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DYNAMICS OF ANGULAR MOMENTUM ACCUMULATION IN DAMPED NUCLEAR REACTIONS* 

J~rgen Randrup and Thomas D~ssing+ 

Nuclear Science Division, Lawrence Berkeley Laboratory, 
University of California, Berkeley, California 94720 

LBL-17836 

The dynamical evolution of the correlated angular momentum distribution in a 
damped nuclear reaction is discussed within the framework of the nucleon ex­
change transport model. 

1. INTRODUCTION 
The accumulation of angular momentum in a damped nuclear reaction is an im­

portant topic for our understanding of low-energy nuclear dynamics. The frag­
ment spins carry considerable information about the reaction dynamics: while 
the mass and charge distribution can be characterized by two mean values and 

three covariances, the correlated spin distribution requires two mean values 
and thirteen non-trivial covariances. On the other hand, the spin-related ob­
servables are more difficult to extract experimentally. 

The present contribution reports briefly on some selected results of a re­
cent study of the dynamical evolution of angular momentum in damped nuclear re­
actions. 1,2 The study is carried out within the framework of the nucleon ex­
change transport model,3 in which the dissipation of the macroscopic variables 
is caused by the inelastic interactions of individual nucleons with the time­
dependent mean field. In the case of a binary system, as is temporarily cre­
ated during a damped reaction, this one-body mechanism appears as a "window" 

dissipation caused by the transfer of nucleons between the two reaction part­
ners, in addition to a "wall" friction caused by the reflection of nucleons 
from the changing potential in the interaction zone between the two nucleides. 

The reacting system is idealized as two spherical nucleides A and B. The 
relative orbital angular momentum is L = R x P where R is the relative position 
and P is the relative momentum. The associated moment of inertia is )R = ~R2 
The angular momenta, or spins, of the individual nucleides are SA and SB, and 
JA and JB are the associated moments of inertia. Specific details about this 
model can be found in Appendix A of ref4• 

*This work was supported by the Director, Office of Energy Research, Division 
of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. 
Department of Energy under Contract DE-AC03-76SF00098. 

+Niels Bohr Fellow, granted by the Royal Danish Academy of Science. 



2. EQUATIONS OF MOTION 
In ref. 3, the mobility tensors relating to the two fragment spins SA and S8 

were found to be 

MAA (a2 T + 2 <+ 
= mN cave I) 

<+AS <+ 2 <+ -SA M = mN (ab T - cave I) = M (1) 

;;SS 

- <+ <+ Here is the identity tensor and T = I - RR projects onto the plane perpendic-
ular to the dinuclear axis R. The distances to the "window" plane from the two 

nuclear centers are denoted by a and b, with a + b = R, while cave is the aver­
age off-axis displacement of the transferred nucleons. The nucleon mass is de­

noted m, and N is the overall form factor governing the rate of nucleon trans­
fer between the two nucleides A and S. 

In addition to the fragment spins SA and SS, it is also necessary to consi-
~ 

der the evolution of the orbital angular momentum L. This is because we wish 

to use a coordinate system whose direction fluctuates with respect to an exter-
..... 

nal inertial system (and hence the components of the total angular momentum J 

will fluctuate). It-is notationally convenient to denote any of the angular-
. .....F ..... A -::B ..... 

momentum labels A, S, L by the letters F, G, ••• so that S = S , S , L for F 
A, S, L, respectively. The mobility tensor relating to the orbital angular mo­
mentum can then be obtained by exploiting the conservation of the total angular 
momentum j = SA + SS + L. 

In terms of the mobility coefficients the spin transport coefficients are 
given as follows. The diffusion coefficients are simp~y the corresponding mo­
bil ity coefficients multipl ied by the "effective temperature" 1*: oFG = MFG

1*. 

The drift coefficients are obtained by multiplying the mobility tensor with the 
corresponding generalized forces, i.e., minus the rotational frequencies :F = 
:F ~ L ~G .... G L -FG .... G S I'J F: V = - G M • w = - G M • S /'JG• Here and in the following the 
sum over the labels G extends over G = A, B, L. 

