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ABSTRACT

Luminous z ≥ 7 quasars provide direct probes of the evolution of supermassive black holes (SMBHs)

and the intergalactic medium (IGM) during the epoch of reionization (EoR). The Lyα damping wing

absorption imprinted by neutral hydrogen in the IGM can be detected in a single EoR quasar spectrum,

allowing the measurement of the IGM neutral fraction towards that line of sight. However, damping

wing features have only been detected in two z > 7 quasars in previous studies. In this paper,

we present new high quality optical and near-infrared spectroscopy of the z = 7.00 quasar DES

J025216.64–050331.8 obtained with Keck/NIRES and Gemini/GMOS. By using the Mg ii single-epoch

virial method, we find that it hosts a (1.39± 0.16)× 109 M� SMBH accreting at an Eddington ratio

of λEdd = 0.7± 0.1, consistent with the values seen in other luminous z ∼ 7 quasars. Furthermore, the

Lyα region of the spectrum exhibits a strong damping wing absorption feature. The lack of associated

metal absorption in the quasar spectrum indicates that this absorption is imprinted by a neutral IGM.

Using a state-of-the-art model developed by Davies et al., we measure a volume-averaged neutral

hydrogen fraction at z = 7 of 〈xHI〉 = 0.70+0.20
−0.23(+0.28

−0.48) within 68% (95%) confidence intervals when

marginalizing over quasar lifetimes of 103 ≤ tQ ≤ 108 yr. This is the highest IGM neutral fraction yet

measured using reionization-era quasar spectra.

Keywords: galaxies: active — galaxies: high-redshift — quasars: individual (DES J025216.64–

050331.8) — cosmology: observations — early universe

1. INTRODUCTION

The earliest luminous quasars, powered by billion so-

lar mass supermassive black holes (SMBHs), can be used

not only to constrain the physics of SMBH accretion and

Corresponding author: Feige Wang

feigewang@email.arizona.edu

∗ NHFP Hubble Fellow

the assembly of the first generation of massive galaxies

in the early Universe, but also to obtain critical infor-

mation on the physical conditions of the intergalactic

medium (IGM) during the epoch of reionization (EoR).

Although more than 200 z > 6 quasars have been found

in the past few decades (e.g. Fan et al. 2001; Willott et

al. 2010; Wu et al. 2015; Jiang et al. 2016; Bañados et al.

2016; Wang et al. 2016; Matsuoka et al. 2016; Reed et

al. 2017), only several tens of them are at z > 6.5 (e.g.
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Venemans et al. 2015; Mazzucchelli et al. 2017; Wang

et al. 2017, 2019; Yang et al. 2019; Reed et al. 2019)

and just six are currently known at z > 7 (Mortlock et

al. 2011; Bañados et al. 2018; Wang et al. 2018; Mat-

suoka et al. 2019a,b; Yang et al. 2019). The limited

number of known high redshift quasars is due to the

combination of a rapid decline of quasar spatial density

towards higher redshifts (e.g. Wang et al. 2019), the lack

of deep wide-field near-infrared surveys, and the pres-

ence of a large number of contaminants from Galactic

cool dwarf populations in the photometric quasar selec-

tion process. Near-infrared spectroscopic observations

of these known quasars indicate that billion or even ten

billion solar mass SMBHs are already in place in these

luminous quasars (e.g. Wu et al. 2015; Shen et al. 2019).

The existence of these SMBHs in such a young Universe

challenges our understanding of the formation and the

growth mechanisms of SMBHs (e.g. Volonteri & Rees

2006; Pezzulli et al. 2016; Wise et al. 2019; Davies et al.

2019).

Observations of the Lyman series forests in z & 6

quasars indicate that the IGM is already highly ionized

by z ∼ 6 (e.g. Fan et al. 2006; Bosman et al. 2018; Eil-

ers et al. 2018, 2019; Yang et al. 2020), although the

final completion of reionization might extend down to

z ∼ 5.5 (e.g. Becker et al. 2015; Davies et al. 2018a;

Kulkarni et al. 2019; Keating et al. 2020). However,

the Lyman series forests are very sensitive to neutral

hydrogen and saturate even at low IGM neutral frac-

tion (i.e. 〈xH I〉 & 10−4). On the other hand, if the

neutral fraction is of order unity, one would expect to

see appreciable absorption redward of the wavelength of

the Lyα emission line, resulting in a damping wing pro-

file (e.g. Miralda-Escudé 1998) due to significant optical

depth on the Lorentzian wing of the Lyα absorption.

The first quasar with a damping wing detection is ULAS

J1120+0641 (Mortlock et al. 2011) at z = 7.09, although

different analyses yielded different constraints on 〈xH I〉
(Mortlock et al. 2011; Bolton et al. 2011; Bosman &

Becker 2015; Greig et al. 2017; Davies et al. 2018b),

ranging from 〈xH I〉 ∼ 0 to 〈xH I〉 ∼ 0.5 at z ∼ 7.1.

Recently, the spectrum of quasar ULAS J1342+0928

(Bañados et al. 2018) at z = 7.54 shows a robust detec-

tion of the damping wing signal (Bañados et al. 2018;

Davies et al. 2018b; Greig et al. 2019; Ďurovč́ıková et

al. 2019), yielding 〈xH I〉 ∼ 0.2 − 0.6 at z ∼ 7.5. Com-

pared to other probes of reionization history, such as

CMB polarization (Planck Collaboration et al. 2018)

and Lyα emission line visibility in high-redshift galaxies

(e.g. Ouchi et al. 2010; Mason et al. 2018), a main ad-

vantage of IGM damping wing measurement is that it

can be applied to individual quasar sight lines, thereby

constraining not only the average neutral fraction, but

also its scatter in different regions of the IGM. How-

ever, the damping wing experiment is only feasible at

very high redshifts where the IGM is relatively neutral,

and current damping wing analyses have been limited

to these two sight-lines due to the lack of bright quasars

at z & 7. Thus, it is crucial to investigate the damping

wing experiment along more z > 7 quasar sight lines.

