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Molecular·Beam Sources Fabricated from 
Multichannel Arrays:· III The Exit Density Problem 

by 

Donald R. Olander 
and 

Valerie Kruger 

Inorganic Material Research Division of the 
Lawrence Radiation Laboratory and the Department of 

Nuclear Engineering, University of California, Berkeley 
California 94720 

ABSTR.i\CT 

Although the theory of Giordrnaine and ~lang adequately 
predicts the centerline intensity of·a molecular beam from a 
channel source~ it is less successful in describing the angular 
distribution. This deficiency has been ascribed to a non-zero 
number density at the tube exit. The end conditions chosen by 
previous workers lead to angular distributions which fail to 
satisfy total flow and average cosine restrictions. A method of 
choosing the parameters of the linear density profile ;..;hich 
satisfied these integral constraints is described. The computed 
angular distributions according to the theories utilizing different 
end conditions differ very little frcm each o~her, but represent a 
.clear improvement over Giordmaine and ·Nang's angular distribution . 
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As ~videnced by the results ·reported in the first paper of 

this series (1) the centeiline intensity of the molecular beam is 

quite adequately predicted by the theory originally proposed by

Giordmaine and Wang (2). This theory assumes that the number 

density in-the.tube decreases linearly from the density in the 

·reservoir to.zero at the tube exit. While this simplification is 

satisfactory for centerline properties, it is less successful in 

predicting the off-axis beam intensity. As noted by Giordmaine 

and Wang, the deficiency in the theory lies in the assumption of 

zero density at the tube exit. There have been a number of attempts 

to modify the theory to rectify this fault (3-5), and it is the 

purpose of this paper to show t.llat: (1) although an end density·· 

other than zero is required to adequately match experiment, the 

angular distribution is relatively insensitive to the particular 

value utilized, (2) previous end density calculations suffered from 

internal. inconsistencies (e.g., the integral of the angular distri-

bution did not equal the total flow rate) and (3) an internally 
I 

consistent linear density profile can be _determined. 

To place the question of entrance and exit densities in its 

proper perspective, we first review collision-free flow in a 

cylindrical tube, since this limiting case forms the basis of the 

attempts to rectify the Giordrnaine and Wang theory. 

.. 
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Collision-Free Flow in Cylindrical Tubes 

In the absence of collisions between molecules, the properties 

of the flow of gases through cylindrical tubes are determined solely 

by geometrical considerations. The transmission probability (or 

Clausing factor) of the tube is defined by: 

. 
where N is the.total flow rate. through the tube, K is the trans-

,.o..-t.e.. d.t. W~\ c:..n 
mission ·probability, a the tube radius and v the vlall collision 
mo\e.cu..\e.s . ente.'(' ~ l.l~wt. o.~e~ o\ tt-.e t~AbC 
~nsi~ in the gas reservoir driv~g the flow. Since the gas in 

the reservoir is Maxwellian, v is related to the number density 
s " 

in the source, nsi by: 

-

1 -
" =-nv s 4 s 

where v is the mean speed of the molecules. 

In analagous fashion, the angular distribution of the 

molecules leaving the tube exit into the vacuum defines a distri-

bution function j (~) given by: 

J (e > = 
11' 

vs 2 
(1ra ) j (e) 

(1) 

(2) 

(3) 

() where J(e) is the intensity in molecules/sec-sr·a:t a polar angle 

a from the tube axis. For an ideal thin-walled orifice, j (e) = 
'" eo\\\S\'Ot\-.,'fc.<:. -T\ow> 

·. ~-··"'-"''·--. 

cos e. &~~or all tubes" j (0)=1. ~~_.. 

Since the integral of J(e) over the forward hemisphere must 

equal the total flow rate, K and j(e) are related by: 

I( ~ 2 f\ (~) d (coso) 

0 

(4) 
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·Both K and-j(6) ~re dependent only upon the length-to-diameter 

ratio of the tube, 

2a 
y= L 

where L is the length of the tube. 
. ~te. 

Both K and j(6) are determined once the collision eeasity on 

the tube walls is kno\vn. If. x is the distance from the entrance 

measured in units of tube length, v(x) denotes the rate at which 

molecules strike a unit area of wall at location x. Assuming the 

. ·• 

law of diffuse reflection to apply to the molecule-wall interaction, 

v(x) is the solution to the integral equation . (7, 8, 4} : 

=·-J
1

v{x') {l _ lx•-xl . 
0. vs ... (y2+(x'-x)2]1/2 

+ 1 -~. (y2 /2)+x2 x}. 
y . 2 2 1/2 

(y +x ) . 

. l . y21 x'~xl . dx' 
'2. . 2 3/2 . y z[y +(x'-x) ] . 

