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Abstract

The construction of effective supergravity lagrangians for gaugino con-
densation is reviewed and recent results are presented that are consistent
with modular invariance and yield a positive definite potential of the no-
scale type. Possible implications for phenomenology are briefly discussed.

*Invited Lalk at the Second International Symposium on Particles, Strings and Cosmology,
mmvemiw, March 25-30, 1991. This work was supported in part by the Director,
Office of Energy Research, Office of lligh Energy and Nuclear Physics, Division of High Encrgy
Physics of the U.S. Departinent of Energy under Contract DE-AC03-765F00098 and in part
by the National Science Foundation under grant P11Y-90-21139.

INTRODUCTION

Attempts to make the connection between superstrings and observed
particle physics must be able to account for the origin of supersymmetry (SUSY)-
breaking. In this context, the SUSY mass gap, which recent LEP data' suggest
lies at about a TeV, in turn governs the scale of electroweak symmetry breaking,
namely the value of the Higgs vev : '

v Tl lpgy 1))
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A popular candidate mechanism for SUSY breaking is ‘gaugino condensation
in a “hidden” (i.e., with only gravitational strength couplings to “observed”
matter) SUSY Yang-Mills sector of the effective supergravity theory in four
dimensions. According to this scenario, the asymptotically free and infrared
enslaved SUSY Yang-Mills theory becomes confined at some scale A, where
gaugino condensation occurs:

< A >hid™~ Ag. (2)

This gaugino condensate can trigger “local” SUSY breaking in the sense that
the gravitino acquires a mass: mg # 0. This symmetry breaking should be
communicated to the observable sector, via radiative corrections, in the form of
a SUSY mass gap, i.e., “global” SUSY breaking. It is the task of the theory to
predict the correct scale for the SUSY mass gap, in particular the fact that it is
very small in comparison with the fundamental scale of the theory-namely, the
string tension which is comparable to the square of the reduced Planck mass:
Mpy = (87Gn)~% ~ 1.8 x 10'"®GeV. A possibly important ingredient in under-
standing this hierarchy of scales is the fact that in many string compactifications
the effective low energy theory possesses classical nonlinear symmetries?™* that
help to suppress the communication of SUSY breaking from the hidden sector

to the observable sector.

The point of view presented in this talk is based on work in collaboration
with Pierre Binétruy. A crucial feature of our approach is that we demand that
the effective theory have vanishing vacuum energy in the approximation that
we arc working in. The point is that whatever unknown mechanism one might
appeal to in order Lo suppress the cosmological constant can also affect the other
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parameters of the theory. A different approach has been considered by other
authors®-7. :

1 will first describe the construction®* of the effective superpotential for
gaugino condensation for a prototype effective supergravity theory from super-
strings, following the Veneziano-Yankielowicz® analysis of SUSY QCD and the
generalization of their result by Taylor® to the supergravity case, in which the
gauge coupling is determined by the vev of the dilaton. 1 will mention gener-
alizations to more realistic models and comment on the phenomenology of the
effective theory. I will then show how these results must be modified®® so as
to restore modular invariance or space-time duality, that is, invariance under
inversion of the radius of compactification: 1 = R~!. This modification can be
interpreted as a threshold correction'® arising from the integration over heavy
string modes.!! The resulting effective theory has an unbounded potential. 1
will show how this disaster can be averted by a reinterpretation'? of the results,
and briefly comment on the prospects for phenomenology.

Closely related talks were given at this conference by M. Cvetig, J.-P.
Derendinger, J. Louis and T. Taylor.

GAUGINO CONDENSATION IN SUPERGRAVITY

In the Kihler covariant superfield formulation'® of supergravity, the la-
grangian takes the form

L=Lg+ Lo+ Lym. . )

The first term
Lg=-3 [ dLOER + h.c. )

is the generalized Einstein term. It contains the pure supergravity part as well
as the (noncanonical, i.e., including derivative couplings) kinetic energy terms
for the chiral supermultiplets. The second term:

Loot = / 0L (9) 4 hec., . ()
contains the Yulu;wa couplings and the scalar potential, and‘the third term
Lyar = % / LPOES(R)WW + hc. (6)
2

is the Yang-Mills lagrangian. The expansion of the above expressions in terms of
component fields includes derivatives that are covariant with respect to general
coordinate, gauge and Kahler transformations. A Kahler transformation is a
redefinition of the Kihler potential I((9,$) = i'((d’,(ii)t and of the superpo-
tential W(®) = tV(‘i?)t by a holomorphic function F(®) = l_'"((ii)t of the chiral
supermultiplets & = (¢, x):

