Title
HOxchemistry during INTEX-A 2004: Observation, model calculation, and comparison with previous studies

Permalink
https://escholarship.org/uc/item/0fw1k60r

Journal
Journal of Geophysical Research: Atmospheres, 113(D5)

ISSN
0148-0227

Authors
Ren, Xinrong
Olson, Jennifer R
Crawford, James H
et al.

Publication Date
2008-03-16

DOI
10.1029/2007jd009166

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
HO$_x$ chemistry during INTEX-A 2004: Observation, model calculation, and comparison with previous studies

Received 13 July 2007; revised 24 October 2007; accepted 18 December 2007; published 8 March 2008.

[1] OH and HO$_2$ were measured with the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) as part of a large measurement suite from the NASA DC-8 aircraft during the Intercontinental Chemical Transport Experiment-A (INTEX-A). This mission, which was conducted mainly over North America and the western Atlantic Ocean in summer 2004, was an excellent test of atmospheric oxidation chemistry. The HO$_x$ results from INTEX-A are compared to those from previous campaigns and to results for other related measurements from INTEX-A. Throughout the troposphere, observed OH was generally 0.95 of modeled OH; below 8 km, observed HO$_2$ was generally 1.20 of modeled HO$_2$. This observed-to-modeled comparison is similar to that for TRACE-P, another midlatitude study for which the median observed-to-modeled ratio was 1.08 for OH and 1.34 for HO$_2$, and to that for PEM-TB, a tropical study for which the median observed-to-modeled ratio was 1.17 for OH and 0.97 for HO$_2$. HO$_2$ behavior above 8 km was markedly different. The observed-to-modeled HO$_2$ ratio increased from ~1.2 at 8 km to ~3 at 11 km with the observed-to-modeled ratio correlating with NO. Above 8 km, the observed-to-modeled HO$_2$ and observed NO were both considerably greater than observations from previous campaigns. In addition, the observed-to-modeled HO$_2$/OH, which is sensitive to cycling reactions between OH and HO$_2$, increased from ~1.5 at 8 km to almost 3.5 at 11 km. These discrepancies suggest a large unknown HO$_x$ source and additional reactants that cycle HO$_x$ from OH to HO$_2$. In the continental planetary boundary layer, the observed-to-modeled OH ratio increased from 1 when isoprene was less than 0.1 ppbv to over 4 when isoprene was greater than 2 ppbv, suggesting that forests throughout the United States are emitting unknown HO$_x$ sources. Progress in resolving these discrepancies requires a focused research activity devoted to further examination of possible unknown OH sinks and HO$_x$ sources.

1. Introduction

[2] Oxidation chemistry cleanses the atmosphere of chemical emissions from Earth’s surface, establishes the global ozone balance, and influences climate change. It is dominated by the hydroxyl radical, OH, but also involves the hydroperoxyl radical, HO$_2$. OH and HO$_2$, together called HO$_x$, are highly reactive atmospheric constituents that have a large impact on the atmospheric chemistry by...
influencing the removal of gases emitted into the atmosphere and the production of ozone and ultrafine aerosol particles.

[1] The basics of HOx photochemistry have frequently been described [see, e.g., Jaegle et al., 2000]. The abundance of OH and HO2 is primarily influenced by the HOx production rate, the amount of NOy (NOx = NO + NOy), and to some extent the types of hydrocarbons [Jaegle et al., 2000; McKeen et al., 1997; Singh et al., 1995, 2003]. In polar regions during springtime, halogen chemistry can influence HOx and the HOx/OH ratio in both the marine boundary layer [Bloss et al., 2007] and the stratosphere [Hanisco et al., 2002].

[4] HOx has a number of sources: photolysis of ozone (O3) followed by a reaction of O(1D) with H2O, photolysis of formaldehyde (HCHO), nitrous acid (HONO), hydrogen peroxide (H2O2), methylhydroperoxide (CH3OOH), and acetone (CH3C(O)CH3), as well as reactions between O3 and alkanes. Its destruction is thought to be controlled by the relatively few type reactions: HO2 + HO2, HO2 + OH, HO2 + RO2, and OH + NO2.

[5] The NOx abundance determines which reactions are the primary HOx loss. At low NOx, radical-radical reactions (particularly HO2 + HO2 and HO2 + RO2) dominate the loss of HO2. As NOx increases, HO2 + NO → OH + NOx shifts the partitioning of HOx toward OH so that the HO2 + OH reaction begins to contribute significant to the loss. At high NOx, direct reaction of OH with NO2 to form HNO3 becomes the primary loss. As a result, for fixed HOx production (P(HOx)), OH first increases until NOx reaches a few ppbv and then decreases as a function of NOx, while HO2 remains roughly unchanged until NOx reaches values for which OH + NO2 + M → HNO3 + M is the dominant loss and then decreases even faster than OH as NOx continues to increase. As P(HOx) increases, the peak OH is higher and shifted to greater NOx values [McKeen et al., 1997]. Under high NOx conditions, HO2 has a heightened sensitivity to HOx sources [Olson et al., 2006]. Thus, uncertainties in observations and reaction kinetics of HOx precursors have a much more pronounced impact on modeled HOx at high NOx conditions compared to lower NOx conditions.

[6] Reactions of OH with carbon monoxide (CO) and volatile organic compounds (VOCs) lead to the formation of HO2 and organic peroxy radicals (RO2). This conversion of OH is rapid. The inverse of the OH lifetime, the reaction frequency, which is usually called the OH reactivity, is typically 1 s−1 in clean environments near the surface, about 0.2–0.4 s−1 in the upper troposphere, and 5–100 s−1 in polluted urban environments. At the same time, HO2 reacts with NO, producing O3, or with O3, destroying O3, and in the process recreates OH. This cycle between OH and HO2 is at times faster than the production and loss of HO2. The reaction of RO2 and NO leads to the formation of HO2 and NO2. The exact photochemistry that occurs depends mainly on the HO2 production (P(HO2)), NOx, the OH reactivity, and the yield of HO2 and RO2 from hydrocarbon oxidation [Kleinman et al., 2002]. Understanding HOx sources, sinks, and cycling is essential to develop predictive capability of pollution’s influence on the atmosphere’s oxidation capacity.