(6) 

Clausing (7) and Demarcus {8) have obtained numerical solutions 

to Eq. (6)~ .The transmission probability was determined directly 1 

and not by first determining j {8) and then K from Eq. {4}. 

The function v(x) determined by Eq. {6) is nearly linear over 

the tube length, except for regions close to the entrance and exit. 

All angular distribution functions, j(e), have been computed by the 

use of the approximate formula: 

where the constants ~l and ~ 0 denote the dimensionless tube wall 

collision ratesat the entrance and exit of the tube respectively. 

(7) 
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·The distribution function j(e} includes· contributiqns from the 

source reservoir and from the walls. The computational method 

described by Clausing (9) yields: 

for tane ~ y 

and 

I for tans ~ y 

In these formulae, 

-1 r.-----1. 
R{p) =·cos p - Pvl-p~ 

p = tan:e/y 

(9) 

(10) 

(11) 

The adequacy of this angula:J;" distribution for specified l;; and 
• J 0 

t 1 can be verified by Eq. (4). This procedure is not eqtiivalent to 

direct determination of K, since the formula for j(6) is based upon 
YaA: .. e. 

a linear approximation to the wall collision ~efisit~ profi~e. 

For short tubes (y > 1), Claus_ing (9) uses the values: 

t·· = 
0 

z:l = 1 - r,;o 

Ect (\'l.b) \n. ~ \\ e s yo:\. e 
-Note that '&Frere is a discontinuity in the collision cisnsity 

(12a) 

(12b) 

from the value at the tube entrance (v ) to the value on the \·Jalls . ~ . . s 

just inside the entrance [vs(l-r,;
0

)]. 
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Using these valt:es of z; and z:: 1 in Eq. {8) and {9), 
. o ~o'< 'I=\ 

Clausing {9) has performed the integration of Eq. {4)~to yield 

K = 0.512, which is in good agreement with the value of 0.5136 
. tne.. e..)(o.c::::t. c~\c.u..\o...t.,ons o-5 '<"e)~s "1 ~r-.e <g, 

obtained by direct means (7, sr. "' . 

• In the limiting case of very long tubes {y+O) , the angular 

distribution is given by Eq. {9). Integration according to Eq. 

(4) yields: · 

It can be shown rigorously that as y+O, K+4y/3 (8). The 
v<1...k...e. 

discontinuity in the collision <ieasiey at the tube entrance in 

short tubes is due to the substantial fraction of the molecules 

which enter the tube that escape into the vacuum (i.e., the large 

transmission probability). Increasing the length of the tube is 

equivalent to reducing the outflm<J by a restriction at the exit. 

In the limit as. the flow dmvn the tube is completely stopped by 

closing the exit, the wall collision density in the tube is every-

where equal to \) . 
s Consequently, z; 1 would be expected to approach 

unity as y+O. Eq. (13) then requires that as y-O: 

2 
'=o =.3 Y 

'=1 = 1 

These limiting values have been deduced by Clausing (10). 

The derivation of the transmission probability due to 

· Smoluchowski (11), which assumes only that (dv/dx) is constant, 

yields: 

(14a) 

(14b) 

"' 
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· Sa 2 dv 4y 2 
N = 3L (rra ) dx = 3 (rra ) -~s (~1-r;o) (15) 

~oy \or-;.~ -l::.ubes .· 
The proper limiting value of K"follows if r; 1=1 and r;

0
<<1. 

Note that r;
0 

need not have the specific value required by Eq •. (14a). 

Ivanov and Troitskii (4) have attempted to determine the 
~ J 

parameters r; and r; 1 for all y b~ using the linear profile, Eq. (7) 
0. 

and requiring that Eq. (6) be satisfied only at x=O and x=l. This 

method yields: ··- . 

These functions, however, do not agre~ with Eqs. (12a) and (12b) 

for large y nor with Eqs. (14a) and (14b) as y+O. 

In a recent analysis, Zugenmaier (3) made the following 

assumption covering the behavior of the parameters r;
0 

and r; 1 for .. 
tubes of arbitrary length in collision-free flow: 

r = 1 'sl 

r; = K/2 
0 . 

(17a) 

(17b) 

where K is not the transmission probability calculated"byClausing 

and D~marcus, but is d~termined by use of these values of r;
0 

and r; 1 

in Eqs. (8) and (9) and integrating according to Eq, (4): 

4 
K = 2+k (18) 

where 
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k 1 -1 
= (-y + 2yu) . · 

3 
(19) 

1 1 - (l+y2) 3/2 
u = 4y + · .. ·3 (20) 

6y 

Although Eqs. (17a) and (17b) agr~e with the long tube limits, 

. Eqs. (14a) and (14b), and in the limit y-+oo, c; -+ 1/2 in agreement 
. . o. 

