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The Atacama Cosmology Telescope: A CMB lensing mass
map over 2100 square degrees of sky and its
cross-correlation with BOSS-CMASS galaxies
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ABSTRACT
We construct cosmic microwave background lensing mass maps using data from
the 2014 and 2015 seasons of observations with the Atacama Cosmology Telescope
(ACT). These maps cover 2100 square degrees of sky and overlap with a wide variety
of optical surveys. The maps are signal dominated on large scales and have fidelity
such that their correlation with the cosmic infrared background is clearly visible by
eye. We also create lensing maps with thermal Sunyaev-Zel’dovich contamination
removed using a novel cleaning procedure that only slightly degrades the lensing
signal-to-noise ratio. The cross-spectrum between the cleaned lensing map and the
BOSS CMASS galaxy sample is detected at 10-σ significance, with an amplitude of
A = 1.02±0.10 relative to the Planck best-fit LCDM cosmological model with fiducial
linear galaxy bias. Our measurement lays the foundation for lensing cross-correlation
science with current ACT data and beyond.
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1 INTRODUCTION

Along their paths to our telescopes, the photons of the cos-
mic microwave background (CMB) are deflected, or lensed,
by the gravitational influence of the matter in our Universe.
This leads to a remapping of the observed CMB anisotropies
on the sky described by T (n̂) = Tu(n̂+d), where T and Tu

are the lensed and unlensed temperature fields and n̂ is the
line of sight. (Analogous expressions hold for the remapping
of polarization Q and U). The lensing deflection field d(n̂)
that describes the remapping depends on a weighted integral
of the mass along the line of sight; although this integral
extends to the last-scattering surface, most of the lensing
signal arises between redshifts z = 0.5 and z = 3 (Zaldar-
riaga & Seljak 1999; Lewis & Challinor 2006). Since maps
of the CMB lensing signal are sensitive to the total matter
distribution, including dark matter, they contain a wealth
of information about cosmology and fundamental physics
(e.g., Lesgourgues et al. 2006; Sherwin et al. 2011; Planck
Collaboration 2018).

In this paper, we present a CMB lensing map con-
structed from new observations from ACT, which will be
useful for cross-correlation analyses.

Cross-correlation measurements can be used to break
the degeneracy of galaxy bias (the factor relating the galaxy
and matter density contrasts) and the amplitude of matter
density fluctuations. This allows us to determine the ampli-
tude of structure at different redshifts σ8(z) (e.g., Giannan-
tonio et al. 2016; Peacock & Bilicki 2018; Giusarma et al.
2018; Doux et al. 2018) and hence probe physics such as dark
energy, modified gravity, and neutrino mass. CMB lensing
cross-correlations can also be used to constrain multiplica-
tive biases in shear measurements (e.g., Vallinotto 2012; Das
et al. 2013; Hand et al. 2015; Liu et al. 2016; Schaan et al.
2017), measure cosmographic distance ratios (e.g., Hu et al.
2007c; Das & Spergel 2009; Miyatake et al. 2017; Prat et al.
2019), calibrate the masses of galaxy groups and clusters
(e.g., Madhavacheril et al. 2015; Baxter et al. 2015; Melin
& Bartlett 2015; Planck Collaboration 2016b; Zubeldia &
Challinor 2019; Raghunathan et al. 2019a; Baxter et al.
2018; Raghunathan et al. 2019a,b), and probe astrophysics
via the relation of dark to luminous matter (e.g., Sherwin
et al. 2012; Bleem et al. 2012; van Engelen et al. 2015; Al-
lison et al. 2015; Planck Collaboration 2014a; Geach et al.
2019; Han et al. 2019; Hurier et al. 2017; Omori et al. 2017;
Raghunathan et al. 2018). However, a key challenge in such

analyses is that CMB lensing maps reconstructed from tem-
perature anisotropies can be contaminated by foreground
emission and scattering (Smith et al. 2007; Hirata et al.
2004; van Engelen et al. 2014; Das et al. 2011; Ferraro &
Hill 2018), which can induce 10 − 20% level biases in the
measured cross-correlation signal (Omori et al. 2019; Baxter
et al. 2019). For cross-correlations with low-redshift tracers,
these foreground biases arise predominantly from the ther-
mal Sunyaev-Zel’dovich (tSZ) residuals that lie in the map.

To solve this problem, in this paper we develop and im-
plement a new cleaning method, building on Madhavacheril
& Hill (2018) (hereafter MH18), in order to eliminate fore-
grounds from the tSZ effect in cross-correlations. The fore-
ground removal in our method is achieved while preserving
nearly all of the cross-correlation signal-to-noise.

We demonstrate the potential of our new foreground-
cleaned CMB lensing maps, which overlap with a variety
of optical surveys, by measuring a robust cross-correlation
of these maps with Sloan Digital Sky Survey DR12 BOSS
CMASS spectroscopic galaxies (Reid et al. 2016).

We also note that some analyses found a lower cross-
correlation spectrum between CMB lensing and both low
redshift galaxies and weak lensing than expected from the
Planck cosmology (e.g., Pullen et al. 2016; Liu & Hill 2015).
Testing this possible discrepancy with our new lensing maps
provides further motivation for our analysis.

Our paper is structured as follows. Section 2 explains
the theoretical background for our cross-correlation mea-
surement. In Section 3 we present our data and discuss the
new lensing maps constructed from ACT data. In Section
4 we discuss the construction of tSZ-free lensing maps. In
Section 5 we present the cross-correlation measurement with
CMASS BOSS galaxies, followed by a discussion of system-
atic errors in Section 6. The conclusions follow in the fi-
nal section of our paper. Two appendices explain the CMB
map pre-processing and discuss, in more detail, the cleaning
method used to remove the tSZ bias from the lensing maps.

2 THEORETICAL BACKGROUND

The CMB lensing convergence field κ, which is related to the
lensing deflection via κ = 1

2
∇ · d, is a direct measure of the

projected matter field. In particular, the convergence can be
shown to equal a weighted integral of the matter density
perturbation along a line of sight with direction n̂:

κ(n̂) =

∫ z∗

0

dzWκ(z)δ(χ(z)n̂, z) (1)

with z∗ the redshift at the last scattering surface, δ the three
dimensional matter density contrast field at redshift z, χ(z)
the comoving distance at redshift z, and the window re-
sponse kernel Wκ for redshift z given by (e.g., Sherwin et al.
2012)

Wκ(z) =
3

2H(z)
Ωm,0H

2
0 (1 + z)χ(z)

χ∗ − χ(z)

χ∗
, (2)

where H(z) is the Hubble parameter as a function of red-
shift, H0 its value today, χ∗ = χ(z∗),and Ωm,0 is the value
of the matter density parameter today.

The 3D distribution of galaxies can provide an indepen-
dent view of the matter distribution in combination with

MNRAS 000, 1–?? (2020)
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lensing, and one that can probe the time dependence of
structure growth. (In contrast, κ is a projection of the mat-
ter field over a very wide range of redshifts and so cannot
provide tomographic information.) The relevant cosmologi-
cal field is the fractional number overdensity of galaxies in
a direction n̂, given by another weighted integral along the
line of sight

δg(n̂) =

∫ z∗

0

dzW g(z)δ3D
g (χ(z)n̂, z), (3)

where δ3D
g is the three dimensional galaxy distribution at

redshift z and the window function W g(z) is dn
dz

(z), the red-
shift distribution of galaxies in a galaxy survey, normalized
to unity.1 In this work, we consider a spectroscopic galaxy
survey with a redshift-binned sample such that the kernel
W is only non-zero between zi and zf , with zi, zf the low
and high redshifts defining the survey.

