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In a very interesting paper,(l) Balachandran, Freund and
Schumacher pointed out that as of 1963 the asymptotic behavior in
(in momentum transfer) for the nucleon electromagnetic form factors led
to a sum rule which, in current terminology, is really a superconvergence
relation.(g) To satisfy the superconvergence relation for the isovector
form factor (FQV) a new vector meson (called p') was postulated. VThe
isoscglar form factor (FES) was treated in the same spirit, although
the experimental data was not so convincing for this case. It was
pointed out in Ref. (1) that "present experimental evidence does not
exclude stronger asymptotic conditions on the nucleon electromagnetic

(Ba)b)

form factors.” However, present experimental data suggest even strorger
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asymptotic conditions, and 1t seems appropriate to re-investigate this

matter to £ind new sum rules which lead to stronger and more interesting

implications.
The purpose of this nofe is threefold.

i) First, certzin important assumptions are made in Ref. (1) that
have not been clearly emphasized. " Part of our goal will be to make
clear what these assumptions are and how they limit the strength of
conclusions drawn.

2) Second, we wish to recast the usval language for Titting form-
factor data by a pole approximation into a form that reveals more
clearly the connectlon with superconvergence relations. In the ustal
language one zasks the following question: If the form factor has a
t - - Dbehavior of the form l/[t’n, hoy many simple poles are needed
to aprroximate the right-hand éut? The answer is (n), if there are

)

appropriate connectlons between pole positions and residues.

)

3) Finally, we wish to point out that if [see Ref. (1) for nota-

tion] the Pauli form factors (FEV}S) for the nucleon satisfy the
+1
i FV,S(t)

asymphtotic constralat {t; 5 ———> 0 [for t — -» and for

all (n)] there must exist an infinite number of vector mesons with

different masses and with all other quantum numbers the same. (&) The

motivation for the 2dbova asymptotic constraint can be found in Ref. (3a).

It is made plausible there that the form-factor data can be fitted with

an exponential form of the t"pe [-(- t)2 (for t < 0)., This is
: . . c . -
Just the form that =npears in Stack’s(5 ) potential model for hadvron
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form Factors, where the hadron is taken to be "infinitely composite."

(3a)

Furthermore, as pointed out by Martin, a faster drop-off for t <O
can not be tolerated from an S-Matrix point of view.
To establish the above property we assume the Pauli form factors

[F V}S(t)] satisfy the following unsubtracted dispersion relation.(we

2

suppress superscripts and subscripts from now on):

F(t) = %- [ gt ImE(E) (1)

where t, = (Qmﬁ)2 for F.'

2 S
0 , and .to = (Bmﬁ) for F,”. We now

impose the asymptotic constraint

t - ~m

l¢]** ¥(4) ———— 0 (for all n >0 and integral). (2)

We wish to consider now the minimum conditions which will permit us to

n+1l

write a dispersion relation for the function ¢t Ft) = a(t), i.e.,
1 ! m G(t")
G(t) = = J at T - (3)
tO

There is a theorem, proved by Sugawara and Kanazawa (SK),(5) which is
of help to us. In our present context, this theorem is stated as
follows: If a function f(z) is analytic everyﬁhere, except for a
right-hand cut on the real z-axis and is bounded at infinity by a

finite but arbitrary power of =z, and f(z)-—~—*» definite limits
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(including infinity) as z - w t ie (e >0 and infinitesimal), then
f(z) has the same asymptotic behavior along any ray in the cut plane].

(6)

If we use this theorem the constraint

) t > +o T i€ '
F(t) 0 (all n >0 and integral) (&)

tn+l

follows from (2) if (a) F(t) has the form

F(t) —————  expl~(~t)2771, (5)

t = -~

where 0 <y < -21- , and (b) it does not have an infinite number of

oscillations as t - -w. These two conditions guarantee (2) and do

(3)

not violate the Martin bound and we shall assume them in what follows.
If we now evaluate (3) at t = 0, we are led to the following set of sum

rules (which must be satisfied simultaneously):

[o]

% f at' (") ImF(t') = 0 (all n N). (6)
%o
For ngN = 0, (6) reduces to the sum rule reported in Ref. (1)
(8)

~and first written down by Sachs. We shall now calculate Im F(t)
for ¢ > td’ using unitarity., If we separate the contributions from

particles explicitly‘we end up with the exact form

[F(t) ~ (NN l' 7)1,
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mE(t) = L g 8(t -mC) +wglt). (7)
n _
Then
74
F(6) = L — -+ R(t), (8)
where(9)
r , ol (n)
R(t) = [ at’ ;f—fé—% ~ L A (9)
t n=0 t
0
and R<n) = - J( (t")" g(t') dt' are just the moments of R(t).
It

*0
What is usually done now is to make the "pole approximation" to F(t).

This amounts to setting R(n) = O for all (n). The sum rule (6)

then becomes

£y 2.1 (n) z: o B

2, (m,”) 7, +R = 0 = (m.”) v, . (10)
i i 5 i i

To satisfy (10) for all n < N (a positive integer) an infinite

number of vector mesons is needed. It is instructive to see how this
works. Consider e.g. n N = 0. We need at least 2 vector mesons
for a nontrivial result and this was the important observation made‘
in Ref. (1). For ng§N = 1 we must satisfy 2 sum rules simul-

taneously, i.e.,
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co

% f at' Im F(t') = 0 (a)
% ' -
0
) (11)
[eo] 1
-i: f at' t' Im F(t') = O. (b) |
y
tO
For i = 1,2 (10) reads
7yt 7 = 0 (a)
) (12)
2 2 .
m "y tmy Y, = O‘ (b) J
Now use (12a) in (12b) and get m, =m,. To satisfy (11) in a nontrivial

1 2

way we need at least 3 distinct vector mesons., Now consider the case
ngN = a "very largé” positive integer (i.e;, N - «) and keep 3
particles. ITf ml is the largest mass it will turn out that 71 = 0,
and fhe problem reduces to a previous special case, We can continue in
this way to get the desired result, i.e., to satisfy (10) for n <N,
N + 2 vector mesons are needed.

Finally we wish to use the work in Ref. (1) to illustrate how

the full power of unitarity may or may not imply that p' exists.

This means we shall consider (10) with n = O in the form

Z 7i+R(O) = 0. (13)

i
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-
For the case FPV; ey = ?p and we have the relation
: i

vy = -9, gery

£ > -x

l/’c2 without postulating p'.

Eguation (1h) insures F(t) -
T+ is clear that (8) along with (14) can be used to fit the isovector
form-factor data; we need only choose an appropriate phenomenological
form for g(t). However, if we assume there exists no relation of t&pe

(14) this necessarily implies p' exists.
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In Ref. (1) it was assumed that a dispersion relation for t F(t)

t »

can be written when [t| F(t) - /1t]” (7 >0) and F(t)

itself satisfies an unsubtracted dispersion relation. We see that
this 1s not enough informafion to use the 8K theorem., In particular,

' + s
we also need to know that t F(t) 22 EI€ . sorinite limits.

We note here that the assumed nonoscillatory fall-off for F(t)
(t <0) 1is suggested by the aata, (38:2)

R. G. Sachs, Phys. Rev. 126, 2256 (1962).

[o¢]

. ) { o L
What we really mean in Eq. (9) is j = f + f .
: tO tO 1

Now choose (1) large enough so that ’/' ~ 0, Then for +t >1
A I

Eq. (9) is defined by a converging power series.
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