In this paper, we present the detection of strong IGM

damping wing absorption along the line of sight to a

luminous z = 7 quasar DES J025216.64–050331.8 (here-

inafter J0252–0503; Yang et al. 2019), using new high

quality optical/near-infrared spectroscopic observations;

we also use the new spectrum to measure the mass and

Eddington ratio of the central SMBH. In Section 2, we

describe our photometric and spectroscopic observations

for J0252–0503. In Section 3, we present the luminosity,

BH mass and Eddington ratio measurements of J0252–

0503. In Section 4, we discuss the reconstructions of

the unabsorbed spectrum of the quasar and our con-

straints on the neutral fraction in the IGM at z = 7

by modeling IGM Lyα absorption. Finally, in Section

5 we summarize our results and briefly discuss the im-

plications for the cosmic reionization history and BH

growth constraints with larger quasar samples at z & 7

in the future. Throughout this paper, we assume a flat

ΛCDM cosmology with h = 0.685 (Betoule et al. 2014),

Ωb = 0.047, Ωm = 0.3, ΩΛ = 0.7, and σ8 = 0.8. All

photometry in this paper is in the AB system.

2. OBSERVATIONS AND DATA REDUCTION

J0252–0503 (Yang et al. 2019) was selected as a

quasar candidate using photometry from the Dark En-

ergy Survey (DES, Abbott et al. 2018) and the un-

blurred coadds of WISE (unWISE, Lang 2014) data. It
was spectroscopically identified as a quasar at z = 7.02

based on the strong Lyα break using observations from

Magellan/LDSS-3. However, the lack of a near-infrared

spectrum for this quasar precluded detailed analyses in

the discovery paper.

We obtained a high quality near-infrared spec-

trum with the Near-Infrared Echellette Spectrometer

(NIRES1; Wilson et al. 2004) mounted on the Keck-

2 telescope. NIRES is a prism cross-dispersed near-

infrared spectrograph with a fixed configuration that

simultaneously covers the Y, J, H, and K bands in

five orders from 0.94 to 2.45 µm with a small gap be-

tween 1.85 and 1.88 µm. The mean spectral resolving

power of NIRES is R ∼ 2700 with a fixed 0.′′55 narrow

1 https://www2.keck.hawaii.edu/inst/nires/

https://www2.keck.hawaii.edu/inst/nires/
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Figure 1. Gemini/GMOS + Keck/NIRES spectrum of J0252–0503. The spectrum is plotted using 200 km s−1 pixels (binned
by ∼ 5 native pixels). The black and magenta lines represent the Galactic extinction-corrected spectrum and the error array,
respectively. The brown line denotes the quasar composite spectrum constructed with 83 SDSS quasars with similar C iv
blueshifts and line strengths. The green dashed line denotes the pseudo-continuum model which includes power-law, iron
emission, and Balmer continuum components. The light blue points are flux densities determined from Galactic extinction-
corrected photometry in the J, H, and K bands. The left inset is the zoom-in of the Lyα region. In addition to the composite
spectrum derived from 83 SDSS quasars, we also show another 100 composite spectra constructed via bootstrapping. The
Lyα position is marked with a gray dashed line. J0252–0503 shows strong absorption on top of and redward of the Lyα line,
indicating a strong damping wing signature. The right inset shows the Mg ii line fitting with the cyan dot-dashed line denoting
power-law continuum, the green dashed line denoting the pseudo-continuum model, and the red line representing total fit of
pseudo-continuum and Mg ii line.

slit. We observed J0252–0503 with NIRES for a total

of 4.8 hours of on-source integration on three nights:

1.4 hours on 2018 August 12, 1.0 hour on 2018 Septem-

ber 3, and 2.4 hours on 2018 October 1 (UT). The ob-

servations were separated into multiple 300 s or 360 s

individual exposures with the standard ABBA dither

pattern. We also observed the flux standard star Feige

110. We reduced the NIRES data using a newly devel-

oped open-source Python-based spectroscopic data re-

duction pipeline (PypeIt2; Prochaska et al. 2019). Ba-

sic image processing (i.e. flat fielding) followed stan-

dard techniques. Wavelength (in vacuum) solutions for

individual frames were derived from the night sky emis-

sion lines. Sky subtractions were performed on the 2-

D images by including both image differencing and a

B-spline fitting procedure. We used the optimal spec-

trum extraction technique (Horne 1986) to extract 1-D

spectra. We flux calibrated the individual 1-D spectra

with the sensitivity function derived from the standard

star Feige 110. We then stacked the fluxed 1-D spectra

from each night and fitted a telluric absorption model

directly to the stacked quasar spectra using the telluric

model grids produced from the Line-By-Line Radiative

2 https://github.com/pypeit/PypeIt

Transfer Model (LBLRTM 3; Clough et al. 2005). Finally,

we combined all spectra obtained on different nights to

produce the final processed 1-D spectrum.

Gemini GMOS-S (Hook et al. 2004) observations for

J0252–0503 (previously described by Yang et al. 2019)

were performed in two wavelength setups both with the

R400 grating to cover the small wavelength gaps be-

tween detectors, with one setup centered at 860 nm and

the other centered at 870 nm. These two setups yields a

wavelength coverage of 0.6–1.1 µm and spectral resolu-

tion of R ∼ 1300. Each setup was exposed for an hour.