KoK =K+F+F, Wow=¢Fw, (7)

Since this transformation changes e*/?W¥ by a phase that can be compensated by
a phase transformation of the integration variable 9, the theory defined above is
classically invariant'*'? ynder Kahler transformations provided one transforms
the superfields R and W? by a compensating phase; for example the Yang-Mills
superfield transforms as:

W2 s g=iImF2yya, , (8)

This last transformation, which implies a chiral rotation on the left-handed
gaugino field Aj:
’\;__‘e-ilmFli,\:’ (9)

is anomalous at the quantum level, a point that will be important in the discus-
sion below. (Here a is a gauge index and o is a Dirac index.).

The theory is completely specified by the field content, the gauge group
and the three functions I, W and f of the chiral superfields. One can fix the -
“Kéhler gauge™ by a specific choice of the function . In particular, choosing
F = InW casts the lagrangian in a form'* that depends on only two functions
of the chiral superfields, f and ¢ = K + In|IV]>.

To construct an effective potential for gaugino condensation we introduce
a composite superficld operator® U as an interpolating ficld for the Yang-Mills
composite operator:

%w;w: = U = V(). (10)

Here H = h 4 6pxy + - - is an ordinary chiral superinultiplet of zero Kahler
weight, that represents the lightest bound state of the confined SUSY Yang-
Mills scctor, just as in low energy QCD the pion is an interpolating field for the



composite quark operator: §(1 + i7s)q = o + i# - 7. Kihler invariance requires
W(H) — e PV () (1)

under (7). A key element in the identification (10) is the fact that the Yang-
Mills chiral multiplet W, has a different Kahler weight'>?® from that of ordinary
chiral multiples of weight zero.

I will first consider a prototype'® supergravity model from superstrings,
with just one modulus T and one matter generation. The functions I, W and
f are given in terms of the superfields ® = {®', 5, T} by

f=5 (12a)
K=-in(S+35)-3n(T+T-19]%), |9 =) ¢, (12b)
W(d) = cijpd'dd* 4 2. ' (12¢)

The last term in the superpotential W parameterizes a possible additional source
of nonperturbative SUSY breaking, for example, a nonvanishing (quantized) vev
for the antisymmetric tensor field strength Iy, of 10-dimensional supergrav-
ity:

do /dV""" < Himp >=27n 0, Lmn=4,....9,

Hemn =ViBun, LM,N =0,...,9,. (13)

The gauge coupling constant at the GUT scalc is determined by the vev
of the dilaton field: S = s + éﬂxi +ee

< Res >=g7?, A (14)

and the scales of the theory are determined by the vev of the Kahler potential:

Agur _ 1
Mp ~ RMpy

(assuming < |¢']* > « <Ret >).

= (29)} < €"/® >rv< (ResRet)~} > (15)

For & = 0, the supergravity theory defined above is classically invariant??

under the nonlinear SL(2,R) ® U(1)a transformations:

—i . . 0P
T —ib O = e’P S§ =8,

- _——
T-T=Fra T +d’

.
&y

ad—bc=1, a,b,cd,pf real, (16)

where U(1)gn, with parameter g, is the usual R-symmetry of SUSY theories.

Eq.(16) effects a Kahler transformation (7) with

F = 3In(icT + d) — 3iB, (17)

under which the full lagrangian is invariant provided the gaugino fields undergo
the chiral transformation (9). In addition to the chiral anomaly associated with
(9), the transformations (17) include an anomalous conformal transformation,
namely a scaling of the effective cut-off Agyr, (15), of the theory:

Agur — e PAgyr, (18)

For the theory defined above, the effective lagrangian for gaugino con-
densation is given by®? '

= / d'OENMW(H, S)

. / dOEUoA In(H/p) + hoc. = / POEKPW (H) 2o\ In(H /1) + hec.

