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Abstract

Targeted Learning for Estimating Mediation and Moderation in Toxic Mixtures

by

David McCoy

Doctor of Philosophy in Environmental Health Sciences

University of California, Berkeley

Professor Martyn Smith, Chair

Understanding how exposures from our environment, diet, and lifestyle interact with unique
genetic, physiologic, and epigenetic profiles to impact health is a main objective of envi-
ronmental health sciences. However, causal inference is a formidable challenge in many
environmental health contexts such as mixed exposures, multiple mediating pathways, het-
erogeneity in exposure effects, and interactions in high-dimensional data. Existing causal
inference methodologies in these settings make too many simplifying assumptions that do
not represent complex real-world patterns. Commonly used statistical methods based on
general linear models (GLMs) fail to untangle the exposures truly affecting health due to
multi-collinearity, high-dimensional interactions, and complex joint distributions. Today’s
scientific endeavors in environmental health require adoption of new non-parametric methods
using flexible machine learning for causal inference of mixed exposures, mixture-mediation,
and heterogeneity of exposure effects. Causal inference in these arenas can answer critical
questions such as: What mixture of metal exposures during pregnancy influence maternal
and child health? At what levels are these impacts most severe? How do oxidative stress and
inflammatory biomarkers mediate action mechanisms of these exposure interactions? How do
we both identify parts of a mixture that are important and estimate the expected outcome if
this part of the mixture changed? Are there certain subpopulations that are more susceptible
to changes in parts of a mixture?

Unlike many setting such as medicine where the treatment/exposure is known a priori and
propensity score-based methodologies can be deployed with relative ease, the issue with
mixtures is that, not only are many measured on the continuous scale (where propensity score
methodologies break down) but that there are many of these exposures. We do not have the
expected outcome under every combination of multiple continuous exposures. Even if this
were possible, still some interpretable representation of this gradient is necessary. As such,
subspaces of the exposure or specific variable subsets of the mixture that are impactful on the
outcome must be identified and are not known a priori. We must use the data to both identify
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these mixture regions and derive estimates given exposure to this region. This requires data
adaptive target parameters, or the mapping of a mixture into a lower dimensional exposure
in one part of the data and estimation of a target parameter given this exposure is done
in another part of the data. Data adaptive target parameters therefore provide a unifying
framework for causal inference mixture problems, each non/semi-parametric method presented
leverages data adaptive target parameters to first find areas of the mixture space that are
most impactful and then estimate a target parameter given that space. This dissertation is
divided into five chapters, each aiming to estimate causal inference of a mixture under the
larger theory of data adaptive target parameters which also extends to decomposing effects
into mediating pathways, estimates of heterogeneity, and interaction.

Statistical advancement in estimating mixtures is key to furthering the progress of environ-
mental health science to understand the health impacts of environmental exposures. Current
statistical methodology lacks the ability to realistically capture the complexity of mixed
exposures in an interpretable and informative summary measure. The question then becomes
what is the mapping of multiple continuous, multinomial, and/or binary exposures into an
interpretable summary measure and what estimation given that summary measure are we
interested in? The different statistical aims provided represent different ways of answering
this question. Each can be thought of as a statistical machine where the analyst simply
inputs the data for exposures, covariates and an outcome and the rest is automatic. From
the data the impactful areas of the mixture are identified using the best fitting model chosen
from an ensemble and a target parameter is estimated with proper estimates of variance for
this mixture subregion. In this way, rather than relying on human choice of modeling which
introduces bias, results are data-driven.

Chapter 1 considers the problem of both identifying exposure variables and thresholds of
these variables in a mixture and estimating the expected outcome if individuals were all
exposed to this exposure combination compared to if they were not. To meet this challenge,
the best fitting decision tree from an ensemble is treated as a data-adaptive parameter. Using
the subregions of the mixture delineated by the tree which best explains an outcome, we
then develop an estimator which compares the expected outcome if all individuals were
exposed to this region compared to unexposed while flexibly adjusting for covariates. We
apply this novel approach to the NIEHS synthetic mixtures data which allows us to compare
interactions identified and estimated in the mixture to ground-truth interactions built into
the data-generating system. Furthermore, we apply our method to National Health and
Nutrition Examination Survey (NHANES) data to understand what metal mixtures, if
any, contribute to shorter leukocyte telomere length. Telomeres are sensitive to various
environmental factors, including exposure to metals and metal mixtures. Several studies
have explored the relationship between metal exposures and telomere length, particularly in
occupational and environmental settings.

With both synthetic and real-world data we compare our findings to other commonly used
mixture methods. Our goal is to show that when using other methods to test for interactions,
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the combinatorial problem explodes, reducing power. The analyst may be interested in
testing the effects of different possible interactions in the mixture, the question becomes what
degree of interaction? What variables are included in the interaction? Does the definition
of the interaction even make sense? Quickly it becomes clear that comparing results to our
approach is difficult because other methods require user choice of model parameters which
may induce bias. Our approach automatically identifies the correct interactions built into the
data generating process whereas methods like quantile g-computation require users to select
interaction, which are not known. Therefore these interactions are missed and estimates are
incorrect.

Chapter 2 examines new semi-parametric definitions for interaction and effect modification
that exist outside the scope of linear modeling. Consider the analyst is interested in assessing
for interactions using a GLM; the question becomes what do the beta coefficients in front
of this interaction term mean if the model itself is inherently misspecified? We need a
definition of interaction and effect modification that can be estimated from a large class
of non/semi-parametric functions which best estimate nonlinearities in a mixture. Even
with these definitions, we need a method that both identifies variable sets used in the best
fitting estimator, selected from a large class of flexible functions, and then applies these
interaction and effect modification target parameters to these variable sets. Here we again
rely on the general framework of data-adaptive target parameters. We expand work done in
stochastic interventions to create definitions for interaction and effect modification and use
the same sample splitting techniques used in Chapter 1 to identify variable sets in one part
of the data and apply our target parameters in another. Again, we apply our this method
to NHANES data to investigate the interactions in persistent organic pollutants (POPs)
on leukocyte telomere length. We focus on POPs because this dataset is publicly available
and has been used in mixtures workshops. This allows us to compare our findings to those
published on this dataset. Although this example and the NIEHS synthetic data focus on
interaction Chapter 2 also investigates heterogeneity of treatment/exposure effects. For
instance, our causal target parameter in Chapter 1 is the average regional exposure effect
or the average difference in outcomes if all individuals were exposed to a subspace of the
mixture compared to if no individuals were exposed to this subspace. Likewise, in Chapter
2, for the marginal case, we are interested in the expected disease outcome if say exposure
to certain metals decreased by 1 nanogram; we then compare this expected outcome to the
outcome under observed metal levels (not decreased). In both situations we are averaging
across our sample but what if certain subpopulations exist whose impacts are much greater?
After a target parameter, which approaches the truth at a certain rate, is determined, how do
we find regions in the covariate-exposure space where these impacts vary the most? Here, we
are interested in identifying populations that are vulnerable to a mixed exposure. Chapter
2 also describes a novel approach for finding types of people who are differentially impacted
by chemical exposures.

Chapter 3 extends the data-adaptive work for variable set identification and stochastic
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interventions developed in Chapter 2 used for interaction and effect modification discovery
and estimation. Chapter 3 describes how, using the same framework, mediating pathways
can be discovered and estimated. Mediation analysis in causal inference has traditionally
focused on one binary exposure using deterministic interventions, decomposing the average
treatment effect into direct and indirect effects through one mediator. As discussed, in more
realistic exposure settings, individuals are exposed to multiple continuous valued exposures
that have effects on health outcomes through different mediating pathways. The exposures
that impact health outcomes and their possibly mediating pathways are unknown a priori
in most instances. Even if the analyst wants to test an exposure-mediator pathway based
on domain knowledge, this may not be the strongest pathway in the underlying data. To
address this, we propose a methodological framework that both identifies exposure-mediation
pathways and delivers unbiased estimates for direct (not through a mediator) and indirect
(through a mediator) effects given intervention on exposure subsets. Our approach follows
the same framework described in Chapter 2 but estimates direct and indirect effects in the
presence of high-dimensional continuous, binary, and categorical exposures and mediators.
To uncover the exposure-mediation pathways, we propose a cross-validation procedure where
in the path identification portion of the data, sequential semi-parametric regressions, one
for mediators given exposures and covariates, and another for the outcome given exposure,
mediators, and covariates are applied to find pathways. In the estimation portion of the
data, we apply stochastic interventions to exposures with targeted learning to create efficient
estimators based on flexible regression techniques. Our efficient estimator is asymptotically
linear under a condition requiring n1/4-consistency of certain regression functions.

Chapter 4 discusses the importance of maintained open source software which makes new
methodologies available and reproducible for analysts. We discuss the two software packages
which house the proposed methods. The first, called CVtreeMLE, stands for cross-validated
decision trees with targeted maximum likelihood estimation, and makes the statistical causal
inference parameters in Chapter 1 available to researchers. The second, SuperNOVA, which
stands for Analysis of Variance using Super Learner, makes the statistical causal inference
parameters in Chapter 2 and Chapter 3 available. Chapter 5 concludes with a discussion
on the future of statistical research using data-adaptive target parameters.
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Chapter 1

CVtreeMLE

Exposure to a mixture of chemicals, including drugs, pollutants, and nutrients, is often found
in real-world exposure or treatment situations. Within the exposure space, there are arbitrary
regions that maximize the mean difference in covariate adjusted disease outcomes. An ideal
statistical estimator would identify regions maximizing this difference while delivering unbiased
estimations of the relevant effect, benefiting public health efforts aiming to understand the
combination of pollutant or drug doses that have the strongest effects on disease outcomes.
The estimator should take as input a vector of exposures A, baseline covariates W , and
outcome Y . It should output a region in the exposure space that optimizes the maximum
mean difference and an unbiased estimate of this average regional-exposure effect (ARE).
Rectangular regions, which can be expressed as a series of thresholds, are preferred as they
facilitate policy implications by helping policymakers decide on appropriate combinations of
exposure thresholds. Non-parametric methods like decision trees are valuable for evaluating
combined exposures by identifying partitions in the joint-exposure space. Our proposed
methodology leverages decision trees, K-fold cross-validation, and targeted learning to estimate
the causal effects of a data-adaptively determined mixture region. The approach uses a
parameter-generating sample in each fold to obtain the region and estimators for the statistical
target parameter, then applies the region indicator and estimators to the estimation sample,
where the ARE is estimated. Targeted learning is utilized to update initial estimates of the
ARE in the estimation sample, optimizing bias and variance towards the target parameter.
This results in a plug-in estimator with an asymptotically normal distribution and minimum
variance, allowing the derivation of confidence intervals. Our approach uses the full data
without loss of power due to sample splitting. The open-source R package CVtreeMLE
implements this methodology, enabling non-parametric estimation of the causal effects of
mixed exposures. The approach produces interpretable and asymptotically efficient results,
assisting researchers in discovering significant mixtures of exposure and providing robust
statistical inference for their impact.



CHAPTER 1. CVTREEMLE 2

1.1 Introduction
In most environmental epidemiology studies, researchers are interested in how a joint exposure
affects an outcome. This is because, in most real world exposure settings, an individual
is exposed to a multitude of chemicals concurrently or, a mixed exposure. Individuals are
exposed to a range of multi-pollutant chemical exposures from the environment including air
pollution, endocrine disrupting chemicals, pesticides, and heavy metals. Because many of
these chemicals may affect the same underlying biological pathway which lead to a disease
state, the toxicity of these chemicals can be modified by simultaneous or sequential exposure
to multiple agents. In these mixed exposure settings, the joint impact of the mixture on an
outcome may not be equal to the additive effects of each individual agent. Mixed exposures
may have impacts that are greater than expected given the sum of individual exposures or
effects may be less than additive expectations if certain exposures antagonize the affects
of others. [1, 49, 45, 69] Likewise, the effects of a mixed exposure may be different for
subpopulations of individuals based on environmental stressors, genetic, and psychosocial
factors that may modify the impact of a mixed exposure. [91, 53]

Causal inference of mixed exposures has been limited by reliance on parametric models
and, in most cases, by researchers considering only one exposure at a time, usually estimated
as a coefficient in a generalized linear regression model (GLM). This independent assessment
of exposures poorly estimates the joint impact of a collection of the same exposures in a
realistic exposure setting. Given that most researchers simply add individual effects to
estimate the joint impact of an exposure, it is almost certain that the current evidence of
the total impact environmental toxicants have on chronic disease is incorrectly estimated.
The impact of using linear modeling is not limited to just potential bias: in the case where
linearity does not hold, it’s not even clear what is being estimated.

The limitation in effective estimation of the joint effects of mixed exposure is (in-part)
due to the lack of robust statistical methods. There has been some method development for
estimation of joint effects of mixed exposures, such as Weighted Quantile Sum Regression [50],
Bayesian Mixture Modeling [18], and Bayesian Kernel Machine Regression [8]. However, these
mixture methods have strong assumptions built into them, including directional homogeneity
(e.g. all mixtures having a positive effect), linear/additive assumptions and/or require
information priors. Many methods suffer from human bias due to choice of priors or poor
model fit. More flexible models remain more or less a black-box and describe the mixture
through a series of plots rather than with an interpretable summary statistic [8]. Given that
the National Institute for Environmental Health Sciences (NIEHS) has included the study of
mixtures as a key goal in its 2018-2023 strategic plan [70], it is imperative to develop new
statistical methods for mixtures that are less biased, rely less on human input, use machine
learning (ML) to model complex interactions, and are designed to return an interpretable
parameter of interest.

Decision trees are a useful tool for outcome prediction based on exposures because they
are fast, nonparametric (i.e. can discover and model interaction effects), and interpretable [9].
However, it is not immediately clear how to adapt outcome prediction methods to inference
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about the effect of some kind of hypothetical intervention on the mixture of exposures-
especially because in these settings we don’t have a particular intervention in mind.

Rather than leveraging decision trees for a simple prediction model, we introduce a target
parameter on top of the prediction model, which is the average outcome within a fixed region
of the exposure space. When an ensemble of decision trees is applied to an exposure mixture,
this coincides with a leaf in the best fitting decision tree. By cross-estimating the average
outcome given exposure to this region which maximizes the outcome difference we are able to
build an estimator that is asymptotically unbiased with the smallest variance for our causal
parameter of interest. Previous work, in the most naive approach, confidence intervals (CI)
and hypothesis testing of decision trees is done by constructing a (1− α)× 100% confidence
interval for a node mean ȳt as ȳt ± z1−α/2(

st√
nt

) where ȳt is the node mean and st is the
standard deviation estimates in the node. Of course, these CI intervals tend to be overly
optimistic because 1. decision trees are adaptive and greedy algorithms, meaning that they
have a tendency to overfit and 2. the target parameter, in this case the node average, is
estimated on the same data by which the node was created. Because of this the estimated
CIs are too narrow. The best approach is to use an independent test set to derive inference
for the expected outcome in each leaf. However, this approach is costly if additional data is
gathered or power is greatly reduced if sample-splitting is done. Sampling splitting is done in
previous work for causal inference of decision trees using so-called "honest estimation" for
estimation of heterogeneous causal effects of a binary treatment. This approach [2] uses one
part of the data for constructing the partition nodes and and and another for estimating
effects within leaves of the partition. Our proposed approach follows a similar sample-splitting
technique where one part of the data is used to determine the partition nodes and the other
is used to estimate the parameter of interest; however, we extend this technique to K-fold
cross-validation where we rotate through the full data. Additionally, rather than estimating
heterogenous treatment effects, we are interested in mapping a set of exposures that are of a
variety of data types (continuous, binary, multinomial) into a set of partitioning rules using
the best fitting decision tree from which we can estimate the average regional-exposure effect,
or the expected outcome difference if all individuals were exposed to an exposure region
compared to if no individuals were exposed to this region.

In most research scenarios, the analyst is interested in causal inference for an a priori
specified treatment or exposure. However, in the evaluation of a mixed exposure it is not
known what mixture components, levels of these components and combinations of these
component levels contribute to the most to a change in the outcome. In the ideal scenario, the
analyst has knowledge of the full, multidimensional dose-response curve E[Y (A1, A2, ...Ak)]
where A are the exposures and Y is the outcome. However, even in this case, it is difficult
to estimate and/or interpret this curve. Estimation is hard because 1. we need unrealistic
assumptions to get identifiability for the full curve and 2. the curve isn’t pathwise differentiable
which means there aren’t any robust methods to build confidence intervals. Therefore, a
sensible approach is to instead categorize the joint exposure and compare averages between
categories as one would for a binary exposure. This approach is helpful because we can
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define interpretable categories like (A1 > a1)&(A2 < a2) where ai are specific values in A
(vs complement of this space) which are of clear interest to policymakers. Identification
assumptions are also more transparent in this setting. However, we don’t know a priori
what the right categorization of the exposure space are given some objective function. We
have to use the data to tell us what regions are determined given a predefined objective
function. In our case, we want a categorization that shows a maximal mean difference in
outcomes. Regression trees are a nice way to do this while respecting the fact that we want
interpretable rules like the above. The idea is to fit a kind of decision tree to figure out what
thresholds in the exposure space produce a maximal exposure effect. As discussed, the result
can be biased if we use the same data to define the thresholds and to estimate the effects in
each leaf. We solve that problem by splitting the data, doing threshold estimation in one
part and regional-exposure effect estimation (given the fixed thresholds) in the other. We
can even redo the splits in a round-robin fashion (K-fold cross-validation) to efficiently use
all of the data. Lastly, once we have thresholds, we want to get the best possible inference
for the effect. We could always do a difference in outcome means between the samples in
each category/region, but that estimate would be 1. biased by confounding and 2. have a
large confidence interval because we haven’t used covariates to soak up residual variance.
Our approach is thus to use a doubly-robust efficient estimator (TMLE) that simultaneously
addresses both these problems.

Building on prior work related to data-adaptive parameters [44] and cross-validated
targeted minimum loss-based estimation (CV-TMLE) [121], our method, called CVtreeMLE,
is a novel approach for estimating the joint impact of a mixed exposure by using CV-TMLE
which guarantees consistency, efficiency, and multiple robustness despite using highly flexible
learners (ensemble machine learning) to estimate a data-adaptive parameter. CVtreeMLE
summarizes the effect of a joint exposure on the outcome of interest by first doing an iterative
backfitting procedure, similar to general additive models [35], to fit f(A), a Super Learner
[59] of decision trees, and h(W ), an unrestricted Super Learner, in a semi-parametric model;
E(Y |A,W ) = f(A) + h(W ), where A is a vector of exposures and W is a vector of covariates.
In many public health settings, the analyst is first interested in a parsimonious set of thresholds
focusing on the exposure space that best explains some outcome across the whole population
rather partitions that also include baseline covariates. This additive model approach allows
us to identify partitioning nodes in the exposure space while flexibly adjusting for covariates.
In this way, we can data-adaptively find the best fitting decision tree model which has the
lowest cross-validated model error while flexibly adjusting for covariates. This procedure is
done to find partitions in the mixture space which allows for an interpretable mixture contrast
parameter, "What is the expected difference in outcomes if all individuals were exposed to
this region of the mixed exposure vs. if no individuals were exposed?". This approach easily
extends to marginal case (partitions on individual exposures) as well. Our approach for
integrating decision trees as a data-adaptive parameter with cross-validated targeted minimum
loss-based estimation (CV-TMLE) allows for flexible machine learning estimators to be used
to estimate nuisance parameter functionals while preserving desirable asymptotic properties
of our target parameter. We provide implementations of this methodology in our free and
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open source software CVtreeMLE package [63], for the R language and environment for
statistical computing [R Core Team, 2022]. The CVtreeMLE software package has undergone
a rigorous peer review process by the Journal of Open Source Software, which validates the
robust implementation of our innovative methodology for mixed exposure analysis.

This manuscript is organized as follows, in Section 2.1 we give a background of semi-
parametric methodology, in section 2.2 we discuss the ARE target parameter for a fixed
exposure region and in 2.3 the assumptions necessary for our statistical estimate to have a
causal interpretation. In section 3 we discuss estimation and inference of the ARE for a fixed
region. In section 4 we discuss data-adaptively determining the region which maximizes the
W-controlled mean outcome difference. In section 5 we show how this requires cross-estimation
which builds from 2.2 for a fixed region ARE. In section 5 we expand this to cross-estimation
to k-fold CV and discuss methods for pooling estimates across the folds. Lastly, in section
5.3, because we may have different data-adaptively identified regions across the CV folds,
we discuss the union rule which pairs with the pooled estimates. In section 6 we discuss
simulations with two and three exposures and show our estimator is asymptotically unbiased
with a normally sampling distribution. In section 7 we apply CVtreeMLE to the NIEHS
mixtures workshop data and identify interactions built into the synthetic data. In section 7.1
we compare CVtreeMLE to the popular quantile sum g-computation method. In section 7.2
we apply CVtreeMLE to NHANES data to determine if there is association between mixed
metals and leukocyte telomere length. We selected telomere length as our focus due to its
predictive value for cellular aging, longevity, and age-related disease risk. Environmental
exposures, including metals, are known to significantly contribute to the variation in telomere
length among individuals throughout their lifespan. Given the guanine-rich structure of
telomeres, they are particularly susceptible to the detrimental effects of oxidative stress.
Therefore, our study aims to investigate the association between a mixture of metal exposure
levels, capable of inducing oxidative stress, and telomere length. Section 8 describes our
CVtreeMLE software. We end with a brief discussion of the CVtreeMLE method in Section
9.

1.2 The Estimation Problem

Setup and Notation

Our setting is an observational study with baseline covariates (W ∈ Rp), multiple exposures
(A ∈ Rm), and a single-timepoint outcome (Y ). Let O = (W,A, Y ) denote the observable
data. We presume that there exists a potential outcome function Y (a) (i.e. Y (a) is a
random variable for each value of a) that generates the outcome that would have obtained
for each observation had exposure been forced to the value A = a. These potential outcomes
are unobserved but the observed outcome Y corresponds to the potential outcome for the
observed value A of the exposure, i.e. Y = Y (A). Let E[Y (a)|W = w] = µ(a, w) denote the
causal dose-response curve for observations with covariates w so that E[µ(a,W )] represents
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the average outcome we would observe if we forced treatment to a for all observations.
We use P0 to denote the data-generating distribution. That is, each sample from P0 results

in a different realization of the data and if sampled many times we would eventually learn the
true P0 distribution. We assume our O1, O2, ..., On are iid draws of O = (W,A, Y ) ∼ P0. We
decompose the joint density as pY,A,W (y, a, w) = pY |A,W (y, a, w)pA|W (a, w)pW (w) and make
no assumptions about the forms of these densities.

Compare this to to many methods which assume a parametric model which is one where
each probability distribution P ∈ M can be uniquely described with a finite-dimensional
set of parameters. Many methods assume O to be identically distributed normal random
variables, which means that the model can be described by the mean and standard deviation.
Models like GLMs assume normal-linear relationships and assume Y = Xβ+N (µ, σ2). Thus,
methods for mixtures that use this approach have three parameters: the slope β, mean µ and
standard deviation σ of the normally-distributed random noise. This model assumes that the
true relationship between X and conditional mean of Y is additive and linear and that the
conditional distribution of Y given X is normal with a standard deviation that is fixed and
doesn’t depend on X. Of course, these are very strict assumptions especially in the case of
mixtures where exposures from a common source may be highly correlated, may interact on
the outcome in a non-additive way, and may have non-normal distributions. As such, simply
adding coefficients attached to variables in a mixture to estimate the overall joint effect may
be biased.

Our statistical target parameter, Ψ(P0), is defined as a mapping from the statistical model,
M, to the parameter space (i.e., a real number) R. That is, Ψ: M→ R. We can think of
this as, if Ψ were given the true distribution P0 it would provide us with our true estimand
of interest.

We can think of our observed data (O1 . . . On) as a (random) probability distribution
Pn that places probability mass 1/n at each observation Oi. Our goal is to obtain a good
approximation of the estimand Ψ, thus we need an estimator, which is an a-priori specified
algorithm that is defined as a mapping from the set of possible empirical distributions, Pn to
the parameter space. More concretely, the estimator is a function that takes as input the
observed data, a realization of Pn, and gives as output a value in the parameter space, which
is the estimate, Ψ̂(Pn). Since the estimator Ψ̂ is a function of the empirical distribution Pn,
the estimator itself is a random variable with a sampling distribution. So, if we repeat the
experiment of drawing n observations we would every time end up with a different realization
of our estimate. We would like an estimator that is provably unbiased relative to the true
(unknown) target parameter and which has the smallest possible sampling variance so that
our estimation error is as small as it can be on average.

Defining the Differential Effect Given Regional Exposure

In problems with binary treatment A ∈ 0, 1, the standard counterfactual model defines
potential outcomes Y (0) and Y (1), describing what would happen to each individual had
they been forced onto either treatment. The estimand of interest is most often the average
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treatment effect E[Y (1)]− E[Y (0)]. In our setting, A ∈ Rm is continuous, and we must thus
define a potential outcome Y (A = a), where A is a region determined by applying a function
to the observed A. The assignment of observations to the (in our case, RuleFit)-defined
regions (A = 1 or Ac = 1) is not deterministic, as it depends on the learned rules, which
are subject to randomness. Thus, the intervention we are considering is not a deterministic
assignment of individuals to regions but rather an assignment based on a set of rules learned
from the data. As such, our intervention is considered a stochastic intervention.

Under the causal assumption that A is conditionally randomized, we say that the parameter
is identified by:

E[E[Y |A ∈ A,W ]− E[Y |A ∈ Ac,W ]],

which is the mean outcome under a stochastic intervention on A that keeps A given W ,
beyond that it enforces A to fall in the set A. Because we know that E[Yg∗A ] (the expectation
of Y where A is under stochastic intervention) is identified by:

EW

∫
a

E[Y |A = a,W ]g ∗A (a|W )da,

and this equals

EW

∫
a

E[Y |A = a,W ]P (A = a|W,A ∈ A)da = EW [E[Y |A ∈ A,W ]]

by iterative conditional expectation, this proves our parameter can be estimated by
the observed data under certain assumptions (discussed next). We use A = 0 and Ac
interchangeably moving forward.

Identification and Causal Assumptions

Our target parameter is defined on the causal data-generating process, so it remains to show
that we can define it only in reference to observable quantities under certain assumptions.
Standard conditioning arguments show that

ψ = E[E[Y |A,W ]− E[Y |Ac,W ]]

identifies the causal effect as long as the following assumptions hold:

1. Conditional Randomization: A ⊥ Y (a) | W for all a

2. Positivity: P (A = 1|W ) > 0 for all w

Our identification result shows that we can get at the causal ARE by estimating an
observable “ATE” under certain conditions. Our goal is now to show how to efficiently estimate
the observable ATE without imposing any additional assumptions (e.g. linearity, normality,
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etc.). While our identification assumptions may not always hold in all applications, we can
at least eliminate all model misspecification bias and minimize random variation. Once
we’ve established how to estimate the ARE for a fixed region, we’ll turn our attention to the
problem of finding a good region A and lastly how to do that without incurring selection
bias in estimating the ARE for that region.

1.3 Estimating ARE with TMLE
In the previous sections we established that the causal ARE is equivalent to the observable
ATE E[E[Y |A = 1,W ]−E[Y |A = 0,W ]] under standard identifying assumptions. Therefore
to estimate it all we need to do is 1) create a new binary random variable Ai = 1A(Ai) and 2)
proceed as if we were estimating the observable ATE from the observational data structure
(Y,A,W ).

There is an extensive literature on estimating the ATEs from observational data [72,
110, 90]. Using split-sample machine learning we can construct estimators that are provably
unbiased (modulo bias from any violations of identifying assumptions), have the minimum
possible sampling variance, and which are “doubly robust” [121, 125]. Augmented inverse
propensity-weighting (AIPW) and targeted maximum likelihood (TMLE) are two established
estimation approaches that accomplish these goals. Although they are usually very similar in
practice, TMLE is often better for smaller samples [61, 93, 57, 56] and should generally be
preferred. In what follows we use the TMLE estimator of the ATE, which we briefly describe
here.

The TMLE estimator is inspired by the fact that if we knew the true conditional mean
Q(A,W ) = E[Y |A,W ] we could estimate the ATE with the empirical average 1

n

∑
iQ(1,Wi)−

Q(0,Wi). Of course, we do not know Q, but we can estimate it by regressing the outcome
Y onto the exposure A and covariates W . However a detailed mathematical analysis shows
that we incur bias if we use our estimate Q̂ instead of the truth. This bias might decrease as
sample size increases, but it dominates relative to random variability, making it impossible
to establish p-values or confidence intervals. TMLE solves this problem by computing a
correction to the regression model Q̂ that removes the bias. In other words, it “targets” the
estimate Q̂ to the parameter of interest (here the ATE). The process is as follows:

1. Use cross-validated ensembles of machine learning algorithms (a “super learner”) to
generate estimates of the conditional means of treatment: ĝ(A = a,W ) ≈ P (A = a|W )
(i.e. propensity score) and outcome: Q̂(A,W ) ≈ E[Y |A,W ]

2. Regress Y (scaled to [0, 1]) onto the “clever covariate” Hi = 11(Ai)
ĝ(1,Wi)

− 10(Ai)
ĝ(0,Wi)

using a
logistic regression with a fixed offset term logit(Q̂(A, X)). The (rescaled) output of
this is our targeted regression model Q̂∗

3. Compute the plug-in estimate using the targeted model: ψ̂ = 1
n

∑
i Q̂
∗(1,Wi)−Q̂∗(0,Wi)
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An estimated standard error for ψ̂ is given by

σ̂2 =
1

n2

∑
i

[(
11(Ai)
ĝ(1,Wi)

− 10(Ai)
ĝ(0,Wi)

)(
Yi − Q̂∗(Ai,Wi)

)
+

(
Q̂∗(1,Wi)− Q̂∗(0,Wi)

)
− ψ̂

]2
with corresponding 95% confidence interval ψ̂ ± 1.96σ̂.
Explaining why the targeting step takes the form of a logistic regression and how the

estimated standard error is derived are beyond the scope of this work. [58, 57, 56] offer
explanations targeted to audiences with varying levels of mathematical sophistication.

To obtain these estimates we need only to specify the ensemble of machine learning
algorithms used to estimate the propensity and initial outcome regressions ĝ and Q̂. The
theoretical guarantees hold as long as a sufficiently rich library is chosen.

For estimating the ARE, we must also specify the region A so that we can compute our
binary “exposure” variable. The issue of course is that we have been treating A as a known
region, whereas in many applications the important question is figuring out what guidelines
to impose in the first place. This is the focus of the next section.

1.4 Defining the Target Region
Thus far we have not focused on how we define the target region A. First, let’s think of A as
nonparametrically defined as the maximizer of some criterion, independent of an estimator.
We can think of this as any region on the exposure gradient that maximizes the outcome
(can take any shape). However, such a region isn’t interpretable. Therefore, it is easier to
constrain the optimization so A is a rectangle in the exposure space. This is because these
sections can be easily described using ≥ and ≤ rules. This is also important from a public
health standpoint where these rules effectively are thresholds of exposures found to have the
most severe (or least severe) affects. For this purpose, regression trees are an ideal estimator
to get at such a region. Each decision tree algorithm uses some objective function to split
a node into two or more sub-nodes. Of course, it is generally impossible to know a priori
which learner will perform best for a given prediction problem and data set. Decision trees
have many hyper-parameters such as the maximum depth, minimum samples in a leaf, and
criteria for splitting amongst others. As such, we need to find the decision tree estimator
that best fits the data given a set of nodes. We do this by creating a library of decision
tree estimators to be applied to the exposure data and use cross-validation to select nodes
based on the best fitting decision tree. This CV selection of the best fitting decision tree
algorithm defines our exposure Super Learner f(A) in our additive semi-parametric model
E(Y |A,W ) = f(A) + h(W ). This additive model is needed because we are interested in
finding regions that maximize an outcome within only an exposure space not including the
baseline covariates.
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Discovering Regions in Multiple Exposures using Ensemble Trees

To discover regions in multiple exposures and therefore discover interactions in the exposure
space, we use predictive learning via rule ensembles [28]. Thus, as part of the data-adaptive
procedure the f(A) is a regression model constructed as a linear combinations of simple rules
derived from the exposure data. Each rule consists of a conjunction of a small number of
simple statements concerning the values of individual input exposures. Machine learning
using rule ensembles have not only been shown to have predictive accuracy comparable to
the best methods but also result in a linear combination of interpretable rules. Prediction
rules used in the ensemble are logical if [conditions] then [prediction] statements, which in
our case the conditions are regions in the exposure space that are predictive of the outcome.
Learning ensembles have the structure:

F (x) = a0 +
M∑
m=1

amfm(x)

where M is the size of the ensemble (total number of trees) and each ensemble member
fm(x) is a different function of the input exposures A derived from the training data in the
cross-estimation procedure (discussed later). Ensemble predictions from F (x) are derived
from a linear combination of the predictions of each ensemble member with amM0 being the
parameters specifying the linear combination. Given a set of base learners, trees constructed
using the exposures, fm(x)M1 the parameters for the linear combination are obtained by a
regularized linear regression using the training data. Ideally, each tree in the ensemble is
limited to including only 2-3 exposures at a time which enhances interpretability. For instance,
given the noise and small sample size in most public health studies, it is unlikely that signal
is strong enough to detect interactions with 4 or more variables. Not only that but trees with
partitions across many variables become less interpretable. Therefore, in our case we are
interested in using an ensemble algorithm that creates a linear combination of smaller trees
but also shows optimal prediction performance. To accomplish this goal we use the PRE
package [26] which is similar to the original RuleFit algorithm [28] with some enhancements
including 1. unbiased recursive partitioning algorithms, 2. complete implementation in R,
3. capacity to handle many outcome types and 4. includes a random forest approach to
generating prediction rules in addition to bagging and boosting methods. Here, the package
PRE is fit to the exposure data in the training sample. Mechanically the procedure is 1.
generate an ensemble of trees using exposure data, 2. fit a lasso regression using these trees
to predict the outcome, 3. extract the tree basis with nonzero coefficients, 4. store these basis
as rules which when evaluated on the exposure space demarcate an exposure region A. There
may then be many exposure regions such as AX1,X2 which is a region including exposures
X1, X2 or another region in the exposure space which uses variables X4, X5, AX4,X5 etc. The
ARE is then calculated for each of these regions which are based off of trees found to be
predictive in the ensemble. In the case that multiple trees are included in the ensemble which
are composed of the same set of exposures, we select the tree with the largest coefficient.
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This procedure is done in each fold of the cross-validation procedure.

Discovering Regions in Single Exposures using Decision Trees

In addition to finding interactions in the exposure space, the analyst may also be interested
in identifying what exposures have a marginal impact and at what levels the outcome changes
the most in these exposures. To answer this question we include a marginal tree fitting
procedure which is very similar to the method described in 4.1. Here, f(A) is a Super Learner
of decision trees fit onto one exposure at a time. We then extract the rules determined
from the best fitting tree. Each terminal leaf demarcates a region in the exposure and thus
similarly we may have several A for 1 exposure which are the regions found when creating the
partitions which best explains the outcome. Here, rather than calculating an ARE for each
region we calculate an ARE comparing each region to the reference region. The reference
region is defined as the region that captures the lowest values of A. For example, consider our
resulting decision tree when fit to variable A1 resulted in terminal leaves A1 < 0.6, A1 > 0.6
& A1 < 0.9, A1 > 0.9, in this case the reference region would be A1 < 0.6. We would
then have two ARE estimates for the two regions above the reference region. Mechanically,
in the training sample, we find the best fitting decision tree which finds partitions in one
exposure that best explains an outcome, these rules are evaluated as if statements on the
exposure to create Ai = 1A(Ai) for the respective exposure. We then subset the reference
level out and row bind it with each region above the reference region and pass that data to
our estimators of the ARE. This approach was chosen to give users a dose-response type
estimate for data-adaptively determined thresholds in the univariate exposure space.

Iterative Backfitting

We need an algorithm that will allow us to fit f(A) while controlling for W but not including
W in the partitions (trees). As such, we iteratively backfit two Super Learners f(A) a Super
Learner of decision trees and h(W ) an unrestricted Super Learner applied to the covariates.
However, both algorithms need to use the same convergence criteria (here maximum likelihood
estimation). Thus, f(A) uses an ensemble of regression trees and h(W ) uses an ensemble of
flexible MLE based algorithms (MARS, elastic net, Highly Adaptive Lasso amongst others).
The algorithm first initializes by getting predictions from f(A) and h(W ), that is, simply
fitting a Super Learner to the exposures and covariates separately and then getting predictions.
Then we begin fitting each algorithm offset by the predictions of the other. So at iteration
1 we fit f(A, offset = h(W )iter 0) and likewise h(W, offset = f(A)iter 0); where the offsets are
predictions of the models fit individually (without offset at iteration 0). The predictions of
these models without an offset then gives us f(A)iter 1 and h(W )iter 1. These predictions are
then used as offsets at iteration 2. This process continues until convergence where convergence
is is defined as the absolute mean difference between the two models being less than some
very small number δ where δ by default is 0.001. In this way, for both where A in f(A)
is a vector of exposures (resulting rules include combinations of different exposure levels)
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and when A is a single exposure, we are able to identify cut-points in the exposure space
while controlling for W in the additive model that converges in maximum likelihood. We
evaluate the best fitting decision tree onto the exposure space which results in an indicator
of the exposure region and calculate our k-fold specific and pooled target parameters give
this region.

Asymptotic Properties of Rule Fitting on Mixtures

As discussed, an implementation of the RuleFit algorithm, originally proposed by Jerome H.
Friedman [28], is used to determine regions in the mixture space. RuleFit is an ensemble
learning method that combines decision trees with Lasso (Least Absolute Shrinkage and
Selection Operator) regression to generate a set of rules (conditions) and learn their importance
in predicting the outcome variable. The algorithm aims to create a more interpretable model
that offers improved generalization performance compared to traditional decision trees. We
use this model because it allows us to extract trees used for each unique variable set and
calculate the respective ARE.

In terms of asymptotic properties, the RuleFit algorithm does not have any established
convergence guarantees to the true regions in the underlying data generating process. It is an
empirical method and, like many other machine learning algorithms, its performance depends
on the quality of the training data, the complexity of the problem, and the tuning of its
hyperparameters. However, it is important to note that the Lasso regression component of the
RuleFit algorithm has some desirable asymptotic properties, such as consistency and variable
selection consistency, under certain conditions such as in sparse additive data generating
processes. In practice, this means that as the sample size grows, Lasso regression can recover
the true sparse model and provide accurate predictions. Nevertheless, these properties are
not directly transferable to the RuleFit algorithm as a whole, since convergence also depends
on how partitions are generated in the tree ensembles. That being said, while the RuleFit
algorithm demonstrates good performance and interpretability in various applications, it does
not have any established asymptotic properties regarding convergence to the true regions
in the underlying data generating process and therefore our parameter is not going for an
oracle region. Its performance depends on several factors and, like other machine learning
algorithms, it is not guaranteed to find the optimal solution in all cases.

Overall, this means that we cannot theoretically guarantee that regions identified approxi-
mate a true max ARE in the population. Interpretation is rather a region for a variable set
that has a nonzero coefficient in a penalized model controlling for other identified regions for
other variable sets in the mixture. In certain situations this may approximate a true region
that maximizes the ARE such as the case in simulations we show where there is a region in a
mixture, based on certain thresholds, that has a much larger w-controlled outcome compared
to the complimentary space.

This being said, although going after an oracle target parameter such as max ARE in a
mixture would provide more interpretable results for the data-adaptive target parameter it is
not undermine the proposed approach using RuleFit. In our case, regions are interpreted
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as thresholds found for a set of exposures in a mixture while controlling for regions of other
exposures and covariates in a semi-parametric additive model (not allowing interactions
between exposures and covariates), for interpretability. Users can interpret such regions as,
"thresholds that best explain the outcome in a penalized regression model controlling for
other exposures and covariates".

1.5 K-fold Cross-Estimation
Of course, the mixture region used to estimate the ARE is not defined a priori. If we were
to use the same data to both identify the region and make the ARE our estimates will be
biased. Thus, for desirable asymptotic properties to hold without additional assumptions,
we need our conditional means to be cross-estimated from the observed data. We split the
data into Pn−k (parameter-generating) and Pnk (estimation) samples. These splits or folds
are part of a k-fold cross-validation framework. K-fold cross-validation involves: (i) 1, ..., n,
observations, is divided into K equal size subgroups, (ii) for each k, an estimation-sample,
notationally Pk, is defined by the k-th subgroup of size n/K, while the parameter-generating
sample, Pn−k , is its complement. In this round robin manner we rotate through our data
and thus, in the case of K = 10 get 10 difference target parameter mappings An, outcome
estimators Qn and propensity estimators gn. We want one summary measure of the target
parameter found across the folds, such as the average.

With Pn−k we find thresholds in our exposure space (using the results of a decision tree)
which designates exposure region. Then given this exposure region using the same Pn−k we
train our gn and Qn estimators which are needed for our TMLE update step to debias our
initial estimates of the ARE and give us an asymptotically unbiased estimator. We then
plug-in our Pnk to this unbiased estimator to get our ARE estimate in this estimation sample.