[7] The ratio of HO2/OH is an important indicator of the HOx cycling between OH and HO2. A steady state expression for HO2/OH comes from assuming that OH is in steady state:

\[
\frac{[\text{HO}_2]}{[\text{OH}]} = \frac{k_{\text{OH}}}{(k_{\text{NO}+\text{HO}_2}([\text{NO}] + k_{\text{O}_3+\text{HO}_2}([\text{O}_3])) + P(\text{OH})_{\text{primary}}/[\text{HO}_2])}
\]

where P(\text{OH})_{\text{primary}} is the OH production rate from either photolysis of long-lived atmospheric constituents or from reactions of O3 with alkenes; (k_{\text{NO}+\text{HO}_2}([\text{NO}] + k_{\text{O}_3+\text{HO}_2}([\text{O}_3])) represents the cycling reaction frequency of HOx from HO2 to OH; and k_{\text{OH}} is the OH reactivity with all OH reactants, whether they are HO2 cycling or HOx terminating reactions. We use the definition for primary OH sources to be those that are independent of local HOx [Jaegle et al., 2001]. Typically the photolysis of O3 followed by O(1D) + H2O is the most important OH primary source, although the photolysis of HONO, H2O2, and CH3OOH can also be important.

[8] For many atmospheric environments, the primary production, P(\text{OH})_{\text{primary}} and the terminating OH reaction rates are much smaller than the rate of reactions that cycle HOx between OH and HO2 and can be ignored. However, for the free troposphere between 2 km and 8 km in INTEX-A, the fraction of OH production by P(\text{OH})_{\text{primary}} is as often larger than OH production by HOx cycling, ranging from 0.1 to 0.9 of total OH production, and cannot be ignored.

[9] Because HOx photochemistry is sufficiently fast, comparisons with box models test the understanding of HOx photochemistry. While scatterplots of measurements and model calculations are useful, examining the ratio of observed-to-modeled OH and HO2 as a function of important variables provides even more information. The analyses of airborne tropospheric HOx measurements from several different studies have been published [e.g., Wennberg et al., 1998; Crawford et al., 1999; Brune et al., 1998, 1999; Tan et al., 2001a; Olson et al., 2004, 2006]. When all of the studies are taken together, we can reach the conclusion that HOx photochemistry is generally understood and the results from last several missions are generally consistent, but that important large differences remain for some environments and conditions.

[10] Although the current agreement between measured and modeled HOx is generally very good, there are specific environmental conditions where the agreement is weaker. Considering the critical role of HOx in the production of secondary pollutants and the role of OH in the troposphere’s oxidation capacity, further investigation into the causes of these differences is crucial. Emerging from previous HOx studies are a set of conclusions: (1) HO2, and thus calculated ozone production, is greater than model predictions at larger NO values for many tower-based studies and some aircraft studies, even though this discrepancy has been almost eliminated for two previous aircraft studies by reanalyses that more fully account for HOx precursors and have updated reaction rate coefficients and products [Olson et al., 2006]; (2) HO2 and OH are larger than model predictions at high solar zenith angles, as in the Subsonic Assessment: Ozone and Nitrogen Oxide Experiment (SONEX) [Brune et al., 1999], although the overtone photolysis of HO2NO2 could partly explain the discrepancy.
were used in the calibration to produce different detection cell pressures. Monitoring laser power, Rayleigh scattering, and laser line width maintained this calibration in flight [Faloona et al., 2004]. For the calibration, OH and HO\textsubscript{2} were produced through water vapor photolysis by 185 nm light. Absolute OH and HO\textsubscript{2} mixing ratios were calculated by knowing the 185 nm flux, which is determined with a Cs-I phototube referenced to a NIST-calibrated photomultiplier tube, the H\textsubscript{2}O absorption cross section, the H\textsubscript{2}O mixing ratio, and the exposure time of the H\textsubscript{2}O to the 185 nm light. The absolute uncertainty is estimated to be a factor of 1.32 for both OH and HO\textsubscript{2} at the 2σ confidence level. The uncertainty in measured HO\textsubscript{2}/OH ratios is less, about ±15% at the 2σ confidence level, as determined from the precision of repeated simultaneous OH and HO\textsubscript{2} calibrations combined with estimated uncertainties of known factors affecting the relative OH and HO\textsubscript{2} measurements. The 2σ precisions for a 1-min integration time during this campaign were about 0.01 pptv for OH and 0.1 pptv for HO\textsubscript{2}. Further details about the calibration process may be found elsewhere [Faloona et al., 2004].

[15] Recently we revised our values for OH and HO\textsubscript{2} for the NASA missions TRACE-P, INTEX-A, and INTEX-B because of a problem with the ATHOS absolute calibration. The problem was related to an error in the calibration of our primary standard: a photomultiplier tube (PMT), which we use to measure the photon flux of a mercury lamp in our OH generator. The revised numbers are factor of 1.64 higher. Missions earlier than TRACE-P were unaffected. The conclusions of a few papers already published concerning these missions will need to be revisited to see if the ATHOS calibration change affects them.

2.2. Other Measurements on the DC-8

[16] The payload of the DC-8 and the measured chemical species and parameters are briefly described by Singh et al. [2006]. A large suite of atmospheric constituents were measured in INTEX-A, including CO, O\textsubscript{3}, H\textsubscript{2}O, reactive nitrogen (NO, NO\textsubscript{2}, HNO\textsubscript{3}, HO\textsubscript{2}NO\textsubscript{2}, PAN), more than 50 VOCs and oxygenated VOCs (OVOCs), and important HO\textsubscript{x} precursors such as peroxides (H\textsubscript{2}O\textsubscript{2} and CH\textsubscript{3}OOH) and aldehydes (HCHO and acetaldehyde). Spectral radiometers allowed direct measurement of actinic flux used to derive key photolysis frequencies.

[17] The measurements of NO\textsubscript{2} were made with laser-induced fluorescence [Thornton et al., 2000] and measurements of NO were made with a TECO Model 42C NO–NO\textsubscript{x} analyzer run in an NO only mode, which had a precision of 50 pptv with 1-min time integration. Because of this large NO limit of detection, concentrations of NO were predicted using the steady state model and measured NO\textsubscript{2}. A linear regression of the NO obtained from measurements and the model is the equation: NO\textsubscript{(model)} = 0.92 \times NO\textsubscript{(measured)} – 16 pptv, with R2 = 0.76 and where, NO\textsubscript{(model)} was calculated in the model using observed NO\textsubscript{2}, O\textsubscript{3}, NO\textsubscript{2} photolysis frequency, and modeled HO\textsubscript{2} and RO\textsubscript{2}. This agreement gives confidence that NO from the model, rather than measurements, can be used at low NO, where the NO measurement is noisy and may have a small offset, and at high NO, where NO obtained from measurements and from the model are in excellent agreement.

[11] This paper presents HO\textsubscript{x} observation results and a steady state modeling analysis of fast photochemistry using measurements made during the INTEX-A campaign. The HO\textsubscript{x} results from INTEX-A are compared to those from previous campaigns and to results for other related measurements INTEX-A. Analyses of these comparisons provide the characteristics that uncertain or unknown chemistry must have in order to resolve discrepancies between measured and modeled HO\textsubscript{x} that were observed in INTEX-A.

