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Abstract

Young children often stretch terms to novel objects when they
lack the proper adult words—a phenomenon known as overex-
tension. Psychologists have proposed that overextension relies
on the formation of a chain complex, such that new objects
may be linked to existing referents of a word based on a diverse
set of relations including taxonomic, analogical, and predicate-
based knowledge. We build on these ideas by proposing a com-
putational framework that creates chain complexes by multi-
modal fusion of resources from linguistics, deep learning net-
works, and psychological experiments. We test our models in
a communicative scenario that simulates linguistic production
and comprehension between a child and a caretaker. Our re-
sults show that the multimodal semantic space accounts for
substantial variation in children’s overextension in the liter-
ature, and our framework predicts overextension strategies.
This work provides a formal approach to characterizing lin-
guistic creativity of word sense extension in early childhood.
Keywords: language acquisition; linguistic creativity; overex-
tension; word sense extension; multimodality; chaining; com-
munication

Young children often stretch terms to describe novel ob-
jects when they lack the proper adult words, a phenomenon
known as overextension (Clark, 1978). Overextension is a
communicative strategy that draws on knowledge of diverse
relations in the world. For instance, a child may use “dog”
to refer to a squirrel, “ball” to refer to a balloon, or “key”
to refer to a door. This creative use of words toward novel
meanings, or word sense extension, is not only attested in
child language acquisition, but it is also reflected in historical
meaning change, e.g., we extended the meaning of “mouse”
from a rodent to a computer device. We explore the origin of
word sense extension by asking how the cognitive capacity of
overextension in childhood can be characterized formally.

Early work by Vygotsky (1962) suggests that overexten-
sion relies on “chain complex”, a critical element of con-
cept formation in childhood. He demonstrated chain com-
plex by a series of overextension cases from a child who ex-
tended the meanings of “quah” to wide-ranging things includ-
ing a duck, water in a pond, liquids in general, an eagle on a
coin, and any coin-like objects. Vygotsky’s account resonates
with work from philosophy and cognitive linguistics that sug-
gest the complex structure of word meanings (e.g. Wittgen-
stein, 1953) is formed possibly due to a process of chaining
(Lakoff, 1987), where one referent is linked to another form-
ing a chain-like structure. More recent work has shown that
chaining predicts word sense extension in the history of En-

"ball"

child caretaker
Figure 1: Overextension in child-caretaker communication.

glish (Ramiro, Srinivasan, Malt, & Xu, 2018) and other lan-
guages (Xu, Regier, & Malt, 2016). However, these works
did not offer a formal account of how one might represent the
rich knowledge in a chain complex.

Empirical work from Rescorla (1980) provided clues to the
knowledge underlying children’s overextension. Specifically,
she identified three main types of relations between core and
overextended meanings of a word, summarized as 1) categor-
ical relation: overextension by linking objects within a tax-
onomy, e.g., “dog”→squirrel, 2) analogy or visual analogy:
overextension by linking objects with shared perceptual prop-
erties, e.g., “ball”→balloon, and 3) predicate-based relation:
overextension by linking objects that co-occur frequently in
the environment, e.g., “key”→door. An open question we ad-
dress in this work is how to combine these types of relations
to predict overextension strategies in early childhood.

We propose a computational framework that considers
overextension as a communicative game between a child and
a caretaker, illustrated in Figure 1. The game involves a child
and a caretaker in a situation where the child needs to re-
fer to an out-of-vocabulary novel object. In this context, the
child faces a production problem, where the goal is to extend
a word from the existing vocabulary (e.g., “ball”) to the novel
object (e.g., a balloon). The caretaker instead faces a com-
prehension problem, where the goal is to guess the intended
referent based on the child’s utterance. Since “ball” does not
typically map to balloons, we wish to reconstruct the cogni-
tive processes that could have given rise to successful com-
munication between the child and the caretaker in common
cases of overextension. As such, our framework should sup-
port both strategic word choices for the child and prediction
of intended referents for the caretaker.
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Our communication-based framework relates to earlier
work in overextension from the developmental literature. For
example, Bloom (1973) argued that overextension is a per-
formance error caused by vocabulary limitations, whereby a
child may consciously use an incorrect word (from the adult
perspective) as a strategy to convey the desired referent mean-
ing. A related hypothesis poses overextension as a retrieval
error (Fremgen & Fay, 1980; Gershkoff-Stowe, 2001; Hut-
tenlocher, 1974; Thomson & Chapman, 1977), suggesting
that children may overextend an earlier acquired word even
if the correct adult word has been partially acquired (e.g., un-
derstood in comprehension), because the latter may be more
difficult to produce. We explore evidence for a retrieval er-
ror hypothesis by evaluating whether children may favour
words with higher usage frequencies in their overextended
word choices. Another extensive line of research suggests
that overextension arises from children’s incomplete concep-
tual knowledge of the semantic features underlying different
categories (Clark, 1973; Kay & Anglin, 1982; Mervis, 1987).
While we do not directly test claims about children’s con-
ceptual space in this work, we show that a combination of
semantic relations helps to explain overextension strategies,
and may play an integral role in characterizing the mecha-
nisms that subserve children’s early word learning.