The GMOS data were also reduced with PypeIt. The

spectra were flux calibrated with the sensitivity func-

tion derived from flux standard star GD71 and telluric

absorption was corrected using the same method as the

NIRES data reduction. In order to combine the NIRES

and GMOS spectra, we scaled the NIRES co-added spec-

trum to the GMOS flux level using the median in the

overlapping wavelength region from 9800 to 10200 Å.

The flux level of the NIRES spectrum is only ∼6% lower

than that of GMOS spectrum and the shapes of these

two spectra are perfectly matched. Finally, we com-

puted the stacked spectrum in the overlap region after

3 http://rtweb.aer.com/lblrtm.html

https://github.com/pypeit/PypeIt
http://rtweb.aer.com/lblrtm.html
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binning the NIRES spectrum to the GMOS wavelength

grid.

Since the flux calibration is crucial for the damp-

ing wing analyses, we also obtained near-infrared Y,

J, H, and K -band photometry with UKIRT/WFCam

on 2018 November 27. The on-source times were 8

min in each band. The data were processed using the

standard VISTA/WFCAM data-flow system by M. Ir-

win (Irwin et al. 2004). The magnitudes of J0252–0503

were measured to be Y=20.33±0.07, J=20.19±0.07,

H=20.02±0.07, and K=19.92±0.08. We then scaled

the combined NIRES and GMOS spectrum by carry-

ing out synthetic photometry on the spectrum using

the WFCAM J -band filter response curve to match the

J -band photometry for absolute flux calibration. The

magnitudes measured from the J -band scaled spectrum

in the Y, H, and K bands are 20.36, 20.09, and 19.93

mag, respectively. The consistency of magnitudes de-

rived from the fluxed spectrum and UKIRT observa-

tions indicates that the spectrophotometric calibration

of the spectrum is accurate to within 10%. Finally, we

corrected for Galactic extinction using the dust extinc-

tion map derived by Schlegel et al. (1998). The spec-

trum was then de-redshifted with the systemic redshift

z = 7.000 ± 0.001, derived from the IRAM NOrthern

Extended Millimeter Array (NOEMA) observations of

the far-infrared [C ii] emission line4. The final spectrum

used for the following analyses is shown in Figure 1.

Note that in Figure 1, the spectrum is plotted after be-

ing rebinned to 200 km s−1 pixels.

3. REST-FRAME UV PROPERTIES AND BLACK

HOLE MASS

In order to derive the rest-frame ultraviolet (UV)

properties of J0252–0503, we fit a pseudo-continuum
model which includes a power-law continuum, iron

(Fe ii and Fe iii) emission (Vestergaard & Wilkes 2001;

Tsuzuki et al. 2006), and Balmer continuum (e.g. De

Rosa et al. 2014) to the line-free region of the calibrated

and deredshifted spectrum. This pseudo-continuum

model is then subtracted from the quasar spectrum,

leaving a line-only spectrum. We then fit the Mg ii

broad emission line in the continuum-subtracted spec-

trum with two Gaussian profiles. To estimate the un-

certainties of our spectral measurements, we use a Monte

Carlo approach (e.g. Shen et al. 2019) to create 100 mock

spectra by randomly adding Gaussian noise at each pixel

with its scale equal to the spectral error at that pixel.

4 The host galaxy properties of J0252–0503 will be published sep-
arately together with [C ii] observations of a sample of z > 6.5
quasars.

We then apply the exact same fitting algorithm to these

mock spectra. The uncertainties of measured spectral

properties are then estimated based on the 16% and 84%

percentile deviation from the median.

The pseudo-continuum model is shown in Figure 1

and an enlargement of the Mg ii region fitting is shown

in the right insert panel of Figure 1. The fitting proce-

dure yields a power-law continuum of fλ ∝ λ−1.67±0.04,

from which we measure the rest-frame 3000 Å lumi-

nosity to be λL3000Å=(2.5±0.2)×1046 erg s−1, imply-

ing a bolometric luminosity of Lbol=5.15× λL3000Å =

(1.3±0.1)×1047 erg s−1 (Shen et al. 2011). The rest-

frame 1450 Å magnitude is measured to be M1450 =

−26.63 ± 0.07. The full width at half maximum

(FWHM) and equivalent width (EW) of the Mg ii line

are measured to be FWHMMgII = 3503±205 km s−1 and

EWMgII=18.83 ± 0.92 Å, respectively. The Mg ii emis-

sion line is blueshifted by ∆v,MgII = (712 ± 50) km s−1

relative to the systemic redshift determined from the

[C ii] line, similar to other luminous z ∼ 7 quasars

in which Mg ii blueshifts range from a few hundred to

∼ 1000 km s−1 (e.g. Venemans et al. 2016; Mazzucchelli

et al. 2017; Bañados et al. 2018; Decarli et al. 2018).

We adopt the empirical relation obtained by Vester-

gaard & Osmer (2009) to estimate the black hole mass of

J0252–0503, which yields MBH = (1.39±0.16)×109 M�.