= / FOEH M re=>SI MR 4 hc., (19)
where by determines the S-function for the confined Yang-Mills theory:

9 _ 3
Olnp =~

.

and X and p are constants of order unity. The H-superfield kinetic energy term
is determined by the Kahler potential®*:

K=-~In(S+5)-3n(T+T |8 - ). (20)

Under a Kahler transformation (7,11) with H — e~F/3l, the lagrangian (19)
undergoes the shift (T =t 4+ Opx] +--)

scetf = 2o [ d0EF(TIU + b
3
= \/—Tctg%(llcl'“(t)l"“’ﬁ‘,., +ImF(O)F*F,, +---), (21)
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which correctly reproduces the known variations under the trace and conformal

anomalies.®

In addition to the exact classical SL(2,R) ® U(1)r symmetry there are
several approximate symmetries that are correctly embedded in the construction
(19). In particular there is a nonanomalous'®® U(1)n symmetry, under which
S — S+2hyif, that is exact up to other quantum corrections, for example, those

from the (weakly coupled) observable sector. Other approximate symmetries

include* (in appropriate limits) both anomalous and nonanomalous conformal
transformations £ — Az, and the full isometry group of the Kahler metric.

By writing (19) in the form
cl = / dIOEU[S + ??;‘2 In(4Ug*(S)/ A2y (®)M)] + hoc,  (22)

we obtain a direct physical interpretation of the result. Solving the eflective
theory for the condensate vev yields:

- Ah3
<H>=hy= ”3-1/3’ or <A >pa=4<U>= —’;gAz, (23)
g

where I used (14), (15) and the renormalization group relation A, = e_K:;’AGur.
Then the factor
1 2
< 2 In(H/p) >= ] [l + -2%9— In(4<U> g’/A?;UT,\p’)]
2
- ;;; [1 + &‘:2,9— |n(4e—'A3/A‘;’,U,)] 1)

includes the one-loop Yang-Mills field wave function renormalization from the
compactification scale to the condensation scale, up to finite corrections. The
results (23) and (24), and in particular the factor g=? in (23), coincide!® precisely
with the results of instanton calculations'” in SUSY Yang-Mills theories.

It is straightforward to generalize the above formalism to the case of
several gaugino condensates'®'? by the replaccment in (19)

W(II,S) - Ewa("tns)v

and to multi-{moduli 4+ generation) models. For example, for orbifold comp-
actification with three moduli and three matter generations in the untwisted
sector'?, one obtains the result (19) with the Kéhier potential (20) replaced
by'? (here a is a generation index)

3
Kepy = —In(S+5)-3In (H[.’f‘., +T, — 19, - |H|') +twisted sector terms.

o=
PHENOMENOLOGY

If we fix /I at its ground state value (23), we obtain an effective theory

for 3,5, T and the observable-sector Yang-Mills fields that is defined by (12a,b)

and the superpotential

W(P) = ciip® &> 454 he ™™ f= —%Au’e“. (25)
which is precisely the effective theory of obtained by Dine et al.'® using argu-
ments based on the nonanomalous U(1)p symmetry. As explained in Refs. 34,
this truncation is exact at the classical level for the theory defined by (19), (20).
In general one would have to include all tree diagrams with internal H-lines, but
these vanish at the ground state of the theory so defined. (Note that this holds
only if there is a stable minimum of the full theory.)

The effective theory defined by (25) has a positive semi-definite potential
which vanishes at the minimum. If & = 0, the vacuum encrgy is minimized
for h =0 (< H >= 0) or < 8 >— oo (g = 0), that is, condensation does
not occur and supersymmetry remains unbroken. For & # 0 the effective the-
ory has the following properties at the classical level'® and at the one-loop™

level: the cosmological constant vanishes, the gravitino mass mg can be non-

vanishing, so that local supersymmetry is broken, in which case the vacuum is
degenerate, and there is no manifestation of SUSY breaking in the observable
sector. Nonrenormalization theorems for supergravity, together with the classi-
cal SL(2,R) ® U(1)r symmetry, indicate! that these results will persist to all
orders of the eflective theory defined by (25).

including loop correction from the I1-sector, one finds® that masses are
gencrated for the gauginos of the observable sector that are of order
memi A2

m <4 x IO_"’Afm ~ 1TeV,

"13 ~



for mg <my ~ Ac < 1072 Mpy, (26)

where my is the mass of the H-supermultiplet. The factor (47x)~* appears in
{(26) because the effect arises first at two-loop order in the effective theory, the
factor mg is the necessary signal of SUSY breaking, the factor m} is the signal
of the anomalous breaking of SU(2, R) ® U(1)g, and A? is the effective cut-off.
This last factor arises essentially for dimensional reasons: the couplings respon-
sible for transmitting the knowledge of symmetry breaking to the observable
sector are nonrenormalizable interactions with dimensionful coupling constants
proportional to Mp?. Gauge nonsinglet scalar masses masses are protected?! to
one further loop order by the Heisenberg symmetry® of the Kahler potential
(128):