In order to take full account of the so called tilting mode, it is necessary 

to emp loy a "body-ali gned" orthonorma 1 reference system. Spec ifi ca lly, we de­
fine the coordinate system xyz: Z _ R, Y D C, X = Y x z. The choice of z = R 
ensures that the mobility tensors MFG are diagonal in the spatial indices. 
Since y = L, the orbital angular momentum t has only components in the y-direc­

tion. We need then consider the temporal evolution of s~, s~, s~, s~, s~, s~. 
Ly• In a standard collision experiment, all are initially zero except for Ly 
which equals the total angular momentum J. It follows from the symmetry of the 
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problem that the mean values <S~> and <S~> and also the covariances o~~ and 
o~~ will remain zero throughout the reaction. 

The equations of motion for the non-vanishing mean values and covariances 
are given by 

·F 
(MFG SG + 1- oFG MGL)/~ + T* (2MFL 

SF 
S L _ J.. MLL) 
Y G t y Ly xx t G Ly t Ly t 

·FH 2T*M~H - L (/G MGH + MFG GH) 1:1 _ ( FH + FH) 
°xx G xx t t °xx G "'R °xz °zx 

SF 
MLG GH /j ) _ (2T*MFL _ 

SH 
- LY (2T*M~H L L /G MGL/J ) -1 

t °xx G t xx t G Ly y G G 
SF SH 

+ 2T* J.. MLL -1 
Ly t Ly 

/H 2T*MF
t
H- L (/GMGH+MFGoGH)/'J 

yy G yy t t yy G 

oFH 2T*MFH _ L (oFG MGH + MFG oGH)/) - "'R (oFxH
z 

+ 
zz . n G zz n n zz G 

oFH = _ " ( FG MGH + MFG GH)/1 _ (/H _ FH) + 
xz if °xz n t °xz G "'R xx °zz 

Here we have omitted the bracket around the mean values of SF for notational 
y 

simplicity, since confusion can hardly arise. 

(2) 

In the above equation for the mean value the first term is the drift coeffi­
cient. In the equations for the covariances, the first term is the diffusion 

coefficient (which vanishes for the non-diagonal components) while the subse­
quent term represents the restoring term acting to saturate the growth of o. 

The terms containing "'R arise from the orbital rotatior. which continually 
mixes the in-plane components. The remaining terms contain <Ly> in the denomi­
nator and arise from the transformation to the fluctuating coordinate system 

aligned with L. These terms are derived under the standard assumption that all 
spin dispersions are small in comparison with <Ly>. While this is only well 
satisfied for larger impact parameters, the equations do remain well-behaved 
for more central collisions (which contribute only a small part of the reaction 

cross section) and even for head-on reactions the solutions are correct to 
within 25%. Although these latter terms are of the corrective type, they are 

essential in ensuring the proper long-time behavior of the solutions, namely an 
approach towards statistical equilibrium. 

In the preceding we have referred the spin moments to a coordinate system 
A 

defined in terms of the instantaneous values of Rand L. However, the direc-
tion L can not be determined in a collision experiment, so it is necessary to 
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transform the results to a coordinate system which can be externally defined. 

In a collision experiment two directions are readily determined: the beam di-
A 

rection t and the asymptotic dinuclear direction R(oo). In terms of these two 
A A A 

directions we define the following external coordinate system XYZ: Z = R, Y = 

R x t, X = Y x Z. Since the internal and the external coordinate systems have 

the same z-axis, the two are related by a rotation around the z-axis, ~(~). 
Since the distribution of the angle ~ between the directions Land Y is deter­
mined by the in-plane spin variances, the transformation from xyz to XYZ can be 

made. 
The resulting spin distribution corresponds to a definite impact parameter, 

given by the specified value of the total angular momentum J. The model also 
yields equations of motion for the kinetic energy loss and its covariance with 
the spin variables. Therefore, it is possible to obtain an "observable" spin 
distribution gated by energy loss rather than impact parameter. 

