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Multi-phase bcc/B2 based alloy systems have recently received considerable attention because their mi-
crostructures are often remarkably similar to the γ/γ

′
microstructure of Ni-based superalloys. The underlying

plastic deformation mechanisms of bcc based intermetallics, however, are not well understood across the
composition space where they are thermodynamically stable. Within this contribution, we analyze deforma-
tion of B2 intermetallics to develop a reliable platform for efficiently predicting antiphase boundary energies
and the associated fault widths as a function of elemental substitution on a particular lattice site of the in-
termetallic. To achieve this we extend the diffuse multi layer fault model to predict close packed structures
that recreate the bonding environment within the layers adjacent to the 1

2 ⟨111⟩{110} antiphase boundary of
the B2 intermetallic. Specifically, the impact of elemental substitution on both antiphase boundary energy
and fault width is presented for Hf1−xTixRu and Hf1−xAlxRu and the implications of our findings are dis-
cussed. We also highlight a simple bonding model for transition metal based B2 intermetallics that explains
their chemical stability and large antiphase boundary energies. The results presented here offer insight into
both the nature of plastic deformation within the B2 intermetallic and the important underlying chemical
concepts that can potentially be leveraged to aid in the design of bcc based alloy systems that rival Ni-based
γ/γ

′
microstructures.

I. INTRODUCTION

There has been a significant effort devoted to devel-
oping novel metallic alloys that exceed the thermome-
chanical properties of conventional Ni-based superalloys.
Considering the success of the γ\γ′

microstructure, a
particularly enticing solution to the challenge at hand
is to mimic this microstructure within novel alloy sys-
tems. In particular, refractory alloys (i. e. alloys contain-
ing Ti, V, Cr, Zr, Nb, Mo, Hf, and/or W) are viewed as
promising candidates for next generation high temper-
ature structural materials.1,2 These alloys form a disor-
dered body centered cubic lattice (referred to as the A2
phase) and their resulting microstructure also frequently
includes secondary phases consisting of the B2 or L21 in-
termetallic – both of which are particular orderings upon
a body centered cubic lattice.3 Initial attempts to recre-
ate the γ/γ

′
microstructure via the addition of Al, Ti,

and/or Zr to a refractory alloy system typically results in
coherent “inverted” A2/B2 microstructures with the in-
termetallic B2 phase forming the continuous matrix and
the disordered A2 phase forming the precipitates. How-
ever, there have been several promising reports of coher-
ent, or semi-coherent, B2 precipitates embedded within
a disordered A2 phase.4,5 A particularly promising family
of Ru-based B2 phases – XRu, where (X = Ti, Nb, Zr,
Ta, or Hf) – have also gained considerable interest as a
potential precipitate phase within an A2 matrix because
of their stability above 1200 ◦C.6

As these microstructures reminiscent of the γ/γ
′

mi-

crostructure begin to emerge within novel body centered
cubic alloys, it is important to recall that the disloca-
tion mechanisms by which shearing occurs within the
γ

′
phase of a Ni-based superalloy is what governs their

superior mechanical properties.7,8 Therefore, there is a
need to revisit the deformation mechanisms of the inter-
metallics that will serve as an analogue to the γ

′
precipi-

tate phase. Considering it is well documented within the
γ

′
literature that the planar faults of the precipitate phase

often dictate the observed deformation pathways9–11, it
is expected this will also be the case for body centered
cubic derived intermetallics. Within this contribution we
therefore revisit the formation energies associated with
the potential planar faults that can occur via slip on a
{110} plane within the B2 intermetallic. Although sta-
ble intrinsic stacking faults do not exist in body centered
cubic lattices12, the B2 intermetallic is not itself a bcc
lattice, but a bcc derived lattice. The additional chemi-
cal ordering present within a B2 intermetallic therefore
allows for new metastable extended faults that are oth-
erwise not possible within a bcc lattice. These extended
faults often correspond to regions wherein a dislocation
has dissociated into two partials bounded by an extended
fault with a stacking that corresponds to the atomic con-
figuration of a 1

2 ⟨111⟩{110} antiphase boundary. This an-
tiphase boundary, relative to the pristine ordering of the
B2 intermetallic, is a shear-type antiphase boundary pro-
duced by dislocation glide along a {110} plane within the
B2 crystal structure and is described schematically in Fig.
1 This particular atomic configuration occurs when one
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FIG. 1. The formation of an antiphase boundary created via
shear within a {110} plane. (a) Orienting the pristine B2 struc-
ture, shown on the left, along the [110] plane highlighted in
purple, clearly reveals the pristine stacking along the [110] di-
rection. One can then imagine shearing one half of the crystal
relative to the other by an arbitrary displacement vector shown
in red. This, in general, leads to a fault along the [110] di-
rection. When comparing (b) the top down view of the pris-
tine stacking along the [110] direction to (c) the stacking after
a shear displacement vector of 1

2
[1̄11] (red arrow) is applied

to the top half of the crystal (with a unit cell outlined by the
solid black rectangle) relative to the bottom half of the crys-
tal (with a unit cell outlined by the dashed black rectangle), it
becomes clear that nearest neighbor bonds between A and B
atoms have been formed that are not present within the pristine
ordering. This signifies the formation of an antiphase boundary.
Of course this process can occur in any 110 plane, the antiphase
boundary of the B2 intermetallic is therefore referred to as a
1
2
⟨111⟩{110} antiphase boundary.

half of a B2 crystal is displaced by 1
2 ⟨111⟩ relative to the

other half of the crystal along a {110} plane. Interest-
ingly, slip on the {110} plane within B2 intermetallics of-
ten involves dislocations with a Burgers vector of either
⟨001⟩ or ⟨111⟩. The observed slip direction is believed
to be determined by the dissociation of either the ⟨001⟩
or ⟨111⟩ Burgers vector into two partial dislocations that
bound an antiphase boundary described by the atomic
configuration shown in Fig. 1 (c). Based on this analysis,
which has been discussed in detail by Lin et. al13, the
antiphase boundary energy, along with the elastic con-
stants of a particular B2 intermetallic, may determine its
experimentally observed slip direction.

