
Lawrence Berkeley National Laboratory
LBL Publications

Title
Distributed Memory Parallel Markov Random Fields Using Graph Partitioning

Permalink
https://escholarship.org/uc/item/0g13f631

Authors
Heinemann, C
Perciano, T
Ushizima, D
et al.

Publication Date
2017-12-01

DOI
10.1109/bigdata.2017.8258318

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0g13f631
https://escholarship.org/uc/item/0g13f631#author
https://escholarship.org
http://www.cdlib.org/

Distributed Memory Parallel Markov Random Fields using Graph Partitioning

C. Heinemann1, T. Perciano1,3, D. Ushizima1,2,3, E. W. Bethel1
1Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

2University of California, Berkeley, CA, USA
3Center for Advanced Mathematics for Energy Research Applications (CAMERA), LBNL, Berkeley, CA, USA

Email: cheinemann@lbl.gov, tperciano@lbl.gov, dushizima@lbl.gov, ewbethel@lbl.gov

Abstract—Markov random fields (MRF) based algo-
rithms have attracted a large amount of interest in image
analysis due to their ability to exploit contextual infor-
mation about data. Image data generated by experimental
facilities, though, continues to grow larger and more
complex, making it more difficult to analyze in a reasonable
amount of time. Applying image processing algorithms to
large datasets requires alternative approaches to circum-
vent performance problems. Aiming to provide scientists
with a new tool to recover valuable information from such
datasets, we developed a general purpose distributed mem-
ory parallel MRF-based image analysis framework (MPI-
PMRF). MPI-PMRF overcomes performance and memory
limitations by distributing data and computations across
processors. The proposed approach was successfully tested
with synthetic and experimental datasets. Additionally, the
performance of the MPI-PMRF framework is analyzed
through a detailed scalability study. We show that a
performance increase is obtained while maintaining an
accuracy of the segmentation results higher than 98%.
The contributions of this paper are: (a) development of
a distributed memory MRF framework; (b) measurement
of the performance increase of the proposed approach; (c)
verification of segmentation accuracy in both synthetic and
experimental, real-world datasets.

Keywords-Markov Random Fields; image segmentation;
parallel parameter estimation/optimization; distributed
memory; material science

I. INTRODUCTION

Applying image processing algorithms to the field
of material science is important for studying the prop-
erties of material samples, analyzing global structure
(e.g., porosity) and microstructures (e.g., fibers, grains,
and pores), etc. [1] [2] [3]. Material science technology
is becoming more advanced and cameras now provide
greater amounts of detail regarding microscopic struc-
tures in resulting datasets. Thus, the datasets are larger
and contain more data to analyze. Analysis runtime
is increased as a result. Image processing techniques
can be used to assist in the analysis of such datasets.
Many current approaches, which are single socket in
nature, are unable to accommodate growing data sizes
due to single-node memory limitations. Consequently,
improving current techniques through a scalable, gen-

eral purpose image analysis framework becomes in-
creasingly valuable.

A. Background

Given large data rates and sizes, machine learning
for data acquisition [4], as well as for the automation of
feature detection and extraction, represents key steps
in reducing data while gaining insight from image
structures. Numerous categories of automated feature
extraction exist [5] [6], but many are reliant on image
segmentation techniques supported by unsupervised
learning [7]. Broadly used to analyze experimental
data, unsupervised segmentation algorithms [8] enable
the grouping of picture elements or, in essence, collect-
ing tokens that “belong together”. Such algorithms can
gather meaningful groups of information by searching
for hidden structures in unlabeled data. Advantages
include dispensable training data and potential for
data reduction such as removal of non-contributing
portions of images including background and artifacts.

Unsupervised image segmentation can be done with
the help of a probabilistic graphical model known
as Markov random fields (MRF) [1]. MRFs repre-
sent discrete data by modeling neighborhood rela-
tionships. Moreover, such models provide ways to
formulate theoretical algorithms for the processing of
functions related to graphs. These can then be used to
solve problems in image processing such as segmen-
tation/classification, image registration, feature detec-
tion, and texture analysis [9]–[14]. The idea behind
MRF models is to use undirected graphical models to
obtain a higher level representation of an image. In
doing so, these models consolidate structure represen-
tation for later image processing and analysis [15]. In
fact, many different concepts can be combined using
graphs in pursuance of modeling real-world problems.