3. EQUILIBRIUM 
In the preceding we have outlined how the dynamical evolution of the dinu­

clear spins can be calculated. The results of such calculations can best be 
understood in terms of the appropriate equilibrium solutions and the associated 
relaxation times. 

In analogy with the treatment of the two-particle problem, we introduce the 
following spins and associated moments of inertia, 

'+ = 'A + JB 
::IA'B 

'1- = J A + ::IB (3) 

They are analogous to the total and relative motion, respectively. For a given 
total angular momentum J, and under the standard assumption that the variances 
are small compared to <Ly>2, it is straightforward (albeit tedious) to demon­
strate that the dynamical spin equations (2) have a unique stationary solution 
given by 

<L > 
J R ...t.L jR ,,4 

= - J a = T*J+ jo yy y J O 

+ J+ '0 1 ... ++ * 10 (xx + iz) + 1R "" <Sy> = -J - T*) -- a T 1+]' T*1+ T yy 
:10 + ::IR J R 0 -- .. 

<S~> 0 a T*J_ I (4) 

where we have included terms to the first order in the effective temperature 
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t* During the reaction, the moments of the spin distribution will at each in­
stant evolve towards these equilibrium values, which in turn vary in time due 

to the time dependence of the relative moment of inertia R and the effective 
temperature t*. Below we shall first discuss the stationary solution in terms 

of a statistical model, and next we shall discuss the time scales for the ap­
proach towards equilibrium. 

The part of the macroscopic hamiltonian X containing the angular-momentum 
variables in the disphere is 

SA2 SS2 (2 
X -"""+~+~ rot - ~~A ~~B ~JR 

(5) 

For a given value of j = SA + sa + L, the lowest-energy mode of rotational mo­

tion in the disphere is a rigid rotation with each of the three angular momenta 
;!f ~ 

given by S = JFJ/Jo where '0 = 'A + 'B + JR' Relative to this yrast mode of 
motion, intrinsic rotational excitations are possible. These excitations carry 

no net angular momentum and can be classified in two groups according to 
whether the two spheres turn in the same or in the opposite sense, i.e., a 
purely positive mode has S- = 0 and a purely negative mode has S+ = D, where 
~+ ~ 

Sand S- are given in Eq. (3). 

We first consider the problem using the coordinate system x'y'z' defined by 

z' ~ R, y' = i, x' = y' X z', where 1 = j - j'R R is the projection of the to-
~ ~ 

tal angular momentum J on the plane perpendicular to R. In order to bring the 
rotational hamiltonian (5) on normal form we introduce the following auxiliary 

spin variable ~ = s+ - (j+IZ~)Jy'Y" This transformation has unit jacobian 
since y' is independent of S and we obtain 

(6) 

Here the first term represents the yrast energy associated with a rigid rota­
tion while the additional terms arise from the six normal modes of intrinsic 

rotational excitation of the disphere. The first of these terms is the energy 
of the two degenerate wriggling modes, where the two spheres rotate in the 
same sense around an axis perpendicular to R. The next term is associated with 

~ ~ 

the tilting mode arising when J has a component alo~g the dinuclear axis R; 
the two spheres thus turn in the same sense around R. These three are the 

positive modes. The last term arises from the three degenerate negative 
modes: the twisting mode, where the two spheres rotate oppositely around R, 
and the two bending modes, where the spheres turn oppositely around an axis 
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perpendicular to R. 
Assume now that the rotational modes are weakly coupled to the remainder of 

the system, which is considered as a heat reservoir with the temperature T. 

When T « J2/2 0' the six normal rotational modes are approximately harmonic. 
It is then possible to show that the ensuing thermal equilibrium distribution 

is characterized by 

(7) 

(The symbol £FG is one when F = G and minus one otherwise.) This result is in 
accordance with the analysis by Moretto. 5 

The above result was expressed in the I-aligned coordinate system x'y'z'. A 
transformation to our standard "body-fixed" L-aligned system xyz yields the 

following equilibrium distribution 

(8) 

This result is identical to the stationary solution (4) of the dynamical equa­
tions (2). 