The present study aims to develop a computationally
efficient ab initio model that can rapidly asses antiphase
boundary energies as a function of composition within
the B2 intermetallic. Specifically, we adopt the diffuse

multi layer fault model (DMLF) initially proposed by
Vamsi and Karthikeyan for L12 compounds14 and further
extended by the work of Vamsi and Pollock15. The diffuse
multi layer fault model, which identifies proximate struc-
tures that best capture the bonding environment within
the layers adjacent to an antiphase boundary of inter-
est, can then be used to predict the planar fault ener-
gies of multicomponent B2 intermetallics that may be
found in experimentally relevant multicomponent alloy
systems. Upon validating the proximate structures iden-
tified for the B2 intermetallic, we study the influence
of composition on (i) the antiphase boundary energies
within Hf1−xTixRu and Hf1−xAlxRu and (ii) the expected
fault width of an antiphase boundary for each of the com-
positions studied. Finally, due to the large number of
material systems that are studied here, we also present
a brief discussion on how the d − d orbital interactions
within a number of B2 intermetallics influence their rel-
ative chemical stability.

II. METHODS

As outlined in Fig. 1, one can mathematically con-
struct an antiphase boundary as a union between two
semi-infinite single crystals (of a particular intermetal-
lic) that are translational variants of one another. There
are two noteworthy consequences of this fact: (i) the re-
sulting atomic configuration is a distinct ordering on the
lattice upon which the intermetallic is “derived” and (ii)
any changes in the energetics of this new atomic configu-
ration – relative to a pristine infinite single crystal of the
intermetallic – are short range. Therefore most of the
chemical environments present within this faulted crys-
tal remain unchanged and, in theory, the energy penalty
associated with the formation of the antiphase boundary
can be captured by the change in bonding environment
within the first few layers adjacent to the fault. There-
fore, identifying proximate strucures which have similar
bonding to the bonding found within planes adjacent to
an antiphase boundary should reasonably approximate
the energetics of the antiphase boundary.

Since an antiphase boundary within the B2 intermetal-
lic is a distinct ordering on the bcc parent lattice upon
which it is derived, proximate crystal structures for each
layer of the antiphase boundary can be identified via a
“least-squares” metric. Specifically, to identify the proxi-
mate structure for the Lth

i layer adjacent to the antiphase
boundary, our metric evaluates the bonding environment
in the Lth

i layer relative to a particular bonding environ-
ment of a symmetrically distinct atomic ordering upon a
bcc lattice that preserves the stoichiometry of the B2 in-
termetallic. This metric, termed Πt, evaluated for layer
Li relative to a symmetrically distinct atomic ordering,
Sq, is defined as:

Πt(Li, Sq) =

√
ΣM

j=1

1

2d2j
Σu,v∆Nuv

j (Li, Sq) (1)
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FIG. 2. The workflow used to identify each proximate structure.
(a) The atomic configuration that corresponds to the antiphase
boundary is generated and each layer adjacent to the fault is
labeled. Note that the layers come in pairs, i.e. L1 ≡ L−1.(b)
Each symmetrically distinct atomic ordering, Sq, is enumerated
with the help of CASM and is evaluated against the bonding
environment of a particular layer, in this case, L1, based on the
metric Πt. For L1, there is in fact one atomic configuration (red
arrow) within the database that is identical to the L1 bonding
environment up to the 10th nearest neighbor labeled β

′
a. (c)

The proximate structure for L1, β
′
a, is compared to the pristine

ordering of the B2 structure along the {110} plane. The β
′
a

structure is a simple one atom permutation relative to the B2
ordering.

∆Nuv
j is defined as a dot product between the difference

in the number of uv bonds present at the interatomic dis-
tance j within the atomic configuration of the bcc lattice
being considered:

∆Nuv
j (Li, Sq) = (Nuv

j (Li)−Nuv
j (Sq))

2 (2)

u and v therefore range over the distinct elements
present within the intermetallic (specifically for the B2
intermetallic u, v ∈ [A,B]) and j ranges over pairwise in-
teractions up to the M th next nearest neighbors. Each
∆Nuv

j is weighted by its respective j’th interatomic dis-
tance, dj , in order to ensure that the proximate struc-
ture identified for each layer adjacent to the fault pref-
erentially minimizes the ∆Nuv

j ’s with the smallest in-
teratomic distances. The Clusters Approach to Statisti-
cal Mechanics (CASM) software package16,17 was used
to enumerate a complete database of symmetrically dis-
tinct orderings, with up to 40 atomic sites, for the B2 in-
termetallic. The maximum M th nearest neighbors to be
considered when computing Πt is then chosen to be 10
so that it is sufficiently large enough to capture all pair-
wise interactions that may significantly contribute to the
energy penalty associated with the formation of an an-
tiphase boundary. The general workflow of this method

applied to the B2 intermetallic is summarized within Fig-
ure 2.

The diffuse multi layer fault model developed via
the workflow outlined above is then validated against
the antiphase boundary energies predicted by antiphase
boundary containing supercells that were generated with
the software package MultiShifter18 for a number of ex-
perimentally relevant B2 intermetallics that, according
to the Open Quantum Materials Database19,20, are stable
at T = 0K.