Our framework also draws on a multimodal space of se-
mantic relations (cf. Rescorla, 1980) that serves as the knowl-
edge engine for creating chain complexes in overextension.
The notion of multimodality is motivated in part by work on
visually-grounded word learning (e.g. Lazaridou, Chrupała,
Fernández, & Baroni, 2016; Roy & Pentland, 2002; Yu,
2005), which shows that perceptual features play an impor-
tant role in children’s acquistion of core (or conventional)
word meanings. Our focus is on investigating how by inte-
grating diverse semantic relations one might account for word
usage beyond the core meanings that children normally ac-
quire. Our work thus differs from the extensive literature on
cross-situational word learning (Fazly, Alishahi, & Steven-
son, 2010; Frank, Goodman, & Tenenbaum, 2009; Kacher-
gis, Yu, & Shiffrin, 2017; Siskind, 1996), where the emphasis
has been typically on modeling children’s behaviour in learn-
ing conventional word meanings, but not on how they ex-
tend existing terms to describe novel objects. Our work also
extends existing computational studies that explore overex-
tension in specific domains such as color terms (Beekhuizen
& Stevenson, 2016) to more general cases of overexten-
sion that involve mappings across domain boundaries, e.g.,
“ball”→balloon.

Computational framework

We present our computational framework for overextension
following two steps: 1) Specification of a probabilistic model
that simulates child’s word choices (production) and care-
taker’s inference of intended referents (comprehension); 2)
Construction of a semantic space that supports multimodal
chaining of word meanings, encapsulated in the same model.

For this work, we focus on overextension of nouns, but
the general framework that we present can be used to explore
other types of overextension (e.g., in verbs and adjectives).

Probabilistic formulation
We formulate overextension as communication between a
child and a caretaker. In particular, the child wishes to re-
fer to a novel object c in an environment E. The child does so
by choosing (and stretching) a word w from her vocabulary
V . We assume that the correct term for the novel object is
not yet acquired by the child, hence c 6= w and c /∈ V . Based
on the child’s utterance w, the caretaker wishes to infer the
referent c among possible referents in E. We then model the
child’s behaviour by a production model and pair it with a
comprehension model for the caretaker’s behaviour.

Production. We cast the production problem as proba-
bilistic inference over existing words in the child’s vocabu-
lary given the probe novel object c, via Bayes’ rule:

pprod(w|c) ∝ pprod(c|w)p(w) (1)

We define the prior p(w) proportional to the logarithmic
usage frequency of a word with add-one smoothing p(w) ∝

log(1+ freq(w)). This formulation is consistent with the fre-
quency effect found in the study of overextension in color
terms (Beekhuizen & Stevenson, 2016). It captures the in-
tuition that all things being equal, the child is more likely to
choose a common word versus a rare word for overextension.
We define the likelihood function pprod(c|w) by a meta sim-
ilarity measure that encapsulates the three types of semantic
relations reported by Rescorla (1980) which the novel refer-
ent c can bear with the existing referent cw of word w:

pprod(c|w) ∝ sim(c,cw) (2)

= exp
(
−

dc(c,cw)+dv(c,cw)+dp(c,cw)

h

)
We take the exponential-decay form from the general-

ized context model (GCM) or exemplar model of categoriza-
tion (Nosofsky, 1986), where the influence of each relational
type is proportional to how similar c and cw are under that
relation. We represent similarity by inverse distance, where
dc, dv, and dp represent distances measured according to cate-
gorical relation, visual analogy, and predicate-based relation,
respectively. We describe the construction of each of these re-
lational features in the next section. To control for model sen-
sitivity to these distance functions, we use a single parameter
h that we estimate empirically from data. The magnitude of
h determines how slowly the meta similarity or the likelihood
function decreases with respect to the distance measured in
the multimodal relations.