2. Experiment and Model Description

2.1. OH and HO\textsubscript{2} Measurements

[12] The OH and HO\textsubscript{2} radicals were measured with the Penn State ATHOS (Aircraft Tropospheric Hydrogen Oxides Sensor). ATHOS detects OH and HO\textsubscript{2} with laser-induced fluorescence (LIF). The technique uses a pump-down technique often called the fluorescent assay by gas expansion (FAGE) originally developed by Hard et al. [1984]. A detailed description of the ATHOS instrument can be found elsewhere [Faloona et al., 2004]; here an abbreviated description of ATHOS is given.

[13] The air sample is drawn into a low-pressure chamber through a pinhole inlet (1.5 mm) with a vacuum pump. The pressure of the detection chamber varied from 12 to 3 hPa from 0 to 12 km altitude. As the air passes through a laser beam, OH is excited by a spectrally narrowed laser with a pulse repetition rate of 3 kHz at one of several ro-vibronic transition lines near 308 nm (A2Σ–X2Π, \nu’ = 0 \rightarrow \nu” = 0). Collisional quenching of the excited state is slow enough at the chamber pressure that the weak OH fluorescence extends beyond the prompt scattering (Rayleigh and wall scattering) and is detected with a time-gated microchannel plate (MCP) detector. HO\textsubscript{2} is measured by reaction with NO followed by the LIF detection of OH. The OH and HO\textsubscript{2} detection axes are in series: OH is detected in the first axis and HO\textsubscript{2} in a second axis as reagent NO (>99%, Matheson, Twinsburg, OH, purified through Ascarite) is added to the flow between the two axes. The OH fluorescence signal is detected 60 ns after the laser pulse has cleared in the detection cells and is recorded every 0.2 s. The laser wavelength is tuned on and off resonance with an OH transition every 10 s, resulting in a measurement time resolution of 20 s. The OH fluorescence signal is the difference between on-resonance and off-resonance signals.

[14] The instrument was calibrated both in the laboratory and during the field campaign. Different sizes of pinholes
2.3. Model Description

[18] A zero-dimensional, time-dependent photochemical box model developed at NASA Langley Research Center was used to calculate OH, HO₂ and other reactive intermediates. The model has been described in detail in several previous studies [e.g., Crawford et al., 1999; Olson et al., 2004]. The modeling approach is based on the assumption of a diurnal steady state. For a suite of simultaneous measurements of input species at a given point in time, the model integrates to find a self-consistent diurnal cycle for the computed species based on constraining selected species to the measurements. Computed concentrations at the point in time of measurement are then used as the instantaneous model results. This approach ensures that all computed species are in equilibrium with the diurnal process, which is crucial for species with lifetimes too long for simple instantaneous steady state assumptions. For input, model calculations use observations from the 1-min merged data set available on the INTEX-A public data archive (ftp://ftp-air.larc.nasa.gov/pub-air/INTEXA/). The minimum set of input constraints includes observations of O₃, CO, NO₂, NMHC, acetone, methanol, temperature, H₂O (dew/frost point), pressure, and photolysis frequencies. For this analysis, analyzed data were limited to solar zenith angles (SZA) between 0° and 85°.

[19] In addition to the required constraints described above, the model has the option to include additional constraints when measurements are available for hydrogen peroxide (H₂O₂), methyl hydrogen peroxide (CH₃OOH), nitric acid (HNO₃), and peroxy acetyl nitrate (PAN). If unavailable, these atmospheric constituents are calculated by the model based on diurnal steady state. While each of the H₂O₂, CH₃OOH, HNO₃, or PAN measurements were missing 20–35% of the measurement time, all of the H₂O₂, CH₃OOH, HNO₃, and PAN measurements were simultaneously missing less than 2% of the measurement time. Model calculations taking advantage of these additional constraints are referred to as “constrained.” All model results discussed in this paper are taken from the constrained model calculations unless explicitly stated otherwise. For the purpose of model-to-measurement comparisons, an unconstrained version was also run for which none of the additional constraints were exercised; that is, the peroxides, PAN, and HNO₃ were always predicted.

[20] Neither the unconstrained model nor the constrained model was constrained to the measured HCHO, just as was done for previous campaigns. Rather, HCHO is used as an additional species for which comparisons between the observations and model may provide insight into current knowledge of photochemical cycling. Evidence suggests that the differences in the observed and modeled HCHO do not significantly influence the comparisons between observed and modeled OH, HO₂, and HO₂/OH [Olson et al., 2004; A. Fried et al., Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign, submitted to Journal of Geophysical Research, 2007].

[21] In order to maximize the number of points available for modeling, nonmethane hydrocarbons were interpolated between consecutive grab samples, which were collected throughout each flight at a frequency of every 4–5 min during horizontal flight legs and every 1–2 min during ascents and descents. Similarly, acetone and methanol were interpolated between adjacent measurements to fill data gaps.

[22] As in previous studies, photolysis frequencies were based on spectroradiometer measurements [Shetter and Muller, 1999]. The diurnal profile for each photolysis frequency is based on clear-sky model calculations using a Discrete Ordinate Radiative Transfer (DISORT) eight-stream implementation of the NCAR Tropospheric Ultraviolet Visible (TUV) radiative transfer code [Madronich and Flocke, 1998]. The clear-sky diurnal variation from TUV is then normalized to measured photolysis frequencies at the time of observation. Unmeasured photolysis frequencies J(NO₂ + hν → NO + O₂), J(NO₃ + hν → NO₂ + O), and J[N₂O₄ + hν → NO₂ + NO₃] were first calculated for clear sky conditions and then corrected for ambient cloud conditions on the basis of the ratio of measured-to-calculated photolysis frequency of NO₂.

[23] The uncertainties in the modeled OH and HO₂ are based on the combined uncertainties of the kinetic rate coefficients, the measured chemical concentrations, and the measured and calculated photolysis frequencies. The uncertainties in the model due to kinetic rate constant uncertainties were estimated with a Monte Carlo approach, as in, for example, the works by Thompson and Stewart [1991] or Carslaw et al. [1999]. The ±2σ uncertainty was estimated to be ±59% for OH and ±53% for HO₂ in the upper troposphere (8–12 km), about ±40% for OH and 45% for HO₂ in the middle troposphere (2–8 km), and ±28% for OH and ±24% for HO₂ in the boundary layer, on the basis of median conditions observed for INTEX-A.