B. Performance of Markov random fields methods

Despite the several advantages of using MRFs, the
algorithms are limited by performance when running
large and complex datasets in serial, taking excessive
amounts of time to generate valuable results. Strategies

have been proposed, such as graph-cut techniques, to
overcome the computational complexity of MRF opti-
mization (NP-hard) and provide a powerful alternative
from both computational and theoretical viewpoints.
However, they are often restricted to specific types of
models (first-order MRFs) [16] and energy functions
(regular or submodular) [16].

For higher-order MRFs and non-submodular func-
tions, some strategies using parallelized graph cuts
and parallelized Belief Propagation have also been pro-
posed [17]–[20], but these approaches typically depend
on orderly reduction or submodular functions [21].
These are undesirable constraints when dealing with
large and complex image datasets because they limit
the contextual modeling of the problem. Problems with
such datasets require higher-order potentials. These
potentials provide more accurate characterization and
richer interactions among random variables. This, con-
sequently, impacts the definition of image priors and
image analysis results.

In order to circumvent such drawbacks, recent
works [22] [23] have proposed theoretical foundations
for distributed parameter estimation in MRF. These
approaches make use of a composite likelihood, allow-
ing the distribution of sub-problems across processors
to be solved in parallel. Under general conditions on
the composite likelihood factorizations, the distributed
estimators are proven to be consistent. The Linear
and Parallel (LAP) [24] algorithm parallelizes naturally
over cliques and, for graphs of bounded degree, its
complexity is linear in the number of cliques. It is
fully parallel and, for log-linear models, it is also data
efficient. To estimate parameters, it requires only the
local statistics of the data, i.e., considering only pixel
values of local neighborhoods.

Perciano et al. [25] proposed a graph-based model,
referred to as Parallel Markov random fields (PMRF),
that exploits MRFs to segment images. Both the opti-
mization and parameter estimation processes are par-
allelized using the LAP method [24]. Even though the
proposed multi-threaded approach highly improves
the computational performance of the MRF-based seg-
mentation algorithm, its shared memory parallelism is
a limit to its scalability. Therefore, it is necessary to
reconfigure PMRF for distributed memory parallelism.
The work presented here overcomes these previous
limitations by reformulating the algorithm for use on a
distributed memory platform, which can accommodate
larger problem sizes and faster computations.

Aiming to overcome previous limitations of exist-
ing algorithms, we propose a distributed memory ap-
proach to PMRF (MPI-PMRF). The goal of utilizing dis-
tributed memory parallelization, specifically the Mes-
sage Passing Interface (MPI), with the PMRF algorithm

is to increase performance by running multiple subsets
of the dataset simultaneously. Because MPI is widely
accepted and known, as well as generally being readily
available, MPI is an optimal choice for expanding
the scope of the work distribution from the threaded
PMRF version on a single node to the MPI version
that can be scaled across multiple nodes. In doing so,
we are delivering a valuable tool that can be used
to analyze large and complex experimental datasets.
Redesigning the PMRF algorithm to take advantage of
distributed memory parallelization provides the ability
to analyze increasingly large datasets and to obtain
accurate results in a more reasonable amount of time.

II. DESIGN AND IMPLEMENTATION

MPI-PMRF is developed based on two main build-
ing blocks: a statistical MRF graph model and an op-
timization approach using a graph partitioning strat-
egy. The MRF graph model used for MPI-PMRF is
taken from [25] and is described in further detail in
Section I-B. In the following sections, we provide a
detailed explanation of the two main components.

A. Markov random field model

In a MRF model, the optimization process uses a
global energy function to find the best solution to
a similarity problem, such as the best pixel space
partitioning or the best matching. The energy function
consists of a data term and a smoothness term. For
image segmentation, we use the mean of the intensity
values of a region as the data term. The smoothness
term takes into account similarities between regions.
The goal is to find the best labeling for the regions so
that the similarity between two regions with the same
label is optimal [26].

Given an image represented by y = (y1, . . . , yN),
where each yi is a region, we seek a configuration
of labels x = (x1, . . . , xN) where xi ∈ L and L is
the set of all possible labels, L = {0, 1, 2, . . . , K}. The
MAP criterion [1] states that it is necessary to find a
labeling x∗ that satisfies x∗ = argmax

x
{P(y|x, Θ)P(x)},

which can be rewritten in terms of the energies as
x∗ = argmin

x
{U(y|x, Θ) + U(x)}, where U(y|x, Θ) is

the conditional energy function and U(x) is the prior
energy function, based on the sum of the prior and
joint probabilities. The prior probability P(x) is a Gibbs
distribution, and the joint probability distribution is
P(y|x, Θ) = ∏i P(yi|x, Θ) = ∏i P(yi|xi, θxi), where
P(yi|xi, θxi) is a Gaussian distribution with parameters
θxi = (µxi , σxi) and Θ = {θl |l ∈ L} is the parameter set.
These parameters are estimated during the optimiza-
tion process and are used to find the optimal labeling
for the problem.