Comprehension. We pair the child’s production model
with a comprehension model for the caretaker. Specifically,
the caretaker solves the inverse inference problem as the child
by a probability distribution over the space of intended refer-
ents based on the child’s utterance w:
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Figure 2: Types of semantic relations in multimodal space.

pcomp(c|w) ∝ pcomp(w|c)p(c) (3)

We consider the space of c to be all referents that appear
in the communicative environment E where the child and the
caretaker are situated in. We also assume a uniform prior
p(c) on possible referents in this environment, although it
may be possible to enrich this prior by considering perceptual
salience, eye gaze, pointing, and other pragmatic cues, which
we do not model or have explicit access to in this work.

We define the likelihood function identical to the formula-
tion used in the production model, under the assumption that
both the child and the caretaker have knowledge of the multi-
modal relations:

pcomp(w|c) ∝ sim(cw,c) = sim(c,cw) (4)

Although it is possible to model perspective taking in a
recursive way pcomp(w|c) = pprod(w|c) = pprod(c|w)p(w) un-
der the assumption that the caretaker takes into account the
child’s word choice in guessing the intended referent, e.g.,
similar to the rational speech act model (Goodman & Frank,
2016), we choose to work with the simplest version of this
model that does not make any recursive assumption in the
caretaker. We show in Results that our framework accounts
for data well even without this assumption.

Multimodal semantic space
We define a multimodal semantic space that captures the three
types of relational features in Rescorla (1980): categorical
relation, visual analogy, and predicate-based relation. We
construct these relational features using a fusion of resources
drawn from linguistics, deep learning networks, and psycho-
logical experiments, as illustrated in Figure 2.

Categorical relation. We define categorical relation be-
tween two referents via a standard distance measure dc in nat-
ural language processing by Wu and Palmer (1994), based on
taxonomic similarity. Concretely, for two concepts c1 and c2
under a taxonomy T (i.e., a tree), the distance is:

dc(c1,c2) = 1− 2NLCS

N1 +N2
(5)

NLCS denotes the number of shared parent nodes of the two
concepts in the taxonomy. N1 and N2 denote the depths of
the two concepts in the taxonomy. This distance measure is
effectively the negated taxonomic similarity between c1 and
c2, and is bounded between 0 and 1. Under this measure,
concepts from the same semantic domain (such as dog and
squirrel) should yield a lower distance than those from across
domains (such as ball and balloon). To derive the categorical
features, we took the taxonomy from WordNet (Miller, 1995)
and annotated words by their corresponding synset’s in the
database. We used the NLT K package (Bird & Loper, 2004)
to calculate similarities between referents for this feature.

Visual analogical relation. We define visual analogi-
cal relation by cosine distance between vector representa-
tions of referents in visual embedding space. In particu-
lar, we extracted the visual embeddings from convolutional
neural networks—VGG-19 (Simonyan & Zisserman, 2015),
a state-of-the-art convolutional image classifier pre-trained
on the ImageNet database (Deng et al., 2009)—following
procedures from work on visually-grounded word learning
(Lazaridou et al., 2016). Under this measure, concepts that
share visual features (such as ball and balloon, both of which
are round objects) should yield a relatively low distance even
if they are remotely related in the taxonomy. To obtain a ro-
bust visual representation for each concept c, we sampled a
collection of images I1, . . . , Ik up to a maximum of 512 images
from ImageNet. With each image I j processed by the neural
network, we extracted the corresponding visual feature vector
from the first fully-connected layer after all convolutions: vc

j.
We then averaged the sampled k feature vectors to obtain an
expected vector vc for the visual vector representation of c.

