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Abstract
We prove by construction that the Green function satisfying the Neumann boundary

conditions in electrostatic problems can be symmetrized. An illustrative example is given.

Ii Introduction

It is well-known that the Green function satisfymg the Dirichlet boundary conditions in
electrostatrc problems is symmetric in its arguments The symmetry property is often very useful
in constructing an explicit representatlon of the Green function. It is stated i in Jackson [1] that,‘ - |
fora Green function satisfying the Neumann boundary conditions, th'e symmetry is not autom_atic ’

but can be imposed as a separate requirement. However, an explicit proof that.Neu'mann Green

: function can indeed be symmetrrzed does not appear to be readily available in published

references. Here, we offer such a proof and present an illustrative example.

IL Proof

Following the discussion in Jackson [1], we consider the electr_Ostatic boundary value

problem in a volume. V' bounded by a surface S. The Green function satisfies the following

_-equation for x and x’ in V: ' . : v -

V26 Mxx") =~ 478 (x-x") (1)
We distinguish two different Green functions Gp and Gy. Fora Dirichlet problem,

Gp(x,x")=0 for x’ on §. ' (2)

For a Neumann problem, we must satisfy the Gauss theorem constraint, gf da’ =-4n. The
< g

simplest way to satisfy the requirement is to impose

3Gy

W(x, x')=—— for x’ on S and x within V. - (3)



Here 9/dn’ is the normal derivative at the surface S directed outwards from inside the volume
) _

V, and S in Eq. (3) is also the total area of the boundary surface. The solution to the Neumann

boundary value problem is then

ox)= (@), + [ px’) Gl + £ [ 22 Gy (4

The symmetry property of the Dirichlet Green function Gp can be proved by means of |

the second Green's identity

~ ' s [ dy 3 \ |
[lo) 2 vy o)y =§lo St -vG)da. ()

Thus by setting ¢ = Gp(x,y) and y= Gp(x',y) in the above, one obtains readily

Gplxx’) = Gplx’,x).

For a Neumann problem the Green function Gp(x,x) is in general not symmetric in x.

and x’. However, we can show that a symmetrized Green function Gf,, can always be

constructed. For this purpose, set @ =Gp{x,y) and y=G,{x’,y) in Eq. (5) to obtain
Gun(x,x" ) - Gy(x’" ,x) = F(x)- F(x" ), _ (6)

where ' : ,
F(x) = é—ﬁGN(x,y) da, , ' \ (7)

apart from the possibility of an added constant. Equaﬁon (6) implies that the combination

Gfxx’) = GN(x;x’)— F(x) o (8)



re

is symmetric in x and x’. Furthermore, since Gy (x.x”) differs from Gy (¥,*") by a function

~ Flx) that depends only'_ on x, it satisfies both Eq. (1) and Eq. (3). Therefore Gy (xx") is a

Neumann Green function which is symmetric in x and x'. One might be concerned that the

~ additional F{x) changes the solution, Eq. (4). However, Gauss's law saves the day because the

added contribution to the potential from F(x) is

a00)= re)|f, e )’ + F 92 aw'|

" The first int‘eg.r.al is the total charge within V, while the second is the negative of the total electric -

flux leaving V (divided by 411:).; the sum vanishes. We note that the function F(x ) defined by Eq.

© (7) is what is needed to make the Green function Symmetric, but that any function of x can be

added to Gy, (x,x” ) without affecting the result for the potential.

II.  An Example

- As an example, we consider the Neumann Green function for the volume V between two

concentric spheres of radii a and b (a < b). We have the followin'_g expansion in spherical

harmonics:

where r and r’' are the radial components of x and x’, respectwely, and ¥ is the angle

between x and x' The function gy can be written in the followmg form:

p(rr )-

4 ﬁe(r) 57 | (10)

Here ~r< (r>) is the smaller (greater) of r and r'. The first term in .the right hand side of Eq.

(10) gives rise to the delta function when inserted to Eq. (1). The unknown functions ay(r) and

Grx')= 2 g Picos . ©



Be(r) are to be determined from the boundary condition. The requirement Eq. (3) involves only

8o(r,r'), the spherically symmetric term. The boundary conditions at r'=b and r' = q are,

respectively
98, __d (1 + ﬁo(r)) _ 1 :
5'1—,— Ve .= ar, rl Vb - = a2+b2 ’ . v (II)
g, _ 3 (1 ﬁo(r)) _ 1
.97 r'=a o T r r'=a __(12+b2. ' (12)
It is easy to see that both Eq. (11) and Eq. (12) lead to
=g 13
ﬂo(")——m.- ( )»
Thus we have 4
g (rr)=d tam-—at L | (14)
ov? r> (4] a2+b2 r, .

The function op(r) is left undetermined, and the function g, is in general not symmetric in r

and r'. As noted above, the form of ay(r) is of no consequence for the solution of the potential

problem.’
For £ > 0, one obtains by analogous calculation (% =0atr = a,b)
_ )i 0+1) a2+1]
oe(r) = p2HT _ g2b+1 [( ¢ )r"+ A+l ] (13)
' 0+ 1 . '
RN | 20+1 2 (ab)?
Ber) = p2+1 _ q20+1 [a . b+1 A+l | (16)

| .0
S 1 041 o0 0, 0 (a1 AT
glrr’)= ,1;:1 + bz’”-a?"”[ 7 ) (' 71 +a?t+! S T | (17)

Note that gy(r,r') for £>0 is symmetricin r and r"
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‘The integral in Eq. (7) defining F(x) receives contributions only from the term ¢ = 0.

We find

a’+b? a’+b? a’+b? b

The syinmetrized Green function Eq. (7) becomes in this case

Gixx')= £ glrr') Pcos),

where

YA az‘i'l a’-b’
go("’r)‘r? .a2+b2(r+'r') (az_+b2)2’

Si(r,r') = ge(r.,r’ ) for €> 0.‘.

Flx) = —1 l{d;?(—f.—%ao(r)— a );bz(il)-+o;o(r)— a? 1)}

(18)

(19)
(20)

-(él)

Note that the left hand side of Eq. (20) is explicitly symmetric. The last term (a3-b3)/(a2+b2)? is

a constant and thus can be omitted.
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