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@ Regenerative

Developing stem cell therapies for juvenile
and adult-onset Huntington’s disease

Stem cell therapies have been explored as a new avenue for the treatment of
neurologic disease and damage within the CNS in part due to their native ability to
mimic repair mechanisms in the brain. Mesenchymal stem cells have been of particular
clinical interest due to their ability to release beneficial neurotrophic factors and
their ability to foster a neuroprotective microenviroment. While early stem cell
transplantation therapies have been fraught with technical and political concerns as
well as limited clinical benefits, mesenchymal stem cell therapies have been shown
to be clinically beneficial and derivable from nonembryonic, adult sources. The focus
of this review will be on emerging and extant stem cell therapies for juvenile and

adult-onset Huntington'’s disease.

Keywords: Huntington’s disease e regenerative medicine e stem cell  transplantation

Significant advances in stem cell
therapies

The clinical use of stem cell therapies has
gained approval for a variety of injuries and
diseases of the CNS. While much work is
still needed before the widespread use of
stem cells in a clinical setting can be real-
ized, this mode of therapy may be advan-
tageous to treat neurological disorders
than many others because of the ability of
stem cells to accurately mimic the normal
cell repair and development process in the
brain (1. Although cell transplantation
therapies have been fraught with technical
and political problems, there are signs that
this approach has considerable potential.
Early work with Parkinson’s disease, where
the first clinical trials were performed in the
mid-1980s and a total of 300-400 patients
have been treated subsequently with fetal
cell transplantation and in the open label
studies, has yielded evidence of some func-
tional improvement [for review [2,3]] as mea-
sured by withdrawal of anti-parkinsonian
medications. Patients with Huntington’s
disease (HD) have received clinical benefits
from implants of fetal/embryonic stem cells

as well, however, these effects have been
shown to be temporal [4-6).

Another type of cells, mesenchymal stem
cells (MSCs), have emerged for clinical trans-
plantation studies due to their capacity to
release neurotrophic factors and their ability
to create a neuroprotective microenviron-
ment through the release of specific ILs and
cytokines. Clinical trials using MSCs in the
CNS are now also underway, and are focused
on the safety of the cells. MSCs have been
autologously transplanted into the subventric-
ular zone in patients with advanced Parkin-
son’s disease (7], intravenously in patients that
had suffered a stroke [8,9], and umbilical cord
MSCs have been administered intravenously
in children with cerebral palsy [10] with no
adverse side effects from the cells and observed
clinical efficacy as measured by improvements
in neurological domains and fractional anisot-
ropy values in brain MRI-DTL

Stem cell clinical trials for stroke, spinal
cord injury and amyotrophic lateral sclero-
sis are already underway while additional
studies utilizing adult stem cells are nearing
clinical trials for Parkinson’s and Alzheimer’s

and HD.
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The goal of stem cell transplantation should focus
on providing therapeutic benefit through two main
mechanisms. Successful cell transplantation should
be able to work synergistically with the endogenous
microenvironment to upregulate intrinsic cell pro-
liferation or neuroprotection via trophic factor secre-
tion and immune modulation, potentially enhancing
the overall regenerative capacity of the transplanted
tissue [11], or by being capable of integrating into the
endogenous host network and replacing or repairing
the lost neurons. This review will focus on the poten-
tial of adult stem cells to provide neuroprotection and
immune modulation in adult-onset and juvenile HD.

Huntington’s disease

HD is an autosomal-dominant disorder caused by an
expanded and unstable CAG trinucleotide repeat that
causes a progressive degeneration of neurons, primar-
ily in the putamen, caudate nucleus and cerebral cor-
tex [12]. In the USA, there is estimated to be approxi-
mately 30,000 individuals with HD while the Europe
Union has a slightly higher prevalence of individu-
als with symptomatic HD with an estimated 45,000
patients [13]. Juvenile HD (JHD) is defined by disease
onset before the age of 20 years and occurs in less than
10% of all HD cases [14]; however, JHD may be further
subdivided into patients that have disease onset prior to
the age of 10 years or between 10 and 20 years of age as
they present with different clinical characteristics [15).