Note that the quoted black hole mass uncertainty does

not include the systematic uncertainties of the scal-

ing relation, which could be up to ∼ 0.5 dex (Shen

2013). By comparing the bolometric luminosity esti-

mated above with the Eddington luminosity, which is

LEdd = 1.3 × 1038 ×MBH, we measure the Eddington

ratio of J0252–0503 to be λEdd = 0.7±0.1. Note that the

uncertainty quoted here does not consider the system-

atic uncertainties introduced by both single epoch BH

mass estimators and monochromatic bolometric correc-

tions. The Eddington ratio of J0252–0503 is slightly

lower than that of the other three luminous z ≥ 7

quasars: λEdd = 1.5+0.5
−0.4 for J1342+0928 (Bañados et

al. 2018) at z = 7.54, λEdd = 1.2+0.6
−0.5 for J1120+0641 at

z = 7.09 (Mortlock et al. 2011), and λEdd = 1.25± 0.19

for J0038–1527 at z = 7.02 (Wang et al. 2018). If J0252–

0503 has been accreting at such Eddington ratio since

z ∼ 20 with a radiative efficiency of 10%, it would re-

quire a seed BH of∼ 105 M�, which significantly exceeds

the predicted mass range from stellar remnant BHs and

requires more exotic seed formation mechanisms like di-

rect collapse BHs. Even if it was accreting at the Ed-

dington limit, J0252–0503 would still require the seed

BH to be more massive than ∼ 104 M�. This indi-

cates that J0252–0503 is one of the few quasars that
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put the most stringent constraints on SMBH formation

and growth mechanisms.

4. A STRONG LYα DAMPING WING AT Z = 7

Among the six public known z ≥ 7 quasars, two ob-

jects already have had damping wing analyses performed

(Mortlock et al. 2011; Bolton et al. 2011; Bosman &

Becker 2015; Greig et al. 2017, 2019; Bañados et al.

2018; Davies et al. 2018b; Ďurovč́ıková et al. 2019). Two

other quasars are too faint (M1450 & −25) for damping

wing analyses with current facilities (Matsuoka et al.

2019a,b), and another is a broad absorption line (BAL)

quasar in which strong absorption precludes determi-

nation of the intrinsic quasar spectrum (Wang et al.

2018). Thus, J0252–0503 is the only known bright, non-

BAL quasar at z ≥ 7 of which a damping wing anal-

ysis has not been performed yet. In order to examine

whether the damping wing is present in the spectrum

of J0252–0503, we need to know the intrinsic quasar

spectrum in the Lyα region (i.e. before IGM atten-

uation). In the past few years, several methods have

been proposed for constructing the quasar intrinsic spec-

tra, including stacking of low-redshift quasar spectra

with similar emission line properties (e.g. Mortlock et al.

2011; Simcoe et al. 2012; Bañados et al. 2018), using the

principal component analysis (PCA) decomposition ap-

proach (Davies et al. 2018b,c), constructing the covari-

ant relationships between parameters of Gaussian fits to

Lyα line and those of Gaussian fits to other broad emis-

sion lines (Greig et al. 2017, 2019), and using the neural

network method (Ďurovč́ıková et al. 2019). In this pa-

per, we adopt both the empirical composite method and

the PCA method to construct the intrinsic spectrum for

J0252–0503 as detailed below.

4.1. Empirical Composite Spectra from Analogs

Since there is a lack of spectral evolution of quasars

from low redshifts to high redshifts (e.g. Shen et al.

2019), the large sample of SDSS/BOSS quasars at lower

redshifts provides a good training set for constructing a

high-redshift quasar intrinsic spectrum. First, we use a

composite spectrum constructed from a sample of low-

redshift quasar analogs to model the intrinsic spectrum.

Because the C iv line properties, and especially the line’s

blueshift, appear to be strongly connected with differ-

ences in the quasar spectral energy distribution (e.g.

Richards et al. 2011), we select quasar analogs from

SDSS/BOSS DR14 quasar catalog (Pâris et al. 2018) by

matching the C iv blueshifts to J0252–0503. As most

SDSS/BOSS quasars do not have [C ii] redshifts, we

measure the relative blueshifts between the C iv and

Mg ii lines. This limits us to selecting quasars in the red-

shift range 2.0 < z < 2.5 in order to get Lyα, C iv, and

Mg ii line properties from BOSS spectra. We also ex-

cluded quasars marked as BAL and those without Mg ii

redshift measurements in the catalog. This yields 85,535

quasars in total.

Before measuring the line properties from these

quasars, we first fit a power-law continuum to the quasar

spectrum and subtract it from the data. Instead of fit-

ting the C iv and Mg ii lines directly, we use a more

robust non-parametric scheme proposed by Coatman et

al. (2016) to measure the line centroids of C iv and Mg ii

lines from the continuum subtracted spectra. The rel-

ative blueshift between these two lines is then defined

as

∆v = c×
(

1549.06− λhalf,CIV

1549.06
− 2798.75− λhalf,MgII

2798.75

)
,

(1)

where c is the speed of light and λhalf,CIV (λhalf,MgII)

is the rest-frame wavelength that bisects the cumulative

total line flux of C iv (Mg ii). We applied this proce-

dure to the spectra of both J0252–0503 and the 85,535

SDSS/BOSS quasars. The blueshift in J0252–0503 is

measured to be 4090 km s−1. We then select quasars

with blueshifts between 3,000 km s−1 and 5,000 km

s−1 and mean spectral signal-to-noise ratios (SNRs) per

pixel in the C iv and Mg ii regions greater than 4 and

2, respectively. These SNR limits were chosen to yield

enough sight-lines to compute a composite. After this,

we visually inspected the continuum normalized spectra

and removed quasars that have BAL features, proximate

damped Lyα systems (PDLAs) and strong intervening

absorbers on top of the emission lines. We also reject

objects with Mg ii line measurements that are strongly

affected by sky line residuals and remove targets that

have strongly different C iv and Mg ii line profiles than

J0252–0503 (objects were removed if the line peaks dif-

fer by more than three times the spectrum error vector

of J0252–0503). In the end, our master quasar analog

sample consists of 83 SDSS/BOSS quasars.

