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Dr. Don R. Collins, Chairperson 

 

 

 

Different air pollutants have unique properties, spatial and temporal distributions that 

require different approaches to accurately measure and characterize them. This dissertation 

presents four different approaches for characterizing air pollutants in various regions using 

unmanned aerial systems (UAS), environmental chambers, and mobile laboratories.  

An onboard sensor based UAS measurement system was developed to measure vertical 

ozone and particulate matter profiles in Riverside, CA from August to November 2020. 

The profiles were compared with ground monitoring and Community Multiscale Air 

Quality (CMAQ) model simulations. The study investigated the sensitivity of the model to 

various factors. The study found biases in the default version of the model's planetary 

boundary layer (PBL) and NOx emissions contributing to the model's bias. 
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The second project aimed to develop a solution for quantifying methane emissions using 

UAS. The sample collection system with wind estimation was validated for locating, 

identifying, and quantifying methane emissions. The results demonstrated the real potential 

of UAS for improving our understanding of methane emissions. 

The third project studied new particle formation (NPF) and growth using the Captive 

Aerosol Growth and Evolution (CAGE) chamber system at the DOE Atmospheric 

Radiation Measurement (ARM) Program's Southern Great Plains (SGP) site in Oklahoma. 

The study investigated the sensitivity of particle growth to injected seed particle 

composition, liquid water content, and precursor gases. The time dependence of the growth 

rate was quantified. The study investigated the sensitivity of particle growth to injected 

seed particle composition, liquid water content, and precursor gases. 

The fourth project was conducted in the Houston Metropolitan area in the summer of 2022. 

A mobile laboratory was deployed at five sites over various atmospheric conditions to 

gather data on particle size distribution, CCN activity, aerosol optical properties, aerosol 

composition, trace gas, and meteorological parameters. The collected data was analyzed to 

investigate the spatial and temporal variability and meteorological impact on new particle 

formation and growth. 

These approaches using UAS, environmental chambers, and mobile laboratories are 

helpful for improving air pollution characterization. The results of these studies can be used 

to develop targeted and effective air quality control policies, and to provide insights for 

more accurate climate modeling. 
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1. Introduction 
 

Air pollution has detrimental effects on human health, environment, and climate. Despite 

the significant progress made over many years, there are still various regions worldwide 

where particulate matter and ground-level ozone pose substantial risks to health. Scientific 

research has proven that exposure to PM and ozone can lead to permanent respiratory 

damage and even premature deaths (Abbafati et al., 2020). Methane, a long-lasting 

greenhouse gas, poses a significant threat to both present and future generations by 

contributing to climate change and ocean acidification (Turner et al., 2019). Atmospheric 

aerosols influence air quality, human health, the ecosystem, and climate (IPCC, 2021). 

Aerosols have an impact on climate by either absorbing or scattering solar radiation, or by 

indirectly influencing cloud properties, particularly when they reach a size of 50-100 nm, 

at which point they can act as cloud condensation nuclei (CCN) (Seinfeld and Pandis, 

2016). The number and activity of CCN are crucial factors in understanding the climatic 

effects of aerosols. 

Understanding, predicting, and potentially mitigating the negative effects of air pollutants 

rely on comprehensive quantification and characterization under a wide range of 

conditions. Traditionally, fixed-location ground measurements and satellite observations 

have been used to measure gas and particle-phase air pollutants. However, ground 

observations are limited in their ability to provide spatially resolved measurements over a 

large area and capture three-dimensional data under varying emission scenarios. Satellite 
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observations are insufficient in providing high resolution sub-region level geographically 

resolved insights. Therefore, there is a growing demand for portable, cost-effective, and 

time-efficient atmospheric measurement techniques to address these limitations. 

Chapter 2 presents an unmanned aerial system (UAS) based measurement system using 

onboard ozone and particulate matter (PM) sensors. It is common biases exist between 

model-simulated ozone and ground site measurements (J. J. Guo et al., 2018; Travis et al., 

2016). Previous studies have linked the complex patterns of vertical transport of ozone to 

model simulation performance (Akimoto et al., 2019; Fast et al., 2014; Lin & McElroy, 

2010; Li & Rappenglueck, 2018). The 327 vertical ozone and PM concentration profiles 

from a 4-month-long daily routine measurement are compared with monitoring station 

measurements and Community Multiscale Air Quality (CMAQ) model simulated results 

statistically. The discussion includes the planetary boundary layer (PBL) estimated from a 

ceilometer to understand the potential reason for the model bias related to the vertical 

structure in meteorology. Additionally, the study investigates the sensitivities of the model 

results to factors such as PBL, eddy diffusivity, NOx, and VOC emissions. 

In Chapter 3, an Aircore-based UAS sample collection system was developed to measure 

methane emissions from dairy sources. Methane is a powerful greenhouse gas that is 

contributing to climate change and is mainly caused by human activities such as oil and 

gas extraction, solid waste management, and agriculture (Duren et al., 2019). Conventional 

methods for identifying greenhouse gas sources use fixed or mobile sensors, which are less 

accurate and sensitive compared to cavity ring-down spectroscopy. Moreover, ground 
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measurements cannot track how greenhouse gas concentrations and weather variables 

change within the PBL, which is critical for estimating emission rates. UAS provides an 

affordable and easy-to-operate approach for obtaining air samples for more accurate 

analysis. By using UAS's rotational kinematics parameters to estimate winds, the methane 

emissions were assessed for dairy sites in Central California. 

Chapter 4 discussed the small particle growth at the U.S. DOE Southern Great Plains field 

site using ambient air captive aerosol chambers. New particle formation (NPF) and growth 

influence the solar radiation budget and the microphysics and properties of clouds (Seinfeld 

and Pandis, 2016). The traditional environmental chambers for studying small particle 

growth are limited in that they typically only cover one or a small number of precursor 

gases, leading to large variations between different locations. To address this, the Captive 

Aerosol Growth and Evolution (CAGE) chamber system was developed and deployed to 

investigate the growth rate over a 4-month long campaign, as well as the sensitivity of 

particle growth to the injected seed particle composition, liquid water content, and 

precursor gas additions. 

Chapter 5 explores studying atmospheric aerosols using mobile platforms. The Tracking 

Aerosol Convection Interactions Experiment (TRACER) experiment aimed to map aerosol 

properties in the Houston Metropolitan area through a comprehensive series of aerosol, 

gas, and meteorological measurements. Measurements were taken at five different sites, 

and various atmospheric conditions were covered, including both local and transported 

emissions and different meteorological phenomena like precipitation and convection. The 
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data collected during the experiment was analyzed to explore spatial variability and 

investigate the impact of meteorological factors on new particle formation and growth, as 

well as CCN activity. 
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2. Unmanned Aerial System-Based Vertical Ozone and 

Particulate Matter Measurements and Model Comparisons in 

Riverside, CA 
 

2.1. Introduction 

Air pollution is a major health risk factor globally (Abbafati et al., 2020). Ground-level 

ozone is one of the six criteria air pollutants regulated by the USEPA because of its 

adverse impacts on people’s health.  Globally, it is linked to over one million premature 

deaths annually (Jerrett et al., 2009; C. et al., 2010). Moreover, tropospheric ozone is a 

short-lived climate pollutant that contributes to global warming (Stocker et al. 2013). It is 

mainly formed in the atmosphere through secondary chemical reactions involving ozone 

precursors including NOx, CO, VOCs (volatile organic compounds), and PANs 

(peroxyacetyl nitrates) (Seinfeld and Pandis, 1998).  

Southern California is one of the most severely polluted regions in the United States, 

suffering from excessive tropospheric ozone pollution. The concurrent state-wide 

tightening of VOCs and NOx emissions regulations have made great progress to reduce 

the maximum hourly average mixing ratios of ozone from 490 ppb to 140 ppb during the 

past 30-year period (California Air Resources Board, 2019). However, several studies 

(Gaudel et al., 2018; Jose Granados-Munõz & Leblanc, 2016) show the ozone 

concentration is continuing to increase. Despite significant regulatory efforts, in 2020 the 

South Coast Air Basin still experienced 142 days exceeding the daily maximum 8-hour 

average ozone National Ambient Air Quality Standard (NAAQS) (California Air 
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Resources Board, 2020). The challenge to understanding ozone pollution is linked to the 

photochemical reactions of various pollutant sources, and the complicated transport 

mechanism due to the terrain of California’s South Coast Air Basin (SoCAB).  

The challenge to reach attainment of the 8-hour ozone NAAQS using current control 

strategies motivates the need to reconsider mitigation scenarios. Comprehensive 

atmospheric models have contributed further insights through their prediction of the 

response of surface ozone to emissions control strategies. However, biases commonly 

exist between model simulated ozone and ground site measurements (J. J. Guo et al., 

2018; Travis et al., 2016). Previous studies have found that complex patterns of vertical 

transport of ozone affect model simulation accuracy significantly (Akimoto et al., 2019; 

Fast et al., 2014; Lin & McElroy, 2010; Li & Rappenglueck, 2018). 

Near-surface and aloft measurements are often used to quantify uncertainties in model 

simulations (Mena-Carrasco et al. 2007; Tang et al. 2017; Hu et al. 2012; Cuchiara et al. 

2014). There have been dozens of large-scale campaigns in Southern California, 

including the Southern California Ozone Study (SCOS) and the California Research at 

the Nexus of Air Quality and Climate Change Study (CALNEX). In those and other 

previous studies, the deployment of airborne instrumentation is limited in the research 

domain and duration, and generally restricted to heights of kilometer level. Recently, the 

surface to a few hundred-meter layer void is being filled with the development of 

unmanned aerial vehicle (UAV) technology for earth science applications. Chen et al., 

(2019) and Area et al., (2019) have carried out ozone vertical profile measurements using 
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UAVs over Shanghai and Amazonia urban areas, respectively. Their successful results 

highlight the value of UAV measurements for air composition characterization and 

vertical distribution assessment. 

In this chapter, we will discuss the results from a 4-month-long daily campaign to 

measure UAV-based vertical profiles of ozone and particulate matter. The UAV was 

deployed from August to November 2020. Resulting are 327 vertical profiles from the 

surface to 500 m above ground level (AGL) collected in the early mornings and late 

afternoons when the atmosphere is generally most stratified. The measured ozone 

concentration profiles are statistically compared with monitoring station measurements 

and Community Multiscale Air Quality (CMAQ) model simulated results. The height of 

the top of the planetary boundary layer (PBL) estimated from a ceilometer is leveraged to 

help understand the potential contributors to CMAQ model bias related to vertical 

structure in meteorology. CMAQ sensitivities to factors such as PBL, eddy diffusivity, 

NOx emissions, and VOC emissions are investigated due to their importance in vertical 

pollution profiles in the model. 

2.2. Methods 

2.2.1. Site Description 

The city of Riverside is located in Southern California, approximately 80 km east of 

downtown Los Angeles. It has a population of 314,998 over an area of 211.17 km2. The 

mean accumulated precipitation from August to November in 2020 is 0 mm. The monthly 

mean surface air temperature during the measurement period is between 17.72 °C and 
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26.22 °C. The launch site (Figure 2-1) is inside the University of California, Riverside’s 

Agricultural Operations research station in Riverside, CA (33.965083, -117.342417). The 

Agricultural Operations area is mainly covered by citrus trees and various other plants. The 

launch site is located in suburban Riverside and is approximately 1.2 km southwest of U.S. 

Interstate 215.Riverside is located in Southern California, about 80 km east of downtown 

Los Angeles. It has a population of 314,998 over an area of 211.17 km2. The mean 

accumulated precipitation from August to November in 2020 is 0 mm, with the mean 

surface air temperatures between 17.72°C and 26.22°C. The launch site (shown in Figure 

2-1) for the UAS used in the study is situated inside the Agricultural Operations Field at 

the University of California, Riverside in Riverside, CA (33.965083, -117.342417). The 

field is primarily composed of citrus trees and other vegetation and is situated 

approximately 1.2 km southwest of Interstate Highway 215. 
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Figure 2-1 (Top) Satellite image of the launch site in Riverside, California, United States. (Bottom) 

Depiction of the launch site relative to the campus of University of California, Riverside, and the 

interstate highway 215. 

2.2.2. Platform and Instrumentation 

In this study, a customized hexacopter unmanned aerial vehicle Matrice 600 Pro (DJI 

Innovations, China) was used as the flight platform. It has a maximum flight duration of 

about 30 minutes with a maximum payload weight of 5 kg. Flight records including flight 

time, speed, altitude, latitude, and longitude information were retrieved from the DJI GO 

app. 

A Personal Ozone Monitor (POM) (2B Technologies, Inc., Colorado, USA) was mounted 

inside an enclosure with a short, perfluoroalkoxy-lined inlet tubing with ¼” outside 

diameter, extending outside and underneath the UAV’s body. The ultraviolet absorption-

based POM has a precision of the higher of 1.5 ppb or 2% of the reading. POM’s default 
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adaptive filter to average the data was turned off to obtain the raw data. The measurement 

time interval was set to be 2 s with a sampling flow rate of 0.8 L/min to obtain a better 

vertical resolution, which is estimated to be 1.2 m for the flight speed of 0.6 m/s. The raw 

data were averaged over a sliding window of length 30 across neighbouring elements, and 

outliers were removed.  

Particulate matter concentration was measured using a commercially available MINIMA 

wearable sensor (Applied Particle Technology, California, USA). The MINIMA measured 

PM1, PM2.5, and PM10 every 15 s. The data were uploaded to its vendor-hosted web 

interface via a mobile hotspot in real-time.  