with Eq. (12a), Zugenmaier 's c; 1 does not exhibit the discontinuity 

calculated by Clausing. Consequently, the transmission probability 

from Eqs. (18) - (20) is in disagreecient with the value calculated 

by Clausing and Demarcus (by as much as 20% at y=l}. Rc:.ce.."t ~~c......,u..l(~'l"''\e..t'l~ 
o..~~e.~ \J.lltl\t..\'-..e. \O..tt..~l(' \10....\"'-C-~ t.o \oUd::.\·\\(\ ~<:..V<!'.'t'"c....\ ~ere.t:..f\"t. (\~). · 

Influence of Intermolecular Collisions on the Angular Distribution 

As the pressure in the reservoir driving the flow through the. 

tube is increased, intermole.::ular collisions become of comparable 

importance.to molecule-wall collisions. The first property to be 

affected is the angular distribution, j (e). Until the driving 

pressure is sufficiently great to result in sigtiificant hydrodynamic 

effects, however, the total flow can be described by Eq. (1) with a 

transmission probability based upon colli'sion-free flow. 

Quantitatively, the effect of intermolecular collisions is to 

add another dimensionles~ parameter to the theoretical expression 

for j (e). For short tubes (y>l) I the most convenient parameter is 

the Knudsen number based upon tube diameter: 

I 

I 

). 
s = = 2a (21) 

For long tubes, the Knudsen nwnber based upon tube length is 

important 

>. s 
llil --- = L 

' 

(22) 
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In these formulae,. >.
5 

is the mean free· path of the molecules 

in the source reservoir and n* is the density at which the mean free 
... 

path is equal to the tube diameter. 

For tubes with y<<i, the angular distribution and centerline 

intensity beg·in to deviate from the collision~free values a't KnL<...,lO.: 
. I 

The transmission probability of Clausing, however, predicts the 
\3 \.4 

total flow to Kn0....,1 (*, ~. Thus there is a wide range of Knudsen 

numbers {y<KnL<lO) in which intermolecular collisions affect the 

angular distribution but do not significantly influ~nce the total 

flow. The considerations here are restricted to this range, which 

represents the normal operating region of molecular beam sources 

(excluding nozzle beams). Hydrodynamic effects are not considered. 

In the Knudsen number region of interest, the transmission 

probability is given by the Clausing-Demarcus calculations, but the 

(8) and (9). The angular distribution is ·no longer given by Eqs. 
{"2.,3', 4) 

theoretical angular distribution is determined by three contributions": 

(1) Molecules from the source reservoir.which pass 

through the tube without collid.ing with the walls 

or with other molecules. 

(2) Molecules re-emitted in a diffuse manner from the walls. 

(3) Molecules scattered out of the tube exit after 

intermolecular collisions within the tube. 

The third contribution is absent from the collision-free flow 

discussed previously (KnL-+co). The second component does not con

tribute to the intensity along the axis (6=0). 

In the analysis of collision-free flow, the number density of 

molecules within the tube is not required; knmvledge of the wall 
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collision den~ity, v(x), i~ sufficient to fix all properties of the 

flow. Introduction of intermolecular collisions, however, means 

that the number density is required to describe the gas-phase 

collision frequency (in component 3). Because of attenuation in 
Y'o..-le.. 

the gas phase, the wall collision Q.enait.:y required.for component 2 

can no longer be described by the purely geometrical considerations 

which sufficed in free-molecule flow. The angular distribution is 

computed by guessing a number density profile along the tube and 

·.calculating the intermolecular collision frequency by the formula: 

1 2 . 2-
vi (x) = .2 /21ra [n (x)] v (23) 

where vi{x) is the intermolecular collision rate (sec-l -·cm-3 ) 

and 1rcr 2 is·· the collision cross section. The wall collision rate is 

assumed related to the number density by: 

v (x) 1 -= 4 n (x)v_ (24) 

From the start, the calculation is on a much more tenous basis 

than the analogous collision-free case, s.ince the number density 

profile is simpJ,y guessed rather than calculated in an exact manner, 

as is v(x) in collision-free flow C?y Eq. (6)). In addition, 

neither Eq. (23) nor (24) are valid relations between density and 

collision rates; these formulae apply only to an equilibrium gas, 

whereas the gas flowing through a tube is neither Haxwellian in 

speed distribution nor isotropic in angular distribution. 

Although Eq. (24) is not valid even in collision-free flow 

{because of non-isotropy) it very often appears in such calcu-

lations {3, 11). Its utilization is unnecessary, but does not 
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·affect the.validity·of the final transmission probability or 

angular distribution; these quantities are proportional to the 

wall collision rat~ in the source reservoir (v of Eq. (2)), . s 

which is valid. Since n(x) appears in the analysis only to deter-

mine the wall collision rate in the tube by Eq. (24), and since 

the governing equations are linear in n(x) [or v(x)], the constant 

factor v/4 cancels out. Consequently, the analysis of collision

. free flows rests upon the accuracy of the function v(x), not upon 

the validity of the connection between v(x) and n{x). 

