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Abstract

The morning commute problem for a single bottleneck, introduced in Vickrey
(1969), is extended to model mode choice in an urban area with time-dependent de-
mand. This extension recognizes that street space is shared by cars and public transit.
It is assumed that transit is operated independently of traffic conditions, and that when
it is operated it consumes a fixed amount of space.

As a first step, a single fixed-capacity bottleneck that can serve both cars and
transit is studied. Commuters choose which mode to use and when to travel in order
to minimize the generalized cost of their own trip. The transit agency chooses the
headway and when to operate. Transit operations reduce the bottleneck’s capacity for
cars by a fixed amount. The following results are shown for this type of bottleneck:

1. If the transit agency charges a fixed fare and operates at a given headway, and
only when there is demand, then there is a unique user equilibrium.

2. If the transit agency chooses its headway and time of operation for the common
good, then there is a unique system optimum.

3. Time-dependent prices exist to achieve system optimum.

Finally, it is also shown that results 2 and 3 apply to urban networks.

1 Introduction

Cities around the world face growing demand for limited street space to meet the trans-
portation needs of their residents. The reality is that these streets can be used by multiple
transport modes, and people can choose both when and how they travel. This paper consid-
ers the morning commute when cars and transit compete to serve a population of travelers
in an urban area who are identical except for their wished time to finish their trips. This
problem is important because it lends insights for how to allocate street space and price
multiple modes efficiently in urban networks.

The morning commute problem for a single mode was introduced in Vickrey (1969)
which considers a population of car commuters who must use a single route with a fixed-
capacity first-in, first-out (FIFO) bottleneck to get to work at a desired time. If the demand
ever exceeds the capacity of the bottleneck, then commuters will adjust when they travel
in response to the resulting delays. Specifically, each commuter chooses their own arrival
time at the bottleneck in order to minimize the sum of their own cost of travel, their delay,
and the penalty associated with their schedule deviation; i.e., the difference between their
wished and actual departure times from the bottleneck. This problem was later expanded
to consider a population with a distribution of wished bottleneck departure times which can
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be represented by a cumulative wish curve (Hendrickson and Kocur, 1981). Smith (1984)
showed that an equilibrium exists in which no commuter can unilaterally reduce their own
travel cost when the wish curve is S-shaped and the penalty function is smooth and convex.
Daganzo (1985) proved that this equilibrium is unique.

The bottleneck model of the morning commute has been studied extensively for the case
where all commuters are identical and wish to depart the bottleneck at a common time.
For example, Arnott et al. (1990b) proposed an optimal time-dependent pricing scheme (or
fine toll) which eliminates the delay. This toll is the difference between the user equilibrium
and system optimum costs. These authors also investigated a system with route choice in
which identical commuters can choose between multiple parallel congestible routes (Arnott
et al., 1990a). Work on the morning commute problem with cars and transit has also been
extensive (Tabuchi, 1993; Braid, 1996; Huang, 2000; Danielis and Marcucci, 2002), but it
is limited in two main ways. First, commuters have been assumed to share an identical
desired bottleneck departure time, and second, only unrealistically simple families of transit
mode cost functions have been considered. Existing models, for example, do not recognize
that transit operations reduce the remaining capacity for cars, and that the frequency of
real transit service is adapted to the number of transit riders. Furthermore, unlike the case
of the single bottleneck with distributed demand, the literature does not provide a system
optimum solution with two modes, and whether it can be achieved with pricing.

An important extension of the bottleneck model is the morning commute problem on
urban networks where origins and destinations are distributed across space. As explained in
Daganzo (2007) and experimentally verified in Geroliminis and Daganzo (2008), a network
can often be macroscopically modeled as a single bottleneck with state-dependent capacity.
The network capacity is a function of the number of vehicles in the network and decreases
as queues grow on the streets. The congestion resulting from this reduced capacity has been
called hypercongestion (Small and Chu, 2003). Geroliminis and Levinson (2009) employs
a macroscopic method to examine pricing strategies for the morning commute problem in
a city with only cars. No reference has explored the effect of dedicating space to transit
operations on the remaining road capacity for cars and the effect this has on prices. Thus,
a natural next step is to look at urban networks where streets can be shared by cars and
transit.

As a preliminary step toward this goal, this paper first presents an analysis of the morning
commute for a general S-shaped wish curve and a choice between passing a fixed-capacity
bottleneck by car or using a general uncongestible alternative transit mode. This capacity
depends on whether or not transit service is being provided. Section 2 shows that there
is a unique user equilibrium if the transit agency charges a fixed fare and operates at a
given headway, and only when there is demand. Section 3 shows that there is a unique
system optimum if the transit agency chooses its headway and time of operation for the
common good. Section 4 presents and discusses a dynamic pricing strategy which moves
the user equilibrium to system optimum. It shows that when modes share the bottleneck,
the optimum toll is not always the difference between the user equilibrium and system
optimum user costs. Finally, Section 5 shows that even though the user equilibrium for the
network problem with state-dependent capacity is somewhat complex, the system optimum
version of the problem reduces to the fixed-capacity bottleneck model. More specifically,
with suitably modified cost functions, the system optimal travel pattern, pricing strategies,
and insights identified in Sections 3 and 4 apply to multimodal urban networks.
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2 User Equilibrium

We first review the bottleneck model for a single mode from Hendrickson and Kocur (1981)
and then add a transit mode. Consider the morning commute problem with a population
of commuters who are identical (e.g., values of travel time and queuing delay) except for
when they wish to get to their destination. If commuters drive, they must pass a bottleneck
with capacity µ. The total number of commuters that wish to depart from the bottleneck
by time t is described by a wish curve, W (t), which is S-shaped. The slope of this curve is
the time-derivative of W (t) (denoted by a dot), Ẇ (t), and it satisfies:

Ẇ (t) > µ for t ∈ (t1, t2)

Ẇ (t) ≤ µ otherwise
(1)

as shown in Figure 1. As a result of the first inequality, there will be a rush period starting
at te ≤ t1 and ending at tL ≥ t2 during which N commuters will experience queuing delay.
Suppose that each commuter experiences a penalty for schedule deviation from their wished
departure time which is described by a piecewise linear penalty function. Each minute
of earliness is associated with a penalty of e equivalent minutes of travel time such that
0 < e < 1, and each minute of lateness is equivalent to L minutes of travel time such that
L > 0.

t

#

TC

W(t)

D(t)

A(t)

μ
μ

1+L

μ

1−e

te t1 t t2 tL

Ne

NL

˜

Figure 1: User Equilibrium for a fixed capacity bottleneck using a single mode.