Before constructing the composite spectrum, each

spectrum was divided by its best fit power-law contin-

uum. Each spectrum was weighted by the average SNR

of that spectrum when computing the composite. Then

we multiplied the power-law fit from J0252–0503 with

the constructed continuum normalized composite, ob-

taining the composite spectrum shown in Figure 1. In

order to understand the uncertainties of the compos-

ite spectrum and minimize the bias introduced by vi-

sual checks, we resampled our parent sample with boot-

strapping to construct another 100 composites which are

shown as thin orange lines in the insert panel of Fig-

ure 1. Overall, the constructed composite matches the

J0252–0503 spectrum very well across the whole spec-
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Figure 2. Top: Gemini/GMOS + Keck/NIRES spectrum of J0252–0503, the same as shown in Figure 1. The red-side PCA
fit and the blue-side prediction are overlaid as red and blue curves, respectively. Bottom left: Zoom-in of the Lyα region. The
brown and blue lines represent the composite spectrum, and PCA blue-side prediction, respectively. The thinner blue lines show
100 draws from the covariant blue-side prediction error calibrated from the 1% of quasars that are most similar in the PCA
training set. The composite spectra agree well with the PCA prediction, which implies that the detection of a strong damping
wing is robust. Bottom right: Transmission spectrum of J0252–0503 (the spectrum is normalized by the PCA model). The
re-binned spectrum is shown as thick black line, while the un-binned spectrum is shown as a gray line. The blue solid curve
shows the mean transmission spectrum of mock spectra with 〈xHI〉 = 1.0 and tQ = 106.3 yr, while the associated blue shaded
region shows the 16th–84th percentile range for mock spectra with the above parameters. As a comparison, the transmission
spectrum of a DLA model with column density of NHI = 1021.04 cm−2 at z = 6.94, is plotted as a yellow dashed line. The metal
line Al ii λ1670 from the z = 4.8793 absorption system is highlighted by a red transparent vertical line.

tral range, except for the Lyα line region. From the left

inset of Figure 1, we can clearly see that these compos-

ites have higher fluxes redward of the Lyα emission line

(from 1216Å to 1250Å in rest-frame) than J0252–0503,

indicating strong absorption in the spectrum of J0252–

0503.

4.2. Principal Component Analysis

Strong correlations between various broad emission

lines of quasars from the rest-frame ultraviolet to the

optical are known to exist (e.g. Richards et al. 2011).

Taking this into account, in principle one can predict

the shape of the Lyα line based on the properties of

other broad emission lines. Davies et al. (2018c) de-

veloped a PCA predictive approach based on a train-

ing set of ∼ 13, 000 quasar spectra from SDSS/BOSS

quasar catalog (Pâris et al. 2017) to predict the “blue-

side” (rest-frame 1175–1280 Å) quasar spectrum from

the “red-side” (rest-frame 1280–2850 Å) spectrum. In

brief, we performed a PCA decomposition of the train-

ing set truncated at 10 red-side and 6 blue-side basis

spectra for each quasar. Then we derived a projection

matrix relating the best-fit coefficients in the red-side

and a template redshift to the coefficients in the blue-

side (Suzuki et al. 2005; Pâris et al. 2011). With this

matrix, we can then predict the blue-side coefficients

and thus the blue-side spectrum from a fit to the red-

side coefficients and template redshift of a given quasar

spectrum.

We quantify the uncertainties of this prediction by

testing the full predictive procedure on every quasar in

the training set and computing their relative continuum

error (See Davies et al. 2018c, for more details). We as-

sume a multivariate Gaussian distribution for the rela-

tive continuum error, with the covariance matrix deter-

mined from the prediction errors measured for similar

quasars, i.e., the 1% nearest neighbors, as the uncer-

tainties of the prediction.
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11

12

13

14

MgII 2796

b = 5 km s−1

b = 10 km s−1

b = 15 km s−1

b = 20 km s−1

Figure 3. Curve of growth analysis to derive column densi-
ties for the selected ions. For each panel, the 1σ and 3σ limits
to the equivalent width and column density are shown with
dotted and dashed lines, respectively. The colored curves
represent b-parameters of 5, 10, 15 and 20 km s−1.

The advantage of this PCA method compared to the

composite spectrum discussed in §4.1 is that the PCA

approach takes into account the properties of all broad

emission lines in the red side rather than just the proper-

ties of the C iv line. In addition, we can quantify uncer-

tainties in the blue-side spectrum predictions by testing

the method on the input training set.

In the upper panel of Figure 2, we show the red-side

PCA fit and blue-side prediction for J0252–0503 on top

of the GMOS+NIRES quasar spectrum. In the bot-
tom left panel of Figure 2, we show a zoom-in of the

Lyα region overlaid with both the blue-side PCA model

and the composite spectrum constructed in §4.1. From

this zoomed-in plot, we can see that the intrinsic quasar

spectrum predicted by the PCA model agrees very well

with the composite spectrum. Both models suggest that

there is a strong damping wing absorption imprinted on

the Lyα emission line of the quasar. Since these two

models are consistent with each other, we will only use

the PCA continuum model for the following analyses so

that we can make use of its well quantified uncertainties.

4.3. Modeling the Damping Wing as a Single DLA

The smooth damped absorption profile can be im-

printed by either an intervening high column den-

sity gravitationally bounded DLA system (NHI >

1020 cm−2) or substantially neutral gas in the IGM.