In order to proceed with the computation of the angular 

distribution, the function n{x) must be prescribed. By analogy to 

collision free flow, where v{x) is known to be very nearly linear, 

all analyses of the flow in tubes \vi th intermolecular collisions 

have assumed a function of the fo.rm: 

n(x) -·.-- ~ - {~ -~ )x 1 1 0 
(25 ). 

The parameter ~l denotes the ratio of the number density just 

inside the tube entrance ·to the number de'nsi ty in the source 

reservoir. ~ 0 is the ratio of the number density at the tube exit 

to the source density. These parameters cannot be calculated from 

theory, as can the analogous constants l,;
0 

and l,;l appea~ing in Eq; 
~a±~ 

(7) for the wall collision d.e.ns-.i-t.jr.. in free molecule flow. 

The variation of ~l and ~ 0 with y has been determined by a 

. variety of approximations. Table 1 shows the transmission pro-

babilities and normalized entrance and exit densities utilized by 

the five studies which have considered this problem. 

Zugenmaier identifie~. t;
0 

and ~; 1 with l,;
0 

and l,; 1 . He did not 
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TABLE 1. PARN1ETERS OF THE LINEAR NUMBER 
DENSITY PROFILE USED BY VARIOUS INVESTIGATORS 
FOR COHPUTATION OF THE ANGULAR DISTRIBUTION 
FOR CYLINDRICAL TUBES WITH INTER..\!OLECULAR 

COLLISIONS 

Transmission a a 

Investigators Probability, K tl ~0 

Giordmaine & Wang (2) 4y/3 1 0 

Zugenrnaier (3) Eqs. (18)-(20) 1 I</2 

Ivanov & Troitskii (4) b --- Eq. (16b) Eq. 

' 

(16a) 

Jones et al (5 )c (1 + 3/4y)-l 3K/4y K/2.8 

Becker (6) c . (1 + 3/4y)-l 1 K 

aThe transmission probabilities appearing. in these columns refer 
to those given in the second column. 

bConsidered angular distribution, but not centerline intensity. 

cConsidered centerline intensity, but not angular distribution. 
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allow for a discontinuity in the. number density at the tube 
' . . . / \! 

entrance (~ 1 fl) despite the fa
1
ct that Clausing has demonstrated 

an analogous discontinuity in the wall collision rate. 

Although Ivanov and Troitskii computed r,;
0 

and r,; 1 as a function 

of y for collision free flo'i.'l, it is of interest to note that th·e 

value of ~ = 0.6y utilized by these authors in the long tube limit 
. 0 . 

represents a compromise: as y-+0, r,; from Eq. (16a) approaches 0.5y 
0 

but .a limiting value of C). 67y is required to satisfy the restric.tion 

that the.transmission coefficient for long tubes be 4y/3. Appar-

ently the value of 0.6y represents the average of these two figures. 

The ~l value used by Jones et al (5) was based upon the same 

considerations used in deriving the transmission·probability by the 

Dushman method (i.e., an ideal orifice and a long tube represent 

series flow resistances). The exit density used by these authors 

was based upon experimental measurements of the average cosine of 

the flux from the tube. 

If ~0 and t 1 in Eq. (25) are considered specified, the angular 

distribution function j(S) can be calculated by extending Clausing's 

collision-free calculation {9) to include the contribution due to 

t intermolecular collisions. Giordmaine and Wang and Ivanov and 

Troitskii both utilized this technique. The general form of th~ 

angular distribution function may be written as: 

j (6) = E; coss + ~ 
0. y1f 

1. [ ( ~1 
2 R(p)·erf ~ 0 o ·1- erf ( o' ) 

2 ~1(1. ·J -(o'e; /t >
2

] .s(p)), + .r,r o' ----- -1 e 1 o + 
V" ~o.e;l 

for tane ~ y 

(26) 

i 

I ,. 



• 
·and 

j ce > 

-14-

6'2 
2 ~0cose e 

= ~0 cose + .fTf ct' S(l), 

for tane ~ y 

Here p and R(p) have the same meaning as in Eqs. (10) and 

(11) and S(p) is given by: 

· c5 • = cS/v'cose 

-~ 

~~:~:~Jl/2 
The centerline intensity, j (0 >, is no longer unity~s it is 

for collision-free flow, but is given by: 

j (0) = ~0 + r; ~0 ener~ :~ + erf (o)] 

+ ( 
1~:1) exp!- o2[(:~r -1] l 

The peaking factor, utilized as a measure of centerline beam 

intensity in the preceeding papers of the series, is 

X= j(O)/K 

(27) 

(28) 

(29) 

• 

(31) 

(32) 
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The angular distribution is a function.of two parameters, y 

and Kn0 (or KnL). ~ns-i-t:ies c1 a~-unc-e±ons--e-~ 
AsK~ or KnL becomes large,[Eqs. (26) and (27) reduce to Eqs. (8) 

·and (9) and Eq. (31) becomes:unity. 

