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Stem cell therapies have been explored as a new avenue for the treatment of 
neurologic disease and damage within the CNS in part due to their native ability to 
mimic repair mechanisms in the brain. Mesenchymal stem cells have been of particular 
clinical interest due to their ability to release beneficial neurotrophic factors and 
their ability to foster a neuroprotective microenviroment. While early stem cell 
transplantation therapies have been fraught with technical and political concerns as 
well as limited clinical benefits, mesenchymal stem cell therapies have been shown 
to be clinically beneficial and derivable from nonembryonic, adult sources. The focus 
of this review will be on emerging and extant stem cell therapies for juvenile and 
adult-onset Huntington’s disease.

Keywords: Huntington’s disease • regenerative medicine • stem cell • transplantation

Significant advances in stem cell 
therapies
The clinical use of stem cell therapies has 
gained approval for a variety of injuries and 
diseases of the CNS. While much work is 
still needed before the widespread use of 
stem cells in a clinical setting can be real-
ized, this mode of therapy may be advan-
tageous to treat neurological disorders 
than many others because of the ability of 
stem cells to accurately mimic the normal 
cell repair and development process in the 
brain  [1]. Although cell transplantation 
therapies have been fraught with technical 
and political problems, there are signs that 
this approach has considerable potential. 
Early work with Parkinson’s disease, where 
the first clinical trials were performed in the 
mid-1980s and a total of 300–400 patients 
have been treated subsequently with fetal 
cell transplantation and in the open label 
studies, has yielded evidence of some func-
tional improvement [for review [2,3]] as mea-
sured by withdrawal of anti-parkinsonian 
medications. Patients with Huntington’s 
disease (HD) have received clinical benefits 
from implants of fetal/embryonic stem cells 

as well, however, these effects have been 
shown to be temporal [4–6].

Another type of cells, mesenchymal stem 
cells (MSCs), have emerged for clinical trans-
plantation studies due to their capacity to 
release neurotrophic factors and their ability 
to create a neuroprotective microenviron-
ment through the release of specific ILs and 
cytokines. Clinical trials using MSCs in the 
CNS are now also underway, and are focused 
on the safety of the cells. MSCs have been 
autologously transplanted into the subventric-
ular zone in patients with advanced Parkin-
son’s disease [7], intravenously in patients that 
had suffered a stroke [8,9], and umbilical cord 
MSCs have been administered intravenously 
in children with cerebral palsy  [10] with no 
adverse side effects from the cells and observed 
clinical efficacy as measured by improvements 
in neurological domains and fractional anisot-
ropy values in brain MRI-DTI.

Stem cell clinical trials for stroke, spinal 
cord injury and amyotrophic lateral sclero-
sis are already underway while additional 
studies utilizing adult stem cells are nearing 
clinical trials for Parkinson’s and Alzheimer’s 
and HD.
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The goal of stem cell transplantation should focus 
on providing therapeutic benefit through two main 
mechanisms. Successful cell transplantation should 
be able to work synergistically with the endogenous 
microenvironment to upregulate intrinsic cell pro-
liferation or neuroprotection via trophic factor secre-
tion and immune modulation, potentially enhancing 
the overall regenerative capacity of the transplanted 
tissue  [11], or by being capable of integrating into the 
endogenous host network and replacing or repairing 
the lost neurons. This review will focus on the poten-
tial of adult stem cells to provide neuroprotection and 
immune modulation in adult-onset and juvenile HD.

Huntington’s disease
HD is an autosomal-dominant disorder caused by an 
expanded and unstable CAG trinucleotide repeat that 
causes a progressive degeneration of neurons, primar-
ily in the putamen, caudate nucleus and cerebral cor-
tex  [12]. In the USA, there is estimated to be approxi-
mately 30,000 individuals with HD while the Europe 
Union has a slightly higher prevalence of individu-
als with symptomatic HD with an estimated 45,000 
patients [13]. Juvenile HD (JHD) is defined by disease 
onset before the age of 20 years and occurs in less than 
10% of all HD cases [14]; however, JHD may be further 
subdivided into patients that have disease onset prior to 
the age of 10 years or between 10 and 20 years of age as 
they present with different clinical characteristics [15].