Temperature and relative humidity measurements were collected using a Portable 

temperature and humidity data logger OM-141 (Omega Engineering Inc., Connecticut, 

USA). Its accuracy is ± 1.8°F (1°C) for temperatures ranging from 14° to 104°F (-10° to 

40°C) and ± 3% for relative humidity ranging from 20 to 80%. The temperature and relative 

humidity data were used to validate modelled PBL heights. A Personal Ozone Monitoring 

(POM) (2B Technologies, Inc., Colorado, USA) was mounted inside an enclosure with a 

short PFA inlet tubing of ¼” OD extending outside under the UAS’s body. The ultraviolet 

absorption-based ozone monitoring has a precision of 1.5 ppb or 2% of the reading. The 

instrument’s default adaptive filter to average the data was set to be off to get the raw data. 

The measurement time interval was set to be 2 s at a sampling flow of 0.8 LPM to obtain 

a better vertical resolution, which was estimated to have a vertical resolution of 1.2 m for 
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the flight speed of 0.6 m/s. The raw data was moving averaged with a window size of 30 

with the negative values and outliers were removed.  

The particulate matter was measured using a commercially available MINIMA personal 

exposure particle sensor (Applied Particle Technology; APT, Missouri, USA). The 

monitoring measures PM1, PM2.5, and PM10 every 15 seconds. The data were uploaded 

to its vendor-hosted web interface via a mobile hotspot in real time.  

The temperature and relative humidity measurements were conducted using a Portable 

Temperature and Humidity Data Logger OM-141 (Omega Engineering Inc., Connecticut, 

USA). Its accuracy is ±1°C from 10° to 40°C and ±3% from 20 to 80% RH. Its accuracy 

is ±1.8°F (1°C) from 14° to 104°F (-10° to 40°C) and ±3% from 20 to 80% RH. The 

temperature and relative humidity data were used to help validate PBL heights.  

 

Figure 2-2 Pictures of (a) DJI Matrice 600 Pro, (b) Personal Ozone Monitoring (POM), (c) Portable 

Temperature and Humidity Data Logger OM-141, (d) MINIMA from Applied Particle Technology. 
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2.2.3. UAS Flights 

Between 16 August and 30 November 2020, 376 profiles were measured. Routine flights 

were conducted every day both early in the morning around sunrise and late in the 

afternoon around sunset as permitted by weather conditions. The flight operation time is 

shown in Figure 2-3 with the sunrise and sunset time as references. The UAV was 

controlled using the DJI GO app to fly a round trip vertically to 500 meters above ground 

level at a constant vertical velocity of 0.6 m/s. The flights during the campaign were 

authorized by the Federal Aviation Administration (FAA). From August 1st to November 

31st, 2020, a total of 376 profiles were obtained through daily routine flights conducted in 

the early mornings around sunrise and late afternoons around sunset, subject to favorable 

weather conditions. The UAS utilized the DJI GO app and flew a straight path vertically 

up to 500 meters above ground level at a constant speed of 0.6 m/s. The FAA approved all 

flights carried out during the campaign. 

 

Figure 2-3 Flight time and sunrise/sunset time (PDT).  
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2.2.4. CMAQ Model Description 

The Community Multiscale Air Quality (CMAQ) model was used to simulate vertical 

ozone profiles for comparison with flight measurements. We chose CMAQ, as it is 

widely used for NAAQS compliance purposes. CMAQ was used to simulate ozone 

mixing ratios for each day of August to November 2020.  Baseline emissions were 

modified accordingly to capture the reductions in traffic during the lockdown periods of 

the COVID-19 pandemic. The model was compiled and run with the GFortran compiler 

on a dual Xeon workstation running the Ubuntu operating system. The model was run 

with a configuration provided by SCAQMD that has 4 km horizontal grid spacing and 11 

vertical layers over SoCAB.  

The SAPRC07tc_ae6_aq chemical mechanism option (SAPRC07tc photochemical 

mechanism, aerosol module 6, and aqueous chemistry) was used due to its relevance to 

Southern California NOx-VOC-ozone regimes. Gridded emission inputs of 73 air 

pollutants were provided as daily emission files with hourly temporal resolution. Details 

of the SAPRC-07 gas-phase mechanism and an overview of CMAQ’s governing 

processes may be found in the works of William P.L. Carter and Byun and Schere, 

respectively (Carter 2010; Byun and Schere 2006). The Weather Research and 

Forecasting (WRF) model version 3.9 was used to generate meteorological inputs for the 

CMAQ simulations. The optimal WRF options for SoCAB are USGS land use, thermal 

diffusion surface layer scheme (Huang, Huang, and Huang 2014), and Yonsei University 

planetary boundary layer scheme (Hong, Noh, and Dudhia 2006). We combined 
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initialization data from the North American Mesoscale (NAM) Forecast System with 

NOAA high-resolution sea surface temperature (SST) nudging (Reynolds et al. 2007) to 

improve the accuracy of meteorological inputs.  

The finest modeling domain has a horizontal grid spacing of 4 km (domain 3), covering 

fully the South Coast Air Quality Management District (SCAQMD) region (Figure 2-4), 

and domain 3 consisted of 156 x 102 grids nested one way within domains 1 (36 km) and 

2 (12 km). More information on baseline model performance using this configuration can 

be found in a preceding study (Do et al., 2023). 

 

Figure 2-4 The map shows the target area SoCAB in thick black lines. 

The 2020 emission correction was carried out using two-step calculations. 

1st step: Estimating 2020 emissions from AQMD 2019 emissions and AQMD emission 

projection   
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The input emissions for CMAQ 2020 simulation were modified from the AQMD 2019 

inventory. The linear correction factor (Eq. 1) was applied to 2019 emissions based on the 

AQMD emission projection from 2012 to 2034 to obtain 2020 estimated emissions. 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =
2020 𝑒𝑚𝑖𝑠 − 2019 𝑒𝑚𝑖𝑠

2019 𝑒𝑚𝑖𝑠
(1) 

The correction factor was carried out for seven air pollutant groups (total organic gas, 

reactive organic gas, CO, NOx, SOx, NH3, PM). 

2nd step:  Correcting for traffic reduction. 

The lockdown due to the pandemic has shown great traffic reduction, especially from 

March to May 2020. AQMD projection did not consider the reduction in traffic which 

decreases mobile emissions. The weekly traffic change in 2020 was provided from the 

UCR emission group which recorded the weekly changes from January 1st to September 

30th, 2020, for the total flow, flow change, speed change, and observed percent of 2991 

locations in Southern California. Since the traffic data were not evenly distributed over the 

South Coast, we used K-Nearest Neighbors to obtain the traffic data for the grid cell 

(location) that had no more than 5 data points. For the grid cell that had more than 5 data 

points, we first normalized with the traffic volume and averaged the normalized traffic data. 

2.2.5. Ground Observation Data 

Ozone measurements from the South Coast Air Quality Management District (SCAQMD) 

Riverside-Rubidoux air monitoring site (33° 59' 58"N 117° 24' 57"W) for comparative 

analyses. The monitoring site is approximately 8 km northwest of the UAV launch site. 

Data were downloaded via the Air Quality and Meteorological Information System, which 
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is managed by the California Air Resources Board (CARB) 

(http://www.arb.ca.gov/aqmis2/aqdselect.php). Observed boundary layer heights are 

estimated using data from a ceilometer (Vaisala CL51, Vaisala Inc., Finland), also operated 

at the Riverside-Rubidoux air monitoring site. Boundary layer heights were assumed to be 

the height above ground level at which the negative gradient of the backscatter coefficient 

was greatest.  

2.3. Results and Discussion 

2.3.1. Vertical Profile Patterns 

A total of 376 profiles were collected in this study. A representative profile for the 

morning flights is shown in Figure 2-5, with the steep increase in ozone mixing ratio by 

more than 60 ppb across 100 to 300 m in altitude indicating the boundary layer. The 

PM2.5 and PM10 concentrations changed by 10 µg/m3 at the same altitude range, while the 

change in PM1 was not as pronounced.  

Another representative example of the morning profile is shown in Figure 2-6. In this 

profile, the ozone mixing ratio shows a smooth change from about 20 ppb at the surface 

to over 80 ppb at 500 m AGL. This indicates an effective diffusivity when the ozone 

formation is slower than the depletion. The PM profiles show a similar trend to the 

preceding example, with PM2.5 and PM10 both decreasing by about 10 µg/m3 at the 

altitude range of 100 to 200 m.  
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Figure 2-5 Vertical profiles of (a) ozone concentration, (b) PM1, PM 2.5 and PM 10 from surface to 

500 m on 4 September 2020 at 7:48 (PDT). 

 

 

Figure 2-6 Vertical profiles of (a) ozone concentration, (b) PM1, PM 2.5 and PM 10 from surface to 

500 m on 4 October 2020 at 6:59 (PDT). 

Late afternoon profiles typically show no obvious ozone mixing ratio gradient. In the 

Figure 2-7 profiles, the ozone mixing ratio is nearly constant at 75 ppb from the surface 
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to 500 m AGL. This is believed to result from efficient vertical mixing accompanying 

boundary layer growth during the daytime. The PM2.5 and PM10 profiles increased 

gradually by about 10 µg/m3 with increasing altitude. The PM profiles show less 

sensitivity to the PBL height change compared to the ozone mixing ratio profiles in the 

above examples.  

 

Figure 2-7 Vertical profiles of (a) ozone concentration, (b) PM1, PM 2.5 and PM 10 from surface to 

500 m on 21 October 2020 at 17:54 (PDT). 

2.3.2. Model Comparisons With the Ground and UAS Measurements 

Ozone vertical profiles were compared to CMAQ simulated results and ground 

observations from the Riverside-Rubidoux air monitoring site. Figure 2-8a shows the 

UAV-measured data and the hourly simulated data plotted with the ground monitoring 

hourly data for the same period along with the linear regression fit. The average of the 

UAV measurements below 5 meters and CMAQ’s bottom-most layer (height typically 

under 18 m above ground level) are considered to be the ground-level concentrations in 
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this analysis. The R2 for the relationship between the UAV and monitoring site data 

(0.88) is higher than that for the relationship between the CMAQ and monitoring site data 

(0.66), suggesting a better accuracy with UAV measurement than CMAQ simulation. 

Compared with CMAQ, the UAV frequency distribution matches better with the ground 

monitoring observations (Figure 2-8b). The box plot in Figure 2-9 reveals that CMAQ is 

biased positively near the ground in this case. The gradient of the vertical profile in the 

simulation is smaller than that of the UAV observations. 

 

Figure 2-8 (a) The comparison of UAS measured and model simulation compared with the monitoring 

station data recorded at the same time. (b) The frequency distribution of the UAS measured and model 

simulation data compared with the monitoring station observations. 
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Figure 2-9 The comparison of UAS measured and model-simulated ozone concentration box plots. 

The centerline inside the box is the median, the left, and right of the box are the first and third 

quartiles, respectively, and the lower and upper whiskers are the range of the data. Outliers are 

plotted as separate dots. 

 

2.3.3. Evaluation and Model Inter-Comparisons With Modifications 

Ground-level ozone mixing ratio is influenced by local ozone production, chemical and 

depositional loss, and mixing in both horizontal and vertical directions. We posit that the 

bias from mixing in the vertical direction is mainly controlled by the model 

representations of the PBL. Ozone is formed via a series of photolytic reactions involving 

NOx and VOCs. The daily maximum surface ozone mixing ratio varies nonlinearly with 

the precursor concentrations. This process is illustrated in Figure 2-10, highlighting the 

nonlinear relationship between the three compounds. Therefore, the sensitivity of 

modeled ozone mixing ratio to PBL, NOx concentration, and VOC concentration is 

explored here by modifying key parameters: PBL height, eddy diffusivity, NOx 

emissions, and VOC emissions.   
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Figure 2-10 The ozone production as a function of NOx concentration shown on three levels of VOC. 

 

2.3.4. Impact of PBL Change on Ozone 

The Yonsei University (YSU) planetary boundary layer scheme was used here as the 

baseline scheme to generate the original PBL. Figure 2-11 shows the default version of 

PBL height generated in WRF and the estimated PBL height using the ceilometer’s 

backscatter coefficient measurements shown on the density graph. The PBL height is 

estimated to be where the backscatter coefficient’s gradient is largest. For reference, a 

study based on over a decade-long dataset (Rahn and Mitchell 2016) measured the PBL 

height using commercial aircraft soundings at the Ontario International Airport 

approximately 25 km from the UAV measurement site. That study found a median PBL 

height of approximately 400 m in the early morning and 500 m in the late afternoon This 

agrees with the PBL heights estimated in this study using the ceilometer data; however, 

there were discrepancies in modeled PBL height determined by the YSU scheme.  
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As surface concentrations vary inversely with the PBL height, a lower PBL height would 

be associated with shallower vertical mixing and higher NOx and VOC concentration. In 

the daytime, higher precursor concentrations will generally lead to increased ozone 

production, while higher NOx concentration at night leads to overall consumption of 

ozone via the reaction between NOx and O3. PBL height was adjusted by applying a 

global correction factor to better reflect the ceilometer observations, which made the 

modeled PBL height higher in the nighttime and lower in the daytime. Compared to the 

default PBL scheme, the modified PBL height led to a 2-ppb increase and a 0.6 ppb 

increase in the mean ground-level ozone for morning and afternoon, respectively (Figure 

2-12).  

 

Figure 2-11 PBL default version of used in CMAQ (red stars) and modified PBL estimated using the 

ceilometer’s backscatter coefficient measurement (white stars) averaged over the measurement time 

series. 
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Figure 2-12 The averaged simulated ozone diurnal cycle at Rubidoux based on all measurement days. 