Let Q̄n denote a substitution estimator that plugs in the empirical distribution with
weight 1/n for each observation which approximates the true conditional mean Q̄0 in P0,
this estimator, in our case is a Super Learner, or ensemble machine learning algorithm, our
substitution estimator looks like:

Ψ(QPnk
) =

1

V

V∑
v=1

Q̄n−k(An−k = 1,Wv)− Q̄n−k(An−k = 0,Wv)

Let’s focus first on the k subscripts, we split data into k ∈ 1...K non-overlapping folds and
fit K different models. Thus, Q̄n−k denotes our outcome regression function fit when excluding
the data for fold k. Pnk denotes our estimation-data and Pn−k is the parameter-generating
sample, that is, our parameter-generating sample is used to train our estimators and then
we pass our estimation-data in to get estimates. Q̄n−k then, in our case, is a Super Learner
fit using the parameter-generating data. Likewise, An−k is a decision tree fit using the
parameter-generating data. Ψ(QPnk

) then indicates that we pass the estimation-sample data
into our estimators trained with the parameter-generating data; so here we first fit a decision
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tree to the exposure space of the parameter-generating data, then apply the rules found to the
estimation-sample data to create an exposure region indicator. Then using this exposure and
the estimation-sample covariates, we feed this into the outcome regression model trained on
the parameter-sample data. We then get predicted outcomes under different counterfactuals
for a data-adaptively determined exposure using our estimation-sample data. Our cross-
estimated TMLE estimator for this data-adaptively defined exposure produces an unbiased,
efficient substitution estimator of target parameters of a data-generating distribution we are
interested in. This estimator looks like:

Ψ(Q?
Pnk

) =
1

V

V∑
v=1

{Q̄?
n−k

(An−k = 1,Wv)− Q̄?
n−k

(An−k = 0,Wv)}

Here we can see the only change to our above equation is Q̄? which is the TMLE augmented
estimate. This new function, f(Q̄?

n−k
(A,W )) = f(Q̄n−k(A,W )) + εn−k · hn−k(A,W ), where

f(·) is the appropriate link function (e.g., logit), εn is an estimated coefficient and hn(A,W )
is a "clever covariate" which is now cross-estimated. Here what we mean is that, the initial
estimates for the estimation-sample using models trained using the parameter-generating
data are updated through this so-called, least-favorable submodel. The cross-estimated clever
covariate looks like:

hn−k(A,W ) =
I(An−k = 1)

gn−k(An−k = 1|W )
−

I(An−k = 0)

gn−k(An−k = 0|W )

Here, gn−k(W ) = P(An−k = 1 | W ), the propensity score of the data-adaptively determined
exposure region, is being estimated using a Super Learner with the parameter-generating data.
That is, in our parameter generating sample we get the exposure region, and an estimator
gn we apply this exposure region to the estimation sample and then get predictions for the
probability of that exposure region indicator using the estimation sample, we then plug these
estimates into the above cross-estimated clever covariate used in the TMLE update.

We can see that by using v-fold cross-validation, we can do better than traditional sample
splitting as v-fold allows us to make use of the full data which results in tighter confidence
intervals because our variance is estimated over the full data. Similarly, our estimate is an
average of the v-fold specific estimates:

Ψn(P ) = Ave{ΨPn−k
(P )} ≡ 1

V

V∑
v=1

ΨPn,−k(P )

We do this in a pooled TMLE update manner where we stack the estimation-sample
estimates for each nuisance parameter and then do a pooled TMLE update across all the
initial estimates using clever covariates across all the folds to get our estimate ε we then
update our counterfactuals across all the folds and take the average. More concretely, in each
fold we have our initial estimates from that fold from Qn−k(Y |A,W ) and the fold specific
clever covariate hn−k(A|W ) of length k for a fold specific exposure found using An−k . We
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stack all the Qn−k ’s and hn−k(A|W )’s together along with the outcomes in each validation
fold and do our fluctuation step:

f(Q̄?
n(A,W )) = f(Q̄n(A,W )) + εn · hn(A,W )

Notice here the k subscripts are removed, this is because we are using our cross-estimates
for all of n. Using the ε from this model, we then update the counterfactuals across all the
folds and take the difference for our final ARE. In a similar fashion, we use the updated
conditional means, counterfactuals, and clever covariates to solve the IC across the whole
sample. By pooling the cross-estimates across the folds and then calculating the SE for this
pooled IC we are able to derive more narrow confidence intervals compared to if we were
to average the IC estimated in each of the folds (because the IC is scaled by n and not
n/K). This pooled estimate still provides us with proper intervals because all estimates in
its construction were cross-estimated.

An alternative to this pooled approach is to simply report the k-fold specific estimates
of the ARE and fold specific variance estimates for this ARE using the fold specific IC. We
do this as well. We do this because, if the exposure region A identified in each region is
highly variable, that is, if the region that that maximizes the difference for sets of exposure
variables are very different across the folds, then interpreting the pooled ARE is difficult. By
calculating and providing both k-fold specific and pooled results users can investigate how
variable a pooled result is across the folds.

Inverse-Variance Method for Combining K-fold Results

In addition to the pooled TMLE approach to aggregate k-fold specific data-adaptive target
estimates, we also calculate the inverse-variance method (IVM) commonly used in meta-
analyses. We call this method the k-fold harmonic mean. Here each fold is given a weight
defined as:

wki =
1

SE(θ̂ki)
2

Which is simply an inverse of the standard error such that estimates with smaller SE are
given a higher weight. The inverse-variance pooled ARE across the folds is given as:

θ̂IV M =

∑
wki θ̂ki∑
wki

And lastly, the pooled SE is calculated as:

SE(θ̂IV M)
1√∑
wki

For which confidence intervals and p-values are derived for the pooled IVM estimate.
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This pooled estimate is given because, in the event of high inconsistency of the k-fold
estimates in lower sample size, the confidence intervals from pooled influence curve may not
cover the true ARE if the pooled ARE was applied to P0. This is because the union rule
attached to the pooled ARE is a conservative rule which covers all observations across the
folds (discussed later). The IVM derived CIs are wider and provide better coverage in the
event of high inconsistency (which we show in simulations). We explain rule stability metrics
and establishing a union rule across the folds in the next section.

Defining the Union Region

The pooled TMLE ARE is matched with a pooled region that encompasses all the observation
indicated by each fold specific regions. We group the trees across the folds according to what
variable sets the trees are composed of. That is, a linear combination of tree ensembles is fit
to each training sample specific to the fold. There may be variability in where the partition
is set for trees with the same variable sets across the folds, or certain ensembles don’t use
certain variable sets at all in some folds but used in others. We need a method of creating a
pooled region and give stability metrics for how consistently trees with a respective variable
set are found in the cross-validation procedure. For this we create a union region. There
are other possible ways of pooling the regions, such as averaging the partitions per exposure
variable across the folds. Here we choose a conservative approach. This is the union region of
the k-fold regions in the sense that, we create a new region that is the OR combination of
each k-fold specific tree. For three folds and therefore three partitions say, X1 < 2 & X2 > 5,
X1 < 2.3 & X2 > 5.2 and X1 < 1.9 & X2 > 5.3, the union rule is X1 < 2 & X2 > 5 OR
X1 < 2.3 & X2 > 5.2 OR X1 < 1.9 & X2 > 5.3 forms the rule: X1 < 2.3 & X2 > 5 because
this region covers all the observations indicated in the fold specific regions. For variables
where the logic is > we take the minimum value across the folds and likewise for < we take
the maximum. This union region is conservative and sensitive to outlier partition points
found across the folds and therefore higher K folds will lead to more stable partitions if there
is signal in the data. Additionally, the analyst should investigate the fold specific regions to
determine the interpretability of the pooled region. If there is high variability or outliers,
there may be bias in the TMLE pooled estimate when compared to the expected difference
in outcomes if the respective pooled region was applied to the true population P0.

Stability Metrics

Given a pooled region, we simply give the proportion of folds trees with a respective variable
set are found across the folds. For example, consider a study of mixed metals that uses
CVtreeMLE and the results across three folds are: 1. lead > 2.2 & arsenic > 1.3, 2. lead >
2.1 & arsenic > 1.2, 2. lead > 2.0 & arsenic > 1.1. Our pooled region is lead > 2.0 & arsenic
> 1.1 because this region contains all the fold specific regions. The stability metric here is
100% because a tree with lead and arsenic was found in all three folds. If however, this tree
was only found in 2 of three folds, the stability metric is 67%.
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1.6 Simulations
In this section, we demonstrate using simulations that our approach identifies the correct
exposure region which maximizes the difference in conditional means and estimates the correct
difference built into a DGP for this region.

Data-Generating Processes

Because a two dimensional exposure space is easier to visualize and describe compared to
higher dimensional spaces, we start by investigating a squared dose-response relationship
between two exposure variables where an interaction occurs between the exposures when
each meets a particular threshold value. We extend simulations to the three dimensional case.
In both 2-D and 3-D exposure simulations there are specific outcome values generated for
each subspace of the mixture based on split points Dd but there exists one region with the
maximum outcome (the truth that we want). In both scenarios, the goal is to determine if
our data adaptive target parameter is targeting the region that maximizes the conditional
mean outcome for the given sample and evaluate how CVtreeMLE approaches this desired
oracle parameter as sample size increases. To meet this goal, we construct a data-generating
process (DGP) where Y is generated from a tree-structured covariate-adjusted relationship of
a mixture consisting of components, A1, A2, A3, An. That is, generally in each simulation we
generate exposure regions, where the density of the region is driven by covariates and there
is one region that has the maximum difference compared to outside the respective region.
More details for each simulation are given below.

Two-Dimensional Exposure Simulations

This DGP has the following characteristics, O = (W,A, Y ). W are three baseline covariates

W1 ∼ N (µ = 37, σ = 3),W2 ∼ N (µ = 20, σ = 1),W3 ∼ B(µ = 0.5)

Where B is a Bernoulli distribution and N is normal. These distributions and values were
chosen to represent a study with covariates for age, BMI and sex. Our generated exposures
were likewise created to represent a chemical exposure quantized into 5 discrete levels. The
values and range of the outcome were chosen to represent common environmental health
outcomes such as telomere length or epigenetic expression.

We are interested in sampling observations into a 2-dimensional exposure grid. Here a
5× 5 grid is based on combinations of two discrete exposure levels with values 1-5. We want
the number of observations in each of these cells to be affected by covariates. To do this we
define a conditional categorical distribution P{(A1, A2) = (a1, a2)|W = w} and sample from
it.

P{(A1, A2) = (ak, al)|W} =
eW
>βk,l

1 +
∑

k,l e
W>βk,l
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Here the β’s attached to each covariate were drawn from a normal distribution with
means 0.3, 0.4, 0.5 and 0.5 respectively all with a standard deviation of 2. This then gives
us 25 unique exposure regions with densities dependent on the covariates. We then want to
assign an outcome in each of these regions based on main effects and interactions between
the exposures. We use the relationship

Y = 0.2A2
1 + 0.5A1A2 + 0.5A2

2 + 0.2 ∗ age + 0.4 ∗ sex + ε(0, 0.1)

Which indicates there is a slightly weaker squared effect for A2 relative to A1 and a strong
interaction between the exposures and confounding due to age and sex. The resulting data
distribution and generating process is shown in Figure 1.1.

Figure 1.1: 2D Exposure Simulation

Of course, it is also possible to explore other dose-response relationships (such as logarith-
mic) by changing the coefficient matrix.

Computing Ground Truth The fact that our exposures are discrete in this simulation
lets us easily compute the ground-truth ARE for any region A because we can explicitly
compute the conditional mean function m
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m(A = 1, w) =

∫
a∈A

µ(a, w)
pA|W (a, w)

πA(w)
da

=

∑
a∈A µ(a, w)pA|W (a, w)∑

a∈A pA|W (a)

Therefore to approximate the ARE to arbitrary precision we can

1. Sample a large number of times (e.g. b = 100, 000) from the covariate distribution to
obtain W{1,...i,...b}.

2. Compute the values m(A = 1,Wi) using the above formula. This is possible because
the functions µ and pA|W are known for the data-generating process 1. In a similar
fashion compute m(A = 0, w).

3. Compute ARE(A) = 1
b

∑b
i m(1,Wi)−m(0,Wi).

Three-Dimensional Exposure Simulations

This DGS has the same general structure, O = W,A, Y . W and baseline covariates

W1 = N (µ = 37, σ = 3),W2 = N (µ = 20, σ = 1),W3 = B(µ = 0.5)

In this 3D simulation we are interested in keeping the exposures continuous as this is
more realistic compared to the 2D simulation.

Here A are three continuous mixtures from a multivariate normal distribution:A1

A2

A3

 ∼ N

0
0
0

,
1.0 0.5 0.8

0.5 1.0 0.7
0.8 0.7 1.0



We assign one partition point value to each exposure which creates 8 possible regions in
the 2x2x2 3D grid for which we want to assign outcomes. Just as the first simulation we
want the number of observations in each of the cells in the "mixture cube" to be affected
by covariates. To do this we define a conditional categorical distribution P{(A1, A2, A3) =
(a1, a2, a3)|W = w} and sample from it.

P{(A1, A2, A3) = (ak, al, aj)|Wi} =
eW
>
i βk,l,j

1 +
∑

k,l,j e
W>i βk,l,j

1If the exposure space were not discrete, this step would require numerical approximation of an integral
for each different value of w which would be generally impractical.
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For each of these categories which defines a region in the exposure space we need to assign
exposure values while also preserving the local correlation structure within that region. To do
this, we convert the cumulative distribution function of the exposures to a uniform distribution
then back transform this uniform distribution to the original exposure distribution with
bounds for each exposure region. So for instance, in the region where each exposure is less
than each threshold value, we back transform the uniform distribution with the minimum
value set as the minimum for each exposure and max as the partition value for each exposure.
These values then are attached to the categorical variables generated which represent the
mixture region. This then generates continuous exposure values with a correlation structure
in each region.

The outcome Y is then generated via a linear regression of the form:

Y = β0 + β11(A = 1) + β21(A = 2) + ...+ β71(A = 7) + βW1W1 + βW2W2 + ε, ε N(0, σ)

Where the βj are chosen so some mixture groups have a high mean, some have a low
mean and 1 represent indicators of each of the possible 8 regions. Thus, the outcome in
each region of the mixture cube is determined by the β assigned to that region. Given this
formulation of a DGP it is possible to then generate Y by shifting the drivers or "hot spots"
around the mixture space, thereby simulating possible agonist and antagonistic relationships.
We could assign something like β2 = 2 with all other regions having a β 6=2 = 0. This then
would mean the ARE in the true DGP is 2. Likewise we could assign β’s in each region in
which case the truth by our definition is the region with the max ARE. The process for this
DGP is shown in Figure 1.2.

Overall, our 3D example is very similar to the 2D exposure simulation but we aim to
test CVtreeMLE in identifying thresholds used to generate an outcome in a space of three
continuous exposures. Also, because we keep the space of possible outcomes relatively simple
here, we simply generate individual outcomes for each mixture subspace. This allows us to
create situations where only one region drives the outcome while the complementary space
is 0 or there is an outcome in each region and we are interested in identifying the region
with the maximum outcome. In each simulation we are interested in the bias/variance of our
estimates compared to the truth, the bias of our rule compared to the true rule and the bias
of our data-adaptive rule compared to the expected ARE if that rule was applied to the true
population. We discuss this next.

Computing Ground Truth Previously, in the discrete exposure case, we could directly
estimate ground truth by inverse weighting given the summed probability in the exposure
region multiplied by the outcome. This is not possible in the continuous case. To make things
simpler, we z-score standardize the covariates so the mean of each covariate is 0. Therefore
we can directly compute the mean in the region indicated by the ground-truth rule and the
mean outcome in the complementary space and take the difference. This is the same as the
max coefficient minus the mean of the other coefficients in the linear model, this is the true
ARE.
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Figure 1.2: 3D Exposure Simulation

Evaluating Performance

The following steps breakdown how each simulation was tested to determine 1. asymptotic
convergence to the true mixture region used in the DGP, 2. convergence to the true ARE based
on this true region and 3. convergence to the true data-adaptive ARE, that is CVtreeMLE’s
ability to correctly estimate the ARE if the data-determined rule was applied to the population.
We do this by:

1. To approximate P0, we draw a very large sample (500,000) from the above described
DGP.

2. We then generate a random sample from this DGP of size n which is broken into K equal
size estimation samples of size nk = n/K with corresponding parameter generating
samples of size n− n/K.

3. At each iteration the parameter generating fold defines the region and is used to create
the necessary estimators. The estimation fold is used to get our TMLE updated causal
parameter estimate, we then do this for all folds.

4. For an iteration, we output the ARE estimates given pooled TMLE, k-fold specific
TMLE and the harmonic mean. The region identified in the fold is applied to the large
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sample P0 to estimate the data-adaptive bias. Likewise, each estimate is compared to
the ground-truth ARE and region.

For each iteration we calculate metrics for bias, variance, MSE, CI coverage, and confusion
table metrics for the true maximal region compared to the estimated region. For each type
of estimate (pooled TMLE, k-fold specific TMLE estimates, and harmonic mean) we have
bias when comparing our estimate to 1. the ARE based on the true region in the DGP that
maximizes the mean difference and 2. the ARE when the data-adaptively determined region
is applied to the population. Therefore, when comparing to the true "oracle" region ARE we
have:

1. ψ0
pooled tmle bias: This is the bias of the pooled TMLE ARE compared to the ground-truth

ARE for the true region built into the DGP which maximizes the mean difference in
adjusted outcomes.

2. ψ0
mean v-fold tmle bias: This is the bias of the mean k-fold specific AREs compared to the

ground-truth ARE for the true region built into the DGP.

3. ψ0
harmonic mean v-fold tmle bias This is the bias of the harmonic mean of k-fold specific AREs

compared to the ground-truth ARE for the true region built into the DGP.

The above bias metrics are each compared to the true ARE for the oracle region in the
DGP. We are also interested in the ARE if the data-adaptively determined region, the region
estimated to maximizes the difference in outcomes in the sample data, were applied to P0

the true population. Therefore, there are also bias estimates for:

1. ψDApooled tmle bias: This is the bias of the pooled TMLE ARE compared to the ARE of the
union region across the folds applied to P0.

2. ψDAmean v-fold tmle bias: This is the bias of the mean k-fold specific AREs compared to the
mean ARE when all the k-fold specific rules are applied to P0.

3. ψDAharmonic mean k-fold tmle bias This is the bias of the harmonic mean of k-fold specific AREs
compared to the ARE of the union region across the folds applied to P0.

We multiple each bias estimate by
√
n to ensure the rate of convergence is at or faster

than
√
n. For each ARE estimate we calculate the variance and subsequently the mean-square

error as: MSE = bias2 + variance. MSE estimates were also multiplied by n. For each ARE
estimate we calculate the confidence interval coverage of the true ARE parameter givent the
oracle region and the ARE given the data-adaptively determined region applied to P0. For
the TMLE pooled estimates these are lower and upper confidence intervals based on the
pooled influence curve. For the k-fold specific coverage, we take the mean lower and upper
bounds. For the harmonic pooled coverage, we calculate confidence intervals from the pooled
standard error. In each case, we check to see if the ground-truth rule ATE and data-adaptive
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rule ATE are within the interval. Lastly, we compare the data-adaptively identified region to
the ground-truth region using the confusion table metrics for true positive, true negative,
false positive and false negative to determine whether, as sample size increases, we converge
to the true region.

These performance metrics were calculated at each iteration, where 50 iterations were
done for each sample size n = (200, 350, 500, 750, 1000, 1500, 2000, 3000, 5000). It was
ensured that, for each data sample, at least one observation existed in the ground-truth region
to ensure confusion table estimates could be calculated. CVtreeMLE was run with 5 fold CV
(to speed up calculations in the simulations) with default learner stacks for each nuisance
parameter and data-adaptive parameter. Our data-adaptive parameter for interactions was
the tree with the max ARE (positive coefficient) for each variable set in the ensemble.

Default Estimators

CVtreeMLE needs estimators for Q̄ = E(Y |A,W ) and gn = P (A|W ). CVtreeMLE has built
in default algorithms to be used in a Super Learner [59] that are fast and flexible. These
include random forest, general linear models, elastic net, and xgboost. These are used to
create Super Learners for both Q̄ and gn. CVtreeMLE also comes with a default tree ensemble
which is fit to the exposures during the iterative backfitting procedure. These trees are built
from the partykit package [43] in R. By default we include 7 trees in the tree Super Learner
that have various levels for the hyper-parameters alpha (p-value to partition on), max-depth
(maximum depth of the tree), bonferroni correction (whether to adjust alpha by bonferroni)
and min-size (minimum number of observations in terminal leaves). These trees are used
during the iterative backfitting in estimating partitions for each individual exposure. For the
rule ensemble, the predictive rule ensemble package (pre) [25] is used with default settings
and 10-fold cross-validation. Users can pass in their own libraries for these nuisance and
data-adaptive parameters. For these simulations, we use these default estimators in each
Super Learner.

Results

CVtreeMLE Algorithm Identifies the True Region with Maximum ARE

First we describe results for identifying the true region built into the DGP. It is obviously
necessary for this to converge to the truth as sample size increases in order for the ψ0

estimates to be asymptotically unbiased. Overall we find the tree algorithm identifies the
true region in the DGP and therefore provides results which have high-value for treatment
policies. Figure 1.3 shows metrics comparing observations covered by the estimated pooled
region to those indicated by the true region in the DGP for two discrete exposures. From this
figure it can be seen that, at around 1500 observations, the pooled region is the true region.
Figure 1.4 shows the confusion table metrics comparing the data-adaptive pooled region to
the oracle region in the three continuous exposure scenario. As sample size increases, the



CHAPTER 1. CVTREEMLE 24

false positives approach 0 which is what we would desire in this continuous case. From this,
we see that in both instances of discrete and continuous exposures, CVtreeMLE is able to
identify the correct region in the exposure data which has the maximum ARE. There is some
small disparity in the discovered region compared to the truth in the continuous case, this is
because for false-positives to perfectly match the true region, the tree search algorithm must
identify the exact set of continuous digits that delineate the region which is very difficult. In
our case, this region is is M3 <= 2.5 & M1 >= 0.99 & M2 >= 2.0. In this three exposure
case there is antagonism of M3. Given the exposures are continuous, it is likely that the tree
search algorithm gets very close but not absolutely exact to these boundaries. In the two
exposure case where the exposures were discretized finding the boundaries is easier. As such,
our future evaluation is focused more on the data-adaptive estimates (comparing estimates to
the ARE given applying the data-adaptive rule to P0). Ultimately, the data-adaptive target
parameter theory only holds for the data-adaptive parameter and not the parameter given
an oracle rule; however, we include both again to investigate how CVtreeMLE approaches
the oracle rule as sample size increases.

Figure 1.3: 2D Exposure Confusion Table Metrics of Rule Coverage
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Figure 1.4: Three Exposure Confusion Table Metrics of Rule Coverage

CVtreeMLE Unbiasedly Estimates the Data-Adaptive Parameter

Looking at the bias for the ARE estimate given two discrete exposures compared to the
data-adaptively discovered region applied to P0 TMLE unbiasedly estimates the data-adaptive
parameter at root n rates with good coverage. Below, Figure 1.5 A shows the data-adaptive
rule ARE bias (ψDApooled tmle bias, ψDAmean k-fold tmle bias, ψDAharmonic mean k-fold tmle bias) and MSE (B).

In Figure 1.5 A the data-adaptive rule ARE bias is larger for the pooled estimates
(pooled TMLE ARE and harmonic mean ARE compared to ARE if the pooled rule was
applied to P0) compared to the average folds bias (mean k-fold ARE compared to the mean
of each k-fold rule applied to P0). This is because inconsistent rule estimates in lower
sample sizes can bias the pooled ARE compared to the pooled region. Consider a 3-fold
situation where for variables X1 and X2 the region was designated by X1 > 4 & X2 > 4,
X1 > 4 & X2 > 4, and X1 > 2 & X2 > 4; because X1 > 2 & X2 > 4 is found in one of the
folds, this is the pooled region (as it covers observations for X1 > 4) and thus (if the true
ARE for X1 > 4 & X2 > 4 applied to P0) is higher, our pooled results would be biased to
this higher ARE because two of three of our folds have an ARE for this region. This bias
converges to average k-fold bias at a sample size of 1500. Effectively, once the trees across
the folds stabilizes there is less bias in the pooled estimate compared to the pooled region
ATE. This similar pattern is reflected in the pooled estimates MSE (given higher bias in
smaller samples). For the user, this indicates that, in smaller sample sizes (n < 1000) the
analyst should look at fold specific results to ensure the trees are close in the cut-off values in
order to interpret the pooled result. If not, k-fold specific results should be reported as these
show very low bias/MSE even in smaller sample sizes. The bias and MSE for all estimates
compared to the ground-truth rule ATE show an 1/

√
n reduction as sample size increases. In

sum, as sample size increases the bias for all estimates converge to 0 which which is necessary



CHAPTER 1. CVTREEMLE 26

Figure 1.5: 2D Exposure Bias and MSE

for our estimator to have valid confidence intervals.
Figure 1.6 A and C likewise show the asymptotic bias in the three continuous exposure

case. All estimates show bias decreasing when evaluated against the ARE when the data-
adaptively determined region is applied to P0; however, these estimates do not go to 0 exactly
(at max sample size equal to 5000) as the data-adaptive rule is still not exactly the true rule,
which is expected. Figure 1.7 A shows the confidence interval coverage for each estimate
compared to the data-adaptive region applied to P0.

For coverage of the ARE of the pooled rule applied to P0, the CIs calculated from the
pooled k-fold standard errors showed coverage between 95% - 100%. The pooled TMLE CIs
showed poorer coverage at lower sample sizes, this is likely due to the bias of the pooled
ARE estimate compared to the pooled region applied to P0 paired with the more narrow
confidence intervals calculated across the full sample. The harmonic pooled k-fold CIs were
wider and thus covered the truth in this pooled setting. Coverage for the k-fold specific CIs
were almost always at or above 90% and converge to 95% at higher sample sizes.

Figure 1.8 A shows the CI coverage of the data-adaptive rule in the three exposures
simulation. As expected, the average k-fold CI converges to 95%. The pooled estimates are
lower given the conservative pooled rule.
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Figure 1.6: 3D Exposure Bias and MSE

CVtreeMLE Unbiasedly Estimates the Oracle Target Parameter

Now we look at comparing estimates to the true ARE given the oracle region in the DGP.
Figure 1.5 B and D show the bias and MSE for this comparison in the two discrete
exposures. As can be seen, both decrease at root n rate for all estimates. Figure 1.6 B and
D likewise show this same rate of convergence for the three continuous exposure case. Based
on these simulations, CVtreeMLE unbiasedly estimates the oracle target parameter at root n
rates. We next look at the coverage. Figure 1.7 B shows coverage of the true ARE given
the true region. The CIs calculated from the harmonic pooled k-fold standard errors had
consistent 95% coverage, the k-fold specific CIs converged to 95% when sample sizes reached
1500 and the pooled TMLE CIs converged to 75% coverage. The same is shown for the three
continuous exposures in Figure 1.8 B the inverse variance CI converges to 95% for coverage
of the true ATE with the mean k-fold slightly lower around 82%. Table 1.2 gives the bias,
SD, MSE, and coverage for sample sizes 200, 1000, and 5000, comparing estimates to the
data-adaptive truth.

CVtreeMLE has a Normal Sampling Distribution for Valid Inference

For our estimator to have valid inference, we must ensure that the estimator has a normal
sampling distribution centered at 0 that gets more narrow as sample size increases. To



CHAPTER 1. CVTREEMLE 28

Figure 1.7: 2D Exposure Confidence Interval Coverage

confirm this, we next examine the empirical distribution of the standardized differences, (ψn -
ψ0)/SE(ψn), this is the ARE estimate bias compared to the true ARE given the true region
divided by the standard error of the estimates over the iterations and ψn - ψDA)/SE(ψn)
which is the same standardized difference but compared to the resulting ARE when the
data-adaptive region is applied to P0. Figure 1.9 shows the sampling distribution for each
sample size with 50 iterations per sample size to estimate the probability density distribution
of the standardized bias compared to the data-adaptive ARE. We see convergence to a mean
0 normal sampling distribution as sample size increases for all estimates. Figure 1.9 A
shows the sampling distribution of the standardized bias of the mean k-fold AREs compared
to the ground-truth ARE. We can see that this sampling distribution is quite tight around
0. Figures 1.9 B and C show the sampling distribution for the harmonic mean and the
pooled TMLE estimates which are mirror reflections of each other. For both estimates, lower
sample sizes (such as in purple n = 200) there is a wider spread of bias (estimates vary more
widely) with z-scores out to 2 or 4 but this distribution gets tighter as sample size increases.

Likewise, Figure 1.10 A-C show the standardized bias of each estimate compared to the
ground-truth region ARE. All estimates generally follow the same distribution and converge
to a 0 mean normal distribution as sample size increases.

Table 1.1 shows the results of the simulations based on comparing the mean fold estimated
ARE to the mean ARE of data-adaptive rules applied to P0. It can be seen that the estimation
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Figure 1.8: 3D Exposure CI Coverage

N Absolute Bias SD MSE Coverage

200 0.574 2.058 4.565 1
1000 0.379 1.458 2.268 0.97
5000 0.140 1.058 1.138 0.97

Table 1.1: Simulation results for Estimating the Data-Adaptive ARE using the Average k-fold
Estimates

is unbiased, and the coverage of confidence intervals based IC-based estimates of the standard
errors is slightly high. Figure 1.11 shows the sampling distribution for each sample size
for each type of estimate in the three continuous exposures. We see each estimate converge
to a mean 0 normal sampling distribution as sample size increases with the average k-fold
estimate having a tighter distribution.
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Figure 1.9: Bias Standardized by Standard Error Compared to ATE of Data-Adaptive Rule

N Absolute Bias SD MSE Coverage

200 0.608 2.10 4.797 0.95
1000 0.382 1.437 2.210 0.95
5000 0.178 0.894 0.831 0.96

Table 1.2: Simulation results for Estimating the Data-Adaptive ARE using the Average k-fold
Estimates in Three Exposure Simulations
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Figure 1.10: Bias Standardized by Standard Error Compared to ATE of True Rule

1.7 Applications

NIEHS Synthetic Mixtures

The NIEHS synthetic mixtures data (found here on github) is a commonly used data set to
evaluated the performance of statistical methods for mixtures. This synthetic data can be
considered the results of a prospective cohort study. The outcome cannot cause the exposures
(as might occur in a cross-sectional study). Correlations between exposure variables can
be thought of as caused by common sources or modes of exposure. The nuisance variable
Z can be assumed to be a potential confounder and not a collider. There are 7 exposures
(X1 −X7) which have a complicated dependency structure with a biologically-based dose
response function based on endocrine disruption. For details the github page synthetic
data key for data set 1 (used here) gives a description as to how the data was generated.
Largely, there are two exposure clusters (X1, X2, X3 and X5, X6). And therefore, correlations
within these clusters are high. X1, X2, X7 contribute positively to the outcome; X4, X5

contribute negatively; X3 and X6 do not have an impact on the outcome which makes
rejecting these variables difficult given their correlations with cluster group members. This
correlation and effects structure is biologically plausible as different congeners of a group of
compounds (e.g., PCBs) may be highly correlated, but have different biological effects. There

https://github.com/niehs-prime/2015-NIEHS-MIxtures-Workshop
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Figure 1.11: Bias Standardized by Standard Error Compared to ARE of Data-Adaptive Rule
for Three Exposures

are various agonistic and antagonistic interactions that exist in the exposures. Table 1.3
gives a breakdown of the variable sets and their relationships.

Variables Interaction Type

X1 and X2 Toxic equivalency factor, a special case of concentration addition (both
increase Y)

X1 and X4 Competitive antagonism (similarly for X2 and X4)
X1 and X5 Competitive antagonism (similarly for X2 and X4)
X1 and X7 Supra-additive (“synergy”) (similarly for X2 and X7)
X4 and X5 Toxic equivalency factor, a type of concentration addition (both decrease y)
X4 and X7 Antagonism (unusual kind) (similarly for X5 and X7)

Table 1.3: NIEHS Synthetic Data Interactions

Given these toxicological interactions we can expect certain statistical interactions deter-
mined as cut-points for sets of variables from CVtreeMLE. For example, we might expect a
positive ARE attached to a rule for X1 >= x1 & X2 >= x2 where x1, x2 are certain values
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for the respective exposures because these two exposures both have a positive impact on Y.
Likewise, in the case for antagonistic relationships such as in the case of X2, X4, we would
expect a positive ARE attached to a rule X2 >= x2 & X4 <= x4. This is because we might
expect the outcome to be highest in a region where X2 is high and X4 is low given the
antagonistic interaction.

The NIEHS data set has 500 observations and 9 variables. Z is a binary confounder.
Of course, in this data there is no ground-truth, like in the above simulations, but we can
gauge CVtreeMLE’s performance by determining if the correct variable sets are used in
the interactions and if the correct variables are rejected. Because many machine learning
algorithms will fail when fit with one predictor (in our case this happens for g(Z)), we simulate
additional covariates that have no effects on the exposures or outcome but prevent these
algorithms from breaking.

We apply CVtreeMLE to this NIEHS synthetic data using 10-fold CV and the default
stacks of estimators used in the Super Learner for all parameters. We select for trees with
positive coefficients in the ensemble during the data-adaptive estimation and therefore report
results as positive AREs. We parallelize over the cross-validation to test computational
run-time on a newer personal machine an analyst might be using.

Mixture ARE Standard Error Lower CI Upper CI P-value P-value Adj Region

8.24 0.56 7.14 9.34 0.00 0.00 X1>= 0.267 & X5<= 3.189
8.16 0.56 7.07 9.26 0.00 0.00 X1 >= 0.326 & X7 >= 0.22
6.68 0.62 5.46 7.89 0.00 0.00 X2>= 0.602 & X5<= 3.189
6.82 0.58 5.68 7.95 0.00 0.00 X2>= 0.619 & X7>= 1.171
7.29 0.51 6.29 8.29 0.00 0.00 X5<= 3.269 & X7>= 0.138

Table 1.4: NIEHS Synthetic Data Consistent Interaction Results

Table 1.4 shows the results from CVtreeMLE when applied to this NIEHS synthetic
data set using the aforementioned settings. We filter results to only interactions that were
found in all 10-folds, that is, trees with variable sets found across all the folds and therefore
have consistent "signal" in the data. Let’s focus on the second row with variables X1 and
X7. Table 1.3 shows that these two variables have a supra-additive or synergistic non-
additive relationship. The union rule for trees including these two variables was X1 >=
0.326 & X7 >= 0.22 meaning this rule covers all observations indicated by the fold-specific
rules. The mixture ARE is then interpreted as, if all individuals were exposed to X1 at levels
at or greater than 0.326 and exposed to levels of X7 at or greater than 0.22 the outcome
would be 8.16 units greater compared to if all individuals were exposed to levels less than
these respective levels. The subsequent standard errors derived from the pooled influence
curve (column 2) are used to derive the confidence intervals and p-values for hypothesis
testing. Overall, comparing these statistical interactions to the toxicological interactions
listed CVtreeMLE identifies 5 of 9 interactions. The other interactions in the above table are
interpreted in the same way as the X1 and X7 interaction.
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We next can investigate how consistent the results are across the folds by looking at
the k-fold specific results, this gives us a sense of how reliable our ARE estimates are for
the pooled rule. Let’s dig deeper into this X1 and X7 interaction. Table 1.5 shows the
k-fold specific results for the interactions found for the variables X1 and X7. Each row is
the results for each fold and the final row is the inverse variance weighted pooled result,
pooling estimates across the folds. Estimates show stability across the folds with only one
fold, fold 8, deviating from the trend. Cut-points at X1 were either at 0.991 or 0.998 with
fold 8 having a lower cut-point of 0.319. Likewise, X7 was partitioned at 0.48 in most folds.
Each fold-specific result has valid inference however it is also necessary to evaluate how
consistent results were across the folds and thus determine if partitions are stable. Here we
see the X1 >= 0.99 & X7 >= 0.48 partition for these two variables is stable and found in 8
of the folds. The ARE estimate for these rules ranges from 8-9 all with a significant effect.
CVtreeMLE also provides plots of k-fold estimates to more easily assess for trends, Figure
1.12 gives an example of this plot for the interaction X1 and X7.

Mixture ARE SE Lower CI Upper CI P-Value P-Value Adj Mix Rule Fold

8.09 1.03 6.08 10.10 0.00 0.00 X1 > 0.998 & X7 > 0.48 1
7.12 1.63 3.92 10.32 0.00 0.00 X1 > 0.998 & X7 > 2.108 2
8.38 1.51 5.41 11.34 0.00 0.00 X1 > 0.991 & X7 > 0.48 3
9.42 2.23 5.05 13.80 0.00 0.00 X1 > 0.991 & X7 > 0.441 4
8.81 1.76 5.36 12.26 0.00 0.00 X1 > 0.998 & X7 > 0.439 5
8.43 1.53 5.42 11.43 0.00 0.00 X1 > 1.049 & X7 > 0.482 6
8.84 1.84 5.23 12.44 0.00 0.00 X1 > 0.991 & X7 > 0.413 7
5.20 2.69 -0.07 10.48 0.05 0.53 X7 > 0.217 & X1 > 0.319 8
8.41 1.04 6.36 10.46 0.00 0.00 X1 > 0.991 & X7 > 0.482 9
8.94 1.39 6.22 11.67 0.00 0.00 X1 > 0.991 & X7 > 0.482 10
8.30 5.49 -2.45 19.05 0.13 0.13 X1 >= 0.326 & X1 <= 4.687

& X7 >= 0.22 & X7 <=
4.886

Pooled

Table 1.5: X1 and X7 k-fold Interaction Results

Overall, CVtreeMLE is able to determine subspaces in the respective variables that have
the most impact on the endocrine disrupting outcome. Of note is the fact that no interactions
include the variables X3 and X6 both of which have no impact on the outcome.

Comparison to Existing Methods

Currently, quantile g-computation is a popular method for mixture analysis in environmental
epidemiology. The method yields estimates of the effect of increasing all exposures by one
quantile, simultaneously under linear model assumptions. Quantile g-computation looks like:
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Figure 1.12: K-fold specific results for the interaction X1 and X7

Yi = β0 +
d∑
j=1

βjX
q
ji + βZi + εi

Where Xq are the quantized mixture components and Z are the covariates. Which
works by first transforming mixture components into quantiles. Then the negative and
positive coefficients from a linear model for the mixture components are summed to give
a mixture (Ψ) summary measure which characterizes the joint impact. There are many
assumptions that should be poignant after our discussion of mixtures. Firstly, quantiles may
not characterize the exposure-response relationship (could be non-monotonic) which occurs in
endocrine disrupting compounds. For interpretable weights and mixture estimate Ψ, assumes
additive relationship of quantiles (Ψ is just sum of β’s in front of mixture components).
After our discussion, in mixtures our main goal is model possible interactions in the data
because we expect exposures to have non-additive, possible non-monotonic, antagonistic
and agonistic relationships. Therefore, we should expect interactions in our mixture data.
In quantile g-computation, with the inclusion of interactions, the proportional contribution
of an exposure to the overall effect then varies according to levels of other variables and
therefore weights cannot be estimated. Because we can never assume no interactions, quantile
g-computation then boils down to getting conditional expectations when setting mixtures
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to quantiles through a linear model with interaction terms specified by the analyst. After
our discussion of mixtures this should feel incorrect. As we argue, the important variables,
relationships, and thresholds in a mixture are all unknown to the analyst which makes this
a data-adaptive target parameter problem. Even testing quantile g-computation on the
NIEHS data is difficult because we don’t know what interactions to include a priori. The
best we can do is run it out of the box and with two-way interactions and compare results
to the ground-truth measures. Lastly, quantile g-computation does not flexibly control for
covariates.

We run quantile g-computation on the NIEHS data using 4 quantiles with no interactions
to investigate results using this model. The scaled effect size (positive direction, sum of
positive coefficients) was 6.28 and included X1, X2, X3, X7 and the scaled effect size (negative
direction, sum of negative coefficients) was -3.68 and included X4, X5, X6. Compared to
the NIEHS ground-truth, X3, X6 are incorrectly included in these estimates. However the
positive and negative associations for the other variables are correct.

Next, because we expect interactions to exist in the mixture data, we would like to assess
for them but the question is which interaction terms to include? Our best guess is to include
interaction terms for all the exposures. We do this and show results in Table 1.6.

Estimate Std. Error Lower CI Upper CI Pr(>|t|)

(Intercept) 21.29 1.58 18.19 24.39 0.00
psi1 0.02 1.62 -3.16 3.20 0.99
psi2 0.59 0.67 -0.71 1.90 0.37

Table 1.6: Quantile G-Computation Interaction Results from NIEHS Synthetic Data

In Table 1.6 Ψ1 is the summary measure for main effects and Ψ2 for interactions. As
can be seen, when including all interactions neither of the estimates are significant. Of course
this is to be expected given the number of parameters in the model and sample size n = 500.
However, moving forward with interaction assessment is difficult, if we were to assess for
all 2-way interaction of 7 exposures the number of sets is 21 and with 3-way interactions
is 35. We’d have to run this many models and then correct for multiple testing. Hopefully
this example shows why mixtures are inherently a data-adaptive problem and why popular
methods such as this, although succinct and interpretable, fall short even in a simple synthetic
data set.