3. Observations, Model Results, and Comparisons

[24] During INTEX-A, the DC-8 encountered a variety of air masses. These include air masses that were influenced by anthropogenic pollution, biomass burning, convection, the stratosphere, and mixtures of these different types. These plumes are often distinguishable by their characteristic composition. Anthropogenic pollution contains high CO, anthropogenic hydrocarbons, and often water vapor. Biomass burning plumes can be distinguished from anthropogenic pollution by high HCN and acetonitrile. Convection plumes can be distinguished by high NO₂/NOₓ ratios, water vapor, ultrafine particles, and O₃. Stratosphere-influenced air can be defined as air having O₃ greater than ~100 ppbv, CO less than ~100 ppbv, water vapor less than 200 ppmv, and low hydrocarbon levels. The different composition of these air masses provides an excellent opportunity to examine HO₂ photochemistry for a range of conditions.

3.1. HO₂ Observations and Comparison With the Model Calculations

[25] Altitude profiles of observed OH and HO₂ spanned from a few hundred meters above the surface to almost 12 km (Figure 1). Median OH was relatively constant at 0.25 pptv from altitudes near the surface to 6 km, but then increased with altitude above 6 km, achieving a maximum of about 0.86 pptv at 12 km. HO₂ decreased as the altitude increased, with a maximum median of ~30 pptv near the
surface and a minimum median of ~8 pptv at the highest altitude. The greatest HO$_2$, almost 60 pptv, was observed just above the surface over the central United States. The median HO$_2$/OH ratio dropped from 140 near the surface to 12 above 10 km, driven by both the decrease in HO$_2$ and the increase in OH with altitude. At low altitudes, the spread in HO$_2$/OH is quite large, from 20 to 300, indicating a wide range of air composition there.

Overall comparisons of observed and modeled OH and HO$_2$ show that on average observed OH and HO$_2$ generally agree with modeled OH and HO$_2$. However, for less HO$_2$, observed OH and HO$_2$ generally exceeded the modeled OH and HO$_2$ (Figure 2). Because less HO$_2$ was mostly observed at high altitudes, these plots suggest that the behavior of HO$_2$ should be investigated as a function of altitude.

Detailed statistics characterize the behavior of the observed-to-modeled ratios as a function of altitude for OH, HO$_2$, and HO$_2$/OH (Table 1). The “% within ±32%” is the percentage of model values that are the same as the measured values to within the measurement 2σ uncertainty of a factor of 1.32; the “% mod > obs × 1.32” is the percentage of model values greater than 1.32 times the observed values; and the “% mod < obs/1.32” is the percentage of model values less than the observed values divided by 1.32. Although the model also has uncertainty, using the 2σ measurement uncertainty provides a good indication of the differences between the observed and modeled values and where they are occurring.

OH is well predicted by the model at all altitudes except in the boundary layer where OH is underpredicted, with roughly half of the modeled values falling within the 2σ measurement uncertainty (±32%) (Table 1 and Figure 3). For a smaller number of observations, OH is underpredicted in the continental boundary layer and in a few plumes at higher altitudes. The underprediction in the boundary layer correlates strongly with isoprene and will be discussed in detail later. HO$_2$ is generally well predicted below 8 km with a slight underprediction, but is significantly underpredicted above 8 km (Table 1 and Figure 4). Large underpredictions of HO$_2$ in the upper free troposphere above 8 km are highly correlated with NO and will be discussed in detail later.

The HO$_2$/OH ratio is generally well predicted throughout the troposphere (Table 1 and Figure 5). Below 8 km, the median observed-to-modeled ratio is less than 1.5. Median values of the HO$_2$/OH observed-to-modeled ratio are biased slightly high because it tends to be slightly underpredicted for HO$_2$. Above 8 km, the large differences in the observed-to-modeled HO$_2$/OH are driven more by the differences in observed-to-modeled HO$_2$ than they are in the differences between the observed-to-modeled OH.

There are two possible explanations for the general observed and modeled agreement in some cases but not in others. The first explanation is that OH and HO$_2$ measurements are affected by large interferences in some environments. ATHOS has been extensively tested for interferences for both OH and HO$_2$ [Ren et al., 2004]; no interference that could be responsible for these measurements has been found. A second explanation is that uncertainties or unknowns in the chemistry are responsible for at least some of the observed-to-modeled discrepancies. In the absence of evidence that the absolute calibration is not good to within the stated ±32% at the 2σ confidence level, we will assume that all the discrepancies are caused by uncertain or unknown chemistry and will at least characterize the effects of the unknown chemistry, even if we cannot identify it by name.

Figure 1. Observed OH and HO$_2$ mixing ratios and HO$_2$/OH ratio as a function of altitude during INTEX-A. Small dots are the 1-min averaged data; the linked circles denote median values in 0.5 km altitude bins.

Figure 2. Comparison of observed and modeled (a) OH and (b) HO$_2$ in INTEX-A. The straight solid lines indicate the 1:1 lines, the dashed lines indicate the 1-σ uncertainty in the model (±30% for OH and ±27% for HO$_2$; the maximum uncertainties estimated for the 8–12 km altitude range), the solid line with circles are the median values for the observations, and the dash-dotted lines are the 1-σ uncertainty for the observations (±16%).
3.2. Comparisons of Observed and Modeled HOX With Previous Studies

[31] ATHOS has measured OH and HOX during several recent field studies. The three most recent are the Pacific Exploratory Mission Tropics–B (PEM-TB) [Raper et al., 2001], TRACE-P [Jacob et al., 2003], and INTEX-A [Singh et al., 2006]. PEM-TB was conducted in the tropical Pacific, usually in relatively clean air. In contrast, TRACE-P was conducted off the coast of Asia in air that was often quite polluted. Both occurred in spring and provide an interesting contrast to INTEX-A, which was conducted either over the continental US or over the Atlantic Ocean downwind of it in summer. Comparisons of these three studies are particularly compelling because ATHOS was used to measure OH and HO2 in all three and OH, HO2, and HCHO for several previous missions including PEM-TB and TRACE-P were recently recalculated using the same photochemistry and constraints as were used for INTEX-A [Olson et al., 2006].

[32] The behavior of atmospheric constituents that interact with OH and HO2 is quite different for the three studies (Figure 6). Carbon monoxide (CO) is similar for TRACE-P and INTEX-A up to 8 km, where CO in INTEX-A continues to increase. CO in PEM-TB is less than