Predicate-based relation. We define predicate-based
relation by leveraging the psychological measure of word
association. We assume that two referents that frequently
co-occur together should also be highly associable, e.g.,
key and door. Specifically, we followed the procedures
in De Deyne, Navarro, Perfors, Brysbaert, and Storms
(2018) and took the “random walk” approach to derive
vector representations of referents in a word association
probability matrix. This procedure generates word vectors
based on the positive pointwise mutual information from
word association probabilities propagated over multiple leaps
in the associative network. As a result, concepts that share
a common neighbourhood of associates are more likely to
end up closer together in the vector space. De Deyne et al.
(2018) showed that this measure yields superior correlations
with human semantic similarity judgements in comparison
to other measures of association. We used word association
data from the English portion of the Small World of Words
project (De Deyne et al., 2018). The data is stored as a matrix
of cue-target association probabilities for a total of 12292 cue
words. We used the implementation provided by the authors
(https://github.com/SimonDeDeyne/SWOWEN-2018)
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to compute vector representations from the association
probability matrix. We used cosine distance to compute
predicate-based distances between pairs of referent vectors.

To ensure that the three types of relational features pro-
vide complementary information, we calculated their inter-
correlations based on 66 concept pairs that we used for our
analyses. Although correlations were significant (p < .001),
all coefficients were low (category & visual: 0.179; category
& predicate: 0.186; visual & predicate: 0.274).

Data
We collected linguistic data from three sources: 1) Metadata
of child overextension from the literature; 2) Vocabulary of
early childhood; 3) Text corpora of child-caretaker speech.

Metadata of child overextension. We performed a meta
survey of 12 representative studies from developmental psy-
chology and collected a total of 86 overextension example
word-referent pairs. Each pair consists of an overextended
word and the novel referent that word has been extended to.
We kept word-referent pairs that overlapped with the avail-
able data from the three features we described, resulting in a
total of 66 word-referent pairs. Table 1 shows examples from
this meta dataset and their sources from the literature.

While the data we used for analysis may not constitute
an unbiased sample of child overextension, two factors help
to alleviate this concern. First, we followed a systematic
approach in data collection by recording every utterance-
referent pair in which both constituents could be denoted by
one noun. Second, the diversity of the sources that we exam-
ined reduces the possibility of biasing our sample from any
individual study.

Table 1: Examples of overextension data.

Uttered word→ Referent Source
“banana”→ moon Behrend, D. A. (1988)
“car” → truck Fremgen, A., & Fay, D. (1980)
“apple” → orange juice Rescorla, L. A. (1981)
“ball” → bead Barrett, M. D. (1978)
“fly” → toad Clark, E. V. (1973)
“cow” → horse Gruendel, J. M. (1977)
“apple” → egg Rescorla, L. A. (1980)

Vocabulary from early childhood. To approximate chil-
dren’s vocabulary in early childhood, we collected nouns re-
ported to be produced by children of up to 30 months of age
from the American English subset of the Wordbank database
(Frank, Braginsky, Yurovsky, & Marchman, 2017). Because
overextension has been typically reported to occur between
1;1 and 2;6 years (Clark, 1973) (that covers the range in
Wordbank), we constructed a vocabulary V using all the
nouns from Wordbank for which we could obtain the required
semantic features. The resulting vocabulary includes 316 out
of the 322 nouns from the database.

Corpora of child-caretaker speech. To evaluate our mod-
els in a realistic communicative context, we collected a large

set of child-caretaker speech transcripts from the CHILDES
database (MacWhinney, 2014), for child Eve (age 1;6 to 2;3)
from the Brown corpus (Brown, 1973), Peter (1;9 to 3;1) from
the Bloom70 corpus (Bloom, Hood, & Lightbown, 1974), and
Nina (1;11 to 3;3) from the Suppes corpus (Suppes, 1974).
We chose these children’s data because their ages closely
match the typical overextension period reported in child de-
velopment. We considered each transcript as forming a com-
municative environment, and from each environment, we col-
lected the set of all nouns uttered by the child and the care-
taker for the analyses detailed in the next section. In total, we
obtained 1586 communicative environments with a median of
139 distinct nouns per context.

Results
We assess our proposed framework in three aspects: 1)
model accuracy in reconstructing child and caretaker strate-
gies in overextension; 2) evidence for multimodal chaining in
overextension; 3) model generation of chain complex.