In the absence of an alternative mode, and assuming that commuters arrive and pass
the bottleneck in order of wished departure (first-wished, first-in, first-out or FWFIFO), we
look for the beginning and end of the rush and for the equilibrium departure curve from
the bottleneck which has slope Ḋ(t) = µ for t ∈ (te, tL). This determines the time t̃ when
a delayed commuter departs on time, as well as the number of commuters delayed by the
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bottleneck, N , of which Ne depart early and NL depart late; see Figure 1. We also look
for the user equilibrium arrival curve at the bottleneck, A(t), which allows no commuter to
reduce their travel cost by unilaterally changing their own arrival time. The slope of the
arrival curve in equilibrium, shown in the figure, must satisfy:

Ȧ(t) =

{

µ
1−e

for commuters who depart early
µ

1+L
for commuters who depart late.

(2)

Otherwise, early and late commuters could reduce their travel cost by arriving earlier if the
slope was greater or arriving later if the slope was less than those specified in (2). The
result is that a critical commuter with wished time t̃ departs the bottleneck on time but
experiences the maximum travel cost as queuing delay:

TC =
NeL

µ(e+ L)
(3)

All travelers wishing to pass the bottleneck before t̃ are early in equilibrium, and all travelers
wishing to pass after t̃ are late in equilibrium. Their excess costs (queuing and schedule
penalty) are less than TC .

If an alternative public transit mode becomes available, then commuters are able to
choose when to travel and which mode to use. It is assumed in this section that the transit
agency charges a fixed fare and operates a fixed headway. Suppose that when transit is
operating, it is fully segregated on its own lane so that transit services are not subject
to traffic congestion. The transit system requires a fixed amount dedicated space, so the
bottleneck’s remaining capacity to serve cars when both modes are operating is µ̃ ≤ µ.
Transit users can always choose to pass the bottleneck at their wished time because use of
the mode is not limited by congestion.1 Therefore, given our assumptions, each transit rider
has an identical generalized cost, zT . This quantity and all costs appearing in this paper
are expressed in units of equivalent queuing time (hours). A car trip without delay has a
generalized cost of zC (hours) which is independent of the number of car drivers. Thus, the
total cost of driving through the bottleneck will be the sum of this free-flow cost and the
excess costs of queuing delay and schedule penalty.

Following Wardrop (1952), it is assumed that at equilibrium each commuter chooses
the mode and travel time which minimizes their own generalized cost. Transit will be
competitive with the car for at least part of the rush hour if zT is less than the generalized
cost that the critical commuter would experience if transit is not provided: zC + TC . At
equilibrium, the generalized cost of car and transit must be the same when both modes are
used, and the generalized cost of a car trip cannot exceed that of a transit trip when only
cars are used. Therefore, zT is an upper bound for the cost of a trip by either mode. When
competitive transit is provided, the maximum delay by car, T , satisfies:

T = zT − zC < TC . (4)

In order to distinguish between the travel patterns of cars and transit, we will consider
the arrival and departure curves for each mode. Again, we assume FWFIFO in both cases.
DC(t) is the cumulative number of car departures at the bottleneck, and AC(t) is the
cumulative number of car arrivals. DT (t) is the cumulative number of transit departures,
and the arrival curve of transit is the same curve, AT (t) = DT (t), because all transit trips
can be completed on time.

1This assumption is reasonable for a service using sufficiently large vehicles operated at regular headways
but without a fixed schedule. The traveler cannot avoid the waiting time at a transit stop, but they can
always board the next vehicle.
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An equilibrium is easy to find in two cases: if zT < zC , then a transit trip is less costly
than even a free-flow car trip, and all trips will be made by transit; if zT > zC + TC , then
there is always a lower cost for traveling by car and the equilibrium will be the same as the
single mode problem. The following proposition addresses the remaining cases.

Proposition 1 (User Equilibrium, 2 Modes). If W (t) is S-shaped, and each commuter can
choose between traveling by car (with free-flow cost zC per trip) through the bottleneck and
an alternative transit mode with given cost zT ∈ (zC , zC + T ), there is a unique FWFIFO
user equilibrium with the following properties (see Figure 2):

1. Ne, the number of early car commuters, is given by Ne = µT/e. They travel at the
beginning of the rush, t ∈ (te, t̃e).

2. NL, the number of late car commuters, is given by NL = µT/L. They travel at the
end of the rush, t ∈ (t̃L, tL).

3. No, the number of on-time car commuters in the rush, is a strictly decreasing function
of T , No = No(T ). They travel in the middle of the rush, t ∈ (t̃e, t̃L).

4. NT , the number of transit riders, is a strictly decreasing function of T , NT = NT (T ).
They also travel in the middle of the rush, t ∈ (t̃e, t̃L).

t

#

T

W(t)

μ

μ

1+L

μ

1−e

te t1 te t2 tL

AC (t)

T

NT

tL

Ne

NLμ

μ

DC (t)

A

B

C

D

No

˜ ˜

˜

E

F

Figure 2: User Equilibrium for a bottleneck with a transit alternative.

Proof. Consider point A (t = te) where the first early commuter departs. Since the excess
cost of driving (queuing delay and schedule penalty) is less than T shortly after this time,
only cars are used and therefore ḊC(t) = µ. For an equilibrium, the slope of the arrival
curve should be as in Figure 2: ȦC(t) = µ/(1 − e), so that queuing time increases at rate
e/µ with each additional commuter. Clearly, the queuing time is T for the Ne = µT/e early
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commuters in agreement with property 1. We choose the unique location of point A such
that commuter Ne departs on time at t̃e (point B) as shown in the figure. This ensures
that the excess cost of driving increases monotonically from 0 to T for commuters departing
in (te, t̃e) in FWFIFO order. Therefore, no transit is used during the early interval. This
establishes property 1.

A similar FWFIFO construction is used for the late part of the rush to identify the
unique segment CD and the time interval (t̃L, tL) where the excess cost of driving declines
monotonically from T to 0. In this interval, queuing time declines at the rate L/µ with
each departing commuter, so the number of late commuters is NL = µT/L. This establishes
property 2.