B. MPI-PMRF algorithm

MPI-PMRF is a refactorization and extension of the
previous work [25] that is capable of running on dis-
tributed memory platforms by reconfiguring the work
distribution and calculation of the optimal solution to
take advantage of distributed memory parallelization.
Combining graph partitioning with the MRF provides
the ability to run the optimization process in a dis-
tributed memory fashion with MPI-PMRF and, there-
fore, find the optimal labeling for the problem faster.
The proposed MPI-PMRF algorithm consists of the
following three basic steps:

1) Given an original image and an oversegmention
of that image (higher level partitioning of the
image into regions), construct a graph model;

2) Refactor the graph model according to the
Markov random fields model to target the image
segmentation;

3) A distributed approach is used for the optimiza-
tion process to obtain the optimal labeling for the
graph.

A detailed description of the algorithm is presented
in Algorithm 1.

Algorithm 1 Distributed memory version of the
Markov Random Field algorithm using graph parti-
tioning and parameter estimation (MPI-PMRF). Line 8
is run in parallel to distribute the largest amount of
work to increase performance.
Input: Original image, oversegmentation, number of classes
Output: Segmented image and estimated parameters
1: K ← number of classes
2: Initialize parameters and initial labels randomly
3: Create graph from oversegmentation
4: for each Expectation Maximization iteration do
5: Divide graph into subgraphs (cliques) based on number of

MPI processes to be used
6: Distribute cliques to MPI processes
7: for each non-zero clique of the graph do
8: Run Expectation Maximization and Maximum a Posteriori

optimizations on assigned MPI processes
9: end for

10: Gather parameter estimation information for subgraphs
11: Update parameters
12: end for
13: Generate resulting output image

Input to the MPI-PMRF is the original image, as
well as an oversegmented image. The oversegmenta-
tion is a fast but low-accuracy approach for image
segmentation [25]. Pixels from the input image with
similar characteristics are grouped into regions. Line
3 of Algorithm 1 shows such regions being used for
graph creation. Second, the resulting regions make up
the nodes of the graph representation of the image.
The graph partitioning process is done using the Linear

and Parallel (LAP) algorithm [24], which creates sub-
problems for each maximal clique in the problem and
allows simultaneous parameter estimation and opti-
mization to be executed for every generated subgraph
of the original graph [24] [25].

The MPI-PMRF algorithm divides the full parameter
estimation process into several fully independent sub-
problems, as seen in Line 5 of Algorithm 1. See Section
II-A for more detail. The natural parallelization capa-
bilities of these sub-problems, or cliques, makes them
an ideal candidate to be solved in parallel. Line 6 of
Algorithm 1 shows that the framework utilizes MPI to
distribute the optimization of the cliques, which is the
largest amount of work in the algorithm, to the allo-
cated processes in order to increase performance. Line
8 of Algorithm 1 shows the optimization processes that
are performed in parallel.

When clique optimization is completed, all results
are combined by reassociating the regions of the graph
with the region’s respective pixels from the original
input image. Upon completion of the conversion from
regions to pixels, the final output image is written,
given in Line 13 of Algorithm 1.

III. RESULTS

In this section, we describe the methodology used
to evaluate the proposed approach in terms of both
segmentation precision and performance.

A. Image segmentation experiments
1) Datasets: MPI-PMRF is tested with two different

datasets. First, we use a synthetic dataset to verify the
correctness and accuracy of the MPI-PMRF framework.
Then, we use an experimental dataset to show how
MPI-PMRF performs when analyzing real-world ma-
terial science problems.