The angular distribution and centerline· intensities derived 

by the first four works in Table 1 may be obtained by utilizing 
\S 

the particular ~land~ values shown in the table (~). 
0 . 

Int~gral Constraints on the Angular Distribution 

As in the case of collision-free flow, the angular distributions 

of Eq. (26) and (27) must satisfy the total flow criterion of Eq. (4), 

which amounts to a constraint on the parameters ~0 and ~ 1 • None 

of the angular· distributions based upon the ~ 0 and ~ 1 values in 

Table 1 satisfy Eq. (4) over the entire range of y. 

Because of the prescription of the number density at the exit 

of the tube, art additional integral condition is required of the 

angular distribution: the average cosine of·the flux at the exit, 

implied by the value of·~0 selected, must be equal to that obtained 

from the angular distribution. This requirement stems from the 

assumption (implicit in all analyses listed in Table 1) that the 

flow is collision-free downstream of the .tube exit. The angular 
'J 

~,.. distribution of the molecular beam is therefore direct~y related to 

the angulardistribution of the number density at the tube exit. 

By the definition of a particle current, the total flowrate 

per unit cross sectional area of the tube is the product of the 

exit dens.ity (n =F; n ) and the mean molecular velocity component 
' 0 0 s 

along the tube axis (vx
0

) 

-· n v 
0 xo (33) 
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Let lJ denote the average cosine,..of the molecular distribution 

0 . . 

function (not the molecular be.am) at· the @~xit. Since the flO\V' 

process is assumed not to alter the speed distribution, 

Combining Eqs. (1), (2), (33), and (34) yield~ 

l K 
lJO = .4 ~O 

The average cosine of the molecular distribution may be 

obtained from the angular distribution of the molecular beam: 

= 

1 . . 

J J(B)d(cosa) 
0 . 

f.l J (a) d (cose) 
coss 

0 

K = 1' 

2J a~~!d(cos6) 
0 

Equatin~ (35) and (36) yields the condition: 

(34) 

(35) 

(36) 

t = 1 Jl j (e)d(co~e) (37) 
o 2 · -cose 

0 

A detailed development of Eq. (37) is presented. in the appendix. t 

The interhal consistency condition represented by Eq. (37) 
"t' e \c...t,\..;, e;., 

applies only ""'hen the" number density at the exit, .;
0

, is specified • 
. re.\~,,.,~ . V"'o..-1:::.~ 

There is no analogous restriction on the "wall collision ciensH:y at 

the exit, r; • 
0 

Eqs. (4) and (37) represent integral constraints on the 

angular distribution function involving the zeroth and minus one 

moments, respectively. No arbitrarily chosen pair of parameters 
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- ~0 and ~l can satisfy both of these restraints. The only way that a 

two-parameter density profile (linear or not) can be utilized in a 

collision model such as that which generated Eqs. (26) and (27) is 

to allow the total flow and average cosine restrictions to determine 

t
0 

and ~l rather than specify these parameters ~priori. In this 

.case, the angular distribution is regarded as parametric in Y1 

KnL (or Kn
0

) and t\'IO adjustable constants 1 ~ 0 and ~ 
1

• Eqs. (4) 

·and (37) provide two independent relations for the determination.of 

t and ~ 1 : 
0 -

and 

R ~ 2 f\ca, y, Rn, <
0

, <1 )d(cosa.) 

0 

= !. flj (a 1 y 1 _ Kn, 
to 2 - cose 

~o 1 E;l) 
. d -(cosa) 

0 

The function j (8 1 y 1 Kn, ~0 , ~ 1 ) is given by Eqs. (26) and (27). 

For specified values of y and KnL or Kn0 ,- Eqs. (38) and (39) 

canbe solved simultaneously for ~0 and E;:l. The transmission 
. 

probability is regarded as a known function of y, given by the 

Clausing-Demarcus calculations. Figs. 1 and 2 show the values of 

(38) 

(39) 

. ~land ~0 determined by this method-for 10-3 ~ y ~ 20. The average 

cosine ~ 0 has been shown in place of t;
0 

to reduce the extent of the 

variation (these two parameters are related by Eq. (35))._ The 

curves are p~rametric in the Knudsen number based upon tube diameter, 
........ . 

which has been restricted to values~_l. _____ -----------------·-----_-------~ )/ 

The values of ~l and ~0 which simultaneously satisfy Eqs. (38) 

and (39) approach limits at large and small y. The limit as y+O 
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- can be obtained analytically from the angular distribution function 

and the integral restrictions if it is noted that K+4y/3 and if e;
0 

is assumed to become proportional toy. As y-+0, Eqs. (27), (38), 

and (39) yield: 

~l = 
1r. 