Table 1. Statistics for HOX Observed-to-Modeled Ratios

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>0–2 km</th>
<th>2–8 km</th>
<th>8–12 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH Obs/Mod</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (mean)</td>
<td>0.95 (1.24)</td>
<td>1.00 (1.54)</td>
<td>0.92 (1.05)</td>
<td>0.98 (1.25)</td>
</tr>
<tr>
<td>% within ±32%</td>
<td>52%</td>
<td>47%</td>
<td>58%</td>
<td>50%</td>
</tr>
<tr>
<td>% mod < obs/1.32 below 2σ</td>
<td>23%</td>
<td>34%</td>
<td>16%</td>
<td>24%</td>
</tr>
<tr>
<td>% mod > obs × 1.32</td>
<td>25%</td>
<td>19%</td>
<td>26%</td>
<td>26%</td>
</tr>
<tr>
<td>HO2 Obs/Mod</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (mean)</td>
<td>1.28 (2.87)</td>
<td>1.37 (1.57)</td>
<td>1.13 (2.10)</td>
<td>2.05 (5.49)</td>
</tr>
<tr>
<td>% within ±32%</td>
<td>50%</td>
<td>41%</td>
<td>74%</td>
<td>19%</td>
</tr>
<tr>
<td>% mod < obs/1.32 below 2σ</td>
<td>46%</td>
<td>56%</td>
<td>20%</td>
<td>79%</td>
</tr>
<tr>
<td>% mod > obs × 1.32</td>
<td>4%</td>
<td>3%</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td>HO2/OH Obs/Mod</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (mean)</td>
<td>1.33 (1.68)</td>
<td>1.26 (1.26)</td>
<td>1.20 (1.24)</td>
<td>2.20 (2.88)</td>
</tr>
<tr>
<td>% within ±32%</td>
<td>40%</td>
<td>40%</td>
<td>55%</td>
<td>13%</td>
</tr>
<tr>
<td>% mod < obs/1.32 below 2σ</td>
<td>50%</td>
<td>44%</td>
<td>36%</td>
<td>83%</td>
</tr>
<tr>
<td>% mod > obs × 1.32</td>
<td>10%</td>
<td>16%</td>
<td>9%</td>
<td>4%</td>
</tr>
</tbody>
</table>

![Figure 3](image-url) Comparison of the median vertical profiles of (left) measured (circles) and modeled (stars) OH in INTEX-A and (right) measured-to-modeled OH ratios in INTEX-A (circles), TRACE-P (stars) and PEM Tropics B (triangles). Individual INTEX-A 1-min measurements are shown (gray dots). The lines in the right diagram represent the median values of 1-min time-resolved obs/mod ratios.

![Figure 4](image-url) Comparison of the median vertical profiles of (left) measured (circles) and modeled (stars) HO2 in INTEX-A and (right) measured-to-modeled HO2 ratios in INTEX-A (circles), TRACE-P (stars) and PEM Tropics B (triangles). Individual INTEX-A 1-min measurements are shown (gray dots). The lines in the right diagram represent the median values of 1-min time-resolved obs/mod ratios.
half these other two studies. The greatest differences were with NO\textsubscript{x}. Observed NO\textsubscript{x} was more than four to five times larger during INTEX-A than during TRACE-P and more than an order of magnitude larger than during PEM-TB. These differences are most pronounced above 8 km, where NO\textsubscript{x} during INTEX-A was sometimes more than 1.5 ppbv.

The conditions among the three studies are quite different. It is therefore instructive to compare not only the absolute values of OH, HO\textsubscript{2}, and the HO\textsubscript{2}/OH ratio, but also the ratios of the measured-to-modeled OH, HO\textsubscript{2}, and HO\textsubscript{2}/OH ratio for the three studies. These are plotted as a function of the controlling environmental factors such as altitude (Figures 3, 4, and 5) and NO (Figure 7).

3.2.1. Comparison as a Function of Altitude

[34] As stated in section 2.1, the observed OH and HO\textsubscript{2} mixing ratios in INTEX-A and TRACE-P have been increased by a factor of 1.64 because of a calibration correction. The median observed-to-modeled OH ratio in INTEX-A is similar to that observed in TRACE-P (Figure 3). On the other hand, the median observed-to-modeled OH ratio in INTEX-A is different from that in PEM-Tropics B, where it was ~0.7 only below 1 km; above that, the median observed-to-modeled OH ratio increases monotonically to 1.3 at 12 km [Tan et al., 2001a; Olson et al., 2001].

[35] The observed-to-modeled HO\textsubscript{2} ratio has quite different behavior as a function of altitude in INTEX-A compared to that in either TRACE-P or PEM-TB (Figure 4). For altitudes between 2 km and below 8 km, the observed-to-modeled HO\textsubscript{2} ratio is similar for INTEX-A, TRACE-P and PEM-TB, all being around 1. In all three studies, the ratio changed little over this altitude range. The large increase in the observed-to-modeled HO\textsubscript{2} ratio above 8 km is quite different from either TRACE-P or PEM-TB. This difference is consistent with the substantially greater NO\textsubscript{x} observed above 8 km during INTEX-A than during the other two studies (Figure 6). For altitudes below 2 km, the observed-to-modeled HO\textsubscript{2} is about 1.5 for INTEX-A, 1.3 for TRACE-P, and 1.0 for PEM-TB.

[36] Enhanced NO\textsubscript{x} was also observed during SUCCESS (Subsonic aircraft; Contrails and Clouds Effect Special Study), both in and out of aircraft exhaust plumes. The ability to conclusively analyze the observations made in the exhaust plumes was limited by sampling with insufficient resolution to appropriately model nonlinear HO\textsubscript{x}-NO\textsubscript{x} interactions [Olson et al., 2006]. For the SUCCESS observations not impacted directly by aircraft exhaust, a tendency for significant deviation between modeled and observed HO\textsubscript{2} remains [Brune et al., 1998]. However, the lack of measurements of several potentially important HO\textsubscript{x} precursors limits what can be said with confidence about the underpredicted HO\textsubscript{2} that was observed during SUCCESS.

[37] Similar behavior was observed during TRACE-P, where a subset of the TRACE-P observations in stratospherically influenced air above 9 km near 35°N had an observed-to-modeled HO\textsubscript{2} ratio of 2.6 [Olson et al., 2004].

Figure 5. Comparison of the median vertical profiles of (left) measured (circles) and modeled (stars) HO\textsubscript{2}/OH in INTEX-A and (right) measured-to-modeled HO\textsubscript{2}/OH in INTEX-A (circles), TRACE-P (stars) and PEM Tropics B (triangles). Individual INTEX-A 1-min measurements are shown (gray dots). The lines in the right diagram represent the median values of 1-min time-resolved obs/mod ratios.

Figure 6. Comparisons of the median altitude profiles for atmospheric constituents in PEM Tropics B (triangles), TRACE-P (stars), and INTEX-A (circles) for (left) CO, (middle) NO\textsubscript{x}, and (right) O\textsubscript{3}. Individual 1-min measurements in INTEX-A are shown as gray points. For INTEX-A, NO\textsubscript{x} is the sum of measured NO\textsubscript{2} and calculated NO.
However, unlike TRACE-P, where the observed-to-modeled ratio was around 1 in stratospherically influenced air, 92% of the INTEX-A observations with an observed-to-modeled HO\(_2\)/OH ratio significantly greater than 1 were in tropospheric air that was not obviously influenced by the stratosphere. Thus this INTEX-A result appears to be unprecedented.