5 =aof, ST =ad, 6K=0. (27)
Note that the ground state equations give
MPA ée\}
=< kI3 AR ~ (_)
mg =< eXPW >x 2eg ML’ pA.~(57) Acur, (28)

8o it is not possible to generate a hierarchy of more than a few orders of mag-
nitude between mg and Agyr if é is quantized as in (13). However this initial
small hierarchy is enough to generate a viable gauge hierarchy if observable
SUSY breaking is sufficiently suppressed, as in (26), relative to local SUSY
.breaking. For example, recent LEP data' suggest Agyr ~ 10'8GeV, g73 ~ 2,
so for a hidden Eg gauge group (by = .56) we get A ~ .6Agur ~ 3 x 10~3Mp;.

RESTORATION OF MODULAR INVARIANCE

In the formalism presented above, the continuous classical symmetry
SL(2,R) is broken by anomalies at the quantum level. However the discrete
subgroup SL(2, 2) [a,b,c,d integers in (16)] of SL(2,R) is known® to be an
exact symmetry to all orders in string perturbation theory. This so-called “mod-
ular invariance” is restored by adopting, instead of (19), the eflective lagrangian®

= j dOE 2,035 1P 1n(Hn*(T) /1) + hec., (29)
where - :
’7(7‘) — e—nT/l'I H (l _ e—?mn'l') (30)
m=1
8

P N
[ e

is the Dedekind n-function. This is the unique function of the chiral superfields
that has the required analyticity and SL(2, Z) transformation properties®. This
additional contribution to the Yang-Mills wave function renormalization can be
understood as arising from finite threshold corrections'™!! to the leading log
approximation that arise from heavy string mode loops, and is closely related
to the anomalous quantum correction due to the (nonrenormalizable) coupling
of the Kahler connection to the axial U(1)n current*?4, The result (29) has

18,12

been generalized to the cases of several gaugino condensates and of several

moduli.!?

The effective scalar potential®® for the theory defined by (29) is un-
bounded from below. Specifically, the potential takes the form

V=¥ [zlv.r + xu.n|%”—,"—| ] : (31)

where the function X(t,1) is negative for Ret < 1.9. Therefore the potential
is unbounded in the direction < X >oc Res™ — 0o (g — 00). On the other
hand, the term |OW/3t|? that drives the potential negative is proportional to
b3, i.e., is of two loop order. Since the construction (29) is based on one-loop
results, this term is unreliable, and any effective theory that coincides with the
one defined by (29) in order by is equally valid.

We therefore reinterpret the previous results as follows. We define the
effective theory for gaugino condensation by the lagrangian'?:

il = [ #OESU + he = [ LOESHPATI™E L he,,  (32a)

K=-In(S+5)
—3In(T + T — | - |HP(E - Lhf(S,5) |n(llvf(T)/;t) +h.cl)). (32b)

If we take f(S,5) = 257!, then we can simply interpret the “new” chiral super-
field H of (32) as related by the “old” H of (29) by a wave function renormal-

ization, i.e.,
Hoeoo = o [l + i—l;i In(e‘sm"’lh)?(T)/;t)] + O(bl). »(33)

In other words, the cmnp.osite superfield Upe, = e/2Ae35/20 f13  ig related to

new

the old one by a (fickl dependent) renormalization. Note that without the O(b3)

9



corrections, (33) is just a holomorphic chiral field redefinition that cannot change
the theory. The O(b3) terms in fact contain the nonholomorphic picces implicit
in the redefinition from (29) to (32). If instead we take f(S,S) = 4(S + 5)!,
the form of the superpotential (32b) agrees with one-loop corrections? to the
Kahler potential that would arise from the sclf-interactions of H via the tree
superpotential defined by (32a). In either case the theory defined by (32) is
identical to the one defined by (29) and (20) to first order in the loop expan-
sion parameter by. Specifically, the lagrangian (32) has the correct conformal
anomaly in order by, and the correct chiral anomaly to all orders, provided the
(anomalous) transformation properties of the “renormalized” fields I1,..,, W2,
are defined in terms of the “old” fields with canonical transformation properties,
via the appropriate functional relation, such as (33).