Upon validation of the diffuse multi layer fault model,
further studies are performed wherein a third element
is substituted onto one of the sublattices of the B2 in-
termetallic to create pseudobinary intermetallics with
a general composition of A1−xA

′

xB. Specifically, we
choose to study Hf1−xTixRu and Hf1−xAlxRu because
of their recently reported promise as precipitate phases
within an A2 refractory alloy matrix above 1200 ◦C.6

We assume complete disorder on the A site of the in-
termetallic and therefore employ special quasirandom
structures21, generated via a Monte Carlo simulated an-
nealing algorithm22 that is included in the ATAT software
package23, to model the properties of these pseudobinary
alloys. Special quasirandom structures are identified for
both the B2 structure and the proximate structures re-
quired for the diffuse multi layer fault model at compo-
sitions of x = 0.25, x = 0.50, and x = 0.75.

For each B2 intermetallic, elastic constants are also
computed from first principles in order to predict fault
widths found within these material systems. The elas-
tic constants C11, C12, and C44 are determined via the
energy-strain method provided in AELAS24 using the
primitive cell of the B2 crystal structure. Additionally,
to investigate trends in chemical stability, Crystal Or-
bital Hamilton Populations are calculated via the soft-
ware package LOBSTER based on self-consistent static
calculations on a subset of B2 intermetallics.25–28

Both the antiphase boundary energy calculation based
on the diffuse multi layer fault model, and the supercell
method, are performed within the Vienna ab initio sim-
ulation package (VASP)29 using projector-augmented-
wave (PAW) pseudo potentials30,31 and the Perdew-
Burke-Ernzerhof (PBE) generalized gradient approxima-
tion (GGA).32 The equillibrium lattice parameter of each
intermetallic is first determined by a complete structural
relaxation where the unit cell shape, unit cell volume,
and ion positions are permitted to vary. The energies
of each proximate structure required for the calculation
of the antiphase boundary energy based on the diffuse
multi layer fault model is then calculated based on prox-
imate structures with the lattice parameter determined
from the structural relaxation. In this calculation only
ion positions are permitted to relax. The diffuse multi
layer fault model antiphase boundary energy is then cal-
culated as:

γAPB
DMLF = ρΣ[E(Si)−E(P )] ≈ ρΣi≥1[E(Si)−E(P )] (3)
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Where the sum is over all layers adjacent to the fault with
a bonding environment that is captured by a proximate
structure, Si, that differs from that of the pristine struc-
ture, P . The term ρ corresponds to the number of atoms
within the plane of the fault per unit area. For the B2 in-
termetallic ρ = 2/

√
2a20 where a0 is the lattice parameter

of the particular B2 intermetallic being studied.
For the supercell calculations, periodic images of an

antiphase boundary were separated by greater than 16
angstroms and only structural relaxation normal to the
plane of the fault was allowed. The antiphase boundary
energy is then calculated as:

γAPB
supercell =

1

2
√
2a20

[E(supercell)− E(pristine)] (4)

Spin polarization was included within all calculations
and a Monkhorst-Pack scheme was used to construct the
Brillouin zone.33 A 15 x 15 x 15 k-point grid was used
for the initial structural relaxation of the pristine inter-
metallics, all further calculations then use grids that are
scaled accordingly in order to preserve this k-point den-
sity.

III. RESULTS AND DISCUSSION

A major incentive for developing, and validating, the
diffuse multi layer fault model for the B2 intermetal-
lic is the fact that this model can be used to predict
the change in antiphase boundary energy within mul-
ticomponent intermetallics.15,34 In the following section
we demonstrate that the diffuse multi layer fault model
successfully predicts the 1

2 ⟨111⟩{110} antiphase bound-
ary energy of numerous binary B2 intermetallics. We
then use the diffuse multi layer fault model to explore
the effect of elemental substitution on antiphase bound-
ary energetics. The fault widths within Hf1−xTixRu and
Hf1−xAlxRu are also approximated based on the com-
puted elastic constants and antiphase boundary energies.
We conlcude with a brief discussion on the correlation
between B2 stability and antiphase boundary energies
within this material class.

A. Diffuse multi layer fault model validation

Fig. 3 summarizes the diffuse multi layer fault model
corresponding to the 1

2 ⟨111⟩{110} antiphase boundary
that can form within a B2 intermetallic. Following the
nomenclature of Vamsi and Pollock for the antiphase
boundary of the γ

′
L12 intermetallic15, the two proxi-

mate structures for the first and second layers adjacent to
the 1

2 ⟨111⟩ B2 antiphase boundary have been termed β
′

a

and β
′

a2
, respectively. As shown in Fig. 3, only two proxi-

mate structures are needed because the bonding environ-
ment of all other layers adjacent to the fault are best cap-
tured by the pristine B2 crystal structure. The bonding

environment of β
′

a is summarized in Fig. 3 (a), demon-
strating that the bonding environment of this proximate
structure is identical to the bonding environment of the
first layer of the antiphase boundary up to the tenth near-
est neighbor pairwise interaction – suggesting that this
structure will provide a reliable evaluation of the energy
penalty associated with the first term of the summation
in Eq. 3. The bonding environment of the second layer
adjacent to the antiphase boundary is best captured by
β

′

a2
, as summarized within Fig. 3 (b). While β

′

a2
does

contain differences in the number of particular chemi-
cal interactions at each of the first three nearest neigh-
bors, Πt is near zero with a value of 0.746. For the third
layer adjacent to the antiphase boundary – and therefore
all layers further from the fault as well – the proximate
structure is identified as the bonding environment found
within the pristine B2 structure. Similar to layer two,
the bonding environment in the pristine B2 intermetal-
lic (β

′
) is not identical to that of layer three, but a Πt of

1.05 reflects the minor changes in bonding environment
that are tabulated in Fig. 3 (c).