HD occurs when the gene that codes for the htt pro-
tein, located on the short arm of chromosome 4, shows
an increased number of CAG repeats [16]. Typically,
greater than 38 CAG repeats correlate with an onset of
the illness in adulthood. JHD is typically transmitted
from the paternal allele and usually have more than 60
CAG repeats [14], although there is a reported case of a
JHD patient with 250 CAG repeats [17]. Disease onset
prior to the age of 20 years is clearly dominated by
paternal transmission (about 3:1 paternal-maternal),
and paternal transmission s, to date, solely responsible
for disease onset prior to the age of 10 years [18].

Adult HD is dominated by chorea and other invol-
untary movements in the initial and middle stages of
the disease, but it is becoming clearer that HD patients
have cognitive and emotional deficits including slow-
ing of psychomotor speed, impairment of attention
and memory as well as executive and visuospatial
functions that eventually degrade into dementia along
with depression and apathy, although the emotional
features are more variable than the motor or cognitive
features [19.20). Typically, HD eventually culminates
in death around 15-20 years after the onset of motor
symptoms. The disease progression is more rapid in
children than in adults and has been described in three

phases: initial phase of behavioural disorder, learning
difficulty, gait disturbance and mild chorea; a florid
phase with signs of mental deterioration, rigidity,
speech disturbance and seizures; and a terminal phase
of bed confinement, hypotonia and increasing sei-
zures [15]. JHD patients typically have less chorea than
adult onset HD with rigidity reported as the dominant
clinical manifestation [14].

Historically, the neuroanatomical changes in the
striatum have been the focus of neuropathological and
neuroimaging studies, but recently, the presence of
abnormalities throughout the cerebellum, specifically
in JHD [21], including cortical thinning and decreased
white matter volumes, in the prefrontal cortex, have
gained significant interest [2022]. Striatal atrophy as
well as white matter loss, as measured by MRI stud-
ies, can detect HD-like degeneration 15 years prior to
the onset of motor symptoms [23.24], suggesting that
once the clinical onset of motor symptoms appear,
significant striatal loss has already occurred.

Although HD and JHD have a single genetic cause,
HD as a whole has a very complex pathology, with
detrimental effects on a wide variety of cellular pro-
cesses [25]. It has recently been uncovered that while
conditional knockout of mutant huntingtin in the
striatum of transgenic mice leads to partial motor and
psychiatric recovery, silencing of mutant huntingtin in
both the cortex and striatum is needed to ameliorate
HD-like symptoms [26]. This is suggestive that symp-
tomology is due to widespread dysfunction of the brain
and even possibly in other organs as well [27-30].

Currently, only symptomatic treatments are avail-
able. Pharmacotherapy is difficult in HD due to the
complexity and amount of damage to the brain. The
symptomatology of JHD is complex and causes suf-
fering in all domains of life and the pharmacological
treatment is difficult as there are no studies to guide
the current trial-and-error approach to treating these
patients [21]. Clinical outlooks for HD patients and
the care given to their family members have improved
due to the increased recognition of the disorder, better
access to genetic counseling, and more availability to
specialized care programs that utilize behavioral, neu-
rological and psychiatric rehabilitation programs [13].
Treatment for patients suffering from HD generally
comprises neuroleptics, anticonvulsants [31] or tetra-
benazine. The latter of which involves a complicated
prescribing process, specialty pharmacies for deliver-
ing the drug, strictly managed doses and annual costs
exceeding US$70,000 which makes it prohibitively
expensive for many patients [32].

Thus, due to the time and nature in diagnosing HD
following neuronal loss and motor deficits, restorative
therapies should focus on creating a neuroprotective
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environment to slow the loss of endogenous neurons
as well as replacing lost neurons through either stimu-
lating endogenous neurogenesis or transplanting cells
capable of differentiating, integrating and replacing
lost cells.