However, DLA systems in the quasar vicinity are very

rare at high redshifts. Among more than 250 known

z & 5.7 quasars, only a few of them have been identi-

fied to be associated with such absorbers close to the

quasar redshifts (e.g. D’Odorico et al. 2018; Bañados et

al. 2019; Davies 2020; Farina et al. 2019), suggesting

that the probability of the strong redward absorption

seen in J0252–0503 being caused by a DLA is low. DLA

systems are usually associated with a number of metal

lines such as Si ii λ1260, λ1304, λ1526, O i λ1302, C ii

λ1334, C iv λ1548, λ1550, Mg ii λ2796, λ2803, and a se-

ries of Fe ii lines. Thus, one way to distinguish a DLA

damping wing from an IGM damping wing is to search

for associated metal absorption features.

First, we need to determine the redshift of a poten-

tial DLA system. To do so, we fit a Voigt profile to

the transmission spectrum which is normalized by the

PCA continuum model. Since the Doppler parameter,

b, does not strongly affect the Lyα profile (e.g. Crighton

et al. 2015), we fixed the b value to be b = 10 km s−1

and use the MCMC sampler (emcee; Foreman-Mackey

et al. 2013) to jointly fit the redshift and H i column

density of a DLA model. During the fit, we masked the

narrow absorption at v ∼ 0 km s−1. This absorption

could be caused by neutral gas inflow since we did not

find any associated metal absorption from the quasar

spectrum, and it is located at a slightly higher redshift

than the quasar if it is caused by neutral hydrogen. The

best fit parameters for the system are determined to be

NHI = 1021.04±0.04 cm−2 and zDLA = 6.939 ± 0.002. In

order to qualify the uncertainties of these parameters

caused by the continuum model, we then fit DLA mod-

els to 100 transmission spectra normalized by the 100

PCA draws shown in the bottom left panel of Figure 2.

The median values and the mean deviation of 16% and

84% percentiles from the median for NHI and zDLA are

measured to be NHI = 1021.04±0.10 cm−2 and zDLA =

6.940± 0.003. To take both the fitting uncertainty and

the PCA continuum uncertainty into account, we take

NHI = 1021.04±0.14 cm−2 and zDLA = 6.940 ± 0.004 as

our fiducial parameters for the DLA model, where the

uncertainties are the sum of the uncertainties from the

emcee fitting on the transmission spectrum and the dis-

tribution of the 100 draws. This potential DLA system

(if it exists) is ∼ 2200 km s−1 away from the quasar

systemic redshift which seems unlikely to be associated

with the quasar host galaxy. This best fit DLA model

is shown as the yellow dashed line in the bottom right

panel of Figure 2. We caution that the resolution of our

spectrum is low in the Lyα region, so the DLA fitting

procedure might overestimate the NHI if there are some
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narrow Lyα transmission spikes in the quasar proximity

zone that are unresolved in our spectrum.

We then searched for metal absorption lines at z ∼
6.94 in the J0252–0503 spectrum. In the end, we did not

find any evidence for metal-line absorption at redshifts

close to the potential DLA system within ∆z ∼ ±0.04,

or ∼ ±1500 km s−1, ten times wider than the red-

shift uncertainty of the potential DLA system. We

also did not find any metal absorption features at the

quasar systemic redshift (i.e. from the quasar host

galaxy). We then calculated rest-frame equivalent width

(EW) 1σ limits for each expected metal absorption

line as follows: Wr,SiII 1260 ≤ 0.029 Å, Wr,OI 1302 ≤
0.024 Å, Wr,CII 1334 ≤ 0.025 Å, Wr,CIV 1548 ≤ 0.019 Å,

Wr,FeII 2586 ≤ 0.067 Å, Wr,FeII 2600 ≤ 0.049 Å,

Wr,MgII 2796 ≤ 0.040 Å. The EW limits were mea-

sured by summing over the normalized pixels over an

aperture spanning ±2σinst from the center of each line,

where σinst = 47 km s−1 was derived from the NIRES

instrumental resolution. In order to derive the column

densities for the selected iron, we carried out a curve

of growth analysis for four different b-parameters fol-

lowing Simcoe et al. (2012). The curve of growth anal-

ysis is shown in Figure 3. Based on the solar abun-

dance (Lodders 2003) and the column densities derived

by fixing b = 10 km s−1, we find that the metallicity of

the potential DLA system is most tightly constrained

by C iv. However, whether high redshift DLAs exhibit

C iv is still debated (e.g. D’Odorico et al. 2018; Cooper

et al. 2019). Thus we use Mg ii which sets the second

most stringent constraint on the DLA abundance with

[Mg/H] < −4.0 (3σ). The DLA abundance 3σ lim-

its are estimated to be [Si/H] < −3.6, [O/H] < −3.6,

[C/H] < −3.7, and [Fe/H] < −3.3 based on Si ii λ1260,

O i λ1302, C ii λ1334, and Fe ii λ2600, respectively.

Since the b-parameter could be as low as b = 8 km s−1

at high redshifts D’Odorico et al. (2018), we also esti-

mate the [Mg/H] based on b = 5 km s−1 and find that

[Mg/H] < −3.7 (3σ).