 

2.3.5. Impact of Eddy Diffusivity Change on Ozone 

Considering that the YSU scheme is based on bulk Richardson number rather than eddy 

diffusivity, to further examine the effect of vertical mixing in the model, we decreased 

the eddy diffusivity by 20%. The eddy diffusivity is expected to have a similar impact as 

the PBL height in that decreasing diffusivity would cause increases in ground-level 

precursor concentrations. The mean surface ozone mixing ratios were 1.8 and 0.2 ppb 

lower than the default version of the simulation in the morning and afternoon, 

respectively (Figure 2-13). The decrease in the afternoon ozone production is the result of 

the complex nonlinear dependencies of the ozone production on NOx and VOC 

concentration. Referencing Figure 2-10, a 20% decrease in eddy diffusivity might lead to 

a more pronounced change in NOx and VOC concentration (A → D). However, the 

modeled profile gradients in the morning still don’t show much change due to the 

modification of diffusivity. 
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2.3.6. Impact of Emissions’ Change on Ozone 

Despite NOx being a significant precursor of O3, its increased concentration in the 

CMAQ simulation might have led to a decrease in simulated ozone mixing ratio due to 

the dual role of NOx as both a precursor and a sink through NOx titration, as well as the 

potential suppression of net O3 formation caused by high NO2 levels, which deflect the 

initial oxidation of VOC. By increasing NOx emissions by 30% and retaining the PBL 

modification (Figure 2-10, A → E), the mean ground-level ozone mixing ratio decreased 

by 6.1 ppb and 3.1 ppb in the morning and afternoon, respectively, compared with the 

results from the PBL-only modification. The morning ozone reduction results from the 

enhanced NOx titration at night. When nitric acid dominates the sink of odd hydrogen, 

OH decreases with increasing NOx, and ozone production is weakened with less OH. 

When NOx increases with constant VOC, the ozone production initially increases and 

then decreases in the high NOx scenario (Figure 2-10).  

Increasing VOC emissions by 30% with the modified PBL height increased the morning 

and afternoon ozone mixing ratio by 0.5 ppb and 2.6 ppb, respectively, compared with 

the results from the PBL-only modification. Ozone production increased with the 

increase of VOC at high NOx but enhanced relatively low at low NOx (Figure 2-10, A → 

B). In this case, the ozone formation is contributed mainly by the hydrocarbon-OH 

reactions that increase with increasing VOC emissions as opposed to NOx  having dual 

impacts. 
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Then we increased both NOx and VOC emissions by 30% with the modified PBL height. 

The mean ozone ground mixing ratio decreased by 5.5 and 1.2 ppb in the morning and 

afternoon, respectively, compared with the results from the PBL-only modification. This 

result is the combination of all preceding scenarios (A → D). Ozone formation is favored 

by the VOC enhancement while weakened due to increased NOx at the same time. 

2.3.7. Combined Evaluation 

Figures 2-13 and 2-14 present boxplot summaries for the UAV observations and model 

simulations in the mornings and afternoons for all scenarios, and the fractional bias 

between the UAV measurement and model simulations, respectively. The vertical 

gradients in the box plots don’t change significantly with the change in PBL height. Note 

that the differences between the modifications are largest in the early morning (Figure 2-

14). The variability in the ozone mixing ratio in the late afternoon is relatively small 

(Figure 2-14).  
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Figure 2-13. Comparison of UAV measured and model-simulated ozone mixing ratio for all 

modification scenarios. 
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Figure 2-14. Fractional bias (%) between the UAV measurements and modeled ozone profiles. Results 

are averaged over all profiles. 

 

All the simulations have poor performance for ground-level ozone mixing ratio in the 

morning and better performance at all heights in the afternoon (Figure 2-14). Among all 

the modifications, that which combined modifying PBL, decreasing eddy diffusivity, and 

increasing NOx and VOCs led to the lowest fractional bias of 13.9% for ground-level 

ozone in the morning. However, these modifications rank the second worst for the 

fractional difference of -0.9% in the afternoon. The modified PBL and increased VOC 

simulation has the lowest ground-level fractional bias of 0.2% in the afternoon, while it 

has the largest ground-level fractional bias of 19.6% in the morning. This suggests that 

morning mixing conditions did not have a strong influence on the afternoon 

concentrations. 

We also compared the frequency distribution of NOx concentration extracted from the 

model and that measured at the Rubidoux monitoring station (Figure 2-15). The median 

NOx concentration increased after modifying PBL height, which agrees with the 
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enhanced mixing as expected. CMAQ underestimates NOx concentration significantly 

even after increasing NOx emissions by 30%. The median of the monitoring site 

observation is 5.1 ppb higher than the simulated NOx in the default configuration of 

CMAQ. The underestimation of observed NOx indicates the potential underestimation of 

emissions in the current inventory.  

 

Figure 2-15. The frequency distribution of the NOx concentration of the Rubidoux monitoring station 

and the model simulations. The black vertical lines represent the median concentration of each case. 
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2.4. Conclusions 

We completed a four-month field campaign where daily unmanned aerial vehicle (UAV) 

flights were made to measure vertical ozone and particulate matter profiles from the 

University of California, Riverside’s Agricultural Operations Field from August to 

November 2020. Measured ozone mixing ratio was compared with the ground 

observations from the Rubidoux air monitoring site (SCAQMD) and with CMAQ model 

simulations. Vertical profiles captured the influence of the boundary layer in the early 

morning flights. UAV measurements at low altitude agreed well with the ground 

observations at the air monitoring site. However, CMAQ underestimated surface ozone 

by 11.2 ppb in the afternoon and overestimated it by 11.2 ppb in the morning. PBL height 

estimated from ceilometer data aided our understanding of the potential model biases due 

to meteorology. We conclude that vertical mixing within the PBL plays a large role in the 

surface ozone mixing ratio diurnal cycle. The PBL height observations from the 

ceilometer were lower in daytime and higher in nighttime compared with the modeled 

PBL height. The model simulation had a larger bias near the ground than aloft. We 

performed a sensitivity analysis to NOx and VOC emissions. We found that an increase in 

NOx emission by 30% reduced surface ozone mixing ratios by 6.1 and 3.1 ppb in the 

morning and afternoon, respectively. The extracted NOx concentrations from the model 

were 5.1 ppb lower than ground observations on average. Inversely, ozone mixing ratios 

increased with increasing VOC emissions. Surface mean ozone mixing ratio was 0.5 ppb 

and 2.6 ppb higher in the morning and afternoon, respectively, after increasing VOC 
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emission by 30%. Increasing NOx and VOC emissions by 30% decreases ozone by 5.5 

and 1.2 ppb in the morning and afternoon, respectively. This study highlights that model 

biases are related to a combination of meteorological and emissions uncertainties over 

complex terrain. Future modeling studies may benefit from high temporal resolution 

vertical measurements near the surface, such as those provided by UAV platforms, to 

closely evaluate model performance and increase model accuracy in heavily burdened air 

basins.  
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3. Toward On-Demand Measurements of Greenhouse as 

Emissions Using Multirotor Uncrewed Aircraft Systems 
 

3.1. Introduction 

Methane and carbon dioxide are potent greenhouse gases whose growing concentration in 

the atmosphere is contributing to climate change (IPCC, 2021). An important source for 

methane is anthropogenic activity including the production and transport of coal, natural 

gas and oil, livestock and other agricultural practices, land use and by the decay of 

organic waste in municipal solid waste landfills (US Environmental Protection Agency, 

2023). To mitigate the effects of climate change, it is essential to develop dependable 

techniques for detecting, locating, quantifying and validating current emissions estimates. 

Instruments of various types have been widely employed to detect greenhouse gas 

emissions. Sensors and detectors are often used due to their relatively low cost and light 

weight, which makes them appropriate for handheld use or installation on mobile 

platforms (Aldhafeeri et al., 2020; Fox et al., 2019; Iwaszenko et al., 2021). However, 

compared to more advanced analytical instruments, sensors and detectors typically offer 

limited accuracy and precision. Additionally, they are more susceptible to interference 

from other gases, fluctuations in temperature or humidity, and other environmental 

factors that can affect their measurements. Generally, the accuracy of low-cost methane 

sensors/detectors can range from +/- 10% to 20% of the measured value. In contrast, 

more advanced instruments such as Tunable Diode Laser Absorption Spectroscopy 

(TDLAS) can achieve accuracies in the range of +/- 1% or less. A wide range of 
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advanced analyzers can be used to measure methane and carbon dioxide including Cavity 

Ring-Down Spectroscopy (CRDS) Analyzers, Tunable Diode Laser Absorption 

Spectroscopy (TDLAS), and Non-Dispersive Infrared (NDIR) Analyzers (Jha, 2022; 

McHale et al., 2016; So et al., 2020). However, these advanced instruments are often 

costly and bulky, which can make them less practical for use in the field or deployment 

on mobile platforms. 

In addition to the accurate measurement, the meteorological variables also play an 

important role in estimating emission rate using dispersion models. Multirotor small 

unmanned aerial systems (UAS) offer a solution to this problem by providing the ability 

to sample emissions within the planetary boundary layer (PBL) covering the height range 

from the ground to a few hundred meters, which is hard to achieved using conventional 

methods such as tower installations or crewed aircrafts. They are also portable and can 

safely maneuverer near emission sources at low altitudes in both urban and rural 

environments. These characteristics are particularly advantageous for improving the 

spatial and temporal resolution of methane and carbon dioxide measurements at local 

(sub-1km) scales, which can lead to more reliable estimates of anthropogenic emission 

sources that are difficult or infeasible to measure directly. 

Some studies (Demali, n.d.; Falabella et al., 2018; Golston et al., 2017; Wilkinson et al., 

2018) have demonstrated the successful use of small onboard sensors to measure various 

gas species, such as CH4 and CO2. Typically, these sensors are desirable due to their light 

weight and ease of integration onto the aircraft. Several methods for sampling the 
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atmosphere have combined the capabilities of both multirotor UAS and ground-based 

instruments to achieve precise measurements of greenhouse gas emissions. One such 

approach involves capturing an air sample using Teflon bag at a high altitude using the 

multirotor UAS and subsequently analyzing it on the ground using sophisticated 

instruments (Li C, 2020). Other studies (Brosy et al., 2017; Shah et al., 2020) have 

attempted to directly measure the air composition by towing a ground-based gas 

analyzer's inlet with a multirotor UAS, eliminating the need to average air samples over 

time. However, the maximum altitude of such measurements is limited by the length of 

the analyzer's inlet. Therefore, further investigation is necessary to develop air sampling 

techniques that can provide improved temporal and spatial resolution for more accurate 

greenhouse gas emission characterization. 

Aircore technology has the potential to offer more practical and effective techniques for 

combining ground instruments and multirotor UAS for atmospheric sampling of 

greenhouse gases. The Aircore system is a passive air sampling technology that was 

initially introduced to measure trace gas profiles (Karion et al., 2010). The system is 

made up of a tubing coil, and air samples are collected due to the pressure difference 

between the outside and inside of the inlet. This air sampling technology has been widely 

used on aircraft and weather balloons to complement in situ and remote observations. 

Despite its potential to increase the spatial and temporal resolution of greenhouse gases in 

the atmosphere, the integration of multirotor UAS and Aircore systems has not been 

extensively explored. To address this, Andersen et al., 2018 have developed a multirotor 
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UAS active Aircore system that draws air samples using a micro pump. This system 

consists of a 50-meter-long stainless-steel tube with a volume of 358 mL and is capable 

of measuring atmospheric mole fraction of CO2, CH4, and CO. 

In this study, we developed a system that combines a multirotor UAS and an Aircore 

system to measure air composition and wind velocity profiles. The Aircore system was 

designed to collect air samples and measure CH4 and CO2 with a spatial resolution of 5 

meters while flying at a rate of 0.5 m/s. The vehicle kinematics of the multirotor UAS 

were utilized to estimate wind speed and direction during steady ascending flight. We 

deployed this system to measure CH4 and CO2 emissions from dairy farm operations 

downwind. Our findings demonstrate that this multirotor UAS and Aircore system is an 

effective tool for tracking gas emissions. 

3.2. Methods and Materials 

3.2.1. Field Operations 

From January 20th to 24th, 2020, a UAS-based Aircore system was utilized in the San 

Joaquin Valley of California to measure CH4 and CO2 emissions from dairy farm 

operations. Before each deployment, CH4 and CO2 concentrations were measured by 

driving downwind of both isolated and clustered dairy farm facilities, as shown in Figure 

3-1a. This was done by placing the inlet of a cavity ring-down gas analyzer through the 

side window of a van driving below 20 miles per hour. The UAS-based Aircore system, 

shown in Figure 3-1b, was rapidly deployed within 5 minutes at locations where CH4 or 

CO2 significantly exceeded the background concentration level of approximately 2 ppm 
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for CH4. The air sample collected onboard the Aircore was subsequently analyzed using 

the cavity ring-down gas analyzer upon landing. Wind velocity profiles were estimated 

offsite using flight data collected onboard the UAS autopilot and a kinematic vehicle 

motion model. Four flights were performed in total across the three identified CH4 and 

CO2 hotspots, as shown in Table 3-1. All four flights' observations were used to assess 

the UAS-based system's efficacy in measuring vertical greenhouse gas emissions from 

dairy farm operations. 

 

Figure 3-1 a) A satellite image showing the locations where multirotor UAS flight operations were 

performed to measure wind velocity and air composition vertical profiles on January 20th, 21st, and 

24th, 2020.  b) An image of the UAS-based Aircore system profiling air composition while steadily 

ascending to 120 m above ground level.   



40 

 

 

Figure 3-2 a) An illustration of the vertical flight operation. b) The process of the Aircore system 

pulling samples. C) The inner structure of the Aircore. 

 

Table 3-1 Summary of multirotor UAS and Aircore flight operations conducted in the San Joaquin 

Valley, California in January. 

Date Pacific Standard 

Time  

Latitude Longitude  

January 20th, 2020 9:54 AM – 10:06 AM  36°29'14.28"N 119°21'11.88"W 

January 21st, 2020 15:54 PM – 16:05 PM 36°27'49.32"N 119°23'7.44"W 

January 21st, 2020 16:23 PM – 16:33 PM 36°27'49.32"N 119°23'7.44"W 

January 24th, 2020 16:38 PM – 16:48 PM 36°28'16.68"N 119°19'52.68"W 
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3.2.2. Ground-Based Meteorological and Gas Sensors  

 

Figure 3-3 The a) and b) images show the CSAT-3 sonic anemometers installed on a meteorological 

evaluation tower at heights of 3 m and 11 m above ground level, respectively. The c) image shows the 

Picarro G1301 gas analyzer used to measure CH4 and CO2 concentrations of Aircore samples. 