3.2.2. Comparison as a Function of NO

Both OH and HO\(_2\) qualitatively show the expected behavior as a function of NO for INTEX-A (Figure 7), although important quantitative differences occur. For OH, the observed-to-modeled ratios for PEM-TB, TRACE-P, and INTEX-A are fairly constant with increasing NO.

The observed-to-modeled HO\(_2\) ratio increases from values below and near 1 to values more than 1 when NO is more than a few hundred pptv in all three studies, although the amount of change is different for the three studies. It is worth noting that the highest NO values were observed in the upper troposphere during INTEX-A, while the highest NO values were observed in boundary layer during TRACE-P.

3.3. HO\(_x\) Budget Calculations

Examining the HO\(_x\) production and loss provides information about the balance between HO\(_x\) sources and sinks. The HO\(_x\) production consists of the production from the following processes: O\(_3\) photolysis followed by the O(\(^1\)D) + H\(_2\)O reaction, HCHO photolysis (the radical-producing pathway only), H\(_2\)O\(_2\) photolysis, and the ozonolysis of alkenes. HO\(_x\) loss includes the OH reaction with

![Figure 7](image1.png)

Figure 7. Comparison of NO dependence for (a) OH and (b) HO\(_2\) of (top) measured (circles) and modeled (stars) values and (bottom) measured-to-modeled ratios in INTEX-A (circles), TRACE-P (stars) and PEM Tropics B (triangles). Individual INTEX-A 1-min measurements are shown (gray dots). Concentrations of NO calculated in the model are used. All lines show the median profiles.

![Figure 8](image2.png)

Figure 8. Vertical median profiles of (a) HO\(_x\) production, showing total production (thick line) and production from O(\(^1\)D) + H\(_2\)O (circles), from HCHO photolysis (stars), and from H\(_2\)O\(_2\) photolysis (triangles), and (b) HO\(_x\) loss rates, showing total loss rates (thick line) and loss rates due to HO\(_2\) + HO\(_2\)/RO\(_2\) (circles), due to OH + HO\(_2\) (stars), due to OH + NO\(_x\) (triangles), due to OH + HNO\(_3\) (diamonds), and due to OH + HO\(_2\)NO\(_2\) (squares) during INTEX-A. Small gray dots show the 1-min data for total HO\(_x\) production rate (Figure 8a) and total HO\(_x\) loss rate (Figure 8b). All the production and loss rates were calculated from the measurements, except for RO\(_2\) + HO\(_2\) where RO\(_2\) levels were calculated in the model. The total production and loss rates are the sums of all production or loss terms.
and the reactions among OH, HO, NO (triangles) where RO scaled throughout the diurnal cycle during PEM-Tropics B. Vertical median profiles of (a) diurnal O$_2$ value can be found to improve the agreement above 8 km and underpredicted HO + NO reaction, especially at altitudes greater than 5 km (Figure 8a). Photolysis of H$_2$O$_2$ contributed little to P(HO$_x$). For the HO$_3$ loss, HO$_2$-RO$_2$ self-reactions were the main processes below 8 km and the OH + NO$_2$ reactions became the main loss processes above 8 km (Figure 8b).

3.4. Diurnal Average of Calculated Ozone Production

The net calculated ozone production in the troposphere is given to a close approximation by

$$P(O_3)_{net} = P(O_3) - L(O_3) = k_{NO+HO2}[NO][HO2] + \sum_{X} k_{NO+RO2}[NO][RO2] - k_{OH+NO2+M}[M][NO2][OH]$$

$$- k_{O1D+H2O}[O(1D)] [H2O] - k_{HO2+O3}[O3][HO2] - k_{OH+O3}[O3][OH]$$

(2)

where k_{NO+HO2}, k_{NO+RO2}, $k_{OH+NO2+M}$, $k_{O1D+H2O}$, k_{HO2+O3}, and k_{OH+O3} are reaction rate coefficients. The diurnally averaged values of the calculated ozone production and loss terms come from the time-dependent model simulations. In order to determine the O$_3$ budget based on observed values of HO$_x$, the model was run with the computed diurnal profiles of OH and HO$_2$ scaled throughout the diurnal cycle to match the observed concentrations at the appropriate time of day. The resulting calculated O$_3$ production was mainly from the HO$_2$ + NO reaction, especially at altitudes greater than 5 km (Figure 9a). At altitudes around 10 km, the calculated O$_3$ production from RO$_2$ + NO accounted for less than 10% of the total. For the O$_3$ loss rate, O$_3$ photolysis followed by the O(1D) + H$_2$O reaction was the main O$_3$ loss process below 5 km, while O$_3$ reactions with OH and HO$_2$ became the main O$_3$ loss above 6 km because of low H$_2$O mixing ratios at these altitudes (Figure 9b).

4. Discussion

Two significant differences between observed and modeled HO$_2$ become apparent in the INTEX-A data: underpredicted HO$_2$ above 8 km and underpredicted OH in the continental planetary boundary layer.

4.1. Underpredicted HO$_2$ Above 8 km Altitude

Convection had a large impact on the atmospheric composition in this altitude range during INTEX-A [Bertram et al., 2007], most notably with enhancements for lightning NO$_x$ (Figure 6), but also for peroxides, HCHO, and sometimes other constituents. Above 8 km, more than 2/3 of the observations of HO$_2$ and HO$_2$/OH were greater than expected, while only a small number of OH observations were.

Could this underpredicted HO$_2$ be an instrument artifact? An offset to the HO$_2$ signal would make HO$_2$ appear larger than it is. However, the observed-to-modeled HO$_2$ ratio is uncorrelated with observed HO$_2$, which varied from 3 pptv to 30 pptv above 8 km. In addition, no single offset HO$_2$ value can be found to improve the agreement between the observed and modeled HO$_2$. These results rule out a constant offset in the HO$_2$ signal. The only gas that is known to photolyze in the ATHOS laser beam to produce HO$_2$, but no OH, is formaldehyde, but the HCHO measured
in INTEX-A is orders of magnitude too small to produce the observed signals [Ren et al., 2004].

[48] The large observed-to-modeled HO$_2$ ratio above 8 km is consistent with the underpredicted H$_2$O$_2$, but not consistent with observed pernitric acid (HO$_2$NO$_2$). If HO$_2$NO$_2$ were in steady state with HO$_2$ and NO$_2$, the calculated steady state value of HO$_2$ would need to be lower than even the modeled HO$_2$. This difference is consistent with the possibility of the termination reaction for OH that actually improves the model-to-observed comparison for HO$_2$NO$_2$ [Kim et al., 2007].

[49] If the observed HO$_2$ is not an instrument artifact, then the underpredicted HO$_2$ indicates an additional unknown HO$_2$ source or a reduced HO$_2$ sink; the underpredicted HO$_2$/OH indicates either slower HO$_2$ cycling from HO$_2$ to OH or faster HO$_2$ cycling from OH to HO$_2$.