To further investigate the properties of a possible

DLA, we compute the composite stack of the heavy-

element transitions shown in Figure 3 by assuming that

there is a metal-poor DLA at zDLA = 6.94. We stacked

the transmitted flux at the expected wavelength using an

inverse-variance weighted mean. The composite stack of

metal lines is shown in Figure 4 which shows no signif-

icant absorption within ∆v ∼ 1500 km s−1. Note that

the absorption feature at v ∼ 1450 km s−1 in the stack

is caused by the Fe ii 2344 transition from a z = 3.5425

absorber (see below). The 1σ limit for the dimension-

less equivalent width, W = Wλ/λ (Draine 2011), for the

stack is measured to be W ≤ 7.3 × 10−6 (1σ). This
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Figure 4. Composite stack of heavy-element transitions
(O i 1302, C ii 1334, Si ii 1260, C iv 1548, Fe ii 2586, Fe ii
2600, and Mg ii 2796) generated using an inverse-variance
weighted mean for a DLA system at z = 6.94. The shaded
grey regions denote the 1-, 2-, and 3-σ error vectors. The
quasar systemic redshift is indicated by a black dotted line.
Overlaid curves show predicted metal absorption profiles for
a DLA with NHI = 1021.04, b = 10 km s−1 and a range
of metallicities. The stack shows no statistically significant
absorption, suggesting that the metallicity of the absorption
system would be more than 10,000 times lower than solar if
the damped absorption was produced by a single-component
DLA system.

corresponds to a limit of [O/H] < −4.1 (3σ) after scal-

ing it to the cross-section and relative abundance of

O i. We also compute a set of DLA models by adapting

b = 10 km s−1 and solar abundance pattern (Lodders

2003) with varying metallicities. The DLA transmission

spectra are computed in the same wavelength grid and

same resolution as the spectrum of J0252–0503. The

composite stack of these DLA models for different metal-

licities is also over-plotted in Figure 4. The composite

stack with [Z/H] < −4.3 matches the observed stack at

3σ level, consistent with our curve of growth analysis of

the observed composite metal transitions within 0.2 dex.

From Figure 3, we note that most of the metal tran-

sitions are in the linear region of the curve of growth

unless b . 5 km s−1. Thus the metallicity constraint

does not change too much by varying the b-parameter.

By varying b from 5 km s−1 to 20 km s−1, we can con-

strain the metallicity of the potential DLA system to

be [Z/H] < −4.5 ∼ −4.0. Our analysis indicates that

this potential DLA system would be among the most

metal-poor DLA systems known (e.g. Cooke et al. 2011;

Bañados et al. 2019). This suggests that the strong

damped absorption is very unlikely to be caused by a

DLA.
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In addition, we also searched for absorbers at lower

redshifts to make sure that the damped Lyα absorp-

tion is not contaminated by lower redshift absorbers.

We identify five strong Mg ii absorption systems at

z = 4.8793, z = 4.7144, z = 4.2095, z = 4.0338, and

z = 3.5425. These systems also exhibit associated Fe ii

lines. The z = 4.8793 system also has associated Al ii

λ1670 absorption line which falls into the damped ab-

sorption region which is masked in the following damp-

ing wing analysis. However, this line is very narrow

(see the bottom right panel of Figure 2) and thus would

not be responsible for the smoothed absorption profile

on much larger scales. These analyses indicate that the

damping wing absorption in the J0252–0503 spectrum is

more likely to be imprinted by the neutral IGM rather

than by a DLA system or other intervening absorbers,

especially considering the fact that J1120+0641 and

J1342+0928 also have similar (though slightly weaker)

absorption profiles that are not associated with metals

(e.g. Simcoe et al. 2012; Bañados et al. 2018).

4.4. Constraints on the IGM Neutral Fraction from A

Strong Damping Wing at z = 7

In order to quantitatively assess the damping wing

strength and constrain the volume-averaged neutral hy-

drogen fraction at z = 7, we applied the methodology

from Davies et al. (2018b) to this quasar sight-line. We

refer the reader to Davies et al. (2018b) for a detailed

description. In brief, we model the reionization-era

quasar transmission spectrum with a multi-scale hybrid

model. This model combines large-scale semi-numerical

reionization simulations around massive dark matter ha-

los computed in a (400 Mpc)3 volume with a modified

version of 21cmFAST (Mesinger et al. 2011, Davies &

Furlanetto in prep), density, velocity, and temperature

fields of 1200 hydrodynamical simulation skewers from a

separate (100 Mpc/h)3 Nyx hydrodynamical simulation

(Almgren et al. 2013; Lukić et al. 2015), and 1D ioniz-

ing radiative transfer which models the ionization and

heating of the IGM by the quasar (Davies et al. 2016).

We then construct realistic forward modeled represen-

tations of quasar transmission spectra after accounting

for the covariant intrinsic quasar continuum uncertainty

from the PCA training. Finally, we use a Bayesian sta-

tistical method to recover the joint posterior probability

distribution functions (PDFs) of 〈xHI〉 based on these

mock transmission spectra.

The damping wing strength not only depends on the

〈xHI〉, but also strongly depends on the quasar life-

time, tQ, due to the ionization of pre-existing neutral

hydrogen along the line of sight by the quasar. In or-

der to measure 〈xHI〉, we conservatively explore a very

broad tQ range with a flat log-uniform tQ prior covering

103yr < tQ < 108yr. We then compute the posterior

PDF for 〈xHI〉 by marginalizing over the entire model

grid of tQ, which is shown in Figure 5. The peak of the

PDF leans to the high 〈xHI〉 end. This is consistent with

what we have seen in Figure 2, where we show a quasar

transmission spectrum model within a 〈xHI〉 = 1.0 IGM

with a quasar lifetime of tQ = 106.3 yr. The median and

the central 68% (95%) confidence interval for 〈xHI〉 are

estimated to be 〈xHI〉 = 0.70+0.20
−0.23(+0.28

−0.48) from the pos-

terior PDF. As a comparison, we also show the PDFs

from the other two z > 7 quasar sight-lines in Figure 5.

Although the redshift of J0252–0503 is lower than the

other two quasars, the damping wing in J0252–0503 is

the strongest one.

