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SUPPLEMENT - NEUROGENESIS

Structural changes for adult-born dentate granule cells
after status epilepticus

∗Lee A. Shapiro, ∗Charles E. Ribak, and †‡Sebastian Jessberger

∗Department of Anatomy and Neurobiology, University of California, Irvine, California, U.S.A; and †Laboratory of
Genetics, Salk Institute for Biological Studies, La Jolla, California, U.S.A

SUMMARY
Status epilepticus (SE) not only results in an in-
creased number of newly generated neurons in
the dentate gyrus but also leads to structural al-
terations of many of these newborn granule cells.
One of the structural changes involving newly gen-
erated dentate granule cells is the formation of hi-
lar basal dendrites that persist on mature granule
cells and integrate into synaptic circuitry. SE also
causes other newborn granule cells to migrate ec-

topically into the hilus, and these cells also inte-
grate into synaptic circuitry. This article will de-
scribe these structural alterations of granule cells
found in the dentate gyrus after SE and will also dis-
cuss the time course of these events and possible
underlying causes.
KEY WORDS: Temporal lobe epilepsy, Dentate
gyrus, Hippocampus, Hilar basal dendrites, Ectopic
granule cells.

The maturation and integration of newborn granule cells
can be divided into a series of distinct developmental stages
(e.g., Kempermann et al., 2004). Based on the work of
several studies using BrdU-labeling, endogenous mark-
ers, transgenic animals, or retroviral labeling, we now
have a sound picture of the morphological and functional
maturation of newborn neurons (Overstreet et al., 2004;
Overstreet Wadiche et al., 2005; Shapiro et al., 2007). In
normal adult rodents (rats and mice), newborn granule cells
are initially found in the subgranular zone with no den-
dritic processes. At this stage, a fraction of newborn cells
already express the microtubule-associated protein, dou-
blecortin (DCX), which labels immature neuronal cells for
approximately the first 3 weeks after birth (Brandt et al.,
2003; Couillard-Despres et al., 2005; Shapiro et al., 2005a;
Plumpe et al., 2006). At early stages, in the subgranular
zone, DCX-expressing cells appear to be individually cra-
dled by the nonradial processes of astrocytic cells that were
identified as radial glial cells (Shapiro et al., 2005a). This
one-to-one relationship is altered in the dentate gyrus of
epileptic animals (Shapiro & Ribak, 2006; Shapiro et al.,
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2007). At later time points after their birth, DCX-labeled
newborn neurons are located at the hilar border of the
granule cell layer and extend an apical dendritic process
along the radial process of a radial glial cell (Shapiro et al.,
2005a). This apical dendrite later extends into the molecu-
lar layer without any apparent glial scaffold for guidance
(Shapiro et al., 2007). It should be noted that the exact
relationship between an astrocytic scaffold and immature
neurons appears to depend on the maturational stage of the
newly generated neurons (Shapiro et al., 2005a; Plumpe
et al., 2006). Nevertheless, the current data on newborn
granule cells support the idea that the radial glial-like astro-
cytes that cradle the newly generated granule cells imme-
diately after their birth might also provide guidance for the
normal apical dendritic growth, migration, and differentia-
tion of these newborn neurons. Approximately16 days after
the birth of newborn granule cells, dendritic spines are ob-
served on the apical dendrites in the molecular layer (Zhao
et al., 2006).

In addition to an apical dendrite, it seems that many
newly generated granule cells in the adult dentate gyrus
have a transient basal dendrite, at least in rats (Rao &
Shetty, 2004; Ribak et al., 2004). However, in epileptic
rodents, the basal dendrite is a persistent feature and it
appears to be incorporated into the existing hippocam-
pal circuitry (Jessberger et al., 2007a), with stubby spines
and immature synapses appearing as early as 4–5 days
after seizures (Shapiro et al., 2007). Another interesting
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Figure 1.
Electron micrograph of a DCX-labeled basal dendrite
(D) at 5 days after pilocarpine-induced seizures. Two
synapses (arrows) are formed with this dendrite by
a presynaptic terminal that contains synaptic vesicles
(arrowheads). Scale bar = 0.5 μm.
Epilepsia C© ILAE

aspect of newly generated neurons in the dentate gyrus
from epileptic animals is that they migrate away from the
granule cell layer in large numbers to enter the hilus. Thus,
these newly generated granule cells that are located in an
ectopic location are referred to as hilar ectopic granule