Since galaxies are biased tracers of the underlying mat-
ter distribution, the matter-galaxy power spectrum is

Pmg(k, z) = bcross(k, z)P (k, z) (4)

where bcross(k, z) is a general scale- and redshift-dependent
clustering bias and P (k, z) is the matter power spectrum
(Blanton et al. 1999). In our cross-correlation analysis, we
explicitly choose the scales and redshift-range included such
that the scale- and redshift-dependence of the galaxy bias
is not large and bcross(k, z) ≈ b = const. We will consider
multipoles L in the range 100 < L < 1000; this choice will
be motivated in Section 5.

The cross-power spectrum of the two observables κ and
g is directly related to the cosmological parameters of the
underlying ΛCDM model. Using the flat-sky approximation
valid for a small sky fraction fsky and the Limber approxi-
mation (Limber 1953), the expression for the cross-spectrum
in the linear ΛCDM model is (e.g., Omori & Holder 2015):

CκgL =

∫ z∗

0

dz
H(z)

χ2(z)
Wκ(z)

dn

dz
(z)Pmg

(
k =

L+ 1
2

χ(z)
, z

)
. (5)

3 LENSING MAPS FROM ACT DATA ALONE

We construct two CMB lensing maps. The first map, de-
scribed in this section, uses ACT data alone. The second,
described in the following section, also uses multi-frequency
data from Planck in order to clean foregrounds.

3.1 CMB maps for lensing analysis

The lensing convergence maps used in this work are con-
structed from CMB temperature and polarization data
taken by the polarization-sensitive receiver on the Atacama
Cosmology Telescope (ACT), a 6-meter CMB telescope op-
erating in the Atacama desert in Chile (see e.g., Thornton
et al. 2016; Choi et al. 2020; Aiola et al. 2020). The CMB
field maps are obtained from observations made during sea-
sons 2014 − 2015 in the 98 GHz and 150 GHz frequency

1 We do not include magnification bias, since its magnitude is
negligible given the low redshift range of the galaxy catalog used

in this work.

bands; these maps will be made public, along with our
lensing maps, in the upcoming ACT data release 4 (DR4).
We will consider data coming from two regions of the sky,
one referred to as BOSS-North or BN (from the 2015 sea-
son, covering ≈ 1633 sq. deg. of the sky overlapping the
SDSS BOSS northern field, with effective co-added white
noise level of approximately ∆T = 21µK-arcmin for tem-
perature and ∆P =

√
2∆T for polarization), and the other

referred to as D56 (seasons 2014-2015, covering ≈ 456 sq.
deg. of the sky, with effective co-added white noise level
of approximately ∆T = 10µK-arcmin for temperature and
∆P =

√
2∆T for polarization).2 Given the proximity of the

maps to the equator and their moderate extent in declina-
tion, the flat-sky approximation is sufficient at our accuracy
for constructing lensing maps; a simple estimate of the in-
accuracy of this approximation gives no detectable effect for
D56 and only a 1% multiplicative bias for BN. We do not
use 2013 or 2016 observations in our analysis (even though
the latter are part of DR4), because the 2013 observations
cover too little sky area and the 2016 observations are still
too shallow to contribute significant signal-to-noise to cross-
correlation measurements.

We combine the per-season and per-frequency CMB
maps presented in Choi et al. (2020) to provide the input
maps for our lensing estimator. The details of this proce-
dure are described in Appendix A, but we briefly summarize
them here. We construct our CMB input maps by co-adding
source-subtracted3 maps from the two frequencies and two
seasons of the data and convolving the result to a common
beam after masking. In addition, we inpaint (fill with an ap-
propriately correlated Gaussian random field) a 6-arcmin-
radius circular area around bright compact sources and SZ
clusters using the maximum likelihood method of Bucher
& Louis (2012). This inpainting step serves to reduce fore-
ground biases arising from bright sources and massive clus-
ters. We note that the main difference from the map process-
ing employed in Sherwin et al. (2017) is that the different
frequencies and seasons are coadded with weights that are
local in Fourier space rather than real space; this is more
optimal for multifrequency data due to the strong frequency
dependence of the beams.

The results of our map construction and preparation
process are masked, beam-deconvolved dimensionless CMB
fluctuation maps of temperature T as well as Q and U polar-
ization in each of the two sky regions. The Q and U polar-
ization maps are transformed into E −B polarization maps
using the pure E − B decomposition method outlined in
Louis et al. (2013). As a final step in the preparation of
the maps for lensing reconstruction, we follow the nominal
analysis methodology of Choi et al. (2020) to reduce the
impact of ground contamination in the T , E and B maps,
filtering out all modes ` = (`x, `y) that have |`x| < 90 and
|`y| < 50. We also remove all modes that are outside the
range of scales 500 < ` < 3000 in order to restrict our lensing
analysis to scales where the ACT map-maker transfer func-

2 Atmospheric noise contributes a 1/f component that is non-
negligible and must be included when forecasting the signal-to-
noise in the lensing map.
3 See Madhavacheril et al. (2019), Choi et al. (2020), Aiola et al.

(2020) for details.

MNRAS 000, 1–?? (2020)
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tion is small4 and where contamination from foregrounds is
small (` < 3000).

As well as processing data, we also produce N = 511
CMB simulations matching each of the CMB maps described
above. These simulations are generated using the pipeline
described in Choi et al. (2020) and include primary CMB,
lensing, noise and foregrounds. The foregrounds are Gaus-
sian and spatially homogeneous and the noise is Gaussian
but spatially inhomogeneous, as described in Choi et al.
(2020). We use the simulations to test our lensing recon-
structions, derive small transfer function corrections and
construct covariance matrices, as described in the following
sections of this paper. To reconstruct lensing convergence
maps from simulations we use the same pipeline that we
apply to the data. We describe this lensing reconstruction
pipeline in the following subsection.

3.2 Lensing reconstruction and validation

Exploiting the mode couplings induced by lensing, we re-
construct the lensing convergence field from our CMB
maps with a minimum variance quadratic estimator (Hu &
Okamoto 2002):

κ̄XY (L) = AXY (L)

∫
d2`

(2π)2
X(`)Y (L− `)fXY (`,L) (6)

where AXY (L) is a normalization (derived from our fidu-
cial cosmology) to ensure that the estimator is unbiased.
fXY (`,L) is an optimal weighting function chosen to min-
imise the reconstruction noise of the estimator; it includes a
Wiener filter for the CMB input fields X,Y . As in Sher-
win et al. (2017) we will consider only the pairs XY ∈
{TT, TE,EE,EB}, as the TB combination has negligible
signal-to-noise. Expressions for the weighting function f and
the theory normalization A can be found in Hu & Okamoto
(2002), although following Hanson et al. (2011) we replace
the unlensed spectra with lensed spectra in the weighting
functions to cancel higher-order biases. A spurious signal on
the largest scales of the reconstructed lensing map arises
from non-lensing statistical anisotropy due to sky masks or
inhomogeneous map noise; this spurious lensing “mean field”
must be subtracted from Equation 6 (e.g., Namikawa et al.
2013). We calculate this mean field correction by generating
511 lensing reconstructions from simulations and averaging
these reconstructions. We thus obtain the mean-field sub-
tracted lensing convergence estimator

κ̂XY (L) = κ̄XY (L)− 〈κXYs (L)〉s, (7)

where κXYs (L) is the lensing reconstruction κ̄XY for the
simulation realization s and the angle average 〈〉s is over
simulations.

4 The map-maker transfer function is close to unity for ` > 500

in D56, but may be as large as 10% in BN between ` of 500 and

600 (Choi et al. 2020; Aiola et al. 2020). However, because of
the fact that the lensing estimator only draws a small fraction of

its statistical weight from multipoles 500 < ` < 600 (less than

2%, see e.g. Schmittfull et al. (2013)), we expect an effect on
lensing cross-correlations that is much smaller than the statistical

uncertainty and is thus negligible.