Model reconstruction of overextension strategies
Production. We evaluated the child production model
against the curated set of overextension word-referent pairs,
O = {(wi,ci)}, with respect to all words in the child vocabu-
lary V . For each pair, the model chooses the target word based
on the given overextended sense ci by assigning a probability
distribution over words w in V . We assessed the model by
finding the maximum a posteriori probability (MAP) of all
the overextension pairs under the single sensitivity parame-
ter h, which we optimized to the MAP objective function via
standard stochastic gradient descent:

max
h

∏
i

pprod(wi|ci;h,V ) = max
h

∏
i

pprod(ci|wi;h)p(wi)

∑w∈V pprod(ci|w;h)p(w)
(6)

To assess the contribution of the three relational features,
we tested this production model under single features and all
possible combinations of features in pairs and triplets. We
also compared these models under the frequency-based prior
versus those under a uniform prior, along with a baseline
model that chooses words only based on the prior distribution.
We evaluated all models under two metrics: the Bayesian in-
formation criterion (BIC), which is a standard measure for
probabilistic models that considers both degree of fit to data
(i.e., likelihood) and model complexity (i.e., number of free
parameters); a performance curve that measures model accu-
racy at different values of k, similar to the standard receiver-
operating curve (ROC), where we assessed the predictive ac-
curacy of each model from its choice of top k words for dif-
ferent levels of k, or the proportion of overextension pairs
(wi,ci) for which the model ranks the correct production wi
among its top k predictions for referent ci.

The left two columns of Table 2 summarize the BIC scores
of the family of production models. We made three obser-
vations. First, models that incorporate features performed
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0 5 10 15 20 25 30 35 40

k (number of choices)

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

on
st

ru
ct

io
n

ac
cu

ra
cy

all features

feature pairs (mean)

single features (mean)

baseline

(b) Comprehension model
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Figure 3: Performance curves for production and comprehension models.

Table 2: Bayesian Information Criterion (BIC) scores for pro-
duction and comprehension (comp.) models.

Model likelihood
Production Comp.

freq. prior unif. prior unif. prior
Baseline 695 760 13268
category (cat.) 502 583 9663
visual (vis.) 496 574 10344
predicate (pred.) 499 582 9890
cat. + vis. 454 537 8949
cat. + pred. 457 544 8885
vis. + pred. 461 546 9261
all features 439 526 8594

better than the baseline (i.e., lower in BIC scores), suggest-
ing that children overextend words by making explicit use
of the semantic relations we considered. Second, models
with the frequency-based prior performed dominantly bet-
ter than those with the uniform prior, suggesting that chil-
dren jointly consider word usage frequency (or effort) and
semantic relations in overextension. Third, models with fea-
tural integration performed better than those with isolated
features (i.e., all features<features pairs<single features in
BIC score), suggesting that children rely on multiple kinds of
semantic relations in overextensional word choices. Figure
3a further confirms these findings in performance curves that
show the average predictive performance under the full range
of k in top k modelled word choices: all features>features
pairs>single features>baseline in the area under curves.
Comprehension. We next assessed the caretaker compre-
hension model by asking whether the model can retreive the
intended referent from an uttered overextended word. Be-
cause we do not have the actual records of caretakers’ infer-
ences, we simulated a dataset for model evaluation by 1) iden-
tifying child-caretaker speech scripts that contain the overex-
tended referents {ci} from our curated data; 2) replacing the
correct word for a referent ci (in the script) with the overex-
tended word wi reported in the literature. We then examined
if the model is able to retrieve the correct referent ci based
on wi among all other competing nouns in the communica-

tive context of a script. As an example, knowing that “ball”
has been reported to be overextended to balloon, we would
identify child speech scripts that contain the word “balloon”
and replace that word with “ball”. We would then run our
comprehension model and check if the top referents recov-
ered by the model contain “balloon” among other nouns that
appeared as context in that given script.