We selected the synthetic dataset from the 3D bench-
mark made available by the Network Generation Com-
parison Forum (NGCF) 1. The NGCF datasets are
a global, recognized standard and contain a known
ground-truth, supporting the goal of guaranteeing re-
producibility of accurate results with MPI-PMRF. The
full synthetic dataset is 268 MB and consists of 512
image slices of dimensions 512× 512. For the purposes
of this analysis, the original stack is corrupted by noise
(salt-and-pepper) and additive Gaussian with σ = 100.
Additionally, ringing artifacts are also simulated in
the sample to closer resemble real-world results. This
dataset emulates a very porous fossiliferous outcrop
carbonate - Mt. Gambier limestone - from South Aus-
tralia. Mimicking properties of real-world datasets pro-
vides the verification that MPI-PMRF will produce

1http://people.physics.anu.edu.au/∼aps110/network
comparison

(a) Original (b) Ground-truth (c) MPI-PMRF result (d) Simple threshold

(e) 3D rendering of the original data (f) 3D rendering of the MPI-PMRF
result

Figure 1: Results after applying MPI-PMRF to the synthetic dataset. (a) Original region of interest from the
noisy data; (b) Ground-truth; (c) Result obtained by the proposed MPI-PMRF; (d) Result obtained using a simple
threshold; (e) 3D rendering of the original noisy dataset; (f) 3D rendering of the result obtained by MPI-PMRF.

correct results with datasets where the ground-truth
cannot be tested.

The experimental dataset contains cross-sections of
a geological sample and uses a gray scale value to
represent information regarding the x-ray attenuation
and density of the scanned material. Isotropy and
pixel resolution at micrometer scale, as well as the
possibility of creating 3D virtual models, make mi-
croCT [27] imaging advantageous for material anal-
ysis. Using synchrotron light radiation to probe the
material structure, the LBL Advanced Light Source
X-ray beamline 8.3.2 [28] scans samples, which are
subjected to energies between 10 and 45keV, with a 1%
bandpass, CCD camera Cooke PCO 4000, Kodak chip
with 4008× 2672 pixels, 14-bit, 9 micron square pixels.
As part of the normal data processing pipeline, when
the data comes off the instrument, it is run through
a reconstruction algorithm that processes a 3D image
that is 3 GB in size, consisting of 500 image slices with
dimensions of 1813× 1830.

While the synthetic and experimental datasets,
which are 268 MB and 3 GB in size, respectively, are not
particularly ”large”, we limit our scalability studies,
presented in Section III-B, to these two datasets due
to the fact that we need to be able to run in a serial
configuration for the purposes of comparison with the

parallel version of the algorithm.
2) Evaluation metrics: In order to determine the pre-

cision of the segmentation results we use the metrics
precision, recall, and accuracy defined as follows:

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

accuracy =
TP + TN

TP + TN + FP + FN
, (3)

where TP stands for True Positives, TN for True
Negatives, FP for False Positives, and FN for False
Negatives.

In addition, we also calculate the porosity (ratio
between void space and total volume), or ρ, which is
given by

ρ =
Vv

Vt
, (4)

where Vv is the volume of the void space and Vt is
the total volume of the void space and solid material
combined.

3) Results: We apply the MPI-PMRF framework to
the two datasets described previously by processing
each individual 2D cross-section of the 3D volumes.
The output should ideally separate the solid phase

from the void phase to show structures such as cavities
and granularity of the material.

Figure 1 presents the results for the synthetic dataset.
The ground-truth (b) and the result obtained using
the proposed method (c) are very similar, indicating
a good convergence of the algorithm. We also present
the result obtained using a simple threshold (d), show-
ing the inability of such an approach to successfully
separate the two different phases. For this dataset,
the evaluation metrics values are 99.52% for precision,
98.69% for recall, and 98.99% for accuracy. The result
of porosity for the synthetic dataset when utilizing the
MPI-PMRF is 44.06%, which is very close to the ground
truth value of 43.6%.

Figure 2 presents the results when running the
experimental dataset with MPI-PMRF. The algorithm
successfully separates the rock-structures from the
background (b). Using a simple threshold results in
different output (c). Given that a ground-truth is not
available for the experimental dataset, we are not
able to calculate the evaluation metrics; however, the
segmentation results are identical to those presented
in [25]. The porosity is calculated at 42.32%.

Using the MPI-PMRF framework to obtain accurate
segmentation results is extremely valuable to material
scientists. Segmenting geological samples aids in the
understanding of, for example, carbon sequestration
– geologic storage of captured CO2 in underground
rock formations. Precise image segmentation provides
valuable measurements of porosity and permeability
of these samples. The identification of the different
phases in the image makes possible the assessment of
the material’s 3D architecture and the measurement of
the structures involved.