Figure 2.
Confocal images of DCX (red) and GFAP (green) immunolabeling at 5 days after pilocarpine-induced seizures. In
(A), a cluster of DCX-labeled cells in the granule cell layer (GCL) is shown, and one of these cells has a hilar basal
dendrite (arrows) extending into the hilus (H). Also note that there is another hilar basal dendrite (arrowheads)
but it could not be traced back to its cell body of origin. In (B), GFAP-labeled astrocytes show hypertrophy of
their processes. In (C), the images were merged to show the relationship between the hilar basal dendrites and the
hypertrophied astrocytic processes. Note that the DCX-labeled basal dendrite (arrows) that was continuous with
its cells body aligns along a GFAP-labeled cell and its processes. The other hilar basal dendrite (arrowheads) also
apposes glial processes. Scale bar in A = 20 μm and also applies to B and C.
Epilepsia C© ILAE

cells. The remaining parts of this chapter will focus on
these seizure-induced changes to newly generated granule
cells and their processes.

BASAL DENDRITES ON NEWLY

GENERATED GRANULE CELLS

As mentioned above, newly generated granule cells in
the normal adult hippocampus often have a transient basal
dendrite. The appearance of this basal dendrite during the
migration from the newly generated neuron’s origin in the
subgranular zone to its destination in the granule cell layer
suggests that the basal dendrite is involved in migration.
The fact that no synapses have been observed on the basal
dendrite (Shapiro & Ribak, 2006) is consistent with the
notion that it is a transient structure (Seress & Pokorny,
1981; Seress & Ribak, 1990; Ribak et al., 2004). Follow-
ing seizures, the basal dendrites from the newly gener-
ated neurons persist and are postsynaptic to axon terminals
(Shapiro & Ribak, 2006). Both immature and developing
synapses (Fig. 1) were observed as early as 4 days after
seizures on DCX-labeled basal dendrites (Shapiro et al.,
2007). These hilar basal dendrites (Figs 2 and 3A) have
been shown to grow along an ectopic glial scaffold (Fig. 2;
Shapiro et al., 2005b) supporting the notion that glial hy-
pertrophy might play a role in epileptogenesis (Vessal
et al., 2005; Binder & Steinhäuser, 2006; Kang et al.,
2006). Following status epilepticus (SE), newly generated
granule cells display a significantly greater percentage of
hilar basal dendrites as compared to mature granule cells
(Walter et al., 2007). The fact that these basal dendrites

Epilepsia, 49(Suppl. 5):13–18, 2008
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Figure 3.
Structural changes of granule cells born after SE. Newborn cells were labeled with a retrovirus expressing GFP
1 week after KA-induced SE and killed 4 weeks later. (A) Shows a newborn neuron (GFP, green) within the granule
cell layer (NeuN in red) extending an apical dendrite in the molecular layer (arrows) and a basal dendrite into the
hilus (arrowheads). In addition to the aberrant extension of hilar basal dendrites, seizure-generated granule cells
often ectopically migrate into the hilus as depicted in (B). GCL, granule cell layer; ML, molecular layer. Scale bar in
B = 100 μm for A and B.
Epilepsia C© ILAE

persist for long durations after seizures (Ribak et al., 2000;
Walter et al., 2007) and develop mature synapses on den-
dritic spines (Jessberger et al., 2007a) is consistent with the
hypothesis that newly born granule cells are involved in a
recurrent excitatory circuit. Electrophysiological studies of
this aberrant circuitry have shown that it results in a hyper-
excitable state in the hippocampus (Austin & Buckmaster,
2004; Patel et al., 2004). Thus, seizure-induced basal den-
drites are involved in the incorporation of newly generated
neurons into an aberrant hyperexcitable circuitry that may
facilitate seizures.