In the variances in (7) and (8) the first terms arise from the positive 
modes (wriggling and tilting) while the second terms arise from the isotropic 
negative modes (bending and twisting). The most pronounced effect of the 

transformation from x'y'z' to xyz is the increase in the in-plane wriggling 
variance 0++ by the factor (J /jR)2 ~ 2 so that the isotropy in the plane per-

xx ~ 0 4 

pendicular to R is replaced by isotropy in the plane perpendicular to L. A 
different normal form of the rotational hamiltonian (5) for an asymmetrical di­

sphere has been introduced by Schmitt and Pacheco. 6 This leads to different 

definitions of the wriggling and bending modes, but the result expressed in the 
original variables, eq. (7), is of course the same. 
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4. EVOLUTION IN A SYMMETRIC DISPHERE 
In Section 3 we introduced the spins s+ and S-; they are particularly con­

venient variables when the two spheres are equal. In the symmetric case, where 
~ ~-a = band JA = JB, the mixed mobility tensor M vanishes so that the dynami-

cal equations for $- decouple from the rest; furthermore, the mobility tensor 

M-- is isotropic. 
Typical time scales for 

ding the asymptotic values 
the approach to equilibrium can be obtained by divi­
by the respective initial time derivatives. This 

yields for the transversal 
'R 

- - Jo spin components axx and ayy the time scales 5' t++ 
R 

and,- t++, respectively, where 
o 

(9) 

~--
while for the components of a we find 

t 
71-

= -2T-*-M--- = -2m-N-c~~;-v-e (10) 

2 2 Thus, t++/t __ = (cave/R)« 1. 
~olving the equations more rigorously for the idealized case of constant co­

efficients, the time.deve10pment of the variances are governed by these relaxa­
tion times, for example: 

... _-
a [ 

-t/t--J ~ 
1 - e I (11 ) 

++ 
The normal variance azz does not receive contributions directly through 

++ 
the transfer process, but only indirectly by the orbital rotation of ax X via 

++ ++ 
axz • Solving the equations for these variances, the relaxation time for axx -is t++, which we already discussed, while for azz the typical time scale is 

(4W~ ~ t_Y1 
(12 ) 

which is usually fairly long. 

The time scales for the evolution of mean values are approximately twice the 
ones relevant for the variances: 

(13 ) 
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5. ILLUSTRATIVE RESULTS 
In the preceeding section we have discussed the characteristic features of 

the spin evolution with an emphasis on the qualitative aspects. We now wish to 

illustrate the theory quantitatively by making applications to one reaction of 
actual experimental interest, namely 1400 MeV 165Ho + 165Ho . A pictorial im­

pression of the evolution of the dinuclear geometry can be gained from Fig. 1. 

(0) J =440 n 
t =2.5 x 10-22 5 

(b) J=320n 
t = 2x 10-225 

(c)J=IOOn 
t = 2 X 10-22 5 

FIGURE 1 
For three different values of the total angular momentum J, the dinuclear com­
plex produced in the reaction 1400 MeV 165Ho + 165Ho is shown at three differ­
ent pOints in time: shortly after the neck has opened, at the time of closest 
approach, and right before the neck collapses. (The actual times indicated are 
measured from the time of the nuclei approach to a surface separation of s = 
4 fm.) The dots indicate past and future locations of the nuclear centers at 
intervals of 10-22 sec. The dashed ellipses indicate the one-sigma contours of 
the in-plane distribution of the nuclear angular momenta ~A and ~B scaled so 
that one fm corresponds to two h (the nuclear radii are 6.3 fm). 
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We now consider in some detail the calculated dynamical evolution of the 
angular momenta during the reaction phase. First, we consider the various re­
laxation times introduced in Section 4. They are shown in Fig. 2 as functions 
of time, for a number of different values of the total angular momentum J. We 