HD occurs when the gene that codes for the htt pro-
tein, located on the short arm of chromosome 4, shows 
an increased number of CAG repeats  [16]. Typically, 
greater than 38 CAG repeats correlate with an onset of 
the illness in adulthood. JHD is typically transmitted 
from the paternal allele and usually have more than 60 
CAG repeats [14], although there is a reported case of a 
JHD patient with 250 CAG repeats [17]. Disease onset 
prior to the age of 20 years is clearly dominated by 
paternal transmission (about 3:1 paternal–maternal), 
and paternal transmission is, to date, solely responsible 
for disease onset prior to the age of 10 years [18].

Adult HD is dominated by chorea and other invol-
untary movements in the initial and middle stages of 
the disease, but it is becoming clearer that HD patients 
have cognitive and emotional deficits including slow-
ing of psychomotor speed, impairment of attention 
and memory as well as executive and visuospatial 
functions that eventually degrade into dementia along 
with depression and apathy, although the emotional 
features are more variable than the motor or cognitive 
features  [19,20]. Typically, HD eventually culminates 
in death around 15–20 years after the onset of motor 
symptoms. The disease progression is more rapid in 
children than in adults and has been described in three 

phases: initial phase of behavioural disorder, learning 
difficulty, gait disturbance and mild chorea; a florid 
phase with signs of mental deterioration, rigidity, 
speech disturbance and seizures; and a terminal phase 
of bed confinement, hypotonia and increasing sei-
zures [15]. JHD patients typically have less chorea than 
adult onset HD with rigidity reported as the dominant 
clinical manifestation [14].

Historically, the neuroanatomical changes in the 
striatum have been the focus of neuropathological and 
neuroimaging studies, but recently, the presence of 
abnormalities throughout the cerebellum, specifically 
in JHD [21], including cortical thinning and decreased 
white matter volumes, in the prefrontal cortex, have 
gained significant interest  [20,22]. Striatal atrophy as 
well as white matter loss, as measured by MRI stud-
ies, can detect HD-like degeneration 15 years prior to 
the onset of motor symptoms  [23,24], suggesting that 
once the clinical onset of motor symptoms appear, 
significant striatal loss has already occurred.

Although HD and JHD have a single genetic cause, 
HD as a whole has a very complex pathology, with 
detrimental effects on a wide variety of cellular pro-
cesses  [25]. It has recently been uncovered that while 
conditional knockout of mutant huntingtin in the 
striatum of transgenic mice leads to partial motor and 
psychiatric recovery, silencing of mutant huntingtin in 
both the cortex and striatum is needed to ameliorate 
HD-like symptoms [26]. This is suggestive that symp-
tomology is due to widespread dysfunction of the brain 
and even possibly in other organs as well [27–30].

Currently, only symptomatic treatments are avail-
able. Pharmacotherapy is difficult in HD due to the 
complexity and amount of damage to the brain. The 
symptomatology of JHD is complex and causes suf-
fering in all domains of life and the pharmacological 
treatment is difficult as there are no studies to guide 
the current trial-and-error approach to treating these 
patients  [21]. Clinical outlooks for HD patients and 
the care given to their family members have improved 
due to the increased recognition of the disorder, better 
access to genetic counseling, and more availability to 
specialized care programs that utilize behavioral, neu-
rological and psychiatric rehabilitation programs  [13]. 
Treatment for patients suffering from HD generally 
comprises neuroleptics, anticonvulsants  [31] or tetra-
benazine. The latter of which involves a complicated 
prescribing process, specialty pharmacies for deliver-
ing the drug, strictly managed doses and annual costs 
exceeding US$70,000 which makes it prohibitively 
expensive for many patients [32].

Thus, due to the time and nature in diagnosing HD 
following neuronal loss and motor deficits, restorative 
therapies should focus on creating a neuroprotective 
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environment to slow the loss of endogenous neurons 
as well as replacing lost neurons through either stimu-
lating endogenous neurogenesis or transplanting cells 
capable of differentiating, integrating and replacing 
lost cells.