Bayesian kernel machine regression (BKMR) is a flexible method for mixed exposure
analysis [8], implemented in the R package bkmr. We are able to directly compare our results
to a study that applied BKMR to the same dataset, using their provided workbook of results.
While BKMR, like our approach, identifies X3 and X6 as non-predictors, it does so by showing
nonvarying cross-sectional plots for these exposures. Similarly, the user must choose the
interactions of interest, which are then analyzed as bivariate plots. However, BKMR lacks

https://jenfb.github.io/bkmr/SimData1.html
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statistically rigorous summary measures for these marginal or interaction effects, unlike what
we report in our CVtreeMLE method.

In BKMR, joint results are given for a quantile increase in all exposures. However, no
information is provided about which exposures (and in which directions) these joint impacts
occur. In contrast, our CVtreeMLE method explicitly considers and accounts for antagonistic
relationships that nullify one another, providing a more nuanced understanding of the data.

Moreover, while BKMR offers flexibility, its results primarily consist of a series of plots
and comparisons for chosen exposure quantile changes, with no succinct thresholds like the
ones provided by CVtreeMLE. BKMR’s interpretability relies heavily on the user’s query,
which can lead to selective reporting and potentially biased interpretations.

Although BKMR is a versatile method for mixed exposure analysis, it has limitations
compared to our CVtreeMLE approach. BKMR lacks statistically rigorous summary measures
based on proven asymptotic theory, does not provide comprehensive information about joint
impacts of exposures, and relies on user queries, potentially introducing subjectivity and
selective reporting. These limitations highlight the advantages of our CVtreeMLE method,
which offers more robust and interpretable results for analyzing mixed exposures.

NHANES Data

Environmental chemical and metal exposure can affect telomere length, a biological marker
that has been recognized as a significant mediator in the pathogenesis of adverse health
outcomes, including several chronic diseases and cancers. Telomeres, the protective end caps
of chromosomes, are crucial for maintaining genome stability. Their length, particularly in
leukocytes (LTL), has been regarded as a barometer of biological aging, with implications for
human health.

Shortened LTL has been linked to increased all-cause mortality and a range of age-
related diseases such as cardiovascular disease and some types of cancer. Paradoxically, some
studies also suggest longer LTL might be associated with an increased risk of certain cancers,
pointing to a complex relationship that may vary across disease types. This counterintuitive
link between longer LTL and certain cancers is thought to result from increased cellular
proliferation and potential for malignant transformation.

Studies investigating the association of metals with LTL have predominantly focused on
single-metal effects [114, 126, 15]. Some studies have examined the overall joint associations
of metal mixtures with LTL using parametric models, such as multiple linear regression or
quantile-sum g-computation [50, 60]. These methods, however, may not fully capture the
complexity of exposure effects across the entire exposure space, especially when considering
threshold effects.

Metal mixtures can cause oxidative stress which disrupts telomere length homeostasis,
impacting cellular aging and disease. Given the significant environmental health burden
of metal exposure, and the known involvement of LTL in disease pathogenesis, it’s critical
to extend our understanding of these joint associations. Our study aims to investigate
potential thresholds in mixed metal exposure which might influence LTL. Such thresholds
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could represent critical points of biological interaction, providing novel insights into exposure-
related health risks and informing effective interventions.

Moreover, our objectives are two-fold: 1) to demonstrate the application of CVtreeMLE
results on real-world data, and 2) to provide the data and data processing code through
the open-source CVtreeMLE package. As part of this initiative, we develop a pipeline to
download and clean National Health and Nutrition Examination Survey (NHANES) dataset,
and provide this as a resource in the CVtreeMLE package.

We download and format the relevant NHANES 1999–2002 dataset containing demographic
data, disease history, nine urine metals, and LTL. The demographic data used as possible
confounders (W ) include age, gender, race, education level, marital status, alcohol, smoking
(cotinine) , body mass index (BMI), family poverty ratio (PIR), fasting glucose, systolic and
diastolic blood pressure, exercise and birth country. Urine metal contained barium (Ba),
cadmium (Cd), cobalt (Co), cesium (Cs), molybdenum (Mo), lead (Pb), antimony (Sb),
thallium (Tl) and tungsen (W). These metals sampled in urine (as opposed to blood samples)
were available in the NHANES data with accompanied LTL. The outcome is LTL. The
number of observations in this test data is 2510. The coding pipeline and data are available
in the CVtreeMLE package.

We apply CVtreeMLE using the default learners in each stack. We use 10-fold CV and
set the max number of iterations in the iterative backfitting to 10 as well. Because previous
research has shown the exposure to metals shortens LTL, we set the ATE direction to negative
to select trees in the data-adaptive procedure which have the minimum (negative) impact
and thus return negative ATEs for each fold.

Mixture ARE Standard Error Lower CI Upper CI P-value P-value Adj Union Region % Fold

0.06 0.04 -0.02 0.13 0.17 1.00 cadmium >= 0 & cad-
mium <= 0.715 &
molybdenum >= 19.8
& molybdenum <=
436.8

0.80

-0.03 0.01 -0.06 -0.01 0.02 0.37 cadmium >= 0.027 &
cadmium <= 36.777 &
thallium >= 0.01 &
thallium <= 0.38

1.00

Table 1.7: Consistent Pooled TMLE Results NHANES Metal Mixture-LTL

Table 1.7 shows the pooled TMLE ARE results for rules found in more than 75% of the
folds. Here we see rules including cadmium and thallium were found in all the folds and rules
including cadmium and molybdenum were found in 80% of the folds. The cadmium-thallium
interaction had a significant ARE of -0.03 and the cadmium-molybdenum was borderline
significant with an ARE of 0.06. These results show that, exposure to high levels of cadmium
>= 0.027 and low levels of thallium <= 0.38 is associated with a reduced telomere length
of 0.03 compared to exposure levels of cadmium levels lower than 0.027 and thallium levels



CHAPTER 1. CVTREEMLE 39

greater than 0.38. This result implies an antagonistic relationship between cadmium and
thallium. Likewise, telomere length was longer (0.06) for those exposed to low levels of
cadmium <= 0.715 and high levels of molybdenum >= 19.8 compared to those exposed to
the inverse exposure region for these two metals.

Like the NIEHS synthetic data results, we can investigate the k-fold specific results for
these pooled results. Let’s look at the cadmium and thallium interaction in each fold to see
how stable the partition points were for each metal.

ARE SE Lower CI Upper CI P-Value P-Value Adj Region

-0.03 0.06 -0.15 0.09 0.67 1.00 thallium <= 0.21 & cadmium >
0.243

-0.04 0.03 -0.10 0.03 0.24 1.00 cadmium > 0.295 & thallium <=
0.31

-0.03 0.03 -0.09 0.03 0.32 1.00 thallium <= 0.21 & cadmium >
0.101

-0.05 0.04 -0.13 0.02 0.14 1.00 cadmium > 0.097 & thallium <=
0.38

-0.03 0.03 -0.09 0.03 0.37 1.00 cadmium > 0.295 & thallium <=
0.21

-0.03 0.05 -0.12 0.06 0.54 1.00 thallium <= 0.21 & cadmium >
0.143

-0.04 0.08 -0.20 0.12 0.62 1.00 cadmium > 0.29 & thallium <=
0.21

-0.04 0.05 -0.14 0.06 0.44 1.00 thallium <= 0.36 & cadmium >
0.092

-0.02 0.06 -0.13 0.10 0.76 1.00 cadmium > 0.027 & thallium <=
0.14

-0.03 0.04 -0.11 0.05 0.52 1.00 thallium <= 0.22 & cadmium >
0.254

-0.03 0.16 -0.34 0.27 0.83 0.83 cadmium >= 0.027 & thallium
<= 0.38

Table 1.8: K-fold specific results for cadmium-thallium interactions associated with LTL

Table 1.8 shows the k-fold specific results for cadmium and thallium interaction. This
interaction was found in all the folds with an ARE ranging from -0.02 to -0.05. None of
the fold specific results were significant due to the variance estimates being calculated on
the 251 observations in each validation fold, making standard errors high. However, we
see consistent partitioning of thallium between 0.14 and 0.38 and partitioning of cadmium
between 0.027 and 0.29. Overall, we see consistent cut-points across the folds which indicates
this interaction is stable. The last row in this table is the inverse weighted pooled results.
Here we can see that we gain much power by using the pooled influence curve in the pooled
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TMLE procedure which is able to borrow variance information across the folds because
all estimates are cross-estimated. Here, we can see the pooled estimated has much higher
variance and wider confidence intervals.

ARE SE Lower CI Upper CI P-Value P-Value Adj Mix Rule fold

0.05 0.04 -0.04 0.14 0.30 1.00 molybdenum > 55.2 & cadmium
<= 0.384

2

0.04 0.10 -0.15 0.23 0.68 1.00 molybdenum > 52.9 & cadmium
<= 0.368

3

0.01 0.04 -0.07 0.09 0.77 1.00 cadmium <= 0.715 & molybde-
num > 19.7

4

0.11 0.14 -0.16 0.37 0.42 1.00 cadmium <= 0.35 & molybdenum
> 102.5

5

0.05 0.05 -0.04 0.14 0.27 1.00 cadmium <= 0.292 & molybde-
num > 57.2

6

0.02 0.22 -0.41 0.46 0.92 1.00 cadmium <= 0.124 & molybde-
num > 21.7

7

0.02 0.06 -0.09 0.14 0.71 1.00 cadmium <= 0.429 & molybde-
num > 44.5

8

0.14 0.28 -0.42 0.69 0.63 1.00 cadmium <= 0.131 & molybde-
num > 55.6

9

0.04 0.41 -0.77 0.84 0.93 0.93 cadmium >= 0 & cadmium <=
0.715 & molybdenum >= 19.8 &
molybdenum <= 436.8

Pooled

Table 1.9: K-fold specific results for cadmium-molybdenum interactions associated with LTL

Lastly, we look at the cadmium-molybdenum interactions in Table 1.9. As we can see
here, interactions are not found in every fold and the partition points have a larger range
although they all point in the same direction (low cadmium and high molybdenum) and all
fold specific results are positive. This makes sense given that molybdenum processes proteins
and genetic material like DNA and helps break down drugs and toxic substances that enter
the body. Therefore, we would expect low cadmium and high molybdenum to be associated
with longer telomere length. An association between molybdenum and longer LTL was found
in [114].

Overall, in this NHANES example, we show that in real world data, CVtreeMLE can
answer questions regarding expected outcomes under different exposure levels of a mixture
which are otherwise occult given the limitation of existing methods.

1.8 Software
The development of asymptotically linear estimators for data-adaptive parameters are critical
for the field of mixed exposure statistics. However, the development of open-source software
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which translates semi-parametric statistical theory into well-documented functional software
is a formidable challenge. Such implementation requires understanding of causal inference,
semi-parametric statistical theory, machine learning, and the intersection of these disciplines.
The CVtreeMLE R package [63] provides researchers with an open-source tool for evaluating
the causal effects of a mixed exposure using the methodology described here. The CVtreeMLE
package is well documented and includes a vignette detailing semi-parametric theory for
data-adaptive parameters, examples of output, results with interpretations under various
real-life mixture scenarios, and comparison to existing methods. The NIEHS synthetic data
and the NHANES mixed metal exposure data are provided. The NIEHS synethetic data
application is used in the vignette of the package which makes these results reproducible
to any researcher and likewise the NHANES data and code are provided for reproducibility.
CVtreeMLE can run sequentially or parallelized across folds using the furrr package [104].
New statistical software using machine learning often presume the availability of significant
computational resources in order to run in a timely manner. Here, our applications of NIEHS
and NHANES were all run on a personal macbook machine in under 30 minutes by utilizing
parallelization and using flexible yet efficient estimators. Of course, for the simulations high
performance computing was used to parallelize iteration over clusters. To-date in scientific
publication, the release of reproducible software is the exception rather than the rule. In
an effort to make robust statistical software adopted in the future, rather than reliance of
simple parameteric models, we make CVtreeMLE available with clear, easily accessible, highly
detailed documentation of the coding methods. We also make all functions user-accessible,
and develop numerous tests and examples. Coding notebooks show simulations of mixed
exposure data and CVtreeMLE output with detailed summaries of interpretation. Lastly, the
CVtreeMLE package is well maintained to ensure accessibility with ongoing improvements
tested at each iteration. The CVtreeMLE package has been made publicly available via
GitHub. A schematic that describes the CVtreeMLE method is shown in Figure 1.13.

1.9 Discussion
In this paper we introduce a new method for estimating the effects of a mixed exposure. Our
approach treats ensemble decision trees as a data-adaptive target parameter for which we
estimate the average effects of exposure for regions identified in the best fitting decision trees.
This is done within a cross-validated framework paired with targeted learning of our target
parameter which provides estimates that are asymptotically unbiased and have the lowest
variance for studies which satisfy the unconfoundedness and positivity assumptions. Our
proposed method provides valid confidence intervals without restrictions on the number of
exposure, covariates, or the complexity of the data-generating process. Our method first
partitions the exposure space into subspaces or regions that best explains the outcome. The
output of our method is the exposure effect and respective confidence intervals if all individual
were exposed to the exposure region compared to if all individual were not exposed to this
region. Our approach has potentially many important applications including identifying

https://github.com/blind-contours/CVtreeMLE
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Figure 1.13: CVtreeMLE Schematic

what combinations of drugs lead to the most beneficial patient outcomes as well as finding
what combinations of pollution chemicals have the most deleterious outcomes on public
health. Our approach allows for "dredging with dignity" wherein exposure regions can be
discovered in the data which are not known a priori and still provide unbiased estimates for
the target parameter with valid confidence intervals. This approach of course comes with
some cost as construction of a pooled region across the folds is rather ad hoc. This is the
main limitation in the proposed method and other alternatives may exist such as using the
average partitioning values of each exposure variable rather than our union approach which is
conservative. Our simulations with ground-truth, NIEHS synethetic data and real-world data
application show the robustness and interpretability of our approach. In an effort to make
adoption of semi-parametric methods such as this more seamless we provide the CVtreeMLE
R package on github which is well documented for analysts to apply to their respective data.
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Chapter 2

SuperNOVA

In many fields, including environmental epidemiology and medicine, researchers strive to
understand the joint impact of a mixture of exposures or treatments. This involves analyzing
a vector of exposures or treatments rather than a single exposure, with the most significant
individual exposures and exposure sets being unknown. Examining every possible interaction
or effect modification in a high-dimensional vector of candidates can be challenging or even
impossible. To address this challenge, we propose a method for the automatic identification
and estimation of individual exposures in a mixture with explanatory power, baseline covariates
that modify the impact of a mixture exposure or set of mixture variables, and sets of mixture
exposures that have synergistic non-additive relationships. We define these parameters in a
realistic nonparametric statistical model and use data-adaptive machine learning methods to
identify these variables and variable sets while estimating the nuisance parameters for our
target parameters of interest to avoid model misspecification. We establish a prespecified
target parameter applied to variable sets when identified and use cross-validation procedures
to train efficient estimators employing targeted maximum likelihood estimation for our
target parameter given these sets. Our approach applies a shift intervention targeting
individual variable importance, interaction, and effect modification based on the data-
adaptively determined sets of variables. Our methodology is implemented in the open-source
SuperNOVA package in R, enabling researchers to discover interaction and effect modification
in a mixed exposure, providing robust statistical inference for these estimands without relying
on arbitrary parametric assumptions. Our approach has broad applications across various
fields and holds the potential to significantly advance our understanding of complex mixtures
of exposures. We demonstrate the utility of our method through simulations, showing that our
estimator is efficient and asymptotically linear under conditions requiring n1/4-consistency of
certain regression functions. We apply our method to the National Institute of Environmental
Health Science mixtures workshop data, revealing correct identification of antagonistic and
agonistic interactions built into the data. Additionally, we investigate the association between
exposure to persistent organic pollutants and longer leukocyte telomere length and compare
findings to previous results using other mixture methods.
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2.1 Introduction
Individual health outcomes are influenced by the complex interplay of our environment
and biology. We are exposed to multiple pollutants simultaneously, such as air pollution
and contaminants in water. As a result, we should expect complex relationships to exist
between these exposures, where certain exposures synergize to create super-additive effects
on outcomes, and others antagonize or nullify the effects of exposure. Despite this, most
epidemiological studies have focused on analyzing one pollutant at a time [66, 106, 115],
partly due to the reliance on traditional generalized linear models (GLMs) that estimate each
mixture component after controlling for others [4, 29, 120]. Such models are inadequate for
accurately modeling complex multi-pollutant mixtures and understanding their relationships.
The inadequacy of the use of parametric models to efficiently explore the space of possible
interactions is a significant limitation in environmental exposure data analysis. Traditional
methods, such as parametric models, struggle to capture complex relationships due to their
rigid assumptions and constrained structure. GLMs attempt to model complex effects;
however, their constrained nature restricts their ability to accurately represent the true
underlying relationships. Furthermore, alternative approaches like tree-based methods do
not provide explicit estimators of interactions, limiting their utility in deciphering intricate
relationships between various factors. Consequently, there is a growing need for more flexible
and adaptive methods that can better capture the intricacies of environmental exposure data,
allowing for a more comprehensive understanding of the potential causal relationships and
interactions at play.

In the context of analyzing mixture data using GLMs, it is critical to consider the limita-
tions of this modeling approach. Mixture data is often characterized by high-dimensionality,
multicollinearity, nonlinearity, and complex interactions among exposures. These features are
well-established in the literature [10, 106, 117, 7]. When applying GLMs to such data, the
analyst is essentially imposing a linear function on a non-linear relationship, which raises
important questions about the interpretation of the resulting model coefficients. Specifically,
what is the meaning of the beta coefficients obtained from this linear projection, and is there
any utility in interpreting the coefficients in the presence of non-linearity and interactions?
Furthermore, when estimating the joint impact of co-exposures, does it make sense to simply
add up the coefficients obtained from the GLM, such as what is done in weighted quantile
sum regression? These are important considerations that we address in this study as we
introduce a new statistical method for analyzing mixture data.

In order to derive meaningful interpretations from statistical quantities, it is important
to begin by framing the research question as a causal one. For example, when considering
the impact of mixed exposures to persistent organic pollutants, the relevant questions may
involve the effect of a specific dioxin level on leukocyte telomere length, the difference in
leukocyte telomere length between individuals exposed to dioxin levels above and below EPA
regulations, or the combined effect of increases in dioxin and polychlorinated biphenyl (PCB)
exposure on leukocyte telomere length. To answer these questions, it is necessary to use
estimators that make minimal assumptions and can capture the underlying functional forms,
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including interactions and nonlinearity, of the mixture data. This requires the use of flexible
algorithms to avoid unrealistic linear assumptions.

Analysts faced with high-dimensional and multicollinear exposure data often turn to
methods like principal component analysis (PCA) [123, 82] or penalized regression [71, 116,
118, 65] to address these challenges. PCA produces a set of linearly uncorrelated variables
that represent combinations of the original exposures, and these are then used as predictors
in a linear model. Penalized regression models, such as least absolute shrinkage and selection
operator (LASSO) or Ridge regression, can actively select a smaller set of exposures from
the full exposure profile, based on the strength of their associations with the outcome.
While these methods can help with issues of multicollinearity and high-dimensionality, the
resulting quantities are often not easily interpretable in the context of causal questions that
is informative for chemical regulation and public policy. For example, with PCA, it can
be difficult to link the resulting principal components to specific exposures, and it may
not be clear how the outcome changes with an increase in a particular exposure. Similarly,
with penalized regression models, the selected subset of exposures may not represent a
causal set, and interpreting the resulting coefficients may not be straightforward given the
penalization imposed. Another popular approach in mixed exposure analysis involves: 1)
reducing dimensionality through a technique such as PCA, 2) using a regression model on
the reduced set of variables, 3) summing up the coefficients to estimate the joint effect of
the mixture, and 4) possibly using Bayesian kernal machine regression (BKMR) to assess for
nonlinearity/interaction. However, given evidence of nonlinearity and interaction found in
many studies using the more flexible BKMR model, the question remains on how to interpret
individual or summed coefficients in a misspecified linear model, and how these results address
the proposed questions about mixed exposure.

In general, researchers need methods based on modified treatment policies. That is,
methods that allow understanding of how various health related outcomes change given a
change in exposure where the interventions go through a model that most accurately captures
the underlying functional forms of the data. Therefore, the field needs non-parametric
definitions for marginal effects, interaction and effect modification based on modified treatment
policies. These estimates would provide answers for questions such as 1. what is the joint
impact of multiple exposures on an outcome, 2. how does the joint impact of co-exposure
compare to individual exposure (interaction)? and 3. is there heterogeneity in the impact of
joint exposure/interaction across different subpopulations of individuals?. In each of these
cases we need the target parameter to be defined outside considerations of the statistical
model being used. For example, traditionally it has been taught that to assess for interaction
to simply include an interaction term in a GLM. Of course, this is assessing for a multiplicative
interaction between (normally) two exposures in a projected linear model with only main
terms for the remaining exposures and covariates. Give there is likely nonlinearity in the
exposures and covariates with possible interactions between both, once again we ask what does
multiplying two exposures and estimating the coefficient of this term mean in a misspecified
linear model? Furthermore, effect modification and interaction are measured in the same
way with GLMs. Within the context of linear models, there is no statistical distinction
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between interaction and effect modification. The difference arises from interpreting the
interaction term used in the regression. However, within the non-parametric counterfactual
framework these target parameters are different. Interaction is defined as the effects given an
intervention on two or more exposures whereas effect modification is defined as the effect
of one intervention varying across strata of a second unperturbed variable. [100]. If we
consider two binary exposures, with observations defined as O = (W,A, Y ) where W are
covariates, A is a binary exposure and Y is the outcome, we might define interaction in
a mixture as the causal target parameter E[E[Y |A1 = 1, A2 = 1|W ] − [E[Y |A1 = 1, A2 =
0|W ]− E[Y |A1 = 0, A2 = 1|W ]] + E[Y |A1 = 0, A2 = 0|W ]] which in the first term states we
are taking the whole population and forcing individuals to be exposed to both exposures, the
second forcing individuals to be exposed to A1 and not A2, the third term forcing individuals
to be exposed to A2 but not A1 and the fourth term forcing individuals to not be exposed
to A1 or A2. By subtracting the individual exposures from the joint we can estimate the
greater impact a joint exposure has on the outcome. For such a target parameter we would
then show that we can construct an unbiased and maximally efficient estimator under certain
causal assumptions (i.e. no unmeasured confounding), but without imposing additional
modeling assumptions. Targeted maximum likelihood and efficient estimating equations are
two “recipes” for constructing such estimators that we could apply in this setting [57, 56] [31].

Of course, in most studies the mixture data is not composed of two binary exposures.
Our target parameter should be able to handle a variety of data types (binary, multinomial,
continuous) and many exposures. For a continuous exposure, there is no pathwise differentiable
dose-response parameter in a nonparametric model. However, we can use stochastic exposure
regimes, or stochastic interventions, which replaces fA, a function that gives rise to the
exposure A, and g(A | W ), the natural conditional density of A given covariates W , with a
candidate density gAδ(A | W ). More simply, we could replace the observed probability density
distribution of, say, persistant organic pollutant (POP) exposure with that of a distribution
if everyone were exposed an additional 1 pg/g unit. Because we are interested in the change
in probability density, this approach works for all data-types and easily extends to multiple
exposures, for example, observing how the joint density changes given an increase in a dioxin
and furan, which were exposures of interest in mixture analysis workshops to study impacts
on longer telomere length [68]. Using dx(Ax) notation to denote a shift in an exposures
conditional density distribution, we can extend the original definition of interaction under
joint binary intervention to: E[Y (d1(A1), d2(A2)]− [E[Y (d1(A1), A2)] + E[Y (A1, d2(A2))]
where now we are forcing the whole population to experience a shift in exposure(s) Ax for
some shift δ. This is simply comparing the outcome under joint exposure shifts to the sum
of individual shifts. This provides a non-parametric definition of interaction that is not
dependent on a particular estimator.

The same limitations to binary treatment also exists in methods for estimating the het-
erogeneous treatment/exposure effects. One approach to estimating heterogenous treatment
effects is through looking at the average treatment effect (ATE) within a specific subgroup
of the population defined by a set of covariates, this is known as the conditional average
treatment effect (CATE). In the context of environmental health and mixed exposures,
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estimation of heterogenous exposure effects can help identify vulnerable populations that
are differentially impacted by certain exposures or groups of exposures. These effects are
typically associated with exposure effect modifiers (EEMs), which are covariates that modify
the association of exposure on the outcome. Traditional parametric methods, such as GLMs,
can detect EEMs under stringent conditions about the data-generating process, but when the
posited functional relationship does not correspond to reality, inference is invalid. Detecting
interactions in data involves a data-adaptive approach, which when relying on regression
techniques, involves exploring various combinations of main effects and their tensor products.
This process can involve trying different polynomial terms, interaction terms, and other
transformations of the predictor variables to capture the complexity of the relationships
between them. However, the resulting parameters reported from such an approach are heavily
dependent on the model selection process.

More flexible semi-parametric methods have been developed and are described here
[55]. However, the metaalgorithms discussed in this paper, such as the T-learner and S-
learner, are limited to only binary treatment. The T-learner is a machine learning approach
for estimating the CATE, which involves training separate prediction models on treated
and control groups and then calculating the difference in their predictions for individual
observations. The S-learner is a machine learning approach for estimating the CATE, which
involves training a single prediction model on the entire dataset with treatment as an additional
covariate and then calculating the difference in predictions with and without treatment for
individual observations. While some researchers estimate heterogeneous treatment effects by
analyzing ATEs for meaningful subgroups or using causal forests [105], [55] propose a new
metaalgorithm, the X-learner, which builds on the T-learner and uses observed outcomes to
estimate unobserved individual treatment effects. This involves training separate prediction
models for treated and control groups, estimating individual treatment effects using both
models, and then using a third model to learn the relationship between covariates and these
estimated treatment effects to make individualized predictions. However, it is important to
note that the T-, S-, and X-learners may not be suitable for estimating the CATE in the
context of environmental exposures, where most chemicals are continuous, and alternative
methods are needed.

Our approach is to investigate how the conditional average treatment effect for various
stochastic shift interventions is different for certain vulnerable populations as an estimation
strategy for effect modification. To do this, we can use an a priori specified estimator to find
regions in the covariate space that best explain variance in the conditional treatment effects.
That is, we simply regress the vector of expected individual counterfactual differences under
a shift intervention onto the the covariates space using the optimal decision tree to identify
interpretable regions that explain variability in the conditional average treatment effect. This
approach then provides a semi-parametric definition of effect modification.

The problem only gets more complicated in mixtures. Non-parametric estimation of main
effects, interactions, effect modification, and mediation for a continuous mixture of exposures
(with more than two components), high-dimensional baseline covariates, and intermediates is
impossible without large sample sizes. As discussed, existing methods reduce the dimension of
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the problem artificially by imposing highly constrained models, resulting in biased estimations.
No method currently exists to simultaneously estimate all these estimands motivated by
causal parameters. Given these limitations, it is impossible to reduce the problem’s dimension
non-data-adaptively. Therefore, it is necessary to use the data both to define the specific
parameters of interest and to estimate the data-adaptively defined parameters, which is an
unavoidable part of the estimation problem. Addressing this issue with simplified models is
not a viable solution.

Recent developments in both data-adaptive parameters and new estimators for the impact
of relevant interventions on continuous exposures have paved the way for methodological
research advancements. The goal of this paper is to develop an estimation machine that,
under highly flexible (optimal) estimates of the data-generating distribution, can both identify
which potential causal parameters have support in the data and use cross-validated targeted
minimum loss-based estimation (CV-TMLE) to estimate and provide inference about them
without overfitting. This approach will allow for a more accurate and unbiased analysis of the
complex relationships in environmental exposure data. Furthermore, these estimates must be
interpretable using modified treatment policies.

Identifying these relationships and estimating the target parameter is challenging, as both
cannot be achieved using the same data without bias. To address this, sample splitting is
necessary where one part of the data is used to identify the variable relationships, while the
other is used to estimate the target parameters. We need a data-driven search of exposure
space to find the sub-spaces that, the change of which, result in the largest change in the
outcome, in a very large statistical model capable of capturing very complex relationships.
To do this, we propose using an ensemble of basis spline models and selecting the best one.
With this best fitting model, which is a linear combination of basis functions, we propose
a nonparametric way to do ANOVA. This is analogies to a simple type III ANOVA and
generalizes to big statistical models with joint exposures. Bases with interaction and effect
modification variables that meet a specific F-statistic threshold are used to estimate the
target parameters in the estimation data.

Our proposed method called SuperNOVA uses data-adaptive parameters [44] and cross-
validated targeted minimum loss-based estimation (CV-TMLE) [121], resulting in a powerful
approach for estimating the joint impact, interaction, and effect modification of a mixed
exposure. By using CV-TMLE our estimates are guaranteed to have consistency, efficiency,
and multiple robustness despite using highly flexible learners (ensemble machine learning)
estimate a data-adaptive parameters. Data-adaptive parameters refer to parameters of
interest that are identified and estimated through a data-driven process, in our case, the
exposures are identified and a stochastic shift in these variables are estimated using the
observed data. SuperNOVA is a statistical method that estimates the adjusted joint total
impacts of multivariate exposures by searching for the sub-spaces that are "most important"
for the outcome. This method generalizes associations away from discretized exposures to
interpretable parameters that can handle continuous joint exposures. SuperNOVA has a
built-in data-adaptive way for both estimation and parameter-generation to optimize for
"complexity," and is capable of modeling complex nonlinear functions while still being able
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to fit simpler models if supported by the data. The method estimates interactions using
a combination of shift interventions among the subspaces of joint exposures found in the
parameter-generating part and can also estimate effect modification for particular covariates
data-adaptively identified. Additionally, SuperNOVA provides marginal impacts of shift
exposures for the relevant subset of them determined in the parameter-generating part and
provides robust inference despite using the data to both define the parameter and estimate it
using CV-TMLE.

This manuscript is organized as follows, in Section 2.1 we give a background of semi-
parametric methodology for stochastic interventions, in section 2.2 we discuss the target
parameter for interaction given a fixed set of variables and in 2.3 we describe the effect
modification parameter under a fixed set of variables, 2.4 describes assumptions necessary for
our statistical estimates to have a causal interpretation. In section 3.1 we discuss estimation
and inference of the interaction for a fixed variable set. In 3.2 we discuss estimation of the
effect modification for a fixed variable set. In section 4 we discuss data-adaptively determining
the variable set. In section 5 we show how this requires cross-estimation which builds from
2.2 for a fixed variable set. In section 5 we expand this to cross-estimation to k-fold CV and
discuss methods for pooling estimates across the folds. Lastly, in section 5.3, because we
may data-adaptively choose different deltas (when the choice of shift is also data-adaptively
determined) across the folds and different variable sets chosen across the CV folds, we discuss
the pooled estimates across the folds. In section 6 we discuss simulations of interactions and
effect modification and show our estimates are asymptotically unbiased with normal sampling
distributions. In section 7 we apply SuperNOVA to the NIEHS mixtures workshop data and
identify interactions built into the synthetic data. In section 7.1 we compare SuperNOVA to
exising mixture methods. In section 7.2 we apply SuperNOVA to NHANES data to determine
if there is association between mixed POPs and leukocyte telomere length. Section 8 describes
our SuperNOVA software. We end with a brief discussion of the SuperNOVA method in
Section 9.

2.2 The Estimation Problem

Setup and Notation

Our setting is an observational study with baseline covariates (W ∈ Rp), multiple exposures
(A ∈ Rm), and a single-timepoint outcome (Y ). Let O = (W,A, Y ) denote the observable
data. We use P0 to denote the data-generating distribution. That is, each sample from P0

results in a different realization of the data and if sampled many times we would eventually
learn the true P0 distribution. We assume our O ∼ P0 are n independent identically
distributed (i.i.d.) observations of the random variable. We decompose the joint density as
pY,A,W (y, a, w) = pY |A,W (y, a, w)pA|W (a, w)pW (w) and make no assumptions about the forms
of these densities. Our structural causal model (SCM) implied by the time ordering:
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W = fW (UW ), A = fA(W,UA), Y = fY (A,W,UY )

where {fW , fA, fY } specify deterministic functions generating each variable {W,A, Y }
based on those preceding it and exogenous (unobserved) variables {UW , UA, UY }. We de-
note g0(A|W ) ≡ p0(A|W ), the conditional probability density of exposure, Q̄(A,W ) ≡
E0(Y |A,W ), the conditional outcome given exposure and covariates, and qW,0(W ) ≡ P0(W )
the probability of covariates. Our statistical target parameter, Ψ(P0), is defined as a mapping
from the statistical model,M, to the parameter space (i.e., a real number) R. That is, Ψ:
M→ R. We can think of this as, if Ψ were given the true distribution P0 it would provide
us with our true estimand of interest.

We can think of our observed data (O1 . . . On) as generating a (random) probability
distribution Pn that places probability mass 1/n at each observation Oi. Our goal is to obtain
a good approximation of the estimand Ψ, thus we need an estimator, which is an a-priori
specified algorithm that is defined as a mapping from the set of possible empirical distributions,
Pn to the parameter space. More concretely, the estimator is a function that takes as input
the observed data, a realization of Pn, and gives as output a value in the parameter space,
which is the estimate, Ψ̂(Pn). Since the estimator Ψ̂ is a function of the empirical distribution
Pn, the estimator itself is a random variable with a sampling distribution. So, if we repeat the
experiment of drawing n observations we would every time end up with a different realization
of our estimate. We would like an estimator that is provably unbiased relative to the true
(unknown) target parameter and which has the smallest possible sampling variance so that
our estimation error is as small as it can be on average.

Defining the Differential Effect of a Modified Exposure Policy

In problems with a single exposure or treatment we can apply a stochastic shift on the
exposure and get the average outcome under this post-intervention distribution under the
existing stochastic shift framework. We denote counterfactual outcomes under a stochastic
interventions as YAδ . Stochastic interventions modify components of the SCM by replacing
the equation that defines A and its natural conditional density g(A | W ) with a candidate
density gAδ(A | W ). In the absence of the intervention, A would be determined by a random
draw from the distribution g(A | W ). With the intervention, A is stochastically modified
by being drawn from the distribution defined by the candidate density gAδ(A | W ). This
can include static interventions, which place all mass on a single value. Static intervention
parameter include the average treatment effect where all observations are set to receive or
not receive treatment and we estimate the post-intervention outcome difference.

In terms of stochastic interventions, there are few restrictions on the choice of the candidate
post-treatment density gAδ(A | W ), but it is usually chosen based on the pre-intervention
density g(A | W ). A popular approach is choose a function d(A,W ; δ) which maps a pair
{A,W} to the post-intervention quantity Aδ. In these cases, the stochastic intervention is
referred to as a modified treatment policy (MTP). For example, [73] examined how county-
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level mobility affected COVID-19 cases. They estimated how much COVID-19 rates would
change if the average mobility in each county increased by some amount (e.g. 5%) using
stochastic interventions. In this setup, the policy does not dictate the mobility in each county:
each county’s post-intervention mobility depends on what level that county would otherwise
have “self-selected” to without the policy (i.e. the level that was actually observed). The
interpretations of the causal effects under MTPs and general stochastic interventions are
discussed in detail in [48, 40, 38]. In our case, we are only additively changing the distribution
such as shifting all POP exposure down by some δ and so we will use g0(a− δ | w) to denote
the shifted conditional probability density of A|W . We focus on a reduction since, in the
context of most environmental exposures, a reduced expossure policy is normally of interest.

A stochastic intervention gives rise to a counterfactual random variable YAδ := fY (Aδ,W, UY ),
where the counterfactual outcome YAδ ∼ PAδ

0 arises from replacing the natural value of a
treatment A with a shifted value Aδ. This shift is defined by a degree δ ∈ R, which describes
how much the exposure A should be shifted in the context of the stratum W (the individual
characteristics of a person). For example, if A is a continuous-valued dosage of a chemical
exposure such as POPs, then the degree of shift δ can be interpreted as the reduction in pg/g
of POPs an individual is exposed to. This reduction is from the natural exposure of POPs
they would normally be exposed to, based on their baseline characteristics W .

We can evaluate the causal effect of our intervention by considering the counterfactual
mean of the outcome under our stochastically modified intervention distribution. This target
causal estimand is ψ0,δ := EAδ

P0
{YAδ}, the mean of the counterfactual outcome variable YAδ .

[48] describe the identification of this parameter for one exposure. In our case, we want to
expand this identification to at least two variables. As such, for notational convenience we use
A to denote a subset of exposures from A. That is, if A are air pollution exposures: carbon
monoxide, lead, nitrogen oxides, ozone, particle matter 2.5, 10, and sulfur oxides, A may
be subsets of these such as particle matter 2.5 and lead or carbon monoxide and ozone etc.
Each of our target parameters involves a shift in A, which may be one or two variables. We
limit discussion to two exposures but estimating a shift in more than two exposures naturally
follows.

We describe it briefly here. We must assume that the data is generated by independent
and identically distributed units, and that there is no unmeasured confounding, consistency,
or interference (discussed in more detail in subsequent sections). Under these assumptions,
ψ0,δ can be identified by a functional of the distribution of O:

ψ0,δ =

∫
W

∫
A
EP0{Y (A = d(a, w)) | W = w}g0,(A = a | W = w)q0,W (w) da dw

or
ψ0,δ =

∫
W

∫
A
EP0{Y (a) | W = w}gδ(A = a | W = w)q0,W (w) da dw

which is the observed outcome under observed exposure integrated over the exposure
density shifted by δ. In more compact notation:
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ψ0,δ =

∫
W

∫
A
Q̄(A,W )gδ(A | W )qW (w) da dw

Mechanically this is the outcome predictions from our Q model integrated over density
predictions from our g model under δ shift integrated over our covariate density.

Our target parameters for interaction and effect modification build off this univariate
stochastic shift intervention. Specifically our conditional average treatment effect is defined
as the average of counterfactual differences in a covariate region. This is determined by
regressing the individual expected outcome differences onto the covariate space: YAδ − Ya|W .
Thus identification for this parameter is the same but we are integrating in a subset of W .
Our interaction target parameter requires estimates of the counterfactual outcome under
a joint shift and individual shifts. The above identification framework holds for a joint
intervention as well.

Target Parameter Causal Assumptions for Identification

Our above target parameter is defined on the causal data-generating process, so it remains to
show that we can define it only in reference to observable quantities under certain assumptions.
Each of our target parameters compares a shift on some subset of exposures to the observed
outcome under observed exposures to understand how the outcome changes under a modified
treatment policy. Here we give a brief description of each target parameter to show that each
requires either an individual shift or joint shift in exposure. With this identified each target
parameter can be estimated using the functional delta method.

For A = A1, A2 our interaction parameter looks like:

E[E[YAδ1,δ2 ,W ]− [E[YA1δ1 ,A2,W ] + E[YA1,A2δ2 ,W ]]]

Which is the expected outcome under the joint shift of A compared to the expected
additive outcome under each individual shift in A.

For our effect modification parameter:

E[E[Y |Aδ1,δ2 ,W )]− E[Y |A,W )]]|W ∈ V

Which is the expected mean difference in outcomes under a shift in A compared to the
observed outcome in a region of the covariates W .

Each of these parameters requires a shift in one or two exposures or:

ψ = E[E[Y |Aδ1,δ2 ,W ]]

Where, in the univariate exposure shift case, one of the δ’s is simply set to 0.
The above causal effects for this parameter are identified as long as the following assump-

tions hold:
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1. Unconfoundedness: Y (a)A|W for all a ∈ A, where W is a set of pre-treatment variables
that satisfies the backdoor criterion for A and Y .

2. Positivity: Pr(A = a|W = w) > 0 for all a ∈ A and w ∈ W , where W is the support of
W .

3. Consistency: Y = Y (a) for all a ∈ A.

4. Conditional Exchangeability: Y (a)Y (a′)|A = a′′ for all a, a′, a′′ ∈ A.

Our identification result shows that we can get at the causal counterfactual outcomes
under stochastic interventions by estimates in observable data under certain conditions.
Our goal is now to show how to efficiently estimate the observable interaction without
imposing any additional assumptions (e.g. linearity, normality, etc.). While our identification
assumptions may not always hold in all applications, we can at least eliminate all model
misspecification bias and minimize random variation. Now that we’ve established how to
estimate the interaction for a fixed set of exposures, we’ll turn our attention to the problem of
data-adaptively determining the variable set A and how to do so without incurring selection
bias in estimating the interaction for those respective variables.