note that throughout the reaction phase the relaxation times t++ associated 
with the two wriggling modes are considerably shorter than t associated 
with the negative modes, as already expected since c~ve «R~ The relaxa­
tion time for the tilting mode is fairly long but has an opposite behavior, 
both as a function of time and in its dependence on J. By comparing the relax­
ation times with the reaction times it is possible to obtain an expectation for 

how far the various modes will evolve towards equilibrium. Thus, for not too 
large impact parameters, we expect the wriggling modes to achieve nearly com­
plete relaxation, contrary to the negative modes for which this is at most ex­
pected for the smallest impact parameters. The tilting mode is generally ex­

pected to acquire little excitation. 

500 I I vo

= '--:300200 
200 

100 
III 

N 
N 

00 I 50 Q I •• 
III ... 
~ 20 

J. 440 400 :300 200 100 

.~ 
"0 10 
)( 

.!2 
~ 5 

2 

I I I I I I 
5 10 15 20 0 5 10 15 20 0 5 10 15 20 

Time t (10-22 5) 

FIGURE 2 
Calculated local relaxation times for the reaction 1400 MeV 165Ho + 165Ho 
for various values of the total angular momentum J. The relaxation times for 
the two positive perpendicular modes (wriggling) are denoted t++. while that 
for the positive longitudinal mode (tilting) is denoted t+ z• The relaxation 
time for the three negative modes (bending and twisting) is denoted t __ • 
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The calculated dynamical evolution of the mean fragment spin projection is 

shown in Fig. 3, for three selected J-values. For the highest value, J = 440 h, 
the reaction is over before the equilibrium mean value can be reached. For the 
intermediate value, J = 320 h, the equilibrium value is nearly achieved around 
the time of closest approach. This equilibrium mean spin decreases as the two 
fragments recede and the relative moment of inertia grows. Therefore, the mean 
spin exhibits a maximum as a function of time. The same is true at the most 
central reaction, J = 100 h, but here the equilibrium values are of course 
smaller. 

~MeVHo."" 

'" 
I 

«>r 
J'SIlO 

~ "r J._ 

i 
j 20 

J''''' 

'0 
" 

20 to 

Trnt '(lCTlZ~) 

FIGURE 3 
Calculated time evolution of the 
mean fragment spin <S > in the 
reaction 1400 MeV 165Ao + 165Ho 
for various values of the total 
angular momentum J. The neck 
snapping, after which the spins 
remain constant, is indicated 
by a small vertical bar. 

~ ... v HofHo 

>00 I, 

.,.,~ CoII,_ Co.iIorIelrallllC'OFJ Eatental 
I ..... 

i 
200~ 

I ! 
i t~i"" ~-~ 

I , 
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C , 
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l -l 
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1 
I 

ranet 00.22 ,) 

FIGURE 4 
Calculated time evolution of the various 
spin covariances a~j in the reaction 1400 
MeV 165Ho + 165Ho for a total angular mo­
mentum of J = 320 h. At the time of neck 
snapping (t = 12.6·10-22 s) the time scale 
is changed by a factor of ten. After the 
asymptotic values have been reached, the 
effect of transforming to the external 
reference frame from XYZ is shown. 

The calculated spin covariances are displayed in Fig. 4 as functions of 
time. The figure has three parts. The first shows the dynamical evolution 

during the reaction phase. It is clearly seen how a~~ and a~; increase 
rapidly at early times; this is a reflection of the fast wriggling relaxation 
time (see Fig. 2). The local bumps in a FG and a FG around the time of 

22 xx yy 
closest approach (t ~ 3,10- s) are caused by a minimum in the effective 
temperature ,*. [The effective temperature is initially nearly proportional to 

10 

t 
" 



the relative nuclear velocity and hence at first it decreases. Later on, when 
the relative motion has subsided, T* is close to the intrinsic temperature T 

which increases in time. Thus T* exhibits a minimum which occurs approximately 
at the turning point of the relative motion.] The evolution of a~~ is consid­
erably slower, as expected from Fig. 2. Most of a~~ is associated with the 
negative twisting mode as evidenced by the fact that the covariance a~~ is 
negative, but, as the difference between a~ and a~~ indicates, there 
is also a fair amount of tilting. The second part of the figure shows, on a 
condensed time scale, the rotation of the covariances along the exit Coulomb 
trajectory. Finally, the third part shows the result of transforming to the 
external coordinate system XYZ. This transformation is seen to have a sub­
stantial effect on the x-components; in fact a~~ becomes negative. 