MSCs for HD
At the time of manuscript preparation, 16 published 
articles have implicated improvement of either behav-
ioral or neuropathological deficits in rodent models of 
HD following treatment with MSCs (Table 1). These 
studies have used MSCs from multiple sources includ-
ing autologous transplantation of unpurified whole 
bone marrow from rats [33], purified rat MSCs [34–38], 
mouse bone marrow-derived MSCs  [39,40], mouse 
umbilical cord-derived MSCs  [41], human adipose 
derived MSCs  [42–44] and human bone marrow 
MSCs [45–47].

These studies have demonstrated improvement in 
motor function [34–36,39–40,42–46,48], cognition [33,40,48], 
anxiety-like behaviors [42] and the ability to extend the 
lifespan of these animals [44]. Decreases in the striatal 
lesion size, less neuronal and medium spiny neuron loss, 
stimulation of endogenous neurogenesis and reduc-
tion of huntingtin aggregation has also been observed 
following transplantation of MSC [34,37,39–41,43–47].

Several groups have reported that MSCs have 
the ability to differentiate into neuronal lineages in 
vitro  [49–52] and following transplantation into the 
brain [53–58]. However, the stance that MSCs have the 
ability to transdifferentiate into mature neuronal phe-
notypes in vitro or in vivo remains controversial [59] and 
none of the aforementioned studies observed neuronal 
differentiation of the transplanted MSC.

There are several possible mechanisms that MSCs 
may provide in lieu of neuronal differentiation such 
as trophic support and immunomodulation. These 
hypotheses are supported from studies of other neu-
rological disorders (Huang  et  al., [60]; Lin  et  al., [61]; 
Han  et  al., [62] Uccelli  et  al. [63]) and were observed 
in many HD studies following MSC transplantation 
(Table 1).

One of the most common mechanism of action pos-
tulated following MSC transplantation in HD is that 
the cells are capable of providing trophic support, spe-
cifically BDNF [33–35,37–41,43–44,46,48]. As a reduction in 
BDNF levels has been noted in HD patients [64,65] and 
BDNF targeted therapies have shown to ameliorate 
partial disease pathology [66–93] upregulating BDNF in 
the HD brain has become a lead therapeutic candidate.

As trophic support is speculated to be the main 
contributor to behavioral and histological recovery 
following transplantation of MSC, the potential of 
MSCs as a delivery vehicle for gene therapy has been 

examined  [94–97]. Due to the nature in which MSC 
can be engineered in vitro, a study tested MSCs that 
overproduced either BDNF, nerve growth factor or a 
combination of both [39]. YAC128 transgenic mice that 
received transplantations of the MSC to overexpress 
BDNF displayed a reduction in motor deficits and had 
significantly more NeuN- and Darpp32-positive cells 
(mature and medium spiny neurons, respectively) in 
the striatum than all other YAC128 groups  [39]. The 
results from this study, along with the previously dis-
cussed literature of successful pre-clinical trials has led 
to translational studies using engineered human MSC 
in the preparation of a clinical trial [98]. However, many 
of the successful pre-clinical studies only examine the 
efficacy of the MSC treatment for a period of days to 
weeks (refer to Table 1), and the long-term efficacy of 
this strategy needs to be examined.

Clinical cell transplantation in HD
As mentioned previously, several clinical studies have 
been conducted to assess the viability of fetal cells as 
a therapeutic treatment for HD. However, there have 
been varying results for the long-term viability of fetal 
cells for HD (Table 2). Bachloud-Levi, et al., found that 
three out of five patients transplanted with ganglionic 
eminence cells showed metabolically active graft cells 
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10 years following transplantation [99] and these results 
correlated with a slowing of the progressive nature of the 
disease, with even some functional recovery observed 
at the early time points; however, in another study the 
transplanted ganglionic eminence underwent a similar 
neurodegeneration associated with HD  [5], likely due 
to accumulation of mutant huntingtin in the neuronal 
graft [100,101]. It has since been postulated that mutant 
huntingtin is transneuronally propagated along neuro-
nal networks, likely contributing to the pathophysiol-
ogy of HD [102]. This theory has been reported in other 
disease models and it is thought that the mutant protein 
is transferred from the host into the transplanted fetal 
neurons via retrograde transfer  [103]. Even in studies 
where the transplanted cells were still viable, their effect 
on behavioral recovery began to diminish between 2 
and 4 years following the treatment  [99,101,104]. While 
ganglionic eminence transplantations into HD patients 
have shown considerable promise as a treatment for 
HD there are many problems with the continued use of 
fetal cells for transplantation therapies such as ethical, 
logistical and availability issues [105–107].

