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Abstract 

We prove by construction that the Green function satisfying the Neumann boundary 

conditions in electrostatic problems can be symmetrized. An il~ustrative example is given. 

I. Introduction 

It is well-known that the Green function satisfying the Dirichlet boundary conditions in 

electrostatic problems is symmetric in its arguments. The symmetry property is often very useful 

in constructing an explicit representation of the Green function. It is stated in Jackson [1] that, 

for a Green function satisfying the Neumann boundary conditions, the symmetry is not automatic 

put can be imposed as a separate requirement. However, an explicit proof that Neumann Green 

function can indeed be symmetrized does not appear to be readily available in published 

references. Here, we offer such a proof, and present an illustrative example. 

II. Proof 

Following the discussion in Jackson [1], we consider the electrostatic boundary value. 

problem in a volume. V bounded by a surface S. The Green function satisfies the following 

equation for x and x' in V: 

V' 2Gn.Jx,x') = -4m5(x-x') (1) 

We distinguish two different Green functions Gn and GN. For a Dirichlet problem, 

Gn(x, x') = 0 for x' on S. (2) 

For a Neumann problem, we must satisfy the Gauss theorem constraint,£:, da' =- 4tr. The 

simplest way to satisfy the requirement is to impose 

~~;' (x, x') = - ~TC for x' on S and x within V. (3) 

l 



Here a;an' is the normal derivative at the surface S directed outwards from inside the volume 

V, and S in Eq. (3) is also the total ~ea of the boundary surface. The solution to the Neumann 

boundary value problem is then 

(4) 

The symmetry property of the Dirichlet Green function Gv can be proved by means of 

the second Green's identity 

(5) 

Thus by setting qJ = Gv(x,y) and 'V = Gv(x' ,y) in the above, one obtains readily 

Gv(x,x') = Gv(x' ,x). 

For a Neumann problem the Green function GNfx,x) is in general not symmetric in x 

and x'. However, we can show that a symmetrized Green function G~ can always be 

constructed. For this purpose, set qJ =GMx,y) and 'V=GMx' ,y) in Eq. (5) to obtain 

GNfx,x')- GNfx' ,x) = F(x)- F(x'), (6) 

where 

F(x) = ~ ~ GMx,y) day , (7) 

apart from the possibility of an added constant. Equation (6) implies that the combination 

GJ.v(x,x') = GMx,x')- F(x) (8) 
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is symmetric in x and x'. Furthermore, since GJv (x,x') diff~rs from GN (x,x') by a function 
'· 

F{x) that depends only on x, it satisfies both Eq. (1) and Eq. (3). Therefore GJv (x,x') is a 

Neumann Green function which is symme~c in x and x'. One might be concerned that the 

additional F{x) changes the solution, Eq. (4). However, Gauss's law saves the day because the 

added contribution to the potential from F{x) is 

At!J(x) = F{x) [Jv {i..x' )d3x' + ln f if1? da' ] 

The first integral is the total charge within V, while the second is the negative of the totalelectric 

flux leaving V (divided by 41t); the sum vanishes. We note that the function F(x) defmed by Eq. 

(7) is what is needed to make the Green function symmetric, but that any function of x can be 

added to GN (x,x' ) without affecting the result for the potential. 

III. An Example 

As an example, we consider the Neumann Green function for the volume V between two 

concentric spheres of radii a and b (a < b). We have the following expansion in spherical 

harmonics: 
00 

GJx,x') = I gf(r,r') Pf(cos rJ I 

1=0 
(9) 

where r and r' .are the radial components of x and x', respectively, and r is the angle 

between x and x'. The function gp can be written in the following form: 

gJ(r,r') = ~1 + af(r) r'
1 

+ f3f(r) r'tl. (10) 

Here r < (r>) is the smaller (greater) of r and r'. The first term in the right hand side of Eq. 

(10) gives rise to the delta function when inserted to Eq. (1) .. The unknown functions ap(r) and 

3 



f3£(r) are to be determined from the boundary condition. The requirement Eq. (3) involves only 

g0 (r,r'), the spherically symmetric term. The boundary conditions at r' = b and r' = a are, 

respectively 

(II) 

(12) 

It is easy to see that both Eq. (11) and Eq. (12) lead to 

(13) 

Thus we have 
1 1 a2 1 gi r, r ) = r + ao( r) - 2 2 -~-

> a +b r 
(14) 

The function CXo(r) is left undetermined, and the function g0 is in general not symmetric in r 

and r'. As noted above, the form of a0 ( r) is of no consequence for the solution of the potential 

problem. 

For R > 0, one obtains by analogous calculation ( ~.e = 0 at T
1 = 

(15) 

r - 1 a21+1 ,t + c [ 
n (ab)21+1] 

~i ) - b21+1 _ a21+1 f+1 ,1+1 ' (16) 

. 
'-

I - ,-!: 1 [f+1 I I e (ab)
21

+
1 

21+1 ( ,t rl I)] 
gf(r,r ) - ,;+1 + b21+1 _ a21+1 -f- (rr ) + f+1 (rr' /+1 +a ,~ 1+1 + ,1+1 · (ll) 'i 

Note that g£(r,r') for R > 0 is symmetric in r and r'. 
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The integral in Eq. (7) defining F(x), receives contributions only from the term P = 0. 

Wefmd 

The symmetrized Green function Eq. (7) becomes in this case 

G~x,x') = 1 ~0 gj(r,r')P1(cosy), (19) 

where 

(20) 

gj(r,r') = gf(r,r') for f > 0. (21) 

Note that the left hand side of Eq. (20) is explicitly symmetric. The last term (a3-IJ3)/(a2+b2)2 is 

a constant and thus can be omitted. 
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