Upon inspection of Fig. 3 as a whole, several char-
acteristics of the diffuse multi layer fault model become
apparent. The first is that when identifying a proximate
structure for layers further from the fault, larger near-
est neighbor distances articulate the presence of an an-
tiphase boundary within the crystal structure that is be-
ing approximated by the diffuse multi layer fault model.
This is advantageous because if the bonding environ-
ments that differ from the pristine B2 structure occur
at larger nearest nieghbor distances for larger Li’s, then
the i’th energy contribution computed via Eq. 3 be-
comes smaller. However, the importance of larger near-
est neighbor distances also means that the best proxi-
mate structure for higher order Li’s will require prox-
imate structures with a larger number of atomic sites.
Even so, the goal of the diffuse multi layer fault model is
to compute the antiphase boundary energy of composi-
tionally complex B2 intermetallics in a computationally
efficient manner, therefore, as discussed in the methods,
only symmetrically distinct atomic configurations with
up to 40 atomic sites are considered as candidate prox-
imate structures. This database is searched, and based
on Πt, a reasonably sized structure is identified as the
best proximate structure for layer Li. Fig. 3 demon-
strates that once L3 is reached there is no candidate
structure better at capturing the bonding environment
of this layer of the antiphase boundary than the pristine
B2 intermetallic ordering – this is therefore the critical
layer (at least when considering only symmetrically dis-
tinct atomic configurations with up to 40 atomic sites)
where the layer, and all Li > 3, appear to have a lo-
cal atomic configuration nearly identical to that of the
B2 intermetallic. Of course it will take several layers be-
yond L3 for the number of A − A, A − B, and B − B
bonds within the pristine B2 intermetallic to match the
true bonding environment of the layer being considered,
but as previously discussed, the i’th energy contribution
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computed via Eq. 3 for Li ≥ L3 is significantly smaller
than the energy contribution of L1 and L2.

Ultimately, if the diffuse multi layer fault model of
Fig. 4 reliably reproduces the antiphase boundary en-
ergies computed via the DFT Supercell method, then
it can be applied to compositionally complex B2 inter-
metallics. The proximate structures provided within Fig.
3, have therefore been employed to estimate anitphase
boundary energies of a number of experimentally rele-
vant B2 intermetallics that, according to the Open Quan-
tum Materials Database19,20, are stable at T = 0K and
validated against the antiphase boundary energy deter-
mined via the DFT Supercell method. The correlation be-
tween the diffuse multi layer fault method and the DFT
Supercell method is shown in Fig. 4. While the best fit
line, γAPB

supercell = AγAPB
DMLF + γ0 (A = 0.85, γ0 = 47.08

mJ/m2), is not the “unity line” γAPB
supercell = γAPB

DMLF ,
the energies of the diffuse multi layer fault model are
strongly correlated (R2 = 1, RMSE = 52mJ/m2) to the
energies computed by the supercell method. The predic-
tive power of the diffuse multi layer fault model for the
1
2 ⟨111⟩{110} antiphase boundary is therefore clear and
allows for a computationally efficient estimation of the
antiphase boundary energy for a wide range of multi-
component B2 intermetallic.

B. Evaluating antiphase boundary energies and fault
widths in B2 intermetallics

As previously mentioned, the diffuse multi layer fault
model provides a computationally efficient approach to
evaluating antiphase boundary energies for multicom-
ponent intermetallics. This enables us to determine
to what extent elemental substitution impacts both an-
tiphase boundary energies and fault widths within ex-
perimentally relevant B2 intermetallics. We approximate
antiphase boundary fault widths using anisotropic elas-
ticity theory – similar to the process discussed by Lin et
al.13. In short, assuming that a dislocation lying on a
{110} plane within a B2 intermetallic with a Burgers vec-
tor of either ⟨001⟩ or ⟨111⟩ can dissociate into two partial
dislocations with Burgers vectors of 1

2 ⟨111⟩ and 1
2 ⟨1̄1̄1⟩ or

two 1
2 ⟨111⟩ Burgers vectors, respectively, one can eval-

uate the fault width of the resulting antiphase bound-
ary by balancing the elastic forces created by the disso-
ciated Burgers vector against the attractive force gener-
ated by the formation of an energetically unfavorable an-
tiphase boundary between the two partials. The analyti-
cal form of the stress field due to a straight dislocation
within an anisotropic medium with cubic crystal sym-
metry was originally worked out by Eshelby et al. who
noted that there exist simple solutions to this problem
when the plane normal to the dislocation line is of even-
fold symmetry.35 When this plane is of evenfold symme-
try, the stress field created by the dislocation of interest
can be separated into edge and screw components, ulti-
mately allowing for an analytical prediction of the fault

width between partial dislocations, assuming a dissocia-
tion event will occur. Interestingly, if the dislocation line
lies along the ⟨111⟩ or ⟨121⟩ direction (which are the crys-
tallographic dislocation line directions relevant for screw
and edge dislocations lying on a {110} slip plane with a
Burgers vector of ⟨111⟩, respectively) the plane normal
to the dislocation line is not a plane of evenfold symme-
try. The analysis then proves to be slightly more cumber-
some, but an analytical solution does exist for the ⟨111⟩
dislocation line based on work by Stroh36 and Head.37

For this reason, we limit ourselves to the prediction of
fault widths of screw dislocations within the {110} plane
with Burgers vectors of either ⟨001⟩ or ⟨111⟩. Based on
the intuition that can be gained from isotropic elastic-
ity theory, fault widths for screw dislocations should be
smaller than their edge counterparts and therefore pro-
vide a lower bound on the fault width that can be ex-
pected to be observed in an experimental study. The
complete analysis used for each of the dislocation config-
urations studied here are included within the appendix.