In the middle of the rush (t̃e, t̃L), the number of commuters served is the length of
segment FC. Both car and transit are used. Thus, cars depart in FWFIFO order at rate
Ḋ(t) = µ̃. They experience a queuing delay T and no schedule penalty. Therefore, their
number is No = (t̃L − t̃e)µ̃ as shown by segment EF. The number of transit users, NT , is
given by the length of segment CE. They also pass the bottleneck in FWFIFO order, and
experience no delay. Note, NT is always greater than 0 because Ẇ (t) > µ ≥ µ̃ in the middle
of the rush.

Finally, note from the geometrical construction that if T increases, then t̃e increases and
t̃L decreases; i.e., point B moves to the right along W (t), and point C to the left. Clearly
then, both No and NT strictly decrease with T . This establishes properties 3 and 4.

Note from Figure 2 that the departure curve for cars is piecewise linear in the rush with
the slope always equal to the capacity for cars. From Proposition 1, it follows that the
number of commuters who depart early and late must satisfy:

Ne

NL

=
L

e
. (5)

In this equilibrium, all commuters with wished times in (t̃e, t̃L) travel on time and experience
the same travel cost, zT = zC + T . The transit service is only used during this period. All
early and late commuters travel only by car and experience a lower cost. The total number
of travelers in the rush is given by the sum:

N = Ne +NL +No +NT . (6)

Each of these values, including N , is uniquely determined for any given {W (t), e, L, µ, µ̃}.
Note by comparing Figures 1 and 2 that the maximum cost of a trip in the two-mode

equilibrium is less than that of a single-mode equilibrium. Since NT > 0 implies T < TC ,
it follows from properties 1 and 2 of Proposition 1 that there are fewer early and late
commuters. These are represented by shorter segments AB and CD in Figure 2, which
implies that the rush starts later and ends earlier with two modes than with all commuters
traveling by car. Therefore, the rush period with multiple modes is shorter and involves
fewer commuters. Provision of a competitive public transit alternative to congested driving
is a Pareto improvement because every delayed commuter experiences a reduced travel cost,
even those who travel by car at the beginning and end of the rush when no transit service
is used.

3 System Optimum

The system optimal travel pattern will minimize the total system cost (or maximize welfare)
associated with the bottleneck. Since queuing delay is an avoidable waste of time, AC(t)
must equal DC(t) at system optimum. Thus, to find the system optimum, it suffices to
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identify the departure curves for car and transit that minimize the monetary mode costs
(e.g., vehicles, fuel, infrastructure, etc.), the free-flow travel time, and the schedule penalty.
We do this in general and then for a Z-shaped wish curve.

3.1 General Wish Curve

In order to minimize the total system cost, we must consider the total generalized cost
function of each mode. It is assumed that the transit spatial coverage is given, but its
headway is chosen to minimize the sum of the agency and the user costs (including the
out-of-vehicle wait) for the given number of transit riders, NT . Thus, the system optimum
transit cost is a function of the number of transit users, ZT (NT ).

2 The system optimum
problem is approached in two steps. First, we determine how car users and transit riders
should behave if we are given that there are a total of NT transit riders by the end of the
peak period, tmax. The resulting costs are also determined. Then, the optimal number of
transit riders, N∗

T , is identified by minimizing the system costs. All values associated with
the system optimum are denoted with ∗.

To start, let us define the curve WL(t)
.
= W (t) −NT . This is a lower bound to WC(t),

the number of car users that wish to depart the bottleneck by time t when there are NT

transit users. Logically, W (t) is an upper bound for WC(t).

Proposition 2. For a given wish curve, W (t), and a given number of transit riders, NT ,
there is a unique system optimal departure curve for cars, DC(t), and transit, DT (t). The
DC(t) curve is piecewise linear with 3 segments going from W (t) to WL(t) (see Figure 3):

Phase 1. Ḋ(t) = µ while above W (t), serving N∗

e trips (segment AB); WC(t) = W (t); no
transit is used.

Phase 2. Ḋ(t) = µ̃ from W (t) to WL(t), serving N∗

o trips (segment BC); WC(t) = DC(t);
and DT (t) = W (t)−WC(t).

Phase 3. Ḋ(t) = µ below WL(t), serving N
∗

L trips (segment CD); WC(t) = WL(t); no transit
is used.

Proof. Since NT is given all monetary costs and free-flow travel times are fixed. Thus, the
optimal departure curves must minimize only the remaining schedule delay for cars. In
order to identify the optimal DC(t) and DT (t) we must also identify WC(t). This curve is
bounded above by W (t) and below by WL(t) = W (t) −NT and must satisfy the following
criteria (illustrated in Figure 3): WC(t) must start on W (t) and end on WL(t); and for all
t, 0 ≤ ẆC(t) ≤ Ẇ (t).

We now show that there is a unique system optimal solution with the stated properties,
as depicted in Figure 3. Consider the point B where the WC(t) diverges from W (t). To the
left of B, the schedule delay is minimized because DC(t) is as low as possible and WC(t) is
as high as possible. Note, there is no transit use because W (t)−WC(t) = 0. Thus, for the
given B, phase 1 is optimum. Likewise, to the right of point C where WC(t) joins WL(t),
the schedule delay is minimized when DC(t) is as high as possible and WC(t) is as low as
possible. There is also no transit because ẆC(t) = Ẇ (t). Thus for a given point C, phase
3 is optimum.

The schedule penalty can be made equal to 0 in phase 2 by choosing WC(t) = DC(t).
Therefore, for a given B, DC(t) should be chosen to minimize the schedule delay in phase
3. This is achieved by choosing the highest possible slope for DC(t). Note, Ẇ (t) > µ

2ZT (NT ) is a concave function that increases with
√

NT when the headway is determined endogenously
to minimize the total generalized cost of the transit system (Gonzales, 2011).
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t

#
W(t)

DC (t)

μ

te t1 te t2 tL

NT

tL

Ne

NL

WC(t)

μ

μ
B

C

A

D WL(t)

WC(t)

WC(t)

No

cumulative
transit

departures

B

˜

˜ ˜ tmax

Figure 3: The departure curve for car giving minimum schedule delay for a given NT .

in phase 2, so transit is used. Thus, Ḋ(t) = µ̃ in phase 2, as shown in Figure 3, and
DT (t) = WT (t) = W (t) − WC(t) because all transit trips are served on time. Clearly, for
a given B, there is a unique segment BC in phase 2, representing WC(t) and DC(t), that
minimizes the schedule penalty.