1+11'/2 = 1.223 

These limits are different from the Values of the analogous 

wall collision deri.si ty parameters, 1;
0 

and 1; 1 given by Eq. (14). 

The reason for this difference is not due to the presence of 

intermolecular collisions-in the former instance, since Eq. (40) 

(40) 

is valid for any Knudsen number. The difference is due to the fact 

that e;
0 

and E; 1 represent nUmber densities 1 so that Eq. · (39) must be 

satisfied; c;;
0 

and ~; 1 , on-the other hand, represent parameters of a 

wall collision L~il.t¥ profile, which is not subject to the con

straint· of Eq. (39). The value of E; 1 greater than unity does not 

make sense physically~ Either the number density cannot be 

approximated by the linear function of Eq. (25) over a sufficiently 

iarge fraction of the tube or the relation between v{x) and.n{x) 

based upon equilibrium considerations (Eq. (24)) is not applicable. 

It is probable that neither of these assumptions are valid. 

In the limit as y-+~ (orifice), E;
0

, E1 , ~; 0 , and z; 1 al~ approach 

1/2. Clausing (9) has discussed the reasons why z;
0 

and z; 1 behave so. 

That E;
0 

and e; 1 should also approach 1/2 can be seen by considering 

two chambers separated by a small orifice. If both vessels contain a 

gas at a d"-'nsity n
5

, the density in the orifice is also ns. If one 

,, . 
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·of the chambers is evacuated, those molecules which were in the 

orifice by virtue ofeffusion from the now-evacuated chamber 

disappear, but the contribution from the chamber still containing 

a density n remains unaltered. Consequently, the number density s . 

. in an orifice separating a vessel containing a gas from a vacuum 

is one-half of the density in the reservo~r. 

Fig •.. 2 shows that for tubes of y< 0.1 the average cosine is 

very close to the long tube limit of 0.643 a~d only weakly dependent 

·upon Knudsen number. Jones et al (5) determined the average cosine 

from all of their angular distribution data and fourid a constant 
.. 

value of 0.70 ± 0.02 under all conditions. Although the near-

constancy of ~0 predicted by the theory is verified, the magnitude 

i~ not. This may be due to the experimental difficulty of obtaining 

accurate measurements of the weak flux at large polar angles'· -v1hich 

are weighted very he~vily in the integrals of Eqs. (38) and (39). 

Zugenmaier's theory employs a ~ of one half for all y although 
0 

this value is characteristic of a cosine distribution and is attained 

only for very short tubes • 

. Comparison of Various Theories 

The peaking fadtor (or centerline 
0 

; ntons.; ..... \ -Frr'\Tn ·:._-hti:> -• ""'"'•• - w..z. I - "'-'"""" - -

'o Giordtnai'ne and ~vang and Zugenmaier theories and the pr~sent analysis 

are plotted in Fig. 3. The results of the Ivanov and Troitskii 

theory are not shm·m, but fall close to Giordmaine and tvang and 

Zugenrnaier curves. The peaking factors from the present theory are 

greater than those from the earlier works, especially at small 

Kundsen numbers. This effect can be seen more clearly by considering 

the limiting case of Kn0 ~ order unity, y~O, KnL<<l (which represents 
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a long opaque tube). 
. ----- I 

Since in the limit of long tubes, Eq. (40) 

shows that~ ~y, the term o of Eq. (30a) approaches zero but 
0 

~ 1 o/~0 becomes large. The centerline intensity of Eq. (31) reduces 

to: 

j(O) = Kx = c_ Jfi 
2 L../:"Fl/=2=K=n=L 

(41) 

which is larger than the peaking factor predicted by the Giordmaine 

and Wang model by vf1 = .j1. 223·. This constant factor of ·,..._. 11% is 

evident in the Kn
0

=10 a·nd 1 sets of curves at small y in Fig. 3. 

Although thfs difference is of the same order as the accuracy of 

the experimental measurements; the results presented ih the first 

paper of this series (1) generally showed higher peaking factors , 

than the theoretical prediction of the Giordmaine and Wang theory. 

Moreover, the discrepancies were most evident at smaller Kn
0

, 

which is consistent with the present theory · (the ""-' 11% difference 

between Giordmaine and Wang theory and the present theory is 

attained only when KnL is small; as KnL-+...,, the peaking factor 

approaches 1/K in all theories). 
. . 

Fig. 4 compares the angular distribution from the four 

theories. ·..:ith data obtained by Giordmaine and Wang (2) for their 

source B, (y=O.Ol52). At the 0.25 torr source pressure for which 

the data in Fig. 4 were reported to have been taken, Kn0 is cal

culated to be 2.84. The measured total flow rate under these 

conditions was reported as 1. 78xl0 14 molecules/sec-channel, yet 
. .· 13 

the flow rate ?omputed from Eq. (1) is 2.66xl0 molecules/ 

sec-channel. The peaking factor calculated from the centerline 

.. 