 

3.2.2.1. Cavity Ring-Down Spectrometer   

The cavity ring-down spectrometer (CRDS) used to measure CH4, CO2, and water vapor 

is the Picarro G1301 gas analyzer (Figure 3-3c). It was housed inside a passenger van 

vehicle. Power was supplied to the instrument using a standalone 12-Volts marine deep 

cycle battery.  The instrument’s flow rate was measured to be 0.7 standard litres per 

minute. 
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3.2.2.2. Meteorological Evaluation Tower    

A meteorological evaluation (MET) tower was deployed at a dairy farm to measure wind 

velocity near the surface (36°24'45.5"N 119°20'42.0"W). As shown in Figures 3-2a and 

3-2b, the meteorological evaluation tower was integrated with two CSAT 3 sonic 

anemometers at heights of 3 m and 11 m above ground level. A CR3000 data logger was 

used to collect and process 1-second and 5-minute sonic anemometer measurements. The 

sonic anemometers and data loggers were both powered using a 12-V marine deep-cycle 

battery.  

3.2.3. Aircore System 

3.2.3.1. Multirotor UAS 

The UAS used in this study was a commercially available multicopter Matrice 600 Pro 

(SZ DJI Technology, China). It was of 1668 mm × 1518 mm × 727 mm with a maximum 

take-off payload weight of 6 kg. With the Aircore of about 5 kg, the maximum flight time 

is about 13 min, corresponding to a mean fly speed of about 0.3 m/s. The Aircore was 

attached to the bottom frame of the UAS using a stainless-steel wire of about 5 m. The 

flight record including fly speed, height, time, GPS information, motion perturbations 

information is logged on-board automatically. The DJI GO app (SZ DJI Technology, 

China) was used for remote control and retrieve flight records. 

3.2.3.2. Hardware Description  

The Aircore system consists of a ~ 60 m perfluoroalkoxy (PFA) coil tubing with a 12.7 

mm outer diameter (9.525 mm inner diameter) and a volume of 4.3 L. The inlet of the 
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coil is open to the ambient to sample emissions. The outlet of the coil is connected to a 

micro diaphragm pump. Airflow through the Aircore is held constant using an orifice 

(O'Keefe Controls Co.) installed upstream of the micro diaphragm pump. The pressure 

upstream of the orifice is the ambient pressure minus the small pressure drop through the 

tube. The pump and its battery are placed in a plastic enclosure. 

3.2.3.3. Aircore Calibration Experiments  

Laboratory tests were conducted to validate the Aircore’s performance resolving real-

time methane concentration change. We diluted CH4 from a 500-ppm cylinder with room 

air in a Teflon bag. A three-way valve was controlled to switch between the CH4 signals 

and the ambient air. The Aircore system and a Picarro Analyzer were connected using a 

tee junction to pull air simultaneously from the Teflon bag, with the valve open for 5 and 

10 second intervals as shown in Figure 3-4. The CRDS analyzer recorded the methane 

concentration in real time during the calibration experiment.  Subsequently the needle 

valve was closed to allow the CRDS analyzer to only pull from the Aircore.  
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Figure 3-4 A schematic of the setup used during the Aircore calibration experiments. The solid lines 

and arrows show the gas flow when the Picarro analyzer and Aircore pulled air simultaneously. The 

dashed lines and arrows showed the gas flow when the Picarro analyzer pulled air from the Aircore 

system. b) A schematic showing the needle valve position over time during the Aircore calibration 

experiment.  

 

3.2.4. Multirotor UAS Wind Velocity Sensing   

3.2.4.1. Wind Estimation Method                  

Wind velocity profiles were inferred from the rotational kinematics of a multirotor UAS 

in steady-ascending vertical flight using the wind estimation algorithm proposed by 

Neuman et al. (2011). We first defined a body-fixed reference frame, 𝐹𝑏 = {𝑏1, 𝑏2, 𝑏3} at 

the aircraft centre of gravity such that the unit vectors 𝑏1 and 𝑏2 point along the front and 

lateral sides of the vehicle, respectively. The unit vector 𝑏3 is parallel to the propeller 

spin axis and points along the direction of the propulsive flow (see Figure 3-5). We also 

defined an inertial reference frame 𝐹𝑖 = {𝑖1, 𝑖2, 𝑖3}, affixed to the Earth’s surface such that 

the unit vectors 𝑖1 and 𝑖2 point in the North and East directions, respectively, and the 𝑖3 

unit vector points towards the Earth’s centre. The orientation of the body-fixed reference 

frame is measured relative to the inertial reference frame using the roll-pitch-yaw Euler 
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angles, 𝛩 = {𝜙, 𝜃, 𝜓}. After defining the body-fixed and inertial reference frames, two 

kinematic relationships were derived to infer wind speed and wind direction separately.  

Wind speed estimates were inferred from the tilt of the aircraft that is realized in steady-

ascending vertical flight to compensate for wind disturbances. The tilt of the multirotor 

UAS was determined by computing the dot product between 𝑖3 and the projection of 𝑏3 

onto 𝐹𝑖, 

𝛼 = ([𝑅𝑇(𝜙, 𝜃) ∙ 𝑏3] ∙ 𝑖3)    (3-1) 

  

Where 

𝑅(𝜙, 𝜃) =  (𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃  0 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃  𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜙  𝑐𝑜𝑠 𝑐𝑜𝑠 𝜙  𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 

𝑠𝑖𝑛 𝑠𝑖𝑛 𝜙  𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜙  𝜙  𝑐𝑜𝑠 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝑐𝑜𝑠 𝜙  )       (3-2) 

 

is the rotation matrix mapping 𝑏3 from 𝐹𝑏 to 𝐹𝑖. In employing this approach, we assume 

there is a one-to-one relationship between the tilt angle 𝛼 and the horizontal wind speed 

(i.e., 𝛼 = ||𝑢 + 𝑣|| ). 

The wind direction was inferred from the projection of the 𝑏3 unit vector onto the 𝑖1 − 𝑖2 

plane shown in Figure 3-5b during steady-ascending flight. If the aircraft heading is 

pointing North, wind direction is expressed in the inertial reference frame by computing 

the four-quadrant tangent inverse of the components of the 𝑏3 unit vector projected onto 

the 𝑖1 and 𝑖2 unit vectors. 
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𝛽 =  𝑡𝑎𝑛4
−1 (

[𝑅𝑇(𝜙,𝜃)∙𝑏3]∙𝑖2

[𝑅𝑇(𝜙,𝜃)∙𝑏3]∙𝑖1
)     (3-3) 

Otherwise, wind direction is expressed in the Earth-fixed reference frame by making the 

following correction: 

𝑊𝑖𝑛𝑑 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = {𝛽 − 𝜓,                     𝑖𝑓 𝛽 > 𝜓  𝛽 − 𝜓 + 360,       𝑖𝑓 𝛽 < 𝜓  

3.2.5. Evaluation of Multirotor UAS Wind Velocity Estimates 

Multirotor UAS wind velocity estimates were validated employing two methods. First, 

we compared the multirotor UAS wind velocity estimates to wind velocity observations 

collected from the 11-m MET tower. The difference between multirotor UAS and MET 

tower wind observations was quantified using the mean absolute error metric. Second, we 

compared multirotor UAS wind speed estimates to wind speed profiles obtained from the 

wind power law described in Eq. (3-4) 

𝑈(𝑍2) = 𝑈(𝑍1) ∗ (
𝑍2

𝑍1
)

𝛼

   (3-4) 

where 𝑈(𝑧1) and 𝑈(𝑧2) are the wind speeds at heights 𝑧1 and 𝑧2, respectively, and α is 

the wind shear exponent value obtained from sonic anemometer observations collected at 

𝑍1 = 3 m and 𝑍2 = 10 m using Eq. (3-5) 

𝛼 =  
𝑙𝑛 𝑈(𝑧2)−𝑙𝑛 𝑈(𝑧1)  

𝑙𝑛 𝑧2 −𝑙𝑛 𝑧1 
   (3-5) 

Results from these two assessments are useful for cauterizing the multirotor UAS wind 

estimation performance.  
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Figure 3-5 a) A schematic showing the configuration of the body-fixed reference unit vectors b_1, 

b_2, and b_3, relative to the front, right, and bottom sides of the multirotor sUA airframe. b) A 

schematic showing how the orientation of the body-fixed reference frame relative to the inertial 

reference frame is used to measure the 𝜶 and 𝜷 parameters used to estimate wind speed and wind 

direction separately. 

3.2.6. Methane Emission Estimates 

The multirotor UAS vertical profiles of wind velocity and methane concentrations that 

were collected from 9:54 AM to 10:05 AM on January 20th, 2020, were used along with 

an atmospheric dispersion model to quantify methane emissions from a dairy farm 

located near Visalia, California. The multirotor UAS vertical profiles of wind velocity 

and methane were measured 1,700 m Northwest from the midpoint of dairy farm’s north 

end during a period in which the wind direction changed from North to South, allowing 

the downwind and upwind profiles to be collected from a single flight. The dairy farm 

involved in this study is 800 m wide and 933 m long, and consists of five manure 

lagoons, three cattle corrals, and three cattle sheds, with dimensions listed in Table 3-2. 

We divided the dairy farm into eleven sections that were expected to be methane 

emission sources to estimate the surface area of the dairy farm emitting methane into the 

atmosphere. Surface area estimates and multirotor UAS vertical profiles of wind velocity 
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and methane were used to evaluate the utility of multirotor UAS and Aircore technology 

for quantifying emission estimates at facility scale. 

Table 3-2 Dairy farm sections likely to produce methane emissions from enteric fermentation or 

manure management. 

Source Areas Source Width Source Length Source 

Descriptor 

Manure Lagoon 149 m 273 m L1 

Manure Lagoon 149 m 51 m L2 

Manure Lagoon 149 m 60 m L3 

Manure Lagoon 149 m 56 m L4 

Manure Lagoon 149 m 58 m L5 

Free Standing Shed 106 m 152 m FS1 

Free Standing Shed 106 m 152 m FS2 

Free Standing Shed 213 m 494 m FS3 

Free Standing Shed 88 m 137 m FS4 

Cattle Corral  152 m 342 m C1 

Cattle Corral  119 m 495 m C2 

Cattle Corral  119 m 495 m C3 

Miscellaneous  56 m 139 m MC 

Milk Parlour 28 m  145 m MP 

Total Source Area 1,732 m  3,049 m  TSA 

 

3.2.6.1. Dispersion Model Methane Emission Estimates 

The unknown emission rate from the dairy can be estimated from atmospheric CH4 

observations (CH4) through the following relationship. 

𝐶𝐻4𝑖 = ∑ 𝑇𝑖𝑗 𝐸𝑗 + 𝐶𝑏 + 𝜀𝑖     (3-4) 

where 𝑇𝑖𝑗 is the model estimates on data point 𝑖 with unit emission at source 𝑗, 𝜀𝑖 is the 

residual, 𝐶𝑏 is the background concentration measured from sUAS and 𝐸𝑗 is the inferred 

emission rate obtained by minimizing ∑ 𝜀𝑖
2 with the constraint that their values are 

greater than or equal to zero. To achieve this, we use the MATLAB function lsqnonneg 
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described in Lawson and Hanson (1995, Solving Least Squares Problems, Prentice-Hall, 

1974, Chapter 23, p. 16). The 95% confidence intervals for the emission rate can be 

determined by a bootstrapping method which generates a distribution of emission rates by 

fitting the pseudo-observations to the model estimates. 

In the numerical model, the dairy farm can be treated as an area source, which consists of 

a set of line sources perpendicular to the wind direction. The contribution from each line 

source to the receptor, we use an analytical approximation to the integral along the source 

(Venkatram & Horst, 2006), which gives the concentration as 

𝐶(𝑥, 𝑦, 𝑧) = 𝑞[𝑒𝑟𝑓(𝑡1) − 𝑒𝑟𝑓(𝑡2)]𝐹𝑧(𝑥, 𝑧)    (3-5) 

𝑡𝑖 =
𝑦 − 𝑦𝑖

√2𝜎𝑦𝑥
 

where 𝑞  is the line source emission rate per unit length, 𝑥  is the downwind distance of 

the receptor from the source, 𝑦 − 𝑦𝑖 is the distance of the receptor from two end points of 

the line along the direction parallel to the source, 𝜎𝑦 is the horizontal plume spread, and 

𝐹𝑧(𝑥, 𝑧) is the vertical distribution function, which applied the numerical solution of the 

mass conservation equation(Venkatram & Schulte, 2018) 

𝑈(𝑧)
𝜕𝐶

𝜕𝑥
=

𝜕

𝜕𝑧
(𝐾(𝑧)

𝜕𝐶

𝜕𝑧
)    (3-6) 

where 𝐶 denotes the crosswind-integrated concentration 𝐶𝑦 for convenience, 𝐾(𝑧) is the 

vertical eddy diffusivity, and 𝑈(𝑧) is the horizontal velocity. The boundary conditions are 

𝐾(𝑧)
𝜕𝐶

𝜕𝑧
= 0 𝑎𝑡 𝑧 = 𝑧0 

and 
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𝜕𝐶

𝜕𝑧
= 0 𝑎𝑡 𝑧 = 𝐻     (3-7) 

where 𝑧0 is the roughness length, which is computed to be 0.005m (Qian, Princevac, & 

Venkatram, 2010), 𝐻 is the boundary layer height. The numerical method initializes a 

Gaussian concentration distribution at 𝑥 = 0, which is centered at source height 𝑧𝑠 =

0.1𝑚 and with an initial vertical spread 𝜎𝑧 = 0.1𝑚. Van Ulden, (1978) shows that the 

analytical solution of Eq. (3-2) provides an excellent description of concentrations 

measured in Prairie Grass (Barad, 1958). Venkatram & Schulte, (2018) evaluates the 

usefulness of the analytical formulas through the numerical solution using the Businger-

Dyer expressions for eddy diffusivity of heat 𝐾𝐻(𝑧), and the wind profile 𝑈(𝑧). 