Since point C is uniquely determined by point B, it only remains to pick the point B
which corresponds to the minimum total schedule cost of earliness and lateness. An upward
shift of B along W (t) corresponds to a shift of the departure curve for early car commuters
by dne and for late car commuters by dnL; see Figure 4. Consideration of Figures 3 and
4 shows that this corresponds to an increase in earliness (eNe/µ)dne, and a decrease in
lateness (LNL/µ)dnL. Therefore, the schedule cost is minimized at the unique point when
these two quantities (i.e., the shaded areas in Figure 4) are equal. This unique B defines
the optimal solution.

Proposition 2 allows us to uniquely define the number of car users for a given NT ,
NC(NT ). Therefore, we can define three functions of NT : the total transit system cost,
ZT (NT ); the total car cost, ZC(NT ); and the total schedule cost, S(NT ). Thus, the minimum
total cost for a given NT can be defined as:

Z(NT ) = ZT (NT ) + ZC(NT ) + S(NT ). (7)

The system optimum cost is the global minimum of this function and the optimum number
of transit riders is N∗

T = argmin{Z(NT )}.
It is shown in Appendix A that at system optimum

N∗

e

N∗

L

=
L(λ∗

e − µ̃)(λ∗

L − µ)

e(λ∗

e − µ)(λ∗

L − µ̃)
(8)
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t

#

B

te te tLtL

WL(t)

DC (t)

dEarliness

dno

W(t)

μ

dLateness

μ
C

dne

dnL

μ

DC (t)

˜

˜ ˜

Figure 4: Decrease in earliness and increase in lateness resulting from a shift of B.

where we define λ∗

e

.
= Ẇ (t̃∗e) and λ∗

L

.
= Ẇ (t̃∗L), which are the slopes of W (t) at the system

optimum points B and C, respectively. Note that N∗

e /N
∗

L 6= L/e in general. Thus, the ratio
of early to late commuters can be different in the user equilibrium and system optimum.
However, if transit is operated on a separate right of way, so that µ = µ̃, or if W (t) is
Z-shaped so that λ∗

e = λ∗

L, then the ratio is the same: N∗

e /N
∗

L = L/e.

3.2 Z-shaped Wish Curve

Now we examine the Z-shaped case as shown in Figure 5 in more detail. In this case, explicit
forms for N∗

T and Z∗(N∗

T ) are derived below. As a first step, we use the geometry of the
Z-shaped wish curve to derive S(NT ).

Lemma 1. If W (t) is Z-shaped with slope λ during a peak of length tp and 0 otherwise,
then the optimum schedule delay for a given number of transit riders is given by:

S(NT ) =







(

tp − NT

λ−µ̃

)2
λeL(λ−µ)
2µ(e+L) for NT < tp(λ− µ̃)

0 otherwise.
(9)

Proof. Consider Figure 5 illustrating the Z-shaped W (t) and the optimal DC(t) for NT as
given by Proposition 2. In the middle of the rush, transit demand is λ− µ̃, so to serve NT

commuters, transit is operated for a duration of time, NT /(λ − µ̃). All of the demand in
the remaining time is served only by cars. This demand, Ne+NL, is the difference between
the total demand λtp and the total demand in the middle of the rush λNT /(λ− µ̃), i.e.:

Ne +NL = λ

(

tp −
NT

λ− µ̃

)

. (10)

9
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DC (t)

μ

te t1 t2

NT
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NL

μ
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C

A

D
WL(t)

No˜

tL

earliness

lateness
λ

tp

DC (t)

DC (t)

t

#

Figure 5: System optimal schedule delay for Z-shaped W (t).

Since the demand rate is always λ during the peak, then λ∗

e = λ∗

L = λ. Then following from
(8), Ne/NL = L/e at system optimum. Substituting this ratio into (10), Ne and NL are
each defined by NT as:

Ne =
L

e+ L
λ

(

tp −
NT

λ− µ̃

)

(11)

NL =
e

e+ L
λ

(

tp −
NT

λ− µ̃

)

(12)

when NT < tp(λ− µ̃). Otherwise, transit operates for the full duration of the rush and there
are no early or late commuters.

The total earliness is the area between DC(t) and WC(t) when commuters depart early
(the triangle below segment AB): Ne/2 (Ne/µ−Ne/λ). The cost of the earliness is the
product of this area and e. Similarly, the total lateness is the area between DC(t) and
WL(t) when commuters depart late (the triangle above CD): NL/2 (NL/µ−NL/λ). The
cost of the lateness is the product of this area and L. The sum of these two costs is the
total schedule cost, S, and by simplifying we find:

S =
(

eN2
e + LN2

L

) λ− µ

2λµ
. (13)

Now S is expressed in terms of Ne and NL which are both functions of NT . Substituting
(11) and (12) into (13), we obtain S(NT ), which reduces to (9).

This result is now used to look for the optimum NT . To this end, let us denote by N
the total number of trips, N = λtp. Then, the optimal transit ridership, N∗

T , is the global
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minimum of:
Z(NT ) = ZT (NT ) + (N −NT )zC + S(NT ). (14)

This global minimum is identified below.

Proposition 3. If W (t) is Z-shaped with slope λ during a peak of length tp and 0 otherwise,
then Z(NT ) has as most one unconstrained local minimum in [0,N] at some point Nu

T ∈
(0, N). The point, Nu

T is the solution of:

Z ′

T (N
∗

T )− zC − eL

µ(e+ L)

(

tp −
N∗

T

λ− µ̃

)

= 0 (15)

and must satisfy Nu
T ∈ (0, tp(λ− µ̃)) and

Z ′′

T (N
∗

T ) +
eL

µ(e+ L)(λ− µ̃)
> 0. (16)

If such a solution does not exist, then there is no unconstrained minimum.
The system optimum N∗

T is either Nu
T or at an extreme of the interval [0, N], whichever

value produces the least cost. Thus, three cases are possible:

1. Trips served by a mix of cars and transit , ZM = Z(Nu
T ), if N

u
T exists.