B. Performance analysis

1) Methodology: To better understand the scalability
of MPI-PMRF, we conducted a performance student on
1, 2, 4, 12, 24, 48, 96, 192, 384, and 768 processes, specif-
ically targeting the framework’s optimization process
due to the fact that it takes the largest amount of
time to complete and it is designed to be parallelized.
Leveraging on the parallelization capabilities of the
optimization process provides the ability to run larger
and more complex datasets in a reasonable amount of
time. The results show that, when running in parallel,
it is possible to achieve a performance increase. The
performance increase obtained at varying levels of
concurrency is discussed in detail in Sections III-B3
and III-B4.

2) Platforms: MPI-PMRF was developed and tested
on the Edison supercomputer at the National Energy
Research Scientific Computing Center (NERSC). The
complete Edison system is a Cray XC30 system with a

peak performance of 2.57 PFLOPS (1015 floating point
operations per second), 133,824 compute cores, 357
terabytes of memory, and 7.56 petabytes of disk [29]. In
addition, both Edison and Edison’s network are user-
based systems, potentially leading to a fluctuation in
result times. Additional details regarding results can
be found in Sections III-B3 and III-B4.

3) Analysis of Scalability: Our approach for under-
standing scalability is to measure runtime perfor-
mance, in seconds, at varying levels of concurrency
for the different datasets. We accommodate variability
by running each experiment configuration 5 times and
averaging the results. Additional performance metrics
are also analyzed in Section III-B4. Every experiment
was performed 5 times and the average runtime was
calculated to account for any possible system variabil-
ity on Edison, as stated in Section III-B2. Figure 5
provides the numeric averages for both datasets at
varying concurrencies.

Figures 3 and 4 show the runtime performance of
the proposed approach on the datasets in a logarithmic
fashion to better illustrate the performance increase
obtained. In both figures, the vertical axis represents
time, in seconds, and the horizontal axis is the im-
age slice of the dataset. The individual colored lines
each represent a different concurrency. Because every
experiment was run 5 times, each given line represents
the average of every run for the given slice at the
respective concurrency. The gray areas surrounding the
colored lines represent the standard deviation from the
average shown. As concurrency increases, we observe
that the standard deviation of runtime decreases. The
standard deviation decreases with increasing concur-
rency because it is relative to the average; if the average
is higher (representing a larger runtime), as it is at
lower concurrencies, the standard deviation will be
larger.

In both Figures 3 and 4, one can observe that there
is variation in runtime between image slices, partic-
ularly at the lower concurrencies. Such a behavior is
expected due to the fact that, since the runtime of the
optimization process is proportional to the number of
cliques run by each process, the runtime becomes a
function of the complexity of the underlying data on
which MPI-PMRF is applied.

An important factor to note is the difference between
the results for the datasets. The synthetic dataset does
not contain as large of a variation in the number of
cliques as the experimental dataset. Because the exper-
imental dataset is a real-world problem, it is subject to
outside factors such as noise or outside anomalies that
are not observed in a synthetic dataset. As stated in
Section III-A1, the results for the synthetic dataset are
used as a verification technique while the results for

(a) Original (b) MPI-PMRF result (c) Simple threshold

(d) 3D rendering of the original data (e) 3D rendering of the MPI-PMRF
result

Figure 2: Results applying MPI-PMRF to the experimental dataset. (a) Region of interest from the original data;
(b) Result obtained by the proposed MPI-PMRF; (c) Result obtained using a simple threshold; (d) 3D rendering
of the original dataset; (e) 3D rendering of the result obtained by MPI-PMRF.

Figure 3: When measuring runtime (in seconds) of the synthetic dataset, the results show the overall decrease in
runtime as concurrency increases. See Section III-B3 for more detail.

the experimental dataset are to present an application
of MPI-PMRF.

Also, the runtime for the optimization process is

directly proportional to the number of cliques pro-
cessed for a given slice of the dataset. The runtime
inherently reflects the complexity of the clique being

Figure 4: When measuring runtime (in seconds) of the experimental dataset, the results show the overall decrease
in runtime as concurrency increases. See Section III-B3 for more detail.