Figure 1. Verification of our lensing reconstruction pipeline for

the tSZ free lensing maps (shown for the D56 patch). We plot the

average cross-spectrum of the reconstructed lensing maps with
the input lensing simulations (blue dots), the average power spec-

trum of the input lensing simulations (red crosses) and a binned
lensing power theory curve in black. (The BN patch gives quanti-

tatively similar results.) The bottom panel shows the fractional

difference of the input-reconstruction cross-correlation relative to
the input lensing power. The ACT only simulations give residu-

als of similar magnitude. From the good agreement of the input-

reconstruction cross-correlation with the input lensing power, we
can see that the true lensing signal in the simulations is recovered

within percent-level accuracy; we absorb only a small correction

into a simulation-based re-normalization.

We complete the lensing map by creating a minimum
variance combination of the different types of quadratic es-
timators XY ∈ {TT, TE,EE,EB},

κ̂MV
L =

∑
XY

wXY (L)κ̂XY (L), (8)

where wXY (L) are minimum variance weights.
Finally, the particular form of the normalization

AXY (L) used in Equation 6 is valid for CMB maps with
periodic boundaries. This is clearly an idealization; for ex-
ample, using masked CMB maps introduces spurious gradi-
ents at the mask boundary (Hirata et al. 2008), changing
the form of the correct lensing normalization (although this
effect is reduced by apodization). We capture this and other
non-idealities by introducing an extra multiplicative normal-
ization function rMC(L).

MNRAS 000, 1–?? (2020)



Figure 2. Map of the reconstructed lensing potential in the D56 region (upper panel) and the BN region (lower panel) after Wiener filtering, shown in greyscale. (The lensing maps shown are the tSZ-cleaned

maps combining Planck and ACT, although the ACT-only lensing maps appear similar.) Overlaid, we also show contours of an identically filtered but completely independent cosmic infrared background
map (Planck GNILC 545 GHz). Since the correlation between CMB lensing and the cosmic infrared background (CIB) is very high and since our CMB lensing map has high signal-to-noise ratio on

large scales, the correspondence between the lensing potential and the CIB can be seen clearly. Parts of the CIB map contaminated by Galactic dust have been masked in the BN CIB contours for this

visualization, using a mask derived from the Planck PR2 Commander thermal dust emission map.
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6 O. Darwish, M. S. Madhavacheril, B. Sherwin et. al.

To calculate this function, we cross-correlate our N =
511 reconstructed lensing simulations κ̂MV

s with the true in-
put lensing convergence field κs used to generate the simu-
lations,5 obtaining the reconstruction-input cross-spectrum
ĈRI,s
L . We compare this cross-spectrum with the auto-

spectrum of the input convergence field ĈII,s
L . Taking the

ratio of averages over the N sims 〈ĈII,sL 〉s/〈ĈRI,s
L 〉s, we ob-

tain a one dimensional binned function of L = |L|, where
Lmin = 20, Lmax = 3000, and ∆L = 100. We then in-
terpolate this over a two dimensional grid to get the final
isotropic correction function rMC(L) that we apply to the
lensing maps to obtain the MC corrected minimum variance
lensing maps

κ̂L = rMC(L)κ̂MV
L . (9)

If our pipeline is estimating the lensing signal reliably,
the Monte-Carlo based normalization correction of Equation
9 should only require a rescaling of order a few percent. To
validate our pipeline, we therefore test whether our lensing
map is nearly correctly reconstructed even in the absence of
Monte-Carlo renormalization.

In Figure 1 we show a comparison between 〈CRI,s
LL 〉s and

〈CII,s
L 〉s for the D56 patch without the Monte-Carlo normal-

ization (this figure uses foreground-cleaned ACT+Planck
lensing maps that we will introduce in the next section, but
the residuals for the ACT-only maps are similar). We re-
cover the signal with only percent-level deviations (which
implies that rMC(L) is within a few percent of unity); this
gives confidence that our pipeline is functioning correctly.
We obtain quantitatively similar results for the BN patch.

3.3 Visualization of the maps and their
correlation with large-scale structure

An image of the ACTPol CMB lensing maps is shown in
Figure 2. The maps have been Wiener filtered to show the
signal-dominated scales (roughly 1 degree or larger for BN

and 0.5 degrees or larger for D56) and have been converted to
maps of the lensing potential using the appropriate filtering.
We also overplot contours of Cosmic Infrared Background
(CIB) emission obtained from the GNILC Planck compo-
nent separated maps (Planck Collaboration 2016c); the CIB
maps have the same filtering applied as the lensing ones. In
the BN region, we mask the CIB map using the Planck PR2
Commander high-resolution map of thermal dust emission
(Planck Collaboration 2016a). The mask is made by thresh-
olding the dust map such that it covers regions of the CIB
map that have visibly low power due to dust contamination;
we only use this mask for the visualization of Figure 2. The
CIB arises from similar redshifts as CMB lensing and hence
is known to be highly correlated with lensing (Song et al.
2003; Holder et al. 2013; Planck Collaboration 2014b). In-
deed, even by eye a high correlation of our lensing maps and
the CIB is visible. This illustrates the fact that our lensing

5 To mimic the processing of the reconstructions we mask κs with
the square of the data-mask, as this enters twice in the quadratic

lensing estimator used to reconstruct the lensing simulation.

maps are signal-dominated over a range of large scales and
are a faithful tracer of the mass distribution.

4 FOREGROUND-MITIGATED LENSING
MAPS WITH NEW CLEANING METHODS

CMB temperature maps contain secondary anisotropies not
only from lensing, but also from tSZ, CIB (Cosmic Infrared
Background), kSZ (kinetic Sunyaev-Zel’dovich), and other
foreground contributions arising from a wide range of red-
shifts. The lensing estimator is sensitive to these extragalac-
tic foregrounds (see van Engelen et al. 2014; Osborne et al.
2014; Ferraro & Hill 2018), which can be problematic: fore-
ground contamination which has leaked through the lensing
estimator can correlate with the galaxy distribution, giv-
ing spurious biases to cross-correlation measurements. It is
important to mitigate these foregrounds in temperature, as
many current- and next-generation lensing maps will still
depend to a large extent on temperature data, rather than
on polarization. Indeed, for our current dataset, the tem-
perature (TT ) lensing estimator still provides the dominant
contribution (> 50%) to our minimum variance lensing es-
timate of Equation 8.

One of the primary goals of making a lensing map is
to enable cross-correlation science. For low-z large-scale-
structure tracers, such as the CMASS galaxies used in later
sections of this paper, the main contribution to the cross-
correlation bias comes from the tSZ contamination of the
temperature maps (van Engelen et al. 2014; Baxter et al.
2019; Madhavacheril & Hill 2018). The tSZ is most impor-
tant because, while the tSZ and the CIB can both be sig-
nificant contaminants, the CIB only weakly correlates with
low-z galaxies (as only a small fraction of the CIB arises
from low redshifts).

The observed, SZ contaminated temperature map, de-
noted Twith−sz, now includes an SZ contribution TtSZ, so
that Twith−sz = Tcmb + TtSZ.6 When inserting this CMB
map into a quadratic lensing estimator κ̂(Twith−SZ, Twith−SZ)
and cross-correlating the resulting lensing map with a galaxy
map g, the cross-correlation is now biased by a new bispec-
trum term of the form 〈gTtSZTtSZ〉.