2. All trips served by car, ZC = zCN .

3. All trips served by transit, ZT = ZT (N).

Proof. The total cost is composed of three terms: Z(NT ) = ZT (NT ) + ZC(NT ) + S(NT ).
Recall that ZT (NT ) = A+BNT +C

√
NT , ZC(NT ) = (N−NT )zC , and that S(NT ) is given

by (9).
We first examine the existence of unconstrained local minima of Z(NT ). Note that

Z(NT ) is a twice differentiable function in the range [0, N ], although the second derivative
is discontinuous atN0

T = tp(λ−µ̃). Note also that Z(NT ) is concave forNT ∈ [N0
T , N ]. Thus,

it can only have a local unconstrained minimum in [0, N0
T ). The necessary and sufficient

conditions for such a minimum are (15) and (16).
We now show that this unconstrained minimum is unique. Consideration shows that

Z ′′(NT ) is monotonic increasing in [0, N0
T ] and that it can be 0 at a unique inflection point

N1
T in the interval. In other words, Z(NT ) is concave in (0, N1

T ] and convex in [N1
T , N

0
T ].

Therefore, any unconstrained local minimum NU
T must be unique.

Finally, since Z(NT ) has at most one unconstrained local minimum, it follows that the
global minimum must be either the local minimum (if it exists) or an extreme point of the
optimization interval [0, N ].

Note from Proposition 2 that to identify the system optimum solution it is necessary to
know W (t), which is not directly observable. However, if W (t) is Z-shaped, we see from
Proposition 3 that we only need the observable values: N , µ, µ̃, and λ− µ̃ (demand rate on
transit). The values of e and L can be estimated from revealed preferences in equilibrium
by measuring the rate at which delays increase and decrease over the rush.

3.3 Captive Transit Riders

With heterogeneous populations that include people who are transit captives, public trans-
portation service should never be completely turned off. The car-only scenario (case 2 in
Proposition 3) should be modified to include transit service operated in traffic with a mini-
mum acceptable frequency. If desired, transit can be given priority in this modified car-only
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scenario, provided that car traffic is allowed into the bus lanes when buses are not present.
The analysis with a binary population including transit captives and modal choice-makers
is straight-forward. The total generalized cost would combine the total cost of the transit
captives, which is easy to express as a function of the duration of the middle period when
intensive and segregated transit service is provided since captives do not have a choice, with
the cost of the remaining population which can be analyzed as in the paper since these
choice-makers do not interact at all with the captive population. The results, including the
pricing mechanism, should be qualitatively similar to those provided in the paper. More
refined classifications of the population (e.g., by income) can also be considered. In this
case, we expect the policies proposed in this paper to increase welfare, but a rigorous anal-
ysis of optimality is difficult because the FWFIFO rule may be sub-optimal in this case.
Simulations may be the best option to analyze the distribution of benefits.

4 System Optimal Pricing of Cars and Transit

Now that the user equilibrium and system optimum have been identified for a bottleneck
serving cars and transit, we will turn our attention to a pricing strategy that will achieve
system optimal behavior in equilibrium. Commuters are assumed to choose when to travel
and which mode to use based on the generalized cost of their own trip, which includes as
components: the travel time, vehicle costs, schedule delay, and any pricing fees. As before,
this generalized cost is expressed in units of equivalent queuing time.

Suppose that in the absence of pricing, the users of each mode must cover its costs, so
drivers pay zC as a base rate and transit riders pay zT . The pricing strategy will define the
additional car toll $C(t) and transit fare $T (t) that users passing through the bottleneck
at time t must pay. Therefore, the user cost of a free-flow car trip at time t is zC + $C(t)
(hours) and the user cost of a transit trip is zT +$T (t) (hours). A negative price represents a
subsidy. We look for a set of prices that produces an equilibrium when added to the system
optimum costs of Section 3.

Proposition 4 (Optimal Prices). For any time-dependent car price satisfying

$̇C(t) = e for t ∈ (t∗e, t̃
∗

e) (17a)

$̇C(t) = −L for t ∈ (t̃∗L, t
∗

L) (17b)

−L < $̇C(t) < e otherwise, (17c)

the following time-dependent price for transit,

$T (t) = zC − zT + $C(t) for t ∈ (t̃∗e, t̃
∗

L), (18)

produces an equilibrium at system optimum.

Proof. Equations (17) are considered first. To this end, note from Figures 3 and 5 that if
an early driver departs dt later in the system optimum solution, then his or her schedule
penalty is reduced by edt for each additional dt in the departure time. Therefore, to cancel
this benefit and ensure equilibrium we must increase the toll by an additional edt as a toll.
Thus, the optimal toll must increase at rate e when commuters depart early in agreement
with (17a). If this happens, early commuters do not have an incentive to choose any other
departure time (early or late) Likewise, the system optimum toll must decrease at rate −L
for commuters who depart late as expressed in (17b). Finally, any commuter who departs
on-time by car or transit will not have an incentive to change their departure time to any
other time if the the rate at which costs change with time is in (−L, e). This establishes
(17c).
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It now remains to show that commuters do not have an incentive to change modes. This
is achieved by setting the transit prices. Note that the transit service is only used during the
middle of the peak, t ∈ (t̃∗e, t̃

∗

L), so its price must only be set for this interval. Since car and
transit are used simultaneously during this period, the user cost of travel by both modes
must be equal in order to maintain the Wardrop equilibrium; i.e., $T (t) + zT = $C(t) + zC ,
which reduces to (18).

Note that for the case without transit (i.e., t̃∗e = t̃∗L) only (17a) and (17b) apply. Thus,
the prices defined in Proposition 4 are the Vickrey (1969) prices. Figure 6 illustrates optimal

prices for a special case in which the car price is fixed at $C(t) = $off-peakC outside the rush.
From the system optimum described in Section 3, N∗

e car commuters depart the bottleneck
early at rate µ between t∗e and t̃∗e (points A and B). Since the toll must increase at rate
e during this interval, the car toll increases by ∆$∗e = eN∗

e /µ from the first to last early
commuter. Likewise, the car toll decreases by ∆$∗L = LN∗

L/µ for late commuters from t̃∗L
to t∗L. In the middle of the rush, (t̃∗e, t̃

∗

L), all commuters are on time, so the optimal price
can follow any curve from point B to C satisfying the third condition of (17); e.g., the solid
curve shown. Feasible prices are bounded by the dashed diamond. The system optimal
price of transit is the same shape as $C(t) translated down by zT − zC as defined by (18).

t

$

(hours)

$C(t)

$T(t)

$C
off-peak

te te tLtL

e –L

0

Δ$e*

zT − zC 

Δ$L*

˜*˜*

A

B

C

D

tmax* *

Figure 6: The system optimal time-dependent price for car and transit for the special case
when the car toll is fixed at $C(t) = $off-peakC in the off-peak.