ECTOPIC GRANULE CELLS

The abnormal extension of basal dendrites towards the
hilus is not the only altered feature for newly generated
granule cells from adult animals that had experienced SE.
The vast majority of granule cells are located in the den-
tate gyrus granule cell layer even though a very small frac-
tion of neurons with typical features of granule cells can
also be found in the hilus in healthy rodents (approxi-
mately 0.1% out of the whole granule cell population, Mc-
Closkey et al., 2005). Interestingly, the very first reports
on seizure-induced neurogenesis noticed a substantial frac-
tion of BrdU-labeled cells in the hilus following SE (Parent
et al., 1997). Later studies used immunohistochemical, ul-
trastructural, and electrophysiological approaches to show
that seizure-induced ectopic cells in the hilus (Fig. 3B) had
distinct characteristics that identified them as dentate gran-
ule cells (Scharfman et al., 2000; Dashtipour et al., 2001;

Scharfman et al., 2002, 2003). Why do granule cells ectopi-
cally migrate into the hilus and what are the functional con-
sequences of hilar granule cells in the context of epilepsy?

Several different rodent models of SE display this ec-
topic migration of granule cells (Jung et al., 2004; Mohapel
et al., 2004; Jessberger et al., 2007a). It appears that there
is a positive correlation of ectopic migration with excito-
toxic cell death. For example, a single electroconvulsive
shock upregulates the number of newborn neurons in the
granule cell layer but does not induce ectopic granule cell
migration (Scott et al., 2000). Thus, surplus activity does
not seem to be a sufficient stimulus, as potentially long-
lasting structural or molecular alterations are required to
lead to ectopic granule cell migration. Cajal-Retzius cells
that produce the secreted glycoprotein reelin, which is a
critical neuronal guidance molecule during development
(Rice & Curran, 2001), are especially vulnerable to exci-
totoxicity which results in decreased levels of reelin fol-
lowing SE (Haas et al., 2002). Indeed, a recent study sug-
gested that reelin likely contributes to seizure-associated
ectopic migration (Gong et al., 2007; Parent & Murphy,
2008), a hypothesis that is also supported by the finding
that a mutant in the reelin gene called reeler has increased
numbers of ectopic granule cells (Stanfield et al., 1979).
However, other pathways (e.g., cdk5/p35 signaling; Wen-
zel et al., 2001; Patel et al., 2004) and growth factors (e.g.,
VEGF and BDNF signaling; Jin et al., 2002) might also be
involved.

Electrophysiological studies showed that the basic
membrane properties of hilar ectopic granule cells are

Epilepsia, 49(Suppl. 5):13–18, 2008
doi: 10.1111/j.1528-1167.2008.01633.x
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remarkably similar to granule neurons within the granule
cell layer (Scharfman et al., 2000). However, ectopic gran-
ule cells showed epileptic burst discharges synchronized
with CA3 pyramidal neurons, with a time signature that
suggested monosynaptic connections between CA3 pyra-
midal cells and ectopic granule cells. Thus, ectopic granule
cells might be a critical component in establishing a recur-
rent excitatory circuitry eventually leading to heightened
excitability in the epileptic hippocampus.

SYNAPTIC INTEGRATION

OF SEIZURE-GENERATED

GRANULE CELLS

Following a distinct maturation process, newborn gran-
ule cells become synaptically integrated into the adult
hippocampus (van Praag et al., 2002; Schmidt-Hieber
et al., 2004). Under normal conditions the first input
onto newborn neurons appears to be a depolarizing tonic
GABAergic input. In contrast, excitatory, glutamatergic
synaptic connections are formed approximately 14 days
after the birth of neurons which is just prior to the time
when dendritic spines first appear (Esposito et al., 2005;
Ge et al., 2006; Zhao et al., 2006). New neurons that are
born shortly before or after SE also form dendritic spines
and form synapses on preexisting structures (Scharfman
et al., 2000; Jakubs et al., 2006; Jessberger et al., 2007a).
Experiments using the pro-opiomelanocortin (POMC) re-
porter mouse indicated that seizure activity accelerated
the maturation process of newborn granule cells after
SE (Overstreet-Wadiche et al., 2006; Zhao & Overstreet-
Wadiche, 2008). Importantly, the effects on dendritic and
synaptic architecture were persistent because 3-month-old
seizure-generated granule cells had relatively more mature
mushroom spines compared to cells born under control
conditions (Jessberger et al., 2007a).