For typical cross-correlations, this effect can be signif-
icant, giving biases up to a 10 − 20% level on large scales
(Omori et al. 2019; Baxter et al. 2019); the sign of the ef-
fect is typically negative on large scales, so that a cross-
correlation with a tSZ-contaminated lensing map is biased
low.7

6 The observed temperature map clearly also has other contri-
butions in addition to Tcmb and TtSZ, but our focus here will be
just on these two components.
7 A physical explanation for this negative bias effect is the follow-

ing. Consider a direction in which there is a long wavelength over-
density. Due to non-linear evolution and mode coupling, small-

scale tSZ fluctuations are also enhanced in this direction, which

increases the CMB temperature power at small scales, l > 2000.
This excess small-scale power is similar in effect to an overall

‘shift’ of the primary CMB towards smaller scales. The lens-

ing estimator interprets this locally as arising from demagnifi-
cation due to a matter underdensity: cross-correlating this spuri-

ous underdensity lensing signal with the distribution of galaxies
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Since low cross-correlations were found in several anal-
yses (e.g., Pullen et al. 2016); it is interesting to consider
if this type of contamination could have an impact on pre-
viously published cross-correlation measurements. However,
we note that most of the analyses with low cross-correlations
used Planck lensing maps. For Planck, such foreground bi-
ases are expected to be much less problematic (due to the
lower experimental angular resolution).

4.1 A new tSZ-free estimator

To account for the potential problem of tSZ contamination,
we attempted to use the method of MH18 to remove fore-
ground contamination. However, this method did not per-
form as well as expected. We therefore developed a new
foreground-cleaned lensing estimator, extending and revis-
ing the MH18 method; we will explain the relevant details
in the following paragraphs.

The basic goal of our foreground-cleaning approach is
to remove foreground contamination without assuming a
model for the foregrounds’ statistical properties, relying in-
stead on the fact that the foregrounds’ frequency depen-
dence differs from that of the CMB. A simplistic frequency
cleaning of the CMB maps, however, typically degrades the
lensing signal-to-noise. MH18 uses the standard lensing con-
vergence quadratic estimator written in real space in a form
where a gradient and a non-gradient field can be distin-
guished (e.g., Hu et al. 2007a; Lewis & Challinor 2006).
Usually, for the temperature quadratic estimator κ̂(T1, T2),
the two fields T1, T2 are chosen to be identical. However,
one may, of course, use two different CMB temperature
maps in the estimator; the two maps could be processed
differently or even come from different surveys. In particu-
lar, since the spectral energy distribution (SED) of the tSZ
effect is known to high accuracy (barring relativistic and
multiple-scattering effects), CMB maps made from multi-
frequency data that explicitly null or deproject the tSZ can
be made. Such maps generally have higher noise. In the pro-
cedure suggested by MH18, it is pointed out that even if
only one of the two fields in the quadratic estimator is free
from tSZ, then the resulting lensing map cross-correlation
will still have zero tSZ contamination, while the noise in-
crease due to foreground cleaning will only be moderate
(since only one noisy cleaned map is used, instead of two).
One way of understanding this is to note that, since the
cross-correlation bias arises from a foreground-foreground-
galaxy bispectrum 〈gTtSZTtSZ〉, nulling even one of the fore-
ground fields sets the whole bispectrum 〈gTtSZ0〉 to zero,
which gives an effectively bias-free cross-correlation mea-
surement. We denote this foreground-cleaned MH18 estima-
tor as κ̂(Tno−tSZ, Twith−tSZ) (where the first map is the gradi-
ent field in the lensing estimator). Despite the use of a noisier
tSZ-deprojected map in one field of the quadratic estimator,
the loss in signal-to-noise in constructing this foreground-
free lensing map was claimed in MH18 to be only ≈ 5%.

However, when implementing the MH18 estimator, we
found that the actual lensing map noise obtained in both
simulations and in data was larger for L < 800 (by more

(which trace the overdensity) therefore results in a negative cross-

correlation(van Engelen et al. 2014).

than an order of magnitude at L ≈ 100, see Figure B1) than
the noise forecast presented in MH18. The explanation for
this result is the following: in MH18 a simplified formula for
the noise forecast was used (namely assuming the noise is
equal to the normalization, i.e. NL ∝ L2AL); however, this
is only valid if the weights in the estimator are minimum-
variance. As detailed in Appendix B, the MH18 estimator
does not use minimum-variance weights, which explains why
the true noise we find is larger than the simplified forecast
results. We note that the MH18 forecast is however accurate
for cluster scales, where the gradient approximation holds
in the squeezed limit (Hu et al. 2007a; Raghunathan et al.
2019b).

To solve the problem of increased noise on large
scales, we propose a new ‘symmetrized’ cleaned estima-
tor, in which we coadd the κ̂(Tno−tSZ, Twith−tSZ) MH18
estimator with a version where the two fields have been
permuted, κ̂(Twith−tSZ, Tno−tSZ). In particular, we define
κ̂TTsymm, tSZfree =

∑
wα(L)κ̂α(L) with weights

wα(L) =

∑
β N

−1
αβ (L)∑

γ,β N
−1
γβ (L)

(10)

where α ∈ {(Tno−tSZ, Twith−tSZ), (Twith−tSZ, Tno−tSZ)} and
N−1 is the inverse 2 × 2 covariance matrix taking into ac-
count the cross-correlation between the two estimators.

The resulting κ̂TTsymm, tSZ−free map retains the property
that the resulting cross-correlation with large-scale structure
is unbiased, but the lensing map now has significantly lower
noise: in fact, we find that our method appears to effectively
recover the original forecast results of MH18, primarily due
to the cancellation of anti-correlated noise on large scales
from each of the two terms in the new estimator. Details
can be found in Appendix B.

4.2 Application to data

The above technique requires maps of the CMB in which
the tSZ signal has been deprojected (i.e., nulled) using
multi-frequency data. Such maps were presented in Mad-
havacheril et al. (2019); these maps were constructed by
combining Planck and ACT8 data using an internal linear
combination (ILC) algorithm. We use the constrained ILC
CMB map (with tSZ deprojection) and the standard ILC
CMB map (with no deprojection)9 from that analysis as the
two input maps for the symmetrized cleaned lensing esti-
mator κ̂TTsymm, tSZ−free described above; we thus create new
foreground-cleaned temperature lensing maps.10

The maximum CMB multipole, `max
CMB = 3000, typically

used in CMB lensing analysis is motivated by the desire

8 Despite including Planck data, in these maps, the small-scales

relevant for lensing are dominated by the ACT 148 GHz and 97
GHz channels.
9 We use version v1.1.1 of the maps for which bandpass correc-

tions for the tSZ response may not be accurate at the few percent

level at the map-level. However, since the tSZ bias is at most 20%
in power, tSZ-cleaned cross-correlations are only affected at the

1% level, an order of magnitude below the statistical sensitivity

of this work.
10 Before applying the lensing estimator to these ILC maps we

also inpaint SZ clusters as described for the ACT only maps.
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to reduce contamination from foregrounds such as the tSZ.
Since the tSZ bias is nulled in this new estimator, it is plausi-
ble that this maximum multipole is unnecessarily conserva-
tive and can be increased, thus improving the signal-to-noise
of the estimator. Motivated by this possibility, we increase
our maximum multipole for the tSZ-free TT estimator map
somewhat, to `max

CMB = 3350; we perform a null test (see next
section) to test for problematic contamination from other
foregrounds such as CIB or kSZ. (This type of contamina-
tion becomes large when we use a higher lmax, such as 3500
and 4000, causing null test failures; for this reason, we choose
to only modestly increase `max

CMB to 3350.) Furthermore, since
the ILC maps include information from Planck for ` < 500,
we also relax the minimum multipole cut from `min

CMB = 500
to `min

CMB = 100, providing additional gains in signal-to-noise.
We then create a foreground-cleaned minimum variance

lensing map as in Equation 8. The coadding procedure is the
same as for the ACT-only lensing map, except that temper-
ature lensing is now obtained from the tSZ-free symmetric
estimator κ̂TTsymm, tSZ−free. We successfully repeat the lensing
validation described in Section 3 with our new foreground
cleaned estimator; the results are shown in Figure 1.