Note that any vertical translation of the transit and car curves satisfies (17) and (18)
and therefore will result in the same system optimal travel pattern. Thus, by shifting these
prices up or down, it is possible to achieve additional policy objectives such as any particular
car toll during the off-peak or revenue neutrality. From the system optimal cumulative
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departures of cars DC(t) and of transit DT (t), the net revenue $net is given by

$net =

∫ tmax

0

$C(t)ḊC(t) + $T (t)ḊT (t)dt (19)

where tmax is the amount of time until the next rush period. Since the car price can take
any value in the off-peak, there is always a system optimal pricing strategy which is also
revenue neutral.

5 Competing Modes on Urban Networks

The previous sections have shown the user equilibrium and system optimum for two com-
peting modes using a single bottleneck with fixed capacity. Here, we extend the results to
urban networks. A bottleneck on a road will discharge vehicles at fixed capacity as long
as there are vehicles in a queue feeding it.3 However, the capacity of an urban network to
discharge vehicles to their destinations depends on the number of vehicles circulating in the
network. Unlike a bottleneck on a single road, queues of vehicles in a network tend to block
other streets and impede network flow. Recent work suggests that there is a consistent
macroscopic relationship between the average network vehicle density and average network
flow called a Macroscopic Fundamental Diagram (MFD), and when the average trip length
is not changing, the MFD defines a consistent function relating the number vehicles in the
network to the discharge flow of exiting vehicles (Daganzo, 2007; Geroliminis and Daganzo,
2008). We call this second relationship the Network Exit Function (NEF). This relationship
describes the state-dependent discharge rate (capacity) of a network as a function of the
number of vehicles in the network.

Consider a network with a general concave MFD as illustrated in Figure 7(a). The
average vehicle flow on the network, q (veh/lane-hr), is a function of the average vehicle
density on the network, k (veh/lane-km). So, the MFD describes q = Q(k) for all possible
vehicle densities, and the shape depends on the properties of the network (e.g., saturation
flow per lane, free-flow vehicle speed, block lengths, and signal timings). As presented in
Daganzo (2007), the MFD can be used to derive the NEF which expresses the flow of vehicles
exiting the network, f (veh/hr), as a function of the total number of vehicles circulating in
the network, n (veh):

f = F (n) =
l

d
Q
(n

l

)

(20)

where l (lane-km) is the total length of the network, and d (km) is the length of a vehicle
trip. Note that the exit function, F (n), is simply a rescaling of the MFD, Q(k), to account
for the size of the network and length of trips; see the heavy curve in Figure 7(b). We will
study this system assuming that the instantaneous exit flow depends only on the number
of vehicles in the network at that time.4 A vehicle exiting a network is analogous to a
vehicle departing a bottleneck, so we can think of the network as a bottleneck with the
state-dependent capacity given by the exit function.

The maximum feasible exiting flow is associated with point M in Figure 7. For a given
traffic state on the MFD (such as point P), the slope from the origin represents the average
vehicle speed across the network, vµ, which includes time spent at signals and in queues.
The total time required to complete a trip of length d is the reciprocal of the analogous

3This is approximately true, although evidence suggests that the queue discharge rate is reduced when
queues grow very long (Koshi et al., 1992).

4This assumption holds when traffic is in a steady state. Transitions between steady states are not
instantaneous but have durations comparable to a trip time (Daganzo, 2007). The effect of these transitions
in the system optimum will be small if the rush period is long compared to the duration a trip.
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(a) Macroscopic Fundamental Diagram (MFD)
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(b) Network Exit Function (NEF)

Figure 7: The MFD and NEF for a network with and without transit. Dashed lines indicate
congested traffic states, and solid lines are uncongested states where a target operating state
P may be reasonably chosen.

slope on the NEF, vµ/d. Traffic states to the right of M (dashed lines in Figure 7) are
congested and should always be avoided because the same average flow and exit flow can
achieved with greater traffic speeds and fewer vehicles on the road to the left of M (solid
lines in Figure 7).

Geroliminis and Levinson (2009) provides a numerical method to construct the user
equilibrium for a single mode on a network with a stable, single-valued NEF. The user
equilibrium problem in networks is complicated by the reduced exit flow when the network
becomes congested. Fortunately, the system optimal network problem is not affected by
this complication because only uncongested traffic states (to the left of M) should occur.
Geroliminis and Levinson (2009) also presents the system optimum and optimal pricing
strategies for a network with a single mode taking advantage of this result. Now, by keeping
the traffic states only on the uncongested side of the NEF, we look at the network system
optimum problem for two modes.

Although point M corresponds to the maximum feasible exit flow, a city could choose to
put a limit on exit flow by capping it at a target level µ associated with point P to the left of
M. A lower target exit flow lengthens the rush but serves each vehicle with less travel time.
Figure 7(b) shows that at point P, µ is associated with a critical accumulation of vehicles
on the network, nµ, such that µ = F (nµ). We will define delay as the excess travel time
over d/vµ for a trip of length d. So, in system optimum where delays are avoided, d/vµ can
be interpreted as the maximum travel time guarantee.

If the transit service uses a separate right of way (e.g., metro or permanent dedicated
bus lanes), it has no impact on the street network. In this case, F (n) does not change
when transit is provided, and µ̃ = µ. By applying system optimal pricing as described in
Section 4, car commuters will choose to travel at rate µ, so the network will maintain a
steady accumulation of nµ vehicles during the rush. No delay will be experienced.