MSCs for HD
At the time of manuscript preparation, 16 published
articles have implicated improvement of either behav-
ioral or neuropathological deficits in rodent models of
HD following treatment with MSCs (Table 1). These
studies have used MSCs from multiple sources includ-
ing autologous transplantation of unpurified whole
bone marrow from rats [33], purified rat MSCs [34-33],
mouse bone marrow-derived MSCs [39.40], mouse
umbilical cord-derived MSCs [41], human adipose
derived MSCs [42-44]
MSCs [45-47].

These studies have demonstrated improvement in

and human bone marrow

motor function [34-36,39-40,42-46,48], cognition [33,40,48],
anxiety-like behaviors [42] and the ability to extend the
lifespan of these animals [44]. Decreases in the striatal
lesion size, less neuronal and medium spiny neuron loss,
stimulation of endogenous neurogenesis and reduc-
tion of huntingtin aggregation has also been observed
following transplantation of MSC [34,37.39-41,43-47].

Several groups have reported that MSCs have
the ability to differentiate into neuronal lineages in
vitro [49-52) and following transplantation into the
brain [53-58]. However, the stance that MSCs have the
ability to transdifferentiate into mature neuronal phe-
notypes 7 vitro or in vive remains controversial [59] and
none of the aforementioned studies observed neuronal
differentiation of the transplanted MSC.

There are several possible mechanisms that MSCs
may provide in lieu of neuronal differentiation such
as trophic support and immunomodulation. These
hypotheses are supported from studies of other neu-
rological disorders (Huang et al., (60 Lin ez al., [61];
Han et al., [62] Uccelli et al. [¢3]) and were observed
in many HD studies following MSC transplantation
(Table 1).

One of the most common mechanism of action pos-
tulated following MSC transplantation in HD is that
the cells are capable of providing trophic support, spe-
cifically BDNF [33-35,37-41,43-44.46,48]. As a reduction in
BDNF levels has been noted in HD patients [64.65] and
BDNF rtargeted therapies have shown to ameliorate
partial disease pathology [66-93] upregulating BDNF in
the HD brain has become a lead therapeutic candidate.

As trophic support is speculated to be the main
contributor to behavioral and histological recovery
following transplantation of MSC, the potential of
MSC:s as a delivery vehicle for gene therapy has been

Developing stem cell therapies for juvenile & adult-onset HD Review

examined [94-97]. Due to the nature in which MSC
can be engineered 77 vitro, a study tested MSCs that
overproduced either BDNEF, nerve growth factor or a
combination of both [39]. YAC128 transgenic mice that
received transplantations of the MSC to overexpress
BDNF displayed a reduction in motor deficits and had
significantly more NeuN- and Darpp32-positive cells
(mature and medium spiny neurons, respectively) in
the striatum than all other YAC128 groups [39]. The
results from this study, along with the previously dis-
cussed literature of successful pre-clinical trials has led
to translational studies using engineered human MSC
in the preparation of a clinical trial [98]. However, many
of the successful pre-clinical studies only examine the
efficacy of the MSC treatment for a period of days to
weeks (refer to Table 1), and the long-term efficacy of
this strategy needs to be examined.

Clinical cell transplantation in HD

As mentioned previously, several clinical studies have
been conducted to assess the viability of fetal cells as
a therapeutic treatment for HD. However, there have
been varying results for the long-term viability of fetal
cells for HD (Table 2). Bachloud-Levi, ez 4/., found that
three out of five patients transplanted with ganglionic
eminence cells showed metabolically active graft cells
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6 months following surgery. Graft survival without
overgrowth

eminence

patients

(2002)

[117]

None reported

Increased cognitive functioning 6 months following

surgery

Lateral ganglionic

eminence

Philpott et al. Three

(1997)

patients

(104]

None reported

Stability or improvement in motor, behavioral and
functional scores up to 24 months following surgery

Whole ganglionic
eminence

Four

Gallina et al.