5 GALAXY CROSS-CORRELATION
MEASUREMENT

In the previous sections, we have introduced two types of
CMB lensing maps, which will be publicly available as part
of the upcoming data release DR4 associated with Aiola
et al. (2020) and Choi et al. (2020). As an example of their
utility, we cross-correlate these lensing maps with galaxies
from the BOSS survey’s CMASS galaxy catalog.

5.1 The CMASS galaxy map

We use the CMASS galaxy catalog (with redshifts z ∈
[0.43, 0.7]) provided by the DR12 release of the BOSS spec-
troscopic survey 11 to construct a galaxy overdensity map.
Given a pixel ~x, we estimate the galaxy overdensity as

δg(~x) =

∑
i∈unmasked ~x wi

1
N

∑
i,all unmasked wi

− 1 (11)

where N is the number of unmasked pixels (see below) and
following Pullen et al. (2016); Miyatake et al. (2017) each
galaxy i inside the pixel ~x is weighted according to

w = (wnoz + wcp − 1)wseewstar (12)

where wnoz accounts for redshift failures, wcp for fiber colli-
sions, wstar for bright star contamination and wsee for effects
of seeing.

The galaxy mask used to mask pixels is created using
‘random catalogs’ provided by the BOSS collaboration; these
catalogs contain a dense sampling of sky locations propor-
tional to the survey conditions but not to any cosmological
galaxy clustering signal. The random catalogs are mapped
to a number density count map (created setting w = 1) and

11 http://www.sdss3.org/surveys/boss.php

Figure 3. Lensing reconstruction test, as for Figure 1, but now
correlating with a simulated galaxy field instead of the input

lensing convergence field. The shaded region shows the multipole
range used for the cosmological analysis. The lower panel shows

the fractional difference with respect to the theory curve. (The

BN patch gives similar results.)

then smoothed with a Gaussian beam with a width corre-
sponding to a standard deviation of 2 arcminutes. To ob-
tain the final mask, we then set to zero the regions of the
smoothed randoms’ counts below a threshold of 10−3. The
above choices are made so as to preserve survey information
without picking up fluctuations in the random sampling. Our
baseline analysis accounts for the effect of this mask simply
by applying an overall scaling factor which compensates for
the loss in power due to zeroed regions, as described in the
next section. In general, the mask can also cause coupling
of Fourier modes of the map leading to a modification of
the estimated power spectrum. Although these effects are
expected to be small since our mask is smooth, we test the
impact of the mask on our cross-correlation measurement.

We validate the treatment of the galaxy mask by ap-
plying it to mock Gaussian galaxy overdensity simulations
which are correlated with the lensing signal according to a
theoretical cross-spectrum with a fiducial bias b = 2. We
verify that the cross-power spectrum measured from these
simulations, with a multiplicative correction for the mask as
described in the next section, reproduces the original input
theory cross-correlation signal. As shown in Figure 3 we re-
cover Cκsg

l to better than five percent over the cosmological
analysis range, with no indication of an overall bias.

5.2 Extracting power spectra and obtaining the
covariance matrix

Having constructed CMB lensing and galaxy maps we mea-
sure their cross-power spectra. Binned cross-power spectrum
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measurements are obtained using the following estimator
valid for statistically isotropic fields,

ĈκgLb
=

1

wκg
1

NA

∑
L∈A

κobsL gobs∗L (13)

where A is an annulus in the Fourier plane with average
radius L = |L|, NA gives the number of modes in this an-
nulus, and wκg is a correction factor due to masking that
depends on the masked fields taken in consideration. For a
slowly varying window function this is given by

wκg = 〈W 2
κ (~x)Wg(~x)〉 (14)

where Wκ is the mask we apply to our CMB map before
lensing reconstruction and Wg is the mask applied to our
galaxy overdensity map. Two powers of the CMB mask ap-
pear in the correction above because the lensing reconstruc-
tion is a quadratic estimator involving two powers of the
CMB map.12

We obtain the covariance matrix for the cross-spectra
from simulations as follows:

ĈLb,L
′
b

= 〈(CSLb
− 〈ĈSLb

〉S)(CSL′
b
− 〈ĈSL′

b
〉S)T 〉S (15)

where the column power spectrum vector is ĈS = (CκSgS
Lb

)T

and the average is over the simulations S.
To calculate this matrix, we cross correlate the N = 511

lensing reconstruction simulations with the QPM mock cat-
alogs of CMASS galaxies (White et al. 2014). The cosmo-
logical signals in these simulations and catalogs are uncorre-
lated. We expect this not to be problematic because the un-
correlated part of the cross-correlation error dominates over
the sample variance contribution. We verify this by calculat-
ing Gaussian theory standard errors with and without the(
CκgLb

)2

sample variance term that arises from the presence

of correlated structures, finding sub-percent level agreement
between the two calculations.

The inverse covariance matrix obtained from N simula-
tions is calculated as in Hartlap et al. (2007):

Ĉ−1 = βĈ−1 (16)

where β = N−p−2
N−1

with p the number of angular bins.
Finally, we note that some care is required when choos-

ing the range of scales Lmin < L < Lmax which we use
in our analysis. Our theoretical model is expected to break
down on smaller scales, since we are assuming a simple scale-
independent linear galaxy bias, ignoring baryonic feedback
on the matter power spectrum and also assuming that the
non-linear matter power spectrum derived from HMCode
(Mead et al. 2015), implemented in CAMB, is reliable. We
therefore initially pick a range of scales based on the cross-
correlation measurement; we set the requirement that the
difference between a linear theory calculation of the cross-
spectrum and the non-linear (HMCode) calculation should
not be larger than the 1-σ uncertainty for our cross-spectrum

12 To avoid confirmation bias we did not plot a y-axis scale or

overplot a theory curve over our cross-spectrum measurement un-
til all the null tests and systematics checks, described in Section

6, had been successfully passed.
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Figure 4. The cross-correlation between CMASS galaxies and

CMB lensing convergence reconstructions from ACT. The cross-
correlation measurements in the D56 and BN patches are coadded

to obtain these results. The red points show results using an ACT-

only lensing map, the blue points show results using a lensing map
that has been tSZ cleaned. The multipole values for different ver-

sions of lensing maps are slightly offset for visualisation purposes.
See Figure 5 for comparison with a theory curve fit to the cleaned

measurement.

measurement. In this way, we obtain that the appropriate
cutoff is approximately Lmax,κg = 1000.

In addition to the small-scale cuts described above, we
also wish to avoid systematic errors which enter on large,
degree-angular scales. On the galaxy side, such systematic
errors include depth and selection function variations over
the survey footprint; on the CMB lensing side, the main
large-scale limitation is the challenge in simulating and sub-
tracting the mean-field term sufficiently accurately, since it
grows rapidly towards very low L (L < 50). While many
systematics are nulled in cross-correlation, they could induce
additional variance, and to be safe we choose Lmin = 100 for
our analysis; at this scale, the power spectrum of the mean
field is still smaller than that of the signal.

For our measurements, we choose a binning of ∆L =
150; with this binning, we find that the correlations between
different bandpowers are not strong (< 13%).

5.3 Galaxy cross-correlation: results

In Figure 4 we show the new tSZ-free CMB lensing – galaxy
cross-correlation measurement. We also show the same cross-
correlation with the ACT-only lensing maps, which have not
been cleaned of tSZ.