Number
Processes

Synthetic
Time (in
seconds)

Experimental
Time (in
seconds)

1 70.6 633.9
2 37.4 340.4
4 20.2 129.9
12 8.3 50.3
24 4.7 38.4
48 2.7 33.5
96 1.7 19.1
192 1.4 11.9
384 1.4 7.6
768 1.3 6.9

Figure 5: Average time for the optimization process to
execute on given number of processes.

optimized. Additionally, the distribution of the work
used in the experiments is important to note as well.
The number of cliques of the graph is divided by the
number of processes on which the optimization pro-
cess will run. Each process receives an equal subsection
of cliques while the final process receives a equal sized
subsection plus the remainder of cliques that did not
divide evenly. While it is possible that the number of
cliques run by each process could be equal, the number
of individual nodes within the cliques run on each
process can be drastically different due to the fact that

not all cliques are composed of the same number of
nodes. We discuss this subject further in Section III-B4.

An important observation to point out is that, par-
ticularly in the results for the synthetic dataset in Fig-
ure 3, there is very little, if any, increase in performance
at the highest concurrencies (192, 384, and 768). In
fact, there are times when the lower concurrencies
actually performance better than the higher concurren-
cies. When looking at the results for the experimental
dataset in Figure 4, it can be seen that there is a similar
outcome, but not to the same extent. There is more of a
performance increase in the experimental dataset at the
higher concurrencies than in the synthetic dataset at
the same concurrencies. Because the synthetic dataset
is much smaller than the experimental dataset, it can be
concluded that there simply is not enough data in the
synthetic dataset to be divided among such large num-
bers of processes. While the synthetic dataset is useful
in verifying the validity of the MPI-PMRF framework,
it does not scale as well as the larger, more complex
real-world datasets. Future work will explore this idea
in more detail, to examine scalability on datasets much
too large to fit within memory on a single node. Such
work will be valuable to experimental scientists faced
with an increasing deluge of data.

4) Performance metrics: In this section, we look more
deeply into runtime performance to better understand
scalability and efficiency. Moreland and Oldfield [30]

present the idea that traditional performance metrics
do not perform as well for large-scale studies with
data that cannot run on a single serial computer. They
define the concepts of rate and efficiency to simplify
scalability studying by removing the dependency be-
tween the problem size and the number of processing
elements. Such metrics, in general, expect that the
problem has a distributed workload balance. MPI-
PMRF does not exhibit such a characteristic and this is
reflected in the results.

The definitions of efficiency and rate are given be-
low. n is input size, p is number of processing elements,
T is time, C* is the cost of running the algorithm in
serial (minimal cost), and C is the cost when running
on a given number of processes.

1) Efficiency is the ratio of the best minimal cost, or
the cost of running in serial, to the actual cost of
running on numerous processes and is given by

E(n, p) =
C∗(n)

C(n, p)
(5)

2) Rate is calculated in terms of size of input com-
puted per unit time rather than absolute run time
and is given by

R(n, p) =
n

T(n, p)
(6)

Figure 6 shows the results for the synthetic dataset’s
efficiency and rate. Figure 7 shows the results for the
experimental dataset’s efficiency and rate. The ideal
value for efficiency is a constant value of 1, represented
by the solid black line in Figures 6a and 7a; the ideal
slope of the rate is linear, represented by the solid black
line in Figures 6b and 7b. The efficiency and rate of
MPI-PMRF do not follow the ideal trends, though. As
stated previously, the poor results for efficiency and
rate are due to the fact that the workload distribution
is not balanced across the processes executing the
optimization.

Two factors contribute to the imbalance that causes
poor scalability. The first factor is the number of cliques
itself. During workload distribution, it is not guar-
anteed that the total number of cliques will divide
evenly among the allocated processes. Consequently,
not all processes receive an equal amount of work.
This indicates that some processes will take longer to
execute and, thus, have larger runtimes. The second
factor is the imbalance within the cliques themselves.
While we may be able to evenly distribute cliques
across processes, because the amount of computation
per clique varies as a function of clique complexity,
load imbalance may result when processes having
more complex cliques have more work to do than
processes having less complex cliques.

As concurrency increases, we see performance
degradation due to the load imbalance caused by
different processes having different amounts of work.
When running at higher concurrencies, the unbalanced
workload leads to a drop in efficiency. Similarly, we
see that there is a decrease in the rate at which the
performance increases. Figures 6 and 7 show where the
results do not follow the ideal trends. While the rate of
performance increase does not follow the ideal trend,
we see that the MPI-PMRF framework still provides
a small performance increase when running at higher
concurrencies, making it advantageous when analyz-
ing large datasets as opposed to serialized analysis.