The equiprobabi1ity contours of the fragment spin distribution are ellip­

soids whose common shape and orientation are determined by the appropriate co­
variances. In order to given a visual impression of the spin evolution we have 
included in Fig. 1 contours of the spin distribution projected onto the xz­
plane. One notes how the fairly peripheral collision (J = 440 h) inhibits the 
build-up of negative spin modes so the distribution is very elongated. Fur­
thermore, the smallness of the form factor prevents the distribution from 
aligning itself relative to the dinuc1ea~ axis. For J = 320 h the window grows 
wider and the isotropic negative modes are more readily excited; the distribu­

tion also follows better the turning dinuc1ear axis. These features are even 
more apparent for J = 100 h. 

6. COMPARISON TO EXPERIMENT 
At present, our information about angular momentum in damped nuclear reac­

tions arises from three types of observable: the multiplicity of y-rays, the 

circular polarization of y-rays, and the angular correlation between the direc­
tion of motion of a reaction product and a sequential ejecti1e. In the present 

study we do not address the polarization data since they are yet fairly crude 
with respect to the dependence on energy loss. 

The y-mu1tip1icity data gives information about the distribution of the to­
tal magnitude of fragment spin. When the spin dispersions are relatively 

small, we may obtain approximate expressions for the spin magnitude moments by 
expanding around the mean spin <SF>. The leading order terms in the spin mag­

nitude moments are the moments of the spin distribution along the reaction nor­
mal, so mainly the distribution along the reaction normal is probed in y-mu1-
tip1icity experiments. 

The y-emission is preceded by neutron evaporation which modifies the spin 
distribution. This effect is taken carefully into account in our calculations. 

11 



In Fig. 5 we show spin magnitude moments extracted from two sets of data on 
y_multiplicities7,8 together with our calculated results. For the small TKEL, 

the calculated mean value of the spin is rising too steeply by a factor of two, 
relative to the experimental results. For the higher TKEL, the experimental 
values first reach a maximum and then decrease slightly towards the highest 

TKEL. The theoretical results reproduce these features and the maximum has 
approximately the correct size, but it is reached at a too small TKEL, and the 

decrease for the highest TKEL is too pronounced. 
The variances are in good agreement with the data. About 40% of the calcu­

lated variance is due to the correlation between the spins in the nuclei, es­
pecially the appreciable positive covariance a~~ along the reaction normal. 
The presence of this correlation explains in a natural way the rather large 
variance of the sum of spin magnitudes seen in the y-multiplicity data. 

The average spin magnitude provides information about the relative impor­
tance of different types of friction acting in the relative motion of the two 
nuclei during a collision. Our results indicate that the ratio between the ra­
dial and tangential friction, as obtained with the present implementation of 
the nucleon exchange model, is too small. 

For given impact parameter, the variance of the spin along the reaction nor­
mal is just given by the accumulated variance along the intrinsic y-direction. 
The variances along this direction increase rapidly when the' nuclei come into 
contact, and are dominated by the positive wriggling mode. However, the subse­
quent integration over impact parameters to obtain TKEL gated distributions 
also contributes substantial variances and positive covariances so that the re­
sulting dispersions become less sensitive to the specific model. 
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Angular correlation data gives information about the distribution of the 

spin directions. The moments of the directional distribution are the statisti­

cal spherical tensors. The tensor of rank two is the most important, glvlng 

the alignment along the reaction normal Pyy = «35~ -' 52)/252> and the 

asymmetry between the in-plane components PXZ = «S~ - Si)/5 2>. Thus, 
angular correlation experiments mainly probe the in-plane variances of the spin 

distribution in one nucleus, but only relative to the magnitude of the spin. 