A small shift between the bandpowers can be seen. It
appears to match the form expected from bias due to tSZ in
the ACT-only maps, i.e., a deficit on large scales and an ex-
cess on small scales. However, the difference was not found
to deviate from zero by a statistically significant amount,
with a χ2 probability to exceed (PTE) of 0.29 (for the cos-
mology range). Nevertheless, we note that the difference is
a good fit to a simplified foreground bias model (given by a
10% deficit in the cross-correlation at L < 800); the χ2 to
this model is lower than for a fit to null by ∆χ2 = 2.2.
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Figure 5. This plot shows our main CMB lensing – BOSS galaxy cross-correlation measurement with the ACT+Planck tSZ free lensing

maps (blue points). A Planck -cosmology (and fiducial galaxy bias bfid = 2) theory template, with a free amplitude fit to the data

(A = b/bfid), is also indicated with a dashed line. The green dashed theory curve is fit only over a restricted analysis range (shaded region
for scales 100 < L < 1000); the black solid curve is fit over the full L range shown in this plot. (The bandpowers are nearly independent,

with the off-diagonal elements of the covariance matrix showing correlations of less than 13%). We find good consistency in both cases
with the Planck -cosmology derived theory template.

Although the tSZ-free measurement contains no bias
from tSZ, the measurement errors on large scales are similar,
which highlights the power of this new technique in provid-
ing unbiased measurements that do not sacrifice significant
signal-to-noise.13

We adopt the tSZ-cleaned cross-correlation as our stan-
dard analysis. We fit the cross-correlation with a fiducial
theory model; this model uses both fiducial Planck param-
eters as well as a fiducial linear bias of b = 2, motivated
by previous BOSS analyses (Alam et al. 2017). The cross-
correlation measurement as well as a fit of the amplitude of
this fiducial model are shown in Figure 5. It can be seen that,
for both the restricted analysis multipole range and the full
range, the amplitudes obtained are consistent with the fidu-
cial value (A = 1). In particular, we obtain A = 0.92± 0.12
for a fit to the restricted analysis range and A = 1.02± 0.10
for the fit to the full range of scales. Both theory curves are
a good fit to the measurements, with χ2 PTEs of 0.25 and
0.28 respectively. Thus, we find good consistency in both
cases with the Planck -cosmology derived theory template.

13 The fact that measurement uncertainties do not significantly
increase in our method, although it removes foregrounds, is not
just due to the inclusion of Planck data; indeed, a naive appli-
cation of the standard quadratic estimator to tSZ-deprojected

ACT+Planck maps gives cross-correlation uncertainties that are
≈50% larger. Planck enables better multifrequency cleaning,
rather than adding much raw statistical weight to the ACT maps.

6 SYSTEMATICS AND VALIDATION OF THE
CROSS-CORRELATION MEASUREMENT

We perform several tests for systematic errors to validate
both our lensing maps and our cross-correlation measure-
ment. Note that the relevant covariance matrices are ob-
tained from Monte Carlo simulations of each test. These co-
variances are used to derive a chi-squared to null probability
to exceed (PTE) for every test.

Our first null test relies on the fact that we expect the
cosmological lensing signal from gravitational scalar pertur-
bations to give rise to gradient-like deflections. Hence, this
deflection field should be irrotational, with zero curl.14 In
contrast, systematics that mimic lensing can have non-zero
curl. Therefore, a detection of a curl signal can be a sig-
nature of unknown systematic errors present in our data.
By using a quadratic estimator Ω̂XY (L) similar to that for
the lensing potential but with different filters (Cooray et al.
2005) (essentially the dot product in the potential estimator
is replaced by a cross product), it is possible to extract the
curl signal and cross correlate it with the BOSS galaxy field.
As shown in Figure 6, this cross-correlation signal is consis-
tent with zero, with a PTE of 0.51 for the tSZ-cleaned lens-
ing cross-correlation. We note that for the ACT-only cross-

14 The potential cosmological curl signal coming from tensor per-
turbations at linear order or from scalar perturbations at second

order is well below current sensitivity.
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Figure 6. A curl null test: verification that the extracted curl-

lensing – galaxy cross-correlation, which should be negligibly

small in the absence of systematic errors, is consistent with the
null hypothesis. The results shown are for a combination of both

D56 and BN patches. The χ2 probability-to-exceed (PTE) for this

null test is also shown in the legend.
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Figure 7. A null test verifying that cross-correlating the lensing
map on one field with the galaxy map on the other field (and

combining both spectra) gives a signal consistent with zero. Red
points show ACT-only results, blue points show tSZ-deprojected
lensing results. The fact that the PTEs in both cases are consis-

tent with zero signal supports the conclusion that our uncertainty

calculations are correct.

correlation, the PTE is only 0.05, although this may simply
be due to a statistical fluctuation.

As a second test, we cross-correlate the galaxy map of
one patch with the lensing convergence map of the other
patch15 and check for consistency with zero. It is very diffi-
cult to imagine systematics that would correlate fields that
are so far apart, and so this test primarily serves as a valida-

15 To perform this correlation, we extend with zero values the
maps of the smaller patch, in this case D56, so that the two fields

have the same size.

Figure 8. An extragalactic foreground null-test for the cleaned
maps. We show the difference between the cross-correlations of

CMASS with the tSZ-deprojected lensing maps for the cases of

lCMB,max = 3000 and lCMB,max = 3350, where lCMB,max is
the maximum CMB multipole used in the lensing reconstruction.

Since extragalactic foregrounds rise rapidly towards high l, a sub-

stantial foreground residual in the cross-correlation would cause
a null test failure. However, our null test results shown here are

consistent with zero contamination for both fields (blue: points
for BN, orange: points for D56).

Figure 9. The same test as shown in Figure 8, but applied to the
ACT-only maps which have not been foreground cleaned (blue:

points for BN, orange: points for D56). The PTE for BN shows a

(mild) failure of the null test, as is expected if foreground residuals
are important.

tion of our covariance matrix and uncertainty calculation. In
Figure 7 we see that the results of this null test are consistent
with zero, with a PTE of 0.75 obtained for the tSZ-cleaned
lensing map and 0.12 for the ACT-only map.

Thirdly, we wish to test for the presence of residual
foreground-induced bias in the cross-correlation measure-
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ment, even though we expect to be insensitive to the domi-
nant tSZ contamination when using our symmetric cleaned
lensing estimator. To test for residual foreground biases from
the CIB, kSZ (e.g. Ferraro & Hill 2018) or other sources
(including those arising from incomplete tSZ cleaning), we
make use of the fact that foreground contamination should
become worse as the maximum CMB multipole `CMB,max

used in the lensing reconstruction increases. If our fore-
ground cleaning is working as expected and residual fore-
grounds are negligible, results with a high `CMB,max,high and
a lower `CMB,max,low used in the reconstruction should be
consistent. In Figure 8 we show this foreground null test for
the symmetric cleaned estimator; in particular, we plot the
difference C

κlowg
L − Cκhighg

L of the cross-correlation C
κhighg

L

with a higher lensing reconstruction `CMB,max,high = 3350
(the baseline used in this work) and the cross-correlation
with a lower `CMB,max,high = 3000, C

κlowg
L . It can be seen

that this difference is consistent with zero overall, with PTEs
of 0.74 and 0.16 found for D56 and BN respectively. The er-
ror bars are obtained from simulations and hence take into
account the covariance between the two spectra. For compar-
ison, in Figure 9 we perform the same test for the ACT-only
maps which are not free of tSZ; perhaps unsurprisingly, we
find a (mild) null test failure (PTE of 0.02) for the BN patch,
although the D56 PTE of 0.71 still appears acceptable.

Finally, to check for sensitivity to large-scale systemat-
ics, we vary the lowest multipole Lmin of the first bandpower
of the cross-correlation measurement; we find that the value
of the first bandpower is stable. This was the only null test
done after we unblinded.