(2010)

patients

(118]

None reported

Stability or improvement on functional capacity
for up to 25 months following surgery when a slow

Whole ganglionic
eminence

Two

Madrazo et
al. (1995)

patients

progression of HD was observed

HD: Huntingdon'’s disease; UHDRS: Unified Huntington’s disease rating scale.

Developing stem cell therapies for juvenile & adult-onset HD Review

10 years following transplantation [99] and these results
correlated with a slowing of the progressive nature of the
disease, with even some functional recovery observed
at the early time points; however, in another study the
transplanted ganglionic eminence underwent a similar
neurodegeneration associated with HD [5], likely due
to accumulation of mutant huntingtin in the neuronal
graft [100,101]. It has since been postulated that mutant
huntingtin is transneuronally propagated along neuro-
nal networks, likely contributing to the pathophysiol-
ogy of HD [102]. This theory has been reported in other
disease models and it is thought that the mutant protein
is transferred from the host into the transplanted fetal
neurons via retrograde transfer [103]. Even in studies
where the transplanted cells were still viable, their effect
on behavioral recovery began to diminish between 2
and 4 years following the treatment [99,101,104]. While
ganglionic eminence transplantations into HD patients
have shown considerable promise as a treatment for
HD there are many problems with the continued use of
fetal cells for transplantation therapies such as ethical,
logistical and availability issues [105-107].

Embryonic cell transplantation in HD

Preclinical research using ganglionic eminence trans-
planted into rodent models of HD has yielded similar
results in that the cells can differentiate into mature
neurons and astrocytes [119], rescue the behavioral defi-
cits [120], but that these effects are not long lasting [121].
It has been observed that HD animals receiving plu-
ripotent embryonic stem cells (ESCs) show transient
recovery of motor deficits, but this effect rarely extends
beyond 8 weeks [121]. Similar to what is observed in
animals receiving transplants of fetal tissue, ESCs are
either rejected by the host immune system or overpro-
liferate, disrupting the host cytoarchitechure and caus-
ing teratoma formation [122]. This short-term effect of
the cells is likely due to a failure of the graft to success-
fully rebuild or replace the lost cellular connections, or
due to the grafts being systematically rejected by the
host immune system. Induced pluripotent stem cells
have recently been transplanted into a 3-nitropropionic
acid (3-NP) toxic lesion models of HD [123] and in the
transgenic YAC128 [124] with both studies reporting
significant behavioral improvement and that the trans-
planted cells were capable of differentiating into neu-
ronal phenotypes. However, more work is still needed
to characterize the safety and immunological profile of
these cells following transplantation before they could
be considered for clinical use.

Neuronal cell transplantation in HD
Another stem cell type that has been shown to be
a potential avenue for cell replacement therapy in
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Fink, Deng, Torrest et al.

HD is neuronal stem cells (NSCs). Immortalized
human [125], mouse [12¢] and rat [127] embryonic NSCs
have all shown considerable promise when transplanted
into various models of HD. In both transgenic mice
and toxic lesion rat models of HD, NSCs have been
shown to survive up to 8 weeks following transplanta-
tion, differentiate into mature neurons and astrocytes
and show behavioral recovery, specifically in apomor-
phine-induced rotational tests [121,127-130], beam walk-
ing [126] and in the amount of time on the rotarod [120].
However, Johann ez a/., found that NSCs were rapidly
rejected after 28 days in the R6/2 and after 14 days
in a quinolinic acid (QA) mouse model of HD [131].
A large inflammatory immune response was observed
following NSCs transplantation in a transgenic rat
model of HD 40 weeks following transplantation [36],
suggesting that these cells elicit an extended immune
response. While it is possible to globally suppress the
immune system with cyclosporine or other immune-
suppressors to enhance the graft survival, there are sev-
eral side effects associated with long-term immunosup-
pressive treatments [132]. For pluripotent or adult NSCs
to be a viable therapeutic option for HD, local immune
suppression or genetically engineering the cells to avoid
rejection from the host is necessary along with the abil-
ity to direct the cells into the correct lineage following
transplantation (Table 3).