Estimating the Modified Exposure Policy for One Exposure or
Treatment

In 2012, [48] derived the efficient influence function (EIF) for stochastic interventions in a
nonparametric modelM, which is the essential quantity needed for constructing pathwise
differetiable parameters and deriving variance estimates. Given this EIF derivation they
also developed substitution, inverse probability weighted, one-step, and targeted maximum
likelihood (TML) estimators. These estimators allow for semiparametric-efficient estimation
and inference on the target quantity of interest ψ0,δ. The EIF is expressed as:

D(P0)(x) = H(a, w)(y −Q(a, w)) +Q(d(a, w), w)−Ψ(P0),

with,

H(a, w) = I(a+ δ < u(w))
g0(a− δ | w)

g0(a | w)
+ I(a+ δ ≥ u(w))

Here, the auxiliary covariate H(a, w) is a ratio of conditional densities p(a|W ). g0(a | w)
is the conditional density of A under the observed values and g0(a − δ | w) is the density
under a decreased of δ to a. Thus, the ratio indicates how much the conditional density
"moves" under a δ shift with larger values indicating large discrepancies between the shifted
and unshifted conditional densities.

Because TMLE is a plug-in estimator and often performs better for smaller samples
relative to alternatives [61, 93, 57, 56] we use the TMLE estimator to solve this EIF for our
stochastic intervention target parameters.
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Construction of the TMLE estimator has the following steps:

1. Use data-adaptive regression techniques to create initial estimates of g0(A,W ) and
Q0(A,W ).

2. For each observation, calculate an estimate of the auxiliary covariate H(ai, wi) as
described.

3. Using the estimates of the auxiliary covariate, create a one-dimensional logistic regression
model, and estimate the parameter ε in the model by:

a) Regressing Y onto H w/ offset for initial predictions Q̄(A,W ).

b) Update the counterfactual estimates under shift using logitQε,n(a − δ, w) =

logitQn(a− δ, w) + εHn(a− δ, w) once we know ε

The outcome of this regression model yields Q?

n.

4. Calculate the TML estimator Ψn of the target parameter by taking the average of the
estimates of Q?

n for each observation.

The constructed TMLE estimator for a stochastic intervention is asymptotically linear and
doubly robust. The central limit theorem then states that the distribution of the estimator
ψn is centered at ψ0 and is Gaussian. An estimate of the variance σ2

n can be computed,
allowing for Wald-style confidence intervals to be computed at a coverage level of (1− α) as
ψn ± z(1−α/2) · σn/

√
n. Additionally, resampling based on the bootstrap may also be used to

calculate the variance σ2
n in certain conditions.

Extension of the TMLE Estimator for Multiple Exposure Shifts

In a mixed exposure setting with multiple continuous exposures A ∈ Rm, we define a potential
outcome Y (a) for each of the infinite possible values of each exposure. Rather than focusing
on a stochastic shift in one exposure, we examine the differential policy effect of shifting
different exposure sets in the exposure space by some amount δi. For instance, we might be
interested in the effect of a regulation that concurrently reduces dioxins by δ1 and furans by δ2.
Both dioxins and furans are classes of toxic environmental pollutants that often coexist due
to their similar sources, such as industrial processes, waste incineration, and natural disasters
like forest fires. Importantly, prior research suggests that these chemicals may contribute to
the shortening of leukocyte telomere length (LTL), a biomarker associated with cellular aging
and increased disease risk [101]. Therefore, a joint reduction in these pollutants due to policy
intervention could be associated with observable changes in LTL, providing a biologically
plausible and measurable outcome of interest for our analysis.

From a policy standpoint, we may want to know how a joint reduction in both dioxins and
furans affects an outcome compared to the summed effect if dioxin and furan were changed
individually. This information could inform policy to concurrently enforce regulations on
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both toxic POPs if a simultaneous decrease in exposure results in better health outcomes
compared to a sequential reduction. In the bivariate case we can express this parameter as:

E[YAδ1,δ2 ]︸ ︷︷ ︸
1. Joint Shift of A1 and A2

− E[YAδ1,0 ]︸ ︷︷ ︸
2. Individual Shift of A1

− E[YA0,δ2
]︸ ︷︷ ︸

3. Individual Shift of A2

+ E[YA]︸ ︷︷ ︸
4. No Shift of A1 and A2

∫
W

∫
A
Q(a, w)gδ1,δ2(a, w)p(w) da dw−[∫

W

∫
A
Q(a, w)gδ1,0(a, w)p(w) da dw

+

∫
W

∫
A
Q(a, w)g0,δ2(a, w)p(w) da dw

]
In this expression, the first term represents the expected outcome under a joint shift of

exposures to dioxins A1 by δ1 and furans A2 by δ2. The terms inside the brackets represent
the expected outcomes under shifts for each exposure. By estimating this parameter, we
can evaluate the combined impact of interventions on both exposures simultaneously and
compare it to the separate effects of each exposure individually.

For instance, both dioxins and furans can originate from waste incineration processes. If
an intervention aimed at reducing both dioxin and furan emissions from waste incinerators
leads to substantially better health outcomes than interventions targeting dioxin and furan
emissions individually, policy measures might focus on implementing stricter controls on waste
incineration. On the other hand, if dioxins and furans are emitted from different sources, but
their combined effect on health is considerable, policies might need to target multiple sources
simultaneously to achieve significant health improvements. Thus, our approach can inform
policies that target multiple exposures at once and pinpoint the specific sources of these
exposures, ultimately contributing to more effective strategies for public health protection.

With this goal in mind, the parameter above compares the expected outcome under joint
shift to the sum of the individual shifts. The 2. and 3. terms in our above parameter are
estimated given the methodology described in section 2.3. The only addition we need to
make to our estimator is for the joint shift. However, our TMLE estimator is easily extended
to the joint shift case. As discussed, in section 2.3, we need a density estimator g0(a | w)
to obtain density values of A given W under both observed and shifted conditions - this is
used in construction of the "clever covariate". In the joint shift case this clever covariate
then becomes a ratio of joint densities. Rather than go after the joint density directly, for
which there are very few if any estimators, we estimate joint density by taking the product
of conditional and marginal densities. In the bivariate case, the joint density of A1, A2 is
estimated by:

g0(A1, A2|W ) = g0(A1|W ) · g0(A2|A1,W ) (2.1)
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Here we simply construct two density estimators using ensemble machine learning 1.
which estimates the density of A1 given W and the other which estimates the density of A2
given A1 and W , the product of these two densities gives us the joint density.

This forms the g portion of the likelihood we need for our TMLE estimator; we also
need the Q. In the joint shift scenario, Q(d(a, w), w) is the expected Y under a joint shift.
Here, we simply fit a Super Learner and get predictions under a joint shift. These are then
used as our initial estimates in the least favorable submodel along with the clever covariate
constructed as the ratio of joint densities. As we can see, estimating E[YA1δ1 ,A2δ2 ] follows the
existing TMLE framework for stochastic shift interventions with only slight modifications
to Q and g. We can then plug-in our individual estimates for each term in our interaction
target parameter to get the interaction estimate and use the delta method to combine EIFs
to get estimates of variance.

2.3 Estimating Effect Modification

Conditional Average Exposure Effects after Stochastic Intervention

As discussed, we aim to investigate the impact of a stochastic shift intervention in a subregion
of covariates, denoted as V as a measure of conditional average treatment effects (CATE). To
measure the impact of the intervention, we compute the ATE in the subpopulation within
the region V . We describe our approach below:

1. Define Q(a, w) = E[Y (a)|W = w] as the expected outcome under treatment level a
given covariates W = w.

2. Define gδ(a, w) = pδ(A = a|W = w) = p(A = a − δ|W = w) = g(a − δ, w) as the
probability density function of the shifted treatment assignment, where δ represents
the amount of shift.

3. Let p(w) be the marginal density of W at W = w.

4. Define the covariate space as W , where the random variable W takes values. Similarly,
let A ∈ A.

5. The shift ATE is computed as the difference between the expected outcomes under the
shifted treatment assignment and the original treatment assignment:∫

W

∫
A
Q(a, w)gδ(a, w)p(w) da dw

−
∫
W

∫
A
Q(a, w)g(a, w)p(w) da dw
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6. To compute the shift ATE for a subpopulation defined by the region V ⊆ W , we restrict
the integration to the region V and normalize by the probability of W ∈ V :∫

V

∫
A
Q(a, w)gδ(a, w)p(w) da dw −

∫
V

∫
A
Q(a, w)g(a, w)p(w) da dw

More concisely, let P (W,A, Y ) = P (Y |A,W )P (A|W )P (W ) represent the original distribu-
tion, and let Pδ,V(W,A, Y ) = P (Y |A,W )P (A− δ|W )P (W |W ∈ V) represent the distribution
under the shift δ and restricted to the subpopulation with W ∈ V . Then, the regional shift
ATE is given by:

ψδ,V = EPδ,V [Y ]

The difference ψδ,V − ψ0,V represents the regional shift ATE.
Importantly, V is not known a priori and must be discovered in the data. It is most

impactful to public policy or pharmaceutical development if this V was a region in W where
the effects of an intervention are most different compared to the complimentary covariate
space Vc. With this goal in mind, we can find regions in the covariate space that best explain
the variability of the individual exposure effects across observations. In these respective
covariate regions (v1, v2, v3..., vp) we want to take calculate the average stochastic intervention
effects:

τ̂vj =
1

nj

∑
i∈vj

Yi(Aδ)− Yi(A), j = 1, 2, ..., p

where τ̂ vj is the estimated stochastic exposure effect for region j, nj is the number of
individuals in region j, Yi(Aδ) and Yi(A) are the potential outcomes for individual i under
shift and no shift, respectively, and vj is the set of covariate values that define region j. The
estimator τ̂ vj takes the average treatment effect of all individuals in region j, which is the
difference between the expected outcome under changed exposure and the expected outcome
under unchanged exposure. The regions v1, v2, ..., vp are defined by the covariate values that
explain the most variance in the treatment effects.

Using a shallow decision tree to find V is a convenient approach in this case to uncover
heterogeneity in the stochastic shift parameter for several reasons 1. Interpretability: shallow
decision trees are often more interpretable than deeper trees or other complex models. This
is because they involve fewer splits, making it easier for researchers to understand the
relationships between the covariates and the resulting subgroups. This interpretability can
be valuable for communicating results to stakeholders and for guiding policy decisions; 2.
Reduced risk of overfitting: a shallow decision tree is less likely to overfit the data compared
to deeper trees, as it captures only the most significant splits in the covariates. By limiting
the complexity of the tree, we avoid capturing noise in the data and better generalize to
new, unseen data; 3. Computational efficiency: shallow decision trees are computationally
efficient to train and evaluate, as they involve fewer nodes and splits than deeper trees. This
efficiency can be especially beneficial when working with large datasets or when computational
resources are limited; 4. Detection of interacting effects: shallow decision trees prioritize
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the most important interactions between covariates, which can help to identify the primary
sources of heterogeneity in the stochastic shift parameter. This focus on combinations of
covariates (such as men older than a particular age who smoke) which can help researchers to
understand which combination pf factors have the most significant influence on the treatment
effect; 5. Robustness to multicollinearity: decision trees are less sensitive to multicollinearity
compared to other methods such as linear regression. This means that a shallow decision
tree can still perform well even when covariates are highly correlated, making it more robust
in finding the region V that exhibits heterogeneity in the stochastic shift parameter.

We rely on the fact that shallow decision trees don’t "overfit", that is, trees fall in
a Donsker class. [98] to avoid fitting trees in each fold of the cross-validation procedure
(discussed next). Instead we identify these regions on the full data and estimate effects in
each V, we descrive the cross-validation procedure first and then return to our estimation
approach for the CATE.

2.4 Discovering Variable Relationships

Basis Function Estimators for Variable Relationship Discovery

As discussed, we do not know a priori what variable sets to apply our various target
parameters. That is, we need a non-parametric method of finding variable sets such as A1, A2

(two exposures), A4 (one exposure), A2,W5 (one exposure and one baseline covariate) that
are predictive of an outcome. To accomplish this, we use a discrete Super Learner which
only considers models for the conditional mean of Y ∗ given A,W that are a function of basis
spline terms and their tensor products. These estimators construct non-linear models using
linear combinations of basis functions. In the most flexible setting we would create indicator
variables can be used to indicate if a variable X is less than or equal to a specific value xs.
The same can be done for X1, X2 to determine if both variable are less than or equal to a
specific value. Thus, a function of our outcome is written as:

ψβ = β0 +
∑

s⊂{1,2,...,p}

n∑
i=1

βs,iφs,i, where φs,i = I(Xi,s ≤ xs), A ∈ Rp

and s denotes indices of subsets of the Z (e.g., both functions of single variables and two
variables).

Estimators used in SuperNOVA that return tensor products of arbitrary order include
the earth [67], polySpline [81] and hal9001 [16] package. Each of these methods uses a linear
combination of basis functions to estimate the conditional outcome and we can therefore
extract variable sets used in these basis functions as our data-adaptively identified variable
sets.
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Non-Parametric Analysis of Variance

Given the best fitting basis spline estimator has been selected, we need a method for ranking
the "important" variable sets used by the algorithm. We propose a non-parametric approach
to the analysis of variance (ANOVA). This approach is analogies to a simple ANOVA (and
augmentations that adjust for covariates/interaction in a linear model such as Type III
ANOVA). However, we generalize the ANOVA to big statistical models with joint exposures
and variety of parameters that are relevant. Here, we use ANOVA decomposition as a general
tool for partitioning the variance of a response variable into various components based on
different basis factors. For example, in the case of MARS being selected as the best estimator,
the ANOVA is used to decompose the variance of the response variable into the contributions
of the individual linear basis functions, allowing for an assessment of their relative importance
in explaining the response. In the case of HAL being selected, the variance of the response
variable can be decomposed into the contributions of the individual zero order basis functions
(indicators of exposure-covariate regions).

In this case, the F-statistic is calculated using the same formula as in a traditional ANOVA,
but with a few modifications to account for the fact that the model is not linear in the original
covariates.

The basic idea is to partition the variance in the response variable into two components:
the variance explained by the linear combination of basis functions, and the residual variance
that is not explained by the model. The F-statistic is then calculated as the ratio of the
explained variance to the residual variance, adjusted for the degrees of freedom.

More specifically, suppose we have a linear combination of basis functions of the form:

f̂(x) =
P∑
p=1

βpBp(x)

where Bp(x) are the basis functions, and βp are the corresponding coefficients to be
estimated. We can then fit this model using least squares regression, and calculate the
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residual sum of squares (RSS) 1 which measures the proportion of the total variance in the
response variable that is explained by the model. The degrees of freedom for the model and
the residual are given by p and n− p− 1, respectively, where n is the sample size and P is
the number of basis functions used in the linear model. The F-statistic is then calculated as:

F-statistic =
ESS
P−1
RSS
n−P

which follows an F-distribution with p and n− p− 1 degrees of freedom under the null
hypothesis that the model has no predictive power. Here, the basis functions need not be
linear in the original covariates, but the relationship between the response variable and the
basis functions is still assumed to be linear.

An F-statistic value is calculated for each basis function. We then sum the F-statistics
for basis functions that include the same variable sets. This aggregated statistic is used
to rank the variable sets in order of importance for model fit. The variable sets can be
subseted based on the F-statistic quantile to select for a more concise list of variables. The
output from this process is a list of variable sets that meet the F-statistic threshold. For
example, (A2&A3, A1&W2, A4) would indicate the basis functions for two esposures (A2&A3),
an exposure and effect modifier (A1&W2) and one exposure (A4) met the specified F-statistic
threshold and will be used to estimate the interaction parameter (for the two exposures),
effect modification parameter (for the exposure and effect modifier) and marginal impact (for
the one exposure). This variable set procedure is conducted using the parameter-generating
sample in a V-fold cross-validation framework with data. This framework is discussed next.

2.5 Cross-Estimation
To achieve a consistent estimator of our various stochastic shift target parameters, it is
necessary to assume certain complexity conditions of the nuisance functions. Specifically, they

1Below we give a quick refresher for how RSS, TSS, and ESS are calculated:

RSS =

n∑
i=1

(
yi − f̂(xi)

)2
where yi are the observed values of the response variable. We can also calculate the total sum of squares

(TSS) as:

TSS =

n∑
i=1

(yi − ȳ)
2

where ȳ is the mean of the response variable. The explained sum of squares (ESS) is then given by:

ESS = TSS −RSS
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must be smooth (i.e., differentiable) and their entropy must be sufficiently small to satisfy the
Donsker conditions (e.g., if we assume Lipschitz parametric functions or VC classes). However,
in high-dimensional settings (p > n) or when using ML methods that are complex or adaptive,
the Donsker conditions may not hold ([87, 14]). Verifying the entropy condition is currently
only possible for certain machine learning methods, such as lasso. For methods that involve
cross-validation or for hybrid methods (like the Super Learner), it is difficult to verify such
conditions. Here, we employ a convenient solution by sample splitting, where two independent
sets are used for estimating the nuisance functions and constructing the stochastic target
parameter. This approach has been used since Bickel [6] and further developed by Schick
[92]. We extend the method of cross-fitting to k-fold cross validation, which averages our
stochastic shift estimates obtained from different partitions of the data not used for nuisance
parameter estimation, in this way we can use ML methods with semi-parametric estimation
problems while preserving efficiency and making use of the full-data.

Not only do we need to employ cross-validation to ensure convergence properties of
our estimators but we also need to embed data-adaptive discovery of our variable sets and
relationships into the cross-validation procedure. As discussed, in a mixture the mixture
marginal exposures, interactions and exposures with effect modifiers are unknown. If we were
to use the same data to both identify these variable sets and estimate our stochastic shift
parameters our estimates will be biased. Thus, we need to discover these variable sets in
our cross-validation framework for desirable convergence properties to hold. We split the
data into Pn−k (parameter-generating) and Pnk (estimation) samples. With Pn−k we find the
variable sets in our exposure space (using the basis functions from the best fitting b-spline
estimator). These variable sets determine which target parameter is applied. For individual
exposures found to be predictive of the outcome A, we estimate the individual shift parameter,
for A1, A2 we estimate the interaction parameter (which includes the individual and joint
shift inherently), for A,W we estimate the effect modification parameter which includes the
individual shift regressed onto the covariate W using the best fitting decision tree. In any
case, we have gn and Qn nuisance estimators which only differ in the joint estimation. Given
the identified variable sets we use the same Pn−k to train our gn and Qn estimators which are
needed for our TMLE update step to debias our initial stochastic shift estimates and give us
an asymptotically unbiased estimator. We then plug-in our Pnk to this unbiased estimator to
get our stochastic shift estimate in this estimation sample.

Let Q̄n denote a substitution estimator that plugs in the empirical distribution with
weight 1/n for each observation which approximates the true conditional mean Q̄0 in P0,
this estimator, in our case is a Super Learner, or ensemble machine learning algorithm, our
substitution estimator looks like:

Ψ(QPnk
) =

1

V

V∑
v=1

Q̄n−k(A
δn−k
n−k ,Wv)− Q̄n−k(A,Wv)

We split the data into K non-overlapping folds and fit K distinct models, denoted Q̄n−k .
Let Pnk and Pn−k be the estimation- and parameter-generating samples, respectively. Q̄n−k is
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a Super Learner model fit with the parameter-generating data, and An−k is the variable set
found with the same. Likewise, in the case where δ (the shift amount) is also data-adaptively
determined, this quantity is also found in the parameter-generating sample. Then, using
this exposure as well as the estimation-sample covariates, the predicted outcomes under
different counterfactual shifts can be obtained through the outcome regression model fit on
the parameter-sample data. The resulting cross-estimated TMLE estimator is an unbiased,
efficient substitution estimator of the target parameters of the data-generating distribution
of interest. This estimator looks like:

Ψ(Q?
Pnk

) =
1

V

V∑
v=1

{Q̄?
n−k

(Aδn−kn−k ,Wi)

The only alteration to the equation is Q̄?, the TMLE augmented estimate. This is
expressed as f(Q̄?

n−k
(A,W )) = f(Q̄n−k(A,W )) + εn−k · hn−k(A,W ), with f(·) being the logit

function, εn an estimated coefficient, and hn(A,W ) being a "clever covariate" which is then
cross-estimated. The initial estimates for the estimation-sample, which were created using
parameter-generating data and models, are altered via the least-favorable submodel. The
cross-estimated clever covariate looks like:

H(a, w) = I(an−k + δ < u(w))
gn−k(an−k − δ | w)

gn−k(an−k | w)
+ I(an−k + δ ≥ u(w))

In this step, we are using a Super Learner to estimate the density of the data-adaptively
determined exposure given a stochastic shift, denoted as gn−k(an−k − δ | w) = p(an−k − δ | w).
Specifically, we are using a parameter-generating sample to obtain the exposure, δ, and an
estimator gn. We then apply the δ to the exposure in the estimation sample and obtain
predictions for the density of that exposure. These predictions are plugged into the above
cross-estimated clever covariate used in the targeted maximum likelihood estimation (TMLE)
update.

K-fold Cross-Validation

Up to this point, we have discussed using a simple sample splitting technique for cross-
estimation of our target parameters. However, we can improve our approach by using k-fold
cross-validation, which allows us to make use of the full data. This involves dividing our
observations 1, ..., n into K equal size subgroups and defining an estimation sample Pk for
each k, which is the k-th subgroup of size n/K, while the parameter-generating sample Pn−k
is its complement. We rotate through the data in this round-robin manner, and for K = 10,
we obtain 10 different target parameter mappings An (exposures found in the fold), outcome
estimators Qn, and density estimators gn.

To obtain a summary measure of the target parameter found across the folds, such as the
average, we use a pooled targeted maximum likelihood estimation (TMLE) update. We stack
the estimation-sample estimates for each nuisance parameter and then perform a pooled
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TMLE update across all the initial estimates using clever covariates across all the folds to get
our estimate ε. We then update our counterfactuals across all the folds and take the average.

In each fold, we have initial estimates Qn−k(Y |A,W ) and a fold-specific clever covariate
hn−k(p(A|W )) of length k for a fold-specific exposure found using An−k. We stack all the
Qn−k ’s and hn−k(A|W )’s together, along with the outcomes in each validation fold, and
perform our fluctuation step.

f(Q̄n?(A,W )) = f(Q̄n(A,W )) + εn · hn(A,W )

Note that we have removed the k subscripts as we are now using cross-estimates for all of
n. We obtain the ε values from this model and then update the counterfactuals across all
the folds, taking the difference for our final counterfactual outcome under a shift. Similarly,
we use the updated conditional means, counterfactuals, and clever covariates to solve the
influence curve (IC) across the whole sample. By pooling the cross-estimates across the folds
and calculating the standard error (SE) for this pooled IC, we can derive narrower confidence
intervals than if we were to average the IC estimated in each of the folds, since the IC is
scaled by n and not n/K. This pooled estimate still provides us with proper intervals because
all estimates in its construction were cross-estimated.

An alternative approach is to report the k-fold specific estimates of the stochastic shift
parameters and fold-specific variance estimates for this target parameter using the fold-specific
IC. We do this as well. This is because, if the exposure A identified in each fold is highly
variable, the pooled estimates can be difficult to interpret. By providing both k-fold specific
and pooled results, users can investigate how variable a pooled result is across the folds. For
example, if exposure A2 is found in only one of ten folds, the estimates for this exposure are
likely inconsistent and should not be reported. On the other hand, if the exposure is found
in all ten folds, the estimates given a shift are likely robust and reliable in predicting the
outcome.

Pooled Estimates under Data-Adaptive Delta

Stochastic interventions, especially joint stochastic shift interventions (because we are taking
the product of two conditional density distributions), can be sensitive to positivity violations.
This can lead to bias and increased variance in exposure effect estimation given some shift.
This occurs if the shift is too large, where some subgroups have no chance of receiving a
specific exposure. This bias and variance occurs even when using an efficient estimator for a
target parameter such as TMLE. One way to address this issue is to use a reduced version of
the user provided δ, which constrains the magnitude of the shift to avoid positivity violations.
Reduced δ can help to reduce the bias and variance in exposure effect estimation by reducing
positivity violations. To do this, we treat δ as a data-adaptive parameter as well. That is, we
must identify a δ in the parameter-generating sample that meets some criteria of positivity
estimation and apply this δ to the estimation sample data.
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Let H(aδ, w)i be the ratio of probability densities for observation i given a shift in
exposure by δ. To ensure that all observations have a ratio below a specific threshold λ, we
can repeatedly reduce δ by a small step ε until the condition H(aδ, w)i < θ is satisfied for all
observations i. This is expressed as:

∀i, H(aδ, w) =
gn−k(an−k − δ | w)

gn−k(an−k | w)
≤ λ

Where λ is a specified threshold value. The δ is reduced until all values for the clever
covariate of density ratios is less than or equal to λ. This process is done with the parameter-
generating data using estimators trained on the same data. At each iteration we reduce
the δ by ε = 10% and the default λ in the package is 50. Meaning if any of the predicted
conditional probabilities are 50 times greater than the probability under observed exposure
the δ is reduced. This parameter is optional in the Super Learner package.

In the event that δ is held constant across the folds then pooling is simply the average
estimate for each target parameter across the folds. If δ is data-adaptive, then we provide
the average estimates under the average δ, that is we simply average the delta and pair it
with the average estimates and the pooled variance calculations described previously.

Estimating Regional Covariate Effect Modification

As discussed, our effect modification parameter is:

ψδ,V = EPδ,V [Y ]

Where V, a subset of W need to be discovered from the data. If we were to treat V as
a data-adaptive parameter then this could result in K slightly different regions where K is
the number of cross-validation folds explained above. Because we are using a very shallow
decision tree on a small subset of the covariates (1 or 2) it is unlikely our tree will overfit and
thus given these conditions we instead regress TMLE updated individual exposure effects
across the full data onto the covariate space rather than in each fold. That is, the stochastic
exposure effects are not regressed onto the full covariate space, instead the covariates that
modify the impact of an exposure are discovered in the parameter-generating sample and
we regress on these V ∈ W only. The V for which to find partitions in is treated as a
data-adaptive parameter but the partitions within each vi are determined using the full-data
to ensure interpretability.

The steps to this process are:

1. Stack the TMLE updated vector of counterfactual differences under stochastic shift
intervention δ across the folds for the parameter-generating samples.

2. Regress these exposure effects onto the covariates V in the parameter-generating sample
to identify regions that explain the most variability in the exposure effects.
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3. Create rule(s) for these regions.

4. Using the estimation sample exposure effects, similarly stacked across the folds, evaluate
the rules for regions V and take the average of the estimation sample exposure effects
in each region, similarly estimate variances based on the efficient influence function in
each region.

In order to estimate the variance using the EIF we need to weigh the EIF by the inverse
proportion of observations in a given region. This looks like:

V ar(θ̂r) ≈ 1

n

n∑
i=1

I(Wi ∈ r) · [D(P0)(θ̂(xi))]
2

In this equation, Var(θ̂r) represents the estimated variance of the target parameter θ
within the region r, θ̂r represents the estimate of θ within the region r, n represents the
sample size, Wi represents the covariates of the i-th observation, I(Wi ∈ r) is an indicator
function that equals 1 if Wi is in the region r and 0 otherwise, θ̂(xi) represents the estimate
of θ at the data point xi, and D(P0)(θ̂(xi)) represents the efficient influence function (EIF)
of the estimate at the data point xi.

The weighting by the inverse proportion of observations indicated by the indicator for the
region is achieved by multiplying the EIF squared by the indicator function I(Wi ∈ r) and
dividing by the sample size n. This ensures that the variance estimate is properly weighted
by the number of observations in the region. Note that this is an approximation and assumes
that the observations are independent and identically distributed (i.i.d.).

We find the regions rp using a Super Learner of shallow decision trees. Because the
complexity of these trees is very low, in high folds the single or dual partitions points are
likely the same as if applied to the full data. We rely on this complexity assumption to hold
in order to do one regression on the full data rather than estimating fold specific trees.

2.6 Simulations
In this section, we demonstrate using simulations that our approach identifies the correct
exposures, interactions and effect modifications used to generate the outcome and correctly
estimates the counterfactual mean difference in outcome under shift interventions.

Data-Generating Processes

We construct a data-generating process (DGP) where Y is generated from a linear combination
of different effect including marginal, interaction and effect modification. This DGP was
constructed to represent the complexity of a mixed exposure where mixture variables are
correlated but only some have an impact on the outcome and where certain effects are
modified by baseline covariates.
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Mixed Exposure Simulation

This DGP has the following characteristics, O = W,A, Y . Let W = (W1,W2,W3) denote
a random vector of covariates, where W1 and W2 are bivariate normal with mean vector
µ = (6, 7) and covariance matrix

ΣW =

(
1 0.4

0.4 1

)
and W3 is a binary variable with Bernoulli distribution with probability 0.5.

The mean values for the components of the mixture distribution A are computed as
µ1 = E[eW1/2], µ2 = E[W2/2], and µ3 = 5. That is exposure 3 is not associated with the
covariates. A exposure vector A = (A1, A2, A3) is then generated from a trivariate normal
distribution with mean vector µ = (µ1, µ2, µ3) and covariance matrix:

ΣA =

 1 0.5 0.8
0.5 1 0.7
0.8 0.7 1


A fourth mixture variable was created via A4 ∼ N (4, 2). The outcome Y is then generated

by:

Y = 1.3A4 +

({
A2

3 if W3 = 1

A3 if W3 = 0

)
+ 0.4A4A1 + 0.1W1 + 0.3W2

Where the third component of A depends on W3, A3 is squared if W3 is equal to 1, and
is left unchanged if it is equal to 0. In generating the outcome, this variable represents
effect modification or the differential impact of A3 depending on W3. Overall, built into this
outcome generating process there is a marginal impact of A4, a multiplicative interaction
between A1 and A4 and effect modification of A3 based on W3. There is no effect of A2 on
the outcome.

To calculate the ground-truth counterfactual mean under a shift intervention we simply
generate a very large data set from this DGP and apply various shifts to the exposures. We
apply a shift of 1 unit increase to each exposure. In the first simulation we deterministically
set the variable sets to evaluate estimates of the counterfactual outcomes under these shifts.
These is done with the var_sets parameter in SuperNOVA which, if is not null, bypasses
the data-adaptive determination of the variable sets in the basis functions. In the second
simulation we include the data-adaptive discovery of the variable sets to provide estimates
for evaluating the variable relationship identification through the basis function procedure.

Evaluating Performance

We assessed the asymptotic convergence to the true exposure relationships used in the DGP,
as well as the convergence to the true counterfactual differences for these exposures, in each
simulation. To do so, we followed the following steps:
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1. From this sample, we generated a random sample of size n from the DGP.

2. At each iteration, we used the parameter generating sample to define the exposure(s)
and create the necessary estimators for the target parameter dependent on the variable
sets. We then used the estimation sample to obtain the updated causal parameter
estimate using TMLE. We repeated this process for all folds.

3. At each iteration, we output the stochastic shift estimates given the pooled TMLE.

To evaluate the performance of our approach, we calculated several metrics for each
iteration, including bias, variance, MSE, confidence interval (CI) coverage, and the proportion
of instances in which the true variable relationships were identified. To ensure the rate of
convergence was at least as fast as

√
n, we multiplied each bias estimate by

√
n. We then

calculated the variance for each estimate and used it to compute the mean squared error
(MSE) as MSE = bias2 + variance. To account for different sample sizes, we multiplied the
MSE estimates by n. For each estimate, we also calculated the CI coverage of the true
stochastic shift parameter given the data-adaptively determined exposure. We calculated
these performance metrics at each iteration, performing 50 iterations for each sample size
n = (250, 500, 1000, 1500, 2000, 2500, 3000, 5000). We used SuperNOVA with 2-fold
cross-validation (to speed up calculations in the simulations) and default learner stacks for
each nuisance parameter and data-adaptive parameter. Additionally, the quantile threshold
to filter the basis functions based on F-statistic was set to 0 to include all basis functions
used in the final best fitting model.

Default Estimators

To use SuperNOVA, we need estimators for Q̄ = E(Y |A,W ) and gn = p(A|W ) (the conditional
density). SuperNOVA provides default algorithms to be used in a Super Learner [59] that
are both fast and flexible. For our data-adaptive procedure, we include learners from the
packages earth [67], polspline [81], and hal9001 [16]. The results from each of these packages
can be formed into a model matrix, on which we can fit an ANOVA to obtain the resulting
linear model of basis functions.

To estimate Q̄, we include estimators for the Super Learner from glm [62], elastic net
[27], random forest [111], and xgboost [13]. For the semiparametric density estimator gn, we
create estimators based on homoscedastic errors (HOSE) and heteroscedastic errors (HESE)
from the same estimators used in Q̄.

Results

Target Parameters Estimated by SuperNOVA Converge to Truth at 1/
√
n

We can determine the accuracy of our estimator based on its convergence rate in simulations,
which describes how fast the estimator approaches the true value of the parameter as the
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sample size increases in a DGP where there are marginal, effect modifying, interacting
and confounding effects. For our estimator to have desirable asymptotic properties this
convergence needs to be at 1/

√
n rate. 2

Figure 2.1 shows the absolute bias (A), MSE (B), CI coverage (C) and estimate standard
deviation (D) as sample size increases to 5000. For bias and MSE there is a converge to zero
at sample size 5000 apart from the effect modification parameter where there is still residual
bias at this sample size. For coverage, the average coverage for each target parameter were:
individual shift: 98%; effect modification: 95%; joint shift: 98%; interaction: 98%.

Although these plots show generally a reduction in bias, MSE, and SD as sample size
grows we need to ensure the rate of reduction is at 1/

√
n. To show this we multiply the bias

estimates by
√
n and we scale the MSE by n. 3

Figure 2.2 shows the scaled bias and MSE. The estimates for each target parameter look
relatively flat across sample size apart from the effect modification parameter which shows
some small variability. Generally these results show that the precision and error magnitude
remain consistent when accounting for sample size.

SuperNOVA’s Valid Inference Assessed Through Simulation

To ensure proper inference, we need to demonstrate that SuperNOVA’s estimator has a
normal sampling distribution centered at 0 and narrows as the sample size increases. We
assess this by examining the empirical distribution of standardized differences. Figure 3.7
shows the probability density distribution of the standardized bias compared to the true
estimates using 50 iterations per sample size. All estimates converge to a mean 0 normal
distribution with increasing sample size.

2

Briefly, in semi-parametric statistics, an estimator is said to be asymptotically linear if its bias approaches
zero as the sample size n approaches infinity, and its variance is proportional to 1/n. That is, the estimator
is linear with respect to the sample size n, and the error between the estimator and the true value decreases
at a rate proportional to 1/

√
n. The 1/

√
n convergence rate is necessary for asymptotically linear estimators

because it ensures that the estimator is consistent and efficient. Consistency means that the estimator
converges to the true value of the parameter as the sample size increases, and efficiency means that the
estimator achieves the smallest possible variance among all unbiased estimators. The 1/

√
n convergence rate

is also important because it determines the trade-off between bias and variance in the estimator. As the
sample size increases, the variance of the estimator decreases, but the bias may increase if the estimator
is not well-designed (such as if we were to apply a simple GLM to our DGP). The 1/

√
n convergence rate

ensures that the estimator is well-balanced, with small bias and variance, and is able to converge to the true
value of the parameter at a reasonable rate.

3

This quantity is called the Mean Squared Error of the Estimator (MSEE), the MSEE measures the expected
squared difference between the estimator and the true value of the parameter, normalized by the sample size.
The reason we scale the MSE by n instead of

√
n is that the MSE measures the average squared difference

between the estimator and the true value of the parameter, which is a measure of the error magnitude. The
sample size n represents the amount of information available to the estimator, which affects the precision of
the estimator’s estimate. When the estimator is more precise, the error magnitude is smaller, and the MSEE
will be smaller as well. Scaling the MSE by n reflects this relationship between precision and error magnitude.
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Figure 2.1: Bias, MSE, CI Coverage and Standard Deviation for Each Parameter Across
Sample Sizes

For example, Figure 3.7 A shows the sampling distribution of the standardized bias for
the marginal parameter or an individual shift. We can see that this sampling distribution
converges to a normal mean 0 distribution with standard deviation 1. Similarly, Figure 3.7
B shows the sampling distribution for estimates of a dual shift of two variables to measure the
joint impact. Figure 3.7 C shows estimates for effect modification, which breaks down to
estimates of individual exposure shifts within data-adaptively identified regions of a covariate,
and Figure 3.7 D shows the z-score distribution of the interaction parameter estimates.
In each case, as sample size increases, the estimates converge to a normal 0, 1 distribution,
indicating proper inference for SuperNOVA. Because the effect modification parameter is an
average of the counterfactual differences within a covariate region, we still see slight bias at
sample size 5000, this is due to averaging over fewer number of observations.
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Figure 2.2: Scaled Bias and MSE

2.7 Applications

NIEHS Synthetic Mixtures

The NIEHS synthetic mixtures data is a commonly used dataset to evaluate the performance
of statistical methods for mixtures. This synthetic data can be considered the results of a
prospective cohort study, where the outcome cannot cause the exposures, and correlations
between exposure variables can be thought of as caused by common sources or modes of
exposure. The nuisance variable Z can be assumed to be a potential confounder and not
a collider. The dataset has 7 exposures (X1 − X7) with a complex dependency structure
based on endocrine disruption. Two exposure clusters (X1, X2, X3 and X5, X6) lead to high
correlations within each cluster. X1, X2, X7 positively contribute to the outcome, X4, X5

have negative contributions, while X3 and X6 have no impact on the outcome. Rejecting X3

and X6 is difficult because of their correlations with cluster group members. This correlation
and effects structure is biologically plausible, as different congeners of a group of compounds
may be highly correlated but have different biological effects. The exposures have various
agonistic and antagonistic interactions, and Table 2.1 provides a breakdown of the variable
sets and their relationships. The synthetic data and key for dataset 1 are available on GitHub.
Figure 2.4 shows the marginal dose-response relationships.

https://github.com/niehs-prime/2015-NIEHS-MIxtures-Workshop
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Figure 2.3: Bias Standardized by Standard Error Compared to Ground-Truth Outcome
Under Shift Interventions

Given these toxicological interactions we expect these variable sets to be determined in
SuperNOVA. For example, we might expect a positive counterfactual result for X1, X2, X7

and negative results for X4, X5. Likewise, in the case for antagonistic relationships such
as X2, X4, we would expect a joint shift to get closer to the null given X4 antagonizes the
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Figure 2.4: Marginal Dose-Response Relationships

positive effects of X2. For X1, X2 we would expect the joint shift to be close to the sum of
individual shifts (not much interaction) but for X1, X7 there to be a more than additive effect
(some interaction).

The NIEHS data set has 500 observations and 9 variables. Z is a binary confounder.
Of course, in this data there is no ground-truth, like in the above simulations, but we can
gauge SuperNOVA’s performance by determining if the correct variable sets are used in
the interactions and if the correct variables are rejected. Because many machine learning
algorithms will fail when fit with one predictor (in our case this happens for g(Z)), we simulate
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Variables Interaction Type

X1 and X2 Toxic equivalency factor, a special case of concentration addition (both increase Y)
X1 and X4 Competitive antagonism (similarly for X2 and X4)
X1 and X5 Competitive antagonism (similarly for X2 and X4)
X1 and X7 Supra-additive (“synergy”) (similarly for X2 and X7)
X4 and X5 Toxic equivalency factor, a type of concentration addition (both decrease y)
X4 and X7 Antagonism (unusual kind) (similarly for X5 and X7)

Table 2.1: NIEHS Synthetic Data Interactions

additional covariates that have no effects on the exposures or outcome but prevent these
algorithms from breaking.

We apply SuperNOVA to this NIEHS synthetic data using 4-fold CV and the default
stacks of estimators used in the Super Learner for all parameters. We parallelize over the
cross-validation to test computational run-time on a newer personal machine an analyst
might be using. For this set-up, we intentionally use fewer folds (4) which may lead to less
consistent findings because less data (75%) is used for the parameter-generating sample to
identify the variable relationships compared to say 10 fold where 90% of the data is used.

Table 2.2 shows the marginal results from SuperNOVA when applied to this NIEHS
synthetic data set using the aforementioned settings. The Condition column shows the
variables identified across the folds. Psi shows the counterfactual mean difference under a
shift value listed under Delta compared to the observed average outcome. Fold indicates the
fold the specific result was found in and N is the number of observations in the fold.

Overall, SuperNOVA accurately rejects exposures X3, X6, finds marginal effects for
X1, X5, X7 consistently in all the folds and effects for X4 in three folds and X2 in two folds.
Directions of the estimates are as expected based on ground-truth where X1, X2, X7 are
positive and X4, X5 are negative. As seen in the dose-response curve, X2, X4 have the weakest
relationships which resulted in fewer fold detections and non-significant findings. The largest
effects are for X7 which is also true based on the dose-response relationships.