\J 
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intensity data reported by Giordrnaine and Wang is 5.1, while that 

computed from Eq. (41) is 13.2 - 14.6, depending upon whether ~l 

is taken as unity or 1.223. Since the measured flow rate is too 

large by a factor of- 6. 7 and the centerline intensity is ~ }t;w

by a factor of"-' 2. 6 (or- J6.7>, it appears that t~e source pressure 

reported by Giordmaine and Wang for this experiment was too small 

by a factor of""' 6. 7. If the driving pressure were 1. 7 torr instead 

of 0.25 torr, both the total flow rate and the centerf.in~ intensity 

measurement would have been in accord with theory. In computing 

the various theoretical curves in Fig. 4, therefore, the Knudsen 

number was taken to be 2.84/6.7 = 0.42. 

It is impossible to distinguish between the various theories 

at small polar angles; the half __ widths at half maximum are within 

1° of each other. At larger polar angles, the Giordmaine and 

Wang theory· is substantially bel0\-1 the three theories which 

account for end. density effects. The latter, however, all predict 

angular distributiomwhich are within~ 10% of each other. The 

1-

theory developed in the present work fall~ between those of Zugenmaier 

and Ivanov and Troitskii. The data are not sufficiently precise to 

• permit a decision concerning the validity of anyone of· the three 

theories to be made. 

The same indistinguishability .of the three theories appears 

at other values of the parameters y and Kn
0

. Ivanov and Troitskii 

have found agreement between their theory and the measurements of 
J~ 

Naumov ~1;:5) comparable to the accord shown in Fig. 4. 



Conclusions 

Previous theoretical studies of the angular distribution of a 
. . . 

molecular beam fro~ cylindrical tubes have been shown to differ 

only in the choice of the entrance and exit densities which fix 

the linear density profile upon which the calculation is based. 

The approximations used by Giordmaine·and Wang (2), Zugenmaier (3), 

Ivanov and Troi tskii {4) and Jones et al (5) ai:e internally 

inc6nsistent, since the integral of the angular distribution does 

·not equal the total flm., rate and the average cosine of the distri

bution is not consistent with the exit density selected. 

These two internal inconsistencies have been rectified by 

selecting ~ 0 and ~l to satisfy integral constraints on the angular 

distribution.· In contrast to previous studies, the total flow 

rate is eliminated as a parameter of t~e angular distribution by 

utilizing the transmission probability of the tube. While this 

method restricts the calculation to driving pressures where the 

Knudsen number based upon tube diameter is of the order of unity 

·or greater., the angular. distribution and centerline intensity are 

functions only of the diameter-to-length ratio of the tube and 

the Knudsen number. 

The parameters t;
0 

and ~l computed by the method of integral 

constraints agree with the analogous parameters derived by Clausing 

for collision-free flow only in the orifice limit. 

The lack of agreement for long tubes is believed due to failure of 

the equilibriurnrelation v=nv/4 used in the calculation or to the 

inapplicability of a linear number density profile, even in 

collision free-flow. 

<:..'r 
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. ~espite substantial differences in the end conditions t;
0 

and ; 1 
i . 

in the various theoretical models, the angular distribution from 

all theories are so·similar that existing experimental data cannot 

demonstrate the superiority of any one. .It appears that selection 

of ~ 1 ~1 and ~ 0 anywhere between 1/3 and 1/2 of the transmission 
. i 

probability will generate an angular distribution adequate for 

most practical purposes. However, the angular distribution based 

upon the Giordmaine and Wang end conditions (which sets .; =0) is 
. . 0 

distinctly different from the theories involving non-zero exit 

densities . 

. The peaking factors from the integral constraint method 

developed here, however, can be as much as 10% greater than pre-

dieted by the earlier methods at lm'l Knudsen numbers. For 

practical purposes, the centerline beam intensity may be estimated 

by utilizing the simple Giordmaine and Wang theory and adding an 
. il5-

additional 10% at Knudsen number based on diameter" less than rv 10. 