Our suite of null tests does not show evidence for fore-
ground or systematic contamination to our measurement, as
long as we use the symmetric cleaned lensing estimator. In
particular, for the combined BN+D56 cleaned measurement
we find a PTE of 0.28 for the foreground residual test, show-
ing no evidence for foreground contamination in the cross
correlation.

7 DISCUSSION

In this paper, we present maps of CMB lensing convergence
derived from ACT observations made in 2014-15. The lens-
ing maps are constructed in two different ways: first, by
applying the standard quadratic lensing estimator to only
ACTPol CMB data; second, by implementing a new “sym-
metric” foreground-cleaned lensing estimator, which makes
use of component separated ACTPol+Planck CMB maps
to return lensing maps that are free of tSZ-bias in cross-
correlation.

We report combined cross-correlation measurements of
our CMB lensing maps with BOSS CMASS galaxies at
≈ 10σ significance. We find that the use of our new tSZ-free
estimator does not significantly increase the size of measure-
ment uncertainties.

We will release these lensing maps to enable other
cross-correlation analyses with large-scale-structure. How-
ever, several caveats should be kept in mind when making
use of these maps. Only the bispectrum 〈gTtSZTtSZ〉 tSZ con-
tamination is nulled in our procedure, where TtSZ is the tSZ
signal and g is the large-scale structure field (e.g., galaxy
overdensity or galaxy shear); this is the dominant source of

contamination for near-term cross-correlations with z < 1
structure. Users of these maps should be aware that high-
redshift cross-correlations can be contaminated with the CIB
field TCIB, both through 〈gTCIBTCIB〉 as well as through its
correlation with the tSZ 〈gTtSZTCIB〉. For cross-correlations
where CIB contamination is more of a concern than tSZ
contamination (e.g., for cross-correlations with the CIB it-
self), our pipeline allows the application of the analog of our
symmetric cleaned estimator on CIB-deprojected maps from
Madhavacheril et al. (2019). Such analyses should be vali-
dated on realistic simulations (e.g., Sehgal et al. 2010; Stein
et al. 2020) to verify that the tSZ contamination is sub-
dominant. Looking beyond the 2014 and 2015 data used
in this work, high-resolution 230 GHz data collected with
the Advanced ACTPol instrument from 2016 and onward
should allow for simultaneous deprojection of both the tSZ
and CIB contamination for use in symmetric cleaned esti-
mators that are robust at all redshifts. The contamination
from the kSZ will, however, remain, since the kSZ has the
same blackbody frequency spectrum as the primary CMB,
although the contamination is much lower in amplitude (Das
et al. 2011; Ferraro & Hill 2018). Alternatives to our method
include shear-only reconstruction (Schaan & Ferraro 2019)
(which requires the inclusion of smaller scales in the CMB
map to achieve similar signal-to-noise) and source harden-
ing (Osborne et al. 2014) (primarily targeted at reducing
contamination from point sources and clusters). The opti-
mal combination of all of these methods that minimizes bias
(both from foregrounds and higher-order effects) and maxi-
mizes signal-to-noise remains an open problem.

We also caution users that the auto-spectrum of the
lensing potential presents a much broader set of analysis
challenges, both for mitigation of foregrounds (where the
CIB contamination is expected to be larger (van Engelen
et al. 2014)) and for characterization and subtraction of re-
construction noise bias. The latter requires an extensive set
of simulations (e.g., Sherwin et al. 2017; Story et al. 2015)
and methods robust to mismatch of simulations and the ob-
served sky (e.g., Namikawa et al. 2013). The CMB lensing
auto-spectrum from ACT data from 2014 and 2015 will ap-
pear in a separate work. In addition, care should be taken
when attempting to interpret the signal from stacking mas-
sive clusters on our released CMB lensing maps; first, be-
cause inpainting and masking steps can introduce complica-
tions, and second, because higher order effects can bias the
standard quadratic estimator near the most massive clusters
(Hu et al. 2007b).

This work lays the foundation for upcoming, higher pre-
cision ACTPol and Advanced ACT cross-correlations with
galaxy and lensing surveys. For upcoming cross-correlation
analyses with ACT and other experiments, powerful meth-
ods to obtain foreground free measurements are necessary;
our work represents one promising solution to this problem.
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APPENDIX A: CMB MAP PRE-PROCESSING
FOR LENSING RECONSTRUCTION

In this appendix, we describe in more detail the preprocess-
ing of the ACT CMB maps which are used in the lensing
reconstruction process.

The ACT raw maps are made available as four map
splits DA,f,j , j ∈ {1, 2, 3, 4} with the same signal but inde-
pendent instrumental noise contributions through the time-

16 http://www.astropy.org

interleaved splitting scheme described in Aiola et al. (2020)
and Choi et al. (2020), for each frequency f and instrumental
array A. For the D56 region, data are from seasons 2014 and
2015 and observations of the sky are made from the follow-
ing combinations of array-frequency (A, f): (PA1-2014, 150),
(PA2-2014, 150), (PA1-2015, 150), (PA2-2015, 150), (PA3-
2015, 150), (PA3-2015,98), where only the dichroic PA3 ar-
ray includes observations at both 98 GHz and 150 GHz.
For the BN region, the data are from season 2015 only, for
the combinations (A, f): (PA1-2015, 150), (PA2-2015, 150),
(PA3-2015, 150) and (PA3-2015,98). Here, (PA3-2015,150),
for example, corresponds to a map made using measure-
ments from the 150 GHz channel of the PA3 detector array
collected during the 2015 observing season.

The temperature maps that enter the ACT+Planck
tSZ-free lensing maps are pre-processed and coadded (with
appropriate tSZ deprojection) as described in Madhavacheril
et al. (2019). All other maps (i.e. temperature maps for the
ACT-only lensing maps and the polarization maps) are pre-
processed and co-added as follows:

(i) To reduce noise and bias from radio sources and
to make subsequent Fourier transforms well-behaved, we
use source subtracted maps (see Choi et al. (2020); Aiola
et al. (2020)). Some residuals are left in these at the
locations of bright compact sources; these are in-painted
within each split using the catalog and maximum-likelihood
method described in Madhavacheril et al. (2019), i.e.,
we fill holes around compact sources with a constrained
Gaussian realization. These holes of 6 arcminute radius are
inpainted jointly for T, Q, U. The algorithm used follows
the brute-force approach presented in Bucher & Louis
(2012). We then use these splits to obtain a co-added map
DA,f using maps of the inverse white-noise variance in
each pixel as well as two sub-splits DA,f,1 =

∑
j=1,2 DA,f,j

and DA,f,2 =
∑
j=3,4 DA,f,j with independent noise. We

use these two sub-splits to obtain an estimate of the 2d
Fourier space noise power spectrum NA,f (`), by taking the
difference between the mean auto-spectrum of each sub-split
and the mean cross-spectrum between the sub-splits, and
subsequently smoothing it.

(ii) We apply an apodized mask to each map which
restricts our analysis to the well-crosslinked region used
for power spectrum measurements in Choi et al. (2020);
Aiola et al. (2020). To account for pixelization effects, we
deconvolve the pixel window function from each map in 2D
Fourier space.

(iii) We next combine the various maps DA,f into a single
CMB map M on which the lensing reconstruction is per-
formed, for each of T, Q and U. Unlike in previous work
where a real-space coaddition was used (Sherwin et al. 2017),
we now co-add the maps in 2D Fourier space (since this is
more optimal for multifrequency data with different beams)
as follows: M(`) = BAc,fc(l)

∑
(A,f) wA,f (`)DA,f (`)B−1

A,f (`)
where

wA,f =
NA,f (`)B−2

A,f (`)∑
(A,f) NA,f (`)B−2

A,f (`)
(A1)

are normalized inverse variance weights. We note that here
a deconvolution of the harmonic space beam BA,f (`) is
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performed for each array, and finally a convolution to a
common map beam BAc,fc(l) is reapplied; the choice of this
beam does not matter since it is deconvolved later. This
weighting scheme ignores correlations of the noise between
arrays. Only the dichroic arrays (PA3,150 GHz) and (PA3,
98 GHz) have substantial (≈ 40%) noise correlations on
the scales considered in this work. While this choice of
weighting is sub-optimal, on scales where the (98−150) GHz
correlation is important, our measurements are dominated
by the CMB signal in the 98 GHz frequency and thus
neglecting these correlations will not substantially increase
the lensing reconstruction noise.