Embryonic cell transplantation in HD
Preclinical research using ganglionic eminence trans-
planted into rodent models of HD has yielded similar 
results in that the cells can differentiate into mature 
neurons and astrocytes [119], rescue the behavioral defi-
cits [120], but that these effects are not long lasting [121]. 
It has been observed that HD animals receiving plu-
ripotent embryonic stem cells (ESCs) show transient 
recovery of motor deficits, but this effect rarely extends 
beyond 8 weeks  [121]. Similar to what is observed in 
animals receiving transplants of fetal tissue, ESCs are 
either rejected by the host immune system or overpro-
liferate, disrupting the host cytoarchitechure and caus-
ing teratoma formation [122]. This short-term effect of 
the cells is likely due to a failure of the graft to success-
fully rebuild or replace the lost cellular connections, or 
due to the grafts being systematically rejected by the 
host immune system. Induced pluripotent stem cells 
have recently been transplanted into a 3-nitropropionic 
acid (3-NP) toxic lesion models of HD [123] and in the 
transgenic YAC128  [124] with both studies reporting 
significant behavioral improvement and that the trans-
planted cells were capable of differentiating into neu-
ronal phenotypes. However, more work is still needed 
to characterize the safety and immunological profile of 
these cells following transplantation before they could 
be considered for clinical use.
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Another stem cell type that has been shown to be 
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HD is neuronal stem cells (NSCs). Immortalized 
human [125], mouse [126] and rat [127] embryonic NSCs 
have all shown considerable promise when transplanted 
into various models of HD. In both transgenic mice 
and toxic lesion rat models of HD, NSCs have been 
shown to survive up to 8 weeks following transplanta-
tion, differentiate into mature neurons and astrocytes 
and show behavioral recovery, specifically in apomor-
phine-induced rotational tests [121,127–130], beam walk-
ing [126] and in the amount of time on the rotarod [120]. 
However, Johann et al., found that NSCs were rapidly 
rejected after 28 days in the R6/2 and after 14 days 
in a quinolinic acid (QA) mouse model of HD  [131]. 
A large inflammatory immune response was observed 
following NSCs transplantation in a transgenic rat 
model of HD 40 weeks following transplantation [36], 
suggesting that these cells elicit an extended immune 
response. While it is possible to globally suppress the 
immune system with cyclosporine or other immune-
suppressors to enhance the graft survival, there are sev-
eral side effects associated with long-term immunosup-
pressive treatments [132]. For pluripotent or adult NSCs 
to be a viable therapeutic option for HD, local immune 
suppression or genetically engineering the cells to avoid 
rejection from the host is necessary along with the abil-
ity to direct the cells into the correct lineage following 
transplantation (Table 3).

While transplantation of embryonic, neural and 
mesenchymal stem cells have shown to be effective 
both clinically and experimentally, they are not effec-
tive cures for the natural progression of HD due to the 
gene mutation and the ability of the mutant protein to 
propagate into the transplanted cells, specifically neu-
ronal linages and are thought to only delay the onset or 
change the trajectory of the disease.

Ongoing challenges
An ongoing challenge to the clinical development of 
stem cell therapies for HD and JHD is navigating 
the immune response to the transplant. Although the 
brain has often been considered an ‘immune privi-
leged’ organ, there are several reported cases suggest-
ing a strong immune response with the brain that can 
lead to the rejection of the graft and the subsequent 
halting of beneficial effects [138] While it has been sug-
gested in previous work that MSC provide immune 
modulation in the area around the transplant, many of 
these studies use an allotransplantation paradigm, thus 
reducing the extent of neuroinflammation [139]. While 
this can be addressed by using species-specific cells to 
avoid rejection of the xenograft, this strategy includes 
several caveats that impede the clinical relevancy of 
these studies. It is known that mouse stem cells express 
many different surface expression markers than human 

cells  [140], and behave differently following in vitro 
expansion protocols [141–143].