3.3. Results  

3.3.1. Multirotor UAS Wind Velocity and Air Composition Profiles 

Four deployments of the UAS-based Aircore system were successfully performed 

downwind of dairy farm operations in the San Joaquin Valley. The UAS-based Aircore 

system measured vertical profiles of wind velocity, methane, and carbon dioxide up to a 

height of 120 m above ground level during periods of unstable and stable wind 

conditions. The first deployment on January 21st, 2020 experienced unstable wind 

conditions from 9:55 to 10:06 PST, while the second and third deployments on the same 

day and the fourth deployment on January 24th, 2020 experienced stable wind conditions 

(as shown in Figure 3-6 a,b,c). The data collected during both stable and unstable wind 

conditions were analyzed to evaluate the effectiveness of the UAS-based Aircore system 

in detecting and quantifying methane emissions from dairy farm operations. 
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During the first flight, the wind direction changed from South to North, with wind speeds 

ranging from 0 m/s to 3.5 m/s (as shown in Figure 3-6a). The methane and carbon 

dioxide concentrations measured during this flight varied from 2.5 ppm to 3 ppm below 

60 m and remained constant at higher altitudes. During the second flight, the wind 

consistently blew from the southwest, with speeds ranging from 1 m/s to 2.5 m/s (as 

shown in Figure 3-6b). Comparing ascent and descent profiles during this flight revealed 

that methane concentrations varied from 2.5 ppm to 5 ppm, while carbon dioxide 

concentrations remained constant at 410 ppm. Minutes later, during the third flight, winds 

from the southwest ranging from 0.5 m/s to 1.5 m/s were measured at the same location 

(as shown in Figure 3-6c). Comparing ascent and descent profiles during this period 

showed that methane concentrations increased from 2.8 ppm to 5.8 ppm, while carbon 

dioxide concentrations increased from 410 ppm to 510 ppm. Pollution rose plots in 

Figures 3-7 suggest that the differences in methane profiles between the second and third 

flights may have been caused by plume meander resulting from minor changes in wind 

direction. 

During the fourth flight, the wind consistently blew from the southeast, with speeds 

ranging from 1.5 m/s to 3 m/s (as shown in Figure 3-7d). The methane concentrations 

remained elevated by more than 5 ppm up to 100 m before tapering off at higher 

altitudes. A brief increase in carbon dioxide concentration of 100 ppm was observed 

during the fourth flight. 
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a)

b)

c)

d)

Figure 3-6 The vertical profiles of wind velocity, methane, and carbon dioxide measured 

using the sUAS-based Aircore system from a) 9:55 to 10:06 PST on January 20th, 2020, b) 

15:54 to 16:06 PST on January 21st, 2020, c) 16:24 to 16:36 PST on January 21st, 2020, a, 

and c) from 16:38 to 16:49 PST on January 24th, 2020. 
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Figure 3-7 A pollution rose analysis showing how the mole fraction of methane changed with respect 

to wind direction and altitude during the second and third flights performed at the same solation. The 

a) and d) satellite images show the location where the second and third deployments took place on 

January 21st, 2020. The b) and c) pollution rose plots show methane enhancement variations with 

respect to wind direction and height during the second flight. The e) and f) pollution rose plots show 

methane enhancement variations with respect to wind direction and height. 

 

3.3.2. Validation of Multirotor UAS Wind Velocity Profiles 

In Figure 3-8 a, the wind observations collected from the UAS and an 11-m MET tower 

were found to be in close agreement at the beginning and end of each flight. Differences 

between the UAS and tower observations were observed only at higher altitudes when the 

height difference between the UAS and the 11-m MET tower was greatest. The UAS-

based Aircore system provided wind speed estimates that were consistent with those near 

the surface. The wind speed estimates obtained from the UAS-based Aircore system, and 

the wind power law were observed to display comparable trends in the vicinity of the 

surface, as shown in Figure 3-8 a. Similarly, the bias was seen to rise as the altitude 

increased. The discrepancies observed both near the surface and at higher altitudes 
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emphasize the valuable information that the technology can offer compared to ground-

based wind measurements taken from fixed locations.

 

Figure 3-8 The comparison of wind speed observations measured using the UAS-based Aircore sytem 

and the 11-m MET tower from a) 9:55 to 10:06 PST on January 20th, 2020, b) 15:54 to 16:06 PST on 

January 21st, 2020, c) 16:24 to 16:36 PST on January 21st, 2020, and c) from 16:38 to 16:49 PST on 

January 24th, 2020. 
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3.3.3. Validation of Aircore Profiles 

Results from the Aircore calibration experiments show that the Aircore can resolve mole 

fraction variations of methane occurring over periods of 10 seconds or larger with high 

accuracy. As shown in Figure 3-9, the peak concentrations between Aircore and CRDS 

direct measurement corresponding to periods of 5 seconds were found to disagree by a 

factor greater than 2. The Aircore measurement can resolve the peak concentration more 

accurately when the signals last for 10 seconds or more. The different performance with 

signal duration is due to the limitation on CRDS response time and smearing effect in the 

Aircore. These findings provide useful information on determining Aircore’s resolution. 

With flight speed at 0.3 m/s, the Aircore can reliably measure methane mole fraction 

variations that are sustained over periods of 10 seconds or larger, which corresponding to 

the spatial range of 3 m.  

Though spatial variation of the concentrations is helpful to describe the distribution of the 

plume, the smearing effect is not supposed to influence the integration result of the total 

emission estimated with dispersion model. The integrated areas under the direct CRDS 

and Aircore measurement are shown in Table 3-3. It is found Aircore measurement has a 

bias in integration concentration from – 15 % to 20 %. The bias is partially because of the 

different flow rates between the CRDS and the pump used in the Aircore system and it 

resulted in different sampled volume with same signal duration. We resampled the 

Aircore measurement to match the sample number as the direct CRDS measurement. 
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Figure 3-9 A plot showing the comparison of Aircore and CRDS (Direct) measurements of mole 

fraction spikes produced over time intervals of 5 and 10 seconds. 

The mole fractions retrieved from the Aircore and from the ground CRDS during the 

same time when deployment was ongoing was compared in Figure 3-10. The retrieved 

mole fraction time series were in the agreement with the ground measurements at the 

beginning and the end of the deployment. The differences were observed during the 

flight. The aloft concentration could be higher or lower than the ground concentration. 

further highlighting the necessities of introducing airborne measure in addition to the 

ground measurements. Furthermore, during the deployment on January 21st, 2020, 

between 16:24 and 16:36 PST (Figure 3-10 c), the mole fractions retrieved by the Aircore 

displayed a similar increase then decrease trend to the ground measurements but provided 

more detailed information. 

Table 3-3 Integrated comparison area under the signals lasting the duration of 5 and 10 seconds. 

 5s signals (ppb) 10s signals (ppb) 

CRDS (Direct) measurement 1014466 844895 

Aircore 810060 979959 

Difference percentage 20.1% -15.7% 
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Figure 3-10 The comparison of methane and carbon dioxide observations collected from the UAS-

based Aircore system and a ground-based CRDS from a) 9:55 to 10:06 PST on January 20th, 2020, b) 

15:54 to 16:06 PST on January 21st, 2020, c) 16:24 to 16:36 PST on January 21st, 2020, and c) from 

16:38 to 16:49 PST on January 24th, 2020. 

 

3.3.4. Comparison of Emission Rates Estimated From Different Methods 

On January 20th, vertical profiles of wind velocity and methane were utilized in 

conjunction with dispersion modelling to identify and assess methane emissions from a 

single dairy farm operation. Figure 3-11 demonstrates how dispersion modelling and 

a)

b)

c)

d)
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vertical observations of wind velocity and methane can be useful in identifying the areas 

that have the greatest impact on methane concentrations measured by the UAS-based 

Aircore system. Moreover, combining dispersion modelling with vertical wind velocity 

and methane data can aid in quantifying methane emissions, as shown in Table 3-5, 

where the methane emission estimate was 226 kg per hour. Despite being preliminary, 

these findings highlight the potential of UAS-based Aircore technology for detecting and 

quantifying greenhouse gas emissions from dairy farms. 

 

Figure 3-11. Sensitivity map predicted by the dispersion model. The solid triangle shows the place 

where the drone was flown, and the rectangle area shows the nearest dairy farm we focused on 

researching. Tr on the color bar is the transport matrix dispersion model estimates, its unit is ppm per 

unit emission rate. 

 

Table 3-5 Inferred emission rate and 95 % confidence intervals from dispersion model 

 

Time 

 

Emission Rate 

95 % Confidence Interval 

Lower Limit  Upper Limit  

01/20/2021 9:54 226.06 kg/hr 180.40 kg/hr 277.28 kg/hr 
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3.4. Conclusions 

Four deployments of the UAS-based Aircore system were successful measuring vertical 

profiles of wind velocity, methane, and carbon dioxide near dairy farm operations in the 

San Joaquin Valley. The vertical profiles captured spatiotemporal variations in the mole 

fraction of methane and carbon dioxide extending up to a height of 120 m during periods 

of unstable and stable wind conditions.  

The UAS-based Aircore system was found to be effective estimating wind speed and 

wind direction trends in the lower atmosphere. The change in wind direction 

measurements obtained from UAS-based Aircore system and the 11-m MET tower 

during flight were consistent. The wind velocity measurements from the UAS-based 

Aircore system and the 11-m MET tower were consistent at the ground and show 

discrepancies in the air, suggesting the necessity of introducing the wind estimation 

during emission quantification. 

The UAS-based Aircore system was also found to be reliable profiling methane and 

carbon dioxide in the lower atmosphere based on laboratory and field experiments. Based 

on laboratory and field experiments, the UAS-based Aircore system was deemed 

dependable in profiling methane and carbon dioxide in the lower atmosphere. As with 

wind estimation, variations were detected in the air, underscoring the significance of 

understanding the 3-D distribution of the emission plume. 

The emission footprint was generated using wind velocity and concentration profiles. The 

emission rate estimated using dispersion model was about 226.06 kg/hr. 
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The study highlights the capability of the UAS-based Aircore system to offer wind data 

and atmospheric compositions in the lower atmosphere, aiding in the identification and 

detection of potential emission sources, beyond conventional ground measurements. 

Moreover, the vertical profiles obtained can aid in quantifying emission sources on a 

facility scale, which can revolutionize the approach to improving bottom-up assessments 

of emissions. 
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4. Small Particle Growth Observations at the U.S. DOE 

Southern Great Plains Field Site Using Ambient Air Captive 

Aerosol Chambers 
 

4.1. Introduction 

Atmospheric aerosols influence air quality (Viana et al., 2014), human health (Pöschl, 

2005), ecosystems (Cirino et al., 2014; Misson et al., 2005), and climate (Jaenicke, 1980; 

Mcneill, 2017). Aerosols affect climate by absorbing and scattering solar radiation or 

indirectly influencing cloud properties when they are larger than 50-100 nm to have the 

potential to act as cloud condensation nuclei (CCN) (Seinfeld and Pandis, 2016). CCN 

are critical factors in understanding the climate impacts of aerosols. 

The concentration and distribution of CCN are significantly influenced by new particle 

formation (NPF) and growth (Duplissy et al., 2016; Gordon et al., 2017; Kalivitis et al., 

2015). The contribution of NPF to the CCN budget depends on particle size, composition, 

and abundance (Marinescu et al., 2019). Long-term observations and modelling 

predictions can provide insights into understanding these processes. Particle formation 

and aging mechanisms are influenced by precursor compounds and ambient conditions, 

including solar intensity, temperature, and relative humidity (Kerminen, 2018). 

Conventional approaches for studying the growth of small particles typically focus on 

one or a few precursor gases or rely on observations of the dynamics of ambient particle 

populations. Significant variations in NPF frequency exist between different locations. 

For instance, the NPF event frequency is reported as high as 86% in South Africa 
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(Hirsikko et al., 2012) , while no NPF events were observed during a three-month study 

in the Amazonian Forest (Wimmer et al., 2017).  

Interpreting and comparing aerosol observations quantitatively is challenging since the 

measurements are affected by both gas and particle phase chemistry, as well as the 

variability in the origin and history of local and transported aerosols at a given time. 

Considering the growth rate is usually estimated only when NPF exists, during which 

limited data is available with more specific atmospheric conditions for homogeneous or 

heterogeneous nucleation (Kulmala et al., 2014). The heterogeneity of particle formation 

and growth also necessitates long-term continuous measurements that encompass a wide 

range of conditions. 

While traditional environmental chambers provide detailed information on the species 

and processes involved in secondary aerosol formation and growth, they are often 

restricted to narrow ranges of simulated conditions and do not capture the complexity and 

variability of the ambient atmosphere. To address this, the Captive Aerosol Growth and 

Evolution (CAGE) chamber system has been developed, which is portable and designed 

for field use (Sirmollo et al., 2020). The system mirrors outdoor conditions including air 

composition and solar intensity. The system includes two identical chambers, one serving 

as a baseline or reference, and the other as a perturbation chamber to assess the sensitivity 

of particle growth to different conditions. 

In this study, the results from the first deployment of the CAGE chambers at the DOE 

Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) site 



65 

 

in the late summer and fall of 2021 were analyzed. We quantified the time dependence of 

the growth rate throughout the study and studied the sensitivity of particle growth to the 

injected seed particle composition, liquid water content and precursor gas additions such 

as α-pinene and SO2. 