This procedure, performed separately for each of intensity
T and the Q and U polarization stokes components, results
in coadded CMB maps MX with X ∈ {T,Q,U}. We repeat
the same operations above on the sub-splits DA,f,i, i ∈ {1, 2}
to obtain the corresponding maps MX,i, X ∈ {T,Q,U}
from which we obtain an estimate of the experimental noise
2D power NX , X ∈ {T,Q,U} in the same way as described
previously. These noise estimates of the co-added maps are
used for optimal weighting in the lensing reconstruction.

(iv) While the previously described inpainting procedure
removes a large amount of radio source contamination,
bright galaxy clusters show up in these maps as decrements
due to the thermal Sunyaev-Zel’dovich effect. These add
both noise and bias to the lensing estimation, and so we
next in-paint a catalog of SZ clusters that have been inter-
nally detected. For this catalog, we use confirmed cluster
locations inferred from co-add maps that include data up to
the 2018 season. From this catalog, we select and inpaint all
the clusters with a signal-to-noise ratio greater than 5. The
inpainting is performed (only in temperature) within circu-
lar holes of 5-arcmin radii using the same method as for the
compact sources. A small number of clusters near the edge
of the mask that caused problems due to the discontinuous
boundary were not inpainted. This is expected to have a neg-
ligible impact on our analysis as the number of such clusters
is very small, with no particularly bright ones among them.
After inpainting, we deconvolve by the common map beam
chosen above.

The CMB temperature and polarization maps that result
from these steps are used (following filtering and E −
B decomposition) as inputs to our lensing reconstruction
pipeline, described in detail in Section 3.

APPENDIX B: NOISE PROPERTIES OF THE
SYMMETRIC FOREGROUND-CLEANED
ESTIMATOR

The goal of this appendix is to illustrate the noise prop-
erties of the different lensing estimators used in this work,
with particular emphasis on the noise of the new symmetric
cleaned estimator that is free of tSZ contamination.

The estimated lensing convegence map in real space

102 103

L

10 9

10 8

10 7

10 6

10 5

C
L

Standard QE ACT
( T)Tno SZ

( Tno SZ)T (MH18)
Correlation between ( Tno SZ)T  and ( T)Tno SZ 
New symmetrized combination (this work)

Figure B1. The noise power per mode for the temperature-only
estimator for different cases in the D56 region. This plot shows

how the symmetric cleaned estimator presented in this work low-

ers the noise compared to the asymmetric estimator. The green
curve shows the cross-noise between the two different asymmetric

estimators, with negative values in dashed. The anti-correlation

of the noise on large scales between the two different asymmetric
estimators leads to a cancellation in the optimal co-add of these

that results in the red noise curve for our new symmetric cleaned
estimator, which recovers the forecast performance in MH18.

from a fixed polarization combination XY for CMB maps is
(e.g., Hu et al. 2007a):

κ̂XY (n̂) =

∫
d2L

(2π)2
eiL·~nκ̂XY (L) (B1)

with

κ̂XY (L) = −AXYL
∫
d2n̂e−in̂·`Re{∇ · [~GXY (n̂)LY ∗(n̂)]} ,

(B2)

where XY ∈ {TiTj , TiEj , EiEj , EiBj} + i↔ j with the in-
dices characterizing maps with different data content (e.g.
from different experiments or with different component sep-
aration techniques), AXYL is a normalization to ensure that
we recover an unbiased estimate of the convergence field,
and ~GXY (n̂) and LY ∗(n̂) are filtered versions of CMB maps.
The details of these filtered maps can be found in Hu et al.
(2007a).

The normalization is

AXYL =
L2

2

[∫
d2`

(2π)2
(L · `)WXY

l WY
|L−`|fXY (`,L− `)

]−1

(B3)

where WXY
l ,WX , fXY (~l, ~L − ~l) can be found again in Hu

et al. (2007a). The lensing convergence estimator expands
to

κ̂XY (L) = AXYL

∫
d2`

(2π)2
(L · `)WXY

l X(`)WY
|L−`|Y (L− `) .
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Figure B2. The noise power per mode in our maps for different
patches for the minimum variance (temperature + polarization)

co-add of the CMB lensing maps from this work. Solid colored

lines represent D56, dashed lines represent BN and dashed and
dotted represent Planck 2018. The theory expectation for the

signal is shown in black. Our maps are signal dominated for L <

100 in BN and L < 200 in D56.

(B4)

The covariance of this estimator, NXY,WZ(L) is

〈κ̂XY (L)κ̂WZ(L′)〉CMB − 〈κ̂XY (L)〉CMB〈κ̂WZ(L′)〉CMB =

= (2π)2δ
(2)
D (L−L′)AXYL AWZ∗

L

∫
d2`

(2π)2
(L · `)WXY

l WY
|L−`|×

×[(L · `)WWZ
l WZ

|L−`|C
X̄W̄
l CȲ Z̄|L−`|+

+(L · (L− `))WWZ
|L−`|W

Z
l C

X̄Z̄
l CȲ W̄|L−`|] .

(B5)

When the maps involved are identical (X = Y , e.g.
for TT and EE estimators where both fields have the same
data), the minimum-variance filters have a simple form as
shown in Hu et al. (2007a) and the estimator can be writ-
ten in a separable manner (i.e., can be written using sums
of products of a function of `1 times a function of `2) that
allows for fast evaluation with FFTs. Moreover, the esti-
mator variance (X = Y = W = Z above) has a simple
relation to the normalization NL ∝ ALL

2. This no longer
holds when X 6= Y . In particular, for our case of interest
where we mix maps with different component separation
techniques, X = Tno−fg and Y = Twith−fg, the minimum
variance estimator does not have a simple separable form.
MH18 used an approximation to the minimum-variance es-
timator that consisted of the two different maps being in-
dependently Wiener filtered. When the weights in the es-
timator are not minimum-variance, the relation (assumed
in the forecast of that paper) that NL ∝ ALL

2 no longer
holds. The true performance is the orange curve in Fig-
ure B1. However, a simple heuristic extension of the MH18
estimator recovers performance close to what was forecast
there: the two asymmetric estimators κ̂(Tno−fg, Twith−fg),

κ̂(Twith−fg, Tno−fg) combined in a minimum variance combi-
nation κ̂TTsymm,fgfree =

∑
wα(L)κ̂α(L) with weights given by

Eq. 10, where α ∈ {(Tno−fgTwith−fg), (Twith−fgTno−fg)} and
N−1 the inverse of the 2 × 2 covariance matrix taking into
account the cross-correlation between the two estimators.

In Figure B1 we show the noise curves for this TT sym-
metric cleaned estimator, as well as the asymmetric esti-
mators. In Figure B2 we show lensing minimum variance
noise curves, which include polarization lensing measure-
ments. These are shown for three different cases that differ
in how the TT estimator is calculated (a) using the tSZ-free
symmetric cleaned estimator with both Planck and ACT
data combined with ILC (our baseline, in purple) (b) using
only ACT data with the 1/N co-adding scheme, and no de-
projection of foregrounds (red) and (c) using the tSZ-free
symmetric cleaned estimator with only ACT data combined
with ILC (blue).
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