The challenge of the immune response following 
transplantation into the brain raises an interesting 
dichotomy when developing stem cell therapies for 
clinical trials. While the ideal candidate for preclinical 
studies would be the type of cell planned to be used 
in a theoretical trial, the immune response following 
xenotransplantation may potentially mask some of the 
beneficial effects. On the contrary, conducting stud-
ies using an allotransplantation paradigm to avoid the 
immune response to the xenograft may lead to false 
discovery as cells isolated from mice or rats may be 
inherently different than human cells.

A second challenge that exists with translating suc-
cessful stem cell therapies for HD or any other neu-
rodegenerative disease is the accuracy of the animal 
model in recapitulating the human disease phenotypes. 
HD is a unique disease in that it is caused by a single 
gene mutation that can be mimicked in transgenic 
animals (Table 4). Transgenic mouse models can be 
useful tools for the study of biochemical, morphologi-
cal and functional changes associated with the mutant 
htt  [16]. The R6/2, with the N-terminal portion of 
human htt, containing a highly expanded glutamine 
repeat (145–155; [144], the yeast artificial chromosome 
(YAC) with the full-length human mutant htt gene 
carrying 128 CAG repeats  [16,25] and knock-in (KI) 
mice, typically with 92–140 CAG repeats generated 
by the insertion in the endogenous htt gene, mimic 
the disease manifestation and show several pheno-
typical alterations, resembling those observed in HD 
patients [16]. While these mouse models capture some 
of the phenotypes of HD, none of the mouse models 
recapitulates the substantial striatal neuronal cell loss 
that is characteristic in HD patients, thereby limit-
ing the effectiveness of translational research  [145]. 
Specifically in the human disease, approximately 50% 
atrophy of the caudate and putamen is observed prior 
to the onset of clinically classified motor dysfunc-
tion  [146,147]. 3-NP crosses the blood–brain–barrier 
and can be administered systematically to induce cell 
death in the brain, through excitatory mechanisms 
closely correlated with HD [148] and create the neuro-
pathology and behavioral abnormalities of HD  [149]. 
QA administration recapitulates many histopatho-
logical and neurochemical features of HD neuropa-
thy and also causes memory deficits, leading many 
researchers to use QA models to explore striatal neu-
rodegeneration as well as to evaluate neuroprotective 
strategies against HD  [48,150–152]. The 3-NP and QA 
models of HD are useful tools for studying the motor 
dysfunction associated with clinical or late stage HD, 
but may not be appropriate to study the early cogni-
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tive deficits and presymptomatic pathology associated 
with HD patients. The number of transgenic rat mod-
els recapitulating key pathological hallmarks of HD 
is still limited [153–156] and these models have many of 
the same limitations of the transgenic mice.

While these models can provide a great deal of 
information on the behavioral-, histological- and 
molecular-level abnormalities associated with HD, no 
singular model can fully capture the diverse pheno-
types associated with the disease. Many of the trans-
genic models currently available are unable to reca-
pitulate both behavioral deficits and the associated 
neuropathology. While it is possible to study the pro-
gressive behavioral deficits in several of the transgenic 
mouse models, typically these models do not display 
neuronal loss that correlates to the human condi-
tion. Alternatively, the animal models that provide 
reproducible neuronal cell loss and striatal atrophy 
are either toxic lesion models not carrying the mutant 
gene or transgenic animals that have late disease onset 
(greater than 12 months) and display subtle motor 
deficits. The usefulness of rodent models is also lim-
ited by other translational constraints. Namely, the 
brains of rodents differ significantly from humans 
in both their small size and their neuroanatomical 
organization [167]. The second major concern using a 
transgenic animal model to study a prodromal dis-
ease that extends over a long period of time is that 
the animals have a significantly shorter lifespan [167]. 
Due to these specific shortfalls, large animal models 
of HD have been created and are now being stud-
ied. A transgenic minipig carrying 105 CAG repeats 
displays some neuropathology associated with HD, 
specifically apoptotic neurons in the striatum  [164]. 
However, behavioral testing for minipigs has not been 
well established. Transgenic sheep have also been cre-
ated carrying 73 CAG repeats. These animals showed 
reduction of GABA A receptors and expression of 
medium spiny neuron marker DARPP-32 in the 
striatum but behavior deficits have not been reported 
and are not well established in ovine models [165]. The 
use of large animals raises housing issues and a lim-
ited number of labs are capable of performing stud-
ies on sheep or minipigs, but they do present relevant 
large animal models for studying distribution and 
pharmacokinetics of therapeutic modalities.