4.2. Methods 

4.2.1. CAGE Chambers 

Figure 4-1 illustrates a schematic of the two CAGE chambers used in the study. Detailed 

information about the chambers' characteristics and features has been previously reported 

(Sirmollo et al., 2020). Each chamber has a 2 m3 cylindrical reactor made of UV-

transmitting PFA film, with a gas-permeable 0.005 mm expanded polytetrafluoroethylene 

(ePTFE; Phillips Scientific) center channel.  
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Figure 4-1 Sketch of a CAGE chamber showing the path of ambient air that is pulled in through an 

inlet, filtered, and then flows through the center of the ePTFE membrane-wrapped center channel. 

The CAGE chambers are designed to draw ambient air through an inlet with PTFE 

particle filter on the top of the chamber, which then through the gas-permeable ePTFE 

membrane and around the chamber before being exhausted through a port connected to a 

blower below the chamber. This process enables efficient gas exchange and allows the 

chamber to maintain gas composition and concentrations close to ambient levels. The 

reactor is maintained at a positive pressure differential of around 1 mbar relative to the 

surroundings to prevent deformation and minimize contamination.  

The size selected particles are injected to the chamber using the injection system that will 

be introduced in the next section. The injected particles are exposed to the ambient air 
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pulled through the ePTFE membrane and its growth is tracked by the sample system that 

will also be covered in the next section. To prevent losses of large particles due to 

gravitational settling and small particles due to convective eddies, the chambers are 

rotated at approximately 3 revolution per minute (rpm) using an AC motor and a pair of 

sprockets.   

The enclosure is coated with fluoroethylene vinyl ether (FEVE) and is enclosed by S-

UVT acrylic panels that transmit UV and visible light. While some solar radiation is lost 

through the acrylic and PFA, a PTFE gasket sheet on the enclosure floor reflects UV light 

to partially compensate for this loss. To characterize the relationship between the spectral 

actinic flux in the chambers and the ambient environment, the cosine-weighted solar 

spectral intensity was measured outside and at a point between the bottom of the chamber 

and the reflective PTFE gasket (Figure 4-2). 
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Figure 4-2 Comparison of spectral intensity measured just below one of the chambers and just outside 

of the chamber enclosure on a sunny day. 

Trace gas concentrations in the chamber can be explained by treating the volume as a 

continuous stirred-tank reactor (CSTR). The resulting rate of change of the concentration 

of any of the trace gases can then be expressed as  

dCch

dt
= P − L +  

Qex

Vch
 Camb −  

Qex

Vch
 Cch      (4-4 ) 

Where Cch is the concentration in the chamber, Camb is the ambient concentration, 

Vch is the volume of the chamber (≈ 2000 L), P and L are the per unit volume rates 

of chemical production and loss in the chamber, respectively, and Qex is the effective 

exchange “flow rate” across the ePTFE membrane. The Qex cannot be measured 

directly and is instead estimated using Eq. (4-4) and time series of SO2 

concentration measured in the chamber. The Qex was estimated to be at about 24 L 

min-1 and Vch/Qex = 85 min residence time in the chamber.  



69 

 

4 thermistors placed at various locations inside and outside each chamber monitor the 

temperature. Measured temperature was sent to the control system to adjust the AC 

system’s compressor's speed accordingly. The temperature inside the two chambers is 

regulated using a Micro Air Conditioner DV3220E-AC to mimic ambient conditions. The 

average temperature inside the chamber was maintained within 5 °C of the outside 

temperature. 

4.2.2. Measurement Site 

From August 9th to November 20th 2021, the campaign was carried out at the Southern 

Great Plains (SGP) site of the DOE Atmospheric Radiation Measurement (ARM) 

Program, situated in Oklahoma, US (Figure 4-3). The site, located southeast of Lamont, 

Oklahoma, is near cattle pasture and wheat fields and can be pinpointed at coordinates 

(36.607322, -97.487643). 

 

 

Figure 4-3 (a): Satellite images of the Southern Great Plains (SGP) site relative to Oklahoma and 

Kansas. (b): The location of SGP at which the field study was conducted. Map data © 2022 Google. (c): 

the clearing in which the chambers and instrument trailers were. 
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4.2.3. Instrumentation 

The configuration for the dual-chamber experimental system is shown in Figure 4-4. The 

CAGE chambers were deployed outside the Aerosol Observing System (AOS) trailer and 

the sampling, aerosol generation, and trace gas perturbation equipment were located 

inside (Figure 4-3 c.). The particle injection and sampling lines were connected using 316 

stainless steel tubes with 0.95 cm outer diameter of about 5 m long. The gas injection and 

sampling lines were constructed using Teflon tubes with also 0.95 cm outer diameter of 

about the same length as particle sample and injection lines. 

A monodisperse seed particle was produced by atomizing ammonium sulfate solution 

using a TSI 3076 atomizer, drying it using a silica gel diffusion dryer, and separating a 

narrow size range at approximately 0.07 µm with a differential mobility analyzer (DMA). 

The particle mode was repeatedly injected into the chambers as soon as the previous one 

became difficult to track.  

A scanning mobility particle sizer (SMPS) was utilized to determine the size distribution 

in the two chambers approximately four times per hour. The system was configured to 

measure between the two chambers and the ambient air in one sequence. The sample 

aerosol was dried and neutralized with a Nafion tube bundle (Perma Pure Inc., USA) and 

a soft x-ray neutralizer L12535 (Hamamatsu, Japan). The sample then entered SMPS 

equipped with a TSI 3762 condensation particle counter (CPC) and a high flow DMA to 

quantify the particle size distribution in the range from 0.013 to 0.40 µm.  



71 

 

During the field experiments, one of the chambers was designated as the control, with 

only dried ammonium sulfate seed particles injected and ventilated solely with ambient 

air. Perturbation in particle composition was realized by atomizing potassium sulfate 

solution. The gas phase perturbation was mixed with ambient air controlled by a mass 

flow controller. 

To aid in understanding the growth events, observations from pre-existing ARM 

measurements were utilized. Ozone (O3) was measured using Thermo Fisher Scientific 

49C Ozone Analyzer. Sulfur dioxide (SO2) was measured using a Model 43i trace level-

enhanced pulsed fluorescence SO2 analyzer (Thermo Scientific, USA). The 

meteorological information including surface wind speed, wind direction, air 

temperature, and relative humidity was retrieved from the data archive from ARM 

Surface Meteorology Systems (MET). Non-refractory submicron particulate matter 

including organic aerosol (OA), sulfate, nitrate, ammonium, and chloride was measured 

with Aerosol Chemical Speciation Monitor (ACSM). 
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Figure 4-4 Schematic of the dual-chamber experimental system. 

 

4.3. Results 

4.3.1. Hourly Variations of Particle Growth Rate 

Throughout the experiments, the particle size distribution outside and inside both 

chambers were measured continuously. A lognormal function was used to fit the tracked 

mode and decide the dry particle diameter Dp and number concentration N. The time 

series shows an example of the ambient and chamber measurements (Figure 4-5). During 

the 2.5 days period, both chambers were filled with only ambient air. The particle 

growths reflected the ambient aerosol growth. The x-y representation to the left shows the 

same injection mode at the time indicated by the black box. The multiple peaks in the x-y 
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plot were a result of multiple charging. In this case, particles with higher-order charges 

and the same apparent mobility or mass-to-charge ratio could be chosen simultaneously 

using a DMA (Bau et al., 2014). We kept tracking the mode with the highest 

concentration when injected. The average particle lifetime inside the chambers was about 

6 hours.  

 

Figure 4-5 Top: Ambient aerosol size distribution time series from October 8th to 11th during the 2021 

study. Middle and bottom: size distribution time series over the same period in chamber A and B with 

ambient air flushed. Left: x-y presentation of the size distribution measured at the time indicated by 

the rectangle in the time series. 

 

The corresponding track mode is shown in Figure 4-6 with shaded bands indicating 

nighttime. The time-dependent growth rate for each tracked mode is calculated as the 

change in lognormal fit Dp between two successive measurements divided by the time 

difference, GR =  Δ𝐷𝑝/Δ𝑡. Growth in both chambers is in agreement when conditions 

were similar. 
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Figure 4-6 Top: Time series of the lognormal fit diameters of injected modes in Figure 4-5.  Lower: 

Calculated growth rates for the same period at the top. 

 

Using the continuous measurements in the reference chamber, the time-of-day-dependent 

growth rate is shown in Figure 4-7. GR keeps positive throughout the day, showing the 

lowest value in the late afternoon before sunset and the highest in the morning after 

sunrise. This agrees with the average growth rate calculated from the previous 

deployment of the second generation of CAGE chambers in Houston in 2016 (Sirmollo et 

al., 2020). 

We observed active nighttime growth during the study. Though regional NPF typically 

happens in the daytime when photochemistry activity is strong, several studies have 

reported various pathways contributing to nighttime particle growth, including the 

formation of highly functionalized organonitrates (ON) by volatile organic compounds 

(VOC) with NOx (W. Huang et al., 2019), and increase in semi-volatile oxygenated 

organic aerosol (SV-OOA) and condensed highly oxygenated organic molecules (HOMs) 
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(Hao et al., 2018). It is found nighttime production of HNO3 dominates at SGP (Parworth 

et al., 2015). A significant HOM fraction was reported to be contained in bulk submicron 

OA measured at SGP (Liu et al., 2021). 

 

Figure 4-7 Hourly average particle growth rate histogram. A total of 1212 values were used to construct 

the histogram. The time of sunrise and sunset for the first (October 8) and last (November 18) day of 

measurements are also indicated. 

 

4.3.2. Case Study: 10 October, Growth With Air Mass Change 

On 10 October 2021, an ambient aerosol growth was recorded by the SMPS beginning 

around 17:00 central daylight time (CDT) (Fig. 4-8a). The time series for the lognormal 

fit diameters of injected modes in the two chambers and corresponding calculated growth 

rates are presented in Figure 4-8b-c. Both chambers showed similar rapid growth, with an 

average growth rate increasing from 0.3 nm hour-1 to 1.3 nm hour-1. At the same time, 

there was a change in wind direction from southwest to north as well as a decrease in 

temperature and an increase in relative humidity (Fig. 4-8e). Ozone concentration also 

showed a sudden change at 17:00. Additionally, the organic mass fraction measured by 

ACSM increased around the same time, as shown in Figure 4-8g, which is consistent with 
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the other observations. The sudden changes observed in various features of the ambient 

air indicate a possible shift in air mass with the change in wind direction. The growth 

observed in the chambers is in agreement with the ambient aerosol growth, providing a 

simpler way to quantify particle growth in the absence of new particle formation. 

 

Figure 4-8 (a): Ambient aerosol size distribution time series. (b): time series of the lognormal fit 

diameters of injected modes in the two chambers. (c): calculated growth rates for the same period in 

(b). (d): wind direction and wind speed. (e): ambient relative humidity and temperature. (f) ambient 

SO2 and O3 concentration. (f): non-refractory submicron aerosol species measured with the ACSM. 
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4.3.3. Effect of Gas Addition of Precursor Gases on Particle Growth Rate 

4.3.3.1. Effect of α-Pinene on Particle Growth Rate 

The oxidation of α-pinene can result in the formation of secondary organic aerosols 

through acid-base reactions or equilibrium partitioning (Tröstl et al., 2016). In order to 

evaluate the sensitivity of particle growth to α-pinene, we injected α-pinene continuously 

from a compressed gas cylinder with a mass flow controller (Figure 4-9). The flow rate 

was set based on the estimated gas exchange flow rate of 24 L min-1 to keep the α-pinene 

concentration at about 5 ppb at equilibrium. The background chamber was operated with 

ambient air and no perturbation added. 
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Figure 4-9 (a): Ambient aerosol size distribution time series over 2.5 days during the α-pinene injection. 

(b): Size distribution time series over the same period in the reference chamber with ambient air 

flushed. (c): Size distribution time series over the same period in the perturbed chamber with ambient 

air and 5 ppb α-pinene flushed. (d): Time series of the lognormal fit diameters of injected modes in the 

two chambers. (e): Particle growth rates calculated from the time series of lognormal fit diameters. 

 

4.3.3.2. Effect of SO2 on Particle Growth Rate 

The previous study (Hodshire et al., 2016) found growth due to H2SO4 was significant at 

SGP. To investigate the sensitivity of particle growth to SO2, we flushed ambient air 

spiked with 5 ppb SO2 for the perturbed chamber. Figure 4-10 shows the size distribution 

series through this experiment. 

In the chamber where SO2 was added, two nucleation modes were detected starting in the 

morning at approximately 8:00 CDT on November 5 and 6. Unlike the addition of α-

pinene, which is highly reactive with both O3 and OH, the introduction of SO2 led to 
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increased growth mainly during the daytime due to the strong dependence of OH on 

sunlight, when it also triggered NPF events. The growth rate in the reference chamber 

remained constant at approximately 0.5 nm hour-1. In contrast, the chamber with SO2 

injection had a significantly higher growth rate of approximately 2.5 nm hour-1. 

 

 

Figure 4-10 (a): Ambient aerosol size distribution time series 4 days during the SO2 injection. (b): Size 

distribution time series over the same period in the reference chamber with ambient air flushed. (c): 

Size distribution time series over the same period in the perturbed chamber with ambient air and 5 

ppb SO2 flushed. (d): Time series of the lognormal fit diameters of injected modes in the two chambers. 

(e): Particle growth rates calculated from the time series of lognormal fit diameters. 