The results for the pristine B2 intermetallics studied
within this contribution are summarized within Table I.
Perhaps the most notable finding of these calculations
is the fact that the expected fault widths for both ⟨001⟩
and ⟨111⟩ screw dislocations in YCu and YMg are near
zero – if not exactly zero. This is very interesting consid-
ering that these material systems are known to demon-
strate significant ductility.38 In fact, it is often argued
that a significant fault width is required to ensure that
the dislocation core of a ⟨111⟩ screw dislocation within
a bcc based material is planar, and therefore more mo-
bile, than an otherwise non-planar ⟨111⟩ screw disloca-
tion that spreads onto the three {110} planes that in-
tersect one another.13,39 This thought process has been
used to rationalize both the observed slip systems within
a particular B2 intermetallic as well as whether the in-
termetallic is expected to be ductile. While this expla-
nation seems promising, and particularly reasonable be-
cause of the role fault widths play in the plastic response
of conventional fcc and hcp metals, the results shown
here suggest that the explanation for why certain B2 in-
termetallics slip along the ⟨001⟩ direction and others slip
along the ⟨111⟩ is more subtle. While it is beyond the
scope of this current contribution to provide a more sat-
isfactory explanation, ongoing efforts by several of the
authors are focused on understanding which slip modes
can be expected to be active within particular B2 inter-
metallics across specific temperature regimes. Even so,
it is important to stress that dislocations with an ⟨001⟩
Burgers vector should, in general, not be expected to
dissociate. This can be explained by the fact that the
attractive edge components of the potential 1

2 ⟨111⟩ and
1
2 ⟨1̄1̄1⟩ partial dislocations outweigh the repulsive screw
components in all but PdCu and CuZn. A more detailed
discussion is provided within the appendix.
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FIG. 3. A comparison of the number of each bond type present within the first three layers adjacent to the 1
2
⟨111⟩{110} antiphase

boundary of the B2 intermetallic and each layer’s corresponding proximate structure. (a) The structure β
′
a best approximates the

bonding environment of L1 with an identical bonding environment up to tenth nearest neighbor. (b) β
′
a2

best approximates the
bonding environment of L2 with nearly identical bonding that leads to a Πt value of 0.746. (c) The third layer, and therefore all
layers further from the fault are best approximated by the pristine B2 stacking. While there are noticeable differences in bonding
environment the Πt metric is only 1.05.

TABLE I. Expected fault widths in pristine B2 intermetallics. Ar = 2C44
C11−C12

is the Zener ratio.

Material C11 (GPa) C12 (GPa) C44 (GPa) Ar γAPB(mJ m−2) rfw001/a0 rfw111/
√
3a0

TiCo 222.4 135.6 61.7 1.42 496 0 2.05
PdCu 174.9 146.3 91.6 6.4 118 1.35 3.51
CuZn 127.3 104.1 77.8 6.73 55 2.06 4.02
FeAl 254.5 136.7 140.1 2.38 433 0.09 5.15
FeCo 265.2 151.5 129.5 2.28 57 0 12.64
FeGa 226.2 145.8 120.0 2.98 211 0 6.34
TiFe 380.4 97.0 73.8 0.52 620 0 3.30
HfRu 374.3 108.1 78.7 0.59 883 0 2.84
VMn 488.8 120.2 93.2 0.51 325 0 8.55
NiAl 206.2 134.7 118.0 3.30 485 0.16 2.07
TiNi 178.4 139.9 50.3 2.61 318 0 1.97
PdAl 189.9 136.6 75.0 2.82 365 0 2.09
RuAl 316.5 147.1 125.7 1.48 486 0 3.53
TiRu 422.6 112.8 88.7 0.57 686 0 3.93
YCu 112.1 51.5 37.2 1.23 187 0 1.51
YMg 53.1 36.0 39.2 4.60 778 0.72 1.90

C. Evaluating antiphase boundary energies and fault
widths in psuedo-binary B2 intermetallics

We also use the proximate structures identified for
the 1

2 ⟨111⟩{110} antiphase boundary of the B2 inter-
metallic to model the pseudobinary B2 intermetallics
Hf1−xAlxRu and Hf1−xTixRu. As previously discussed in
the methods, special quasirandom structures, based on

the layer one and layer two proximate structures identi-
fied in Section 3.1, are used to determine the expected
antiphase boundary energy for each multicomponent B2
intermetallic. Special quairandom supercells of the con-
ventional B2 ordering are generated because the energy
and corresponding elastic constants of this atomic con-
figuration are necessary inputs for Eq. 3 and the pre-
diction of fault widths. The number of atoms required
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FIG. 4. Validation of the diffuse multi layer fault model against
DFT supercell calculations. While the (solid) line does not have
a slope of unity (dashed), there is a clear correlation between
the antiphase boundary energies predicted by the diffuse multi
layer fault model and that of DFT supercell calculations. This
confirms the predictive power of the diffuse multi layer fault
model which can now be used to study the impact of elemental
substitution on antiphase boundary energies.

for each special quasirandom structure are determined
based on the requirement that the first ten nearest neigh-
bor pair-correlation functions recreate these correlations
within random alloys of the same composition. For con-
ventional B2 ordering within these pseudobinary inter-
metallics, this requirement resulted in special quasir-
andom structures of eight atoms for a composition of
x = 0.25, x = 0.75, and twelve atoms for a composition
of x = 0.50. The layer one proximate structure (β

′

a) re-
quired 32 atoms for a composition of x = 0.25, x = 0.75,
and 16 atoms for a composition of x = 0.50 while the
layer two proximate structure (β

′

a2
) required 56 atoms

for a composition of x = 0.25, x = 0.75, and 28 atoms
for a composition of x = 0.50. All special quasirandom
structures are provided within the supplementary infor-
mation.