Transgenic nonhuman primates have also been cre-
ated by microinjection of a lentivirus carrying the human 
exon 1 fragment with 84 CAG repeats [166]. These non-
human primates have shown behavioral deficits similar 
to the human condition such as chorea and dystonia 
and evidence of widespread mutant htt inclusions upon 
histological analysis. Furthermore, nonhuman primates 
have established cognitive and motor tests, albeit these 

have not been optimized for HD. However, the avail-
ability of these animals is at a premium and would prove 
to be cost prohibitive for most studies.

While HD is advanced in terms of creating rodent 
and large-scale models that recapitulate the genetic 
mutation known to cause the disease, the models need 
to be refined to better mimic the cognitive, motor and 
emotional phenotypes along with the associated neuro-
pathology. As more therapies near clinical trials for HD, 
the need for animal models that more accurately predict 
clinical efficacy in humans is needed. While the initial 
costs of nonhuman primate studies may be prohibitive, 
they may prove more valuable for predicting promising 
therapeutics to take forward to clinical trials.

Unmet needs
Translational research for HD could benefit by hav-
ing standardized tests and endpoints, agreed upon by 
the HD research community, for the different animal 
models on what would constitute a promising thera-
peutic study. While several behavioral tests, such as 
the rotarod, are generally accepted as a reliable mea-
sure of motor dysfunction in HD, other tests such as 
the limb clasping response are vague in their exter-
nal validity to HD. Other histological and molecular 
analyses also differ between various animal models 
and the relative effect size observed is often difficult 
to extrapolate to the human condition. The rate of dis-
ease progression also plays a large role to the extent in 
which the respective animal model can be used to test 
therapeutic products. For example, many studies uti-
lize the R6/2 mouse model to characterize behavioral 
deficits and the ability of a target therapy or compound 
to extend the lifespan of these animals; however it is 
widely accepted that this mouse recapitulates JHD and 
as such, therapies aimed at preventing neuronal loss 
would be unsuccessful due to the lack of neuropathol-
ogy in this model. Conversely, therapies aimed at the 
metabolic dysfunction or at extending the lifespan of 
the mice might be unsuccessful in either the YAC128 
or bacteria artificial chromosome HD mouse models as 
they exhibit weight gain uncharacteristic of the human 
condition and have a normal lifespan when compared 
with nongene carrying littermates.

As mentioned above, many genetic large animal 
models of HD are being developed. These new animal 
models should create an avenue for large animal safety 
and toxicology studies. The rodent brain lacks some 
of the major neuroanatomical characteristics relevant 
to the human HD brain; specifically mice and rats do 
not have separate caudate and putamen or the dark 
pigment, neuromelanin, in the substantia nigra  [167]. 
Mice also have smooth (lisencephalic) cortices whereas 
the human cortex has convoluted (gyrencephalic) 
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anatomy [167], which contributes to targeting difficul-
ties if the planned therapeutic involving intracranial 
transplantation. These issues indicate a need to con-
duct large animal safety studies to accurately assess 
the delivery of the stem cells and to perform long-term 
toxicology studies.

Conclusion
In conclusion, stem cell therapies, particularly engi-
neered MSC transplantation, holds great promise to 
slow the progression of HD. While many advances 
are being made in the field of stem cell research, the 
strong clinical safety profile of MSC make them a 
strong candidate to move forward with clinical trials 
for this devastating disease.