While transplantation of embryonic, neural and
mesenchymal stem cells have shown to be effective
both clinically and experimentally, they are not effec-
tive cures for the natural progression of HD due to the
gene mutation and the ability of the mutant protein to
propagate into the transplanted cells, specifically neu-
ronal linages and are thought to only delay the onset or
change the trajectory of the disease.

Ongoing challenges

An ongoing challenge to the clinical development of
stem cell therapies for HD and JHD is navigating
the immune response to the transplant. Although the
brain has often been considered an ‘immune privi-
leged” organ, there are several reported cases suggest-
ing a strong immune response with the brain that can
lead to the rejection of the graft and the subsequent
halting of beneficial effects [138] While it has been sug-
gested in previous work that MSC provide immune
modulation in the area around the transplant, many of
these studies use an allotransplantation paradigm, thus
reducing the extent of neuroinflammation [139]. While
this can be addressed by using species-specific cells to
avoid rejection of the xenograft, this strategy includes
several caveats that impede the clinical relevancy of
these studies. It is known that mouse stem cells express
many different surface expression markers than human

cells [140], and behave differently following in wvitro
expansion protocols [141-143].

The challenge of the immune response following
transplantation into the brain raises an interesting
dichotomy when developing stem cell therapies for
clinical trials. While the ideal candidate for preclinical
studies would be the type of cell planned to be used
in a theoretical trial, the immune response following
xenotransplantation may potentially mask some of the
beneficial effects. On the contrary, conducting stud-
ies using an allotransplantation paradigm to avoid the
immune response to the xenograft may lead to false
discovery as cells isolated from mice or rats may be
inherently different than human cells.

A second challenge that exists with translating suc-
cessful stem cell therapies for HD or any other neu-
rodegenerative disease is the accuracy of the animal
model in recapitulating the human disease phenotypes.
HD is a unique disease in that it is caused by a single
gene mutation that can be mimicked in transgenic
animals (Table 4). Transgenic mouse models can be
useful tools for the study of biochemical, morphologi-
cal and functional changes associated with the mutant
htt (16]. The R6/2, with the N-terminal portion of
human htt, containing a highly expanded glutamine
repeat (145-155; [144], the yeast artificial chromosome
(YAC) with the full-length human mutant szt gene
carrying 128 CAG repeats [1625] and knock-in (KI)
mice, typically with 92-140 CAG repeats generated
by the insertion in the endogenous A#t gene, mimic
the disease manifestation and show several pheno-
typical alterations, resembling those observed in HD
patients [16]. While these mouse models capture some
of the phenotypes of HD, none of the mouse models
recapitulates the substantial striatal neuronal cell loss
that is characteristic in HD patients, thereby limit-
ing the effectiveness of translational research [145].
Specifically in the human disease, approximately 50%
atrophy of the caudate and putamen is observed prior
to the onset of clinically classified motor dysfunc-
tion [146,147]. 3-NP crosses the blood—brain—barrier
and can be administered systematically to induce cell
death in the brain, through excitatory mechanisms
closely correlated with HD [148] and create the neuro-
pathology and behavioral abnormalities of HD [149).
QA administration recapitulates many histopatho-
logical and neurochemical features of HD neuropa-
thy and also causes memory deficits, leading many
researchers to use QA models to explore striatal neu-
rodegeneration as well as to evaluate neuroprotective
strategies against HD [48,150-152]. The 3-NP and QA
models of HD are useful tools for studying the motor
dysfunction associated with clinical or late stage HD,
but may not be appropriate to study the early cogni-

636

Regen. Med. (2015) 10(5)

fsg

future science group



Developing stem cell therapies for juvenile & adult-onset HD Review

[991]

[so1]

[¥or1]

[cot]

[2o1]

[os1]

[sT]
[191]

[091]

[6<T]

[8¢1]