[50] Consider first the underprediction of HO$_2$. Either an additional unknown HO$_2$ source or a reduced HO$_2$ sink must be capable of improving the observed-to-modeled HO$_2$ agreement above 8 km without making the agreement worse at lower altitudes. Thus, the cause of HO$_2$ underprediction must be insignificant from 2 to 8 km and must have increasing importance from 8 to 11 km.

[51] If a reduced HO$_2$ sink is the cause, then the error would need to be in the known termination reactions of OH with NO$_2$, NO, HNO$_3$, and HO$_2$NO$_2$ because they dominate above 8 km and are insignificant below 8 km (Figure 8). However, for terminal HO$_2$ loss by reaction with NO$_2$ to be the cause of the HO$_2$ underprediction, the HO$_2$ loss rate by these reactions would have to be 5 to 8 times less than expected. This difference is well outside uncertainties for the measured reactants and reaction rate coefficients. Thus, a reduced HO$_2$ sink is unlikely to be the cause of the HO$_2$ underprediction.

[52] If underpredicted HO$_2$ production is the cause, then the error would need to result from either an error in the known HO$_2$ sources or additional unknown HO$_2$ sources. The known, equally dominant HO$_2$ sources in the altitude region are O$_3$ photolysis followed by O'ID + H$_2$O and HCHO photolysis. In order to bring modeled and observed HO$_2$ into agreement, an additional HO$_2$ source of 1.5 x 106 molecules cm$^{-3}$ s$^{-1}$ is needed above 8 km. This amount is about 4 times larger than the known HO$_2$ sources (Figure 8). Below 8 km, this source would need to decrease to less than \sim105 molecules cm$^{-3}$ s$^{-1}$ at 6 km and below. It is worth noting that this increase with altitude of the needed additional HO$_2$ source is similar to the observed increase in NO$_x$ with increasing altitude (Figure 6).

[53] Can the HO$_2$ underprediction come from errors in a known source? The O$_3$ photolysis and HCHO photolysis are about equal HO$_2$ sources above 8 km. The HO$_2$ production rate from either one of them would need to be increased by a factor of 4 to 6 above 10 km. O$_3$ photolysis could not be low by that much at 10 km and still be consistent with the HO$_2$ observed-to-modeled ratios below 10 km, where O$_3$ photolysis is the dominant HO$_2$ source. This inconsistency rules out an error in O$_3$ photolysis as the cause of the HO$_2$ underprediction. Constraining the model to observed HCHO reduces the observed-to-modeled HO$_2$ ratio by less than 25% (Fried et al., submitted manuscript, 2007). The HCHO photolysis frequency is unlikely to be in error by the factor of 4 to 6 needed to bring the measured and modeled HO$_2$ into agreement, because there is good agreement between the photolysis frequency measurements and radiative transfer model results at all altitudes. It is important to note that the Fried et al. (submitted manuscript, 2007) study also observed a HCHO measurement/model discrepancy between 10 km and 12 km that scaled with NO$_x$, similar to the HO$_2$ discrepancy.

[54] Thus, unknown HO$_2$ sources are the most likely cause of the HO$_2$ underprediction. One characteristic of the unknown source is that it correlates with NO. For the observed-to-modeled HO$_2$ ratio above 8 km, the HO$_2$ observed-to-modeled ratio = 0.004 x NO (in pptv) + 0.88 with r^2 = 0.54. In previous studies, it was assumed that the chemistry and HO$_2$ sinks were understood and that the underpredicted HO$_2$ was due to missing HO$_2$ sources that were emitted along with the NO [see, e.g., Folkins et al., 1997; Wennberg et al., 1998; Jaegle et al., 2000]. While we have been able to quantify the additional HO$_2$ production that would be needed, to identify its altitude dependence, and to show a correlation with NO, we have not been able to identify this additional unknown HO$_2$ source.

[55] A second issue is the underpredicted HO$_2$/OH ratio. This ratio indicates that reactions and reactants that cycle HO$_2$, between OH and HO$_2$, are not being properly represented in the model. The HO$_2$/OH underprediction can be explained by either slower reactions of HO$_2$ with NO or faster OH reactions that cycle OH to HO$_2$. At these altitudes, the reaction frequency of HO$_2$ + NO → OH + NO$_2$ is an order of magnitude faster than primary OH production (equation (1)). The reaction frequency for HO$_2$ + NO would need to be less than $\frac{1}{2}$ its calculated value; this difference is unlikely and inconsistent with many other studies. It is possible that other reactants with HO$_2$, such as BrO, are present, but their reactions with HO$_2$ would make HO$_2$/OH smaller, not larger. Thus, the underpredicted HO$_2$/OH ratio indicates the presence of unknown reactants or reactions with OH that cycle HO$_2$ from OH to HO$_2$.

[56] In this case, the needed increase in the OH reactivity that cycles HO$_2$ between OH and HO$_2$ is proportional to the observed-to-modeled HO$_2$/OH ratio. As a result, the needed additional OH reactivity is \sim0.15 s$^{-1}$ at 8 km, about $\frac{1}{2}$ of the calculated OH reactivity, and \sim0.5 s$^{-1}$ above 10 km, almost twice the calculated OH reactivity. Interestingly, the needed OH reactivity is roughly proportional to the increase in NO$_x$ in that altitude range, suggesting that the convective processes that enhanced NO$_x$ also yielded additional, unknown OH reactants.

[57] In the presence of greater NO, the differences in OH and HO$_2$ between the model constrained to observed H$_2$O$_2$, CH$_3$OOH, HNO$_3$, and PAN and the model unconstrained by these observations grows (Figure 10). This behavior indicates that the modeled OH and HO$_2$ are quite sensitive to the model constraints, especially above 8 km altitude where the NO was increasing. In this altitude region, the cycling of HO$_2$ due to NO dominates the production of OH and makes HO$_2$ more sensitive to small differences in the constraints placed on the model photochemistry.

4.2. Underpredicted OH in the Continental Planetary Boundary Layer

[58] During INTEX-A, the observed-to-modeled OH ratio is frequently much greater than 1.0 below 2 km altitude in
the planetary boundary layer. The location of these large ratios coincides with forested regions where isoprene is abundant, primarily from the Gulf Coast states up through Appalachia and the Midwest. The observed-to-modeled OH ratio is a strong function of isoprene (Figure 11). It increases slowly from 1.0 to 1.5 as isoprene increases from less than 10 pptv to 500 pptv, but for isoprene levels exceeding 500 pptv, the observed-to-modeled OH ratio rapidly increased to ~5 as isoprene increases. The observed and modeled OH levels diverge for isoprene levels greater than 100 pptv (Figure 11). This underprediction of OH is consistent with the underprediction of HO2 below 2 km altitude. As shown in Table 1, 56% of the measured HO2 is greater than the modeled HO2 times 1.32.