In reality, transit services often use the same street space as other vehicles, so deploy-
ing buses will reduce the remaining capacity available for cars. Suppose that the spatial
structure of the transit system is given but the headway is endogenously determined by the
transit demand.5 We assume that a fixed number of lanes are dedicated to transit, so µ̃
is constant when transit is operated. If dedicated space for transit is deployed uniformly

5Daganzo (2010) shows that the optimal spatial structure of transit service is insensitive to demand,
whereas the optimal headway is not. In a very well-run city, street space could be dedicated to transit with
intermittent priority (Eichler and Daganzo, 2006) and the spatial requirement of transit would be a function
of the transit demand, but here the spatial requirement is considered fixed.
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across the network, the effect should be the same as reducing the network length uniformly
leaving a fraction α < 1 of the original network length remaining available for cars. For
dedicated transit lanes, α will be directly related to the lane distance that is dedicated only
to transit. For buses and trams operating in mixed traffic lanes, α must account for the
losses due to conflicts between the different types of vehicles. The result is that the capacity
of each individual street to serve cars is reduced on average to α times its original. This is
the same effect as reducing the network length for cars from l to αl.

Since the change in network size is uniform and none of the other determinants of network
capacity have been altered, the MFD as described by Q(k) should remain unchanged. Thus,
we see from (20) that the NEF when transit is operated, F̃ (n), is:

F̃ (n) =
αl

d
Q
( n

αl

)

(21)

which is shown in Figure 7(b). Note that the point P associated with the target exit flow
moves along the ray with slope vµ/d towards the origin so the travel time per trip does
not change. This peak is associated with the same density kµ as before, so the optimal car
accumulation when both modes are operating, ñµ, and the exit flow (capacity) for cars, µ̃,
are given by:

ñµ = αnµ (22)

µ̃ = αµ. (23)

Note that kµ̃ = kµ, because the network is managed to operate at the same point P on the
MFD (Figure 7(a)) with and without transit operations. Expressions (22) and (23) describe
the traffic state for cars when transit and cars are operating together on the network in the
middle of the rush. This is shown in Figure 8 by the slope of the departure curve for cars
exiting the network in the middle of the rush (segment BC).

The procedure for identifying the system optimum is the same as described in Section 3.
Conditional on the segment BC, the total earliness and lateness are minimized by serving
car trips at the maximum possible rate before t̃e and after t̃L. Then, segment BC can be
slid up or down until the sum of the schedule penalties for all early and late commuters is
minimized.

For most of the rush, early and late commuters can be served at rate µ associated with
point P, and vehicle accumulation nµ. In the middle of the rush, when both transit and cars
operate together on the street network without delay, commuters are served at µ̃, and the
total car accumulation is ñµ. Therefore, just before transit service begins at t̃e, the vehicle
accumulation must be reduced to ñµ so the network exit rate µα will be:

µα = F (ñµ). (24)

This results in a shift of the traffic state to the left from P to Pα along F (n) in Figure 7(b).
If the duration of this transition is very short compared to the length of the rush, then
the effect is small and the departure curve for cars in the network system optimum (see
Figure 8) is approximately the same piece-wise linear pattern identified in Proposition 2.

In reality, there are two competing secondary effects of the transition from nµ to ñµ:
increased total earliness, and travel time savings for faster trips. More details about the
transition and these effects are presented in Appendix B. The transition effects do not occur
when transit service ends because cars are able to freely enter the network and rapidly raise
the vehicle accumulation to nµ at t̃L.

In order to eliminate queuing delay, the optimal prices presented in Proposition 4 are
used so that users choose to travel at the system optimal departure time. To be consistent
with the same bottleneck model, these prices should ideally be applied at the moment when
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Figure 8: System optimal departure curve for cars exiting a network with transit operations.

cars leave the network. In equilibrium, the price for car drivers must increase at rate e for
early drivers and decrease at rate L for late drivers; otherwise queuing delays will emerge
as commuters seek to adjust their travel times in order to reduce their own experienced
cost. In order to achieve the transition from P to Pα, some additional network control (e.g.,
adjusting signal timings) is required, but the optimal prices ensure that congestion does not
develop. The time intervals (te, t̃e) and (t̃L, tL) are determined by the target exit flow µ as
shown in Figure 8. These determine the optimal car toll and transit fare as described in
Section 4.

6 Conclusion

It has been shown that the provision of public transit is a Pareto improvement because
everyone experiences a lower cost when transit is provided than if it is not. Public transit
has also been shown to reduce the duration of the rush period in user equilibrium and the
overall cost. When cars and transit share the same road capacity, the system optimum travel
pattern can differ from the user equilibrium unless µ = µ̃ or W (t) is Z-shaped. Optimal
time-dependent prices always exist. For a Z-shaped W (t), the optimal prices can be easily
obtained. The optimal prices are unique up to an additive constant, so there is flexibility
to pursue other policy objectives by choosing that constant.

The system optimum for a fixed capacity bottleneck has been shown to apply for networks
which have state-dependent capacity. This can be done even accounting for the change in
capacity to serve cars which results from dedicating some street space to transit operations.
Therefore, the system optimum and optimal pricing strategy presented in Sections 3 and 4
also apply to multimodal urban networks.

The modeling of networks with multiple modes can be further improved by considering
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additional heterogeneity among users. This paper considered heterogeneity only in wished
travel time, but commuters in real cities have varied values of time and lengths of trips
which will also contribute to their choice of mode and departure time.
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A System Optimum Necessary Condition

We use N∗

e and N∗

L to denote the values obtained with the construction of Figures 3 and 4
for the system optimum N∗

T . We will also define λ∗

e

.
= Ẇ (t̃∗e) and λ∗

L

.
= Ẇ (t̃∗L), which are

the slopes of W (t) at the system optimum points B and C, respectively.

Proposition 5. At system optimum, the wished curves and departure curves for cars and
transit are such that:

N∗

e

N∗

L

=
L(λ∗

e − µ̃)(λ∗

L − µ)

e(λ∗

e − µ)(λ∗

L − µ̃)
. (25)

Proof. Figure 4 shows that the effect of an incremental shift of B up and to the right along
W (t) is associated with shifting segment BC up by dno. This causes a upward shift of the
departure curve for early car commuters by dne and for late car commuters by dnL. Due
to the geometry, these differentials are related by:

dno = dne

λe − µ̃

λe − µ
= dnL

λL − µ̃

λL − µ
, (26)

where λe = Ẇ (t̃e) when the first on-time commuter departs the bottleneck and λL = Ẇ (t̃L)
when the last on-time commuter departs the bottleneck. At the system optimum, the
schedule cost is minimized when the resulting change in total earliness balances the lateness:

eNe

µ
dne =

LNL

µ
dnL. (27)

By manipulating (27) to express Ne/NL in terms of dne and dnL, then substituting expres-
sions for these differentials from (26), it follows that the relative number of early and late
commuters in system optimum is:

N∗

e

N∗

L

=
LdnL

edne

=
L(λ∗

e − µ̃)(λ∗

L − µ)

e(λ∗

e − µ)(λ∗

L − µ̃)
, (28)

which establishes (25).

