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(To be submitted as a "Letter to the Editor", 11 Nuovo Cimento) 

In a very interesting paper, (1) BalacOOndran, Freund and 

Schumacher pointed out that as of 1963 the asymptotic behavior in t 

(in momentum transfer) for the nucleon electromagnetic form factors led 

to a sum rule_which, in current terminology, is really a superconvergence 

relation. (2) To satisfy the superconvergence relation for the isovector 

form factor "(F2V) a new vector meson (called pI) was postulated. The 

isoscalar form factor (F2
S ) was treated in the same spirit, although 

the experimental data was not so convincing for this case. It was 

pointed out in Ref. (1) toot "present experimental evidence does not 

exclude stronger asymptotic conditions on the nucleon electromagnetic 

form factors." However, present experimental data (3a, b) suggeGt even stmrger 
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asymptotic conditions} and it seems approprj.ate to re:investigate this 

matter to find. nel·r sum rules Hhich lead to stronger and more interesting 

implications. 

'l'he pui~pose of this note is threefold. 

1) First} cert,ain important assumptions are made in Ref. (1) t.ha t 

have not been clearly emphasized. Pa.rt of our goal I-T:i.l1 be to make 

clear 'i-rhat these assumpUons are and. hOl,T they limit the strength of 

conclusions draT,ro. 

2) Second} we T,·Ti.sh to recast the usnal lane;uage for fitting form-

factor data by'a 1:)ole approximation into a form tbat reveals more 

clearly the connectiofl ,-lith superconvergence relations. In the uSl'.al 

1angLlage one asks the fol1mrlng CIuestion: If the form factor has a 

t -? _00 behavior of the form 1/ I tIn J hOI'! n;a.ny simple poles are needed 

to approxjrnE~.te the right-hand cut? 'l'he anslver is (n)} if there are 

appropriate connections behreen pole positions and residues. 

3) FinaUy" 'de ',rish to point out that if [see Ref. (1) for nota-

tion] the ?d.uli form factors (F
2 

V) S) for the nucleon SL'l.tisfy the 

asymptotic constrai!lt I t I n-i-1F V, S (t) _.-_._--, 0 [for t -'> _00 and. for 
2 

all (n)) there must exist an infinite TIlIJnber of vector mesons with 

'. (4) 
dH'ferent masses ani with 5.11 other qya.!ltum r:.umbers the sa.me. 'l'he 

moti va tion for the S.OC'fc3 asymptotic cotlstraint can be f"Jund in Ref. (:sa). 

It :L.S made plausib~ e there that the fann-factor data can be fitted 'ditn 
1 

an exponential form'ofthe type exp[-(-t)~J (for t < 0). This is 

just the form thE.t B.?p(;a.rs in Stack I s (3c) potential modsl for h2.j .. ror~ 
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form factors, where the hadron is taken to be "infinitely composite. II 

Furthermore, as pointed out by Martin, (3d) a faster drop-off for t < 0 

can not be tolerated from an S-Matrix point of view. 

To establish the above property we assume the Fauli form factors 

[F V,S(t)] satisfy the following unsubtracted dispersion relation (we 
2 

suppress superscripts and subscripts from now on): 

00 

F(t) 
1 I dt I 

1m F(t' L (1 ) 
Jl t' - t 

, 
to 

(2m )2 F V 
') S 

where to - for and to (3m t for F') . vie now 
Jl 2 Jl c:... 

impose the asymptotic constraint 

/t/ n
+

l 
F(t) 

t ..... -00 

o (for all n ~ 0 and integral). (2 ) 

We wish to consider now the minimum conditions which will permit us to 

write a dispersion relation for the function tn+l F(t) 

G(t) 1 
00 

J dt 

to 

1m G(t' ) 
t' - t 

There is a theorem, proved by Sugawara and Kanazawa (SK), (5) which is 

of help to lJS •. In ony present context, this theorem is stated as 

follows: If a function f(z) is analytic everywhere} except for a 

right-hand cut on the real z-axis and is bounded at infinity by a 

finite bl1t arbitrary power of z, and f(z) ---7 definite limits 
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(including infinity) as Z ~ 00 t i€ (€ > 0 and infinitesimal») then 

fez) has the same asymptotic behavior along any ray in the cut plane]. 