 

4.3.4. Effect of Particle Compositions on Particle Growth Rate 

To examine the impact of particle compositions, we introduced dry ammonium sulfate 

(AS) and dry potassium sulfate (KS) particles into the two chambers. The deliquescence 
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relative humidity (DRH) of AS is 75%, whereas KS has a much higher DRH at 96% 

(Seinfeld and Pandis, 2016). This property enables KS particles to remain crystalline 

while AS particles become aqueous when the ambient relative humidity (RH) reaches 

80% but remains below 96%. The markers on the growth rate curves (Fig 4-11. c) 

identify those times when the seed particles were believed to be in aqueous phase based 

on the RH history and efflorescence and deliquescence RH of the two types. (Fig 4-11. 

e). The particles were assumed to remain solid until the RH reaches DRH, at which 

particles spontaneously absorb water and become aqueous phase. With RH decreasing, 

particles remain supersaturated until efflorescence relative humidity (ERH) occurs. AS 

has ERH at 35% and KS’s ERH is 60%. 

During the first injection mode in the afternoon of October 25, the ambient RH was 

above 80%, causing the AS particles to become aqueous once injected. The KS particles, 

on the other hand, were initially crystalline but became aqueous that night as the ambient 

RH increased beyond 96%. A higher growth rate was observed for aqueous-phase AS 

particles compared to crystalline KS particles, as well as for aqueous-phase KS particles 

compared to crystalline KS particles earlier. In the second injection, aqueous-phase AS 

particles also exhibited a higher growth rate than crystalline KS particles. In the 

subsequent third and fourth injections, the two types of particles showed consistent 

growth rates when in both crystalline and aqueous phases. 

On the night of October 27, the RH increased to nearly 100% with precipitation, a wind 

shift and a temperature decrease. The organic fraction in the ambient aerosols decreased 
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relative to the inorganic fraction (Fig 4-11. g), which could be a result of enhancement in 

aerosol hygroscopic growth in the ambient air (Bougiatioti et al., 2016). The faster 

growth observed when both types of particles were in the aqueous phase suggests that 

water uptake had a positive impact on particle growth. 
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Figure 4-11 (a): Ambient aerosol size distribution time series 2 days during the particle compositions 

sensitivity experiment. (b): Time series of the lognormal fit diameters of injected modes in the two 

chambers. (c): Particle growth rates calculated from the time series of lognormal fit diameters with 

markers for modes in aqueous phase based on the RH history and efflorescence and deliquescence RH 

of the two types. (d): Wind direction and wind speed. (e): Ambient relative humidity and temperature. 

(f) Ambient SO2 and O3 concentration. (g): Mass fractions. 
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4.4. Summary 

During the late summer and fall of 2021, we conducted a two-month operation of the 

CAGE chamber system at the DOE Southern Great Plains (SGP) site. Both chambers 

were continuously operated, with monodisperse seed particles injected every few hours 

and intermittently measured by a SMPS. To investigate the sensitivity of particle growth 

to the composition of the injected seed particles and liquid water content, as well as the 

addition of precursor gases, we utilized one chamber as a reference and the other as a 

perturbation chamber. 

The preliminary experiments demonstrated consistent growth in both chambers under 

similar conditions. The occurrence of new particle formation and growth on October 10th 

serves as an example of how the CAGE chambers can mirror changes in ambient 

conditions when there are alterations in the air mass and meteorological conditions. 

During the study, size-resolved ammonium sulfate particles were injected into the 

reference chamber while the other chamber was injected with only filtered ambient air. 

The time dependent growth rate of the particles in the reference chamber was quantified 

and the average growth rate was found to be highest in the morning after sunrise and 

lowest in the afternoon before sunset. 

To study the impact of precursor gases, we introduced 5 ppb α-pinene or 5 ppb SO2 into 

the ambient air while keeping the reference chamber flushed with ambient air. The 

particle growth rate in the perturbed chamber with 5 ppb α-pinene was 5 times higher 

than that in the reference chamber, both during the day and night. On the other hand, the 
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addition of SO2 led to increased growth only during the daytime and triggered NPF 

events. 

The impact of different seed particle types and corresponding influence from their water 

contents was investigated by injecting dry ammonium sulfate particles into the reference 

chamber and dry potassium sulfate particles into the perturbed chamber. We observed 

that both compositions had about 4 times higher growth rates when in the aqueous phase 

compared to when in the crystalline phase. 
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5. Mapping the Aerosol Properties at Houston During the 

TRACER-MAP Campaign 
 

5.1. Introduction 

Atmospheric particles can have negative effects on air quality (Viana et al., 2014), 

visibility (Manisalidis et al., 2020), and human health (Pöschl, 2005), as well as influence 

climate through direct and indirect forcing (Jaenicke, 1980; Mcneill, 2017).  Sources of 

aerosol particles can be direct emissions or via secondary reactions. The growth, aging, 

and cloud condensation nuclei (CCN) activity of the aerosols differs with various sources 

and environmental conditions (Prisle et al., 2010; Seinfeld & Pandis, 2006; Pöschl, 

2002). Previous studies have explored the characterization of aerosols in both rural and 

urban environments in terms of their emissions, growth, and processing (Almeida et al., 

2019; Paasonen et al., 2018; Sun et al., 2018; Wang et al., 2018; Wu et al., 2017). 

Houston, TX is a large metropolitan area with abundant emission sources including 

traffic, industrial, and biogenic (Prisle et al., 2010; S. Shrestha et al., 2022a). It is found 

aerosol processes are influenced by land-sea cycling and convective storms (Ekman et al., 

2007; Sauter et al., 2019; P. Shrestha et al., 2022; S. Shrestha et al., 2022b; Tsai et al., 

2011). There have been several studies to relate the sources, compositions, transportation, 

and chemical process to the atmospheric aerosol growth in Houston (Al-Naiema et al., 

2018; Bahreini et al., 2009; Clark et al., 2017; Dai et al., 2019).  

The TRACER campaign was a comprehensive field study that took place between April 

2021 and September 2022 in Houston, Texas. The TRACER campaign was designed to 
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build upon the findings of previous field studies in the region, such as the 2006 Texas Air 

Quality – Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS – 

GoMACCS) and the NASA’s DISCOVER-AQ and Southern Oxidant and Aerosol Study 

(SOAS) in 2013. It aims to provide new insights to investigate the convective cloud life 

cycles and aerosol-convection interactions.  

The objective of TRACER-MAP was to investigate the spatial characteristics of aerosol 

properties through a series of aerosol, gas, and meteorological measurements. To achieve 

this goal, the Mobile Air Quality Laboratory 2 (MAQL2) was stationed at five different 

sites across the Houston metropolitan area, including La Porte, University of Houston, 

San Jacinto Battleground, Aldine, and Jones Forest. These sites were selected to capture 

various emissions scenarios, including biogenic, industrial, and urban emissions, under 

different meteorological conditions. Aerosol growth events were discussed with a range 

of observations, including CCN concentration, aerosol optical properties, and 

meteorological properties, to better understand the underlying aerosol processes.  

5.2. Methods 

5.2.1. Sites Description 

Five different field sites across the Houston metropolitan area were selected to capture 

the unique atmospheric conditions and emissions sources in the Houston metropolitan 

region. Table 5-1 shows the time and locations MAQL2 visited during the campaign. In 

order to assess the impact of different emissions scenarios and meteorological conditions 

on aerosol growth, MAQL2 was stationed at some sites multiple times. 
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Figure 5-1 Locations of the five sites. 

 

The La Porte AMF site as the primary site for the TRACER campaign was the location of 

the ARM Mobile Facility (AMF1). It is close to Trinity Bay and the Gulf of Mexico and 

consists of a comprehensive suite of aerosol, cloud, and meteorological properties 

instrumentation. This site is located near La Porte Municipal Airport, which is about 4 

km south of an industrial area. The La Porte site has been the focus of several previous 

studies, including the 2006 Texas Air Quality – Gulf of Mexico Atmospheric 

Composition and Climate Study (TexAQS – GoMACCS) and NASA’s DISCOVER-AQ 

and Southern Oxidant and Aerosol Study (SOAS) in 2013. The particle number 

distribution, total aerosol concentration, and CCN concentration measured by MAQL2 

were compared to the AMF1 Aerosol Observing System measurement for validation. 
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The Aldine field site is located about 15 km north-northeast of downtown Houston, 

situated in a suburban environment, and is exposed to a diverse mix of urban, industrial, 

and biogenic emissions.  

The University of Houston (UH) site is about 4 km southeast of downtown, near I-45. It 

was selected to capture the emissions from urban sources, such as transportation, 

commercial, residential, railyard, and local industry.  

The San Jacinto Battleground site is located north of an industrial park about 10 km 

north-northwest of the AMF site, surrounded by Houston Ship Channel which includes 

Port Houston, the largest Gulf Coast container port and tanker terminals, and related 

industrial facilities in the US by water tonnage. 

The Jones Forest site is located in a forested area about 54 km north-northwest of 

Houston and was selected to capture the effects of forested environments with a mixed 

pine-hardwood forest dominated by Loblolly pines. 

Table 5-1 List of sample sites 

Site Aldine University 

of 

Houston 

Battleground Aldine Jones 

Forest 

AMF1 University 

of 

Houston 

Aldine Jone

s 

Fore

st 

Time 7.3 – 

7.8 

7.8 – 7.16 7.16 – 7.21 7.21 – 

7.26 

7.26 – 

8.1 

8.1 – 

8.8 

8.8 – 8.15 8.15 – 

8.24 

8.24 

– 

8.31 

 

5.2.2. Instrumentations 

The platform for TRACER-MAP is the University of Houston/Rice University/Baylor 

University Mobile Air Quality Laboratory 2 (MAQL2). It is a 22 m3 insulated air-

conditioned trailer equipped with a full suite of measurements. The instruments involved 
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in this study are summarized in Table 5-2. The detailed description for MAQL2, aerosol, 

gas, meteorological and atmospheric measurements can be found in previous studies 

(Guo et al., 2021; S. Shrestha et al., 2022c). Here the aerosol measurements using a 

customized Scanning Mobility Particle Sizer, Cloud Condensation Nuclei Counter 

(CCNc), and Aerodynamic Particle Sizer which are not covered in the previous studies 

are described below. 

 

Figure 5-2 MAQL2 outer and inner instrumentation. 
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Table 5-2 List of instrumentation deployed in the MAQL2. 

Aerosol Gas Met/atmospheric 

Scanning Mobility Particle Sizer Proton transfer reaction mass 

spectrometer (PTR-MS, Ionicon) 

RM Young 86000 ultrasonic 

anemometer 

Cloud Condensation Nuclei 

Counter (CCN-100, Droplet 

Measurement 

Technologies) 

CO instrument (off-axis 

integrated cavity output 

spectroscopy) 

RM Young 41382 temperature 

and relative humidity probe 

Aerodynamic Particle Sizer 

(APS 3321, TSI) 

SO2 instrument with a pulsed 

fluorescence analyzer (Model 

43i-TL, Thermo Environmental, 

Inc.) 

61302V barometric pressure 

sensor 

Aerodyne high-resolution time-

of-flight aerosol mass 

spectrometer (HR-ToF-AMS) 

Ozone monitor that has been 

modified to measure O3 via 

chemiluminescence (CL) with 

NO (Model 42C, Thermo 

Environmental, Inc.) 

Meterologie Consult, GmbH 

filter radiometer for jNO2 

Brechtel tricolor absorption 

photometers (365, 520, and 640 

nm) 

High-sensitivity NOx instrument, 

using CL to detect NO and 

photolysis and CL to measure 

NO2 (Air Quality Designs, Inc.) 

Ceilometer (Vaisala CL-31) 

Condensation Particle Counter 

(MAGIC CPC, Aerosol 

Devices) 

Molybdenum oxide catalytic 

converter and subsequent CL 

(Model 42i, Thermo 

Environmental, Inc.) for total 

NOy 

Garmin 19x HVS GPS receiver 

TSI 3563 nephelometer (for 

450, 550, and 700 nm) 

  

 

5.2.2.1. Aerosol Size Distribution Measurement 

The particle size distributions were measured from 0.02 to 17 μm using a customized 

Scanning Mobility Particle Sizer (SMPS) and an aerodynamic particle sizer (APS; TSI 

3321). The SMPS comprises a TSI 3762 condensation particle counter (CPC) and a high-

flow DMA (Stolzenburg et al., 1998). The sample flow was dried through a Nafion 

bundle (Perma Pure Inc., USA) upstream of the DMA. The APS was operated in parallel 

with the SMPS sharing one inlet. The SMPS was calibrated using 0.203 nm polystyrene 

latex (PSL) particles. 
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5.2.2.2. Size Resolved CCN Activity Measurement 

To measure size-resolved CCN activity, a cloud condensation nuclei counter (CCNc; 

DMT CCN-100) was utilized alongside the CPC in the SMPS system. The CCNc was set 

to operate concurrently with the SMPS system so that the total number and CCN 

concentrations of the size-classified aerosol were simultaneously characterized. The 

supersaturation was regulated that stepped at 0.15%, 0.47%, and 0.64% by controlling a 

temperature gradient sequence. Each supersaturation level persisted for approximately 10 

minutes, which corresponded to one scan cycle of the SMPS. 

5.2.3. Data Analysis 

5.2.3.1. Size Distribution 

The aerosol size distribution was derived by inverting the particle concentration using a 

routine described in Collins et al. (2002). The size distributions measured by the two 

were merged using a LabVIEW program by assuming the density of particles at 1.6 

g/cm3. A basic quality check was performed to remove the outliers, continuing zeros, and 

invalid data, which are depicted as black bands on the graphs in subsequent sections. 

During the experiment, a leak was detected upstream of the SMPS system, which was 

addressed by applying a correction factor to the SMPS size distribution curves to match 

the overlapped part measured by the APS. 

5.2.3.2. Growth Rate 

The growth rate was derived from the identified new particle formation events. The time 

dependent mode diameters were assumed to be the maximum diameter in the 
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distributions within 5 hours from the start of the new particle formation events. For each 

identified mode, the growth rate (GR) was calculated as the change in Dp between two 

successive measurements divided by the time difference. 

