,
15]. In terms of genetic overlap, individual loci such as INS, TH,
CTRB1, CENPW, HLA-DRA [15], GLIS3 [16], MTNRI1B,
HNF1A [17],and POUSF1-TCF19 [15] been reported to be as-
sociated with both T1D and T2D in large-scale GWAS.
However, whether there is genetic overlap between T1D and
T2D or pleiotropy at these loci remains largely unknown.

Identifying any genetic overlap between T1D and T2D has the
potential to offer new biological and clinical insight through a
better understanding of diabetes mellitus heterogeneity and can
help predict clinical courses. Our main objective was to evaluate
whether a genetic predisposition for developing T1D, modeled
using a comprehensive T1D polygenic score (PS) composed of
genetic variants within and outside the HLA region, was asso-
ciated with prevalent T2D in older adults from the Cohorts for
Heart and Aging Research in Genomic Epidemiology
(CHARGE) consortium. We validated CHARGE association
findings in the clinically based Mass General Brigham (MGB)
Biobank, and in secondary analyses, tested associations of the
T1D PS with T2D clinical characteristics.

Materials and Methods

We examined a T1D PS in adults with a clinical diagnosis of
T2D from the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) consortium and vali-
dated our findings in the MGB Biobank.

Study Populations
The cohorts for heart and aging research in genomic
epidemiology (CHARGE) consortium

We included participants with T2D from the following
CHARGE cohorts: Framingham Heart Study (FHS) [18-20],
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Cardiovascular Health Study (CHS) [21], Multi-Ethnic Study
of Atherosclerosis (MESA) [22], and the Women’s Health
Initiative (WHI) [23]. Analysis was restricted to participants
of European ancestry. Cases were selected based on the pres-
ence of any of the following criteria: age of onset of diabetes
>45 years when information was available to minimize con-
tamination with T1D in younger adults, and at least 1 of the fol-
lowing based on data availability in the individual cohorts:
fasting plasma glucose >7 mmol/L (126 mg/dL), random glu-
cose or 2-hour glucose on oral glucose tolerance test
>11.1 mmol/L (200 mg/dL), HbA1C >6.5%, or the use of an
oral medication to treat diabetes. Data from 14 169 controls
were used in the analysis, and controls had to satisfy the follow-
ing criteria based on available phenotypes in the individual co-
horts: no self-report or physician diagnosis of diabetes, fasting
plasma glucose <5.6 mmol/L (100 mg/dL), 2-hour glucose on
oral glucose tolerance test <7.8 mmol/L/dl (140 mg/dL), ran-
dom glucose <11.1 mmol/L (200 mg/dL), HbA1C <5.7%, ab-
sence of pancreatic autoantibodies, and could not be on any
medication used to treat diabetes. Institutional Review Board
and appropriate oversight committees approved the study in
each participating cohort and all participants provided written
informed consent including consent for use of genetic
information.

Mass General Brigham Biobank

The MGB Biobank (formerly Partners HealthCare Biobank)
[24] maintains blood and DNA samples from more than 60
000 consented patients seen at MGB hospitals, including
Massachusetts General Hospital, Brigham and Women’s
Hospital, McLean Hospital, and Spaulding Rehabilitation
Hospital, all in the greater Boston area (USA). Details on the re-
cruitment process have been previously described [24]. MGB
Biobank participants provided written informed consent for
the use of their samples and data in broad-based research.
T2D status was defined based on “curated phenotypes” devel-
oped by the Biobank Portal team using both structured and un-
structured electronic medical record data and clinical,
computational, and statistical methods. Natural Language
Processing was used to extract data from narrative text.
Specifically, the MGB Biobank uses the eMERGE phenotyping
algorithm [25], which is a machine learning-based algorithm us-
ing the Phe CAP method [26], a high-throughput semisupervised
phenotyping pipeline. Chart reviews by disease experts helped
identify features and variables associated with particular pheno-
types and were also used to validate results of the algorithms.
The process produced robust phenotype algorithms that were
evaluated using metrics such as sensitivity, the proportion of
true positives correctly identified as such, and positive predictive
value, the proportion of individuals classified correctly as cases
out of all those classified as cases by the algorithm [27]. Cases
were individuals determined by the “curated disease™ algorithm
employed above to have T2D with positive predictive value
>99% and age >45 years. Controls were individuals determined
by the “curated disease” algorithm employed above to have no
history of T2D with negative predictive value of 99%.