Comparison to Existing Methods

Currently, quantile g-computation is a popular method for mixture analysis in environmental
epidemiology. The method yields estimates of the effect of increasing all exposures by one
quantile, simultaneously under linear model assumptions. Quantile g-computation looks like:

Yi = β0 +
d∑
j=1

βjX
q
ji + βZi + εi

Where Xq are the quantized mixture components and Z are the covariates. Which
works by first transforming mixture components into quantiles. Then the negative and
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Condition Psi Variance SE Lower CI Upper CI P-value Fold N Delta

X1 2.00 0.58 0.76 0.51 3.49 0.01 1 125 0.50
X1 5.87 1.08 1.04 3.83 7.91 0.00 2 125 0.50
X1 0.30 1.39 1.18 -2.01 2.61 0.80 3 125 0.50
X1 -0.05 2.56 1.60 -3.18 3.09 0.98 4 125 0.50
X1 1.23 0.28 0.53 0.19 2.27 0.02 Pooled TMLE 500 0.50
X5 -2.12 0.48 0.69 -3.48 -0.76 0.00 1 125 0.50
X5 -1.66 0.75 0.87 -3.36 0.04 0.06 2 125 0.50
X5 -1.20 1.23 1.11 -3.37 0.98 0.28 3 125 0.50
X5 -1.36 0.59 0.77 -2.86 0.14 0.08 4 125 0.50
X5 -1.99 0.24 0.49 -2.94 -1.04 0.00 Pooled TMLE 500 0.50
X7 2.08 0.52 0.72 0.66 3.49 0.00 1 125 0.50
X7 1.98 0.79 0.89 0.24 3.72 0.03 2 125 0.50
X7 2.38 0.97 0.98 0.45 4.31 0.02 3 125 0.50
X7 2.13 0.54 0.73 0.69 3.57 0.00 4 125 0.50
X7 2.11 0.23 0.47 1.18 3.04 0.00 Pooled TMLE 500 0.50
X4 -0.30 0.56 0.75 -1.77 1.18 0.69 1 125 0.50
X4 -0.20 0.79 0.89 -1.94 1.55 0.83 2 125 0.50
X4 0.25 1.15 1.07 -1.86 2.35 0.82 3 125 0.50
X4 -0.29 0.34 0.58 -1.43 0.85 0.62 Pooled TMLE 375 0.50
X2 1.63 0.68 0.83 0.01 3.25 0.05 1 125 0.50
X2 0.00 7.15 2.67 -5.24 5.25 1.00 2 125 0.50
X2 0.15 2.24 1.50 -2.78 3.09 0.92 Pooled TMLE 250 0.50

Table 2.2: Marginal Results from NIEHS Mixtures Data

positive coefficients from a linear model for the mixture components are summed to give
a mixture (Ψ) summary measure which characterizes the joint impact. There are many
assumptions that should be poignant after our discussion of mixtures. Firstly, quantiles may
not characterize the exposure-response relationship (could be non-monotonic) which occurs in
endocrine disrupting compounds. For interpretable weights and mixture estimate Ψ, assumes
additive relationship of quantiles (Ψ is just sum of β’s in front of mixture components).
After our discussion, in mixtures our main goal is model possible interactions in the data
because we expect exposures to have non-additive, possible non-monotonic, antagonistic
and agonistic relationships. Therefore, we should expect interactions in our mixture data.
In quantile g-computation, with the inclusion of interactions, the proportional contribution
of an exposure to the overall effect then varies according to levels of other variables and
therefore weights cannot be estimated. Because we can never assume no interactions, quantile
g-computation then boils down to getting conditional expectations when setting mixtures
to quantiles through a linear model with interaction terms specified by the analyst. After
our discussion of mixtures this should feel incorrect. As we argue, the important variables,
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relationships, and thresholds in a mixture are all unknown to the analyst which makes this
a data-adaptive target parameter problem. Even testing quantile g-computation on the
NIEHS data is difficult because we don’t know what interactions to include a priori. The
best we can do is run it out of the box and with two-way interactions and compare results
to the ground-truth measures. Lastly, quantile g-computation does not flexibly control for
covariates.

We run quantile g-computation on the NIEHS data using 4 quantiles with no interactions
to investigate results using this model. The scaled effect size (positive direction, sum of
positive coefficients) was 6.28 and included X1, X2, X3, X7 and the scaled effect size (negative
direction, sum of negative coefficients) was -3.68 and included X4, X5, X6. Compared to
the NIEHS ground-truth, X3, X6 are incorrectly included in these estimates. However the
positive and negative associations for the other variables are correct.

Next, because we expect interactions to exist in the mixture data, we would like to assess
for them but the question is which interaction terms to include? Our best guess is to include
interaction terms for all the exposures. We do this and show results in Table 2.4.

In Table 2.4 Ψ1 is the summary measure for main effects and Ψ2 for interactions. As
can be seen, when including all interactions neither of the estimates are significant. Of course
this is to be expected given the number of parameters in the model and sample size n = 500.
However, moving forward with interaction assessment is difficult, if we were to assess for
all 2-way interaction of 7 exposures the number of sets is 21 and with 3-way interactions
is 35. We’d have to run this many models and then correct for multiple testing. Hopefully
this example shows why mixtures are inherently a data-adaptive problem and why popular
methods such as this, although succinct and interpretable, fall short even in a simple synthetic
data set.

NHANES Data

Data Description

The Columbia University Mailman School of Public Health Department of Environmental
Health Sciences held a two-day Mixtures Workshop in August 2018 to teach environmental
health researchers various statistical methods for studying mixtures. The workshop covered
unsupervised methods like clustering, principal component analysis, and exploratory factor
analysis, as well as supervised methods like variable selection, weighted quantile sum regression,
and Bayesian kernel machine regression. A publicly available real dataset was used to illustrate
the methods, taken from a study investigating the association between exposure to persistent
organic pollutants (POPs) and leukocyte telomere length [68]. We chose POPs as the mixed
exposure so that we can directly compare our results with those found in [68]. The study’s
results provided insight into a potential mechanism underlying carcinogenesis mediated by
activation of AhR and subsequent telomerase expression, but certain mixtures methods were
not utilized resulting in loss of information. The paper by Gibson et al. [30] discusses the
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results obtained using each method on this data during this workshop and how they compare
to one another, focusing on understanding how exposure to this mixture may impact LTL.

For our analysis, we used the same population as in the original paper by Mitro et al.
[68] which investigated the association between exposure to (POPs) with high affinity to the
aryl hydrocarbon receptor (AhR) and longer leukocyte telomere length (LTL). The exclusion
criteria used in the study are described in Gibson et al. [30]. This data is from the 2001-2002
National Health and Nutrition Examination Survey (NHANES) cycle, which interviewed
11,039 people, of whom 4,260 provided blood samples and consented to DNA analysis.
Sufficient stored samples to estimate telomere length were available for 1,003 participants
after excluding individuals without environmental chemical analysis data (n=2,850), those
who were missing data on covariates such as body mass index (BMI) (n=70), education
(n=2), and serum cotinine (n=8), and those with missing values for individual PCBs, dioxins,
or furans (n=327). After filtering for only complete exposures our final study population is
nearly identical to the smallest sub-sample included in the original analyses by Mitro et al,
our study has 1007 observations compared to 1003 in the original paper.

Exposure assessment was performed as previously described [68]. Congeners were adjusted
for serum lipids which were calculated using an enzymatic summation method. 18 cogeners
were used as exposures in our analysis. These breakdown to 8 non-dioxin like PBCs (PCB
74, PCB 99, PCB 138, PCB 153, PCB 170, PCB 180, PCB 187, PCB 194); 2 non-ortho
PCBs (PCB 126, PCB 169); 1 mono-ortho PCB (PCB 118); 4 Dioxins (1,2,3,6,7,8-hxcdd,
1,2,3,4,6,7,8-hpcdd, 1,2,3,4,6,7,8,9-ocdd) and 4 Furans (2,3,4,7,8-pncdf, 1,2,3,4,7,8-hxcdf,
1,2,3,6,7,8-hxcdf, 1,2,3,4,6,7,8-hxcd).

Telomere length measurement was performed as previously described [68].The quantitative
polymerase chain reaction (qPCR) method was used to measure telomere length relative to
standard reference DNA (T/S ratio). Samples were assayed three times in duplicate wells,
producing six data points which were averaged to calculate mean T/S ratios. Analytical
runs were blinded, and the CDC conducted a quality control review. We adjusted for the
same covariates as in previous modeling using supervised methods: age, sex, race/ethnic-
ity, educational attainment, BMI, serum cotinine, and blood cell count and distribution.
Race/ethnicity was categorized as non-Hispanic white, non-Hispanic black, Mexican Ameri-
can, or other. Educational attainment was categorized as less than high school, high school
graduate, some college, or college or more. BMI was categorized as < 25, 25 − 29.9,≥ 30.
Blood cell count and distribution were included as individual covariates: white blood cell
count, percent lymphocytes, percent monocytes, percent neutrophils, percent eosinophils,
and percent basophils. We include this data as example data in the SuperNOVA package.

We apply SuperNOVA using the default learners in each stack. We use 20-fold CV with
no quantile limit for the F-statistic of basis functions. Our default algorithms used in the
data-adaptive Super Learner to identify variable relationships include both basis functions
and linear terms with up to 2-way interactions. We allow for interactions/effect modification
to occur between all 18 POPs and 13 covariates. Given the range of the data, we set a δ to 2
for all exposures, that is, we investigate the counterfactual differences in telomere length for
an increase in 2 ng/g or pg/g for all exposures data-adaptively identified to predict telomere
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length.

Furan Findings on Telomere Length

Of the 18 POPs we find only one chemical had consistent results across all the folds. No
other chemical was used in any of the folds. The furan 2,3,4,7,8-pncdf was identified in
all 20 folds. No other marginal effects or interactions were discovered. Table 2.5 gives
a breakdown of the fold specific results and the final pooled TMLE result for an increase
in furan 2,3,4,7,8-pncdf by 2 pg/g. The final pooled TMLE estimate shows that a 2 pg/g
increase in furan 2,3,4,7,8-pncdf leads to a 0.02 decrease in telomere length.

The [68] summarize results from the workshop. They state that clustering methods
identified high, medium, and low POP exposure groups with longer log-LTL observed in
the high exposure group. Principal component analysis (PCA) and exploratory factor
analysis (EFA) revealed positive associations between overall POP exposure and specific
POPs with log-LTL. Penalized regression methods identified three congeners (PCB 126,
PCB 118, and furan 2,3,4,7,8-pncdf) as potentially toxic agents. WQS identified six POPs
(furans 1,2,3,4,6,7,8-hxcdf, 2,3,4,7,8-pncdf, and 1,2,3,6,7,8-hxcdf, and PCBs 99, 126, 169) as
potentially toxic agents with a positive overall effect of the POP mixture. BKMR found a
positive linear association with furan 2,3,4,7,8-pncdf, suggestive evidence of linear associations
with PCBs 126 and 169, a positive overall effect of the mixture, but no interactions among
congeners. These results (in the supervised methods) controlled for the same covariates.
Interestingly, although we corroborate the finding of furan 2,3,4,7,8-pncdf, specifically in
the BKMR method (the most flexible method used) our results show a negative association.
Additionally, we do not find associations of any other POP used in any fold meaning that, in
the best fitting spline model, no basis functions for any of the other POPs were used. The
inverse association we find compared to these other methods could be a result of our Q model
being a Super Learner of many estimators which can model relationships perhaps missed in
these other methods.

In this NHANES analysis, we demonstrate that SuperNOVA can effectively identify
variable relationships in real-world mixture data and provide estimates for these variables.
The resulting summary statistics offer a meaningful estimate of how the outcome would change
under an intervention on the identified exposures, providing an interpretable understanding
of the results.

2.8 Software
The development of open-source software for semi-parametric statistical theory is critical
for consistent and reproducible results in mixed exposure research. SuperNOVA is an
R package that provides an open-source tool for evaluating the causal effects of a mixed
exposure using asymptotically linear estimators. This package includes a detailed vignette,
documentation of semi-parametric theory, examples of output, and comparison to existing
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methods. The NIEHS synthetic data and NHANES mixed POP exposure data are also
provided for reproducibility. SuperNOVA can run sequentially or in parallel [104], and its
efficient estimators make it suitable for use on personal machines. The SuperNOVA package
is well-maintained, easily accessible, and highly detailed, with coding notebooks that show
simulations of mixed exposure data and SuperNOVA output with detailed summaries of
interpretation. The package has been made publicly available via GitHub. By making robust
statistical software widely accessible, we aim to move beyond simple parametric models and
ensure more consistent and accurate results in mixed exposure research.

2.9 Discussion
In this paper we introduce a new method for estimating the effects of a mixed exposure.
Our approach fits a very large statistical model to the exposure-covariate space and treats
the basis functions as a data-adaptive target parameter for which we estimate the average
change in outcome under stochastic shift interventions. This is done within a cross-validated
framework paired with targeted learning of our target parameter which provides estimates
that are asymptotically unbiased and have the lowest variance for studies which satisfy the
unconfoundedness and positivity assumptions. Our proposed method provides valid confidence
intervals without restrictions on the number of exposure, covariates, or the complexity of the
data-generating process. Our method first identifies relevant exposure-covariate subspaces
that best explains the outcome. The output of our method is the counterfactual mean
difference in outcomes if all individual were exposed to a change exposure compared to the
observed outcome under observed exposure. Our approach has potentially many important
applications including identifying what interacting drugs lead to the most beneficial patient
outcomes as well as finding what pollution chemicals interact which leads to deleterious
outcomes on public health. Our approach allows for "dredging with dignity" wherein exposure
regions can be discovered in the data which are not known a priori and still provide unbiased
estimates for the target parameter with valid confidence intervals. The major limitation of our
proposed method is the computational burden of density estimation. There are alternative
approaches which can be explored. For example, [77] first propose alternative ways for
estimating the probability density ratio needed in our proposed methodology. Instead of
relying on estimates of the density estimator gt, the problem is recast as a classification
problem in an augmented dataset that contains 2n observations. In this dataset, each
observation is duplicated, and one is assigned the observed exposure, At, and the other is
assigned the intervened exposure, Adt . An indicator variable, Λ, is introduced to identify the
treatment under intervention. The density ratio can then be expressed as a function of of the
probability of Λ over 1 - probabilty of Λ. This approach can be carried out by estimating
it via any classification method available in the machine and statistical learning literature,
such as Super Learning. This would improve computational time in the case where δ is not
data-adaptive. In the case that it is, this would need to be refit at each iteration and our
approach of directly estimating the density may be more efficient as given a density estimator
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fit new density distributions can be generated via predictions for any δi. Another limitation
to the proposed method is regardind inconsistent findings. In the case that a variable set is
identified in every fold interpretation is straightforward; however, in the event that findings
are inconsistent interpretation is relative to the analyst. In reporting findings it will become
important to also report the number of folds the estimates occur in to give a measure of
reliability and consistency in the data. Overall, our simulations with ground-truth, NIEHS
synethetic data and real-world data application show the robustness and interpretability of
our approach. In an effort to make adoption of semi-parametric methods such as this more
seamless we provide the SuperNOVA R package on GitHub which is well documented for
analysts to apply to their respective data.
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Condition Psi Variance SE Lower CI Upper CI P-value Fold N

X5 -1.63 0.76 0.87 -3.34 0.08 0.08 2 125
X7 2.06 0.79 0.89 0.32 3.80 0.03 2 125
X5&X7 0.26 0.91 0.95 -1.61 2.13 0.79 2 125
Interaction -0.17 0.93 0.96 -2.06 1.72 0.86 2 125
X5 -1.39 0.52 0.72 -2.79 0.02 0.10 4 125
X7 2.16 0.53 0.73 0.73 3.59 0.01 4 125
X5&X7 1.08 0.63 0.80 -0.48 2.64 0.23 4 125
Interaction 0.31 0.49 0.70 -1.07 1.69 0.71 4 125
X5 -1.56 0.35 0.59 -2.72 -0.40 0.04 Pooled TMLE 250
X7 2.20 0.36 0.60 1.02 3.38 0.00 Pooled TMLE 250
X5&X7 0.62 0.42 0.65 -0.65 1.89 0.44 Pooled TMLE 250
Interaction -0.02 0.38 0.61 -1.23 1.18 0.98 Pooled TMLE 250
X2 -0.21 8.41 2.90 -5.89 5.47 0.90 2 125
X7 2.19 0.79 0.89 0.45 3.93 0.02 2 125
X2&X7 3.44 0.74 0.86 1.76 5.12 0.00 2 125
Interaction 1.46 8.64 2.94 -4.30 7.22 0.39 2 125
X2 1.42 1.00 1.00 -0.54 3.38 0.15 4 125
X7 2.21 0.54 0.73 0.77 3.65 0.01 4 125
X2&X7 2.73 0.63 0.80 1.17 4.29 0.00 4 125
Interaction -0.90 1.06 1.03 -2.92 1.12 0.37 4 125
X2 0.44 3.12 1.77 -3.02 3.91 0.74 Pooled TMLE 250
X7 2.27 0.36 0.60 1.09 3.46 0.00 Pooled TMLE 250
X2&X7 3.11 0.37 0.61 1.91 4.31 0.00 Pooled TMLE 250
Interaction 0.39 3.21 1.79 -3.12 3.90 0.77 Pooled TMLE 250
X1 5.30 1.22 1.11 3.13 7.47 0.00 2 125
X7 2.01 0.82 0.90 0.24 3.78 0.03 2 125
X1&X7 4.18 0.79 0.89 2.44 5.92 0.00 2 125
Interaction -3.13 1.29 1.13 -5.35 -0.90 0.00 2 125
X1 5.30 1.22 1.11 3.13 7.47 0.00 Pooled TMLE 125
X7 2.01 0.82 0.90 0.24 3.78 0.03 Pooled TMLE 125
X1&X7 4.18 0.79 0.89 2.44 5.92 0.00 Pooled TMLE 125
Interaction -3.13 1.29 1.13 -5.35 -0.90 0.00 Pooled TMLE 125
X1 3.56 0.67 0.82 1.95 5.16 0.00 4 125
X5 -1.35 0.51 0.72 -2.76 0.06 0.11 4 125
X1&X5 -0.20 0.52 0.72 -1.61 1.21 0.81 4 125
Interaction -2.41 0.68 0.82 -4.02 -0.80 0.01 4 125
X1 3.56 0.67 0.82 1.95 5.16 0.00 Pooled TMLE 125
X5 -1.35 0.51 0.72 -2.76 0.06 0.11 Pooled TMLE 125
X1&X5 -0.20 0.52 0.72 -1.61 1.21 0.81 Pooled TMLE 125
Interaction -2.41 0.68 0.82 -4.02 -0.80 0.01 Pooled TMLE 125

Table 2.3: Interaction Results from NIEHS Mixtures Data
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Estimate Std. Error Lower CI Upper CI Pr(>|t|)

(Intercept) 21.29 1.58 18.19 24.39 0.00
psi1 0.02 1.62 -3.16 3.20 0.99
psi2 0.59 0.67 -0.71 1.90 0.37

Table 2.4: Quantile G-Computation Interaction Results from NIEHS Synthetic Data

Condition Psi Variance SE Lower CI Upper CI P-value Fold N Delta

LBXF03LA 0.08 0.00 0.03 0.01 0.14 0.02 1 51 2.00
LBXF03LA -0.02 0.00 0.03 -0.07 0.04 0.58 2 51 2.00
LBXF03LA 0.02 0.00 0.04 -0.06 0.10 0.66 3 51 2.00
LBXF03LA 0.01 0.00 0.03 -0.04 0.06 0.71 4 51 2.00
LBXF03LA -0.04 0.00 0.03 -0.09 0.02 0.20 5 51 2.00
LBXF03LA 0.00 0.00 0.03 -0.06 0.07 0.96 6 51 2.00
LBXF03LA 0.03 0.00 0.03 -0.02 0.09 0.24 7 51 2.00
LBXF03LA 0.04 0.00 0.04 -0.03 0.12 0.28 8 50 2.00
LBXF03LA -0.02 0.00 0.03 -0.08 0.04 0.53 9 50 2.00
LBXF03LA 0.02 0.00 0.02 -0.02 0.06 0.32 10 50 2.00
LBXF03LA -0.01 0.00 0.03 -0.06 0.04 0.69 11 50 2.00
LBXF03LA 0.07 0.00 0.03 0.01 0.13 0.03 12 50 2.00
LBXF03LA 0.02 0.00 0.02 -0.03 0.07 0.41 13 50 2.00
LBXF03LA 0.01 0.00 0.05 -0.09 0.11 0.81 14 50 2.00
LBXF03LA -0.01 0.00 0.02 -0.06 0.04 0.66 15 50 2.00
LBXF03LA 0.05 0.00 0.03 -0.00 0.10 0.06 16 50 2.00
LBXF03LA 0.07 0.00 0.03 0.01 0.12 0.01 17 50 2.00
LBXF03LA 0.07 0.00 0.02 0.03 0.11 0.00 18 50 2.00
LBXF03LA 0.02 0.00 0.02 -0.03 0.06 0.49 19 50 2.00
LBXF03LA 0.05 0.00 0.04 -0.03 0.12 0.23 20 50 2.00
LBXF03LA -0.02 0.00 0.01 -0.03 -0.00 0.04 Pooled TMLE 1007 2.00

Table 2.5: Furan 2,3,4,7,8-pncdf Lipid Adj (pg/g) Fold Specific and Pooled Findings
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Chapter 3

NOVAPathways

Mediation analysis in causal inference typically concentrates on one binary exposure, using
deterministic interventions to split the average treatment effect into direct and indirect
effects through a single mediator. Yet, real-world exposure scenarios often involve multiple
continuous exposures impacting health outcomes through varied mediation pathways, which
remain unknown a priori. Addressing this complexity, we introduce NOVAPathways, a
methodological framework that identifies exposure-mediation pathways and yields unbiased
estimates of direct and indirect effects when intervening on these pathways. By pairing
data-adaptive target parameters with stochastic interventions, we offer a semi-parametric
approach for estimating causal effects in the context of high-dimensional, continuous, binary,
and categorical exposures and mediators. In our proposed cross-validation procedure, we
apply sequential semi-parametric regressions to a parameter-generating fold of the data,
discovering exposure-mediation pathways. We then use stochastic interventions on these
pathways in an estimation fold of the data to construct efficient estimators of natural direct
and indirect effects using flexible machine learning techniques. Our estimator proves to be
asymptotically linear under conditions necessitating n−1/4-consistency of nuisance function
estimation. Simulation studies demonstrate the

√
n consistency of our estimator when

the exposure is quantized, whereas for truly continuous data, approximations in numerical
integration prevent

√
n consistency. Our NOVAPathways framework, part of the open-source

SuperNOVA package in R, makes our proposed methodology for high-dimensional mediation
analysis available to researchers, paving the way for the application of modified exposure
policies which can delivery more informative statistical results for public policy.

3.1 Introduction
Causal mediation analysis allows for the decomposition of an exposure’s total effect on an
outcome into direct and indirect pathways operating through an intermediate mediator or
set of mediators. Identifying the pathways through which environmental mixtures impact
health outcomes is crucial for corroborating causal inference of total effects and for developing
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effective public health policies. This information can help to strengthen causal inference by
providing evidence for a plausible biological mechanism underlying the observed association
between the exposure mixture and the outcome. Additionally, if several chemicals with similar
structures are found to operate through the same mediating pathway, it may suggest that
other chemicals with similar structures may have the same mediating effects. This type of
inference is consistent with coherence used in the Bradford Hill criteria [24]. Such evidence
can be used to strengthen regulations of unstudied chemicals which are structurally similar
to chemicals which have been found to have both total effects and effects through certain
biological pathways leading to disease.

Mediation analysis is a powerful tool in the context of environmental health, aiding in the
development of targeted interventions by elucidating the specific pathways through which
environmental exposures influence health outcomes. Through the identification of mediator
variable(s) that bridge the gap between exposure and outcome, mediation analysis opens up
new potential avenues for interventions aiming to alleviate the harmful effects of exposure.

Taking inflammation as an example, if mediation analysis pinpoints this as a key mediator
between exposure to air pollution and cardiovascular disease, it not only highlights an area
for intervention but also serves as a biomarker of early effect. By observing the levels of
inflammation, individuals at higher risk of developing cardiovascular disease due to their
exposure to air pollution can be identified. This stratification of risk allows resources to be
more efficiently allocated towards those who might benefit most from intervention efforts,
such as the application of anti-inflammatory medications or dietary modifications.

In scenarios where immediate reduction of air pollution is not feasible, interventions
targeted at this mediator can work to dampen the harmful effects of air pollution on
cardiovascular health. Moreover, understanding the role of inflammation in this process
provides invaluable insights into the biological mechanism underlying the exposure-outcome
relationship, which could lead to the identification of additional intervention targets.

Thus, by delineating specific pathways, mediation analysis not only suggests potentially
effective targets for intervention but also enhances the understanding of the biological process.
This not only increases the likelihood of the interventions being effective but also optimizes
the efficiency of resource usage by identifying those most in need. Through this process,
mediation analysis could guide the development of comprehensive, multi-targeted approaches
to reduce the harmful effects of environmental exposures.

Decomposing the total effects of a mixed exposures in environmental epidemiology presents
unique challenges. Unlike single exposures, we do not know a priori which specific exposures
or sets of exposures act through which mediators to cause the outcome. There can be multiple
such pathways, and using the same data to identify these pathways and estimate a target
parameter given these pathways can lead to biased results due to overfitting to the sample
data. That is, both the discovered pathway and effects for this pathway are overfit to the
sample data and may not generalize to the population level. Additionally, it is possible that
multiple exposures use the same pathways, and thus may interact through this pathway, such
as multiple heavy metals interacting through epigenetic mediators, which can have more
than additive effects through this pathway. This highlights the importance of developing



CHAPTER 3. NOVAPATHWAYS 84

methods that can identify and estimate the effects of mixed continuous-valued exposures
on health outcomes through multiple mediators simultaneously while addressing issues of
double-dipping and interactions between exposures. Currently, no such statistical methods
exist to capture such complex exposure-outcome systems although, almost in all cases this is
the system by which exposure leads to disease.

Building upon the seminal work of Sewall Wright, who introduced path analysis in 1934
[112], researchers gained a foundation for exploring causal relationships among observed
variables using path diagrams and standardized path coefficients. This approach enabled the
decomposition of the total effect of one variable on another into direct and indirect effects
via intermediary variables. In 1972, Arthur Goldberger [32] further advanced the field by
developing structural equation models (SEMs) for mediation analysis. By integrating path
analysis with factor analysis, SEMs facilitated the modeling of intricate relationships between
observed and unobserved (latent) variables. Goldberger’s contribution linked path analysis to
a more comprehensive statistical framework, providing enhanced precision in estimating causal
effects while accounting for measurement error. Consequently, the scope and applicability
of mediation analysis were significantly expanded. The initial development of path analysis
and SEMs largely focused on parametric models, where assumptions about the distributional
properties of the data and the functional form of relationships between variables were made.
However, over time, researchers extended SEMs to include nonparametric and semiparametric
approaches, allowing for more flexible modeling of relationships without strong distributional
assumptions [75].

In recent years, the field of causal inference has witnessed substantial advancements
with the introduction of non-parametric structural equation models and directed acyclic
graphs. These developments have facilitated the non-parametric estimation of causal effects
and the evaluation of conditions that permit causal effect identification from data [74, 83,
84, 89, 86]. While these novel approaches have addressed some limitations of traditional
parametric structural equation models for mediation analysis, they also brought forth new
challenges. Early non-parametric SEMs struggled with issues such as increased computational
complexity; model identification, meaning that, in the absence of parametric assumptions,
determining whether a non-parametric estimates are identifiable from the observed data
is more challenging; sensitivity to choice of estimator; difficulty in assessing model fit and
interpretability and limited available software.

Non-parametric partitioning of the causal influence of a binary treatment into natural
indirect and direct impacts began by employing the potential outcomes framework proposed
by Robins and Greenland [88]. The indirect impact measures the effect on the outcome
variable via the mediator, while the direct impact measures the effect through all other
pathways. Pearl [76] derived a similar effect partitioning utilizing non-parametric structural
equation modeling. The identification of these natural (in)direct impacts depends on cross-
world counterfactual independencies. Essentially, this means that we assume the outcomes
of different imaginary scenarios, where intervention on the exposure and mediator, do not
influence each other. The cross-world counterfactual independence assumption is not directly
falsifiable from experimental data. This is because the assumption involves counterfactual
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variables that correspond to different hypothetical interventions, and we can only observe one
intervention outcome in a single experiment. Therefore, the natural (in)direct impact is not
identifiable in a randomized experiment, which means that even in in randomized experiments
we cannot know if these estimated mediation effects actual exist at the population level for a
deterministic intervention.

These limitations arise because, in most causal inference research on mediation, deter-
ministic interventions are studied, which assign fixed exposure values. Historically, binary
exposures have been investigated for several reasons 1. interpretability: causal effects are
easier to understand for binary exposures as they involve comparisons between two distinct
groups or switching from one group to another; 2. estimation complexity: binary exposures
often lead to simpler functional forms and estimation procedures, even in non-parametric
settings; 3. identification: verifying assumptions for causal effects identification can be more
straightforward for binary exposures; 4. potential outcomes framework: this framework
is more intuitive for binary exposures, as there are only two potential outcomes for each
individual.

To avoid limitations of binary exposures while retaining interpretability and relaxed
identification assumptions, stochastic interventions can be implemented. Stochastic inter-
ventions allow exposures to be a random variable after conditioning on baseline covariates.
For example, in the context of air pollution exposure and cardiovascular outcomes, we can
consider a stochastic shift intervention where air pollution exposure is reduced by an amount
δ for each individual in the population. Therefore, this post-intervention distribution still
depends on the originally observed air pollution levels. We then would estimate the impact
under this post-intervention distribution and compare the average to the observed outcomes
under observed air pollution exposures. Stochastic interventions offer analytical benefits
over deterministic approaches by enabling the straightforward definition of causal effects for
continuous exposures, providing an interpretation that is easily understood by those familiar
with linear regression adjustment. Estimation of total effects for stochastic interventions
has been explored in various studies, including methods for modified treatment policies and
propensity score interventions for binary exposure distributions [51, 19, 95, 85]. Nevertheless,
these studies do not focus on decomposing the effects of stochastic interventions into direct
and indirect effects, which was first investigated in [21].

In [21], the authors introduce a decomposition of a stochastic intervention’s effect into
direct and indirect components. This approach identifies (in)direct effects without necessitat-
ing cross-world counterfactual independencies, producing experimentally testable scientific
hypotheses that can be empirically tested by intervening on the mediator and exposure. The
authors develop a one-step non-parametric estimator based on the efficient influence function,
incorporating machine learning regression techniques, and provide

√
n-rate convergence and

asymptotic linearity results. Importantly, the proposed method provides definition and
estimation of non-parametric mediated effects for continuous exposures. However, in the
software implementation of the proposed method, the authors employ a reparameterization
of specific integrals as regressions and the authors treat the exposure as binary to reduce
computation complexity by avoiding direct estimation of the probability density function
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(PDF) and estimating the probability mass function (PMF) instead. Likewise, restricting the
software to a binary exposure also avoids numeric integration necessary for the estimator.
While this approach enables the inclusion of multiple mediators, it necessitates a binary
exposure to function effectively. This limitation motivates the work presented here.

In many environmental epidemiology cases, it is crucial to understand the specific mediators
through which particular exposures impact an outcome. Instead of reparameterizing an
estimand to avoid high-dimensional density estimation or integrals, identifying individual
mediators and estimating stochastic effects solely through these mediating pathways leads to
deeper interpretation when dealing with multiple mediators. The random variables driving
the outcome can be treated as parameters, where these mediators are identified using one
portion of the data, and direct/indirect effects are estimated for this mediator using another
part of the data. Estimation becomes considerably more complex with multiple exposures,
as the connections between exposures and mediators remain unknown. Thus, these paths
must be discovered in the data, and mediation analysis employing stochastic interventions
can then be estimated for these paths.

This study presents a methodological approach for estimating mediation effects in the
presence of high-dimensional exposures and mediators. We employ a cross-validated frame-
work, where in path-finding folds, a cross-validation process is used to identify the mediating
paths through a series of semi-parametric regressions. With these paths established, we
estimate the direct and indirect effects of a stochastic intervention on the exposure through
the mediator, both identified in the path, in an estimation fold. Drawing on the efficient
influence function from Diaz et al. [21], we directly compute the integrals required for each
component of the efficient influence function, rather than reparameterizing the estimates
when the exposure is continuous. We also build in estimation for the case where the exposure
is quantized, for example, into bins which represent quartiles. This approach enables the
mediation of continuous/discrete exposures which are unknown a priori through mediators
which are also unknown a priori and can take on multiple variable types.

The use of stochastic interventions in a semi-parametric framework provides a promising
approach for estimating direct and indirect effects of exposure mixtures on health outcomes
through mediation pathways. To our knowledge, no such methods exist in the causal inference
literature which both makes available mediation for a continuous/discrete exposure and
data-adaptive discovery of mediating paths. Our method proposed here is available for use in
the SuperNOVA package in R which also estimates interaction and effect modification of a
mixed exposure using stochastic interventions and data-adaptive target parameters.

3.2 The Estimation Problem
Our mediation parameter of interest for a continuous exposure was first described in [21]
and therefore, what follows in the our mediation framework for data-adaptively discovered
mediation pathways is based on this previous work. That is, the notation, target parameter,
identification and efficient influence function are all the same as in [21]; however we extend
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this method to work in the continuous case and data-adaptively identify exposure-mediator
pathways. To make this current work more self-contained we review and explain with brevity
parts of their estimator in order to describe our approach making estimates work in the fully
continuous case of data-adaptively identified pathways.

We consider the causal inference problem involving a multivariate continuous, categorical,
or binary exposure (A), a continuous, categorical, or binary outcome (Y ), a multivariate
continuous, categorical, or binary mediator (Z), and a vector of observed covariates (W )
which are also a variety of data types. Let O = (W,A,Z, Y ) be a random variable with
distribution P. We denote the empirical distribution of a sample of n independent and
identically distributed observations O1, ..., On as Pn. For any given function f(o), we denote
Pf =

∫
f(o)dP(o) and use E to represent expectations with respect to P averaging over all

randomness. We assume P belongs toM, the nonparametric statistical model comprising
all continuous densities on O with respect to a dominating measure v, with p denoting the
corresponding probability density function. We go through the framework first ignoring
the data-adaptive selection of subsets of the {A,Z}. We then introduce the data-adaptive
component which follows naturally.

Our approach diverges from previous methods, focusing on data-adaptively identifying
which sets of exposures (Â) impact which sets of mediators (Ẑ). This approach bypasses the
need for estimating the high-dimensional joint impact of exposures through the mediators,
an effort that often encounters the ’curse of dimensionality,’ a phenomenon that complicates
accurate modeling and prediction due to exponential increase in volume associated with
adding extra dimensions in the exposure space. The discovered Â and Ẑ represent the
"estimated" or selected subsets from the full set of A and Z variables.

Probability density functions and regression functions are represented as follows:

• g(a|w): Represents the conditional probability density or mass function of A given
W = w.

• Q(a, z, w): Represents the expected outcome given the variables A, Z, and W .

• e(a|z, w): Represents the conditional density or probability mass function of A given
(Z,W ).

• q(z|a, w) and r(z|w): Denote the conditional densities of Z.

To define our counterfactual variables, we use the following nonparametric structural
equation model (NPSEM):

W = fW (UW );A = fA(W,UA);Z = fZ(W,A,UZ);Y = fY (W,A,Z, UY ).

This set of equations signifies a mechanistic model, grounded in nonparametric statistical
methods, that is assumed to generate the observed data O. It incorporates several fundamental
assumptions. First, an implicit temporal ordering is assumed, with Y occurring after Z, A,
and W ; Z taking place after A and W ; and A happening after W . Second, each variable (i.e.,
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W , A, Z, Y ) is assumed to be generated from the corresponding deterministic, yet unknown,
function (i.e., fW , fA, fZ , fY ) of the observed variables that precede it temporally, as well as
an exogenous variable, denoted by U . Each exogenous variable is assumed to encompass all
unobserved causes of the corresponding observed variable.

In the context of nonparametric statistics, the independence assumptions on the exoge-
nous variables U = (UW , UA, UZ , UY ) necessary for identification will be addressed in the
assumptions section. This approach allows the model to accommodate the complexities and
nuances of the relationships between the variables without relying on specific functional forms
or parametric assumptions.

Our causal effects of interest are characterized by hypothetical interventions on the
NPSEM. In our situation, we focus on an intervention where the equation associated with
A is changed, and the exposure is drawn from a user-defined distribution gδ(a|w). This
distribution relies on g (the conditional density under observed exposures) and is indexed by
a user-specified parameter δ. We assume that when δ = 0, gδ = g. Let Aδ represent a draw
from gδ(a|w).

In our scenario, the distribution gδ is given by g(a − δ|W ), which indicates a shift of
δ in the conditional density of A. This shift corresponds to a modified treatment policy
aimed at reducing exposure by δ. Essentially, the intervention involves removing the equation
associated with A and establishing the exposure as a hypothetical regime, d(A,W ). The
regime d depends on the natural exposure level A (i.e., without any intervention) and
covariates W . For instance, if A denotes continuous exposures such as various air pollution
factors (Carbon Monoxide, Lead, Nitrogen Oxides, Ozone, Particulate Matter, etc.) related
to asthma incidence Y , we may be interested in investigating the expected asthma incidence if
all individuals experienced a δ-unit reduction in Lead exposure, while keeping other exposures
and covariates unchanged.

Assume that the distribution of A given W = w is supported within the interval
(l(w), u(w)). In other words, the minimum pollution level for an individual with covariates
W = w is l(w). We can then define a hypothetical post-intervention exposure, Aδ = d(A,W ),
as follows:

d(a, w) =

{
a− δ if a > l(w) + δ

a if a ≤ l(w) + δ

Here, 0 < δ < u(w) is an arbitrary value provided by the user. This regime can be further
refined by allowing δ to be a function of w, thereby enabling the researcher to specify a
different change in pollution levels as a function of factors such as demographic characteristics
or geographical location. This intervention was initially proposed by [48] and [20] and [34].

We are interested in the population intervention effect (PIE) of A on Y using stochastic
interventions. That is, given values for an exposure and mediator (a, z), we examine the
counterfactual outcome Y (a, z) = fY (W,a, z, UY ), the expected outcome if all individuals were
exposed to these values for the exposure and mediator. We also examine the counterfactual
mediator Z(a) = fZ(W,a, UZ) or the expected value the mediator takes on given exposure
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A = a. The counterfactual Y (a, z) represents the outcome in a hypothetical scenario where
(A,Z) = (a, z) is fixed for all individuals. We are interested in the contrast between the
expected outcome given an intervention Aδ which say, reduces exposure to pollution and the
expected outcome under no intervention, the observed outcome under observed exposures.
This looks like:

ψ(δ) = E{Y (Aδ)− Y }.

Drawing from causal inference literature on mediation, we know that since A is a cause of
Z, any intervention altering exposure to Aδ also affects the counterfactual mediator Z(Aδ).
Owing to the consistency ensured by the NPSEM, we obtain Y (A,Z) = Y and Z(A) = Z.
In addition, from Pearl’s [76] law of composition we can express Y (Aδ, Z(Aδ)) = Y (Aδ).
In words, this means that the expectation of Y under dual shift is implied by a shift in
A ignoring Z. Consequently, the PIE can be decomposed into a population intervention
direct effect (PIDE) and a population intervention indirect effect (PIIE). The interepretation
of these effects are the same as natural direct and indirect effects but are for a stochastic
intervention rather than a deterministic intervention on A.

ψ(δ) = E{Y (Aδ, Z(Aδ))− Y (Aδ, Z)}︸ ︷︷ ︸
PIIE

+E{Y (Aδ, Z)− Y (A,Z)}︸ ︷︷ ︸
PIDE

.

Essentially, the direct effect demonstrates the impact of an intervention that modifies
the exposure distribution while maintaining the mediator distribution at the level it would
have been without any intervention. On the other hand, the indirect effect quantifies the
influence of an indirect intervention on the mediators, initiated by changing the exposure,
while keeping the exposure intervention constant.

A Z Y

W

IE IE

DE
Exposure

a
Mediator

z
Outcome

y

Covariates
w

Above is a simple directed acyclic graph (DAG) which illustrates the IE through the
mediator Z and DE which is the causal effect not through Z. For example, in a study
investigating the effects of environmental exposure, such as air pollution, on respiratory
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health, the direct effect measures how changing pollution levels impact health outcomes,
assuming the mediators (e.g., time spent outdoors) remain unchanged. The indirect effect,
conversely, evaluates how health outcomes are influenced by changes in the mediators (e.g.,
reduced time spent outdoors) that result from modifying pollution levels, while the pollution
intervention remains constant.