 

𝐆𝐑 =  
∆𝐃𝐩

∆𝐭
                                                                                              (5- 5) 

5.2.3.3. CCN Activity 

Particle hygroscopicity is derived using expressions from Petters & Kreidenweis (2007).  

𝛋 =  
𝟒𝐀𝟑

𝟐𝟕𝐃𝐩
𝟑𝐥𝐧𝟐𝐒𝐜

                                                                                        (5- 6 ) 

𝐀 =
𝟒𝛔𝐌𝐰

𝐑𝐓𝛒𝐰
                                                                                             (5- 7 )   

Where Dp is the critical dry diameter of the aerosol species at supersaturation Sc, σ is the 

surface tension of the drop which is assumed to be that of water, R is the ideal gas 

constant, and Mw and ρw are the molecular weight and density of water, respectively. 

5.3. Results and Discussion 

5.3.1. Particle Number Size Distributions 

Number and volume size distributions varied widely from site to site and were influenced 

by changing meteorological conditions and local emissions. Figure 5-3 show the time 

series for the number and volume distribution throughout the entire campaign with labels 

on the top indicating the sites. The average number and volume size distribution for the 

different sites are shown in Figure 5-3.  
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Figure 5-3 Times series of the number and volume distributions throughout the campaign. 

 

Figure 5-4 Times series of the number (left) and volume (right) distributions throughout the campaign. 

 

A single mode is observed in the averaged number size distribution across all sites, which 

is consistent with previous research indicating that urban aerosols are typically 

characterized by a single mode (T. Wu & Boor, 2021). The shapes of the distributions are 

similar across all sites, with peaks falling between 30 and 50 nm. The Aldine site, which 

is heavily influenced by local traffic and industrial emissions, has the highest number 
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concentration. The average volume distributions at all sites exhibit dual modes, with one 

centered at approximately 0.3 µm and the other at 1 µm. The Battleground site has the 

highest volume distribution at around 1 µm, due to a potential dust period that will be 

discussed later on. 

5.3.2. New Particle Formation Events 

Table 5-3 provides a summary of new particle formation (NPF) events that occurred 

during the campaign. NPF events were mainly observed in the morning between 9 and 12 

AM (local time), indicating the significance of photochemistry in the process. The UH 

site had the highest NPF frequency of 0.87, which occurred between July 8th and 16th. 

However, during the second visit, the frequency of NPF events at the UH site was not as 

high, suggesting the temporal variability of regional NPF. Urban sites, such as UH and 

Aldine, had more frequent NPF events than other sites.  

The average growth rate (GR) of particles at all sites was 4.4 nm hr-1, with the UH site 

having the highest GR of 8.3 nm hr-1. The observed GR in this study was slower than the 

10 nm hr-1 measured at Houston in 2009 during the SHARP/SOOT campaign (Levy et al., 

2013).  
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Table 5-3 New particle formation event summary 

Site Stay time NPF 

frequency 

NPF start 

time CDT 

Average GR 

(nm hr-1) 

Max Dp 

(nm) 

Aldine  7/6 – 7/8 0.50 7/7 9:17 

 

4.1 71.8 

UH  7/8 – 7/16 0.86 7/10 11:22 4.4 44.7 

7/11 8:58 5.4 62.3 

7/12 11:34 7.1 62.3 

7/13 11:54 8.3 71.8 

7/14 10:25 2.2 32.1 

7/16 10:35 4.2 71.8 

Battleground 7/16 – 

7/21 

0    

Aldine 7/21 – 

7/26 

0.20 7/25 10:39 3.9 42.6 

Jones Forest  7/26 – 8/1 0.80 7/27 10:55 3.5 40.7 

7/28 11:36 2.8 37.0 

7/30 12:12 8.1 68.5 

7/31 11:50 2.6 40.7 

AMF 8/1 – 8/8 0    

UH 8/8 – 7/16 0.33 8/9 10:49 3.1 32.1 

8/10 10:34 5.5 71.8 

Aldine 8/16 – 

8/24 

0.38 8/16 10:44 2.8 44.7 

8/18 11:7 5.0 54.0 

8/19 16:38 2.5 49.2 

Jones Forest 8/24 – 

8/31 

0    

 

5.3.2.1. NPF During Convection 

On 18 August 2022, an ambient NPF was recorded by the SMPS beginning around 11 

local time (Fig. 5-5). Meanwhile, a storm was approaching from northwest observed by 

Next Generation Weather Radar (NEXRAD) system, which brought precipitation to 

Houston area in the night of August 18. The lognormal fit diameters and growth rates for 

observed modes were presented in Fig. 5-5b, and the NPF event was observed during 

MAQL2's visit to the Aldine site. Wind direction changed from southwest to southeast, 
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with wind speed decreasing, as temperature decreased and relative humidity increased, as 

shown in Fig. 5-5c and 5-5d. A drop in solar intensity and raise in dew point was 

observed, too (Fig. 5-5e). The Doppler radar operated at the AMF site also recorded 

convection, as shown in Fig. 5-5f. 

The increased solar radiation, indicating active photochemistry, likely played a positive 

role in the formation of the nucleation mode. In addition, it is reported turbulent 

fluctuations across temperature and humidity gradient are favorable for nucleation 

(Nilsson et al., 2001). Another NPF mode occurred in the afternoon of August 19th after 

strong convection happened throughout the day. The solar intensity was low during the 

second NPF event. Enhanced trace gases brought to the ground by the convection could 

be one potential contributor for the nucleation mode (Platis et al., 2016). 

Figure 5-5 compares the aerosol number and volume distributions before, during, and 

after the storm at the same time (19:00 local time). The results showed an increase in the 

number of smaller particles and also in volume of slightly larger particles after the storm. 

One possible explanation is that post-convection downdrafts brought lofted aerosol and 

trace gases to the surface, while wet deposition removed preexisting aerosols. Another 

possibility is that the storm enhanced atmospheric turbulence and mixing, leading to 

increased aerosol particle number and size due to coagulation and condensation. 
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Figure 5-5 (a): Ambient aerosol size distribution time series 2 days during a storm. (b): Time series of 

the lognormal fit diameters of identified and particle growth rates calculated correspondingly. (c): 

Wind direction and wind speed. (d): Ambient relative humidity and temperature. (e) Dew point and 

solar intensity. (f): KAZR reflectivity. 
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Figure 5-6 Number and volume size distributions before, during, and after the storm. 

5.3.3. Supermicron Particles 

The temporal trends of the total volume concentration in the size range of 0.5 to 20.1 µm, 

as measured by APS at MAQL2 and AMF, are presented in Figure 5-7. Despite some 

sites visited by MAQL2 being far away from AMF, the trends measured by both sites are 

similar, indicating that the increase in supermicron particles is likely a regional event 

rather than a result of local emissions. The average number and volume concentrations 

measured by MAQL2 and AMF1 are 18.8 and 10.2 cm3, and 18.6 and 11.1 µm3 cm3, 

respectively. The higher concentration observed by MAQL2 may suggest a higher 

concentration from urban Houston in the northwestern area to the coastal area. 

In Figure 5-8, a comprehensive analysis was conducted using aerosol optical properties, 

including scattering and absorption coefficients, as well as single scattering albedo. The 

results showed a considerable increase in the scattering coefficient, which was closely 

associated with the enhancement in particle number and volume concentration. On the 

other hand, the absorption coefficient exhibited a relatively smaller increase. This 

suggests that the sources of the supermicron particles were more likely to be non-



102 

 

absorbing aerosols, such as sulfate and sea salt, rather than absorbing ones like black 

carbon. 

 

Figure 5-7 Comparisons of time series of the total number and volume concentration measured by 

MAQL2 and AMF. 
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Figure 5-8 (Top) Time series of the total number concentration measured by MAQL2 and Single 

Scattering Albedo (SSA). (Bottom) Time series of the absorption and scattering coefficient at 365 and 

450 nm. 

5.3.4. CCN Activity 

Figure 5-9 displays the hygroscopicity coefficient κ and critical dry diameter Dp_50 at 

supersaturation Sc of 0.15, 0.37, and 0.64 for various sites. As expected, aerosols have a 

larger hygroscopicity coefficient and critical dry diameter at lower Sc for all sites with 

sufficient data. The κ for all sites falls mainly within the 0.1 to 0.4 range, indicating that 

the majority of aerosols have moderate hygroscopicity, such as salts, rather than 

inhygroscopic compounds like organic. The AMF1 location displays the greatest mean κ 

value at 0.26, whereas the Jones Forest exhibits the lowest at 0.15. This aligns with the 

anticipated outcome that the biogenic source is more prevalent at the Jones Forest site. 

Figure 5-10 illustrates the diurnal cycle of averaged κ at different sites, revealing 

significant variability between sites and supersaturations. Some sites, such as 
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Battleground and AMF1, exhibit higher κ around noon, while the Jones Forest site 

maintains a consistent κ throughout the day. The difference may be attributed to the 

stable isolated source and more abundant SOA at Jones Forest, while the remaining sites 

are more influenced by local emissions. The differentiation of diurnal patterns across 

various sites accentuates the distinct sources and circumstances specific to each location. 

At lower supersaturation of 0.15, hygroscopicity displays a greater time of day 

dependency than at larger supersaturations. The value of κ was found to be greater at 

lower supersaturation levels, while there was little difference between the κ values at 

supersaturation levels of 0.37 and 0.64. Additionally, it was observed that κ values at the 

two supersaturation levels often became similar in the afternoon, indicating the 

composition kept stable with particle growing and is relative hygroscopic. 
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Figure 5-9 The summary of the hygroscopicity coefficient κ and critical dry diameter Dp_50 at 

supersaturation Sc of 0.15, 0.37, and 0.64 for different sites. 
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Figure 5-10 Diurnal cycle of averaged hygroscopicity coefficient κ at different sites. 

5.4. Conclusions 

Between July and August of 2022, the TRACER-MAP campaign utilized the Baylor-UH-

Rice-UCR Mobile Air Quality Laboratory (MAQL2) to gather aerosol, volatile organic 

compounds, trace gas, and meteorological data across Houston. This study focused on 

aerosol measurements obtained from five sites: La Porte, University of Houston, San 

Jacinto Battleground, Aldine, and Jones Forest. 

The aerosol size distribution was unimodal across all sites, with the highest concentration 

observed in urban and biogenic environments. The volume distributions were bimodal, 

with the highest volume concentration observed at the Battleground site due to an 

increase in supermicron particles. These particles were found to be temporally associated 
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with AMF measurements, with the highest enhancement observed from July 16th to 18th 

at the Battleground site. 

Frequent new particle formation events were observed at UH and Jones Forest sites. 

Active NPF was observed associated with convections. 

The CCN activity was found to decrease as the supersaturation level increased from 0.15 

to 0.64, with a small difference between the supersaturation levels of 0.37 and 0.64. The 

University of Houston, Battleground, and AMF1 sites showed a moderate diurnal cycle, 

while the Jones Forest site showed consistent hygroscopicity. 
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6. Conclusions and Recommendations for Future Work 
 

In chapter 2, a daily routine unmanned aerial system-based measurements of vertical 

ozone and particulate matters were conducted at Riverside, CA. The default PBL scheme 

is found to be biased from the ceilometer observation. Additionally, the importance of 

NOx as an ozone precursor was found to be underestimated. These findings emphasize 

the importance of considering vertical mixing in the PBL when simulating surface ozone 

in the CMAQ model. It is recommended to incorporate vertical validation and enhance 

the diffusivity scheme in the model to improve its accuracy. 

Chapter 3 demonstrates an Aircore based UAS air sample collection system.   Four 

deployments were performed in the San Joaquin Valley, CA. The system was able to 

reliably profile methane and carbon dioxide concentrations in the low troposphere and 

estimate wind information from the rotational kinematics of a multirotor UAS. Using the 

concentration and wind profiles, the emission footprint and rate were estimated, 

providing a cost-effective and easily deployable method to quantify emissions in addition 

to the conventional ground measurements. The limitations in the deployment of 

multirotor UAS and Aircore atmospheric sampling, such as flight duration and payload 

weight limits, will be addressed in future work. Additionally, a new multirotor UAS and 

Aircore design will be developed to provide transects of the emission plumes for better 

characterization of emissions. 

Chapter 4 presents the first deployment of the CAGE chamber system at the DOE 

Southern Great Plains (SGP) site in the late summer and fall of 2021. During the three-
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month operation, the dual chambers show consistent growth with ambient conditions. By 

using one chamber as the reference and the other as the perturbation chamber, the 

sensitivity of particle growth with the addition of gas precursors such as α-pinene and 

SO2 was studied. Multiple NPF events were observed and analyzed with meteorological 

and aerosol observations. The study also investigated the impact of different seed particle 

compositions on particle growth rates by introducing dry ammonium sulfate particles into 

the reference chamber and dry potassium sulfate particles into the perturbed chamber. In 

the future, the CAGE chamber system will be combined with the oxidation flow reactors 

(OFRs) uncder diverse atmospheric conditions in various regions. 

In chapter 5, the observations from the TRACER-MAP campaign were presented. The 

measurements of aerosol, volatile organic compounds, trace gas, and meteorological data 

were performed utilizing the Baylor-UH-Rice-UCR Mobile Air Quality Laboratory 

(MAQL2) across Houston between July and August of 2022. This study focused on 

aerosol measurements obtained from five sites: La Porte, University of Houston, San 

Jacinto Battleground, Aldine, and Jones Forest. The aerosol size distributions were 

unimodal across all sites, with the highest concentration in urban and biogenic 

environments. The volume distributions were bimodal, with the highest volume 

concentration observed at the Battleground site for a potential dust event. New particle 

formation events were frequent at UH and Jones Forest sites. The CCN activity decreased 

as the supersaturation level increased, with a small difference between the supersaturation 

levels of 0.37 and 0.64. The University of Houston, Battleground, and AMF1 sites 
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showed a moderate diurnal cycle, while the Jones Forest site showed consistent 

hygroscopicity. 