Clinical Measurements
CHARGE consortium

Exposure. The T1D PS is the exposure in all the analysis.
Genotyping, imputation, and quality control were done
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independently by each cohort and are described elsewhere
(Table S1 [28]). An imputation r [2] threshold of >0.80 was
used for all the cohorts.

Outcomes. (1) The primary outcome was prevalent T2D vs
non-T2D, defined using standard criteria by each cohort using
available data (Table S1 [28]). (2) The association between the
T1D PS and quantitative traits was evaluated as secondary ana-
lyses. The methods used to collect phenotypes in each cohort
are described elsewhere (Table S1 [28]). Participants on medi-
cations to treat diabetes were excluded from the HOMA-B
and HOMA-IR measurements. CHS did not participate in the
quantitative trait analysis because the phenotypes were not con-
sistently available at the time of diabetes onset.

MGB Biobank

We validated our results using the T1D PS in 2256 T2D cases
and 27 052 controls from the MGB Biobank.

Exposure. The T1D PS was the primary exposure. Genomic
data were generated with the Illumina Multi-Ethnic
Genotyping Array and genotypes were phased with SHAPEIT2
[29]. Imputation was done with the Michigan Imputation server,
using the Haplotype Reference Consortium [30] as the reference
panel. We excluded variants with an imputation r [2] <0.5 and a
minor allele frequency <0.005.

Outcomes. The primary outcome was T2D status as defined in
the inclusion criteria. Quantitative trait analyses were not
done in the MGB Biobank.

Genotyping, Imputation and PS Construction
Details on genotyping, quality control, and imputation for the
individual cohorts are provided elsewhere (Table S1 [28]).
The PS was calculated as the sum of the number of T1D
risk-raising alleles (0, 1, or 2) per distinct single nucleotide
polymorphism (SNP), weighted by the effect size of each allele
using weights from published literature [10]. The SNPs used in
the T1D PS were robustly associated variants from GWASs [9]
and included a total of 79 independent SNPs, 27 mapped to
the HLA regions and 52 to the non-HLA regions. The com-
plete list of SNPs is included elsewhere (Table S2 [28]). The
PS was developed using data from 6481 cases and 9247 con-
trols from the Type 1 Diabetes Genetics Consortium [receiver
operating characteristic area under the curve (ROC AUC)
0.927 for T1D discrimination] and is well validated (ROC
AUC 0.921 in the UK Biobank and 0.73 in the TEDDY study)
[31, 32]. If a SNP was not directly genotyped in the individual
cohort, an imputed SNP of good imputation quality (imput-
ation r [2] >0.8) was used. If a directly genotyped or imputed
SNPs are not available, the SNP was omitted, and the GRS
was scaled appropriately.

Statistical Analysis Including Type 1 Error Rate for
the Study

For the analyses of the effect of the PS on clinical outcomes, a lin-
ear regression model or linear mixed effects model (in samples
with related individuals) were used for continuous outcomes. A
logistic regression model with robust standard error estimates us-
ing generalized estimating equations for related samples was used
for the analyses of binary outcomes and for the T1D PS associ-
ation analysis in cases and controls. Covariates included age
and sex when applicable. Analyses were conducted separately
in each cohort followed by meta-analyses of effect estimates using

3
Table 1. Characteristics of participants with T2D
Mean (SD) FHS CHS MESA ‘WHI
n 817 588 195 12192
Age, years 61.0 (9.5) 72.7 (5.4) 65.5(9.7) 66.3 (6.6)
% Female 44.7 58.2 41.5 100
BMI, kg/m2 31.7 (6.2) 27.9 (4.6) 31.1(5.7) 28.4 (5.8)
HbA1C, % 6.4 (1.0) N/A 6.9 (1.3) N/A
PS, total 95.7 (5.7) 99.6 (5.4) 97.0 (5.4) 95.6 (5.4)
PS, HLA 33.3(2.7) 35.3(2.4) 33.8 (2.6) 33.7(2.6)
PS, Non-HLA 62.1 (4.7) 61.9 (5.7) 61.3(3.2) 60.1 (4.2)