Above, Y (A,Z) = E(Y ), is simply estimated by the empirical mean in the sample. Moving
forward, the optimality theory described in [21] which we review and estimators we present
for the truly continuous exposure case focus on θ(δ) = E{Y (Aδ, Z)}. These two terms are
then used in calculation of the direct effect. Because E{Y (Aδ, Z(Aδ))} = E{Y (Aδ)}, which
in words is simply the total effect in Y after shifting A ignoring Z. That is, if we were to
construct an efficient estimator for a shift in A ignoring Z these estimates encapsulate the
indirect effect A has through Z as in the total effect. Ivan Diaz and Mark van der Laan
[48] first proposed estimators of the total effect of a stochastic shift intervention including
inverse probability weighted, outcome regression, and doubly robust estimators based on
the framework of targeted minimum loss-based estimation (TMLE) where in each case data
adaptive machine learning can be used to estimate the relevant nuisance parameters. Call
the total effect θ(δ)t, which is the expected Y given a shift in A and includes the implied
shift in Z(Aδ). Call E{Y (Aδ, Z)− Y (A,Z)}, θ(δ)d, the direct effect or the effects of shift in
A keeping Z fixed. Lastly, E{Y (Aδ, Z(Aδ))− Y (Aδ, Z)}, the effects of a shift in Z due to a
shift in A keeping A fixed we call θ(δ)i. Then:

θ(δ)t = θ(δ)d + θ(δ)i

Which means we can then estimate the indirect effect as:

θ(δ)i = θ(δ)t − θ(δ)d
Which is simply estimating the indirect effect by subtracting the total effect from the

direct effect, this provides us with the point estimate. We can do inference on this difference
by utilizing work from [21] which provides an efficient estimator for θ(δ) for the construction
of the direct effect θ(δ)d. We use TMLE or one-step estimators proposed from [48] to estimate
θ(δ)t and we use the scalar delta method to estimate θ(δ)i. Moving forward we describe θ(δ),
or E{Y (Aδ, Z)}, the average outcome under a shift in A keeping Z at natural values.

Identification of the Causal Parameter

We can evaluate the causal effect of our intervention by considering the counterfactual mean
of the outcome under our stochastically modified intervention distribution. This target
causal estimand is Y (a, z), which is the counterfactual outcome we would observe when
P((A,Z) = (a, z)) = 1.

Our causal quantitiy is:

θ(δ) =

∫
ypY (Aδ,Z)(y) dy
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[21] describe identification for this parameter and we briefly review here. We must assume
that the data is generated by independent and identically distributed units, and that there
is no unmeasured confounding, consistency, or interference (discussed in more detail in
subsequent sections). Under these assumptions, θ(δ) can be identified by a functional of the
distribution of O:

θ(δ) =

∫
W

∫
A

∫
Z
Q(a, z, w)gδ(a | w)r(z|w)q(w) dw da dz

Mechanically this is the outcome predictions from our Q model integrated over density
predictions from our g model under δ shift integrated over our the conditional mediator and
covariate density.

Interpreting the statistical effects in our analysis as causal rests upon two assumptions:
common support and conditional exchangeability (or ignorability). These are standard
assumptions in causal inference that require consideration in mediation.

Common support, also known as positivity or overlap, is a fundamental assumption in
causal inference that ensures that the distribution of the exposure of interest is well defined
and supported by the data. For each individual in the population, there should be a non-zero
probability of observing the shifted exposure value given their observed covariates. This
assumption ensures that the exposure effect is identifiable and that causal inference can
be validly conducted. In our case, positivity refers to the probability density of exposure
being bounded away from zero or one after an exposure shift. We propose a method that
data-adaptively finds a shift which does not lead to positivity violations (described later).

Conditional exchangeability, or ignorability, is related to the assumption made in [102].
In our context, it means that given the observed covariates, the distribution of the potential
outcomes, Y (a, z), is independent of the actual exposure, A, and mediator, Z, assignments.
This assumption is akin to stating that we have adequately controlled for confounding.

Here, it’s essential to note that we need conditional exchangeability both for the exposure-
outcome and mediator-outcome relations. This implies that all confounders between the
exposure A and outcome Y , and between the mediator Z and outcome Y , should be
measured and properly adjusted for. If this assumption is violated—if there are unmeasured
confounders—it can lead to biased effect estimates.

Consider the directed acyclic graph (DAG) below:

A Z

V

Y

This DAG illustrates the relations between the exposure A, mediator Z, confounder V ,
and outcome Y . Here, V can be seen as a confounder that affects both Z (the mediator) and
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Y (the outcome). Conditioning on a collider Z when there are unmeasured confounders (V ),
would open a pathway from A to Y (a, z), introducing bias into our estimates.

Additionally, the methods presented here cannot account for situations where the mediator-
outcome confounder V is affected by the exposure A. As this too opens up a backdoor path
that would lead to bias [21].

Efficient Estimation of the Direct Effect

In this section we focus on the efficiency theory for estimating θ(δ) within the nonparametric
modelM, with a focus on the efficient influence function (EIF) which was originally derived
in [21]. Diaz and Hejazi offer a rigorous breakdown of the EIF for this part of the direct
effect and we give a brief overview here to explain our approach for estimating each part of
the EIF. The EIF is a fundamental concept in semi-parametric estimation theory. It plays a
vital role in determining the asymptotic behavior of all regular and efficient estimators. In
simpler terms, the EIF contains the information to predict how these estimators perform
when the sample size approaches infinity. Calculating the EIF is crucial for constructing
locally efficient estimators for θ(δ). Locally efficient estimators are estimators that achieve
the best possible asymptotic variance within a specified class of estimators under certain
regularity conditions within a stated statisticla model. They are optimal in the sense that,
asymptotically, they have the lowest variance among all unbiased estimators in their class. [21]
derived the EIF for this problem: we briefly describe each part of the EIF here and describe
how we estimate its components for the case where A is a continuous/discrete exposure. The
efficient influence function for θ(δ) in the nonparametric modelM for a modified treatment
policy is DY (o) +DA(o) +DZ,W (o)− θ(δ), where:

DY (o) =
gδ(a|w)

e(a|z, w)
{y −Q(a, z, w)},

DZ,W (o) =

∫
Q(a, z, w)gδ(a|w) da

DA(o) = φ(a, w)−
∫
φ(a, w)g(a|w) da

Where:

φ(a, w) =

∫
Q(d(a, w), z, w)r(z|w) dz

= E
[
g(A|W )

e(A|Z,W )
Q(d(A,W ), Z,W )

∣∣∣A = a,W = w

]
,

Constructing an efficient estimator always involves estimating the EIF and so here we
describe at a high level how we estimate each component in the rest of the article.
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DY describes the "weighting factor" in the EIF which adjusts the residuals of the outcome
model (Q) based on the differences in exposure distributions between the intervention gδ and
the natural course of exposure e. We calculate this by directly constructing estimators for the
conditional densities of g and e. Likewise, Q is simply an outcome regression model which
is estimated using flexible machine learning. Therefore, in the case where A is continuous,
we use conditional density estimators to estimate the conditional density functions used in
this nuisance parameter. When A is discrete, we can also use an ensemble of multinomial
regression estimators which provide the probability of exposure falling in each "bin". This
probability mass function then replaces the probability density function used when A is
continuous.

DZ,W is expected outcome (Q) multiplied by the estimated probability density of the
exposure under a shift by δ, and integrating over all possible values of the exposure a. This
takes into account the potential shift in the distribution of w (which affects the exposure),
to provide a more accurate prediction of the outcome Y . For this estimation we directly
integrate the two functions over the exposure using Monte Carlo integration of the exposure
variable over the exposure range. That is, exposure values a are shifted until they meet the
upper or lower bound in which case they simply take on the min or max value depending on
the direction of δ. In the case where A is discrete, gδ is simply the probability for the bin
that corresponds to a± δ depending on the direction. For example, if A is discretized into
quartiles and δ is 1, then if a is quartile 1, gδ is the probability of quartile 2. In this case the
integral is simply a weighted sum:

DZ,W (o) =
∑
ak∈A

Q(ak, z, w)gδ(ak|w)

For DA the first expression φ(a, w) can be calculated using either integration or regression.
The first line of the expression uses integration to calculate this expected outcome by averaging
the outcome model Q over all possible values of z, weighted by the conditional density of z
given w, denoted as r(z|w). The second line of the expression uses an alternative formulation
to calculate the same expected outcome. It uses the conditional expectation formula to
take the conditional expected value of Q given A = a and W = w, where the expectation
is taken with respect to the conditional density of A given W , denoted as g(A|W ), divided
by the inverse of the conditional density of A given Z and W , denoted as e(A|Z,W ), which
effectively regresses out the effect of Z from A. Therefore, it possible to estimate φ(a, w) by
either integrating or using pseudo-regression. We take both approaches to compare finite
sample performance in both estimation approaches. For the integration approach, we directly
estimate the conditional density of the mediator given covariates and use this function in the
integration with Q over z using a Monte Carlo approach. Again if A is discrete this looks
like:

DA(o) = φ(a, w)−
∑
ak∈A

φ(ak, w)g(ak|w)

Because φ(a, w) is the integration of Q and r over z and does not include A as an outcome,
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it is still necessary to estimate the conditional density of Z given W even when the exposure
is discrete. In this discrete exposure case, we use a double integration approach and pseudo
regression approach.

Monte Carlo Integration

Monte Carlo (MC) integration is a numerical integration technique that uses random sampling
to approximate the integral of a function over a given domain. In our case the range of
exposures and/or mediators are the domains to integrate over. MC integration works by first
generating random points within the domain. Then, the function values are computed at
these points. The average of these values is then multiply by the volume of the domain. As
the number of samples increases, the approximation converges to the true integral value.

In our case we are integrating the product of two density/regression estimators, for example
in the case of, DZ,W (o) =

∫
Q(a, z, w)gδ(a|w) da, MC integration can be more advantageous

than quadrature methods for several reasons:

1. Handling high-dimensional and non-linear functions: The product of fits using, for
example, two Super Learners for Q and g, may result in complex, non-linear, and
high-dimensional functions. MC integration is well-suited for handling such functions,
as it does not rely on any specific parametric assumptions or require the function to be
smooth or continuous.

2. Adaptability to irregular functions: MC integration is adaptive to irregularities in the
function being integrated, making it a reasonable method for integrating the product
of two flexible Super Learners fits, which can have irregular shapes across covariates.
Quadrature methods, on the other hand, often rely on the function being smooth or
continuous and may struggle with irregular functions.

3. Scalability: MC integration is easily scalable to high dimensions, making it suitable
for problems with a large number of covariates. Quadrature methods, in contrast, can
suffer from the curse of dimensionality, where the number of required evaluation points
grows exponentially with the dimensionality, leading to an intractable computational
burden.

4. Convergence properties: MC integration has desirable convergence properties, meaning
that as the number of random samples increases, the accuracy of the approximation
improves. This allows for obtaining more accurate estimates, even for complex and
irregular functions.

5. Ease of implementation: MC integration is relatively simple to implement and can be
easily parallelized for efficient computation on modern hardware. Quadrature methods,
on the other hand, can be more complex and challenging to implement, especially for
high-dimensional and irregular functions.
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For these reasons, we use MC for estimating the necessary integrals of each nuisance
function. MC integration is much faster than adaptive quadrature, especially in our case
where we need to integrate these functions at every vector of covariates (for each observation).
To ensure that the number of iterations is scaled by sample size the number of iterations used
in the MC integration is set to four times sample size in this paper.

Estimation

Direct Effect

[21] derive the efficient influence function Dη,δ to construct a robust and efficient estimator,
which is defined as the solution to the estimating equation PnDη̂,δ=̂0 in θ, given a preliminary
estimator η̂ of η. They advise utilizing cross-fitting in the estimation process to avoid entropy
conditions of the initial estimators which we employ in our approach. To do this, the index
set 1, . . . , n is randomly partitioned into K equally sized estimation samples, Vk. For each k,
the corresponding training sample Tk is obtained by excluding Vk from the index set. The
estimator η̂Tk is derived by training the prediction algorithm using only the data in Tk. The
index of the validation set containing observation i is denoted by Vk(i). The estimator is thus
defined as:

θ̂(δ) =
1

n

n∑
i=1

Dη̂k(i),δ(Oi) =
1

n

n∑
i=1

[
DY
η̂k(i),δ

(Oi) +DA
η̂k(i),δ

(Oi) +DZ,W
η̂k(i),δ

(Oi)
]

Effectively, the efficient estimator is the average of the cross-estimated sum of each nuisance
parameter. Subtracting the mean from this sum of nuisance parameters then gives us the
EIF for this shift parameter since the EIF is defined as DY

η,δ(o) +DA
η,δ(o) +DZ

η,δ(o)− θ(δ).
When estimating θ(δ) compared to the observed outcome, we employ the scalar delta

method by subtracting the two efficient influence functions, resulting in an EIF for θ(δ)d
that can be used for constructing confidence intervals and performing hypothesis testing.
By subtracting the two EIFs and calculating the variance of the resulting EIF scaled by n
observations, we obtain the variance of θ(δ)d, which is asymptotically Gaussian and centered
around the true difference. Finally, we construct confidence intervals and conduct hypothesis
testing using the standard error. This gives us our final point and variance estimates for the
θ(δ)d.

Indirect Effect

One Mediator We employ one-step estimation or targeted maximum likelihood estimation
(TMLE) to estimate the expected outcome of a shift in exposure A without considering the
mediator Z. TMLE solves the efficient influence function (EIF) and the delta method is
used to estimate the total effect [48] by subtracting this EIF from the observed Y EIF (Y
- Q(a, w)). By solving the EIF for the total effect parameter θ(δ)t using TMLE/one-step
estimation and applying the delta method, we obtain the EIF for the indirect effect parameter
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θ(δ)i by subtracting θ(δ)d from θ(δ)t, the same is done for the point estimates. Although we
use different approaches for estimating θ(δ)t (TMLE) and θ(δ) (estimating equations), both
result in efficient estimators. According to the central limit theorem, the distribution of each
estimator is Gaussian and centered at the true value. We can compute the estimate of the
variance σ2

n, allowing for Wald-style confidence intervals to be computed at a coverage level
of (1− α) as ψn ± z(1− α/2) · σn/

√
n.

Many Mediators In research situations where multiple mediators are measured, we need
to adjust the above described methodology in order to isolate the indirect effect for a given
pathway. A simple subtraction of the direct effect from the total effect to derive the indirect
effect when multiple potential mediators are present would yield an oversimplified estimation.
This approach would instead estimate the collective indirect effect through all potential
mediators. This would not provide the specific indirect effect attributable to the pathways of
interest. To delineate the specific indirect effect through the mediator of interest, we adopt a
slightly different approach. When we estimate the total effect, we adjust for all the other
mediators but not the mediator of interest in the model, symbolized as E[Y |A,Z¬i,W ] where
Z¬i represents all mediators other than the mediator of interest. This enables us to isolate
the total effect of A on Y with respect to the particular A− Z pathway under investigation.
The rest of the estimation procedure is the same where we subtract this total effect point
estimate and EIF from the direct effect to get the indirect effect estimates.

3.3 Finding Mediating Pathways

Mixed Exposures and Mediators

Up to this point, we have focused on fixed exposure A and mediator Z, showing the efficient
influence functions (EIFs) necessary for estimating the natural (in)direct effects. However,
in scenarios involving mixed exposure and multiple potential mediating paths, the most
important exposure-mediator (A− Z) paths among a potentially high-dimensional set are
typically unknown.

Consider a hypothetical situation where five exposures represent different pesticides
(A1−5), and five measured variables potentially mediate the effects of these pesticides (Z1−5),
representing mediation pathways through neurotoxicity, endocrine disruption, oxidative stress,
immune system, and DNA damage. The outcome Y is a hypothetical cancer. In this scenario,
let us imagine that the effects of A1 and A2 are mediated through Z1 and Z2 respectively,
while A3 shows no measured indirect effects, and A4 and A5 have no impact on the outcome.
Additionally, Z3 − Z5 do not mediate any measured exposures. A directed acyclic graph
(DAG) illustrating this situation is presented below.
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Scenarios featuring mixed exposures and multiple mediating pathways are not uncommon
in real-world contexts. For instance, agricultural workers may encounter multiple pesticides,
chemicals, and environmental factors, each acting through different mediating pathways to
exert health effects. Similarly, industrial employees can be exposed to various chemicals,
urban residents to diverse air pollutants, and individuals practicing unhealthy lifestyle habits
to the risk of chronic diseases. Even the spread of infectious diseases and climate change can
involve a complex interplay of multiple exposures and mediating pathways.

In all these instances, understanding the complex interplay between various exposures
and mediating pathways is crucial. However, since the A − Z pathways are not known a
priori, and continuously testing different exposure-mediator pathways could lead to type 1
error, a data-driven approach is essential.

Basis Function Estimators for Pathway Discovery

Uncovering mediating pathways in our data requires a non-parametric method, as not only
are pathways not known a priori but also the functional forms underlying their relationships
are not known as well. We leverage a series of discrete Super Learners—best fitting flexible
estimators selected from a library of candidate estimators—for this task. These constituent
learners used in the Super Learner construct non-linear models through linear combinations
of basis spline terms and their tensor products, rendering them ideal for the task at hand.

In the most flexible setting, we form indicator variables for each predictor. These variables
denote if a predictor X is less than or equal to a specific value xs, this approach can be
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extended for combinations of predictors, like X1, X2. Consequently, a function of our outcome
distribution can be represented as:

ψβ = β0 +
∑

s⊂{1,2,...,p}

n∑
i=1

βs,iφs,i, where φs,i = I(Xi,s ≤ xs), A ∈ Rp

Here, s denotes indices of subsets of the X.
This estimator is known as the highly adaptive lasso (HAL) estimator [5]. Its unique

attribute is its theoretically proven n−1/4 convergence, a necessary condition for the
√
n rate

conditions to hold for our estimator and for convergence to selection of basis functions of true
pathways for the underlying yet unknown DGP. However, the HAL estimator is not scalable
in high dimensions. Therefore, the estimators employed in NOVAPathways that return tensor
products of arbitrary order and approximate this more exhaustive approach include the earth
[67], polySpline [81], and hal9001 (under restrinctions) [16] packages. Each method utilizes
a linear combination of basis functions to estimate the conditional outcome, allowing us to
extract variable sets used in these basis functions as our data-adaptively identified variable
sets.

Our process to construct pathways includes:

1. Fitting E(Z|A,W ) as β0 +
∑

[βs · h(A,W )s]. Here, β0 is the intercept, βs are the
coefficients, h(A,W )s are the basis functions involving A and W , and the sum is over
all basis functions in the model.

2. Extracting basis functions for A with non-zero coefficients.

3. Fitting E(Y |A,Z,W ) = β0 +
∑

[βs · g(A,Z,W )s].

4. Matching A to Z pathways: we align the basis functions involving A from the first model
(E(Z|A,W )) with the basis functions involving Z from the second model (E(Y |A,Z,W )),
if used, to identify the A− Z pathways. Pathways are also AZ basis functions used
directly in the second model.

This stepwise approach is necessary. In cases where the effects of A go entirely through Z,
or when effects that don’t pass through Z are negligible for the model fit, the second model
will only contain basis functions for Z. As such, the first model is required to illuminate
the underlying A driver, thereby establishing the pathway connection. In summary, this
approach non-parametrically identifies mediating pathways in a mixed exposure scenario.

Non-Parametric Analysis of Variance for Identifying "Important"
Pathways

Upon identification of the optimal basis spline estimator for each sequential regression segment,
we use an ANOVA-like decomposition of basis functions to rank the "important" variable
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sets employed by each algorithm; thereby filtering to the most important pathways. This
selection process becomes critical in high-dimensional A and Z scenarios, where the possible
paths multiply, and the goal is to discern the most influential pathways on Y adaptively. We
apply a variant of ANOVA, generalized for large-scale, non-parametric models.

In this context, we partition the response variable’s variance based on the contributions
from distinct basis factors. For multivariate adaptive regression models, the variance is de-
composed into the individual contributions of linear basis functions. For highly adaptive lasso
models, zero-order basis functions (exposure-covariate indicators) make these contributions.
In both cases, the F-statistic is calculated using the traditional ANOVA formula, albeit with
modifications to accommodate the non-linear model concerning the original covariates.

The response variable’s variance is split into two: variance explained by the linear
combination of basis functions and the residual variance left unexplained by the model. The
F-statistic represents the ratio of explained to residual variance, adjusted for degrees of
freedom. The F-statistic is computed for each basis using the standard formula, presuming
a linear relationship between the response variable and basis functions, though the basis
functions themselves need not be linear in the original covariates.

Once we’ve computed F-statistics for each basis function, we have a measure of each basis
function’s contribution to the explained variance in the response variable. However, these
basis functions represent transformations (which may or may not be linear) of the original
variables. Hence, we’re interested in getting a measure of the importance of each variable,
not just the individual basis functions.

To aggregate these F-statistics to the variable level, we need to map each basis function
back to the original variables it was derived from. We do this using the naming conventions
of the basis functions, which contain the names of the variables they were derived from. This
allows us to identify which F-statistics belong to which variables.

Once this mapping is complete, we have a collection of F-statistics for each variable, with
each statistic representing a different basis function of that variable. To aggregate these
statistics, we take their sum. The sum provides a measure of the total contribution of all
basis functions of a variable to the explained variance in the response variable. In other
words, it gives us a measure of the overall importance of that variable.

Finally, we rank the variables according to these sums of F-statistics, which we can then
use to filter variables in subsequent analyses. It’s important to note that this approach
assumes that the F-statistics of basis functions of a variable can be meaningfully added
together. This assumption holds true if the basis functions are orthogonal (i.e., uncorrelated),
as is the case with splines. However, it may not hold if the basis functions are correlated,
which might be the case with other types of basis functions.

We then rank variable sets based on the computed F-statistics, and subsets can be decided
based on the F-statistic quantile to yield a concise variable list. The resultant list contains
variable sets that meet the F-statistic threshold. This procedure is applied to both E(Z|A,W )
and E(Y |A,Z,W ) models, to filter A based on the F-statistics driving each mediator, and to
filter Z, A, and A− Z basis functions, respectively. This variable set process is implemented
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within a V-fold cross-validation framework using data, which we discuss in the subsequent
section.

It’s worth noting that our proposed methodology operates on the principle of heuristics,
aiming for an approach that’s both computationally practical and effective. It’s not designed
to achieve theoretical optimality but rather to robustly identify potential pathways, that
are part of the data-adaptive target parameter. Theoretical rigor is still maintained during
the estimation step. While other methods could be employed, our approach offers a blend
of simplicity, speed, and suitability for the task at hand by using basis-function estimators
in the two step process that are both flexible but also interpretable, which allows us to
construct the pathways. For example, methods could be employed such as using exposure or
exposure-mediator sets used in the branches of a best fitting decision tree [63] to identify
potential pathways.

3.4 Cross-Estimation
Ensuring the estimators of our mediation target parameters meet the requisite complexity
conditions, such as smoothness (differentiability) and entropy small enough to satisfy the
Donsker conditions, can be challenging in high-dimensional settings (p > n) that necessitate
complex/adaptive ML methods. Although verifying entropy conditions is feasible for certain
machine learning techniques like lasso, it becomes notably difficult with methods involving
cross-validation or hybrid models, such as Super Learner.

To address this, we employ a strategy of sample splitting. This approach separates the
data into two independent sets: one for estimating the nuisance functions and the other for
constructing the mediation parameters. Originally proposed by Bickel and later refined by
Schick, this strategy has been extended to k-fold cross-validation, allowing for the average
mediation estimates from different data partitions to be employed.

Sample splitting allows us to handle the more complex task of identifying mediating
pathways within high-dimensional data. Typically, we lack prior knowledge of these pathways
amidst a diverse mixture of exposures and mediators, necessitating data-adaptive identification
methods. The separate data partitions help ensure that pathway discovery and estimation of
direct and indirect effects are not overfit to the sample data, thus avoiding the statistical
pitfall of double-dipping, which is akin to multiple testing issues.

This process of identification has been termed "dredging with dignity" in the literature
[44], recognizing the necessity of exploring the vast array of potential paths in a principled
manner. Just as the analyst might be tempted to cherry-pick interesting results from multiple
testing, so too can the analyst fall into the trap of selecting intriguing pathways from the
same dataset. This separate sample approach steers clear of that, offering a way to explore
high-dimensional pathways responsibly.
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K-fold Cross-Validation

K-fold cross-validation is a technique that divides our observations, indexed from 1 to n,
into K equally sized subgroups. For each k, an estimation sample Pk is defined as the k-th
subgroup of size n

K
, while the complement of Pk, denoted as Pn−k , serves as the parameter-

generating sample. Using Pn−k , we identify mediation pathways in the exposure-mediator
space by employing basis functions from the best-fitting b-spline estimators. In each fold, we
have nuisance estimators for every component of the EIF. With these mediation pathways
fixed we then train nuisance parameter estimators on the same Pn−k samples, which are
essential for solving the EIF and providing asymptotically unbiased estimators.

The process is carried out in a round-robin manner. For K = 10, we obtain 10 (possibly
different) pathways, outcome estimators Qk, and density estimators gk, ek, and rk, which
are used to construct nuisance parameters that comprise DY (o), DA(o), and DZ,W (o). To
estimate a pooled θ(δ) using the full data, we stack the estimation-sample estimates for each
nuisance parameter across the folds. We then calculate the sum and average across the folds
to obtain our point estimate and subtract this average from the summed nuisance parameters
to obtain the EIF for the full data, yielding our pooled θ(δ) estimate. The variance is then
calculated by pooling the pooled EIFs. The NDE parameter is obtained by subtracting
the pooled θ(δ) from the full data mean outcome, and the delta method is applied to the
pooled EIFs to obtain the EIF for the pooled NDE (θ(δ)d), which is used to derive confidence
intervals (CIs).

A similar procedure is employed for the total effect. For the total effect we are using
TMLE or one-step estimation. For TMLE, we stack initial estimates and clever covariates
across all folds and perform a fluctuation step across the full initial estimates and clever
covariate estimates to obtain our estimate ε. We then update the counterfactuals across
all folds using the ε values. The updated conditional means, counterfactuals, and clever
covariates are employed to solve the EIF across the entire sample for the shift in A, ignoring
Z. The delta method is applied to subtract the EIF for a shift in A, ignoring Z, from the
EIF of the observed Y to obtain the EIF for the total effect (θ(δ)t), and the same process
is used to derive the point estimate for the total effect. The delta method is again used to
estimate the pooled NIE (θ(δ)i).

In addition to the pooled estimates, we report k-fold specific estimates of the in(direct)
effects and fold-specific variance estimates for these target parameters using the fold-specific IC.
This is important because if the mediation pathway identified in each fold varies significantly,
the pooled estimates can be challenging to interpret (if the same pathway is not found across
all folds). By providing both k-fold specific and pooled results, users can assess the robustness
of the pooled result across the folds. To visualize the algorithm and what is happening in the
parameter generating and estimation folds, we provide a schematic in Figure 3.1
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Figure 3.1: Schematic of Operations in the Parameter Generating and Estimation Folds in
the NOVAPathways Procedure

Pooled Estimates under Data-Adaptive Delta

Stochastic interventions, particularly those involving significant shifts in exposure, can be
susceptible to positivity violations, leading to biased and increased variance in exposure effect
estimation. This happens if the exposure shift is so substantial that some subgroups have
zero probability of receiving a specific exposure level. This challenge persists even when
utilizing an efficient estimator like TMLE.

To mitigate this, we can employ a data-adaptive approach to adjust the exposure shift
magnitude, δ. When the exposure is continuous, we modify δ within the parameter-generating
sample to meet specific positivity criteria, which helps limit positivity violations. However,
when exposure is quantized, a delta of one, signifying an increase in quantiles, is the minimum
and most interpretable δ.

Consider H(aδ, w)i, the probability density ratio for observation i upon an exposure shift
of δ. We aim to ensure that all observations have a ratio below a specific threshold λ. To do
this, we iteratively decrease δ by a small amount, ε, until H(aδ, w)i < λ for all observations i:

∀i, H(aδ, w) =
gn−k(an−k − δ | w)

gn−k(an−k | w)
≤ λ
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Here, λ is a preset threshold, and δ is reduced until all clever covariate density ratios fall
below λ. By default, in our SuperNOVA package, λ is set to 50, and ε to 10% of δ. This
means that if any predicted conditional probabilities exceed the probability under observed
exposure by a factor of 50, we reduce δ.

Finally, we account for data-adaptive δ during the pooling process. If δ is constant, the
pooling is simply an average of the estimates across folds. However, for a data-adaptive δ,
we average δ and pair it with the average estimates and the pooled variance calculations
described previously.

Interpreting Shifts when Exposure is Discretized

In the case where the exposure variable is discretized into quantiles, we can still interpret the
results in a continuous context. If we let Amin and Amax denote the minimum and maximum
values of the continuous exposure, respectively, and nbins denote the number of quantiles,
then each quantile represents an interval of size Amax−Amin

nbins
on the continuous scale.

Aquantile = Amin +

(
Amax − Amin

nbins

)
· (q − 1) (3.1)

Here, q denotes the quantile rank, which ranges from 1 (for the smallest values of the
exposure) to nbins (for the largest values of the exposure). Each value of Aquantile represents
the lower bound of the interval on the continuous scale that corresponds to that quantile.

For example, if we have an exposure variable ranging from 0 to 10, and we discretize it into
5 quantiles, then each quantile represents an interval of size 10−0

5
= 2 on the continuous scale.

Thus, the first quantile represents the interval from 0 to 2, the second quantile represents the
interval from 2 to 4, and so on. Despite using a discretized version of the exposure in the
analysis, the interpretation can still be related back to the original continuous exposure scale.
In this way, if the discretized approach is preferable, a pseudo-continuous interpretation is
still possible.

3.5 Simulations
In this section, we demonstrate using simulations that our approach identifies the correct
mediating pathways in a complex mixture of exposures and mediators and correctly estimates
the natural direct, indirect and total effects for a given pathways using stochastic interventions.

Data-Generating Processes

We first construct a simple data-generating process (DGP) where Y is generated from a
linear combination of an exposure and mediator. In this DGP we measure the asymptotical
behavior of the in(direct) effect estimators keeping the pathway fixed (not data-adaptively
discovering the pathway). We do simulations for both continuous and discrete exposures to
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investigate the behavior of the estimator using numeric integration vs. simple weighted sums.
In the second DGP, we generate multiple pathways to the outcome from multiple exposures
and measure the estimators performance in data-adaptively identifying the correct pathways.

Simple Mediation Simulation

This DGP has the following characteristics, O = W,A,Z, Y . We call this the "DGP 1"
moving forward which we use to investigate the asymptotic behavior of our estimates. The
data-generating process involved the following steps:

1. Baseline covariates:

• W1 ∼ N (20, 22): generated from a normal distribution with mean 20 and standard
deviation 2.

• W2, w3 ∼ Binomial(1, 0.5): generated from binomial distributions with size 1 and
probability 0.5.

• W4 ∼ N (30, 32): generated from a normal distribution with mean 30 and standard
deviation 3.

• W5 ∼ Poisson(1.2): generated from a Poisson distribution with rate 1.2.

2. The exposure A was generated from a normal distribution, conditional on the covariate
W1:

A ∼ N (1 + 0.5W1, 1
2)

3. The exposure A was shifted by an amount δ (in this example δ = 1), producing Aδ:

Aδ = A+ δ

4. The mediator Z was generated from a normal distribution, conditional on the exposure
A and the covariate W1:

Z ∼ N (2 · A+W1, 1
2)

5. The mediator Z was also shifted given a shift in A, producing ZAδ :

ZAδ ∼ N (2 · Aδ +W1, 1
2)

6. The outcome Y , YAδ (Y given a shift in only A), and YAδ,ZAδ (Y given a shift in A and
Z) was generated as a linear function of the exposure A and the mediator Z:

Y = 10 · Z + 40 · A+ ε

YAδ = 10 · Z + 40 · Aδ + ε

YAδ,ZAδ = 10 · ZAδ + 40 · Aδ + ε
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We use this simulation to test NOVAPathways estimation of the total, direct and indirect
effects. Our approach was to keep things relatively straightforward, keeping the DGP a
linear process to test the asymptotic behavior of the estimator when the functional forms are
correctly specified (GLMs are included in each Super Learner that model the true underlying
function).

Complicated Mediation Simulation

We now want to create a more complicated scenario where there are many correlated exposures
and some go through mediators to drive the outcome. In this simulation, we want to test
NOVAPathways in discovering the correct paths. This data-generating process (DGP) has
the following characteristics, (O = (W,A,Z, Y )), we call this moving forward "DGP 2".
The exposures A = (A1, A2, A3, A4, A5) are generated and have potential indirect (through
Z = (Z1, Z2, Z3, Z4, Z5)) effects on Y . Even though there are a total of 25 possible mediating
paths due to 5 exposures and 5 mediating variables, only the exposures A1, A2 have actual
direct and indirect (through Z1, Z2 respectively) effects on Y . Our goal is to test the
proportion of times across the simulation that the correct paths among the 25 potential ones
are discovered. The data-generating process involved the following steps:

1. Baseline covariates:

• W1 ∼ N (20, 22): generated from a normal distribution with mean 20 and standard
deviation 2.

• W2,W3 ∼ Binomial(1, 0.5): generated from binomial distributions with size 1 and
probability 0.5.

• W4 ∼ N (30, 32): generated from a normal distribution with mean 30 and standard
deviation 3.

• W5 ∼ Poisson(1.2): generated from a Poisson distribution with rate 1.2.

2. Five exposure variables A = (A1, A2, A3, A4, A5) are generated from a multivariate
normal distribution, conditional on the covariates W :

• A1 ∼ N (1 + 0.5 ·W1,Σ)

• A2 ∼ N (2 ·W2 ·W3,Σ)

• A3 ∼ N (1.5 ·W4/20 ·W1/3,Σ)

• A4 ∼ N (3 ·W4/2 ·W2/3,Σ)

• A5 ∼ N (2 ·W5,Σ)

The exposures are correlated as per the following correlation matrix, Σ, which represents
common scenarios in air pollution where particulate matter and gaseous pollutants
show high intra-group correlation but lower inter-group correlation:
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Σ =


1 0.8 0.3 0.3 0.2

0.8 1 0.3 0.3 0.2
0.3 0.3 1 0.8 0.2
0.3 0.3 0.8 1 0.2
0.2 0.2 0.2 0.2 1


3. Five mediators Z = (Z1, Z2, Z3, Z4, Z5) are generated from normal distributions, condi-

tional on the exposures A and covariates W :

• Z1 ∼ N (2 · A1 +W1, 1
2)

• Z2 ∼ N (2 · A2 +W2, 1
2)

• Z3 ∼ N (5 · A3 · A4 +W3, 1
2)

• Z4 ∼ N (3 · A4 ·W4, 1
2)

• Z5 ∼ N (4 · A5 ·W5, 1
2)

4. The outcome Y is generated as a linear function of Z1, A1, W3, A2, and Z2:

Y = 10 · Z1 + 40 · A1 + 15 ·W3 − 6 · A2 + 7 · Z2

Calculating Ground-Truth

We numerically approximated the natural direct effect (NDE), natural indirect effect (NIE),
and total effect (ATE) of the exposure A on the outcome Y to high precision using 100000
samples from our DGP. In our DGP which assesses estimation (simple DGP), δ is equal to 1.

1. The NDE was calculated as the mean difference in Y when shifting the exposure A
while keeping the mediator Z constant:

NDE = E(YAδ,Z − Y )

2. The NIE was calculated as the mean difference in Y when shifting both the exposure
A and the mediator Z:

NIE = E(YAδ,ZAδ − YAδ)

3. The ATE was calculated as the sum of NDE and NIE:

ATE = NDE + NIE

Additionally, we conducted the same analysis using a discrete exposure that has been
split into quantiles (10) after step 2. and compute the quantile-based NDE, NIE, and total
effect estimates.



CHAPTER 3. NOVAPATHWAYS 107

Evaluating Performance

We assessed the asymptotic convergence to the true exposure relationships used in the
DGP, as well as the convergence to the true in(direct) effects and total effects for these
exposure-mediator pathways, in each simulation. To do so, we followed the following steps:

1. We generated a random sample of size n, which we divided into K equal-sized estimation
samples of size nk = n/K, each with a corresponding parameter generating sample of
size n− nk.

2. At each iteration, we used the parameter generating sample to define the mediation
pathway(s) and create the estimators for the nuisance parameters used for θ(δ)d and
θ(δ)t. We then use the estimation sample to obtain the causal parameter estimate using
generating equations and TMLE. We repeated this process for all folds.

3. At each iteration, we output the stochastic shift estimates given the pooled one-step
and TMLE estimation.

4. For the simple DGP, we use the var_sets parameter in SuperNOVA to bypass the
data-adaptive discovery of mediating paths and simply examine performance of the one
A− Z pathway. For the complicated DGP we use the discover_only parameter to do
only pathway discovery and skip estimation. In the complicated DGP we report the
proportion of iterations NOVAPathways identifies the correct two pathways out of the
possible twenty-five pathways.

To evaluate the performance of our approach, we calculated several metrics for each
iteration, including bias, variance, MSE, confidence interval (CI) coverage, and the proportion
of instances in which the true meditating pathways were identified. To visually inspect if
the rate of convergence was at least as fast as

√
n, we show projections of a

√
n consistent

estimator starting from the initial bias. For brevity, we focus on the absolute bias and
confidence interval coverage. We calculated these performance metrics at each iteration,
performing 50 iterations for each sample size n = (250, 500, 1000, 1500, 2000, 2500, 3000). We
used SuperNOVA with 10-fold cross-validation and default learner stacks for each nuisance
parameter and data-adaptive parameter. Additionally, the quantile threshold was set to 0 to
include all basis functions used in the final best fitting model. To ensure our estimator has a
sampling distribution that is normal, we standardize the bias by dividing by the standard
deviation of the estimate at each sample size and plot the density distributions for the direct,
indirect and total effects.

Default Estimators

SuperNOVA has two density estimating methods that come built into the package. The
haldensify estimator [36] can be used for conditional density estimation of gn = p(A|W ),
en = p(A|W,Z) and rn = p(Z|W ). Haldensify is a flexible, data-adaptive approach that
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employs a histogram-based technique to estimate densities. The maximum interaction degree
is set by the user as is the number of bins to discretize the outcome. Haldensify works
by constructing a histogram of the data and employing a multivariate step function to
estimate the density, which makes it computationally efficient and suitable for a wide range
of applications.

As an alternative to haldensify, the SuperNOVA package also offers the option to use
Super Learner for conditional density estimation. The default Super Learner stack includes a
diverse set of learners, such as glm [62], elastic net [27], random forest [111], and xgboost
[13]. We create estimators based on homoscedastic errors (HOSE) and heteroscedastic errors
(HESE). For the simulations presented in this paper, we have opted to use Super Learner.
This way we can investigate the behavior of the estimator when the true function or an
algorithm that approximates the true function is included in the Super Learner library.

Additionally, we need an estimator for Q̄ = E(Y |A,W ). SuperNOVA provides default
algorithms to be used in a Super Learner [59] that are both fast and flexible. For our
data-adaptive procedure, we include learners from the packages earth [67], polspline [81], and
hal9001 [16]. The results from each of these packages can be formed into a model matrix, on
which we can fit an ANOVA to obtain the resulting linear model of basis functions.

In the case where A is discrete, gn = p(A|W ) and en = p(A|W,Z) are instead Super
Learners built from categorical outcome estimators such as neural networks, random forest
and polspline.

Results

Do Target Parameters Estimated by NOVAPathways Converge to Truth at
1/
√
n for Continuous Exposures?

An important aspect of our estimator’s performance is its convergence rate. In the context
of our simulation (DGP 1 with one exposure-mediator pathway), the convergence rate
signifies how quickly the estimator approaches the true parameter value as the sample size
increases. Ideally, we want estimates for the total effect, direct effect and indirect effect to
show convergence to the truth at

√
n using a DGP that, although simple, at least includes

confounding and relationships that feasible could be observed in a real-world analysis setting.
Figure 3.2 exhibits the absolute bias and the anticipated rate of convergence for a

√
n

consistent estimator, given the initial bias, when the exposure is truly continuous. It shows
the bias as the sample size increases to 3000. Observing the estimates from the integration
method, the bias is generally lower but exhibits a non-convergent behavior when reaching
a sample size of 3000, particularly for Natural Direct Effect (NDE) and Natural Indirect
Effect (NIE). Although the pseudo-regression approach displays greater consistency, the bias
remains considerably high, hindering proper coverage.

Coverage, illustrated in Figure 3.3, refers to the proportion of iterations for each sample
size where confidence intervals contain the true value. For both methodologies—integration
and pseudo-regression—the estimated coverage for NDE and NIE does not achieve the desired
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Figure 3.2: Absolute Bias and Expected
√
n Convergence Across Sample Sizes for Total,

Natural Direct and Natural Indirect Effects when Exposure is Continuous in DGP 1

95% level. This shortfall is likely attributable to the bias in estimates induced by numeric
integration, a necessary procedure for estimating the nuisance parameters in the case of a
continuous exposure.

Therefore, continuous exposures do not demonstrate the expected
√
n convergence. This

behavior implies that our estimator falls short of the necessary criteria to qualify as asymptoti-
cally normal. The departure from asymptotic normality may partly stem from approximations
made during the numerical integration required for our estimation process. Alternatively,
coding inaccuracies could be at play. Theoretically, the estimator should function correctly,
so these anomalies warrant further investigation. Additionally, a sample size of 3000 may
still be too small to assess for normality.
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Figure 3.3: Confidence Interval Coverage for Total, Direct and Indirect Estimates using
Integration and Pseudo-Regression in DGP 1

Do Target Parameters Estimated by NOVAPathways Converge to Truth at
1/
√
n for Quantized Exposures?