[59] This observation from INTEX-A is consistent with tower-based observations made with a different configuration of the same instrument. In the summers of 1998 and 2000, OH and isoprene measurements were made on a tower at the PROPHET site in a Michigan forest [Tan et al., 2001b]. The median daytime (SZA < 60°) observed-to-modeled OH ratio depends on isoprene in a way that is consistent with and overlaps the INTEX-A measurements (Figure 11).

[60] The reasons for the higher-than-expected OH at high isoprene levels are not clear, but most likely are due to a missing OH source in the model. For PROPHET, the agreement between observed and modeled OH is improved by introducing additional terpenes that react with O3 to form OH [Tan et al., 2001b]. In addition, the difference between the observed and calculated OH reactivity is consistent with the emissions of unmeasured terpene such as terpinolene in terms of its reaction rate with O3 to that with OH and OH yield in the O3 reaction [Di Carlo et al., 2004]. The missing OH source can also be the OH production in the HO2 reactions with certain RO2, in which a significant OH yield was suggested by Hasson et al. [2004]. An error in our understanding of the rate coefficients or products of these kinds of reactions might cause models to predict too little OH [Thornton et al., 2002], though our initial model analysis could not reconcile the missing OH source with this feedback. Another possible missing OH source over forests is the photolysis of HONO [Zhou et al., 2002; Kleffmann et al., 2005; Stemmler et al., 2006]. While the OH was severely underpredicted in PROPHET by a model that included HONO measurements, for INTEX-A, the possible contribution of HONO to the missing OH source cannot be ruled out because no HONO measurements were made on the NASA DC-8. That the underpredicted OH was observed over several forested areas during INTEX-A provides strong evidence that this effect is not specific only to the PROPHET site in northern lower Michigan, but is, in
fact, a more widespread property of atmospheric chemistry over forests.

5. Summary and Conclusions

[61] Measurements of OH and HO₂ were compared to the model calculations in the INTEX-A summer 2004 campaign. This study provides an excellent opportunity to test oxidation chemistry throughout the troposphere. The following conclusions can be drawn from this study.

[62] First, for most of the troposphere, observed OH and HO₂ agree well with model calculations. On average observed OH was 0.95 of modeled OH and observed HO₂ was 1.28 of modeled HO₂. This observed-to-modeled comparison is similar to that for TRACE-P, another midlatitude study for which the median observed-to-modeled ratio was 1.08 for OH and 1.34 for HO₂, and to that for PEM-TB, a tropical study for which the median observed-to-modeled ratio was 1.17 for OH and 0.97 for HO₂. In contrast, above 8 km during INTEX-A, the median observed-to-modeled HO₂ ratio increased from about 1.2 at 8 km to about 3 at 11 km.

[63] Second, an HO₂ budget analysis shows that the main HO₂ sources are O₃ photolysis followed by the O(¹D) + H₂O reaction below 7 km and the photolysis of HCHO above 7 km. The main HO₂ sinks are the HO₂-RO₂ self-reactions below 8 km and OH + NO₂ reactions above 8 km.

[64] Third, an O₃ budget analysis shows that the diurnally averaged net calculated O₃ loss rate was 0.8 ppbv d⁻¹ at altitudes between 1 and 5 km. Above 9 km, the diurnally averaged net calculated O₃ production rate was 4.5 ppbv d⁻¹ using modeled HO₂ and 11.4 ppbv d⁻¹ using observed HO₂. This difference between the net calculated O₃ production from the modeled HO₂ and the observed HO₂ is significant and a concern.

[65] Fourth, the underpredicted HO₂ at altitudes above 8 km suggests the presence of an unknown HO₂ source or an error in the model’s chemistry involving some of the other atmospheric constituents. The concurrent increases of the observed-to-modeled HO₂ ratio and NO with altitude suggest that an unknown HO₂ source comes from the convective processes that cause the enhanced NO. Evidence from the constrained and unconstrained model runs indicates that model predictions of OH and HO₂ are particularly sensitive to the NO.

[66] Fifth, the observed-to-modeled OH ratio in the planetary boundary layer in forested regions is a strong function of isoprene. It increases slowly from 1.0 to 1.5 as isoprene increases from less than 10 pptv to 500 pptv, but for isoprene levels exceeding 500 pptv, the observed-to-modeled OH ratio rapidly increased to ~5. This isoprene dependence of observed-to-modeled OH ratio is consistent with the PROPHET measurements, indicating that this underpredicted OH, if not due to instrument artifacts, occurs in widespread forested regions.

[67] It seems more likely to us that the causes of underpredicted HO₂ above 8 km are due to unknown atmospheric constituents that are acting as HO₂ sources or OH sinks or to unknown reactions and not to large errors in the measurements of either atmospheric constituents or the photochemical rate coefficients. These two major differences between observed and modeled HO₂, underpredicted HO₂ above 8 km and underpredicted OH in the planetary boundary layer in forested regions, appear to have different causes.

[68] Because the underpredicted HO₂ above 8 km and underpredicted OH above forests have strong implications for understanding global-scale tropospheric oxidation chemistry, finding the causes for these differences should be a high priority. Progress in resolving these discrepancies requires a focused research activity devoted to further examination of possible unknown OH sinks and HO₂ sources.

[69] Acknowledgments. The work was supported by the NASA Tropospheric Chemistry Program. The authors would like to thank the DC-8 crew and support staff during the INTEX-A preparation and deployment periods for making this work possible.

References

Hasson, A. S., G. S. Tyndall, and J. J. Orlando (2004), A product yield study of the reaction of HO₂ radicals with ethyl peroxy (C₂H₅O₂), acetyl peroxy (CH₃C(O)O₂), and acetonyl peroxy (CH₃C(O)CH₂) radicals, J. Phys. Chem. A, 108, 5979–5989.

D. R. Blake, Department of Chemistry, University of California, Irvine, CA 92697, USA.

W. H. Brune, Z. Chen, R. B. Long, and J. Mao, Department of Meteorology, Pennsylvania State University, University Park, PA 16802, USA.

R. C. Cohen, Department of Chemistry, University of California, Berkeley, CA 94720, USA.

A. Fried, Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA.

B. Heikes, Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02881, USA.

L. G. Huey, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.

X. Ren, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL 33149, USA. (xren@smas.miami.edu)

H. B. Singh, NASA Ames Research Center, Moffett Field, CA 94035, USA.

R. E. Shetter, National Suborbital Education and Research Center, University of North Dakota, Grand Forks, ND 58202, USA.

P. O. Wennberg, Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA 91125, USA.