[£s1]
}9Y

Ayjige|rene pajiwi| Ajpwialix3

Aupqgejiene
pue s1s3} |eJoineyaq pajwi

Aupgejiene
pue s1s91 |eJoineyaq pariwi

u1930.4d jueinw adnpoud
10 9uab 134 JUEINW BY3 dABY JOU SR0(Q

uiayoud
1ueinw adxnpoud Jo duab 124 1ueinw
9Y3 9AeY 10U sd0p ‘anissaiboud JoN

19sU0 d1e| pue AyljIge|ieA. PaYIWIT

Abojoyredoinau
pallwi| pue 19suo-31e

195U0 93e7
19su0 a1e| ‘uieb ybiapn

S1D1}ap Joineyaq
JUBIsuUeI] pue 3[1gNS ‘19SU0 1eT

sabueyd Jojow 3)3gnsg

uedsayl|
1oys ‘Abojoyredoinau paywi

S9SSaudea\

so1ebaibbe jidoinau
pue suoisnjpul [euoJnau ‘ealoyd ‘ejuoishq

101d323J ¥ YgVD |elelils Ul Uuo1dNPay

uolneluswbely
VNQ pue suoinau d1303dode ayi|-gH

$SO| [|92 [e1elys
pue s3d14ap |eloIARYD] B|qIdDNPoIday

SSO| |92 |e1el3s
pue s1p1yap [eJoineyaq d|qnpoiday

S1D1J9p |esoineyaq pue Aydouie |eleis

S}DI49P JolAeYaq dAIssa160.d
S}DI43P |eJolnRYyaq pue Aydodie [eiels
SHDI49P |eJolnRYyaq pue Aydouie [eielis

Aydouie |erelns

so1ebalbbe 1144 uelNW 4O UoeINWNIDY

S1D149p |eJoineyaq anlssalboud ‘pidey

syybuains

V8

€L

SOl

VIN

V/N

L6

LS
0slL
L6

8¢l
Z8

vl
y1bus) jeadas pyd

11H | uoxy

€L1INO

80ZN

ppe djuoidosdosyiu-¢

pI>e djuljouInd

aHovd

LSaHbL
0SL(DVD) YpPH
dHDve

8CLOVA
Z80-LLLN

/94
awenN

'95easIp s,uopbununy :aH

a1ewiid uewnyuon

daays

Brd-1uin

ey

3SNOIN

|[opow |ewiuy

"95eas|p S,u0}BUIUNH O S|9POW [ewiue UOWWO) ‘i d|qel

637

www.futuremedicine.com

future science group



Review

Fink, Deng, Torrest et al.

tive deficits and presymptomatic pathology associated
with HD patients. The number of transgenic rat mod-
els recapitulating key pathological hallmarks of HD
is still limited [153-156] and these models have many of
the same limitations of the transgenic mice.

While these models can provide a great deal of
information on the behavioral-, histological- and
molecular-level abnormalities associated with HD, no
singular model can fully capture the diverse pheno-
types associated with the disease. Many of the trans-
genic models currently available are unable to reca-
pitulate both behavioral deficits and the associated
neuropathology. While it is possible to study the pro-
gressive behavioral deficits in several of the transgenic
mouse models, typically these models do not display
neuronal loss that correlates to the human condi-
tion. Alternatively, the animal models that provide
reproducible neuronal cell loss and striatal atrophy
are either toxic lesion models not carrying the mutant
gene or transgenic animals that have late disease onset
(greater than 12 months) and display subtle motor
deficits. The usefulness of rodent models is also lim-
ited by other translational constraints. Namely, the
brains of rodents differ significantly from humans
in both their small size and their neuroanatomical
organization [167]. The second major concern using a
transgenic animal model to study a prodromal dis-
ease that extends over a long period of time is that
the animals have a significantly shorter lifespan [167].
Due to these specific shortfalls, large animal models
of HD have been created and are now being stud-
ied. A transgenic minipig carrying 105 CAG repeats
displays some neuropathology associated with HD,
specifically apoptotic neurons in the striatum [164].
However, behavioral testing for minipigs has not been
well established. Transgenic sheep have also been cre-
ated carrying 73 CAG repeats. These animals showed
reduction of GABA A receptors and expression of
medium spiny neuron marker DARPP-32 in the
striatum but behavior deficits have not been reported
and are not well established in ovine models [165]. The
use of large animals raises housing issues and a lim-
ited number of labs are capable of performing stud-
ies on sheep or minipigs, but they do present relevant
large animal models for studying distribution and
pharmacokinetics of therapeutic modalities.