A c.~ 1\DW \c~9 e..-n" ~""*; 

\~,c;;, wo'\\~ wa..~ pelf~o>r-."<"-e...C. Ll.t\O.ey--t~e.... .f:\u~~,c:.~~s 

u o -4 t r' ce. lL · 5: . Pi '"'Go r-n \ c:. e rv::~-'i Cj '1 Ca:, 1()-, \""! "'\ ' ...... ~ U.') f\ . 
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Appendix 

Relation Between the Exit Density and the Avera9e Cosine 

of the An9ular Distribution 

Consider the point within the tube at downstream position 

+ x and radial position r .. A direction vector Q from this point 

-1 may be described by the polar angle a = cos l.l with respect 

to a normal parallel to the tub~ axis and an azimuthal angle 

• on the cross section at x. Let n(r,~,lJ,~)dQ denote the 

number of molecules per unit volume at location r,x with ~~\a~\t~e~ l~~n~ 

directionf ~/(n, dn) . By symmetry, this distribution function 

does not depend upon the azimuthal location_of the point on the 

cross •ection. Since the speed distribution within the tube is 

assumed Maxwellian, all molecules may be considered to be travelling 

-with the mean speed v. 
+ The number of molecules with direction ·in (Q,dQ) passing 

a unit area of the tube cross section at r,x per second is 

lJVn(r,x,JJ,<jl). The net flmv rate is obtained by integrating 

this expres5ion over all directions and then integrating over the l 

tube cross section: 

(A-1) 

where n(r,x,].l)dlJ is the number of molecules per unit volume 

at r,x with direction in the cone angle (lJ,d~): 

1
2'1T 

n(r,x,IJ) == n(r,x,l.l,¢)d¢ 

0 

(A-2) 
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The average cosine, of the distribution at .location r ,x is defined 

by: 

_ •n (r ,x,v )d-" 

.11 .. 
~ (r ,x) = -l · (A-3) 11 

n (r , x , " ) d" 
. -1 

The radially.,-averaged average cosine at downstream location 

x is defined 

~ (x) = 

by: a 

Jaji (r ,x) n (r ,x)rdr 

J:(r ,x)rdr 

·where n(r,xl is the total density at r,x 

1 

n(r;x) =J n(r,x,.)du 

-1 

The average density across the tube cross section at xis:. 

a . 

ii(x) = : 2 I n(r,x)rdr 

.-Using Eqs. (A-2) - (A-6) in Eq. (A-1) yie1ds:·· 

i = (na 2 )~ ~(x)~(x) 

Equating this expression to Eq. (1} of the text yields: 

~ (x) = K 

4[n(x)/ns>1 

(A-4) 

(A-5} 

(A-6) 

(A-7) 

(A-8) 

Eq. (A-8) applies to all downstream locations in the 

tube. If at the tube exit, ~ (L) is denoted by ;o a'nd n(L)/ns 

by ~ 0 , Eq. (A-8) reduces to Eq. (35) of the text. 

; 

I 
I 
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The angular distribution of the molecular beam is 

(A-9) 

The integral of Eq. (A-9) over all polar angles is: 

. a 

= V V. (L)[ n (r ,L) rdr (A-10) 

where Eqs. (A-3) and (A-4) have been used. 

Division·of Eq. (A-9} by-~ and integration over all polar 

angles yields: 

Division of 

u (L) 

a 

V J n(r,L)rdr 

0 

(A-ll) gives: 

Since J(~) is zero for ~<0, Eq-. (A-12) is equivalent to 

Eq. (36) of the text. 

For an ideal orifice, n(r,L,~,~) = n /4w for ~>0, and s . 

(A-ll) 

{]l.~ 12) 

zero otherwise. Eq. (A-9) reduces to the cosine effusion law, 

-Eq. (A-12) gives ~ = 1/2, and Eq. (A-S) (with K=l) shows that 

the density in the orifice is n /2. s 
In collision-free flow, the wall collision rate, v(x) is 

,..,. 

•· 



.... 

. . 

given by a solution to Eq. (6) of the text. The rate at which 

molecules enter each unit area of the tube cross section at 

_x=O is vs. Knowledge of these supply rates and assumption of 

a cosine distribution of v~x) permits the number density 

distribution function n(r,x,p,q,) to be computed by the same purely 

geometrical considerations from which Eq. (6) was derived. To 

our knowledge, this computation has not been performed. Deter~ 

mination of n(r~x,~,t) and hence n(x) by this exact method would 

demonstrate whether Eqs. {24) and (25) are valid approximations 

in the absence of intermolecular collisions. 
•. 
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FIGURE CAPTIONS 

·1. Normalized entrance density as a function of tube diameter...;to-

length ratio. Curves representing previous studies are denoted 

by: "Zug", ref. 3; "IT" 1 ref. 4; "JKO" 1 ref. 5; and "GW" 1 ref.· 2. 

2. Average cosine at the tube exit (related to the normalized exit 

density by .Eq. (35)). Curves representing previous studies are 

denoted by: "Zug", ref. 3; "IT" 1 ref. 4; "JKO", ref. 5. 

3. Peaking Factor as a function of the tube diameter-to-length 

ratio for various Knudsen numbers. 

4.· Angular distributions for y + q.Ol52, Kn0 = 0.42. Data from 

Giordmaine and Wang (2) 1 source Bat a pressure of 0.25 torr . 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor . 
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