In Figure 6, we plot the 〈xHI〉 constraints from all

three quasar damping wings. In this figure, we also show

the 〈xHI〉 constraints from the Lyα+Lyβ forest (Fan et

al. 2006), as well as Lyα+Lyβ dark gaps (McGreer et

al. 2015). All three z ≥ 7 quasars for which a damp-

ing wing analysis can be done with current facilities and

methodology show evidence of damping wing absorp-

tions, suggesting that the IGM is substantially neutral
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Figure 6. Cosmic reionization history constraints from
quasar spectroscopy and Planck observations (Planck Col-
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regions corresponding to the 68% and 95% credible inter-
vals, respectively. Constraints from quasar damping wings
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at z ≥ 7. These constraints are consistent with the in-

tegral constraints of 〈xHI〉 measured from the electron

scattering optical depth of the CMB (Planck Collabora-

tion et al. 2018) shown as the underlying shaded region

in Figure 6. They are also in broad agreement with re-

cent calculations (e.g. Robertson et al. 2015) and simu-

lations (e.g. Kulkarni et al. 2019) of the cosmic reioniza-

tion history, as well as constrains from gamma-ray burst

(GRB) damping wings (Totani et al. 2006, 2016; Greiner

et al. 2009), the detections of Lyα emissions from high

redshift galaxies (e.g. Ouchi et al. 2010; Mason et al.

2018), and Lyα luminosity functions (e.g. Kashikawa et

al. 2006; Konno et al. 2018).

5. SUMMARY AND DISCUSSION

In this paper we present high-quality near-infrared

spectroscopic observations of a bright z = 7 quasar,

J0252–0503, to constrain the cosmic reionization with

quasar damping wing modeling and the SMBH growth

with BH mass and Eddington ratio measurements.

We measure the mass of the central SMBH to be

MBH = (1.39±0.16)×109 M� based on the single-epoch

virial method. The Eddington ratio of J0252–0503 is

measured to be λEdd = 0.7 ± 0.1, slightly lower than

that of the other three z ≥ 7 quasars with similar lumi-

nosities. If J0252–0503 has been accreting at such Ed-

dington ratio since z ∼ 20 with a radiative efficiency of

10%, it would require a seed BH of ∼ 105 M�, which sig-

nificantly exceeds the predicted mass range from stellar

remnant BHs and requires more exotic seed formation

mechanisms like direct collapse BHs. J0252–0503, along

with the other three luminous z > 7 quasars hosting bil-

lion solar-mass SMBHs, places the strongest constraints

on early BH assembly mechanisms.

In order to investigate whether a damping wing is

present in the spectrum of J0252–0503, we explored two

different methods to construct the intrinsic spectrum of

J0252–0503. The Lyα region of a composite spectrum

computed from a sample of C iv blueshift-matched low

redshift quasar analogs is consistent with the prediction

made by a PCA non-parametric predictive approach.

Both methods suggest that a strong damping wing ab-

sorption is present in the J0252–0503 spectrum. We

modeled the damping wing profile produced by either a

single component DLA system or a significantly neutral

IGM. However, there is no significant detection of metals

at the potential DLA system redshift over a wide range

of ±1500 km s−1, suggesting that the strong damping

wing in the J0252–0503 spectrum is most likely im-

printed by a significantly neutral IGM unless the metal-

licity of the putative DLA is more than 10,000 times

lower than the solar metallicity.

To constrain the IGM neutral hydrogen fraction,

〈xHI〉, at z = 7 with the damping wing in J0252–0503,

we applied the hybrid model developed by Davies et al.

(2018b) to our PCA continuum prediction for J0252–

0503. Our analysis shows that the damping wing in

J0252–0503 is the strongest one yet seen in z ≥ 7 quasar

spectra. By marginalizing over quasar lifetime with a

log-uniform prior in the range of 103 < tQ < 108 yr, we

measure the median and the central 68% (95%) confi-

dence interval for 〈xHI〉 to be 〈xHI〉 = 0.70+0.20
−0.23(+0.28

−0.48) at

z ∼ 7. The recent study by D’Aloisio et al. (2020) sug-

gests that unrelaxed gaseous structures may exist in the

post-reionization IGM, meaning that the mean free path

of ionizing photons is shorter compared with a model

that assumes the gas is fully relaxed. The mean free

path in the quasar proximity zone, however, should still

be quite long due to the strong ionizing radiation of the

central luminous quasar (McQuinn et al. 2011; Davies

2020). Thus our constraints on 〈xHI〉 based on damping

wing analysis should not be strongly affected by unre-

laxed baryons in the proximity zone.

Despite the limited precision of quasar continuum re-

constructions and the degeneracy of 〈xHI〉 and quasar

lifetime, the damping wing is still highly effective in

constraining the reionization history. Although the cur-

rently available sample of quasar sight-lines at z & 7

is very small, more luminous z & 7 quasars are ex-
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pected to be found in the next few years through on-

going quasar searches (e.g. Bañados et al. 2018; Wang

et al. 2018; Yang et al. 2019; Matsuoka et al. 2019a;

Reed et al. 2019). Moreover, the Euclid wide survey

will be online soon, and will discover more than 100

quasars at z > 7 (Euclid Collaboration et al. 2019). In

addition, the Near-Infrared Spectrograph (NIRSpec) on

the James Webb Space Telescope (JWST) will provide

much higher quality spectroscopic data for more precise

quasar damping wing analyses. Thus, we expect that

quasar damping wing analyses will have the capability

to place increasingly strong constraints on the cosmic

reionization history during the next several years.
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Pâris, I., Petitjean, P., Rollinde, E., et al. 2011, A&A, 530,

A50
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