Transgenic nonhuman primates have also been cre-
ated by microinjection of a lentivirus carrying the human
exon 1 fragment with 84 CAG repeats [166]. These non-
human primates have shown behavioral deficits similar
to the human condition such as chorea and dystonia
and evidence of widespread mutant htt inclusions upon
histological analysis. Furthermore, nonhuman primates
have established cognitive and motor tests, albeit these

have not been optimized for HD. However, the avail-
ability of these animals is at a premium and would prove
to be cost prohibitive for most studies.

While HD is advanced in terms of creating rodent
and large-scale models that recapitulate the genetic
mutation known to cause the disease, the models need
to be refined to better mimic the cognitive, motor and
emotional phenotypes along with the associated neuro-
pathology. As more therapies near clinical trials for HD,
the need for animal models that more accurately predict
clinical efficacy in humans is needed. While the initial
costs of nonhuman primate studies may be prohibitive,
they may prove more valuable for predicting promising
therapeutics to take forward to clinical trials.

Unmet needs

Translational research for HD could benefit by hav-
ing standardized tests and endpoints, agreed upon by
the HD research community, for the different animal
models on what would constitute a promising thera-
peutic study. While several behavioral tests, such as
the rotarod, are generally accepted as a reliable mea-
sure of motor dysfunction in HD, other tests such as
the limb clasping response are vague in their exter-
nal validity to HD. Other histological and molecular
analyses also differ between various animal models
and the relative effect size observed is often difficult
to extrapolate to the human condition. The rate of dis-
ease progression also plays a large role to the extent in
which the respective animal model can be used to test
therapeutic products. For example, many studies uti-
lize the R6/2 mouse model to characterize behavioral
deficits and the ability of a target therapy or compound
to extend the lifespan of these animals; however it is
widely accepted that this mouse recapitulates JHD and
as such, therapies aimed at preventing neuronal loss
would be unsuccessful due to the lack of neuropathol-
ogy in this model. Conversely, therapies aimed at the
metabolic dysfunction or at extending the lifespan of
the mice might be unsuccessful in either the YAC128
or bacteria artificial chromosome HD mouse models as
they exhibit weight gain uncharacteristic of the human
condition and have a normal lifespan when compared
with nongene carrying littermates.

As mentioned above, many genetic large animal
models of HD are being developed. These new animal
models should create an avenue for large animal safety
and toxicology studies. The rodent brain lacks some
of the major neuroanatomical characteristics relevant
to the human HD brain; specifically mice and rats do
not have separate caudate and putamen or the dark
pigment, neuromelanin, in the substantia nigra [167].
Mice also have smooth (lisencephalic) cortices whereas
the human cortex has convoluted (gyrencephalic)
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anatomy [167], which contributes to targeting difficul-
ties if the planned therapeutic involving intracranial
transplantation. These issues indicate a need to con-
duct large animal safety studies to accurately assess
the delivery of the stem cells and to perform long-term
toxicology studies.

Conclusion

In conclusion, stem cell therapies, particularly engi-
neered MSC transplantation, holds great promise to
slow the progression of HD. While many advances
are being made in the field of stem cell research, the
strong clinical safety profile of MSC make them a
strong candidate to move forward with clinical trials
for this devastating disease.