Abbreviations: BMI, body mass index; CHS, Cardiovascular Health Study;
FHS, Framingham Heart Study; MESA, Multi-Ethnic Study of
Atherosclerosis; N/A, not available; PS, polygenic score; T2D, type 2
diabetes; WHI, Women’s Health Initiative.

an inverse variance fixed effect approach after conducting a test
for heterogeneity and confirming that it was not significant. For
the primary outcome of association of T1D PS with T2D status,
the P value threshold for statistical significance was set at .05. The
quantitative trait analyses were considered as secondary explora-
tory analyses.

Results

A total of 13792 T2D cases were included in the analysis of
the association of the T1D PS with T2D status with 817 cases
from FHS, 588 cases from CHS, 195 cases from MESA, and
12162 cases from WHI. The mean age of the cases was
65.9 years (SD 9.9), 94% were female and the mean body
mass index (BMI) was 30.1 (SD 5.9) kg/m?. The characteris-
tics of the cases by individual cohort are shown in Table 1.
A total of 14 169 controls from the various cohorts were in-
cluded in the analyses. The T1D PS was not significantly asso-
ciated with T2D case status (OR 1.003 per 1 SD increase in PS,
95% CI 0.999-1.006, P =.15). The forest plot showing asso-
ciation of the T1D PS with T2D in the individual cohorts and
in the meta-analyses is shown in Fig. 1. In an exploratory ana-
lysis, we examined the associations of the HLA and non-HLA
components of the PS separately with T2D and found an
association with the partitioned HLA PS (HLA PS OR 1.02,
95% CI 1.01-1.03, P=.01; non-HLA PS OR 1.00, 95% CI
0.99-1.01, P=.45). We note that the association between
the partitioned HLA PS and T2D was observed in a single co-
hort and did not replicate in MGB Biobank (Table $4 [28]).

To further validate our findings, we also examined the asso-
ciation of the T1D PS with T2D status in 2256 T2D cases >45
years and 27 052 controls from the MGB Biobank. Mean age
of the cases was 6.3 years (SD 16.7), 52.4% were female,
mean BMI was 28.3 (SD 6.5) kg/m?, and mean HbA1C %
was 5.9 (SD 1.1). After accounting for age and sex, the T1D
PS was not associated with T2D in MGB Biobank (OR
0.999, 95% CI1 0.991-1.006, P =.87).

In secondary analyses, we also evaluated the association of
the T1D PS with metabolic-related quantitative traits in 5228
T2D cases in whom the data were available (Table 2). The
T1D PS was significantly associated with the use of insulin
(OR 1.007,95% CI1.001-1.012, P = .03) and was not signifi-
cantly associated with other clinical characteristics. The T1D
PS was not associated with T2D age of onset, BMI, HbA1C,
HOMA-B, or HOMA-IR after excluding participants on med-
ications for T2D.
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Garnet 0.004 [-0.005, 0.012]
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WHIMS —t—i 0.004 [-0.006, 0.015]
ONCOchip .—-—. 0.004 [-0.008, 0.016)
MESA : -0.033 [-0.063, -0.003]
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Figure 1. Forest plot showing association of the T1D PS with T2D in the individual cohorts and in the meta-analyses. Garnet, HIPFX, LLS, MOPMAP,
WHIMS, and ONCOCHIP are Women's Health Initiative (WHI) substudies; MESA, Multi-Ethnic Study of Atherosclerosis; FHS, Framingham Heart Study;
CHS, Cardiovascular Health Study; PartnerBB, Mass General Brigham Biobank.

Table 2. Association of the T1D PS with clinical outcomes of interest

Sample Parameter Standard P
size estimate error value
Age of onset of 5312 0.005 0.015 .74
diabetes
In BMI 5289 -0.001 0.0004 16
HbA1C 774 —-0.003 0.008 .65
In HOMA-IR 781 0.003 0.005 49
In HOMA-B 780 0.007 0.005 15
Insulin use 4479 0.007 0.003 .03
Any medication 4479 0.001 0.004 .73
use

Abbreviations: BMI, body mass index; HOMA, Homeostasis Model
Assessment.