Similar to the case of production, we assessed the model by
maximizing the posterior comprehension probability over all
curated referents based on their appearances in the CHILDES
transcripts. We optimized the MAP objective function under
the sensitivity parameter h using stochastic gradient descent:

max
h

∏
i

pcomp(ci|wi;h,Ei)=max
h

∏
i

pcomp(wi|ci;h)p(ci)

∑c∈Ei pcomp(wi|c;h)p(c)
(7)

We used the same two metrics to evaluate the family of
comprehension models and summarized the BIC-based re-
sults in the third column of Table 2 and ROC-based results
in Figure 3b. We observed that results are qualitatively simi-
lar to those obtained in the production model: the rank order
of performance among baseline model, models with single
features, feature pairs, and all features, remains unchanged.

Evidence for multimodal chaining
To examine directly how the multimodal semantic space we
constructed accounts for variation in the overextension data,
we performed a logistic regression analysis. In particular, we
considered two sets of data: the attested set overextension
word-referent pairs, and a control set that shuffles the word-
referent mappings from the attested set. We then performed
a binary classification task via logistic regression to assess
whether the attested pairs can be detected from the control
pairs, given the same three relational features that we used
for our previous analyses. The logistic model achieved 83%
accuracy, compared to 50% chance. We also trained models
on subsets of the feature space, achieving best feature pair
performance of 82% and best single feature performance of
80%. This suggests that semantic relations provide significant
predictability of concepts that might undergo overextension.
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Figure 4 shows the distribution of dominant features across
the 66 overextension pairs (we labelled each pair according
to the top-scoring feature in the logistic regression model),
along with a few examples that are best explained by each
relational type. We observed that the contributions of these
features are roughly even, providing support for the view that
children rely on a combination of modalities in overextension.

38%
27%

36% Category
Visual
Predicate

“apple”—> orange juice
“key” —> door
“cake” —> candy

“dog” —> squirrel
“bird” —> duck
“truck” —> train

“apple” —> egg
“ball” —> balloon
“plane” —> rocket

Figure 4: Percentage shares and examples explained by the
three types of features from the curated overextension dataset.

Model simulation of chain complex
To illustrate how our model might simulate a chain complex,
we applied an iterative scheme to sample a chain of concepts
from the multimodal semantic space. Specifically, we began
the chaining process with a seed word w0 and initial chain
C0 = {w0}. In the j-th iteration, we sampled word w uni-
formly from C j−1, and word w′ from children’s vocabulary V
according to probability distribution p(w′|w) ∝ sim(cw′ ,cw),
where the similarity function is defined in Equation 2. We
then added w′ to the chain complex by linking it to w, hence
extending the chain to C j = C j−1 ∪{w′}. Figure 5 shows a
chain complex sampled from seed concept “door”. Similar to
Vygotsky’s “quah” example, it features referent-to-referent
extensions that involve different types of relations, illustrat-
ing the thought processes that could have given rise to the
diverse overextension patterns attested in young children.

While exploratory in nature, our simulation demonstrates
the potential of a multimodal approach to capture the for-
mation of chain complexes in child overextension. Future
work should explore this generative aspect of the framework
in more rigorous terms.

Discussion
We have presented a formal framework for characterizing
children’s overextension. We have shown that this framework
yields good accuracies in reconstructing child-caretaker com-
munication based on a relatively large set of overextension
examples we curated from the developmental literature. Our
results indicate that the diverse range of overextension pat-
terns can be explained by our framework that encapsulates a
multimodal representation of semantic relations with categor-
ical, visual, and predicate-based features.

With respect to earlier work from developmental psychol-
ogy, our results support the view that children’s overextended

window

garage

porch

basement

truck

toilet

motorcycle

fire truckdoor

Figure 5: Chain complex sampled from the multimodal se-
mantic space, and contributions of categorical (C), visual (V),
and predicate-based (P) relations to chaining probabilities.

word choices reflect a communicative strategy under a lim-
ited vocabulary. Moreover, we have shown that children tend
to favour high-frequency words in overextension, which pro-
vides evidence for the retrieval-error view of overextension.
Future work should explore whether the current framework
can explain overextension in children’s language comprehen-
sion, as well as account for the later convergence to adult
word usage.

We have shown the initial promise of a multimodal rep-
resentational scheme toward a better characterization of the
generative capacity for word sense extension in early child-
hood. Future work could explore the generality of this frame-
work in accounting for overextension beyond nouns, as well
as historical changes of word meaning.
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