Future perspective

With the initiation of several clinical trials for the
use of MSC in the CNS, the future of this therapy
will focus on the clinical follow-up of these patients
to demonstrate the safety and feasibility of such a
trial. If these cells follow the same safety profile that
they have demonstrated preclinically, the initiation of
Phase IT and III trials will hopefully be underway with
larger cohorts of patients to test the efficacy of these
treatments. It is likely that following the initial trials
of MSC treatments that the preclinical focus will be
on the development and optimization to improve the
efficacy of these cells. The ease in which MSC can be
engineered will likely shape the transplantation field
in the next 5-10 years. The ability for MSCs to act
as a biological delivery system will enable researchers
to test different therapeutic targets for gene delivery
using a reliable delivery platform. Several clinical tri-

Developing stem cell therapies for juvenile & adult-onset HD Review

als have initiated testing the potential safety of adult
stem cells in the CNS.

Conversely, the sustained engraftment of MSCs
may be a potential obstacle in development of long-
term cellular therapy. Allogeneic MSC engraftments
in macaque monkeys have been shown to have vary-
ing success as a result of immunogenicity. Special care
must be taken into account for future MSC engraft-
ment studies in this regard. Transient engraftment of
MSCs may prove to be a potential boon rather than
a limitation insofar as a potential safeguard from a
prolonged immune response [168-170].

As adult and juvenile HD have subtle but signifi-
cant differences in disease progression and symptoms,
it is important to consider these when developing a
stem cell therapy. This review has focused mainly on
the concept of neuroprotection in adult HD with the
use of genetically engineered MSC, but in specific
cases of juvenile HD, where the disease progression is
too rapid; there may be too widespread neuronal loss
for neuroprotection to be effective. It is likely that a
polytherapy or multiple types of cell transplantation
would be needed to address the multifaceted nature
of the disease.

The company Brain-Storm Cell Therapeutics, Inc.,
based at the Hadassah University Medical Center in
Jerusalem, reported in early 2015 that it treated the
first patients with amyotrophic lateral sclerosis with a
modified stem cell (NurOwn) isolated from the bone
marrow and enhanced to resemble glial-derived neu-
rotrophic factor astrocyte-like cells by exposure to
specific growth factors [171].

In December 2014, Athersys concluded patient
enrolment of a Phase Ila clinical study for ischemic

Executive summary

Significant advances in stem cell therapies
Huntington'’s disease
Mesenchymal stem cells for HD

and histological benefits.
Ongoing challenges

transplantation.
Unmet needs

e Stem cell therapies for diseases of the CNS are underway and hold significant clinical benefit.
e Stem cell therapies hold great potential for adult and juvenile Huntington’s disease (HD).

¢ Mesenchymal stem cells (MSCs) have a long, robust history in animal models of HD for providing behavioral

e A major hurdle in developing stem cell therapies is addressing/managing the immune response following

¢ Transgenic animal models need to be improved to help facilitate translational research to get to clinical trials.

e MSCs have long displayed promising therapeutic effects and strong safety profiles in preclinical studies
and are now gaining US FDA approval to clinically test for diseases and disorders of the CNS. Intrastriatal
transplantation of MSCs in rodent models of HD has led to improvements of behavioral function and has
proven capable of slowing the rate of neurodegeneration by creating a neuroprotective environment, likely
through the release of trophic factors. These positive results have led to the proposed clinical use of MSCs
engineered to release BDNF. However, more work is needed to optimize the safety and delivery of these cells
in large animal models that more closely resemble the human brain.
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stroke patients treated with an MSC-like stem cell
therapy referred to as MultiStem. This stem cell trial
has the potential to substantially improve neurologi-
cal and functional recovery following ischemic stroke
by providing neuroprotection to the damaged host
neurons, immune-modulation, releasing factors that
support neuronal recovery and regrowth and restoring
immune system homeostasis [172].

Asterias Biotherapeutics, Inc. received approval by
the US FDA in 2014 to begin a Phase I/Ila clinical
trial to test the safety and efficacy of oligodendrocyte
progenitor cells (AST-OPC1) for patients who have
suffered spinal cord injuries. This study is an exten-
sion of a trial started by Geron in 2010, in which five
patients treated showed no serious side effects [173].
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