Figure 6: (a) The efficiency of the synthetic dataset does
not follow the ideal efficiency, which is equal to 1, but
still provides an increase in performance. (b) The rate
of the synthetic dataset does not exactly follow the
ideal rate, with a slope equal to 1, but still provides
a performance increase at different concurrencies and
executes faster than when running in serial. See Sec-
tion III-B4 for more detail.

IV. CONCLUSIONS

The MPI-PMRF framework is a distributed memory
parallel version of an advanced image segmentation
based on Markov random fields optimization. Equip-
ment in material science is becoming more advanced
and resulting in larger datasets, making MPI-PMRF
a valuable tool to help scientists with the analysis of
such datasets. In fact, our framework can potentially
help scientists discover valuable information from the

Figure 7: (a) The efficiency of the experimental dataset
does not follow the ideal efficiency, which is equal
to 1, but still provides an increase in performance.
(b) The rate of the experimental dataset does not
exactly follow the ideal rate, with a slope equal to 1,
but still provides a performance increase at different
concurrencies and executes faster than when running
in serial. See Section III-B4 for more detail.

datasets by minimizing the impact on performance
given its parallel nature.

The performance analysis and scaling studies con-
ducted in this work show runtime performance gains
as we increase concurrency, which is helpful for the
experimental scientists who need to make use of such
methods. Our studies also show performance limita-
tions at higher concurrencies that are due to modest
load imbalance. The load imbalance is due to the fact
that, while we may be able to distribute cliques nearly
evenly across processes, the per-clique workload is a
function of clique complexity.

Future work will examine more advanced methods
of workload estimation that take into account clique
complexity, will run additional scalability studies on
larger and more complex datasets, and will work with
both 3D volumes and 2D images.

ACKNOWLEDGMENTS

This work was supported by the Director, Office
of Science, Office of Advanced Scientific Computing
Research, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231, through the grant
“Scalable Data-Computing Convergence and Scientific

Knowledge Discovery,” program manager Dr. Laura
Biven, and the Center for Applied Mathematics for
Energy Research Applications (CAMERA). We also
thank the LBNL ALS division.

REFERENCES

[1] S. Z. Li, Markov Random Field Modeling in Image Analysis.
Springer Publishing Company, 2013.

[2] L. E. Sucar, Probabilistic Graphical Models: Principles and
Applications. Springer Publishing Company, 2015.

[3] J. Simmons, C. Przybyla, S. Bricker, D. W. Kim, and
M. Corner, “Physics of MRF Regularization for Seg-
mentation of Materials Microstructure Images,” in IEEE
International Conference on Image Processing, 2014, pp.
4882–4886.

[4] X. Yang, F. De Carlo, C. Phatak, and D. Gürsoy, “A con-
volutional neural network approach to calibrating the
rotation axis for X-ray computed tomography,” Journal
of Synchrotron Radiation, vol. 24, no. 2, pp. 469–475, Mar
2017.

[5] C. Hintermüller, F. Marone, A. Isenegger, and M. Stam-
panoni, “Image processing pipeline for synchrotron-
radiation-based tomographic microscopy,” Journal of
Synchrotron Radiation, vol. 17, no. 4, pp. 550–559, Jul
2010.

[6] R.-C. Chen, D. Dreossi, L. Mancini, R. Menk, L. Rigon,
T.-Q. Xiao, and R. Longo, “PITRE: software for phase-
sensitive X-ray image processing and tomography re-
construction,” Journal of Synchrotron Radiation, vol. 19,
no. 5, pp. 836–845, Sep 2012.

[7] M. Khanum, T. Mahboob, W. Imtiaz, H. A. Ghafoor, and
R. Sehar, “Article: A survey on unsupervised machine
learning algorithms for automation, classification and
maintenance,” International Journal of Computer Applica-
tions, vol. 119, no. 13, pp. 34–39, June 2015, full text
available.

[8] W. Chen, G. Ostrouchov, D. Pugmire, Prabhat, and
M. Wehner, “A Parallel EM Algorithm for Model-Based
Clustering Applied to the Exploration of Large Spatio-
Temporal Data,” Technometrics, vol. 55, no. 4, pp. 513–
523, 2013.

[9] G. Liu, Z. Lin, X. Tang, and Y. Yu, “Unsupervised object
segmentation with a hybrid graph model (hgm),” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 32, no. 5, pp. 910–924, May 2010.