Discussion

We evaluated a comprehensive 79 SNP T1D PS representing
both the HLA and non-HLA regions and showed that there
was no association between the T1D PS and T2D status in
more 13000 cases in the CHARGE consortium and over
2000 cases in the MGB Biobank. We then examined the con-
tribution of the partitioned HLA and non-HLA PS and found
an association between the partitioned HLA PS and T2D in
CHARGE that did not replicate in MGB Biobank. Upon
examining the effect estimates of individual cohorts, we noted
that the association was only significant in a single cohort.
Inclusion of T2D cases in the T2D group (contamination)
could have affected results in this cohort, but we cannot ex-
clude the possibility of genetic overlap between T1D and an
autoimmune subtype of diabetes among T2D cases.
Pancreatic autoantibodies, which we lacked in our cohorts,
would have allowed us to clarify whether the association
was driven by latent autoimmune diabetes of adults
(LADA). We also recognize that the CHARGE sample was
larger and thus, had more power to detect subtle associations.
Future investigations with larger replication samples are

needed to clarify the genetic overlap, if any, between T1D
and subtypes of T2D. In secondary analyses, we showed
that the total T1D PS was associated with insulin use in partic-
ipants with T2D but not with other quantitative traits that
have been considered characteristic of T1D.

A potential biological overlap between T1D and T2D had
been hypothesized because impairment in insulin secretion is
a key factor in the pathogenesis of both diseases. However,
despite common characteristics in the clinical presentation,
the biological mechanisms underlying T1D and T2D patho-
genesis remain distinct. Previous studies have found associa-
tions between T1D and known T2D loci including in the
melatonin receptor 1B (MTNR1B) and HNF1A [17], and re-
sults from a multiancestry GWAS for T2D showed that
POUSF1-TCF19 and HLA-DRA within the major histocom-
patibility complex was associated with T2D in addition to
INS, TH, CTRB1, and CENPW [15] (Table S3 [28]).
Similarly, GLIS3 was identified as a susceptibility risk locus
for both T1D and T2D in GWAS and decreased expression
of GLIS3 may contribute to both forms of diabetes by favor-
ing B-cell apoptosis [16]. These loci appear to impact T1D and
T2D risk through different mechanisms and do not indicate
genetic overlap between T1D and T2D. A condition with pos-
sible genetic overlap is LADA. As patients with LADA present
in adulthood and can have slower deterioration in their gly-
cemia than T1D, they can be misdiagnosed with T2D early
in their disease course and treated with oral agents before de-
veloping insulin dependency over time. A GWAS of 2634
adults with LADA and 5497 controls showed that while gen-
etic signals were principally shared with T1D with attenuated
potency of key HLA haplotypes, there were positive genetic
correlations with both T1D and T2D [33]. Whether this rep-
resents true genetic overlap between distinct pathophysio-
logical entities or contamination of T1D or T2D cases in the
LADA dataset remains unclear. However, it is possible that
pleiotropic variants that are associated with both T1D and
T2D contribute to unique diabetes genetic subsets as there
could be multiple pathways toward dysglycemia in T2D that
should be explored in future work. However, our study shows
that there is not a consistent effect across all genetic loci.
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T2D PSs have not been shown to significantly improve clin-
ical models for disease prediction [34, 35]. However, a T1D
PS has a better predictive ability for T1D due to the strong ef-
fect sizes of the SNPs tagging the HLA region [36]. In a study
by Oram et al, a 30-SNP T1D PS was evaluated in young
adults with T1D and T2D diagnosed between 20 and 40 years
of age in the Wellcome Trust Case-Control Consortium. Their
results showed that a high T1D PS was indicative of T1D and
a low T1D PS was indicative of T2D, with significant overlap
between the distributions [36]. Our study has differences from
Oram et al study, particularly in the method of case ascertain-
ment. People in the WTCCC cohort were selected if T2D was
diagnosed at an age greater than 25 years but less than 75
years. In CHARGE, we used a more stringent inclusion cri-
teria of age greater than 45 years to reduce contamination
of T2D cases with T1D. A study in the UK Biobank showed
that 40% of autoimmune diabetes can occur after the age of
30 years [37]. Oram et al also used the absence of the GAD
-65 antibody as an inclusion criterion. However, GAD -65
positivity is present in only 70% to 80% of T1D cases and
participants could have been positive for the other autoanti-
bodies, including insulinoma antigen 2 (IA2), islet cell 512,
and Zinc transporter -8 antibodies [37, 38]. Overall, it ap-
pears that late-onset T1D or LADA can masquerade as T2D
in adulthood but strong evidence for association of T1D gen-
etic risk with T2D is lacking.