We also evaluated the performance of the NOVAPathways estimator under our DGP 1
scenario where the exposure variable is quantized. Like for the truly continuous exposure, the
main aspects of the evaluation are the rate of convergence and the coverage of the confidence
intervals, as these metrics represent the robustness and reliability of the estimator.

In contrast to the results for continuous exposures, we observe satisfactory performance
of the estimator for quantized exposures. The bias for the estimated NDE, NIE, and total
effect demonstrates a clear trend of convergence towards zero with increasing sample size, for
both integration and pseudo-regression methods. Figure 3.4 shows the absolute bias and
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expected
√
n convergence given initial bias as sample size increases. This pattern is more

prominent for the integration method, with bias levels generally being much lower than in
pseudo-regression. For instance, for NDE, the absolute bias using the integration method
decreases from 0.668 at a sample size of 250 to 0.0621 at a sample size of 3000.

Coverage of confidence intervals for these estimates also shows a desirable pattern. Consid-
ering the average coverage across all sample sizes, the coverage for NDE reaches an average of
95.6 % for the pseudo-regression method and remains at 100% for the integration method. For
NIE, the pseudo-regression method provides an average coverage of 85%, while the integration
method provides a higher average coverage of 96%. Figure 3.5 shows the proportion of
confidence intervals that contain the true value for each approach at increasing sample size.
Finally, for the total effect, the average coverage across all sample sizes reaches 100%. It’s
worth noting that for both NDE and NIE, the pseudo-regression method exhibits lower
coverage than the integration method.

In summary, our results demonstrate that when the exposure variable is quantized, the
NOVAPathways estimator exhibits desirable characteristics of a reliable estimator. It provides
a rate of convergence that meets the 1/

√
n standard, and the confidence intervals demonstrate

appropriate coverage. These results confirm the robustness of NOVAPathways when applied
to quantized exposure variables, and underline the necessity of having appropriately quantized
exposure variables in order to achieve reliable and valid results.

NOVAPathways Correctly Identifies Mediating Pathwways in a Realistic
Complex Mixed Exposure-Mediator Situation

In DGP 2, despite having 25 potential mediating pathways in the complex exposure mixture-
mediation simulation, NOVAPathways consistently identified the two true pathways (A1−Z1

and A2 − Z2) with a frequency of 100%, across various sample sizes ranging from 250 to
3000 observations. Furthermore, direct effects of A1 and A2 on the outcome Y were also
consistently identified across all scenarios, reinforcing the robustness of our detection method.
Figure 3.6 shows the frequency each pathways was detected for each sample size. Note that,
only pathways detected are reported.

However, it is noteworthy that there were some instances of incorrectly identified pathways,
as seen from the non-zero frequencies of pathways such as A1 − Z2, A2 − Z1, and others,
which could be attributed to the high correlation between the exposures. While these false
discoveries present opportunities for methodological refinement, the consistently correct
identification of the true pathways underpins the effectiveness of our methodology in the
presence of multiple mediators and exposures, which is a common scenario in air pollution
research. Of note is that, the incorrect pathways were identified in very few folds and in such
cases the analyst would report the inconsistency of such a finding.
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Figure 3.4: Absolute Bias and Expected
√
n Convergence Across Sample Sizes for Total,

Natural Direct and Natural Indirect Effects when Exposure is Quantized in DGP 1

Assessing the Validity of NOVAPathways’s Inference through Simulations

The fundamental premise of a robust inference is the verification of the estimator’s normal
sampling distribution, centered at zero and progressively narrowing with increasing sample
size. This premise is tested in the context of the NOVAPathway estimator for natural direct,
indirect, and total effects. We illustrate the empirical distribution of the standardized bias,
defined as the difference between the estimated and true values from the data-generating
process, normalized by the standard deviation of the estimates across iterations. The
assessment is conducted using 50 iterations per sample size and visualized as a probability
density distribution in Figure 3.7.

In Figure 3.7, we observe the convergence of the sampling distribution to a mean-zero
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Figure 3.5: Confidence Interval Coverage for Total, Direct and Indirect Estimates using
Integration and Pseudo-Regression in DGP 1

normal as sample size escalates. This phenomenon is evident across all types of effect estimates.
The total effect, calculated via one-step, remains consistent regardless of whether the natural
direct effect (NDE) is computed using integration or pseudo-regression methods. The NDE
for the integration method is concentrated more closely around zero, albeit exhibiting greater
tail variability, while the pseudo-regression counterpart maintains a smoother, centered
distribution. The natural indirect effect (NIE) demonstrates the widest dispersion, although
still centered around zero. Notably, the pseudo-regression method achieves a slightly narrower
distribution around zero for NIE.

All plots in Figure 3.7 exhibit normal or near-normal distributions centered at zero that
contract with an increase in sample size. This characteristic is crucial for the validity of
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Figure 3.6: Average Frequency Each Path Was Detected in the Mixed Exposure-Mediator
Simulation in DGP 2

confidence interval construction and underscores the reliability of our estimator. As such, the
simulation results affirm the soundness of NOVAPathways’s inference methodology.

3.6 Applications

NHANES Data

Data Description

To provide a motivating example for the application of NOVAPathways we extracted data from
the 2001-2002 cycle of the National Health and Nutrition Examination Survey (NHANES).
The NHANES program, managed by the Centers for Disease Control and Prevention (CDC),
is a comprehensive set of studies designed to assess the health and nutritional status of adults
and children in the United States [124]. These studies employ a combination of interviews
and physical examinations to capture a broad array of health information. NHANES data is
particularly suitable for motivating the use of NOVAPathways due to its representative sample
of the U.S. population (specifically for pollution exposure), broad collection of health-related
variables, and its open availability. This enables us to make our analysis transparent and easily
replicable, fostering open science practices and facilitating methodological testing [109]. For
these purposes, all code for data cleaning and curation for this motivating analysis example
using NHANES is included in the SuperNOVA package which uses the NOVAPathways
method.
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Figure 3.7: Bias Standardized by Standard Error of Estimates for the Natural In(Direct)
Effects and Total Effect in DGP 1

One significant challenge of using cross-sectional datasets like NHANES is the potential for
reverse causality, wherein the outcomes/mediators may influence the exposures rather than
vice versa. This characteristic violates the temporal assumption required for traditional causal
inference [41]. However, the use of NHANES data in our study is not primarily to establish
causal relationships but rather to provide a real-world demonstration of the capabilities of
our method, NOVAPathways.

The NHANES data provides a large number of well-measured toxic metal exposures,
biomarkers for potential mediating pathways, and covariates. This comprehensive dataset
offers an invaluable opportunity to determine if NOVAPathways identifies consistent mediating
pathways in high-dimensional data and delivers interpretable direct, indirect, and total effect
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results based on data-adaptively determined pathways from stochastic shift interventions.
Our chosen example focuses on the association of a mixture of toxic metals on asthma, both
directly and possibly indirectly through biomarkers for inflammation, oxidative stress, and
immune function.

The decision to investigate this specific association is informed by a growing body of
evidence suggesting a correlation between heavy metal exposure and the onset of asthma,
particularly in children. For instance, a cross-sectional, population-based study leveraging
NHANES data from 2007-2012 investigated the associations between heavy metal exposure
and childhood asthma or wheezing [113]. Their analysis found that higher blood lead
concentrations were associated with higher odds of active asthma in children aged 2-15 years,
with a particularly pronounced effect in the 6-11 years age group. Moreover, the study also
noted associations between blood lead concentrations and the incidence of wheezing, an
asthma symptom. Although their results indicated a lower risk of wheezing with higher blood
mercury concentrations, the overall evidence points towards a noteworthy connection between
heavy metal exposure and asthma.

Given these findings, our exploration seeks to further illuminate potential mediating
pathways between toxic metal exposure and asthma. This could provide vital insights into
how and why such an association exists, potentially guiding the development of more targeted
interventions for this prevalent health issue. By doing so, we hope to contribute to the
broader understanding of environmental health risks, particularly those tied to heavy metal
exposure.

Our choice of the 2001-2002 NHANES data cycle was informed by the fact that this
cycle included all relevant variables necessary for a comprehensive investigation into the
associations between toxic metal exposures, inflammation, immune function, oxidative stress,
and the prevalence of asthma [3]. This particular NHANES cycle collected exhaustive data
on these variables, offering a unique opportunity to conduct our investigation within a
representative sample of the U.S. population. The exposure variables are several toxic metals,
including barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, and
tungsten measured in urine. Covariates included are variables that could potentially confound
the relationship between the exposure (metals) and the outcome (asthma). They include
demographic variables (age, gender, race, education level), health behavior variables (average
daily physical activity, muscle training, vigorous intensity in the last 30 days), substance
use (cotinine, an indicator of nicotine exposure, and alcohol), body mass index, family
poverty ratio, exam weight, interview weight, and caffeine intake. The mediators are the
variables representing potential biological pathways through which the metal exposures could
affect the outcome. They include various biomarkers for cell aging (mean telomere length,
standard deviation of telomere length), immune function (white blood cell count, monocyte
and neutrophil percentages), inflammation (C-reactive protein), and antioxidant nutrients
(alpha and beta carotene, vitamins A and E, trans lycopene, lutein and zeaxanthin). These
variables represent potential mediators of the relationship between heavy metal exposure and
asthma. A binary indicator for asthma is the outcome.

The original NHANES 2001-2002 dataset consisted of 11,039 participants, with 4,260
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individuals providing blood samples and consenting to DNA analysis [124]. After applying
our exclusion criteria, such as missing environmental chemical analysis data, missing key
covariate data, and insufficient stored samples for telomere length estimation, our final study
sample was comprised of 1,344 participants.

Our data cleaning and curation techniques were relatively basic as our main goal is
to demonstrate our proposed methodology and software, not provide a thorough analysis.
Nontheless, data cleaning and curation were undertaken to ensure the integrity of distributions
in our dataset was retained while allowing us to not lose too many observations due to
missingness. We first omitted observations with missing values in the outcome variable
(asthma) and in the crucial exposure variables (toxic metals). We then retained columns
where less than 20% of the data was missing. This balance allowed us to maximize the use of
available data while avoiding the potential bias from imputing excessive missing values.

Next, we imputed missing data in the remaining variables through suitable methods:
mean imputation for numeric variables and mode imputation for categorical ones [42]. This
strategy helped ensure the final dataset maintained the original distributions and variable
relationships to the greatest extent possible.

We then quantized the metal exposure data to address the methodological issue with our
proposed method when the exposure is fully continuous. As shown, continuous exposures
necessitate numeric integration in the calculations of the mediation effects. However, this
approach lead to approximations that are not precise enough, inducing asymptotic bias
and resulting in poor confidence interval coverage. To avoid this issue, we quantized the
continuous exposure data, transforming each exposure into a categorical variable with equal
frequency bins (deciles in our case). This transformation allows a shift delta = 1 to represent
an increase in decile, and we can calculate each nuisance function as a simple weighted sum
rather than a numeric integration. By doing this, we have observed improved asymptotic
behavior of our estimators and accurate confidence interval coverage.

The selection of toxic metals as exposures in our study was informed by prior literature
demonstrating the potential link between toxic metal exposure, oxidative stress, inflammation,
and immune function—all factors implicated in the etiology of asthma [33, 103]. Several
studies have shown that exposure to toxic metals can lead to oxidative stress, which in
turn can trigger inflammatory responses and modulate immune function [23, 52, 80]. These
processes can potentially contribute to the onset or exacerbation of asthma, hence our interest
in exploring these relationships in this study. By investigating these associations within
the NHANES 2001-2002 dataset, we aim to show that semi-parametric methods utilizing
efficient estimators and data-adaptive target parameters can yield a deeper understanding of
the complex interplay between environmental exposures, molecular biomarkers, and disease
outcomes.

Through this process, we seek to illustrate the utility of our SuperNOVA software which
incorporates the NOVAPathways mediation methodology. Our results, which are presented
in subsequent tables, offer a comprehensive view of the information that SuperNOVA can
generate from a provided dataset.
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Consistent Findings for Toxic Metal Exposure on Asthma Through
Inflammatory, Oxidative Stress and Immune Function Mediators

Because NOVAPathways data-adaptively discovers exposure-mediator pathways, it’s best
to report first any notable consistencies across the multiple folds. Cesium, as an exposure,
was found in 80% of the folds, demonstrating the greatest consistency among all exposures
investigated. This highlights the potential relevance of cesium in our model, warranting
further investigations into its role and impact on asthma in future studies.

When considering the mediators, monocyte percentage and vitamin E emerged as the
most consistent across the folds, being detected in 80% and 60% of the folds, respectively. The
consistent appearance of monocyte percentage, a key indicator of immune system activation,
underscores the possible involvement of immune modulation in the effect of toxic metal
exposure on asthma. This observation aligns with previous studies that have reported a link
between elevated monocyte counts and increased asthma risk, potentially due to the role of
monocytes in driving inflammation and airway remodeling processes in asthma [78].

Similarly, the recurring detection of vitamin E may imply a role for antioxidant mechanisms
in modulating the exposure-asthma relationship. Vitamin E is a known antioxidant and anti-
inflammatory agent, and its deficiency has been associated with higher incidence and severity
of asthma. Evidence from prior research also suggests that higher vitamin E levels could
provide some protective effect against pollutants or other harmful environmental exposures
related to asthma [107]. Our findings are, therefore, in line with the existing body of research,
suggesting potential roles for both immune system activation and antioxidant mechanisms in
the relationship between toxic metal exposure and asthma.

Furthermore, we found the exposure-mediator pairs of cesium-monocyte percentage and
tungsten-monocyte percentage in 60% of the folds. The pairings of specific exposures with
monocyte percentage suggest potential pathways where these elements could influence asthma
pathogenesis through immune mechanisms. Cesium is typically released into the environment
from nuclear power plants and during the production and detonation of nuclear weapons,
and exposure can also occur from consuming food and water contaminated with cesium.
Tungsten is often used in industrial applications like metalworking, mining, and construction.
Reducing human exposure to these metals might involve tighter regulations on nuclear energy
production and emissions standards for industries using tungsten, as well as efforts to reduce
contamination of agricultural areas near such sites.

Meanwhile, the lead-vitamin E pair appeared in 50% of the folds, alluding to another
potential pathway via oxidative stress mechanisms. Lead exposure is a well-known public
health issue, and significant steps have been taken to reduce lead in house paint, gasoline, and
plumbing. Nevertheless, exposure still occurs, often from legacy sources such as older homes
with leaded paint or pipes. Continued efforts to remediate these sources and educate the
public on how to reduce their exposure to lead can be instrumental in reducing the burden of
lead-associated health issues, including asthma.

Given these results, we next report the fold specific and pooled results of Cesium, the
Cesium-Monocyte Percentage pathway, the Lead-Vitamin E pathway, and the Tungsten-
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Monocyte Percentage pathway.

Results for Cesium, Lead and Tungsten Through Monocyte Percentage and
Vitamin E

We first examined the potential impact of Cesium exposure on the likelihood of developing
asthma, independent of mediation. In 8 out of 10 folds, Cesium consistently appeared,
implying a possible influence in the disease’s progression. Here we use a decile shift increment
in Cesium exposure and observe the expected probability of asthma given this shift compared
to the observed probability of asthma. Here, a decile increase is equivalent to a rise of
4.182,/L on the Cesium continuous scale.

While the results varied slightly across the folds, the effect generally leaned towards the
positive. In the pooled analysis, a decile increase in Cesium corresponded to a 0.012 increase
in the asthma probability. However, this result didn’t achieve statistical significance at the
conventional 0.05 level (p-value = 0.17). While the findings do not conclusively establish a
relationship between cesium and asthma, the consistent results hint at a potential correlation
warranting further investigation. Table 3.1 presents the total effects of a decile shift in
Cesium on the likelihood of asthma.

Psi Variance SE Lower CI Upper CI P-value Fold Type Variables N Delta

0.02 0.00 0.01 -0.01 0.04 0.14 1 Indiv Shift cesium 135.00 1.00
0.02 0.00 0.05 -0.07 0.12 0.64 4 Indiv Shift cesium 135.00 1.00
0.04 0.00 0.03 -0.03 0.10 0.29 5 Indiv Shift cesium 135.00 1.00
-0.00 0.00 0.02 -0.04 0.04 0.92 6 Indiv Shift cesium 134.00 1.00
0.00 0.00 0.01 -0.02 0.02 0.85 7 Indiv Shift cesium 134.00 1.00
0.00 0.00 0.01 -0.01 0.01 0.88 8 Indiv Shift cesium 134.00 1.00
0.02 0.00 0.02 -0.03 0.06 0.42 9 Indiv Shift cesium 134.00 1.00
0.00 0.00 0.01 -0.01 0.02 0.74 10 Indiv Shift cesium 133.00 1.00
0.01 0.00 0.01 -0.01 0.03 0.17 Pooled TMLE Indiv Shift cesium 1074.00 1.00

Table 3.1: Results for Association Between a Decile Shift in Cesium and Probability of
Asthma

We subsequently examined how much of this effect passed through the monocyte percentage
as opposed to not. Table 3.2 displays the fold-specific and pooled results for the NDE, NIE,
and total effect of Cesium on asthma, via monocyte percentage, using both pseudo-regression
and double integration methods to construct the estimator. With pseudo-regression estimates,
we observed an NDE of 0.61 (-0.66 - 1.88) and an NIE through monocyte percentage of -0.60
(-1.86 - 0.66). Both results were not significant. Hence, the positive NDE and negative NIE
estimate, we would expect both to be positive given a positive total effect, in this case, both
estimates include 0 in the confidence interval. However, despite the absence of traditional
statistical significance, the persistence of cesium through the monocyte percentage across the
majority of the folds suggests a potential influence of this pathway on asthma.
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For Lead and Tungsten, a similar process was followed. In this instance, a decile increase in
Lead and Tungsten corresponded to a rise of 1.3,/L and 0.285,/L on the respective continuous
scales. A pathway for Tungsten through monocyte percentage was found in 60%. These
results are provided in Table ??. Like Cesium-monocyte percentage, although these pathways
were found in a majority of folds, the effects were not significant. A one decile increase in
Tungston is associated with a -0.005 (-0.013 - 0.004) decrease in the probability of asthma
(p-value = 0.28). Results for the NDE using pseudo-regression are the same as the total effect
indicating no indirect effect through monocyte percentage.

Lastly, we give results for Lead on asthma through vitamin E. Table 3.4 shows these
results. Again, the total effect, NDE and NIE are not significant given a decile increase in
lead although this pathway was identified in 50% of the folds. It should be noted that, across
the results the effects are quite small and the pathways are not found across all the folds. If
this were a true analysis being published by the analyst, these measures should be reported.
The fact that, the path discovery procedure does pick up mediation in 60% of the folds (for
Cesium through monocyte percentage) suggests that there is signal but perhaps the impact
is weak, or another measure of immune function captures the mediation better.

Through an analysis of the NHANES dataset, we highlight the proficiency of NOVA-
Pathways in identifying mediating pathways within high-dimensional data contexts. The
dataset in focus included 9 exposures and 12 mediators, thus theoretically encompassing 108
potential pathways. These pathways could mediate the effects of toxic metals via proxies of
inflammation, oxidative stress, and immune function.

Using flexible basis estimators, NOVAPathways successfully discerned the most influential
pathways and provided estimates associated with a one-decile increment in exposure. While
none of the effects reached the threshold of statistical significance, some exhibited borderline
significance.

Our comparison of Natural Direct Effects (NDE) estimates from pseudo-regression and
integration procedures revealed similar trends. The stability of estimates across the folds
and a decreased variance for the pooled results, as anticipated, reaffirmed the advantage of
pooling estimates across folds for precision.

We acknowledge the potential limitations of our method, as we discretized exposures
prior to implementing NOVAPathways. This more rudimentary representation of exposures,
although simplifying the data, might make pathway discovery more challenging.

Nevertheless, our primary objective was not the pinpoint accuracy of a causal inference but
rather a demonstration of the potential output from NOVAPathways. We sought consistency
of results across folds and the provision of interpretable estimates for NDE, NIE, and total
effects. In conclusion, this example underscores NOVAPathways’ utility in navigating complex
associations within high-dimensional data, offering a useful tool for analysts working with
multiple exposures and potential mediators.
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3.7 Software
The accessibility and application of statistical software that executes semi-parametric meth-
ods which respect data-generating processes found in real-world data is pivotal for ensuring
consistent and reproducible outcomes across research studies. SuperNOVA, an open-source
R package, attempts to address this need by facilitating the evaluation of causal effects from
mixed exposures using asymptotically linear estimators, which now includes the NOVAPath-
ways method for mediation. These estimators are proven to converge to the true estimand
at
√
n given estimates of nuisance parameters converge at n1/4. Its ability to handle both

continuous and discretized exposures addresses a notable limitation of its predecessor, the
medshift package [37] developed by Ivan Diaz and Nima Hejazi, which only supports binary
exposures. We also offer some additional functionality compared to the longitudinal modified
treatment policies approach and packege [22, 108] by data-adaptively finding mediating path-
ways in cross-sectional data. While continuous exposures are accommodated in SuperNOVA,
caution is warranted due to the potential for bias introduced by numerical integration, which
we have shown.

At the heart of SuperNOVA, with its integrated NOVAPathways, is Super Learning, a
machine learning technique employed via the SL3 package [17]. This methodology allows
SuperNOVA to adaptively identify mediating pathways using ensembles of basis-function
estimators, improving the adaptability and efficiency of the software to find pathways even
in complex exposure settings. Likewise, Super Learning is used for the estimation of each
nuisance function.

Comparison with existing software illustrates the potential for SuperNOVA to enhance
the accuracy and flexibility of mixed exposure-mediator research. Many environmental
health studies that have performed mediation analyses have used packages such as medflex
[94] and mediation [97] which are largely reliant on parametric assumptions. For instance,
these packages make strong assumptions about functional form, and they often assume
no interactions between the exposure and mediator, which can lead to biased estimates of
direct and indirect effects. In contrast, SuperNOVA’s semi-parametric approach relaxes these
assumptions, potentially resulting in more accurate and consistent estimates. Additionally,
no method or package currently exists which can identify pathways and make valid inference
on these pathways in the presence of high-dimensional data.

SuperNOVA’s design allows for both sequential and parallel computing, leveraging the
parallel processing capabilities offered by the furrr package [104]. Its computational efficiency
expands its suitability for use on personal computers, which can be crucial in resource-
limited research settings. Additionally, in the context where the analyst has a pre-defined
pathways they want to test, the path discovery section of NOVAPathways can be skipped
and the direct, indirect and total effects can directly be estimated using the cross-validation
procedure. Conversely, if the analyst is instead interested in only finding the most relevant
exposure-mediator paths to guide future study develop, this approach is also available.

Additional features of SuperNOVA include a comprehensive vignette, a detailed exposition
of the underlying semi-parametric theory, and comparisons to existing methods. The package
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also offers the NHANES mixed metal exposure data for reproducibility purposes, coding note-
books illustrating the application of the software, and interpretative summaries of SuperNOVA
output. SuperNOVA is regularly updated, available on GitHub (https://github.com/blind-
contours/SuperNOVA), and aims to equip researchers with robust tools to advance the quality
of research in mixed exposure and environmental health.

3.8 Limitations
Even as we have made a concerted effort to apply rigorous methodology in this study, following
[21] there are several limitations to consider which influenced our results, particularly when
the exposure is truly continuous.

Firstly, we used Monte Carlo integration methods, which are inherently stochastic. This
could have introduced some level of bias in our estimates. We sought to minimize this by
implementing four times the sample size for the number of Monte Carlo samples. However,
in high-dimensional or complex model scenarios, such adjustments may not fully eradicate
the error.

Furthermore, data variability, particularly in the density estimation, could have con-
tributed to bias introduction. Specifically, when density values hover at the extremes - either
exceedingly low or high - the subsequent variance in the estimator may inflate the bias.

Our proposed mediation method for continuous exposures also struggled with potential
issues regarding integration boundaries. Even though we were cautious in setting these
boundaries (the range of the exposure), the region of integration might have covered areas
where the functions integrated were not well-behaved. This could have added to the bias.

Moreover, instabilities in the numerical computations could have subtly influenced our
findings. Despite the power of contemporary computational tools, they are not entirely devoid
of errors. Instances of round-off or truncation errors could subtly impact the results.

Likely, this issue with continuous exposures arises as a cumulative effect of the afore-
mentioned limitations. Nevertheless, our results have demonstrated that when exposure
is quantized into a discrete form, thereby bypassing numeric integration, our estimator
exhibits the expected asymptotic behavior. Moreover, it provides valid confidence intervals
for inference - results that can be interpreted continuously.

In relation to positivity, violations of this principle are often an unavoidable reality in
many contexts. Nonetheless, our suggested approach optimizes the situation by considering
smaller shifts. These shifts are based on the ratio of exposure densities, which contrast the
density under shift to the observed density when there is no shift. Similar to our methodology
for path discovery, this strategy is heuristic in nature. It attempts to strike a balance between
ease of comprehension and implementation while effectively achieving the intended objective.
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3.9 Discussion
In this study, we introduce a novel approach for the estimation of natural direct, indirect, and
total effects, facilitated through data-adaptive identification of mediating pathways in high-
dimensional data. This breakthrough addresses a significant gap in current analytical methods,
particularly when dealing with data that comprises numerous exposures and mediators, which
is a common occurrence in environmental omics data.

Our approach first fits a very large statistical model to the exposure-mediator-covariate
space and treats the basis functions used in this model as a data-adaptive target parameter.
This is done in two stages to discover the mediating pathways, the first step discerns the
mediating pathways by determining which exposures influence the mediators and subsequently
identifying the mediators that impact the outcome. The discovery process yields a set of
exposure-mediators, termed pathways.

With these pathways fixed, we estimate the average change in the outcome under stochastic
shift interventions on exposures, which are further partitioned into direct and indirect effects.
We use and extend the methodology first proposed by [21]. We use the same efficient influence
function for the expected change in outcome given a stochastic shift intervention on the
exposure holding the mediator at observed values. We explore numeric integration required
for nuisance function estimation and build software for mediation when the exposure is
continuous or discrete. The resulting estimates, derived within a cross-validated framework
paired with general estimating equations and targeted learning, are asymptotically unbiased
with the lowest possible variance, subject to the fulfillment of the unconfoundedness and
positivity assumptions. Our proposed method delivers valid confidence intervals, unfettered
by the number of exposures, covariates, or the intricacy of the data-generating process,
provided the exposures are binned into an arbitrary set of categories. As shown, the numeric
integration required for exposures that are modeled truly as continuous induces bias in the
estimator which prevents the estimator from converging at the required

√
n rate, which

prohibits our ability to construct valid confidence intervals.
However, we acknowledge the method’s limitations, primarily its requirement for binned

exposures and the computational demands of density estimation. Furthermore, interpretation
can be challenging in instances where findings are inconsistent. To enhance the reliability
and consistency of the data, we recommend reporting the number of folds in which estimates
occur and running NOVAPathways with a high number of folds so a majority of data is used
for path discovery in each fold.

Notwithstanding these constraints, both our simulations and real-world data applications
underscore the robustness and interpretability of our approach, particularly when exposures
are binned, which still have valid continuous interpretations. Our NOVAPathways method
provides the research community with a statistical machine wherein, the researcher simply
puts in a vector of exposures, mediators, covariates, an outcome, estimators used in the
Super Learner of each nuisance parameter, and deltas for each respective exposure. The
researcher is then provided a table of proportions for each pathway found in the folds and
tables providing direct, indirect and total effects for each pathway.
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To support the adoption of semi-parametric methods such as the one we propose, we have
made NOVAPathways available via the SuperNOVA R package on GitHub. We believe that
by equipping researchers with tools that are not only robust but also flexible, we are inching
closer towards solving complex questions in environmental health research.
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Fold Parameter Psi Variance SE Lower CI Upper CI P-Value

Fold 1 NDE-Pseudo-Reg 0.05 0.00 0.06 -0.07 0.17 0.38
Fold 1 NDE-Double-Int 0.05 0.00 0.06 -0.07 0.17 0.41
Fold 1 NIE-Pseudo-Reg -0.04 0.00 0.06 -0.16 0.07 0.46
Fold 1 NIE-Double-Int -0.04 0.00 0.06 -0.16 0.08 0.50
Fold 1 Total Effect 0.01 0.00 0.01 -0.01 0.03 0.41
Fold 4 NDE-Pseudo-Reg 2.66 7.64 2.76 -2.76 8.08 0.34
Fold 4 NDE-Double-Int 2.66 7.64 2.76 -2.76 8.07 0.34
Fold 4 NIE-Pseudo-Reg -2.62 7.66 2.77 -8.05 2.80 0.34
Fold 4 NIE-Double-Int -2.62 7.66 2.77 -8.04 2.80 0.34
Fold 4 Total Effect 0.04 0.00 0.05 -0.06 0.13 0.45
Fold 5 NDE-Pseudo-Reg 0.92 7.34 2.71 -4.39 6.23 0.73
Fold 5 NDE-Double-Int 0.92 7.34 2.71 -4.39 6.22 0.74
Fold 5 NIE-Pseudo-Reg -0.88 7.16 2.67 -6.12 4.36 0.74
Fold 5 NIE-Double-Int -0.87 7.16 2.67 -6.12 4.37 0.74
Fold 5 Total Effect 0.04 0.00 0.04 -0.03 0.11 0.28
Fold 6 NDE-Pseudo-Reg -0.02 0.00 0.04 -0.10 0.07 0.72
Fold 6 NDE-Double-Int -0.02 0.00 0.04 -0.11 0.07 0.64
Fold 6 NIE-Pseudo-Reg -0.02 0.00 0.06 -0.14 0.10 0.73
Fold 6 NIE-Double-Int -0.01 0.00 0.06 -0.13 0.10 0.80
Fold 6 Total Effect -0.04 0.00 0.03 -0.09 0.02 0.18
Fold 9 NDE-Pseudo-Reg 0.03 0.00 0.02 -0.02 0.07 0.26
Fold 9 NDE-Double-Int 0.02 0.00 0.02 -0.02 0.07 0.30
Fold 9 NIE-Pseudo-Reg -0.02 0.00 0.03 -0.07 0.04 0.57
Fold 9 NIE-Double-Int -0.01 0.00 0.03 -0.07 0.04 0.62
Fold 9 Total Effect 0.01 0.00 0.02 -0.03 0.04 0.64
Fold 10 NDE-Pseudo-Reg -0.01 0.00 0.01 -0.04 0.02 0.67
Fold 10 NDE-Double-Int -0.01 0.00 0.01 -0.04 0.02 0.47
Fold 10 NIE-Pseudo-Reg 0.01 0.00 0.02 -0.04 0.05 0.72
Fold 10 NIE-Double-Int 0.01 0.00 0.02 -0.03 0.06 0.59
Fold 10 Total Effect 0.00 0.00 0.01 -0.03 0.03 0.89
Pooled NDE-Pseudo-Reg 0.61 0.42 0.65 -0.66 1.88 0.35
Pooled NDE-Integrated 0.60 0.42 0.65 -0.66 1.87 0.35
Pooled NIE-Pseudo-Reg -0.60 0.41 0.64 -1.86 0.66 0.35
Pooled NIE-Integrated -0.59 0.41 0.64 -1.86 0.67 0.35
Pooled Total-Pooled-TMLE 0.01 0.00 0.01 -0.01 0.03 0.40

Table 3.2: NDE and NIE of Cesium on Asthma Through Monocyte Percentage Across the
Folds
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Fold Parameter Psi Variance SE Lower CI Upper CI P-Value

Fold 1 NDE-Pseudo-Reg -0.02 0.00 0.03 -0.08 0.03 0.43
Fold 1 NDE-Double-Int -0.02 0.00 0.03 -0.08 0.03 0.41
Fold 1 NIE-Pseudo-Reg 0.01 0.00 0.03 -0.06 0.08 0.72
Fold 1 NIE-Double-Int 0.01 0.00 0.03 -0.05 0.08 0.69
Fold 1 Total Effect -0.01 0.00 0.01 -0.04 0.02 0.48
Fold 2 NDE-Pseudo-Reg -0.02 0.00 0.02 -0.06 0.01 0.17
Fold 2 NDE-Double-Int 0.03 0.00 0.03 -0.03 0.09 0.35
Fold 2 NIE-Pseudo-Reg 0.03 0.00 0.03 -0.03 0.08 0.33
Fold 2 NIE-Double-Int -0.03 0.00 0.04 -0.10 0.05 0.47
Fold 2 Total Effect 0.00 0.00 0.01 -0.02 0.03 0.84
Fold 3 NDE-Pseudo-Reg 0.03 0.01 0.08 -0.12 0.18 0.72
Fold 3 NDE-Double-Int 0.03 0.01 0.08 -0.13 0.18 0.74
Fold 3 NIE-Pseudo-Reg -0.02 0.01 0.07 -0.17 0.12 0.77
Fold 3 NIE-Double-Int -0.02 0.01 0.07 -0.16 0.12 0.78
Fold 3 Total Effect 0.01 0.00 0.01 -0.02 0.03 0.61
Fold 6 NDE-Pseudo-Reg -0.01 0.00 0.01 -0.03 0.02 0.61
Fold 6 NDE-Double-Int -0.01 0.00 0.01 -0.03 0.01 0.52
Fold 6 NIE-Pseudo-Reg -0.01 0.00 0.04 -0.07 0.07 0.89
Fold 6 NIE-Double-Int -0.00 0.00 0.04 -0.07 0.07 0.93
Fold 6 Total Effect -0.01 0.00 0.03 -0.07 0.04 0.70
Fold 9 NDE-Pseudo-Reg -0.06 0.00 0.05 -0.16 0.03 0.19
Fold 9 NDE-Double-Int -0.06 0.00 0.05 -0.16 0.03 0.18
Fold 9 NIE-Pseudo-Reg 0.04 0.00 0.06 -0.07 0.15 0.44
Fold 9 NIE-Double-Int 0.04 0.00 0.06 -0.07 0.15 0.43
Fold 9 Total Effect -0.02 0.00 0.02 -0.05 0.01 0.21
Pooled NDE-Pseudo-Reg -0.02 0.00 0.02 -0.06 0.02 0.37
Pooled NDE-Integrated -0.01 0.00 0.02 -0.05 0.03 0.70
Pooled NIE-Pseudo-Reg 0.01 0.00 0.02 -0.03 0.05 0.61
Pooled NIE-Integrated 0.00 0.00 0.02 -0.04 0.04 0.95
Pooled Total-Pooled-TMLE -0.01 0.00 0.01 -0.02 0.01 0.41

Table 3.4: NDE and NIE of Lead on Asthma Through Vitamin E Across the Folds
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Chapter 4

Open Source Causal Inference Software

The modern era of scientific research presents both exciting opportunities and unprecedented
challenges. Vast, complex datasets, innovative computational methods, and evolving statistical
models have revolutionized the landscape of scientific discovery. However, these advances have
also introduced significant complications that undermine the traditional pillars of scientific
inquiry—namely, transparency, reproducibility, and verifiability [46].

Over 70% of biologists, for example, struggle to reproduce their own findings, let alone
those of others [47]. Such a lack of reproducibility not only inhibits scientific progress and
squanders valuable resources but also erodes public trust in research. Various inefficiencies
such as poorly formulated research questions, inadequate research design and methods, and
flawed publication practices have led to the alarming squander of approximately 85% of
research investment—around $200 billion in 2010 [12].

While these issues affect every branch of scientific research, they pose significant challenges
in epidemiology and biostatistics where research questions are frequently governed by extrinsic
factors such as funding, available data, and statistical methods, rather than their inherent
significance or relevance. This leads to compromised research design and quality, and fosters a
research culture that prioritizes selective reporting and post-hoc rationalization over rigorous
scientific inquiry.

This is where the concept of a data-adaptive estimand becomes crucial. As a one-shot
statistical method, it respects the unknown complexities of high-dimensional data and
acknowledges the limitations of the researcher [54]. The estimand is designed to identify
latent relationships in the data flexibly and robustly, limiting the opportunities for subjective
tinkering with data and analysis. The resulting transparency and consistency can help
mitigate the issues related to reproducibility.

However, open and reproducible code alone is not sufficient if the critical elements of
discovery and estimation are conducted behind a curtain. In a rigorous scientific process,
the software must facilitate not only the estimation but also the discovery. A data-adaptive
estimand, therefore, is a framework that enables the integration of discovery and estimation
within the same reproducible and transparent process.

But even within this framework, there is still room for human input. In fact, the human
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component is indispensable in determining what kind of estimand to pursue. It forces the
researcher to focus on the policy relevance and actionability of the estimand rather than its
publishability.

By fostering a shift in focus from publishability to policy relevance, we pave the way for a
scientific culture that prioritizes real-world impact over academic recognition. Open-source
software platforms like CVtreeMLE and SuperNOVA play a pivotal role in enabling this
paradigm shift. These tools encourage transparency, ease citation, record run parameters,
and detail the machine learning libraries used in estimation.

Adopting such tools, and prioritizing reproducibility and policy-relevance, enhances the
reliability of research and facilitates the rapid translation of findings into public policy. It
contributes to the advancement of public health by reducing human bias in model selection
and producing estimates directly relevant to public policy.

The following sections will provide an in-depth introduction to CVtreeMLE and Super-
NOVA software packages. Each was developed to implement the data-adaptive estimand
methods described above. Written for the R programming language, their open-source
code is freely available on GitHub, supplemented with comprehensive documentation, brief
introductions to the underlying theory, unit tests, example data, and user feedback [79].

By harnessing these tools and championing the ethos of reproducibility, transparency, and
policy-relevance, we can ensure that scientific research lives up to its foundational principles
and delivers tangible benefits to society.

4.1 The CVtreeMLE Package

Summary

Statistical causal inference of mixed exposures has been limited by reliance on parametric
models and, until recently, by researchers considering only one exposure at a time, usually
estimated as a beta coefficient in a generalized linear regression model (GLM). This indepen-
dent assessment of exposures poorly estimates the joint impact of a collection of the same
exposures in a realistic exposure setting. Marginal methods for mixture variable selection
such as ridge/lasso regression are biased by linear assumptions and the interactions modeled
are chosen by the user. Clustering methods such as principal component regression lose both
interpretability and valid inference. Newer mixture methods such as quantile g-computation
[50] are biased by linear/additive assumptions. More flexible methods such as Bayesian kernel
machine regression (BKMR) [8] are sensitive to the choice of tuning parameters, are compu-
tationally taxing and lack an interpretable and robust summary statistic of dose-response
relationships. No methods currently exist which finds the best flexible model to adjust for
covariates while applying a non-parametric model that targets for interactions in a mixture
and delivers valid inference for a target parameter.

Non-parametric methods such as decision trees are a useful tool to evaluate combined
exposures by finding partitions in the joint-exposure (mixture) space that best explain the
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variance in an outcome. However, current methods using decision trees to assess statistical
inference for interactions are biased and are prone to overfitting by using the full data to both
identify nodes in the tree and make statistical inference given these nodes. Other methods
have used an independent test set to derive inference which does not use the full data.

The CVtreeMLE ‘R‘ package provides researchers in (bio)statistics, epidemiology, and
environmental health sciences with access to state-of-the-art statistical methodology for
evaluating the causal effects of a data-adaptively determined mixed exposure using deci-
sion trees. Our target audience are those analysts who would normally use a potentially
biased GLM based model for a mixed exposure. Instead, we hope to provide users with
a non-parametric statistical machine where users simply specify the exposures, covariates
and outcome, CVtreeMLE then determines if a best fitting decision tree exists and delivers
interpretable results.

Although users do not need strong knowledge of the underlying theory, CVtreeMLE builds
off the general theorem of cross-validated minimum loss-based estimation (CV-TMLE) which
allows for the full utilization of loss-based ensemble machine learning to obtain the initial
estimators needed for our target parameter without risk of overfitting. CVtreeMLE uses V-fold
cross-validation and partitions the full data into parameter-generating samples and estimation
samples. For example, when V=10, integers 1-10 are randomly assigned to each observation
with equal probability. In fold 1, observations assigned to 1 are used in the estimation sample
and all other observations are used in the parameter-generating sample. This process rotates
through the data until all the folds are complete. In the parameter-generating sample, decision
trees are applied to a mixed exposure to obtain rules and estimators are created for our
statistical target parameter. The rules from decision trees are then applied to the estimation
sample where the statistical target parameter is estimated. CVtreeMLE makes possible the
non-parametric estimation of the causal effects of a mixed exposure producing results that
are both interpretable and guaranteed to converge to the truth (under assumptions) at a
particular rate as sample size increases. Additionally, CVtreeMLE allows for discovery of
important mixtures of exposure and also provides robust statistical inference for the impact
of these mixtures.