If we use this theorem the constraint(6) 

t -+ + 00 ± i€ 
t n+l F( t) -------;.~ 0 (all n ~ 0 and integral) (4) 

follows from (2) if (a) F(t) has the form 

F(t) 
t -+ -00 

where 1 
o < y < 2") and (b) it does not have an infinite number of 

oscillations as t -+ -00. These two conditions guarantee (2) and do 

not violate t~e Martin bound (3) and we shall assume them in what follows. 

If we now evaluate (3) at t == 0, we are led to the following set of sum 

rules (which must be satisfied simultaneously): 

1 
:rc 

00 J dt' (t,)n ImF(t') :=: 0 (all n~N). 
to 

For n ~ N :=: 0, (6) reduces to the sum rule reported in Ref. (1) 

and first written down by Sachs. (8) We shall now calculate 1m F(t) 

for t > to' using unitarity. If we separate the contributions from 

particles explicitly we end up with the exact form 

[F(t) '" (NN' I y)L 

(6) 
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1m F(t) L 2 
(7) JrYi B(t - m. ) + Jr get). 

i 
J. 

Then 

F(t) L 
Yi R(t ), (8 ) == 2 + 

i m. - t 
J. 

where(9) 

00 
00 R(n) 

R(t) f dt' ~(t'2 ::::::: L (9) t' - t n=O t n+l 
to 

and R(n) -{ (t' )n get') dt' are just the moments of R(t) . 

0 
What is usually done now is to make the "pole approximation" to F(t). 

This amounts to setting R(n) 0 for all (n). The sum rule (6) 

then becomes 

')- 2 n (n) 
I.... (m.) Y. + R 

J. J. 
o \' 2 n 

L (m
i

) Y
i

. (10 ) 
i i 

To satisfy (10) for all n ~ N (a positive integer) an infinite 

number of vector mesons is needed. It is instructive to see how this 

works. Consider e.g. n ~ N == O. We need at least 2 vector mesons 

for a nontrivial. result and this was the important observation made 

in Ref. (1). For n ~ N == 1 we must satisfy 2 sum rules simul-

taneously, i.e., 
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co 

1 f dt' 1m F(t' ) 0 (a) _. 
:rr 

to 
(11) 

co 

1 r dt' t' 1m F(t') O. (b) = 
:rr 

)t 
0 

For i 1,2 (10 ) reads 

o (a) 

(12 ) 

o (b) 
, 

Now use (12a) in (12b) and get ml ~ m
2

, To satisfy (11) in a nontrivial 

way we need at least 3 dtstinct vector mesons. Now consider the case 

n ~ N a "very large" positive integer (i.e., N -7 00) and keep 3 

particles. If m
l 

is the largest mass it will turn out that r 1 == 0, 

and the problem reduces to a previous special case. We can continue in 

thts way to get the desired result, i.e., to satisfy (10) for n ~ N, 

N + 2 vector mesons are needed. 

Finally we wish to use the work in Ref. (1) to illustrate how 

the full power of unitarity mayor may not imply that pI exists. 

This means we shall consider (10) with n ~ 0 in the form 

i 
r. + R(O) = o. 
~ 

(13 ) 
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and we have the relation 

(14) 

EqiJation (1)-1) insures F(t) ------> l/t
2 

without postulating pl. 

It is clear that (8) along with (14) can be used to fit the isovector 

form-factor data; we need only choose an appropriate phenomenological 

form for g (t). However, if we aSS1l1Ue there exists no relation of type 

(1)+) this necessarily implies pI exists. 
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