The impact of elemental substitution on the antiphase
boundary energies, as well as the elastic constants for
each of the pseudobinary B2 intermetallics are shown
within Fig. 5. Interestingly, a maximum in the antiphase
boundary energy occurs at x = 0.75 for Hf1−xTixRu
while a minimum occurs within Hf1−xAlxRu at this same
composition. While the uncertainty based on the RMSE
value of the diffuse multi layer fault model suggests that
the antiphase boundary energy of Hf0.25Al0.75Ru may
overlap with that of RuAl, it does appear that elemen-
tal substitution of Hf into TiRu significantly increases the
antiphase boundary energy. As will be discussed further
in the next section, it is expected that the ordering ten-
dency in HfRu is stronger than that of TiRu. This fact
may explain why adding Hf to TiRu leads to a significant
increase in the energy penalty associated with a stacking
fault relative to the pristine order of the multicomponent

FIG. 5. antiphase boundary energies (a) and average elastic
constants pertaining to cubic symmetry (b) within multicom-
ponent B2 intermetallics. While elemental substitution does
not appear to significantly impact the elastic properties of the
intermetallic, antiphase boundary energies can vary by up to
almost 200 mJ/m2.

intermetallic. Specifically, the initial incorporation of Hf
into the TiRu antiphase boundary may lead to energeti-
cally unfavorable Hf–Ti interactions that destabilize the
antiphase boundary atomic configuration relative to the
multicomponent B2 ordering. However, as more Hf is
introduced into the fault, the antiphase boundary energy
decreases relative to Hf0.25Ti0.75Ru because, on average,
there are more Hf-Ru interactions than the energetically
unfavorable Hf-Ti interaction. The same behavior is not
observed for the elastic constants because Hf is isoelec-
tronic to Ti. Therefore, when Hf is substituted onto the Ti
sublattice of TiRu, there are no abnormal Hf-Ti interac-
tions analogous to those found within the atomic config-
uration of the antiphase boundary. In result, the nature
of the bonding within Hf0.25Ti0.75Ru remains relatively
unchanged in relation to TiRu and the elastic constants
are not impacted significantly. Therefore, as a rough esti-
mate – particularly when the sole purpose of computing
the elastic constants is to predict fault widths – Vegard’s
law should suffice.

The predicted antiphase boundary energies, along
with the elastic constants of each pseudobinary inter-
metallic can then be used to understand whether ele-
mental substitution can be expected to lead to notable
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changes in the fault width of the antiphase boundary that
is bounded by two partial dislocations. The results for
the fault widths of an antiphase boundary bounded by
two 1

2 ⟨111⟩{110} partial dislocations in Hf1−xTixRu and
Hf1−xAlxRu are summarized within Table II. While it is
beyond the scope of the current study to identify compo-
sition windows of each intermetallic system that are sta-
ble at elevated temperatures, all alloy compositions stud-
ied prove to be mechanically stable and possess either
low formation energies, or slightly negative formation
energies, with respect to their end members. This sug-
gests that these alloy systems provide a reasonable plat-
form for exploring the main goal of this work: to develop
a reliable platform for efficiently predicting antiphase
boundary energies and the associated fault widths as a
function of elemental substitution on a particular lat-
tice site of the intermetallic. Based on these results it
seems that a change in antiphase boundary energy of ap-
proximately 25%, coupled to the slight changes in elastic
constants that occur upon elemental substitution, does
not play a major role in impacting the experimentally
observed fault width. Whether a significant fault width
should be expected within a particular multicomponent
system can therefore be gauged by the fault width pre-
dicted by anisotropic elasticity theory within the end-
member intermetallics.

While the diffuse multi layer fault model does not ex-
plictly consider the impact of temperature on the an-
tiphase boundary energies, it is possible to gain in-
sight into whether chemical segregation to the antiphase
boundary within a particular candidate alloy system can
be expected. If, for example, a candidate pseudobi-
nary B2 intermetallic demonstrates a fairly constant an-
tiphase boundary energy as a function of composition,
then one could anticipate that the composition at the
fault would simply reflect the average composition of
the specimen being studied experimentally, but if the an-
tiphase boundary energies are sensitive to composition,
then the composition at the antiphase boundary may dif-
fer from the average composition of the specimen. In
result, the fact that antiphase boundary energies within
both of the pseudobinary systems studied are indeed sen-
sitive to composition suggests that chemical segregation
to the antiphase boundary can be expected within both
Hf1−xTixRu and Hf1−xAlxRu. Therefore, if B2 precip-
itates similar to the ones studied here are embedded
within an A2 matrix phase it can be expected that the
shearing of these precipitates at elevated temperatures
may be coupled to diffusion. In fact, chemical segrega-
tion at an antiphase boundary within a complex, multi-
component B2 intermetallic containing Ti, Nb, Ta, Zr, Al,
and V has been reported experimentally by Couzinié et
al.5 Unfortunately the complexity of the phase reported
by Couzinié et al. makes it difficult to determine which
of these particular elements favor the A site or the B site
of the B2 lattice. However, the diffuse multi layer fault
model developed in this study for the antiphase bound-
ary of the B2 intermetallic now offers a computationally

TABLE II. Energy of formations, and expected fault widths in
pseudobinary B2 intermetallics. Ar = 2C44

C11−C12
is the Zener

ratio.