In secondary analyses, our results showed that the T1D PS
was associated with insulin use in participants with T2D but
not with other clinical characteristics. This may represent con-
tamination of true T1D or LADA cases among the T2D cases
ascertained in our study. It is also possible that individuals
with a higher genetic burden for T1D have a greater degree
of insulin deficiency, resulting in the need for treatment with
insulin earlier in the disease. However, this result should be in-
terpreted with caution as the remaining analyses did not show
significant associations.

A major strength of this study is the use of a comprehen-
sive 79 SNP score that improves upon earlier T1D PSs with
fewer SNPs [36]. This is particularly pertinent for evaluation
of the risk conferred in the HLA region because of the com-
plexity of the region. The impact of the HLA region on T1D
risk has been localized to HLA-DRB1 position 57,
HLA-DRB1 position 13, and HLA-DRB1 position 71.
Together, these 3 positions explain 90% of the risk in the
DRB1-DQA1-DQB1 locus [12]. We recognize that, while
non-HLA regions have some measurable association with
T1D in large-scale GWAS, their contribution to T1D risk
is smaller than the HLA region; still, our study confirms
that common variant polygenic risk for T1D that considers
both HLA and non-HLA regions do not contribute to T2D
risk. An additional strength of the study is our independent
validation of the results in the MGB Biobank. Our study
also had limitations. Analyses were limited to participants
of European ancestry. This was done as discovery of the
T1D SNPs was performed in populations of European ances-
try and therefore the PS may not accurately measure T1D
risk in other populations. Contamination of T2D cases
with T1D cases was possible as we did not have pancreatic
autoantibodies in all cohorts. While this may explain the as-
sociation of the T1D PS with insulin use in a single cohort,
contamination in our other analyses would have biased our
results away from the null. Given that we report null results,
our interpretation of the results remains unchanged.

Additionally, the lack of association between the T1D PS
and T2D was confirmed in the MGB Biobank, a patient co-
hort that was likely more susceptible to contamination.
Another demographic detail to note is that 94% of our co-
hort was female as the majority of cases came from the
WHI cohort. However, we verified our results in the MGB
Biobank which has a more balanced distribution of sex.
Another potential consideration is the performance of our
PS compared with recent scores that had considered multi-
plicative interaction effects in the major histocompatibility
complex [35]. In the FHS cohort with 817 participants, we
found that <2% of participants carried the high-risk
DR-DQ haplotype combinations. Therefore, we would un-
likely detect a strong association of the T1D PS with T2D
even when accounting for these interactions. To determine
whether our study was able to detect a modest association
between the T1D PS and T2D, we performed a power calcu-
lation and showed that, in a study with a minimum of 13
791 T2D cases and an equivalent number of controls, using
2-sided o =.05, we had at least 80% power to detect an odds
ratio of 1.034 per 1 SD increase in T1D PS. Therefore, if an
association were to be detected with larger sample sizes, the
effect on T2D would likely be extremely small and of ques-
tionable clinical relevance. However, it is still possible that
certain subtypes of T2D do have genetic overlap with T1D
but were underrepresented in our study.

In summary, in large population cohorts and biobank sam-
ples, common variant genetic risk for T1D was not consistent-
ly associated with prevalent T2D. Future studies with detailed
clinical measures and in particular pancreatic auto-antibody
status, are needed to further investigate the heterogeneity
and possible sub-phenotypes of T2D.
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