There is now ample evidence that granule cells born af-
ter SE synaptically integrate into the dentate circuitry. As
outlined above, ectopic granule cells in the hilar region be-
come synchronized with CA3 pyramidal cells and might
thus contribute to seizure-associated recurrent excitation
(Scharfman et al., 2000, 2002). The functional connectivity
following synaptic integration of seizure-generated granule
cells that are located within the boundaries of the granule
cell layer is less clear. A recent study showed that 4-week-
old granule cells in the epileptic dentate gyrus did not sub-
stantially differ from cells born in running animals regard-
ing their intrinsic cell properties, but showed a connectivity
that suggested overall less excitability (Jakubs et al., 2006).
However, it remains unclear if these differences remain sta-
ble over time or might just differ between running and SE
animals but not between control and SE animals. Further-
more, the model of epilepsy used might be an important

factor influencing the network connectivity of granule cells
born after SE.

CONCLUSION

SE induces robust structural and functional changes
throughout the adult brain. The recent finding that seizure
activity also dramatically increases the number of newborn
neurons in the hippocampal dentate gyrus adds an addi-
tional level of seizure-associated neuronal plasticity. As
outlined in this review, not only is the number of new neu-
rons altered, but the morphology and location of seizure-
generated granule cells are drastically changed as com-
pared to control conditions. What are the reasons and what
might be the functional consequences of seizure-induced
neurogenesis?

The knowledge regarding the molecular and synaptic
maturation processes of newborn neurons in the adult hip-
pocampus under normal conditions is constantly growing
(Piatti et al., 2006). The developmental steps and their
alteration in the context of seizure-induced neurogenesis
are less clear but SE clearly affects the speed of matura-
tion (Overstreet-Wadiche et al., 2006), dendritic morphol-
ogy (Shapiro et al., 2005b; Jessberger et al., 2007a; Walter
et al., 2007), and cell body location within the dentate
gyrus (Parent et al., 1997; Scharfman et al., 2000). SE also
affects the structural integrity of the hippocampus by caus-
ing neuronal death. In addition, there is evidence that SE
changes the molecular composition of dividing cells and/or
newborn neurons themselves that might result in altered
cellular behavior. The relative contributions of intrinsic cell
alterations of precursor cells or immature neurons versus
changes in external cues generated in the dentate neuro-
genic niche are only poorly understood. First steps toward
understanding the molecular mechanisms of SE-induced,
aberrant neurogenesis are being made (e.g., Gong et al.,
2007), but further cell-type specific genetic tools only af-
fecting newborn cells such as cellular manipulation using
retroviral vectors and/or transplantation experiments are
required in the future.

What remains is one key question: Is seizure-induced
neurogenesis an attempt of the injured brain to repair itself
or are aberrant newborn neurons contributing to epilepto-
genesis? The structural alterations of newborn neurons that
might represent a circuit for recurrent excitation, which is
typical for the epileptic hippocampus, might favor a “neg-
ative” role of seizure-induced neurogenesis. In the same
line, several studies showed behavioral and electrophysi-
ological normalization when seizure-induced neurogenesis
was blocked (Jung et al., 2004; Jessberger et al., 2007b; but
see also Raedt et al., 2007). However, there are also data
that suggest seizure-induced neurogenesis as a compen-
satory attempt of the adult brain. In fact, Jakubs et al. found
that newborn granule cells in the epileptic dentate gyrus

Epilepsia, 49(Suppl. 5):13–18, 2008
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appear to be less excitable than control cells (Jakubs et al.,
2006). Given this broad spectrum of findings that is even
more complicated by the use of different seizure models,
the answer to the question whether SE-induced neurogene-
sis is “good” or “bad” remains far from being answered.
Rather, it seems plausible that some aspects of seizure-
induced neurogenesis might be beneficial for the epileptic
brain while other aspects and consequences might be harm-
ful. In any case adult neurogenesis associated with SE leads
to dramatic alterations in dentate connectivity simply by
the fact that (1) many more cells are born compared to con-
trol conditions, (2) a substantial number of newborn gran-
ule cells display abnormal features such as persistent basal
dendrites forming aberrant synapses, and (3) a dramatic in-
crease in hilar ectopic granule cells occurs. Nevertheless,
the molecular mechanisms and functional consequences of
seizure-induced neurogenesis remain largely unknown but
future studies will try to gain further insights into this excit-
ing new aspect of seizure-associated plasticity in the adult
brain.
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