Material ∆Ef (meV/atom) γAPB(mJ m−2) rfw111/
√
3a0

TiRu − 686 3.93
Hf0.25Ti0.75Ru 22.6 1040 1.87
Hf0.50Ti0.50Ru 29.5 840 2.38
Hf0.75Ti0.25Ru 20.9 814 2.38

HfRu − 883 2.84
Hf0.75Al0.25Ru −16.3 701 2.85
Hf0.50Al0.50Ru −10.2 686 2.76
Hf0.25Al0.75Ru 4.1 468 4.21

AlRu − 486 3.53

efficient route that can be used to rationalize experimen-
tally observed segregation effects observed in multicom-
ponent B2 intermetallics of the form A1−x−yA’xA”yB or
A1−xA’xB1−yB’y.

D. B2 stability and its relation to antiphase boundary
energetics

To the best of our knowledge this contribution tabu-
lates the most complete collection of antiphase bound-
ary energies within experimentally relevant B2 inter-
metallics. We believe this warrants a brief discussion
on the relative chemical stability of the B2 structure
and its relation to antiphase boundary energies. It is
rather noteworthy that within Fig. 4 the material sys-
tems with the largest antiphase boundary energies are
B2 intermetallics composed of two transition metal el-
ements: HfRu, TiFe, and TiRu. Of course, a higher an-
tiphase boundary energy implies that the pristine B2 or-
dering is significantly more stable relative to alternative
disordered atomic configurations. When the B2 is com-
posed of two transition metals, the reason for this high
stability can be understood based on the expected d − d
orbital interactions between these two elements. In fact,
this concept has been explored thoroughly by Brewer40,41

based on a metallic bonding theory originally proposed
by Engel.42 In short, the theories of Engel and Brewer
lead to a generalization of the Lewis acid-base theory to
the covalent bonding of intermetallics. Using HfRu as an
example, one can see that the d2s2 electron configura-
tion of Hf along with the d76s1 electron configuration of
Ru implies that, upon reacting, Ru can utilize Hf’s empty
d orbitals to produce an extremely stable electron con-
figuration that includes 10 bonding d orbitals. Consid-
ering Fe is isolectronic to Ru and Ti is isoelectronic to
Hf, this same schematic of the bonding holds true for
TiRu and TiFe. The only difference in TiRu and TiFe is
the fact that 3d transition metals will have d orbitals that
are much less exposed relative to their 4d or 5d counter-
parts. The stabilizing effect will therefore be less than
the effect present within HfRu – as reflected by the lower
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FIG. 6. Projected crystal orbital Hamilton populations (pCOHPs) for TiFe (a), TiRu (b), and HfRu (c). Bonding within these
material systems are clearly due to d–d orbital interactions between the two transition metals. All three of these material systems,
upon bonding, possess a fully occupied set of d–orbitals, which explains their significantly large energy penalties associated with
disordered atomic configurations such as the 1

2
⟨111⟩{110} antiphase boundary. The energy penalty associated with antiphase

boundary formation increases from left to right as the d orbitals become more chemically active within the larger elements that are
isoelectronic to either Ti or Fe.

antiphase boundary energies of TiFe and TiRu relative
to HfRu. This phenomenon is beautifully captured by
the respective pCOHPs (see methods for calculation de-
tails) of TiFe, TiRu, and HfRu shown in Fig. 6. Within
all three of these material systems the Fermi energy sits
between a set of “bonding/antibonding” orbitals created
via d–orbital hybridization of the two transition metals –
implying all three of these B2 intermetallics are highly
stable. The gap between the “bonding/antibonding” or-
bitals, which is largest for HfRu and smallest for TiFe,
confirms that the d orbitals of Hf and Ru are much
more exposed than their 3d transition metal analogues
– prompting HfRu to be the most stable of the B2 com-
pounds studied within this contribution.

IV. CONCLUSIONS

In this study we have extended the diffuse multi layer
fault model to the B2 intermetallic by identifying prox-
imate structures that reliably predict the energy penalty
associated with the formation of a 1

2 ⟨111⟩{110} antiphase
boundary. The model has been used to study the impact
alloying has on antiphase boundary energy within pseu-
dobinary B2 intermetallics Hf1−xTixRu and Hf1−xAlxRu.
Antiphase boundary energies are sensitive to composi-
tion, thereby influencing the plastic deformation within
these B2 intermetallics. This is particularly significant
for elevated operating temperatures where it is expected

that chemical segregation at the fault will prompt diffu-
sion mediated deformation processes. We also employ
anisotropic elasticity theory to study fault widths of an-
tiphase boundaries bounded by either two 1

2 ⟨111⟩ partial
dislocations (a total Burgers vector of ⟨111⟩) or a 1

2 ⟨1̄1̄1⟩
and 1

2 ⟨111⟩ partial dislocation (a total Burgers vector of
⟨001⟩). While the fault width of an antiphase boundary
appears to be fairly insensitive to changes in composition
for the systems studied here, the fault widths across com-
position space for B2 intermetallics highlights two key
points: (i) dissociation of ⟨111⟩{110} dislocations into
partials separated by a large fault width does not seem to
unambigously determine why the ⟨111⟩{110} slip mode
is favored in certain intermetallics and (ii) ⟨001⟩ Burg-
ers vectors should rarely be expected to dissociate into
well defined partials because of the significant attractive
forces caused by the opposite signed edge components
of the expected 1

2 ⟨1̄1̄1⟩ and 1
2 ⟨111⟩ partials. Lastly, we

point out the role covalent bonding can play in stabiliz-
ing particular B2 intermetallics – specifically those that
are formed between two transition metal intermetallics
such as TiFe, TiRu, and HfRu. A set of fully occupied
d orbitals can be expected upon the reaction of the two
constituent elements within any three of these binary in-
termetallics via electron count, consistent with the the-
ory developed by Brewer and Engel. We believe these
findings will certainly prove useful in the pursuit of iden-
tifying a high temperature, B2 strengthened, bcc refrac-
tory based super alloy that outperforms conventional Ni-
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based superalloys.
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VI. APPENDIX