Statement of Need

In many disciplines there is a demonstrable need to ascertain the causal effects of a mixed
exposure. Advancement in the area of mixed exposures is challenged by real-world joint
exposure scenarios where complex agonistic or antagonistic relationships between mixture
components can occur. More flexible methods which can fit these interactions may be less
biased, but results are typically difficult to interpret, which has led researchers to favor
more biased methods based on GLM’s. Current software tools for mixtures rarely report
performance tests using data that reflect the complexities of real-world exposures [[119, 50, 11].
In many instances, new methods are not tested against a ground-truth target parameter under
various mixture conditions. New areas of statistical research, rooted in non/semi-parametric
efficiency theory for statistical functionals, allow for robust estimation of data-adaptive
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parameters. That is, it is possible to use the data to both define and estimate a target
parameter. This is important in mixtures when the most important set of variables and levels
in these variables are almost always unknown. Thus, the development of asymptotically
linear estimators for data-adaptive parameters are critical for the field of mixed exposure
statistics. However, the development of open-source software which translates semi-parametric
statistical theory into well-documented functional software is a formidable challenge. Such
implementation requires understanding of causal inference, semi-parametric statistical theory,
machine learning, and the intersection of these disciplines. The CVtreeMLE R package provides
researchers with an open-source tool for evaluating the causal effects of a mixed exposure
by treating decision trees as a data-adaptive target parameter to define exposure. The
CVtreeMLE package is well documented and includes a vignette detailing semi-parametric
theory for data-adaptive parameters, examples of output, results with interpretations under
various real-life mixture scenarios, and comparison to existing methods.

Background

In many research scenarios, the analyst is interested in causal inference for an a priori specified
treatment or exposure. This is because when a single exposure/treatment is measured the
analyst is interested in understanding how this exposure/treatment impacts an outcome,
controlling for covariates. However, in the evaluation of a mixed exposure, such as air pollution
or pesticides, it is not possible to estimate the expected outcome given every combination of
exposures. This is because the conditional outcome given every combination of exposures is
not measured. Furthermore, it is likely that, only certain exposures within a mixture have
marginal or interacting effects on an outcome. In such a setting, new methods are needed for
statistical learning from data that go beyond the usual requirement that the estimand is a
priori defined in order to allow for proper statistical inference [44].

In the case of mixtures, it is necessary to map a set of continuous mixture components
into a lower dimensional representation of exposure using a pre-determined algorithm, and
then estimate a target parameter on this more interpretable exposure. Decision trees provide
a useful solution by mapping a set of exposures into a rule which can be represented as
a binary vector. This binary vector indicates whether an individual has been exposed to
a particular rule estimated by the decision tree. Our target parameter is then defined as
the mean difference in counterfactual outcomes for those exposed to the mixture subspace
(delineated by the rule) compared to those unexposed, or the average treatment effect (ATE)
for the mixed exposure. Decision trees have been used as a data-adaptive parameter to
explore and estimate heterogeneous treatment effects of a binary treatment [2]. Using a
so-called “honest” approach, this method estimates the treatment effect in subpopulations
based on covariates in a left-out sample. This approach is limited by not making use of the
full data and not data-adaptively selecting the best decision tree.

Advancements in using decision trees as a data-adaptive parameter that solve both these
issues and guarantees nominal confidence interval coverage under certain assumptions are
needed. Under normal assumptions of conditional independence (A is independent of Y
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given W) and positivity (enough experimentation in the data) identifiability of the ATE
causal parameter is obtained from the observed data via the statistical functional for a data
adaptively determined exposure. This is because, 1. by using Super Learner as our estimator,
we are asymptotically guaranteed to select the correct functional for the underlying joint
distribution thereby removing bias due to model error and 2. by using TMLE we debias
our initial counterfactual for the ATE to target the parameter of interest. The remaining
potential bias is therefore due to aggregated data and not the statistical method.

CVtreeMLE’s Scope

Building on prior work related to data-adaptive parameters [44] and CV-TMLE [99], chapter
27. CVtreeMLE is a novel approach for estimating the joint impact of a mixed exposure by
using cross-validated targeted minimum loss-based estimation which guarantees consistency,
efficiency, and multiple robustness despite using highly flexible learners to estimate a data-
adaptive parameter.

CVtreeMLE summarizes the effect of a joint exposure on the outcome of interest by first
doing an iterative backfitting procedure, similar to generalized additive models, to fit f(A), a
Super Learner of decision trees, and h(W), an unrestricted Super Learner, in a semi-parametric
model; E(Y|A,W) = f(A) + h(W), where A is a vector of exposures and W is a vector of
covariates. In this way, we can data-adaptively find the best fitting decision tree model
which has the lowest cross-validated model error while flexibly adjusting for covariates. This
procedure is done to find rules for the mixture modeled collectively and for each mixture
component individually. There are two types of results, 1. an ATE comparing those who fall
within a subspace of the joint exposure versus those in the complement of that space and 2.
the ATE for each data-adaptively identified threshold of an individual mixture component
when compared to the lowest identified exposure level. The CVtreeMLE software package, for
R [79], implements this methodology for deriving causal inference from ensemble decision
trees.

CVtreeMLE is designed to provide analysts with both V-fold specific and pooled results
for ATE causal effects of a joint exposure determined by decision trees. It integrates with the
[‘sl3‘ package](https://github.com/tlverse/sl3) [59] to allow for ensemble machine learning to
be leveraged in the estimation of nuisance parameters.

Availability

The CVtreeMLE package has been made publicly available [via GitHub](https://github.com/blind-
contours/CVtreeMLE). Use of the CVtreeMLE package has been extensively documented in
the package’s ‘README‘ and a vignette.
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Code Demonstration

Loading Necessary Packages

1 # The following libraries are needed for our computations and
visualizations:

2 library(CVtreeMLE)
3 library(sl3)
4 library(pre)
5 library(partykit)
6 library(kableExtra)
7 library(ggplot2)

Data Simulation

1 # We use the simulate_mixture_cube function to generate synthetic
data:

2 sim_data <- simulate_mixture_cube(
3 n_obs = 800,
4 splits = c(0.99, 2.0, 2.5),
5 mins = c(0, 0, 0),
6 maxs = c(3, 4, 5),
7 subspace_assoc_strength_betas = c(
8 0, 0, 0, 0,
9 0, 0, 6, 0

10 )
11 )

The ‘simulate_mixture_cube‘ function generates 800 observations across three exposures.
The splits parameter determines the thresholds for creating subregions within each variable,
much like partitioning a Rubik’s Cube into smaller cubes. Each variable is split into two
regions at the specified cut-off points, resulting in eight distinct regions or subspaces.

To understand the structure of our simulated data, we can examine the first few rows:
1 # Preview of the simulated data:
2 head(sim_data)
3

4 age bmi sex M1 M2 M3
y

5 0.01651435 -0.4227082 -1.0221195 1.7594922 0.03442708 2.7936966
-0.9910446

6 0.19072911 0.4842019 0.9771362 0.1961772 2.34932053 1.3962661
1.1728384

7 -0.18790449 0.4828171 -1.0221195 0.4488381 0.04331044 2.6834768
-1.2116326
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8 -0.19596384 -1.1133632 -1.0221195 0.1387679 2.78777587 0.6990761
-1.2167154

9 0.26243848 0.6081797 0.9771362 1.6475103 1.33051234 1.6460804
1.2452379

10 -1.32782405 -1.0698419 -1.0221195 1.4097762 0.00406810 2.8495084
-2.3520191

The ‘subspace_assoc_strength_betas‘ parameter assigns outcome values to specific
regions. In this example, we have set the outcome to 6 for the seventh region (where M2
and M3 are above their split points, and M1 is below its split point), and to 0 for all other
regions.

The indices of ‘subspace_assoc_strength_betas‘ correspond to the following regions:

1. All mixtures are lower than specified thresholds.

2. M1 is higher, but M2 and M3 are lower.

3. M2 is higher, but M1 and M3 are lower.

4. M1 and M2 are higher, and M3 is lower.

5. M3 is higher, and M1 and M2 are lower.

6. M1 and M3 are higher, and M2 is lower.

7. M2 and M3 are higher, and M1 is lower.

8. All mixtures are higher than thresholds.

Running CVtreeMLE

Next, we pass the simulated data and variable names to the ‘CVtreeMLE‘ function:

1 # Run CVtreeTMLE:
2 sim_results <- CVtreeMLE(
3 data = sim_data ,
4 w = c("age", "sex", "bmi"),
5 a = c(paste("M", seq(3), sep = "")),
6 y = "y",
7 n_folds = 5,
8 parallel_cv = TRUE ,
9 seed = 2333,

10 parallel_type = "multi_session",
11 family = "continuous",
12 num_cores = 6
13 )
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The CVtreeMLE function is executed using default estimators for all parameters, unless
user-defined estimators are passed. The default estimators are designed to be non-parametric
and computationally efficient, and include techniques like random forests, XGBoost, elastic
net, and GLMs. By adjusting the ‘num_cores‘ parameter, users can improve computation
speed.

Analyzing Pooled TMLE Results

We can examine the pooled TMLE results to verify if ‘CVtreeMLE‘ consistently identified
the correct rule across all folds:

1 # Pooled TMLE results:
2 mixture_results <- sim_results$‘Pooled TMLE Mixture Results ‘
3 consistent_results <- mixture_results %>%

dplyr:: filter(Proportion_Folds == 1.0)
4 consistent_results
5

6 Mixture ATE Standard Error Lower CI Upper CI P-value P-value Adj
Vars RMSE

Union_Rule Proportion_Folds
7 1 3.259 0.158 2.949 3.568 0 0

M1-M2 2.128 M1 >= 0.002 & M1 <=
0.966 & M2 >= 1.336 & M2 <= 3.968 1

8 2 5.935 0.037 5.862 6.007 0 0
M1-M2-M3 1.069 M1 >= 0.002 & M1 <= 0.989 & M2 >= 1.966 & M2 <=
3.968 & M3 >= 2.436 & M3 <= 4.99 1

The ‘ATE‘ column in the result represents the Average Treatment Effect. In this case,
the ATE for the second rule is 5.94 (with 95% confidence interval from 5.84 to 6.03), which is
close to the true ATE of 6 used in the data generation.

We can also assess the stability of the estimates and rules by inspecting the v-fold specific
results:

1 # v-fold specific results:
2 mixture_v_results <- sim_results$‘V-Specific Mix Results ‘
3 mixture_v_results$‘M1-M2-M3‘
4

5 ate se lower_ci upper_ci p_val p_val_adj rmse

mix_rule fold variables
6 1 5.893 0.066 5.7630 6.0230 0 0 1.184

M3 > 2.468 & M2 >
1.975 & M1 <= 0.986 1 M1-M2-M3



CHAPTER 4. OPEN SOURCE CAUSAL INFERENCE SOFTWARE 135

7 2 5.946 0.043 5.8610 6.0300 0 0 0.997
M3 > 2.481 & M1 <=

0.995 & M2 > 1.975 2 M1 -M2-M3
8 3 5.946 0.109 5.7320 6.1600 0 0 1.178

M2 > 2.006 & M3 >
2.408 & M1 <= 0.985 3 M1-M2-M3

9 4 5.940 0.114 5.7160 6.1630 0 0 1.300
M3 > 2.481 & M2 >

1.966 & M1 <= 0.986 4 M1-M2-M3
10 5 5.948 0.071 5.8090 6.0880 0 0 1.113

M3 > 2.481 & M2 >
1.975 & M1 <= 0.989 5 M1-M2-M3

11 6 5.935 0.190 5.5627 6.3077 0 0 1.089 M1 >= 0.002 &
M1 <= 0.989 & M2 >= 1.966 & M2 <= 3.968 & M3 >= 2.436 & M3 <=
4.99 Pooled M1-M2-M3

12 >

The v-fold specific results include a pooled estimate, which is a weighted average of the
fold-specific ATEs and the harmonic mean of the variances. This is similar to meta-analysis
approaches.

Visualizing the Results

Finally, we can visualize our findings:

1 # Creating the plot:
2 mixture_plots <- plot_mixture_results(
3 v_intxn_results = sim_results$‘V-Specific Mix Results ‘,
4 hjust = 1.05
5 )
6 mixture_plots$‘M1-M2-M3‘

This function returns a list of plots, each corresponding to one of the interactions identified.
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4.2 The SuperNOVA Package

Summary

Environmental epidemiology studies aim to understand the impact of mixed exposures on
health outcomes while adjusting for covariates. However, traditional statistical methods make
simplistic assumptions that may not be applicable to public policy decisions. Researchers
are ultimately interested in answering causal questions, such as the impact of reducing toxic
chemical exposures on adverse health outcomes like cancer. For example, in the case of
PFAS, a class of chemicals measured simultaneously in blood samples, identifying the shifts
that result in the greatest reduction in thyroid cancer rates can help more directly inform
policy decisions on PFAS. In mixtures, nonlinear and non-additive relationships call for new
statistical methods to estimate such modified exposure policies.

To address these limitations, the open-source SuperNOVA package has been developed
to use data-adaptive machine learning methods for identifying variable sets that have the
most explanatory power on an outcome of interest. This package applies non-parametric
definitions of interaction and effect modification to these variable sets in a mixed exposure,
enabling researchers to explore modified treatment policies using stochastic interventions and
answer causal questions.

The SuperNOVA software implements the data-adaptive discovery of variable sets and
estimation using optimal estimators for stochastic interventions described in our paper "Semi-
Parametric Identification and Estimation of Interaction and Effect Modification in Mixed
Exposures using Stochastic Interventions" [64].

Statement of Need

Reliable and accurate estimation of treatment effects is essential in public health and medical
research. However, traditional parametric models have limitations, especially when dealing
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with complex exposure scenarios like mixed exposures or treatments. Semi-parametric
statistical methods are necessary to provide unbiased estimates and consistent findings, but
they are not always accessible to researchers.

The open-source R package SuperNOVA addresses this need by offering a powerful and
interpretable framework for estimating non-parametric definitions of interaction and effect
modification target parameters. This software reduces the risk of model bias and can help drive
faster public health decisions by removing human bias due to model selection. SuperNOVA
provides a solution to the limitations of traditional parametric models, enabling researchers
to adopt these new methods more easily and achieve more consistent findings in public health
and medical research.

Background

The package SuperNOVA was developed to address the limitations of traditional statistical
methods in environmental epidemiology studies. These traditional methods often make overly
simplistic assumptions, such as linear and additive relationships, and the resulting statistical
quantities may not be directly applicable to public policy decisions. SuperNOVA addresses
these limitations by using data-adaptive machine learning methods to identify the variables
and variable sets that have the most explanatory power on an outcome of interest. In the
variable set discovery, the package builds a discrete Super Learner [17] which is a library of
machine learning estimators that uses cross-validation to select the best fitting estimator.
This Super Learner is composed of flexible basis function estimators, the best of which is
analyzed using ANOVA style analysis to determine the variables that contribute most to the
model fit through an F-statistic for basis functions.

The variable sets used in the basis functions drive the target parameters estimated. In
the event of basis functions for an individual exposure A, the effects of an individual shift are
estimated, for basis function with A and W (a baseline covariate), the effect modification
parameter is estimated, which is an individual shift in a covariate region and if two exposures
are included in a basis function A1, A2 the interaction target parameter is estimated, which
is the expected outcome under dual shift of both exposures compared to the sum of expected
outcomes given individual shifts independently. For each target parameter we use ensemble
machine learning to ascertain the expected outcome under a shift and we use cross-validated
targeted maximum likelihood estimation [44] to debias our initial estimates thereby creating
an asymptotically unbiased estimator with minimum variance. When we say shift, we mean
a stochastic shift [48].

In this framework we calculate the average outcome after shifting the exposure. A
stochastic intervention changes the function that defines the exposure A and its conditional
density g(A | W ) with a candidate density gAδ(A | W ). The new density defines how the
exposure is modified by a random draw from gAδ(A | W ). This can include static interventions,
where all mass is placed on a single value, such as the average treatment effect, where all
observations either receive or don’t receive treatment or a shift such as in pollution or drug
where we increase all exposure by say 100 parts per million to a chemical such as PFAS
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and observe the change in outcomes. Stochastic interventions give rise to a counterfactual
outcome YAδ := fY (Aδ,W, UY ), which is obtained by replacing the natural value of the
exposure with a shifted value. The degree of shift δ describes the reduction in exposure,
based on the individual’s baseline characteristics W . We can evaluate the causal effect of
the intervention by finding the counterfactual mean of the outcome under the modified
distribution, ψ0,δ = EAδ

P0
YAδ .

In this way, SuperNOVA allows analysts to explore modified treatment policies and ask
causal questions (under assumptions) about the impact of mixed exposures on health out-
comes. SuperNOVA uses V-fold cross-validation procedures to avoid over-fitting and incorrect
model assumptions by creating parameter generating samples wherein the variable sets are
determined and estimators for nuisance parameters are trained, an estimation sample is then
used to estimate the target parameters of interest [121]. Additionally, to avoid positivity
violations (user inputs a shift amount that there isn’t enough experimentation in the data to
estimate) the shift amount can also be input as a data-adaptive parameter which finds the
maximum shift possible for each exposure.

SuperNOVA’s Scope

The SuperNOVA software package is built for the R language and implements our proposed
methodology for estimating modified treatment policies in environmental epidemiology studies
for data-adaptively identified variable sets. It is specifically designed to estimate the effects of
mixed exposures on health outcomes, while adjusting for covariates and potential confounders.

As input, SuperNOVA takes in variable sets A (exposures), W (covariates), Y (outcome)
and a vector of deltas for each exposure in A, representing the degree of shift in each exposure
if it is identified as predictive of the outcome. The output of SuperNOVA is a dose-response
analysis for variable sets data-adaptively identified in the mixed exposure, estimating the
expected outcome under a change in exposure compared to the observed outcome under
the observed exposure. Using these shift parameters, users are provided with estimates of
non-parametric definitions of interaction and effect modification that are directly informative
for public health policy. SuperNOVA is a valuable tool for researchers in many fields who
need an interpretable and robust statistical approach to answer modified treatment policy
questions, estimates are interpreted as the expected outcome if an exposure was changed by
the respective delta.

SuperNOVA is designed to provide analysts with both V-fold specific and pooled results
for stochastic intervention causal effects. It integrates with the [‘sl3‘ package] [17] to allow
for ensemble machine learning to be leveraged in the estimation of nuisance parameters.

Availability

The SuperNOVA package has been made publicly available [via GitHub](https://github.com/blind-
contours/SuperNOVA). Use of the ‘SuperNOVA‘package has been extensively documented in
the package’s ‘README‘ and a vignette.
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Code Demonstration

1 library(SuperNOVA)
2 library(devtools)
3 library(kableExtra)
4 library(sl3)
5

6 set.seed (429153)
7 # simulate simple data
8 n_obs <- 100000

Data Simulation

1 sim_out <- simulate_data(n_obs = n_obs)
2 data <- sim_out$data

Sample Data and Run SuperNOVA

1 data_sample <- data[sample(nrow(data), 4000), ]
2

3 w <- data_sample[, c("W1", "W2", "W3")]
4 a <- data_sample[, c("M1", "M2", "M3", "M4")]
5 y <- data_sample$Y
6

7 deltas <- list("M1" = 1, "M2" = 1, "M3" = 1, "M4" = 1)
8

9 ptm <- proc.time()
10 sim_results <- SuperNOVA(
11 w = w,
12 a = a,
13 y = y,
14 delta = deltas ,
15 n_folds = 3,
16 num_cores = 6,
17 outcome_type = "continuous",
18 quantile_thresh = 0,
19 seed = 294580
20 )
21 proc.time() - ptm
22

23 # Extract the results from the returned object:
24 basis_in_folds <- sim_results$‘Basis Fold Proportions ‘
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25 indiv_shift_results <- sim_results$‘Indiv Shift Results ‘
26 em_results <- sim_results$‘Effect Mod Results ‘
27 joint_shift_results <- sim_results$‘Joint Shift Results ‘

Let’s first look at the variable relationships used in the folds:

1

2 M1 M1M4 M3 M3W3 M4 W3
3 0.33 1.00 0.67 1.00 1.00 1.00

In this example, y is generated from M1, M4 and interaction between these two variables
and M3 which is modified by W3. The impact of M1 is small and here we only find it in 1
of 3 folds. The impact of the interaction is strong , we see it in all the folds, as is the impact
of M4. This example run was only done with 3 fold CV and so results are not stable as if it
was done with 10 fold CV, we did this simply for computational time.

Let’s look at the results for the marginal impact of M4. The truth for this effect is:

1 sim_out$m4_effect
2 [1] 10.3882

1 indiv_shift_results$M4
2

3 Condition Psi Variance SE Lower CI Upper CI
P-value Fold Type Variables N Delta

4 M4 10.43028 0.2861536 0.5349332 9.3818 11.4787
1.135361e-84 1 Indiv Shift M4 1334 1

5 M4 10.40188 0.2930203 0.5413135 9.3409 11.4628
2.719726e-82 2 Indiv Shift M4 1333 1

6 M4 10.42346 0.7148800 0.8455058 8.7663 12.0806
6.395340e-35 3 Indiv Shift M4 1333 1

7 M4 10.46028 0.1846333 0.4296898 9.6181 11.3025
6.744836e-131 Pooled TMLE Indiv Shift M4 4000 1

This table shows that, for a 1 unit increase in M4 the outcome Y increases by 10.4,
this finding is consistent across all the folds. The pooled estimate has the smalles variance,
utilizing data across the folds, as expected.

Let’s next look at the effect modification found between M3 and W3.

1 em_results$M3W3
2 Condition Psi Variance SE

Lower_CI Upper_CI P_value Fold
Type Variables N Delta

3 Level 1 Shift Diff in W3 <= 0 -5.316240 76.097437 8.723384 -22.4138
11.7813 5.422435e-01 1 Effect Mod M3W3 1334 1

4 Level 0 Shift Diff in W3 <= 0 1.371439 2.378236 1.542153 -1.6511
4.3940 3.738412e-01 1 Effect Mod M3W3 1334 1
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5 Level 1 Shift Diff in W3 <= 0 -5.263901 36.093815 6.007813 -17.0390
6.5112 3.809344e-01 2 Effect Mod M3W3 1333 1

6 Level 0 Shift Diff in W3 <= 0 2.102544 2.664307 1.632270 -1.0966
5.3017 1.977077e-01 2 Effect Mod M3W3 1333 1

7 Level 1 Shift Diff in W3 <= 0 11.567295 10.834292 3.291549 5.1160
18.0186 4.410127e-04 3 Effect Mod M3W3 1333 1

8 Level 0 Shift Diff in W3 <= 0 18.794371 6.395027 2.528839 13.8379
23.7508 1.069555e-13 3 Effect Mod M3W3 1333 1

9 Level 1 Shift Diff in W3 <= 0 3.934214 5.951079 2.439483 -0.8471
8.7155 1.068044e-01 Pooled TMLE Effect Mod M3W3 4000 1

10 Level 0 Shift Diff in W3 <= 0 12.103738 1.412560 1.188512 9.7743
14.4332 2.338840e-24 Pooled TMLE Effect Mod M3W3 4000 1

The covariate W3 here is binary and so we get the effect for a shift in M3 when W3 is 1
and 0. If the effect modifier is not binary, then a partition is found and results are given at
each level of the partition in the covariate space. Here we see a larger impact in M3 on the
outcome when the effect modifier is low compared to high. This matches our ground-truth
where the effect is 1 when the modifier is 0 and 11 when it is 1. So we have proper coverage
and correctly identify the modifier in this simulated data. The true effects look like:

1 > sim_out$effect_mod
2 $‘Level 0 Shift Diff in W3 <= 0‘
3 [1] 10.99079
4

5 $‘Level 1 Shift Diff in W3 <= 0‘
6 [1] 1

Lastly, let’s look at the interaction effect. The true effect is:

1 > sim_out$m1_effect
2 [1] 1.600192
3 > sim_out$m4_effect
4 [1] 10.3882
5 > sim_out$m14_effect
6 [1] 12.38839
7 > sim_out$m14_intxn
8 [1] 0.4
9 > 1.600192 + 10.3882

10 [1] 11.98839

Above, the marginal effect of M1 is 1.6, M4 is 10.4, the additive effect of these is then 12,
the actual effect of a joint shift is 12.4 so Ψ is 0.4, the difference of the joint effect compared
to the additive effect.

The output from SuperNOVA looks like:

1
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2 > joint_shift_results$M1M4
3 Condition Psi Variance SE Lower CI Upper CI

P-value Fold Type Variables N Delta M1 Delta
M4

4 M1 1.46336129 2.5445985 1.5951798 -1.6631 4.5899 2.466049e-01
1 Interaction M1&M4 1334 1 1

5 M4 10.54131272 0.3050387 0.5523031 9.4588 11.6238 1.147076e-45
1 Interaction M1&M4 1334 1 1

6 M1&M4 12.47959870 0.3060496 0.5532175 11.3953 13.5639
3.506850e-63 1 Interaction M1&M4 1334 1

1
7 Psi 0.47492469 2.5464908 1.5957728 -2.6527 3.6026 7.069482e-01

1 Interaction M1&M4 1334 1 1
8 M1 8.61817807 10.2244664 3.1975719 2.3511 14.8853 1.438919e-06

2 Interaction M1&M4 1333 1 1
9 M4 10.39947363 0.2938431 0.5420729 9.3370 11.4619 2.671335e-45

2 Interaction M1&M4 1333 1 1
10 M1&M4 12.38345613 0.2947550 0.5429135 11.3194 13.4475

2.188112e-63 2 Interaction M1&M4 1333 1
1

11 Psi -6.63419557 10.2504833 3.2016376 -12.9093 -0.3591 2.091672e-04
2 Interaction M1&M4 1333 1 1

12 M1 1.35150469 1.4025618 1.1842980 -0.9697 3.6727 2.142730e-01
3 Interaction M1&M4 1333 1 1

13 M4 10.36554589 0.7165151 0.8464721 8.7065 12.0246 1.922329e-29
3 Interaction M1&M4 1333 1 1

14 M1&M4 11.37912283 0.7675117 0.8760774 9.6620 13.0962
5.245696e-34 3 Interaction M1&M4 1333 1

1
15 Psi -0.33792775 1.3974915 1.1821555 -2.6549 1.9791 7.559496e-01

3 Interaction M1&M4 1333 1 1
16 M1 0.05600595 0.7490726 0.8654898 -1.6403 1.7523 9.519956e-01

Pooled TMLE Interaction M1&M4 4000 1 1
17 M4 10.44655789 0.1847928 0.4298753 9.6040 11.2891 3.730056e-57

Pooled TMLE Interaction M1&M4 4000 1 1
18 M1&M4 11.98522952 0.1923595 0.4385880 11.1256 12.8448

3.336193e-73 Pooled TMLE Interaction M1&M4 4000 1
1

19 Psi 1.48266568 0.7440697 0.8625947 -0.2080 3.1733 1.104011e-01
Pooled TMLE Interaction M1&M4 4000 1 1

Our pooled Ψ estimate for the interaction covers the truth, as does our estimates for the
marginal impact of M1, M4 and the joint shift.

This simulation function comes with SuperNOVA so users can test performance on this
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simulation and ensure results cover the truth.
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Chapter 5

Future Investigations

5.1 Mediation Analysis for CVtreeMLE
The method CVtreeMLE is designed to transform complex, mixed exposures, including
multiple continuous variables, into a binary indicator. This indicator represents a specific
region of exposure space, as defined by a tree-based rule. This rule identifies combinations of
exposure levels that most effectively influence a certain outcome. The aim of CVtreeMLE is
to calculate the Average Regional Exposure Effect (ARE), equivalent to an Average Treatment
Effect (ATE), which estimates the mean difference in outcomes between individuals within
the identified region versus those outside it.

While ARE measures the total impact of the exposure region on the outcome, understand-
ing the specific causal pathways behind this effect is often valuable. For example, exposure to
particular levels of environmental toxins may cause changes in biomarkers leading to disease.
Identifying the exposure levels that trigger these changes can provide insights into disease
mechanisms and inform intervention strategies.

By converting a complex mixture of exposures into a binary regional exposure vector, we
can break down the total regional effect into direct and indirect effects, thus highlighting
mediating pathways. Here, direct effects show the exposure’s influence on the outcome
without any mediators, while indirect effects represent the influence of exposure on the
outcome through mediators, a concept articulated in the NOVAPathways approach.

While this methodology is similar to the NOVAPathways approach (decomposing a total
effect into natural effects), a notable divergence exists as our exposure is defined in binary
terms. Let’s clarify the mathematical representation of this: if we denote Y as the outcome,
A as the exposure (the binary regional exposure indicator, in our context), Z as the mediator,
and W as the covariates, we can express the direct effect as E[Y (1, Z(0)) − Y (0, Z(0))]
and the indirect effect as E[Y (Z(1), 1)− E(Y (Z(0), 1)]. It’s important to stress that we’re
not working with a singular exposure A, but rather regions of the exposure space, denoted
as Aregion. This adjustment necessitates a reinterpretation of g(A|W ), which previously
represented the probability of exposure given the covariates, as the likelihood of exposure to a
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region given the covariates, i.e., g(Aregion|W ). Thus, we are estimating the natural direct and
indirect effects being exposed to a combination of exposure levels has on a disease outcome.

Moving forward, we utilize the asymptotically linear estimator put forth by [122]. Zheng’s
work advances the field by building on the efficient scores (under a nonparametric model) for
various natural effect parameters and formulating general robustness conditions. This work
also presents an estimating equation-based estimator utilizing the efficient score, a concept
expanded upon in the work of Tchetgen Tchetgen and Shpitser [96].

By harnessing the targeted maximum likelihood framework described by [122], we construct
a semiparametric efficient, multiply robust, substitution estimator for the natural direct effect.
This estimator satisfies the efficient score equation, as derived by Tchetgen Tchetgen and
Shpitser [96], for the Average Regional Exposure Effect.

It’s worth noting that this estimator was originally coded for the tmle3mediate package
[39], developed collaboratively by myself, Nima Hejazi, and James Duncan, with the aim
of providing researchers a package for mediation analysis with binary exposure. Building
on this, I extend this work to account for the ARE case, integrating data-adaptive target
parameters and leveraging the Cross-Validation Targeted Maximum Likelihood Estimation
(CV-TMLE) method. With additional testing, the ARE can be decomposed into (in)direct
effects, therefore researchers can include a set of mediators in CVtreeMLE. For regions in the
exposures, estimates can then be given for the effect of exposure to certain levels of exposures
and if this effect goes through certain mediating variables.

Estimating Natural Direct Effects in CVtreeMLE

The estimation process for the Natural Direct Effect (NDE) begins by creating QY,n, an
estimate of the conditional mean of the outcome given Z, A, and W . With this estimate, we
can predict QY (Z, 1,W ) (setting A = 1) and QY (Z, 0,W ) (setting A = 0). The difference,
Qdiff, helps us understand variations in the conditional mean of Y across contrasts of A.

We construct a targeted maximum likelihood (TML) estimator for the NDE by treating
Qdiff as a nuisance parameter. In this procedure, we regress its estimate Qdiff, n on baseline
covariates W , only considering observations in the control condition (i.e., those where A = 0
is observed). The goal is to remove part of the marginal impact of Z on Qdiff, as the covariates
W precede the mediators Z in time.

Estimating Natural Indirect Effects in CVtreeMLE

The process of deriving and estimating the natural indirect effect (NIE) mirrors that of the
natural direct effect (NDE). The NIE represents the influence of a variable A on an outcome
Y solely through a mediator variable Z. This influence is quantified as the difference between
the conditional mean of Y given A = 1 and Z(1) and the conditional mean of Y given A = 1
and Z(0).

Similar to the NDE, we can replace qZ(Z|A,W ) with e(A|Z,W ) in the estimation process,
which sidesteps the need to estimate a potentially multivariate conditional density. However,
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unlike the NDE, the estimation of the NIE involves a two-step regression process. First, the
conditional mean of Y given Z and W when A = 1 is regressed on W among the treated
units (A = 1). Then, the same value is regressed on W among the control units (A = 0). The
average difference between these two steps is a valid estimator of the NIE, demonstrating the
treatment’s marginal effect on the conditional mean of Y given A = 1 and Z, through its
effect on Z.

Integration into CVtreeMLE

The above approach has been preliminarily coded into CVtreeMLE. Our goal is to code these
new estimators, needed for mediation of the ARE and deliver both fold specific and pooled
effects. Additional testing is required and this will result in another publication, extending
work from the original ARE proposed in CVtreeMLE.

5.2 Stochastic Interventions in the Context of
CVtreeMLE

A natural extension to our CVtreeMLE method, and an avenue for future research, lies in
the incorporation of a more realistic representation of exposure regulations. The current
iteration of CVtreeMLE translates a mixture of continuous exposures into a binary regional
exposure indicator, providing an average regional exposure effect (ARE). This approach
assumes homogeneity of the exposure distribution within a specified region. However, this
does not accurately reflect real-world scenarios.

For instance, consider a policy regulation enforcing a limit on lead levels below 15 ppb
(regulations established by the EPA). In our current model, any observation within this
region, be it 14 or 0.1, is treated as equally likely. When estimating the counterfactual, we
essentially estimate the effect if all observations were moved into this region. In practical
terms, however, following the implementation of such a regulation, there is likely to be a
clustering of data points just below the threshold, as entities try to adhere to the regulation
in the least disruptive or costly way.

To better reflect this situation, we propose a modification to our estimand that incorporates
this heterogeneity. Rather than deterministically setting our binary exposure, A, to 1 or 0,
we could data-adaptively identify thresholds in the mixture that optimally explain disease
outcomes, similar to our existing CVtreeMLE method. Our estimates, however, would be
based on stochastic shifts towards this threshold.

For individuals already within the identified region, no shift occurs, while those outside
the region experience a shift to the minimum or maximum value within the data-adaptively
identified regulation. This approach results in a concentration of data points around the
threshold level, representing a more realistic regulatory scenario.
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To formulate this mathematically, following the example set by Díaz and van der Laan,
we could define a stochastic intervention that, given an initial exposure A, generates a new
exposure A∗ based on a conditional distribution g(A∗|A).

Our goal would then be to estimate the interventional causal effect of a shift towards the
threshold, quantified by the contrast between the expectation of the outcome under this new
exposure level and the observed outcome. This revised approach would offer a more accurate
reflection of real-world dynamics in the context of exposure regulations.

5.3 Interaction Mediation
While the primary purpose of NOVAPathways is to estimate direct and indirect effects of
data-adaptively identified pathways involving a single exposure and mediator, there can be
situations where understanding the compounded impact of multiple exposures on a mediating
pathway becomes crucial. These instances prompt an examination of whether the collective
impact of exposures is more than the sum of their individual effects—introducing the concept
of interaction through a mediating biological system.

Consider a hypothetical scenario involving two endocrine disrupting compounds (EDCs):
compound A and compound B. These compounds, when studied within our stochastic
intervention framework, permit us to estimate the mediation for a joint exposure defined as
ψ(δ1, δ2), mediation of each individual exposure ψ(δ1) and ψ(δ2), and ψ(1, 2) the outcome
under observed exposures. These equations represent the interaction indirect effect (IIE) and
interaction direct effect (IDE) when estimated for both EDCs operating simultaneously.

ψ(δ1, δ2) = E[Y (Aδ1 , Aδ2 , Z(Aδ1 , Aδ2))− Y (Aδ1 , Aδ2 , Z)]︸ ︷︷ ︸
IIE

+E[Y (Aδ1 , Aδ2 , Z)− Y (A1, A2, Z)]︸ ︷︷ ︸
IDE

Here, the IIE signifies the effect attributable to a change in the mediator Z resulting from
a joint change in both exposures (A). Conversely, the IDE captures the outcome’s change
resulting from a joint change in both exposures while the mediator remains fixed.

To examine the influence of each exposure individually, we calculate the direct and indirect
effects given a shift in each compound:

ψ(δ1) = E[Y (Aδ1 , A2, Z(Aδ1))− Y (Aδ1 , A2, Z)]︸ ︷︷ ︸
IIE

+E[Y (Aδ1 , A2, Z)− Y (A1, A2, Z)]︸ ︷︷ ︸
IDE

and:

ψ(δ2) = E[Y (Aδ2 , A1, Z(Aδ2))− Y (Aδ2 , A1, Z)]︸ ︷︷ ︸
IIE

+E[Y (Aδ2 , A1, Z)− Y (A1, A2, Z)]︸ ︷︷ ︸
IDE
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The observed outcome under observed exposures is simply represented as:

ψ(1, 2) = E[Y (A1, A2)]

Subsequently, we can denote:
Total effect as:

ψ(δ1, δ2)− ψ(δ1)− ψ(δ2) + ψ(1, 2)

Indirect effect as:

ψ(δ1, δ2)IIE − ψ(δ1)IIE − ψ(δ2)IIE + ψ(1, 2)

Direct effect as:

ψ(δ1, δ2)IDE − ψ(δ1)IDE − ψ(δ2)IDE + ψ(1, 2)

Employing these metrics allows us to disaggregate individual and joint effects of the two
EDCs. The indirect effect measures the impact of concurrent exposures through a shared
receptor pathway, whereas the direct effect uncovers the influence of these compounds outside
this shared pathway.

The scope of this methodology transcends EDCs, offering essential insights into synergistic
effects of concurrent exposures across various research areas. By presenting a structured way
to evaluate the collective impact of simultaneous exposures, we facilitate deeper comprehension
of multifactorial health risks, aiding in formulating more effective intervention strategies.
Future research will seek to apply and expand this novel statistical framework for mediation
of interactions across a diverse range of scenarios to capture the intricacies of concurrent
exposures and their aggregate effects on health outcomes. This estimation can be built
into the SuperNOVA infrastructure where, if two exposures are found to operate through a
mediator in the pathway discover section, estimation of this mediation for an interaction can
be estimated.

5.4 Concluding Remarks and Vision for the Future
The culmination of the endeavors and insights that have been gathered throughout this
dissertation calls to mind the familiar adage: "Data is the new oil." However, with the
ever-growing influx of data, the question arises: How can we harness this oil to power a
reliable machine—one that delivers trustworthy, reproducible results while also being easily
understood and handled by its users? The crux of this dissertation lies in addressing this
question, adopting an airplane analogy: Like a passenger who trusts the airplane to take
them to their destination without delving into the technical intricacies of its operation, the
objective is to create statistical machinery where data goes in, and results come out, with the
data itself guiding the process. Throughout the chapters of this dissertation, we navigated
through a sequence of decisions used in this machine:
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1. What are we aiming to uncover within the data—thresholds, variable sets, pathways?

2. What algorithmic strategy would be best suited to find these elements for us?

3. Given the outputs from 1 and 2, what do we aim to achieve with this information? Are
we looking to reduce exposure, determine safe levels, what’s our estimand?

4. What suite of algorithms are selected for estimating the nuisance parameters for this
estimand?

5. How does the cross-validation function, and do we need to consider adjustments for
repeated measures on the same individual within the CV framework? Is there a
longitudinal structure?

6. How do we pool results across the folds and assess for reliability of the data-adaptive
target parameter?

This sequence of choices, with changes at various points, forms the backbone of the
presented dissertation. Despite adopting diverse approaches, each chapter respects the
overarching problem-solving strategy while acknowledging the intricacies of estimating effects
in high-dimensional data, where details about the exposures, mediators, and interactions
might be scarce.

Envisioning the future, we imagine a user-friendly interface that guides users to describe
the data generating process (DGP) for their data using a Directed Acyclic Graph (DAG),
choose their research question, and make the aforementioned decisions. Once these choices
are made, the user hits ’Go,’ and the statistical machine takes over. This system becomes a
unified platform for causal inference, even for simpler models, like a single binary exposure,
utilizing CV-TMLE and other relevant methods.

The future emanates from the existing work, currently scattered across various packages,
to construct a singular, object-oriented package with GUI interfaces. The analyst merely
needs to drag variable names to different parts of the DAG, choose their interest—mediation or
interaction search, select the algorithms that compose each Super Learner, and hit ’Go.’ The
process then remains largely hands-off, with findings, parameters of the statistical machine,
and code all published for consistency.

If we can streamline this statistical research process through a common platform, we can
promote transparency, reproducibility, and trust in statistical research outcomes. Such an
ecosystem could transform the current landscape of biostatistics and epidemiology, ensuring a
more robust, accessible, and efficient approach to data analysis. In this way, rather than the
researchers spending time tinkering with models, they can instead focus on what questions
are most pertinent to public health and how to mathematically formalize them. Once an
estimand is established which respects the DGP as close as possible following the statistical
roadmap, then the user can use the platform to make estimation.

This vision succinctly captures the essence of this dissertation, serving as both a com-
pendium of our endeavors and a roadmap to future explorations in this field. We stand on
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the tarmac of a grand journey, with our ’statistical airplane’ prepped for take-off, symbolizing
the readiness of our methodology. However, this take-off into the future of statistics will
require more than just mechanical readiness; it will necessitate a firm commitment to our
core mission: the generation of reliable, reproducible results that can inform and influence
public policy.

The status quo in our field awaits a paradigm shift—a statistical revolution. This
transformative change rests upon embracing data-adaptive target parameters as a new
standard for statistical analysis. With these in place, we can foster an environment of trust,
ensuring that our research outcomes are not only reproducible but also trustworthy, thereby
instilling confidence in our stakeholders and effectuating tangible societal impact.

This dissertation has meticulously laid the groundwork, paving the way for this necessary
revolution. The blueprint is now in our hands, and it’s incumbent upon us - the collective force
of statisticians, epidemiologists, environmental scientists, and policy makers - to construct this
“aircraft”. We’re at the helm of this transformation, entrusted with the mission to steer our
field into a future where statistical analysis becomes the bastion of robustness, transparency,
and, above all, trust.
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