At its classical level, the theory defined by (32) has once again a van-
ishing cosmological constant and (for é # 0) a degenerate vacuum with local
SUSY breaking (mg # 0) possible, and again no SUSY breaking appears in the
observable sector at the classical level of this effective theory. The vanishing of
the cosmological constant is assured because the derivatives of the generalized
Kahler potential ¢ = K + In|W?3| satisfy the “no-scale” condition'?

G GsM* =3, (34)
where G5 is some submatrix of the Kahler metric G;y and M’ o j5 its inverse:
GsM** = 6. (35)
For example, for the 1 x 1 submatrix Gy, (34) reduces to
GG = 3G, (36)
which is a diflerential equation that can be integrated to give
(T, T,2,2) = -3n[f(T,2,2) + /(T,2,2)+ 9(2,2)), Z#T. (37)

For an n xn submatrix in (34), the vacuum is degenerate in n complex directions,
since there are only N — n complex vacuuin conditions, where N is the total
number of chiral supermultiplets.

10

PHENOMENOLOGY REDUX

Consider quite generally a superpotential of thie form
W= W)+ Y W,(H,,S5) +&, (38)

where 1 have allowed for the possibility of a nonperturbative source of SUSY
breaking, such as (13), which also breaks modular invariance. Take as Kahler
potential

K=-m(S§4+5)-3n(T+T- 2 Bi|®'? - Y B, (39)

where B;, B, are modular invariant, field dependent wave function normaliza-
tion factors as in (32b). Solving the ground state conditions gives < V >= 0,
and gaugino condensation is possible for & = 0 if there is more than one

condensate?”+!8

, provided'? that the B-functions of the factor gauge gauge groups
do not all have the same sign. (Alternatively, there could be a cancellation in the -
vacuum energy between gaugino condensates and the vev of a gauge nonsinglet
scalar potential.?®) However the ground state conditions for the varions fields

may be summed to give'?
<W>=<{1+ 3Bl + 3 Balhal’) >, (40)

where f3;, B, are related to the S-functions appearing in B;, B,, so the gravitino
mass (28) vanishes if ¢ = 0 and local SUSY breaking does not occur.

Local SUSY breaking is again possible for é # 0 and, as for the effec-
tive theory studied previously, the observable SUSY mass gap vanishes at the
“classical” level of Lhe effective theory. The analysis®® at the one loop level of
this effective theory is considerably more complicated, and one can expect some
qualitative differences from the model studied previously. Although degeneracy
in the T-axion directions is lifted at one loop, these directions remain nearly flat
for large radii. Writing

n(T)=e ™21 + O[5(T)]}, < 8(T) >= (2 x 1073)<e> L 0(6?), (41)

the potential is flat in the T-axion direction in the limit of vanishing 8. In
the saine approximation CP-violation is absent (in contrast to the eflective the-
ory studied previously where it was sct Lo zero by hand®). Since SL(2,R) is



explicitly broken by the threshold corrections, i.e., by 5(T), one expects that
observable SUSY breaking will be generated at the one-loop level of this effective
theory. However, in the limit §(T') — 0, there is a residual symmetry—-namely
the diagonal of U(1)r and the Peccei-Quinn U(1) subgroup (T — T + iy) of
SL(2,R)-that may help to suppress these effects. Note that LEP data’ sug-
gest <ReT >~ 5 x 107 for some “average” compactification radius. Finally the
presence of the n-function breaks the Heisenberg invariance (27) of the Kihler
potential, which also served to protect gauge nonsinglet scalar masses. However
the more realistic case of three moduli (and three matter generations) has a -
.higher degree of classical degeneracy, which can also play a role in suppressing
these masses at the one loop level if the minimum does not lie at the symmetric
point where the radii < t, > are all equal. Finally, since the calculation!! of the
threshold corrections neglects any possible '-dependence, and since with the
reinterpretation (32) there is no holomorphicity restriction, it is conceivable that
the correct -dependence could restore an invariance similar to (27). (Recall that
the radii of compactification, as determined by taking the 10-dimensional field
theory limit of the untwisted sector are R, =< o — L)paf? >.) In conclusion,
it is not implausible that a viable hierarchy my emerge in this effective theory,
but further investigation is needed.
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