[10] S. Chen, L. Cso, Y. Wang, J. Liu, and X. Tang, “Image
Segmentation by MAP-ML Estimations,” in IEEE Trans-
actions on Image Processing, 2010, pp. 2254–2264.

[11] A. Jalil, T. Cheema, A. Manzar, and I. Qureshi, “Rotation
and gray-scale-invariant texture analysis using radon
and differential radon transforms based hidden markov
models,” Image Processing, IET, vol. 4, no. 1, pp. 42–48,
February 2010.

[12] A. Huang, R. Abugharbieb, and R. Tam, “A novel ro-
tationally invariant region-based hidden markov model
for efficient 3-d image segmentation,” in IEEE Transac-
tions on Image Processing, vol. 19, no. 10, 2010, pp. 2737–
2748.

[13] C. Zheng, Q. Qin, G. Liu, and Y. Hu, “Image seg-
mentation based on multiresolution markov random
field with fuzzy constraint in wavelet domain,” Image
Processing, IET, vol. 6, no. 3, pp. 213–221, April 2012.

[14] Q. Zhou, J. Zhu, and W. Liu, “Learning dynamic hy-
brid markov random field for image labeling,” in IEEE
Transactions on Image Processing, vol. 22, no. 6, 2013, pp.
2219–2232.

[15] O. Lezoray and L. Grady, Image Processing and Analysis
with Graphs: Theory and Practice. CRC Press, 2012.

[16] V. Kolmogorov and R. Zabin, “What energy functions
can be minimized via graph cuts?” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 26, no. 2,
pp. 147–159, Feb 2004.

[17] H. Eslami, T. Kasampalis, and M. Kotsifakou, “A gpu
implementation of tiled belief propagation on markov
random fields,” in 2013 Eleventh ACM/IEEE International
Conference on Formal Methods and Models for Codesign
(MEMOCODE 2013), Oct 2013, pp. 143–146.

[18] A. Shekbovstov and V. Hlavac, “A distributed min-
cut/maxflow algorithm combining augmentation and
push-relabel,” in International Journal of Computer Visu-
alization, 2012.

[19] O. Jamriska, D. Sykora, and A. Hornung, “A cache-
efficient graph cuts on structured grids,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, 2012,
pp. 3673–3680.

[20] A. Delong and Y. Boykov, “A scalable graph-cut algo-
rithm for n-d grids,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2008.

[21] C. Wang, N. Komodakis, and N. Paragios, “Markov
random field modeling, inference, learning in computer
vision and image understanding: A survey,” Computer

Vision and Image Understanding, vol. 117, no. 11, pp. 1610
– 1627, 2013.

[22] Z. Meng, D. Wei, A. Wiesel, and A. O. Hero, “Dis-
tributed learning of gaussian graphical models via
marginal likelihoods,” in The Sixteenth International Con-
ference on Artificial Intelligence and Statistics, 2013, pp. 39–
47.

[23] ——, “Marginal likelihoods for distributed parameter
estimation of gaussian graphical models,” in IEEE Trans-
actions on Signal Processing, vol. 62, no. 20, 2014, pp.
5425–5438.

[24] Y. D. Mizrahi, M. Denil, and N. de Freitas, “Linear
and parallel learning of markov random fields,” in Pro-
ceedings of International Conference on Machine Learning,
vol. 32, 2014, pp. 1–10.

[25] T. Perciano, D. Ushizima, E. W. Bethel, Y. D. Mizhahi,
and J. A. Sethian, “Reduced-complexity Image Segmen-
tation under Parallel Markov Random Field Formula-
tion using Graph Partitioning,” in 2016 IEEE Interna-
tional Conference on Image Processing, Phoenix, AZ, USA,
Sep. 2016, lBNL-1005703.

[26] D. Mahapatra and Y. Sun, “Integrating segmentation
information for improved mrf-based elastic image reg-
istration,” IEEE Transactions on Image Processing, vol. 21,
no. 1, pp. 170–183, Jan 2012.

[27] “Microct.” [Online]. Available: microct.lbl.gov

[28] J. Donatelli et al., “Camera: The center for advanced
mathematics for energy research applications,” Syn-
chrotron Radiation News, vol. 28, no. 2, pp. 4–9, 2015.

[29] “Edison.” [Online]. Available: http://www.nersc.gov/
users/computational-systems/edison/configuration/

[30] K. Moreland and R. Oldfield, “Formal metrics for large-
scale parallel performance,” in Proceedings of Interna-

tional Supercomputing Conference, 2015.