Future perspective
With the initiation of several clinical trials for the 
use of MSC in the CNS, the future of this therapy 
will focus on the clinical follow-up of these patients 
to demonstrate the safety and feasibility of such a 
trial. If these cells follow the same safety profile that 
they have demonstrated preclinically, the initiation of 
Phase II and III trials will hopefully be underway with 
larger cohorts of patients to test the efficacy of these 
treatments. It is likely that following the initial trials 
of MSC treatments that the preclinical focus will be 
on the development and optimization to improve the 
efficacy of these cells. The ease in which MSC can be 
engineered will likely shape the transplantation field 
in the next 5–10 years. The ability for MSCs to act 
as a biological delivery system will enable researchers 
to test different therapeutic targets for gene delivery 
using a reliable delivery platform. Several clinical tri-

als have initiated testing the potential safety of adult 
stem cells in the CNS.

Conversely, the sustained engraftment of MSCs 
may be a potential obstacle in development of long-
term cellular therapy. Allogeneic MSC engraftments 
in macaque monkeys have been shown to have vary-
ing success as a result of immunogenicity. Special care 
must be taken into account for future MSC engraft-
ment studies in this regard. Transient engraftment of 
MSCs may prove to be a potential boon rather than 
a limitation insofar as a potential safeguard from a 
prolonged immune response [168–170].

As adult and juvenile HD have subtle but signifi-
cant differences in disease progression and symptoms, 
it is important to consider these when developing a 
stem cell therapy. This review has focused mainly on 
the concept of neuroprotection in adult HD with the 
use of genetically engineered MSC, but in specific 
cases of juvenile HD, where the disease progression is 
too rapid; there may be too widespread neuronal loss 
for neuroprotection to be effective. It is likely that a 
polytherapy or multiple types of cell transplantation 
would be needed to address the multifaceted nature 
of the disease.

The company Brain-Storm Cell Therapeutics, Inc., 
based at the Hadassah University Medical Center in 
Jerusalem, reported in early 2015 that it treated the 
first patients with amyotrophic lateral sclerosis with a 
modified stem cell (NurOwn) isolated from the bone 
marrow and enhanced to resemble glial-derived neu-
rotrophic factor astrocyte-like cells by exposure to 
specific growth factors [171].

In December 2014, Athersys concluded patient 
enrolment of a Phase IIa clinical study for ischemic 

Executive summary

Significant advances in stem cell therapies
•	 Stem cell therapies for diseases of the CNS are underway and hold significant clinical benefit.
Huntington’s disease
•	 Stem cell therapies hold great potential for adult and juvenile Huntington’s disease (HD).
Mesenchymal stem cells for HD
•	 Mesenchymal stem cells (MSCs) have a long, robust history in animal models of HD for providing behavioral 

and histological benefits.
Ongoing challenges
•	 A major hurdle in developing stem cell therapies is addressing/managing the immune response following 

transplantation.
Unmet needs
•	 Transgenic animal models need to be improved to help facilitate translational research to get to clinical trials.
•	 MSCs have long displayed promising therapeutic effects and strong safety profiles in preclinical studies 

and are now gaining US FDA approval to clinically test for diseases and disorders of the CNS. Intrastriatal 
transplantation of MSCs in rodent models of HD has led to improvements of behavioral function and has 
proven capable of slowing the rate of neurodegeneration by creating a neuroprotective environment, likely 
through the release of trophic factors. These positive results have led to the proposed clinical use of MSCs 
engineered to release BDNF. However, more work is needed to optimize the safety and delivery of these cells 
in large animal models that more closely resemble the human brain.
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stroke patients treated with an MSC-like stem cell 
therapy referred to as MultiStem. This stem cell trial 
has the potential to substantially improve neurologi-
cal and functional recovery following ischemic stroke 
by providing neuroprotection to the damaged host 
neurons, immune-modulation, releasing factors that 
support neuronal recovery and regrowth and restoring 
immune system homeostasis [172].

Asterias Biotherapeutics, Inc. received approval by 
the US FDA in 2014 to begin a Phase I/IIa clinical 
trial to test the safety and efficacy of oligodendrocyte 
progenitor cells (AST-OPC1) for patients who have 
suffered spinal cord injuries. This study is an exten-
sion of a trial started by Geron in 2010, in which five 
patients treated showed no serious side effects [173].
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