For a definite value of the spin magnitude in one of the reaction products, 

the terms of order zero and two of the angular correlation of sequential decay 

products emitted from that nucleus yield 

(14) 

Here the coordinate system has the polar axis along the reaction normal and di­

agonalizes the in-plane spin variance tensor. P2 is the second order Legendre 

polynomial and 82(5) is the second order angular distribution coefficient for 

the given kind of decay. For fission and for large spins 5 > 3Ko we have ap­

proximately 82(5) ~ 5(3K~ - 52)/25 2, where Ko is the familiar parameter 
giving the dispersion of the distribution of K quantum numbers of the saddle 

shape. 

The tensor elements Pyy (5) and PXZ (5) as well as the angular distribution 

coefficients and the fission probability vary with the spin magnitude 5. In 

our actual calculations we include also fourth order terms and integrate over 

spin magnitude, taking into account competition between fission and neutron 

emission at all steps in a neutron decay cascade. 

Figure 6 shows the experimenta1 9 and calculated in-plane angular correlation 

for three different kinetic energy losses for each of the two reactions Kr + 8i 

and Kr + U. The calculation agrees well with the data regarding the position 

of the extrema of the in-plane angular correlation, along the principal axes of 

the spin variance tensor. [Only for TKEL = 170 MeV in the Kr + 8i reaction do 

we get a discrepancy here, but this TKEL is in the calculation located at the 

upper edge of the energy loss distribution and is not focussed in scattering 

angle, so the discrepancy is not so serious.] The amplitude of the calculated 

variation is too small relative to the data by a factor of two. However, it 
should be kept in mind here that two other data sets for similar reactions with 

8i or Pb disagree with the data shown on Fig. 6: one10 displays in-plane ani­

sotropies of approximately the same magnitude as calculated; and the other11 

shows almost no in-plane variation. 

13 



610 MeV 86Kr + 209Bi , f 730 MeV 86Kr + 238U , f 
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FIGURE 6 
Calculated and measured9 angular correlation in the reaction plane for fission 
of the heavy nucleus produced in the reactions 610 MeV 86Kr + 209Bi and 730 MeV 
86Kr + 238U. ~ = 90' corresponds to the beam axis. The open arrow for each 
TKEL shows the target recoil direction in the lab-frame and the solid arrows 
point to the directions of principal axes of the in~p1ane components of the 
spin variance tensor. 

The location of the maximum close to the average direction of the dinuc1ear 
axis during the reaction supports our result that the relaxation times for spin 
variances along the axis are longer than the reaction time and longer than the 
relaxation times for the spin variances perpendicular to the axis. 

7. CONCLUDING REMARKS 
The nucleon exchange transport model has addressed a variety of observab1es 

in damped nuclear reactions. The mass and charge distributions appear to be 
well described by the mode1,12 and also the division of the excitation energy 

among the two fragments is in good accordance with data. 13 We have refined the 

model considerably in order to achieve a detailed description of the angular 
momentum accumu1ation,1 and have also developed the treatment of the subse-
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quent decay processes in order to calculate observed quantities. 2 Spin­
related data obtained by different probes can then be confronted in a unified 
manner. 

Our comparisons with data have yielded good agreement for a number of fea­
tures, but the mean spin magnitude appears to increase too rapidly with energy 
loss, suggesting the presence of an additional radial dissipation. Further 
studies are required to clarify whether this shortcoming is a consequence of 
the simple classical calculation of the transport coefficients or signals the 
action of a different damping mechanism. 

On rather general grounds, the present model predicts specific correlations 
between the two fragment spins. The spin spin correlations contain valuable 
novel information about the reaction dynamics and their experimental deter­
mination offers the field an exciting new prospect. 
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