Within this appendix we provide the coordinate sys-
tems, and the corresponding expressions, that are re-
quired to determine the potential splitting width be-
tween the two partials that would bound an antiphase
boundary for Burgers vectors of ⟨111⟩ and ⟨001⟩ rele-
vant to the plastic deformation of B2 intermetallics on
the {110} plane. Both problems require the dislocation
line to be along the z-axis of the coordinate system. The
solution for the stress fields of the ⟨111⟩ screw disloca-
tion can then be found based on the work of Stroh36 and
Head.37 The stress field for the ⟨001⟩ screw dislocation
follows from the work of Eshelby et al.35

A. Separation of the energy factor into a screw and edge
component

When the dislocation line of a general straight dis-
location is oriented along a coordinate axis that is of
evenfold symmetry (conventionally the z-axis) the stress
fields generated by the dislocation can be separated into
an edge component and a screw component. The poten-
tial splitting width between partials bounded by a stack-
ing fault-like defect can then be expressed as:

r =
1

2πγAPB
(⃗bs1 · b⃗s2Ks + b⃗e1x · b⃗e2xKex + b⃗e1y · b⃗e2yKey )

(5)
Where γAPB is the energy penalty associated with form-
ing the stacking fault-like defect and b⃗si are the vectors
corresponding to the portion of the two partials that are

along the dislocation line and b⃗ei correspond to the por-
tion of the two partials that are perpendicular to the dis-
location line. The dot product is used because disloca-
tions of opposite direction attract while dislocations that
point in the same direction repel. Ks and Ke are of-
ten called ”energy factors” and they are a function of the
elastic constants within the coordinate system relevant
to the dislocation of interest. For dislocation lines that
are along an axis of evenfold symmetry these expressions
take the following form:

Ks = (C
′

44C
′

55 − C
′

45C
′

45)
1/2 (6)

Kex = (C̄
′

11 + C
′

12)(
C

′

66C̄
′

11 − C
′

12

C
′
22(C̄

′
11 + C

′
12 + 2C

′
66)

)1/2 (7)

Key = (C̄
′

11 + C
′

12)(
C

′

66C̄
′

11 − C
′

12

C
′
11(C̄

′
11 + C

′
12 + 2C

′
66)

)1/2 (8)

Where C̄
′

11 = (C
′

11C
′

12)
1/2. The elastic tensor in the ref-

erence frame of insterest is generated based on a trans-
formation matrix Q where:

C
′
= QTCQ (9)

and Q is built from the rotation matrix, R, that rotates
from conventional reference frame X to the relevant ref-
erence frame X

′
:

R = X
′
X−1 (10)

Q in matrix form is then:

Qmnkl = RkmRln (11)

and C
′

ijkl is:

C
′

ijkl = QT
ijghCghmnQmnkl (12)

B. Potential ⟨001⟩ screw dislocation dissociation

The reference frame relevant to the ⟨001⟩ screw dislo-
cation is simply the conventional reference frame used
to describe the cubic elastic constants which means Eq.
(6) – Eq. (8) simplify to the conventional elastic con-
stants of a cubic crystal. The slip plane intersects the
z-axis and makes a 45 degree angle with the x and y
axes. A schematic of the dissociation is shown in Fig. 7.
Working through the geometry, the final expression for
the expected splitting width between partial dislocations
is:

r =
|⃗b001s |2

2πγAPB
(
Ks

4
− [

Kex +Key

4
]) (13)
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C. Potential ⟨111⟩ screw dislocation dissociation

The reference frame relevant to the ⟨111⟩ screw dis-
location, shown schematically in Fig. 7, has the z-axis
aligned with the [111] direction, the x-axis along [2̄11],
and the y-axis along [1̄10]. The analytical form for the en-
ergy factor of a screw component, based on on the elastic
constants rotated into this reference frame (following Eq.
12), was worked out by Head37 based on work originally
published by Stroh36 and is the following:

Ks =
M

S44
(14)

M = (
S11S44

S11S44 − S15S15
)1/2 (15)

S11 =
C

′

11C
′

44 − C
′

15C
′

15

2(C
′
11 + C

′
12)(C

′
44C

′
66 − C

′
15C

′
15)

(16)

S15 =
−C

′

15

2(C
′
44C

′
66 − C

′
15C

′
15)

(17)

S44 =
C

′

66

C
′
44C

′
66 − C

′
15C

′
15

(18)

The expression for the expected splitting width between
partial dislocations in then:

r =
|⃗b111s |2

8πγAPB
Ks (19)
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25R. Dronskowski, P. E. Blöchl, Crystal orbital Hamilton populations

(COHP): energy-resolved visualization of chemical bonding in solids
based on density-functional calculations, J. Phys. Chem. 97 (1993)
8617–8624. doi:https://doi.org/10.1021/j100135a014.

26V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, Crystal orbital
Hamilton population (COHP) analysis as projected from plane-wave
basis sets, J. Phys. Chem. A 115 (2011) 5461–5466. doi:https:

//doi.org/10.1021/jp202489s.
27S. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, Analytic

projection from plane-wave and PAW wavefunctions and application
to chemical-bonding analysis in solids, J. Comput. Chem. 34 (2013)
2557–2567. doi:https://doi.org/10.1002/jcc.23424.

28S. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, LOB-
STER: A tool to extract chemical bonding from plane-wave based
DFT (2016). doi:https://doi.org/10.1002/jcc.24300.

29G. Kresse, J. Furthmüller, Efficient iterative schemes for ab-initio
total-energy calculations using a plane-wave basis set, Phys. Rev. B
54 (1996) 11169. doi:10.1103/PhysRevB.54.11169.
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