B Network System Optimum: Traffic State Transition

The Network Exit Function (NEF) describes the relationship between the number of cars
in a network and the rate that vehicles exit the network as described in Section 5. In order
to prevent delays for traffic when transit service begins, the vehicle accumulation in the
network must be reduced to ñµ immediately before the start of transit service at t̃e. This
corresponds to a transition in the rate that cars discharge from the network from µ to µα

as shown by points P and Pα in Figure 7(b). Since the NEF is concave, µ̃ ≤ µα, and the
slope from the origin to µα is no less than the slope to µ̃. Therefore, before transit starts
operating, vehicle trips are at least as fast as when both modes are operated together and
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Figure 9: System optimal departure curve for early cars in a network transitioning from
departure rate µ to µα.

no delays are incurred. The effect on vehicle departures is illustrated by DC(t) to the left
of point B in Figure 9.

If the vehicle accumulation is expressed as a function of time, n(t), then the state of the
network follows the mass conservation equation (Daganzo, 2007):

dn

dt
= I(t)− F (n(t)) (29)

where I(t) is the rate that vehicles enter the network. We define τ as the transition time
for the vehicle accumulation to drop from nµ to ñµ. Then, τ is minimized if no vehicles
enter the network (I = 0), and trips exit according to the NEF. The conservation equation
(29) is an ordinary differential equation which can be solved as a boundary value problem
to obtain τ :

τ = −
∫ ñµ

nµ

1

F (n)
dn. (30)

Recall from (22) that ñµ = αnµ.
The transition from nµ to ñµ causes two competing effects. First, the total earliness cost

is increased because the maximum departure rate for early commuters cannot be sustained
at µ for the entire interval (te, t̃e). The reduced exit flow immediately preceding transit
service adds τe additional earliness to nearly every early commuter (see Figure 9). This is
the difference between the transition time, and the time it would have taken for the same
(1− α)nµ trips to exit at rate µ:

τe = τ − (1− α)nµ

µ
. (31)

Since nearly every early driver experiences τe additional earliness, the total system cost is
increased by approximately eNeτe.

Second, some travel time savings are experienced by early commuters in the transition
period of length τ which reduces the total system cost. This occurs because the transition
from point P to Pα decreases the exit flow to µα. Since µ̃ ≤ µα and both flows are associated
with ñµ, the travel time will be at least as short for Pα as P, if not shorter. The aggregated
travel time savings, TTs, is the difference between the total travel time when (1−α)nµ trips
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exit while the network accumulation is nµ and the total travel time during the transition
period when the same number of trips actually exit:

TTs =
(1− α)n2

µ

µ
−

∫ τ

0

n(t)dt (32)

The first term of (32) is the product of the time it takes (1 − α)nµ to exit the network at
rate µ and the nµ vehicles which are in the network at all times. Upper bounds for the
magnitude of these effects can be determined by considering two NEFs: with µα = µ̃, and
with µα = µ (see Figure 10).
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(a) Case 1: NEF when µα = µ̃
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Figure 10: Example NEFs for cases with maximum earliness cost (Case 1) and maximum
travel time savings (Case 2).

Case 1: Maximum Earliness The largest possible change in exit flow from P to Pα is
a transition from µ to µα = µ̃. In this case, NEF must be linear to the left of P as shown
in Figure 10(a). This will result in the greatest possible transition time τ and additional
earliness τe, because the exit rate can be no lower for each vehicle accumulation if F (n) is
concave. For this case, the exit flow is given by:

F1(n) =
µ

nµ

n for n ∈ (0, nµ). (33)

We can solve for τ by substituting (33) into (30), and solving the integral with ñµ = αnµ:

τ = −nµ

µ
lnα. (34)

Then, by substituting (34) into (31) and collecting terms, the added earliness for each early
commuter is:

τe =
nµ

µ
(− lnα− 1 + α) . (35)

This is an upper bound for the τe associated with any concave NEF. Note that nµ/µ is the
average travel time for a trip of length d, and τe will be small for many reasonable values
of α (e.g., τe is less than 3% of the uncongested travel time for values of α > 0.8).

The NEF in this case is linear to the left of P, so all traffic states are associated with
the same slope to the origin for n ≤ nµ (see Figure 10(a)). The average travel time per
trip in the network does not change over the course of the transition, and therefore there
are no travel time savings experienced. This can be verified by solving (29) with (33) and
substituting the result into (32).
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Case 2: Maximum Travel Time Savings The largest possible reduction in travel time
from P to Pα is when the exit flow transitions from µ to µα = µ. In this case, the NEF has
a constant value between Pα and P as shown in Figure 10(b). Although we would expect
the point P always to be chosen as the left most point with exit flow µ, this case provides
an upper bound for the total travel time savings as µα approaches µ.

Since the exit flow is always µ, the number of vehicles in the network at any time during
the transition is given by:

n(t) = nµ − µt. (36)

We also know that duration of the transition for (1− α)nµ vehicles to depart will be:

τ = (1− α)nµ/µ. (37)

Substituting (36) and (37) into (32), and solving the integral, the total travel time savings
is:

TTs =
(1− α)2n2

µ

2µ
. (38)

This is an upper bound for the TTs associated with any choice of P on the uncongested side
of a concave NEF. Note that this value is independent of the number of early commuters as
long as the length of the period when commuters travel early is longer than the transition
period.

The NEF in this case does not contribute any additional earliness to the other early
commuters (τe = 0). This result can be easily verified by substituting (37) into (31) and
occurs because the exit flow is always maintained at µ until transit service starts. Therefore,
the departure curve for cars in this case is still represented by Figure 8, and the system
optimal solution will be exactly the same as the travel pattern identifies in Proposition 3.
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